
Subspace Newton Method for Sparse SVM

Shenglong Zhou(shenglong.zhou@soton.ac.uk)*

Abstract

Kernel-based methods for support vector machines (SVM) have seen a great
advantage in various applications. However, they may incur prohibitive computa-
tional costs when the involved sample size is on a large scale. Therefore, reducing
the number of support vectors (or say sample reduction) appears to be necessary,
which gives rise to the topic of the sparse SVM. Motivated by this, we aim at solving
a sparsity constrained kernel SVM optimization, which is capable of controlling the
number of the support vectors. Based on the established optimality conditions as-
sociated with the stationary equations, a subspace Newton method is cast to tackle
the sparsity constrained problem and enjoys one-step convergence property if the
starting point is close to a local region of a stationary point, leading to a super-
fast computational speed. Numerical comparisons with some other excellent solvers
demonstrate that the proposed method performs exceptionally well, especially for
datasets with large numbers of samples, in terms of a much fewer number of support
vectors and shorter computational time.

Keywords: sample reduction, support vectors, sparsity constrained optimization,
subspace Newton method, one-step convergence

1 Introduction

Support vector machines (SVM) were first introduced by Vapnik and Cortes [5], with
wide applications in machine learning, statistic and pattern recognition. The basic idea
of SVM is to find a hyperplane in the input space that best separates the training set. In
the paper, we consider a binary classification problem that can be described as follows.
Suppose we are given a training set {(xi,yi)}

m
i=1, where xi ∈ Rn is the sample vector and

yi ∈ {−1, 1} is the class. The purpose of SVM is to train a hyperplane 〈w, x〉 + b =
w1x1 + · · · + wnxn + b = 0 with variable w ∈ Rn and bias b ∈ R. For any new input
vector x, we can predict the corresponding class y, where y = 1 if 〈w, x〉 + b > 0 and
y = −1 otherwise. In order to find optimal hyperplane, there are two possible cases. The
training data is linearly separable and inseparable in the input space. For the latter, the
popular approach is to consider the so-called soft-margin SVM optimization,

min
w∈Rn

1

2
‖w‖2 + C

m∑
i=1

`
[
1 − yi(〈w, xi〉+ b)

]
,(1.1)

*School of Mathematics, University of Southampton, Southampton SO17 1BJ, United Kingdom.

1.1 Selective Literature Review 1 INTRODUCTION

where C > 0 is a penalty parameter, ‖ · ‖ is the Euclidean norm and ` can be some loss
functions. One of the most well-known loss functions is the hinge loss `h(t) := max{0, t}.
The corresponding dual problem is the following quadratic kernel SVM optimization,

min
α∈Rm

1

2
‖Qα‖2 − 〈α, 1〉,(1.2)

s.t. 〈α, y〉 = 0, 0 6 αi 6 C, i ∈ Nm,

where Q := [y1x1, · · · ,ymxm] ∈ Rn×m, y := (y1, . . . ,ym)
> ∈ Rm, 1 := (1, · · · , 1)> ∈ Rm

and Nm := {1, · · · ,m}. Note that the matrix Q>Q involved in (1.2) has the order m×m,
which makes it impossible for training on million-size data since the storage of such a
scale data requires considerably large memory and the incurred computational cost is
extremely expensive. Therefore, sample reduction plays a crucial role in overcoming this
drawback. The idea is to use a small portion of samples to train a classifier w, which can
be expressed through

w = Qα =

m∑
i=1

αiyixi(1.3)

by the Representer Theorem. The training vectors xi corresponding to non-zero αi are
the support vectors. If large numbers of coefficients αi are zero, then the sample size can
be reduced significantly. Because of this, computations and storage for large scale size
data are possible. However, solutions to the problem (1.2) are not sparse in general. In
order to ensure a solution being sparse enough, various approaches have been developed.
Those methods aiming at reducing the number of support vectors can be categorized into
the sparse SVM group. We will explore more in the sequel.

1.1 Selective Literature Review

Most SVM methods have something to do with designing a proper loss function ` in the
model (1.1), which can be summarized into two categories based on the convexity of `.
Convex soft margin loss functions include the famous hinge loss [5], the pinball loss [13, 11],
the hybrid Huber loss [26, 30, 32], the square loss [29, 33], the insensitive zone pinball loss
[11], the exponential loss [9] and log loss [10]. Convexity makes the computations of their
corresponding SVM models tractable, but meanwhile induces the unboundedness, which
reduces the robustness of those functions to outliers from the training data. In order to
overcome such a drawback, authors in [18],[24] set an upper bound and enforce the loss
function to stop increasing after a certain point. By doing so, the convex loss functions
become non-convex. Other non-convex ones consist of the ramp loss [4], the truncated
pinball loss [28], the asymmetrical truncated pinball loss [34], the sigmoid loss [23] and
the normalized sigmoid cost loss [17]. Compared with convex margin loss functions, most
non-convex ones are less sensitive to the outliers due to their boundedness. However,
non-convexity would incur difficulties in computations in practice.

Page 2

1.2 Contributions 1 INTRODUCTION

As for the sparse SVM, one of the earliest attempts was in [20], where it is suggested
to solve the kernel SVM optimization problem to find a solution first and then seek
a sparse approximation through support vector regression. This idea is adopted as a
key component of the method developed in [36]. In [1], the `1-norm regularization is
employed to inherently perform variable/sample selection. In [14], a greedy method is
devised, where in each iteration a new training vector is carefully selected into the set of
support vectors. In [7], authors introduce a ‘slant-loss’ function, which is analogous to the
0/1 loss (`0/1(t) = 1 if t 6 0 and 0 otherwise) and the hinge loss. Other related methods
can be found in [2, 15, 27, 6, 19]. Numerical experiments have demonstrated that those
methods perform exceptionally well in terms of reducing the number of support vectors.

1.2 Contributions

Motivated by those work in the sparse SVM, in this paper, we aim at solving the following
sparsity constrained kernel SVM optimization problem,

min
α∈Rm

1

2
‖Qα‖2 +

m∑
i=1

hc,C(αi) − 〈1,α〉 =: D(α),(1.4)

s.t. 〈α, y〉 = 0, ‖α‖0 6 s,

where the given integer s ∈ Nm is far less than m and is called the sparsity level, and
‖α‖0 counts the number of non-zero elements of α. Here,

hc,C(t) :=
t2

2

[
Cρ(t > 0) + cρ(t < 0)

]−1

,(1.5)

where C > c > 0 are two parameters and ρ(t ∈ S) is an indicator function, returning 1
if t ∈ S and 0 otherwise. The definition of hc,C implies it gives penalty 1/C for αi > 0
and 1/c for αi < 0. Therefore, if c→ 0, then αi > 0, i ∈ Nm. Compared with (1.2), the
problem (1.4) at least has three advantages:

(i) Its objective function is strongly convex, hence the optimal solutions exist (see
Theorem 2.1) and might be unique under mild conditions (see Theorem 2.4). While
the objective function of (1.2) is convex but not strongly convex when n 6 m since
Q ∈ Rn×m. This means it may have multiple optimal solutions.

(ii) Since the bounded constraints are absent, computation is much more tractable.
Note that when m is large, those bounded constraints in (1.2) may incur expensive
computational costs.

(iii) Most importantly, the constraint ‖α‖0 6 s manifests that at most s non-zero ele-
ments are contained in α, i.e., the number of support vectors is expected to be less
than s by (1.3). In this way, the number is able to be controlled and could be small.

Page 3

1.3 Preliminaries 1 INTRODUCTION

Actually, if we remove the sparsity constraint, i.e.,

min
α∈Rm

D(α), s.t. 〈α, y〉 = 0,(1.6)

then this model is the dual problem of the following soft-margin SVM problem (see The-
orem 2.1)

min
w∈Rn

1

2
‖w‖2 +

m∑
i=1

`c,C

[
1 − yi(〈w, xi〉+ b)

]
,(1.7)

where `c,C is defined by

`c,C(t) :=
t2

2

[
Cρ(t > 0) + cρ(t < 0)

]
.

Note that `c,C is reduced to the squared hinge loss (`h(t))
2 when c = 0. Now we summarize

the main contributions of this paper.

(C1) As we mentioned above, the sparsity constrained model (1.4) has its advantages. It
is able to govern the number of support vectors and hence does sample reduction
sufficiently, which ensures fast computation and alleviates the demand for huge
volumes of hardware memory.

(C2) Based on the established optimality conditions, associated with the stationary equa-
tions by Theorem 2.5, a subspace Newton method is employed. The method is shown
in very low computational complexity and also enjoys one-step convergence prop-
erty. Namely, the method converges to a stationary point within one step if the
chosen starting point is close enough to the stationary point, see Theorem 3.1. It
is worth mentioning that since s is unknown in practice, the selection of s ∈ Nm
is somewhat tedious. Fortunately, we manage designing a mechanism to tune the
sparsity level s adaptively.

(C3) Numerical experiments have demonstrated that the proposed method performs ex-
ceptionally well, especially for datasets with m� n, namely, the number of samples
being far greater than the number of features. When comparing with two powerful
existing solvers, it takes much shorter computational time due to a tiny number of
support vectors being used.

1.3 Preliminaries

We present some notation to be employed throughout the paper. For the sake of easy
reference, we list all relevant ones in the following table including those that have been
given in the above part of this section.

Page 4

1.3 Preliminaries 1 INTRODUCTION

Nm Index set {1, 2, · · · ,m}.
|T | The number of elements of an index set T ⊆ Nm.

T The complementary set of an index set T , namely, Nm \ T .
αT The sub-vector of α indexed on T and αT ∈ R|T |.
|α| := (|α|, · · · , |α|)>.
‖α‖[s] The sth largest element of |α|.
‖α‖∞ The `∞ norm of α, namely, maxi |αi|.
‖α‖0 The `0 norm of α, counting the number of non-zero elements of α.
supp(α) The support set of α, namely, {i ∈ Nm : αi 6= 0}.
y The labels/classes (y1, . . . ,ym)

> ∈ Rm.
X The samples data [x1 · · · xm]> ∈ Rm×n.
Q := [y1x1 · · · ymxm] ∈ Rn×m.
QT The sub-matrix containing the columns of Q indexed on T .
QΓ ,T The sub-matrix containing the rows of QT indexed on Γ .
P := I/C+Q>Q.
1 := (1, · · · , 1)> whose dimension varies in the context.
I The identity matrix whose dimension varies in the context.
‖Q‖ Spectral norm of the matrix Q, returning its maximum singular value.
U(α, δ) The neighbourhood of α with radius δ > 0, i.e., {u ∈ Rm : ‖u−α‖ < δ}.

The hard-thresholding operator is denoted as Ps, defined by

Ps(α) = argminu

{
‖u− α‖ : ‖u‖0 6 s

}
,(1.8)

which can be obtained by retaining the s largest elements in magnitude from α and setting
the remaining to zero. To well characterize the solution of (1.8), we define a useful set by

Ts(α) :=
{
T ⊆ Nm : |T | = s, T contains indices of s largest elements of |α|

}
.(1.9)

Since the sth largest element of |α| may not be unique, Ts(α) might have multiple ele-
ments, so does Ps(α). For example, for α = (1,−1, 0, 0)>, T1(α) = {{1}, {2}}, T2(α) =
{{1, 2}} and T3(α) = {{1, 2, 3}, {1, 2, 4}}. This definition of Ts allows us to express Ps as

Ps(α) :=
{[

αT
0

]
: T ∈ Ts(α)

}
.(1.10)

Finally, we have some observations for the objective function in (1.4),

D(α) :=
1

2
‖Qα‖2 +

m∑
i=1

hc,C (ui) − 〈1,α〉.(1.11)

Note that its gradient ∇D(α) and Hessian matrix H(α) are

∇D(α) := H(α)α− 1,(1.12)

H(α) := Q>Q+ E(α),

Page 5

1.4 Organization 1 INTRODUCTION

where E(α) is a diagonal matrix with diagonal elements given by

Eii(α) := (E(α))ii =

{
1/C, αi > 0,
1/c, αi < 0.

(1.13)

We need emphasize that Eii(α) ∈ [1/C, 1/c] if αi = 0 based on the concept of sub-
differential [25, Definition 8.3] . For simplicity, we choose Eii(α) = 1/C. It is easy to see
that the Hessian matrix is positive definite for any α ∈ Rm due to

H(α) � Q>Q+ I/C = P � 0,(1.14)

where A � 0 (A � 0) means A is semi-definite (definite) positive. Here A � B stands
for A− B being semi-definite positive. The above condition indicates D(α) is a strongly
convex function and thus enjoys the property

D(α) = D(α ′) + 〈∇D(α ′),α− α ′〉+ 〈α− α ′,H(αt)(α− α ′)〉/2,
(1.14)

> D(α ′) + 〈∇D(α ′),α− α ′〉+ 〈α− α ′,P(α− α ′)〉/2,(1.15)

for any α,α ′ ∈ Rm, where αt = α + t(α ′ − α) with t ∈ [0, 1] and the equation is
guaranteed by the mean value theorem. For notational convenience, hereafter, let

z :=

[
α
µ

]
, z∗ :=

[
α∗

µ∗

]
, zk :=

[
αk

µk

]
.(1.16)

Based on which, we denote the following functions

g(z) := ∇D(α) + yµ
(1.12)
= H(α)α− 1+ yµ,(1.17)

gT (z) := (g(z))T , HT (α) := (H(α))TT .

So g(z) is a vector and gT (z) is a sub-vector of g(z). H(α) is a matrix and HT (α) is the
sub-principal matrix of H(α) indexed by T .

1.4 Organization

The rest of the paper is organized as follows. In the next section, we focus on the
sparsity constrained model (1.4), establishing its optimality conditions including KKT
points and stationary points and also introducing the stationary equations. With the help
of the stationary equations, we design the subspace Newton method for SVM (SNSVM)) in
Section 3, and prove it converges to a stationary point within one step. What is more, a
strategy of tuning the sparsity level s is employed into SNSVM to derive SNASVM. Numerical
experiments are presented in Section 4, where the implementation of SNASVM as well as
its comparisons with two powerful solvers are provided. Concluding remarks are made in
the last section.

Page 6

2 SPARSITY CONSTRAINED KERNEL SVM

2 Sparsity Constrained Kernel SVM

We first derive the dual problem (1.6) of (1.7) by the following theorem.

Theorem 2.1 The dual problem of (1.7) is (1.6) and admits the unique optimal solution
denoted as α∗. Furthermore, the optimal solution of the primal model (1.7) is

w∗ = Qα∗, b∗ =
1

m
〈y, 1−H(α∗)α∗〉.(2.1)

Proof Introducing ui = 1 − yi(〈w, xi〉+ b), (1.7) is rewritten as follows:

min
w,u

1

2
‖w‖2 +

m∑
i=1

`c,C (ui) ,(2.2)

s.t. ui + yi(〈w, xi〉+ b) = 1, i ∈ Nm.

To derive the conclusion, we consider three sub-problems:

min
w

1

2
‖w‖2 −

m∑
i=1

αiyi〈w, xi〉 = −
1

2
‖Qα‖2,(2.3)

where the optimal solution is attained at

w = Qα.(2.4)

The second sub-problem is

min
u

m∑
i=1

{
`c,C(ui) − αiui

}
= −

1

2C
‖α‖2.(2.5)

In fact, the optimal solution is attained at the optimality condition

0 = ` ′c,C(ui) − αi ⇐⇒ αi =

{
Cui, ui > 0,
cui, ui < 0,

(2.6)

which suffices to

`c,C(ui) − αiui =

{
C
2
u2
i − αiui, ui > 0,

c
2
u2
i − αiui, ui < 0,

=

{
−
α2
i

2C
, αi > 0,

−
α2
i

2c
, αi < 0,

= −hc,C(αi).

The third sub-problem is

min
b

m∑
i=1

αiyib = 0,(2.7)

Page 7

2.1 Optimality 2 SPARSITY CONSTRAINED KERNEL SVM

where the optimal solution is attained at

〈α, y〉 = 0.(2.8)

These three sub-problems allow us to derive the dual problem by

max
α

{
min
w,u

1

2
‖w‖2 +

m∑
i=1

`c,C (ui) −

m∑
i=1

αi

(
ui + yi(〈w, xi〉+ b) − 1

)}

= max
α

{
min
w

1

2
‖w‖2 −

m∑
i=1

αiyi〈w, xi〉+
m∑
i=1

αi+

min
z

m∑
i=1

(
`c,C(ui) − αiui

)
− min

b

m∑
i=1

αiyib

}

= max

{
−

1

2
‖Qα‖2 −

m∑
i=1

hc,C (αi) +

m∑
i=1

αi : 〈α, y〉 = 0

}
.

For the primal model (1.7), w∗ is obtained by (2.4). As for b∗, it follows from

yib
∗ (2.2)

= 1 − ui − 〈w∗,yixi〉
(2.4)
= 1 − ui − 〈Qα∗,yixi〉

(2.6)
= 1 − Eii(α

∗)α∗i − 〈Qα∗,yixi〉,

for all i ∈ Nm that

yb∗ = 1− E(α∗)α∗ −Q>Qα∗ = 1−H(α∗)α∗.

Multiplying both sides of the above equation by y yields b∗ in (2.1) due to 〈y, y〉 = m,
which completes the whole proof. �

2.1 Optimality

In this part, we focus on the sparsity constrained kernel SVM problem, namely, (1.4).
First of all, we can conclude that it admits a global solution/minimizer.

Theorem 2.2 The global minimizers of (1.4) exist.

Proof The solution set is non-empty since 0 satisfies the constraints of (1.4). The
problem can be written as

min
|T |6s,T⊆Nm

{
min
α∈Rm

D(α) : 〈αT , yT 〉 = 0
}

.(2.9)

It follows from (1.14) that D(·) is strongly convex. So the inner problem is a strongly
convex program which admits a unique solution, say αT . In addition, the choices of T
such that |T | 6 s, T ⊆ Nm are finitely many. To derive the global optimal solution, we
just pick one T from those choices making D(αT) the smallest. �

Page 8

2.1 Optimality 2 SPARSITY CONSTRAINED KERNEL SVM

2.1.1 KKT Points

We say α∗ is a KKT point of (1.4) if there is µ∗ ∈ R such that
gS∗(z

∗) = 0,
〈α∗, y〉 = 0,
‖α∗‖0 = s,

or


g(z∗) = 0,
〈α∗, y〉 = 0,
‖α∗‖0 < s.

(2.10)

It follows from [21, Theorem 3.2] that the following relationships hold for (1.4).

Theorem 2.3 Consider (1.4) and a point α∗ satisfying ‖α∗‖0 6 s and 〈α∗, y〉 = 0.

a) It is a local minimizer if and only if it is a KKT point.

b) If ‖α∗‖0 < s, then the local minimizer, global minimizer and KKT point are identical
and unique.

Proof We only prove that the KKT point α∗ is unique if ‖α∗‖0 < s since the rest parts
can be seen in [21, Theorem 3.2]. If there is an other KKT point α 6= α∗, then the strong
convexity of D(·) gives rise to

D(α)
(1.15)

> D(α∗) + 〈α− α∗,P(α− α∗)〉/2 + 〈∇D(α∗),α− α∗〉
(1.17)
= D(α∗) + 〈α− α∗,P(α− α∗)〉/2 + 〈g(z∗) − yµ∗,α− α∗〉

(2.10)
= D(α∗) + 〈α− α∗,P(α− α∗)〉/2 − 〈yµ∗,α− α∗〉

(2.10)
= D(α∗) + 〈α− α∗,P(α− α∗)〉/2

(1.14)
> D(α∗),

where the third equation is because KKT points α and α∗ satisfy 〈α∗, y〉 = 〈α, y〉 = 0.
Since a KKT point is also a global minimizer, it follows D(α∗) > D(α), which contradicts
with the above inequality. Therefore, α∗ is unique. �

2.1.2 η-Stationary Points

We say α∗ is an η-stationary point of (1.4) for some η > 0 if there is µ∗ ∈ R such that{
α∗ ∈ Ps

[
α∗ − ηg(z∗)

]
,

0 = 〈α∗, y〉.
(2.11)

From our notation (1.16) that z∗ = (α∗;µ∗). We also say z∗ is an η-stationary point of
(1.4) if it satisfies the above conditions. Recall that Ps(α) in (1.10), the above condition
can be equivalently written as

gS∗(z
∗) = 0,

η‖gS∗(z
∗)‖∞ 6 ‖α∗‖[s],
〈α∗, y〉 = 0,
‖α∗‖0 6 s.

(2.12)

Page 9

2.1 Optimality 2 SPARSITY CONSTRAINED KERNEL SVM

Hereafter, for a given point α∗, we denote

S∗ := supp(α∗).(2.13)

Note that ‖α∗‖[s] is the sth largest element of |α∗|. This indicates if ‖α∗‖0 < s then
‖α∗‖[s] = 0 and hence the above condition is equivalent to the second case ‖α∗‖0 < s in
(2.10). In addition. for the case ‖α∗‖0 = s, the above condition is clearly stronger than
(2.10). Similar to Theorem 2.3, we have the following relationships. These relationships
indicate that to seek a local/global minimizer, we instead find an η-stationary point as
the latter is more tractable practically.

Theorem 2.4 Consider (1.4) and a point α∗ satisfying ‖α∗‖0 6 s and 〈α∗, y〉 = 0.

a) An η-stationary point α∗ for some η > 0 is a local minimizer.

b) A local minimizer α∗ is an η-stationary point either for some η > 0 if ‖α∗‖0 < s
or for some 0 < η < η∗ if ‖α∗‖0 = s, where

η∗ :=
‖α∗‖[s]

2‖H(α∗)α∗ − 1‖∞ > 0.(2.14)

c) If ‖α∗‖0 < s, then the local minimizer, global minimizer and η-stationary point are
identical and unique.

d) If ‖α∗‖0 = s, and the point α∗ is an η-stationary point for some η such that[
1

C
−

1

η

]
I+Q>Q � 0,(2.15)

then it is also a global minimizer. Moreover, it is also unique if the strict � holds
in the above condition.

Proof a) This is clearly true since an η-stationary point α∗ for some η > 0 satisfying
(2.12), which indicates it also satisfies (2.10). Therefore it is a KKT point and a local
minimizer from Theorem 2.3 a).

b) If ‖α∗‖0 < s, then Theorem 2.3 a) states that a local minimizer α∗ satisfies the second
condition in (2.10) which is same as (2.12). Therefore, it is also an η-stationary point for
some η > 0. If ‖α∗‖0 = s, then ‖α∗‖[s] > 0, which implies η∗ > 0. A local minimizer
satisfies the first condition in (2.10), that

gS∗(z
∗)

(1.17)
= (H(α∗)α∗)S∗ − 1+ yS∗µ

∗ = 0,

which gives rise to
|µ∗| = ‖yS∗‖∞|µ∗| = ‖(H(α∗)α∗)S∗ − 1‖∞

Page 10

2.1 Optimality 2 SPARSITY CONSTRAINED KERNEL SVM

because of |y| = 1. In addition 0 < η < η∗ gives rise to

‖gS∗(z
∗)‖∞ (1.17)

= ‖(H(α∗)α∗)S∗ − 1+ yS∗µ
∗‖∞

6 ‖(H(α∗)α∗)S∗ − 1‖∞ + |µ∗|‖yS∗‖∞
= ‖(H(α∗)α∗)S∗ − 1‖∞ + |µ∗|

= ‖(H(α∗)α∗)S∗ − 1‖∞ + ‖(H(α∗)α∗)S∗ − 1‖∞
6 ‖H(α∗)α∗ − 1‖∞2

= ‖α∗‖[s]/η∗

6 ‖α∗‖[s]/η.

This verifies the second inequality in (2.12), together with (2.10) claiming the conclusion.

c) An η-stationary point α∗ with ‖α∗‖0 < s satisfies the condition (2.12), which is same
as the second case ‖α∗‖0 < s in (2.10). Namely, α∗ is also a KKT point, which makes
the conclusion immediately from Theorem 2.3 b).

d) An η-stationary point α∗ with ‖α∗‖0 = s satisfies (2.11), which means for any feasible
point ‖α‖ 6 s and 〈α, y〉 = 0, we have

‖α∗ − (α∗ − ηg(z∗))‖2 6 ‖α− (α∗ − ηg(z∗))‖2 .

This suffices to

−‖α∗ − α‖2 6 2η〈α− α∗,g(z∗)〉.(2.16)

The strong and quadratic convexity of D(·) gives rise to

2D(α) − 2D(α∗)
(1.15)

> 〈α− α∗,P(α− α∗)〉+ 2〈∇D(α∗),α− α∗〉
(1.17)
= 〈α− α∗,P(α− α∗)〉+ 2〈g(z∗) − yµ∗,α− α∗〉

(2.12)
= 〈α− α∗,P(α− α∗)〉+ 2〈g(z∗),α− α∗〉

(2.16)

> 〈α− α∗,P(α− α∗)〉− ‖α∗ − α‖2/η
= 〈α− α∗, (P − I/η)(α− α∗)〉
> 0,

where the last inequity follows from (2.16) and

P −
I

η
=

[
1

C
−

1

η

]
I+Q>Q � 0.

Therefore, α∗ is a global minimizer. If there is another global minimizer α̂ 6= α∗, then
the strictness � in above condition leads to a contradiction,

0 = D(α̂) −D(α∗) > 〈α̂− α∗, (P − I/η)(α̂− α∗)〉 > 0.

Hence α∗ is unique. The whole proof is completed. �

Page 11

2.2 Stationary Equations 3 SUBSPACE NEWTON METHOD

2.2 Stationary Equations

Based on (1.10), we characterize an η-stationary point of (1.4) as an equation system.

Theorem 2.5 A point z∗ is an η-stationary point of (1.4) for some η > 0 if and only if
there is a T∗ ∈ Ts(α∗ − ηg(z∗)) such that

F(z∗; T∗) :=

 gT∗(α
∗)

α∗
T∗

〈α∗T∗ , yT∗〉

 =

 HT∗(α∗)α∗T∗ − 1+ yT∗µ
∗

α∗
T∗

〈α∗T∗ , yT∗〉

 = 0.(2.17)

Proof It follows from z∗ being an η-stationary point and (2.11) that 〈α∗, y〉 = 0 and

α∗ ∈ Ps (α∗ − ηg(z∗))
(1.10)
=

{[
α∗T − ηgT (z

∗)
0

]
: T ∈ Ts(α∗ − ηg(z∗))

}
,

which is equivalent to that there is a T∗ ∈ Ts(α∗ − ηg(z∗)) satisfying α∗
T∗

= 0 and

0 = gT∗(z
∗)

(1.17)
= HT∗(α

∗)α∗T∗ − 1+ yT∗µ
∗.

This concludes the conclusion immediately. �

We call (2.17) the stationary equations. Comparing with those conditions in (2.11),
equations (2.17) allow us to employ the Newton method. Moreover, it is worth mentioning
that if a point z is an η-stationary point of (1.4) for some η > 0, then for any fixed
T ∈ Ts(α− ηg(z)), the following Jacobian matrix of F is always non-singular,

∇F(z; T) =

 HT (α) 0 yT
0 I 0
y>T 0 0

 � 0.(2.18)

This is because ∇F(z; T) is congruent to a non-singular matrix HT (α) 0 yT
0 I 0
0 0 y>T (HT (α))

−1yT

 ,(2.19)

since HT (α) is positive semi-definite and 〈yT , (HT (α))
−1yT 〉 > 0 for any T .

3 Subspace Newton Method

This section applies the Newton method to solve the equation (2.17). Let zk be defined in
(1.16) and the current approximation to a solution of (2.17). Choose one Ts(αk−ηg(zk)).
Then Newton’s method for (2.17) takes the following form to get the direction dk ∈ Rm+1:

(3.1) ∇F(zk; Tk)d
k = −F(zk; Tk).

Page 12

3.1 Complexity Analysis 3 SUBSPACE NEWTON METHOD

Substituting (2.17) and (2.18) into (3.1) derives HTk(αk) 0 yTk
0 I 0
y>Tk 0 0

 dkTk
dk
Tk

dkm+1

 = −

 gTk(z
k)

αk
Tk

〈αkTk , yTk〉

 .(3.2)

After we get the direction, the full Newton step size is taken and brings out

zk+1 = zk + dk =

 αkTk
αk
Tk

µk

+

 dkTk
dk
Tk

dkm+1

 =

 αkTk + dkTk
0

µk + dkm+1

 .(3.3)

Now we summarize the whole framework in Algorithm 1. Note that dk
Tk

can be derived

directly and the new point is still sparse due to ‖αk+1‖0 6 |Tk| = s. So the major
computation is from the part on Tk. Since the space indexed on Tk ∈ Nm can be treated
as a subspace of the whole space and only has a very small dimension |Tk| = s comparing
to m, we call the method subspace Newton method.

Algorithm 1 SNSVM: Subspace Newton method for SVM

Give parameters C, c > 0,η > 0, s ∈ Nm, Tol and MaxIt.
Initialize z0, pick T0 ∈ Ts(α0 − ηg(z0)) and set k := 0.
while ‖F(zk; Tk)‖ >Tol and k 6MaxIt do

Update dk by solving (3.2).
Update zk+1 by (3.3).
Update Tk+1 ∈ Ts(αk+1 − ηg(zk+1)) and set k := k+ 1.

end while
return the solution zk.

3.1 Complexity Analysis

To derive the Newton direction in (3.2), we need to address the following equations

dkm+1 = −

〈
yTk , Θ

−1gTk(z
k) − αkTk

〉〈
yTk , Θ

−1ykTk
〉 ,

dkTk = −Θ−1
[
gTk(z

k) + dkm+1yTk

]
,(3.4)

dk
Tk

= −αk
Tk

,

where Θ := HTk(α
k). Regarding the computational complexity of SNSVM in Algorithm 1,

one can observe that Θ−1 and Ts dominate the whole computation. Recall the definition
(1.12) of H(·) that

Θ = (E(αk))TkTk +Q
>
Tk
QTk .

Page 13

3.2 Convergence Analysis 3 SUBSPACE NEWTON METHOD

The complexity of computing Θ is about O(ns2) since |Tk| = s. And computing its inverse
takes complexity about O(sκ) where κ ∈ (2, 3). Therefore, the complexity is

O
(

min{n, s}s2
)

.(3.5)

If s� m, the above complexity is relatively low. Otherwise, one could take advantage of
the conjugate gradient method to solve the following equations[

HTk(α
k) yTk

y>Tk 0

] [
dkTk
dkm+1

]
= −

[
gTk(z

k)
〈αkTk , yTk〉

]
,

which still possesses a low computational complexity.To pick Tk+1 from Ts, we need to
compute g(zk+1) and select the k largest elements of |αk+1 − ηg(zk+1)|. The complexity
of computing the former is about O(mn) and the latter is O(m+ slns). Here, we benefit
from a MATLAB built-in function mink to select the s largest elements. Overall, the total
complexity in each step is

O
(
mn+ min{n, s}s2

)
.(3.6)

3.2 Convergence Analysis

Before the main convergence property, we define some constants

γ := 2 max
{

1 + η/c+ η‖Q‖2, η
√
m
}

,(3.7)

η∗ :=

{
‖α∗‖[s]‖g(z∗)‖−1∞ , if ‖α∗‖0 = s,
+∞, if ‖α∗‖0 < s,

(3.8)

δ∗ :=


γ−1(‖α∗‖[s] − η‖g(z∗)‖∞), if ‖α∗‖0 = s,
γ−1 mini∈S∗ |α

∗
i |, if 0 < ‖α∗‖0 < s,

+∞, if ‖α∗‖0 = 0.
(3.9)

Based on which, we first present some properties regarding an η-stationary point of (1.4).

Lemma 3.1 Let z∗ be an η-stationary point of (1.4) for some 0 < η < η∗, and η∗ and
δ∗ be given by (3.8) and (3.9). Then for any z ∈ U(z∗, δ∗), we have the following results.

a) The parameters η∗ > 0 and δ∗ > 0.

b) For any T ∈ Ts(α− ηg(z)) and any T∗ ∈ Ts(α∗ − ηg(z∗)), it holds{
S∗ = T∗ = T = supp(α), if ‖α∗‖0 = s,
S∗ ⊆ (T∗ ∩ T ∩ supp(α)), if ‖α∗‖0 < s.

(3.10)

c) For any T ∈ Ts(α− ηg(z)), it holds

F(z∗; T) = 0.(3.11)

Page 14

3.2 Convergence Analysis 3 SUBSPACE NEWTON METHOD

Proof a) If ‖α∗‖0 = s, then ‖α∗‖[s] > 0 and so is η∗ > 0, which suffices to δ∗ =
‖α∗‖[s] − η‖g(z∗)‖∞ > 0 due to 0 < η < η∗. If ‖α∗‖0 < s, the claim is true obviously.

b) It follows from Theorem 2.5 and z∗ being an η-stationary point of (1.4) that

F(z∗; T∗) =

 gT∗(z
∗)

α∗
T∗

〈α∗T∗ , yT∗〉

 = 0.(3.12)

for any T∗ ∈ Ts(α∗ − ηg(z∗)). We first derive the following fact

E(α∗)α∗ = E(α)α∗.(3.13)

If α∗ = 0, the above equation is true clearly. If α∗ 6= 0, we have

α∗i > 0 =⇒ αi > 0, α∗i < 0 =⇒ αi < 0.(3.14)

If (3.14) is not true, then there is an j that violates one of the above relations, namely α∗j
and αj have different signs. As a consequence, we get a contradiction

δ∗
(3.9)

6 |α∗j | < |α∗j − αj| 6 ‖α∗ − α‖ < δ∗.

Therefore, we must have(3.14). Recall that E(α) is a diagonal matrix with diagonal
elements given by (1.13). It follows[

(E(α∗) − E(α))α∗
]
i

=
[
Eii(α

∗) − Eii(α)
]
α∗i

=


(1/C− 1/C)α∗i , α∗i > 0
(1/c− 1/c)α∗i , α∗i < 0

(Eii(α
∗) − Eii(α))0, α∗i = 0

= 0.

Therefore, the main task is to prove (3.14), before which we present two facts. For any
two vectors a and b, we have

|ai − bi|+ |aj − bj| 6
√

2
[
|ai − bi|

2 + |aj − bj|
2
]1/2

(3.15)

6
√

2‖a− b‖.

In addition, it holds

‖g(z∗) − g(z)‖ (1.17)
=

∥∥∥H(α∗)α∗ −H(α)α+ (µ∗ − µ)y
∥∥∥

6 ‖H(α∗)α∗ −H(α)α‖+ |µ∗ − µ| · ‖y‖
(1.12)
=

∥∥∥(E(α∗) +Q>Q)α∗ − (E(α) +Q>Q)α
∥∥∥+ |µ∗ − µ| · ‖y‖

6 ‖E(α∗)α∗ − E(α)α‖+ ‖Q‖2‖α∗ − α‖+ |µ∗ − µ| · ‖y‖

Page 15

3.2 Convergence Analysis 3 SUBSPACE NEWTON METHOD

(3.14)
= ‖E(α)(α∗ − α)‖+ ‖Q‖2‖α∗ − α‖+ |µ∗ − µ| · ‖y‖

(1.13)

6
[
1/c+ ‖Q‖2

]
‖α∗ − α‖+

√
m|µ∗ − µ|.(3.16)

Now we claim b) by two case: ‖α∗‖0 = s and ‖α∗‖0 < s.
Case i) ‖α∗‖0 = s. Since |T∗| = s and α∗

T∗
= 0, it holds

T∗ = supp(α∗) = S∗.(3.17)

We first check S∗ ⊆ supp(α). In fact, if it is not true, then there is an i ∈ S∗ but
i /∈ supp(α), which incurs the following contradiction

δ∗ 6 ‖α∗‖[s] 6 |α∗i | = |α∗i − αi| 6 ‖α∗ − α‖ 6 ‖z∗ − z‖ < δ∗.(3.18)

So S∗ ⊆ supp(α), together with |S∗| = |supp(α)| = s yielding S∗ = supp(α). We next
show T∗ = T for any T ∈ Ts(α − ηg(z)). If T∗ 6= T , owing to |T∗| = |T | = s, there is an
i ∈ T∗, i /∈ T and a j /∈ T∗, j ∈ T . The definition (1.9) of Ts indicates

|αj − ηgj(z)| > |αi − ηgi(z)|

|α∗i |
(3.12)
= |α∗i − ηgi(z

∗)| > |α∗j − ηgj(z
∗)|

(3.12)
= η|gj(z

∗)|.(3.19)

Direct calculation yields the following chain of inequalities,

φ : = |α∗i − ηgi(z
∗)|− |αi − ηgi(z)|+ |αj − ηgj(z)|− |α∗j − ηgj(z

∗)|

6
∣∣∣α∗i − ηgi(z∗) − (αi − ηgi(z))

∣∣∣+ |α∗j − ηgj(z
∗) − (αj − ηgj(z))

∣∣∣
6 |α∗i − αi|+ η|gi(z

∗) − gi(z)|+ |α∗j − αj|+ η|gj(z
∗) − gj(z)|

(3.15)

6
√

2‖α∗ − α‖+ η
√

2‖g(z∗) − g(z)‖
(3.16)

6
√

2
[
1 + η/c+ η‖Q‖2

]
‖α∗ − α‖+ η

√
2m|µ∗ − µ|

6
√

2 max
{

1 + η/c+ η‖Q‖2,η
√
m
}[
‖α∗ − α‖+ |µ∗ − µ|

]
(3.7)
=

[
γ/
√

2
][
‖α∗ − α‖+ |µ∗ − µ|

]
(3.15)

6 γ‖z∗ − z‖ 6 γδ∗.(3.20)

These give rise to the following contradiction,

‖α∗‖[s] − η‖g(z∗)‖∞ 6 |α∗i |− η|gj(z
∗)|

(3.19)
= |α∗i − ηgi(z

∗)|− |α∗j − ηgj(z
∗)|

(3.19)

6 φ
(3.20)

6 γδ∗

(3.9)
< ‖α∗‖[s] − η‖g(z∗)‖∞.

Page 16

3.2 Convergence Analysis 3 SUBSPACE NEWTON METHOD

Case ii) ‖α∗‖0 < s. The fact α∗
T∗

= 0 from (3.12) indicates S∗ ⊆ T∗. We next show

S∗ ⊆ T ∩ supp(α). If α∗ = 0, then S∗ = ∅ ⊆ T clearly. Therefore, we focus on α∗ 6= 0.
Similar reasoning (3.18) also enables us to show S∗ ⊆ supp(α). Now, we verify S∗ ⊆ T .
Since ‖α∗‖0 < s, ‖α∗‖[s] = 0, which together with (2.12) derives

g(z∗) = 0.(3.21)

If S∗ * T , then the fact |S∗| < s = |T | also indicates that there is an i ∈ S∗, i /∈ T and a
j /∈ S∗, j ∈ T . This together with the definition (1.9) of Ts results in

|αj − ηgj(z)| > |αi − ηgi(z)|,

|α∗i |
(3.21)
= |α∗i − ηgi(z

∗)| > 0
(3.21)
= |α∗j − ηgj(z

∗)|,(3.22)

which leads to the following contradiction

min
i∈S∗

|α∗i | 6 |α∗i |

(3.22)
= |α∗i − ηgi(z

∗)|− |α∗j − ηgj(z
∗)|

(3.22)

6 φ
(3.20)

6 γδ∗
(3.9)
< min

i∈S∗
|α∗i |.

c) To prove F(z∗; T) = 0, we need to show

F(z∗; T) =

 gT (z
∗)

α∗
T

〈α∗T , yT 〉

 = 0.(3.23)

If ‖α∗‖0 = s, then T = T∗ by b), which shows the result by (3.12) immediately. If
‖α∗‖0 < s, then gT (z

∗) = 0 by (3.21). Again from b), S∗ ⊆ (T ∩ T∗) means T ⊆ S∗, which
indicates α∗

T
= 0 due to α∗

S∗
= 0. Finally,

〈α∗T , yT 〉 = 〈α∗S∗ , yS∗〉+ 〈α
∗
T\S∗

, yT\S∗〉 = 〈α∗S∗ , yS∗〉

= 〈α∗T∗ , yT∗〉− 〈α
∗
T∗\S∗

, yT∗\S∗〉
(3.12)
= 0.

The whole proof is finished. �

The main convergence result is stated by the following theorem, where one can discern
that SNSVM will terminate at the next step if the current point falls into a local area of an
η-stationary point. This means if the starting point by chance is chosen within the local
area, then SNSVM will take one step to terminate. Hence, it enjoys a very fast convergence
property. It is worth mentioning that such convergence property is much better than the
quadratic convergence property.

Page 17

3.2 Convergence Analysis 3 SUBSPACE NEWTON METHOD

Theorem 3.1 (One step convergence) Let z∗ be an η-stationary point of (1.4) for
some 0 < η < η∗, and η∗ and δ∗ be given by (3.8) and (3.9). Let {zk} be the sequence
generated by SNSVM. As long as there exists one k such that zk ∈ U(z∗, δ∗), then we have

zk+1 = z∗, ‖F(zk+1, Tk+1)‖ = 0.

Namely, SNSVM terminates at the th(k+ 1) step.

Proof Consider a point zkt = z∗+ t(zk− z∗) with t ∈ [0, 1]. Since zk ∈ U(z∗, δ∗), it also
holds zkt ∈ U(z∗, δ∗) because of

‖zkt − z∗‖ = t‖zk − z∗‖ 6 ‖zk − z∗‖ < δ∗.
We first prove that

E(αk) = E(αkt).(3.24)

In fact, if α∗ = 0, then αkt = tαk, which means αkt and αk have the same signs. This
together with the definition (1.13) of E(·) shows (3.24) immediately. If α∗ 6= 0, then same
reasoning proving (3.14) also derives that

α∗i > 0 =⇒ αki > 0, (αkt)i = (1 − t)α∗i + tα
k
i > 0,

α∗i < 0 =⇒ αki < 0, (αkt)i = (1 − t)α∗i + tα
k
i < 0,

α∗i = 0 =⇒ (αkt)i = tα
k
i .

These also mean αkt and αk have the same signs. So (3.24) is true and brings out

H(αk)
(1.12)
= E(αk) +Q>Q

(3.24)
= E(αkt) +Q

>Q = H(αkt).

Then for any Tk ∈ Ts(αk − ηg(zk)), the above equation contributes to

∇F(zkt ; Tk) =

 HTk(αkt) 0 yTk
0 I 0
y>Tk 0 0

 =

 HTk(αk) 0 yTk
0 I 0
y>Tk 0 0

 = ∇F(zk; Tk).

It follows from the mean value theorem that there exists a zkt satisfying

F(zk; Tk)
(3.11)
= F(zk; Tk) − F(z

∗; Tk)

= ∇F(zkt ; Tk)(z
k − z∗)

= ∇F(zk; Tk)(z
k − z∗),

which together with ∇F(zk; Tk) being always non-singular because of (2.18) suffices to

z∗ = zk − (∇F(zk; Tk))
−1F(zk; Tk)

(3.1)
= zk + dk

(3.3)
= zk+1.

Finally, for any Tk+1 ∈ Ts(αk+1 − ηg(zk+1)) = Ts(α∗ − ηg(z∗)), it follows from z∗ being
an η-stationary point that

‖F(zk+1, Tk+1)‖ = ‖F(z∗, Tk+1)‖
(2.17)
= 0.

The whole proof is completed. �

Page 18

3.3 The Sparsity Level Tuning 4 NUMERICAL EXPERIMENTS

3.3 The Sparsity Level Tuning

One major issue we encounter is that the sparsity level s in (1.4) usually is unknown
beforehand. And it plays two important roles: (i) The larger s, the better classifications
since more samples are taken into consideration. (ii) However, the smaller s, the faster
computational speed of the method in Algorithm 1 as the complexity in (3.6) relies on
s. Moreover, from (1.3) that the number of support vectors is smaller than ‖α‖0 6 s.
Because of this, the smaller s, the smaller the number of support vectors.

Therefore, to balance these two, we design the following rule to update the unknown s.
Start with small integer and then increase it until to satisfy some conditions. We thus
derive SNASVM (subspace Newton method with adaptively tuning the sparsity level s for
SVM) in Algorithm 2, where the halting condition becomes∣∣∣ACC(αk) − max{ACC(α1), · · · , AC(αk−1)}

∣∣∣ 6 10−4 and ‖F(zk; Tk)‖ 6 Tol

and the classification accuracy is defined by

ACC(α) :=

[
1 −

1

m
‖sgn(Xα+ b) − y‖0

]
× 100%,(3.25)

with b being derived by (2.1) and sgn(t) = 1 if t > 0 and −1 otherwise. The above
halting condition means that αk is almost an η-stationary point due to the small value of
‖F(zk; Tk)‖, while the classification accuracy does not increase significantly even though
s still ascends. Therefore, it is unreasonable to keep s rising to achieve a better solution
since the bigger s would cause more computational costs. So it is suggested to stop it if
αk satisfies such a halt condition. Our numerical experiments demonstrate that SNASVM

under this rule works very well.

Algorithm 2 SNASVM: Subspace Newton method with adaptively tuning s for SVM

Give parameters C, c > 0,η > 0, r > 1, MaxACC = 0, s0 ∈ Nm, Tol and MaxIt.
Initialize z0, pick T0 ∈ Ts(α0 − ηg(z0)) and set k := 0.
while (‖F(zk; Tk)‖ >Tol or |ACC(αk) − MaxAC| > 10−4) and (k 6MaxIt) do

Update dk by solving (3.2).
Update zk+1 by (3.3).
Update MaxACC = max{ACC(α1), · · · , ACC(αk−1)}.
Update sk+1 = rsk if k is a multiple of 10 and sk+1 = sk otherwise.
Update Tk+1 ∈ Tsk+1

(αk+1 − ηg(zk+1)) and set k := k+ 1.
end while
return the solution zk.

4 Numerical Experiments

This part conducts numerical experiments of SNASVM in Algorithm 2 by using MATLAB
(R2019a) on a laptop of 32GB memory and Inter(R) Core(TM) i9-9880H 2.3Ghz CPU.

Page 19

4.1 Implementation 4 NUMERICAL EXPERIMENTS

4.1 Implementation

The starting point z0 is initialized as α0 = 0 and µ0 = sgn(〈y, 1〉). Parameters are tuned
as follows. The maximum number of iteration and the tolerance are set as maxIt =
1000, tol= max{

√
mn}10−6. Empirically numerical experience has demonstrated that

the involved parameters such as C, c or η are suggested to be selected through the cross
validation for better results. However, for simplicity, we fix them as C = 1, c = 0.01,η =
1/m and r = 1.15. The last parameter s0 is chosen as s0 = 100 log10(m) for synthetic
datasets and s0 = β log10(m) for real datasets, where

β =


1 + 10−3n, if m/n < 100,

10−2n, if 100 6 m/n < 60000,
50n, if m/n > 60000.

4.2 Testing Examples

We first consider a two-dimensional (n = 2) example with synthetic data, where the
features come from Gaussian distributions.

Example 4.1 (Synthetic data in R2 [32, 12]) In this example, samples xi with pos-
itive labels yi = +1 are drawn from the normal distribution with mean (0.5,−3)> and
variance Σ and samples xj with negative labels yj = −1 are drawn from the normal distri-
bution with mean (−0.5, 3)> and variance Λ, where Σ and Λ are diagonal matrices with
Σ11 = Λ11 = 0.2,Σ22 = Λ22 = 3. We generate m samples with two classes having equal
numbers and then evenly split all samples into a training set and a testing set. Finally,
we randomly flip r% percentage of labels in the training data, which means r% percentage
of samples are treated as outliers.

Example 4.2 (Real data in higher dimensions) We select 21 datasets with m� n

from the libraries: libsvm*, uci� and kiggle�. All datasets are feature-wisely scaled to [−1, 1]
and all the classes being not 1 are treated as −1. Their details are presented in Table 1.
For each of those without testing data, we split it into two parts. The first part containing
90% of samples is treated as the training data and the rest is the testing data.

To compare the performance of all selected methods, let α be the solution/classifier
generated by one method. We report the CPU time (TIME), the training classification
accuracy (ACC) by (3.25) where X and y are the training samples and classes, the testing
classification accuracy (TACC) by (3.25) where X and y are the testing samples and classes,
and the number of support vectors (NSV).

*https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
�http://archive.ics.uci.edu/ml/datasets.php
�https://www.kaggle.com/datasets

Page 20

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://archive.ics.uci.edu/ml/datasets.php
https://www.kaggle.com/datasets

4.3 Numerical Comparisons 4 NUMERICAL EXPERIMENTS

Table 1: Data sets with less training samples and more features, namely m > n.

Data Datasets Source n Train Test
mrpe malware analysis datasets: raw pe kaggle 1024 51959 0
dhrb hospital readmissions bnary kaggle 17 59557 0
aips airline passenger satisfaction kaggle 22 103904 25976
sctp santander customer transaction kaggle 200 200000 0
skin skin nonskin libsvm 3 245056 0
ccfd credit card fraud dtection kaggle 28 284807 0
rlc1

record linkage
comparison patterns

uci 9 574914 0
rlc2 uci 9 574914 0
rlc3 uci 9 574914 0
rlc4 uci 9 574914 0
rlc5 uci 9 574914 0
rlc6 uci 9 574914 0
rlc7 uci 9 574914 0
rlc8 uci 9 574914 0
rlc9 uci 9 574914 0
rlc10 uci 9 574914 0
covt covtype.binary libsvm 54 581012 0
retb real time bidding kaggle 88 1000000 0
susy susy uci 18 5000000 0
hepm hepmass uci 28 7000000 3500000
higg higgs uci 28 11000000 0

4.3 Numerical Comparisons

(a) Benchmark methods. There are numerous excellent methods have been developed
to tackle the SVM [29, 3, 22, 16, 14, 31, 11, 35]. Those methods perform extremely well,
especially for datasets in small or mediate size. Some of them calculate the kernel matrix
Q>Q with size m×m, and thus require a huge volume of hardware memory if m is large
(e.g., m > 105). Note that most datasets in Table 2 have at least 105 samples. Therefore,
we only select a Matlab built-in solver fitclinear§ and liblinear¶ [8] for comparisons
since they are very fast to deal with those datasets. For the former, we set Learner =
‘svm’ and Solver = ‘dual’ in order to obtain the number of the support vectors. For the
same reason, the dual problem of the `2-regularized `1-loss support vector classification
is chosen to compute in liblinear. To do so, we set -s 3 in the function train from
liblinear. It may be much faster if we set -s 2, but such a setting suits for computing
the primal model and does not render the number of support vectors.

§https://mathworks.com/help/stats/fitclinear.html
¶https://www.csie.ntu.edu.tw/~cjlin/liblinear/

Page 21

https://mathworks.com/help/stats/fitclinear.html
https://www.csie.ntu.edu.tw/~cjlin/liblinear/

4.3 Numerical Comparisons 4 NUMERICAL EXPERIMENTS

-2 -1 0 1 2

-6

-4

-2

0

2

4

6

m=100

positive
negative
bayes
liblinear :96.0%
fitclinear:96.0%
snasvm :98.0%

-2 -1 0 1 2

-6

-4

-2

0

2

4

6

m=200

positive
negative
bayes
liblinear :96.5%
fitclinear:96.0%
snasvm :97.5%

-2 -1 0 1 2

-6

-4

-2

0

2

4

6

m=300

positive
negative
bayes
liblinear :97.3%
fitclinear:97.3%
snasvm :97.3%

-2 -1 0 1 2

-6

-4

-2

0

2

4

6

8

m=400

positive
negative
bayes
liblinear :96.5%
fitclinear:96.5%
snasvm :96.8%

Figure 1: Classifiers by three solvers for Example 4.1.

(b) Comparisons for Example 4.1. We first apply three solvers to solve some datasets
with small scales, where m = 100, 200, 300, r = 0 and depict there classifiers in Figure
1, where the Bayes classifier for this example is w2 = 0.25w1, see the black dotted
line. Basically, all solvers classify the dataset well, and clearly, snasvm gets the best
classification accuracy. When it comes to the large scales of samples from 103 to 108,
the picture is significantly different. For this experiment, we choose 10% (i.e., r = 10)
training samples as outliers. Since data is randomly generated, the average results of
20 instances for each method are recorded in Figure 2, where liblinear runs too long
time when m > 106 and hence its results are omitted. Generally speaking, the training
classifications accuracy from snasvm and liblinear are similar, being better than those
gotten by fitclinear. However, it can be clearly seen that snasvm runs the fastest and

Page 22

4.3 Numerical Comparisons 4 NUMERICAL EXPERIMENTS

104 106 108

m

0.85

0.86

0.87

0.88
ACC

liblinear
fitclinear
snasvm

104 106 108

m

0.94

0.95

0.96

0.97

TACC

liblinear
fitclinear
snasvm

104 106 108

m

104

106

NSV

liblinear
fitclinear
snasvm

104 106 108

m

10-2

100

102

TIME

liblinear
fitclinear
snasvm

Figure 2: Average results of three solvers for Example 4.1.

uses the much fewer numbers of support vectors. Moreover, the bigger m is, the more
obvious advantage snasvm has.

(c) Comparisons for Example 4.2. Results of three solvers are reported in Table 2.
Again snasvm runs the fastest and generates the smallest numbers of support vectors.
Taking the dataset higg as an instance, the other two solvers respectively take 2938 and
46.86 seconds to classify the data, by contrast, our proposed method only needs 2.551
seconds, much shorter than the one from liblinear. Moreover, the number 274229 of
support vectors is less than 10% percent of those (2899291 and 8922973) from the other
two solvers. For the classification accuracy (training or testing accuracies), there is no
significant difference between these three solvers.

Page 23

4.3 Numerical Comparisons 4 NUMERICAL EXPERIMENTS

T
ab

le
2:

R
es

u
lt

s
of

th
re

e
so

lv
er

s
l
i
b
s
v
m
:
l
i
b
l
i
n
e
a
r
,
f
i
t
s
v
m
:
f
i
t
c
l
i
n
e
a
r

an
d
s
n
a
s
v
m
:
S
N
A
S
V
M

fo
r

E
x
am

p
le

4.
2.

A
C
C
(%

)
T
A
C
C
(%

)
T
I
M
E
(i

n
se

co
n
d
s)

N
S
V

D
at

a
l
i
b
s
v
m

f
i
t
s
v
m

s
n
a
s
v
m

l
i
b
s
v
m

f
i
t
s
v
m

s
n
a
s
v
m

l
i
b
s
v
m

f
i
t
s
v
m

s
n
a
s
v
m

l
i
b
s
v
m

f
i
t
s
v
m

s
n
a
s
v
m

m
r
p
e

9
5
.0
1

94
.7

8
93

.0
7

9
5
.2
5

94
.9

0
92

.5
7

31
.7

51
2.

28
28

1
.4
8
4
2

42
74

5
29

12
0

9
3
5
3

d
h
r
b

82
.7

0
82

.7
1

8
2
.9
6

83
.4

3
83

.4
3

8
3
.8
1

0.
16

68
0.

09
66

0
.0
2
2
0

45
76

0
41

21
7

1
3
7

a
i
p
s

8
7
.6
6

87
.2

6
85

.6
3

8
7
.4
1

87
.0

8
85

.0
0

0.
87

31
0.

21
43

0
.0
6
6
2

34
74

6
61

16
0

2
4
3

s
c
t
p

89
.9

5
78

.0
1

9
0
.5
5

90
.0

0
77

.8
0

9
0
.6
2

13
.4

83
1.

08
79

0
.7
1
8
8

76
48

2
11

58
07

2
1
0
2
2

s
k
i
n

92
.9

0
92

.7
3

9
3
.7
9

92
.6

6
92

.4
5

9
3
.5
6

0.
42

14
0.

33
42

0
.1
0
8
9

48
37

2
62

60
9

2
4
0
5

c
c
f
d

99
.9

4
99

.9
4

99
.8

9
99

.9
2

99
.9

2
99

.8
6

2.
66

11
0.

52
32

0
.0
9
1
0

15
83

28
84

4
2
5

r
l
c
1

10
0.

0
10

0.
0

99
.9

8
10

0.
0

10
0.

0
99

.9
7

0.
39

28
0.

65
60

0
.0
6
1
7

19
1

34
2

4
7

r
l
c
2

10
0.

0
10

0.
0

99
.9

8
10

0.
0

10
0.

0
99

.9
8

0.
38

65
0.

50
99

0
.0
6
0
1

14
2

29
5

4
7

r
l
c
3

10
0.

0
10

0.
0

99
.9

9
10

0.
0

10
0.

0
99

.9
9

0.
49

02
0.

55
95

0
.0
7
5
2

16
4

33
7

4
7

r
l
c
4

10
0.

0
10

0.
0

99
.9

9
10

0.
0

10
0.

0
99

.9
9

0.
37

64
0.

67
36

0
.0
6
2
1

15
4

33
3

4
7

r
l
c
5

10
0.

0
10

0.
0

99
.9

8
10

0.
0

10
0.

0
99

.9
7

0.
40

06
0.

57
01

0
.0
9
0
9

16
6

33
1

4
7

r
l
c
6

10
0.

0
10

0.
0

99
.9

9
10

0.
0

10
0.

0
99

.9
9

0.
49

61
0.

50
55

0
.0
7
5
8

14
0

31
7

4
7

r
l
c
7

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
99

.9
9

0.
37

95
0.

51
63

0
.0
4
7
2

16
3

30
5

4
7

r
l
c
8

10
0.

0
10

0.
0

99
.9

9
10

0.
0

10
0.

0
99

.9
9

0.
68

26
0.

67
34

0
.0
6
0
7

15
4

33
2

4
7

r
l
c
9

10
0.

0
10

0.
0

99
.9

6
10

0.
0

10
0.

0
99

.9
5

0.
66

00
0.

54
22

0
.0
9
2
9

17
5

34
5

4
7

r
l
c
1
0

10
0.

0
10

0.
0

99
.9

9
10

0.
0

10
0.

0
99

.9
8

0.
38

80
0.

54
55

0
.0
6
0
7

18
7

34
0

4
7

c
o
v
t

7
6
.2
9

75
.7

3
75

.1
4

7
6
.1
5

75
.4

7
75

.0
3

13
.2

28
2.

04
80

0
.4
0
3
1

30
63

58
38

26
38

1
6
6
8

r
e
t
b

99
.8

1
99

.8
1

99
.8

1
99

.8
0

99
.8

0
99

.8
0

8.
98

80
4.

06
62

0
.9
8
9
8

13
02

24
42

11
18

4
6
1
1

s
u
s
y

78
.4

4
78

.5
5

7
8
.7
2

78
.3

9
78

.5
2

7
8
.6
9

59
6.

31
16

.6
85

2
.9
1
9
8

23
05

60
6

26
32

11
3

1
0
7
7
8
3

h
e
p
m

78
.3

6
83

.3
1

8
3
.5
4

78
.3

3
83

.2
3

8
3
.5
2

16
88

.9
28

.3
92

1
.6
0
5
0

26
82

83
8

36
98

52
2

2
6
8
3
2
8

h
i
g
g

47
.0

1
63

.8
4

6
4
.0
6

46
.9

8
63

.7
9

6
4
.0
0

29
38

.7
46

.8
63

2
.5
5
1
2

28
99

29
1

89
22

97
3

2
7
4
2
2
9

Page 24

REFERENCES REFERENCES

References

[1] J. Bi, K. Bennett, M. Embrechts, C. Breneman, and M. Song, Dimensionality reduc-
tion via sparse support vector machines, Journal of Machine Learning Research, 3,
1229-1243, 2003.

[2] C. Burges and B. Schölkopf, Improving the accuracy and speed of support vector
machines, In Advances in neural information processing systems, 375–381, 1997.

[3] C. Chang and C. Lin, LIBSVM: A library for support vector machines, ACM trans-
actions on intelligent systems and technology, 2(3), 1-27, 2011.

[4] R. Collobert, F. Sinz, J. Weston, and L. Bottou, Large scale transductive SVMs,
Journal of Machine Learning Research, 7(1), 1687-1712, 2006.

[5] C. Cortes and V. Vapnik, Support vector networks, Machine learning, 20(3), 273-297,
1995.

[6] O. Dekel, S. Shalev-Shwartz and Y. Singer, The Forgetron: A kernel-based perceptron
on a fixed budget. In Advances in neural information processing systems, 259-266,
2006.

[7] A. Cotter, S. Shalev-Shwartz and N. Srebro, Learning optimally sparse support vector
machines, In International Conference on Machine Learning, 266-274, 2013.

[8] R. Fan, K. Chang, C. Hsieh, X. Wang and C. Lin, Liblinear: A library for large linear
classification, Journal of machine learning research, 9, 1871-1874, 2008.

[9] Y. Freund and R. E. Schapire, A decision theoretic generalization of on-line learning
and an application to boosting, Journal of Computer and System Sciences, 55(1),
119-139, 1997.

[10] J. Friedman, T. Hastie, and R. Tibshirani, Additive logistic regression: a statistical
view of boosting, Annals of statistics, 28(2), 337-374, 2000.

[11] X. Huang, L. Shi and A.K. Suykens, Support vector machine classifier with pinball
loss, IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(5), 984-
997, 2014.

[12] X. Huang, L. Shi and J. Suykens, Solution path for pin-svm classifiers with positive
and negative values, IEEE transactions on neural networks and learning systems,
28(7), 1584-1593, 2016.

[13] V. Jumutc, X. Huang and A. Suykens, Fixed-size Pegasos for hinge and pinball loss
SVM, International Joint Conference on Neural Networks, 2013.

Page 25

REFERENCES REFERENCES

[14] S. Keerthi, O. Chapelle, and D. DeCoste, Building support vector machines with
reduced classifier complexity, Journal of Machine Learning Research, 7, 1493-1515,
2006.

[15] Y. Lee and O. Mangasarian, RSVM: Reduced support vector machines, In Proceed-
ings of the 2001 SIAM International Conference on Data Mining, 1-17, 2001.

[16] K. Lin and C. Lin., A study on reduced support vector machines, IEEE transactions
on Neural Networks, 14(6), 1449-1459, 2003.

[17] L. Mason, J. Baxter, P. Bartlett and M. Frean, Boosting algorithms as gradient
descent, In Advances in neural information processing systems, 1999.

[18] L. Mason, P. Bartlett and J. Baxter, Improved generalization through explicit opti-
mization of margins, Machine Learning, 38(3), 243-255, 2000.

[19] D. Nguyen, K. Matsumoto, Y. Takishima and K. Hashimoto, Condensed vector ma-
chines: learning fast machine for large data, IEEE transactions on neural networks,
21(12), 1903-1914, 2010.

[20] E. Osuna and G. Federico, Reducing the run-time complexity of support vector
machines, In International Conference on Pattern Recognition, 1998.

[21] L. Pan, J. Fan and N. Xiu, Optimality conditions for sparse nonlinear programming,
Science China Mathematics, 60(5), 759-776, 2017.

[22] K. Pelckmans, J. Suykens, T. Gestel, J. Brabanter, L. Lukas, B. Hamers, B. Moor
and J. Vandewalle, A matlab/c toolbox for least square support vector machines,
ESATSCD-SISTA Technical Report, 02-145, 2002.

[23] F. Pérez-Cruz, A. Navia-Vazquez, P. Alarcón-Dian and A. Artes-Rodriguez, Support
vector classifier with hyperbolic tangent penalty function, Acoustics, Speech, and
Signal Processing, 2000.

[24] F. Pérez-Cruz, A. Navia-Vazquez, A. Figueiras-Vidal and A. Artes-Rodriguez. Em-
pirical risk minimization for support vector classifiers, IEEE Transactions on Neural
Networks, 14(2), 296-303, 2003.

[25] R. Rockafellar, and R. Wets, Variational analysis, Springer Science & Business Me-
dia, 317, 2009.

[26] S. Rosset and J. Zhu, Piecewise linear regularized solution paths, The Annals of
Statistics, 35(3), 1012-1030, 2007.

[27] M. Wu, B. Schölkopf and G. Bakir, Building sparse large margin classifiers, In Pro-
ceedings of the 22nd international conference on Machine learning, 996-1003, 2005.

Page 26

REFERENCES REFERENCES

[28] X. Shen, L. Niu, Z. Qi, and Y. Tian, Support vector machine classifier with truncated
pinball loss, Pattern Recognition, 68, 2017.

[29] A. Suykens and J. Vandewalle, Least squares support vector machine classifiers,
Neural Processing Letters, 9(3), 293-300, 1999.

[30] L. Wang, J. Zhu, and H. Zou, Hybrid huberized support vector machines for microar-
ray classification, Bioinformatics, 24(3), 412-419, 2008.

[31] Y. Wu and Y. Liu, Robust truncated hinge loss support vector machines, Journal of
the American Statistical Association, 102(479), 974-983 ,2007.

[32] Y. Xu, I. Akrotirianakis, and A. Chakraborty, Proximal gradient method for huber-
ized support vector machine, Pattern Analysis and Applications, 19(4), 989-1005,
2016.

[33] X. Yang, L. Tan and L. He, A robust least squares support vector machine for
regression and classification with noise, Neurocomputing, 140, 41-52, 2014.

[34] L. Yang and H. Dong, Support vector machine with truncated pinball loss and its
application in pattern recognition, Chemometrics and Intelligent Laboratory Systems,
177, 89-99, 2018.

[35] J. Yin and Q. Li, A semismooth Newton method for support vector classification and
regression, Computational Optimization and Applications, 73(2), 477-508, 2019.

[36] Y. Zhan and D. Shen, Design efficient support vector machine for fast classification,
Pattern Recognition, 38(1), 157-161, 2005.

Page 27

	Introduction
	Selective Literature Review
	Contributions
	Preliminaries
	Organization

	Sparsity Constrained Kernel SVM
	Optimality
	KKT Points
	 -Stationary Points

	Stationary Equations

	Subspace Newton Method
	Complexity Analysis
	Convergence Analysis
	The Sparsity Level Tuning

	Numerical Experiments
	Implementation
	Testing Examples
	Numerical Comparisons

