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pipes (with a diameter less than 5 cm) 

Abstract 

Corrosion is one of the major issues for a wide range of industries, hence effective, 

rapid and low cost methods of pipeline inspection are needed. Compared with existing 

methods, the ultrasonic guided wave method has been found as an attractive 

alternative for the inspection of pipelines. However, there is a clear need to support 

different pipe sizes in a long range without excavation. In this project, small pipes (with 

a diameter less than 5 cm) are considered due to a request by Scotia Gas Network Ltd. 

The aim of the work presented here is to investigate the feasibility of torsional guided 

waves for inspecting buried pipes with a small diameter. In order to understand wave 

propagation, the wave displacement on plates and pipes (described theoretically) is 

used to generate MATLAB scripts. These scripts find the phase and group velocity 

dispersion curves for plates and pipes of varying size and thickness. The pipe is 

considered to be lossless, and the effect of attenuation was ignored in the calculations 

for this project. Upon finding the theoretical guided wave characteristics, real world 

analyses were conducted to see if the aim could be achieved in an experimental 

scenario. Experimental questions addressed in this report include: “How can the 

transducers be clamped to the plate and to the pipe?”; “What is the best propagation 

frequency?”; and “How can the wave velocities and appropriate transducer positions be 

found?”. Once these were answered, work on pipes with artificial defects could begin. A 

steel pipe with a diameter of 3.4 cm and wall thickness of 0.55 cm with three different 

defect sizes was examined. A defect with 8.3% Cross Section Area (CSA) was found by 

generating a torsional mode T(0,1) at 50 kHz on the pipe. Smaller defects were not 

found due to high reverberation levels in high frequency propagation. This was due to 

having only a limited number of transducers. Further work using more transducers and 

an experimental setup with a buried pipe (to include attenuation) is recommended. 
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Section 1 

1 Introduction 

1.1 Motivation and methodology 

Corrosion is one of the major issues regarding the integrity of assets for a wide range 

of industries; hence inspections are currently conducted at regular intervals to ensure a 

sufficient quality of these assets. Obtaining the cost reduction while maintaining a high 

level of reliability and safety of installations is a major challenge.  The concept of 

predictive maintenance using permanent sensors that monitor the integrity of an 

installation matches very well with the objective to reduce cost while maintaining a high 

safety level.  In recent years, research has focused on finding effective, rapid, long-range 

and low cost methods of pipeline inspection.  However, there is still a clear need for a 

sensitive and accurate method which is capable of detecting the location and the size of 

a small defect.  Compared with existing methods such as visual, eddy-current, 

radiography, ultrasonic, electromagnetic, electrochemical, weight-loss coupons and 

electrical resistance, the use of ultrasonic guided waves is an attractive method for the 

inspection of pipelines. Compared to excavation costs for a limited distance (cases such 

as road crossings where the pipe is underground) associated with conventional 

ultrasonic inspection (upwards of $50,000), guided wave methods are particularly 

beneficial since excavation is only required during initial installation and replacement 

(Lowe and Cawley, 2006). Ultrasonic guided waves are faster than other methods when 

it comes to scanning a pipe. It is therefore useful to introduce a screening procedure 

which is fast and accurate to find the areas where there is significant corrosion. One fast 

screening technique for pipe testing uses classical ultrasonic bulk wave propagation; this 

is known as the pig method (Demma, 2003). In this method an ultrasonic probe is sent 

inside the pipe; this collects ultrasonic signals along the pipe length. This method is 

suitable for pipes with a large length or diameter. Another screening method uses an 

array of transducers to generate guided waves along the pipe. This method was 
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developed in the NDT Lab at Imperial College (Demma, 2003) again using pipes with a 

large length or diameter. Propagating non-dispersive torsional wave modes such as 

T(0,1) have been found to be- the most suitable to find a variety of defects in large pipes 

(Liu et al, 2006). However in general, this research has not been applied to smaller 

pipes; it is important to do this to ensure that an entire pipe network can be protected. 

In this project, the torsional mode T(0,1) was propagated along a small pipe (with a 

diameters less than 5 cm) to find axial and circumferential defects. 

 

1.2 Project aims 

Currently, guided wave technology seems to be the most successful method; 

however its main applications have been to relatively long and large diameter pipes 

(greater than 7.5 cm). The aim of this project is to investigate the suitability of torsional 

guided waves for inspecting small diameter buried pipes. In this project, number of 

items would be considered: 

 Design a MATLAB simulation for finding group and phase velocity dispersion 

curves for plates and pipes. 

 Investigate the feasibility of using limited number of shear piezoelectric 

transducers (reduce the costs). 

 Clarify the problems of implementation shear piezoelectric transducers to have a 

sufficient coupling. 

 Introduce the barriers to find defects on small diameter pipes. 

 Recommend a method of placing transducers on pipe in order to find small 

defects. 
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1.3 Brief outline of content order of thesis 

This project was started with finding the appropriate method for finding corrosion 

on small diameter buried steel pipes. Different technologies, traditional and current 

methods will be described as well as ultrasonic guided waves and special tools and 

devices in Section 2. This section will conclude with a table that shows the capability of 

different methods’. It will show that the ultrasonic guided wave method is suitable for 

this project. 

In Section 3, guided waves on plates and pipes will be described theoretically. 

Different guided wave modes for the pipe case will be introduced. The main findings of 

this section are the dispersion curves produced by the MATLAB script; the difficulties of 

this implementation will also be discussed.  

In Section 4, the torsional mode T(0,1) will be focused on. It was chosen specifically 

for this project so it will be compared to the other modes in order to clarify its 

advantages for this project over its counterparts. 

Section 5 will illustrate the experimental work. Different tests will be performed to 

accurately determine wither or not defects on the pipe will be found. Difficulties and 

solutions in experimental tests will be discussed in this section. 

In Section 6, this thesis will be concluded by summarizing the main findings as well 

as potential future work.  
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2 Technologies Investigated 

2.1 Traditional Methods: Eddy-Current, Electromagnetic, Saturated low frequency 

eddy current, Radiography, Ultrasonic 

Perhaps the oldest non-destructive testing method is the use of Eddy-Current, which 

is based on electromagnetic induction (Hamasaki and Ide, 1995).  Limitations of this 

method include the low speed of inspection and the fact that it can only be applied to 

pipes close to the surface (Lord and Oswald, 1972). The Magnetic Flux Leakage (MFL) 

approach consists of two methods; the induction coil method, Hall effect method.  With 

low sensor costs and small space requirements, MFL inspection has become a leading 

inspection technique for the energy pipeline industry, generally used for inspection of 

pipes of small diameter. Internal and external inspection techniques with MFL are 

different. The internal MFL is a robot equipped with fixed permanent magnet and Hall 

effect sensors which moves inside the pipe and collect off-line data. Pipeline Inspection 

Gauge (PIG) performs measurement operations without impeding the flow of the 

pipeline fluid hence there is no need to shut down the pipe for test.                      

Magnetic flux density is measured by the Hall effect sensors which show                        

the flux changes in axial and radial direction, Figure 2.1 (Lynch, 2009). 

 

 

Figure 2.1.  Radial and axial coordinate of pipe domain (Lynch, 2009). 
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For external inspection magnetic flux measurements are taken outside of the pipe. 

The magnetic field is generated through the pipe with an electromagnetic solenoid coil. 

When defects are present the magnetic flux density signal changes as shown in        

Figure 2.2.  (Lynch 2009). 

 

Figure 2.2.  Hall effect sensor measuring magnetic flux leakage from pipe defect (Lynch, 2009). 

MFL has some limitations since it requires magnetic saturation of the pipe wall, 

hence it is difficult to inspect small diameter and thick wall pipelines. Although as Hall 

effect sensors are widely used for flux measurement, because of their inherent quality, 

they are sensitive to temperature, which leads to measurement errors                    

(Zhongli and Hongda, 2011). 

 Saturated low frequency eddy current (SLOFEC) is an advanced Eddy-Current 

technique. SLOFEC uses the eddy current principle in combination with a magnetic field 

using the changes in magnetic field density to show the defects. SLOFEC inspection can 

find localised gradual defects by the use of Eddy-Current Differential Channel,          

Figure 2.3.    

 

Figure 2.3.  Signal response to defects, (SLOFEC™) (Advanced inspection solution, 1999). 
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The SLOFEC technique can differentiate between the defects on the top-side, under-

side and through holes and is sensitive to smaller volumetric defects. It typically 

operates on pipes with diameter ranging from 2.5 cm to 140 cm and has also a 

capability to generate real-time scan result with coloured defect mapping. Due to its 

electromagnetic technical background, SLOFEC is often compared to the MFL. An 

Implementation of this method for underground pipes is hard however, so it is mostly 

used for pipes with a large diameter. 

  Radiography is another old NDT technique which permits an “inside view” of the 

material under test. Corrosion can be detected using either tangential or straight-

through methods, both of which can often be used on the same radiograph of a small 

diameter component such as a small bore connector (Burch and Collett, 2005).  

Limitations of this method include its high costs, the necessity to cordon areas due to 

radiation hazards, and large time requirements partly due to its inability to examine 

large sections of a pipe at a time.  

The early methods of non-destructive inspection involved high frequency ultrasonic 

signals to detect external cracks and defects caused by corrosion. Due to a high level of 

model complexity, this method is less desirable. Furthermore, ultrasonic inspection only 

detects surface defects and failures on the outside, and requires removing and replacing 

a plug of insulation as well as cleaning the surface (Lynch 2009), which is slow and 

expensive. 

 

2.2 Current Methods: Electrochemical, Ultrasonic Guided Waves, Specialised Tools and 

Devices 

2.2.1 Electrochemical 

In the past two decades, monitoring methods using electrochemical potential for 

detecting the corrosion activity have been widely used in a metal pipeline inspection.  

Different electrochemical techniques such as Open-Circuit Potential (OCP), Linear 
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Polarisation Resistance (LPR), Electrochemical Impedance Spectroscopy (EIS) and 

Electrochemical Noise Measurement (ENM), Electrochemical Frequency Modulation 

(EFM), Electrical Field Signature (FSM) and Electrical Field Mapping (EFMs) are used in 

corrosion detection (Zhang, et al., 2010). Of all electrochemical techniques, ENM has the 

most potential for being used successfully to measure general and localised corrosion 

rates of gas pipelines. ENM is increasingly being applied to field and industrial 

installations for in situ (without extracting the pipe from underground) corrosion 

monitoring (Bullard, et al., 2003).  ENM techniques can differentiate between the 

general and localised corrosions and provide estimates of corrosion rates without 

external perturbation of the corroding system (Bullard, et al., 2003).  It has been used to 

determine its suitability for monitoring internal and external corrosion damage on gas 

transmission pipelines. Electrochemical events on the surface of a corroding metal will 

generate noise (fluctuations) in the potential and current signals. Each type of corrosion 

is represented by a characteristic signature in the signal noise, which can be used to 

predict the type and severity of corrosion that is occurring. Noise signature refers to the 

characteristic patterns in corrosion potential which is able to find localised corrosion. 

The Noise Resistance  

    
σ  

σ  
 ,                                                                            (2.1) 

is defined where σ  is the standard deviation of potential noise and σ   is the standard 

deviation of electrochemical current noise.    is used to find general corrosion by 

means of Faraday’s law. From the Stern-Geary approximation the corrosion current 

density       is obtained as 

                                                               
 

  
,                                                                                    (2.2) 

where B = Stern-Geary constant and Tafel coefficient which comes from Harmonic 

Distortion Analysis (Bullard, et al., 2003).  
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More modern developments realise the potential of real-time systems using 

techniques such as ENM and electrical resistance. This has revolutionised the way the 

corrosion detection problem is approached, but it has some disadvantages as well: 

 The pipe must be shut down to install and retrieve data. 

 Outside sources of signal noise may distort data more than in other methods. 

 Data is difficult to interpret. 

 Methods are expensive to install and operate. 

 ENM corrosion rate is sensitive to temperature change, as well as soil 

constituents. 

 

In EFM, two sinusoidal potential signals are summed and applied to a corrosion 

sample. The resulting current is measured and the time-domain data is converted to the 

frequency domain to measure the signal at the applied frequency. The advantages of 

this method compared to other electrochemical methods are: 

 Small potential signal (20mv), meaning that less power is required. 

 Ability to measure corrosion without knowing the Tafel coefficient (required for 

other methods). 

 Causality factor used as an internal check to validate the experimental data 

(Bosch, et al., 2001) (Khaled, 2008). 

 

Electrochemical methods such as Linear Polarisation Resistance monitoring (LPR) 

and Electrochemical Impedance Spectroscopy (EIS) provide instantaneous measure of 

general and uniform corrosion rates but can only measure localised corrosion            

(Tan, 2009). LPR is limited to aqueous solutions, with optimum results being acquired in 

highly conductive media. A study on the corrosion of the top flow in wet gas 

environment proves that EIS cannot be used as a reliable corrosion monitoring 

technique in such an environment because a liquid phase or film may not be present at 

all times (George, et al., 2000). Finally, as corrosion is a nonlinear phenomenon linear 
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methods like Linear Polarization (LP) and linear EIS are not useful. In FSM, the induced 

current fed to the section of interest in pipe and the resulting voltage distribution is 

measured to detect corrosion damage. Both FSM and electrical field mapping can find 

just internal corrosion and they can inspect large sections of a pipe compared to other 

electrochemical methods (Napiah and Mukminin, 2009). 

 

2.2.2 Ultrasonic Guided Waves  

The use of ultrasonic waves as an attractive method of pipeline inspection is 

receiving growing interest. By understanding how waves propagate along a pipe (hollow 

cylinder) two important parameters, velocity and attenuation can be found. In pipes 

there are three main ultrasonic guided waves in the axial direction: Longitudinal, 

Torsional and Flexural. 

These waves propagate along the pipe axially from the excitation area (transmitter 

transducer). Reflection of waves occurs from cracks or a weld cap, due to different 

acoustic impedance and is processed to find crack size and location. If the reflection is 

received by the same transducer, the system is pulse-echo; otherwise the system is 

through transmission. Pulse-echo is the preferred method as just one location of it 

needs to be accessible. In ultrasonic guided wave methods, different transducers have 

been used such as contact (e.g. piezoelectric), non-contact (e.g. Electromagnetic 

Acoustic Transducers (EMAT) and Magnetostrictive Sensor (MsS)) (Varma, 2011). These 

transducers are clamped on the circumference of the pipe with a collar which needs to 

locate them with an appropriate contact force and direction on the pipe. The inspection 

range and defect sensitivity depend on operating frequency, attenuation and the choice 

of guided wave probes. It is not easy to specify guided wave inspection range as it 

depends on the defect size, attenuation and capability of the guided wave system. 

Attenuation is related to a number of factors, including geometric features of the pipe, 

corrosion condition, pipe coating, insulation, and the nature and degree of compaction 

of surrounding soil. The attenuation also increases with wave frequency and soil depth. 
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In pipes with fewer functional layers (to provide coating and insulation for instance) the 

attenuation is lower than in pipes with those features. 

The use of ultrasonic guided waves with time reversal techniques has recently been 

proposed with the intention of developing an active sensing and continuous monitoring 

system (Yujie Ying, et al., 2010).  The suitability of this technique has been 

demonstrated through laboratory experiments with some promising results. However, 

ultrasonic guided waves are typically used on pipes of relatively large diameters     

(Volker and Bloom, 2010; Breon, et al., 2007; Liu, et al., 2011; Cawley, 2001) and the 

method may require modification in order to make it suitable for small pipe 

applications.  

 

2.2.3 Specialised tools and devices 

BG Transco plc. (Part of the BG Group plc.) have developed a specialised tool to 

detect and size corrosion in 10 cm cast iron distribution pipes (Burd and Smith, 2000). 

Utilizing the SMART Layer technology as a basis, a real-time active pipeline integrity 

detection system (RAPID) is developed for built-in in situ assessment of the health of 

new and existing pipelines. The RAPID system consists of a sensor network permanently 

mounted on the host pipeline, portable electronic hardware, and diagnostic software 

(Qing, et al., 2009).  

The main advantages of the RAPID system include: 

 Ease of use. 

 Ability to provide a sufficient resolution. 

 Reliability (due to self-diagnostic and environmental compensation). 

 Quantified corrosion sizing. 

To verify the detection capability of the RAPID system, a series of tests have been 

conducted on a 6.7 metre steel pipe with a diameter of 60 cm and a wall thickness of 
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6.25 cm with ten different types of corrosion flaws. The SMART Layers™ vary in 

complexity going from a simple 2-sensor flat strip to a complex 30-sensor 3-D shell    

(Lin, et al, 2005) . 

 

2.3 Conclusion 

This brief review confirms the main outcome of similar reviews                    

(Costello, et al., 2007) that there is no single technology which can accurately detect the 

corroded sites on all buried pipelines. Therefore, the development of multi-sensor tools 

(hybrid systems) may be required for detecting corrosion. To summarise this section, a 

comparison of the different monitoring devices that have been discussed is given in 

Table 2.1. on the following page . Currently, guided wave technology seems to be the 

most successful method; however its main applications have been to relatively long and 

large diameter pipes (greater than 7 cm). The suitability of torsional guided waves for 

small diameter buried pipes and preferably inspecting large size of pipes should be 

assessed. 
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Feature LPR EN Ultrasonic EFM and 

FSM 

MFL SLOFEC Ultrasonic 

Guided 

Waves 

SMART 

Detects 

corrosion 

Yes Yes No No Yes Yes Yes Yes 

Intrusive Yes Yes No No No No No No 

Presence of 

electrolyte 

Yes Yes No No No No No No 

Interference 

from 

conductive 

solids 

High High No No No No No No 

Device surface 

condition 

dependency 

Yes Yes No No Yes Yes No Yes 

Area of 

coverage 

Point Point Point 

/Section 

Section Section Section Section Section 

Shut down for 

insulation 

Yes Yes No /Yes No No No No No 

Consumable Yes Yes No No No No No No 

Metal loss 

indication 

No No Direct Direct Direct Direct Direct Direct 

Trending 

Capability 

Yes Yes Yes Yes - - - - 

Repeatability - - No Yes Yes Yes Yes Yes 

 

Resolution Low Low Low Low - - High High 

Pitting 

indication 

Not easy Yes Yes Yes Yes - Yes - 

Temperature 

Limitation 

Threading 

+Sealant 

+Condensa

tion point 

Threading 

+Sealant 

+Condens

ation 

point 

Piezoelectric 

drifts 

400C No No Piezoelectric 

drifts 

No 

Indication of 

remaining wall 

thickness 

No No Yes Yes No No Yes No 
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Feature LPR EN Ultrasonic EFM and 

FSM 

MFL SLOFEC Ultrasonic 

Guided 

Waves 

SMART 

Indication of 

surface 

temperature 

No No No No No No No No 

Indication of 

internal 

pressure 

No No No No No No No No 

Continuous 

data reporting 

Yes Yes No No Yes Yes Yes Yes 

Geometry 

limitation 

Some Some None None None None None None 

Retrieval 

limitation 

Shut down Shut 

down 

None None None None None None 

Multi-Phase 

Corrosion 

Monitoring 

Yes No No No No No Yes No 

Inhibitor 

Monitoring 

No No No Yes - - Yes - 

Can be used in 

high pressure 

Environment 

Limited Limited Limited Limited Limited Limited Yes Limited 

Cost of 

equipment 

Medium high high high High Medium high Medium 

Labour cost to 

install 

Medium Medium high high high Medium Low Medium 

 

Table 2.1. Comparison of different monitoring devices (Morison and Cherpillod , 2005; Corbin 

and Willson, 2007). Linear Polarisation Resistance (LPR), Electrochemical Noise Measurement 

(EN), Ultrasonic, Electrochemical Frequency Modulation (EFM) and  Electrical Field Signature 

(FSM), Magnetic Flux Leakage (MFL), Saturated low frequency eddy current (SLOFEC), Ultrasonic 

Guided Waves and SMART Layer Technology are compared. 
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Section3 

3 Guided wave pipeline inspection 

3.1 Background 

This chapter introduces the basic concepts of ultrasonic guided wave propagation in 

hollow cylindrical tubes pipes. The use of ultrasonic waves is an attractive method and 

has gained interest in the field of pipeline inspection. By understanding how waves 

propagate along the hollow cylindrical structure two important wave parameters, 

velocity and attenuation, can be found. Guided waves are propagated from the 

excitation area along the length of the pipe. The waves are reflected by cracks or weld 

caps (change in acoustic impedance) and these reflections are sensed, since the crack 

size and location can be determined by the reflected amplitude. As mentioned in 

introduction two methods of doing this are pulse-echo (if the reflection is received by 

the same transducer) and through transmission (if a different transducer receives the 

reflected signal).  

The use of ultrasonic waves is well established in NDT industry, although most of 

them use bulk waves in the material due to its simplicity. Furthermore, the fact that 

wave velocity remains constant with frequency during propagation, simple velocity and 

attenuation measurement are the advantages of using bulk waves. Also, monitoring of 

the structure is achieved by the use of two transducers as transmitters, or receivers, or 

one of each.  

The propagation of guided waves such as surface waves, lamb waves and interface 

waves are dependent on the material boundary and material properties. Therefore, the 

solution for any guided wave must satisfy the equations of motion and physical 

boundary conditions, such as traction free surfaces of the bounded medium.  At a given 

finite material structure there are an infinite number of solutions to the boundary 

condition. The standard method of solving this problem for the hollow cylinder, 

proposed by Gazis (1958), will be considered in this report. 



29 
 

Guided waves are preferred to bulk waves as they are reliable in areas of structures 

that are hard to access. With regard to wave characteristics, guided waves propagate 

either at the boundaries of the pipe (like surface waves) or between the boundaries (like 

lamb waves), though bulk waves travel in the bulk of the material away from boundaries 

(Demma, 2006). Hence in the bulk wave situation, there is no need to consider 

boundary conditions. The difficulty of using guided waves lies in the complexity of the 

solution since they are characterized by infinite number of modes (Demma, 2006). 

Guided wave modes in pipes, unlike bulk wave modes, have a wave velocity that 

depends on frequency; this is known as dispersion. In a dispersion curve each mode has 

a different shape and exists in a different frequency domain. The wave propagation in 

the pipe is also affected by the characteristics of the fluid inside the pipe, though in this 

project the pipe was considered to be in a vacuum since the main purpose was to 

extract a guided wave and find the feasibility of finding different defects regardless of 

the pipe’s contents.  

2.2 Equation of motion in isotropic media 

Wave propagation in unbounded, isotropic media is well documented in many text 

book (Rose, 1999) and it is introduced briefly in this chapter. The equation of motion for 

an isotropic elastic medium without considering body forces 

                  
   

   
   (3.1) 

is Navier’s equation, where u is the three dimensional displacement vector,   is the 

material density,   and   are Lame‘s constants and    is the three dimensional Laplace 

operator. The vector u is expressed by Helmholtz decomposition as the sum of a 

compressional scalar potential  , and equivoluminal vector potential, H according to: 

         (3.2) 

with      . (3.3) 

Substitution of Equation 3.2 into Navier’s equation indicates   
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 and (3.4) 

  
      

   

   
  

(3.5) 

the displacement equations of motion are satisfied if the potentials   and H satisfy the 

wave equations. Equation 3.4 describes longitudinal waves and equation 3.5 describes 

shear waves.    and    are the longitudinal and shear wave velocities in the infinite 

isotropic medium which presented as 

    
λ  μ

ρ
     

(3.6) 

    
μ

ρ
   

(3.7) 

Longitudinal and shear waves are the only two types of waves that can propagate in an 

unbounded isotropic medium. Longitudinal and shear waves can propagate without 

interaction in unbounded media (this can be proved from Equation 3.4 and 3.5.)  

For harmonic waves the scalar potential   and directional component of vector 

potential H are defined by 

     
         ω   and (3.8) 

     
         ω  , (3.9) 

where    and    are the longitudinal and shear wave vectors and   and   are initial 

constants. 

 

3.3 Guided waves in plates 

Longitudinal and transverse modes of wave propagation in a plate were the most 

commonly used as they were simple to generate and easy to understand                   

(Rose, Page 241). Shear horizontal waves are easily generated with a variety of different 

transducers and described in this section.  In shear horizontal waves particle motion and 

velocities are parallel to the surface of layer with displacement as shown in Figure 3.1. 
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Figure 3.1. Shear Horizontal wave mode propagation. Particle displacement occurs along the X3 

direction and the wave propagation is along the X1 direction. 

From the Navier’s displacement equation (Equation 3.1), the shear wave being 

constructed the three displacement components of (         are 

         ,   (3.9) 

               (3.10) 

                  
          (3.11) 

where k is the wave number of mode    
  

λ
 . When the     component of the particle 

displacement field is nonzero and if   is independent of     , the Navier’s equation can 
be written as 

    

    
 
    

    
 

    

   
 

   
 

(3.12) 

where     
μ

ρ
  and from substituting Equation 3.11 into Equation 3.12 gives 

       

    
      

  

   
         

(3.13) 

And the general solution found as                           (Equation 3.14), 

where    
  

  
     and   represents the circular frequency. Finally the displacement 

field is 

                                
          ,         (3.15) 
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where     and     in Equation 3.15 represent asymmetric and symmetric motions 

which can be shown as 

  
                     

         and  (3.16) 

  
                     

             (3.17) 

The superscript s denotes a symmetric mode and denotes asymmetric mode. The 

boundary condition is zero shear stress at the plate surface 

                   = 0. (3.18) 

Applying this boundary condition to the displacement field gives sin(qh) = 0 and 

cos(qh)=0. 

Now sin(x)=0 where x=n               and cos(x)=0 where x= 
  

 
               so 

when     
  

 
 where             for symmetric shear horizontal (SH) modes and 

            for non axially symmetric modes the boundary condition is applied. From 

    
  

 
 and    

  

  
     the dispersion equation can be written as  

 

  
     

  

  
   

where    
 

  
  and finally it represented as 

  

  
  

  

   
  

  

  
    

(3.19) 

The phase velocity   in terms of frequency thickness fd is written as 

            
  

             
    

     (3.20)      

where (d=2h) and (ω=2 f) and Group velocity   is given 

            
 
 
  

 

 
  
  

  
  

(3.21) 

when the phase velocity is infinite the cut-off frequency for each mode, can be 

calculated from Equation 3.20 as 
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  (3.22) 

where even n represents symmetric modes and odd integer n represents asymmetric 

mode. Figure 3.2 plots the SH mode phase velocity curves for the first eight SH modes in 

mild steel plate with 2mm thickness and with shear wave velocity             and 

frequency  10 Hz-10 MHz simulated in MATLAB R2011a is given in Appendix B. Figure 3.3 

shows SH group velocity for a same plate and in both plots the solid curves (even n) 

represent symmetric modes and the dashed curves (odd n) represent asymmetric 

modes. This graph is compared with the similar configuration phase velocity curves 

were written by Rose (pp 245, 1999). 

 

Figure 3.2. Phase velocity of Shear Horizontal (SH) mode in a 2mm thick mild steel plate. The 

solid curves (even n) represent symmetric modes and the dashed curves (odd n) represent 

asymmetric modes. This graph is compared with the similar configuration phase velocity curves 

were written by Rose (pp 245, 1999). 
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Figure 3.3. Group velocity of Shear Horizontal (SH) mode in a 2mm thick mild steel plate. The 

solid curves (even n) represent symmetric modes and the dashed curves (odd n) represent 

asymmetric modes. This graph is comparable to the similar configuration phase velocity curves 

were written by Rose (pp 245, 1999). 

 

 

3.4 Guided waves in a hollow cylinder 

3.4.1 Background 

The theoretical treatment of wave propagation in hollow cylinders was started in 

late nineteenth century. Rayleigh and Lamb studied the elastic wave propagation in 

traction-free, isotropic plates (Rayleigh, 1945). The first investigation was in a free bar 

but in the late twentieth century, their work was furthered by Pochamer and Chree 
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(Demma, 2006). Also, the theoretical treatment of axially symmetric wave propagation 

in infinitely long hollow circular cylinders has been made by McFadden, Ghosh, and 

Herrmann and Mirsky (Fitch, 1963). Later work by many researchers such as Pao and 

Mindlin (1960), Onoe et al and Meeker (1962) and Meitzler (1972) was a way to develop 

the three-dimensional problems of a solid circular cylinder in a vacuum (Demma, 2006). 

Gazis (1959) developed an exact elastic solution for harmonic waves in a hollow cylinder 

of infinite extent. After that Fitch confirmatted the  analytical prediction given by Gazis 

(Fitch, 1963). Many general references for wave propagation theory such as Graff (1991) 

and Rose (1999) are very useful for understanding wave characteristics. 

  

3.4.2 Wave propagation in a hollow cylinder 

The geometry of a cylindrical pipe is shown in Figure 3.4. showing the cylindrical co-

ordinate system. For the propagation of waves in a hollow cylinder, the potential   and 

components of vector potential H can be described as 

                          (3.23) 

                           

                         and  

                          .  

Here k is the component of the wave vector in the axial direction and n is the 

circumferential order. Substitution of (3.23) into equations (3.8) and (3.9) gives the 

solution for the                   and       in terms of Bessel functions J and Y and the 

modified Bessel functions, I and K with arguments of either β or α.  β and α can be real 

or complex given by 

   
  

  
    and 

(3.24) 

   
  

   
     

(3.25) 
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Also,          , and                      . 

 

 

Figure 3.4: Schematic of pipe geometry, z is along the pipe, r is radial direction,   is angle 

position, a is the internal radius and h is the wall thick. 

The assumed particle displacement components in the radial     , circumferential     , 

and axial      directions are (Gazis, 1985) 

                         (3.26) 

                        and (3.27) 

                         (3.28) 

where             and       are the corresponding displacement amplitudes 

composed of Bessel functions or modified Bessel function depending on the 

wavenumber characteristic. Differentiation with respect to r yields the strain-

displacement in cylindrical coordinates: 

    
   
  

  
(3.29) 

     
 

 
   

 

  
 
  
 
  

 

 

   
  

     
(3.30) 

     
 

 
   

   
  

 
 

 

   
  

   
(3.31) 

Hooke’s Law can be used to define relationships between stresses and strains 

              (3.32) 
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         and (3.33) 

         , (3.34) 

 where                                    is dilation. The boundary 

conditions for the pipe geometry for free motion are given by: 

              at  r   a and at  r   a+h   b (3.35) 

where a is internal radius, b is the external radius and h is the pipe thickness. 

Having related strains to the small displacements along the pipe, stresses are related to 

strains to yield the general form of Hooke’s Law, so 

 
 
 
 
 
 
   
   
   
   
   
    

 
 
 
 
 

 

 
 
 
 
 
 
                  
                  
                  
                  
                  
                   

 
 
 
 
 

 

 
 
 
 
 
 
  

  

   

   

   

    
 
 
 
 
 

 

(3.36) 

where SV is the vertical component of shear deformation, SH is the shear horizontal 

deformation component and L is longitudinal deformation component. The positive and 

negative signs refer to the direction of propagation. The characteristic equation formed 

by determinant of the Bessel functions is 

                      (3.37) 

 where i denotes the row and j the column of the determinant. Hence the dispersion 

characteristic equation for a hollow cylinder is given by (Gazis, 1985) 

 
 
 
 
 
 
                  
                  
                  
                  
                  
                   

 
 
 
 
 

  . 

(3.37 ) 

The matrix elements (Equation 3.37) are given in the appendix A.  

The terms    and    in matrix elements (Appendix A) represent the Bessel functions 

with type depending on the value of the   . Table 3.1 shows the appropriate selection of 
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the Bessel functions for certain wave characteristics. As mentioned before n is 

circumferential order of guided waves in hollow cylinder. When n=0 then the modes are 

axially symmetric. It can change as   change but it is still axially symmetric. 

Wavenumber Frequency range Coefficient Bessel Functions 

Real  

 
               

         

              

              

              

              

Real    
 

 
    

     

     

      

     

              

              

              

              

Real  

 
               

        

              

              

              

              

Imaginary any 

Complex any              

        

Table 3.1. Bessel function used for different values of the frequency range corresponding values 

of      ,   and   in terms of wavenumbers (         are just weighting coefficient and 

                                                          

 

For axially symmetric modes the frequency equation can be decomposed into the 

product of two sub determinants with 

        (3.38) 

where 

    

            
            
            
            

  
and      

      
      

  
(3.39) 
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3.4.3 Axially symmetric and non-axially symmetric  

Axially symmetric waves are symmetric around the tube axis; or in the other words 

wave is axially symmetric if its appearance is unchanged if the pipe rotated whole its 

axis. Flexural modes are non-axially symmetric but torsional and longitudinal modes are 

axially symmetric. For axially symmetric motion the transverse component    of the 

displacement field              is identically zero while its radial and axial 

component    and    are independent . Flexural modes displacement are dependent of 

   Also, the longitudinal and torsional modes are axially symmetric, meaning that the    

and    components do not change with   (motion is independent of circumferential 

position).  

 

3.4.4 Labelling  

Longitudinal, torsional and flexural are three different mode types of wave that can 

propagate in a hollow cylinder. All modes propagate along the z axis. The wave mode 

notations are as follows (Rose, 1999): 

 Longitudinal modes are labelled as L(0,m)                            

 Torsional modes are labelled as T(0,m)                                 

 Flexural modes are labelled as F(n,m).                                  

 

The first index in labelling is harmonic order or circumferential variation (n=1,2,3,…) 

and the second index is a counter variable (mode m=1,2,3,…). When m=1, is a 

fundamental mode and the higher modes are numbered continuously. There are an 

infinite number of torsional and longitudinal modes for n=0 and for n=1,2,3,… there are 

an infinite number of modes for each n  (Rose, 1999). 

http://en.wikipedia.org/wiki/Symmetry
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Figure 3.5. Mode shapes of torsional T(0,1) and flexural F(1,2). 

Longitudinal modes can have displacements    and    which are independent of  . 

The characteristic equation for the longitudinal modes is defined by the four-by-four 

determinant (3.39). Torsional pipe modes have displacement    only. Also the only 

torsional non-dispersive mode is its first mode, where the solution is defined by the 

two-by-two determinant in equation (3.39). Flexural modes are non-axially symmetric 

and they have displacements    and    which depend on  . The solution to flexural 

modes involves the full six dimensional determinant (3.37) as it has all three 

displacement components (Rose, 1999).   

Material Longitudinal velocity 

(    ) 

Shear velocity 

(    ) 

Density (kg/  ) 

Steel 5959 3260 7392 

Table 3.2 Material properties used for the steel pipe 

 

3.4.5 Dispersion 

The dispersion curves describe the solutions to the modal wave propagation 

equations which give the properties of guided wave such as phase velocity, group 

velocity, energy velocity, attenuation and mode shape. This information enables the 

prediction of test results and decision making with regards to selecting the most 

appropriate guided wave for propagation. Dispersion curves can be generated for all 
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types of structures including plates, rods, tubes, multilayer structures, and rails, 

isotropic or anisotropic structures (Rose, 1999). From the relationships between stress, 

strain and displacement the characteristic matrix can be obtained by satisfying the 

boundary conditions. The coefficient matrix is set equal to zero in order to satisfy 

nontrivial solution (Eq 3.37). The characteristic matrix gives the characteristic function 

                         . (3.40) 

This function is calculated for a given set of properties; specifically the characteristic 

matrix is a function of the thickness, material properties, frequency and wavenumber, 

introduced as a function of frequency and wavenumber. The roots of this characteristic 

function, which give the dispersion curves, are found using a numerical root-finding 

algorithm and the mode shapes are obtained by substituting these roots back into the 

governing equations. In this project the roots were extracted by finding the sign changes 

in the output function, and use of Muller’s method. The solution gives the variation in 

velocity for a mode versus frequency or versus frequency thickness product; this 

product is effectively a normalised frequency. Hence the dispersion curve named from 

the changing of velocity versus frequency which shows waves are dispersed as they 

propagate. Dispersion curves were calculated in MATLAB by using the approach given in 

Section 3.4.7.  

 

3.4.6 Group and phase velocity 

Dispersion curves for a group of waves can be different from individual frequency 

waves, so it is necessary to clarify the concepts of and group velocities. The group 

velocity    , is the velocity at which group of waves will travel at a given frequency while 

the phase velocity is the wave velocity of each individual peaks of a single frequency 

wave. Phase velocity    and group velocity    are given as 

   
 

 
     (3.42) 
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(3.43) 

 where k is the wavenumber. Phase and group velocity are related to each other 

through  

   
      

  
     

     

  
  

(3.44) 

Here          expresses the fact that   is a function of wavenumber. The group 

velocity concepts and equations are well covered by (Rose, 1999). 

 

3.4.7 Phase and group velocity dispersion curve implementation in MATLAB 

3.4.7.1 Torsional mode dispersion curves 

The aim of this MATLAB interpretation is to plot the phase and group velocities for a 

domain of frequencies. To do this, it is necessary to find the wave number in the 

characteristic equation for torsional modes. As mentioned from equation 3.39, the 

determinant of this ‘two by two’ matrix can be considered as: 

  (β   )                               (3.45) 

From the roots β (   
  

  
     (Equation 3.24)) the wavenumber k for real and 

complex β were found. When β was real, real Bessel functions used 

  (β   )                             and (3.46) 

for complex β 

  (β   )                               (3.47) 
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which is given from Table 3.1. Equation 3.46 and 3.47 were written as a function of β. 

(FuncToRoot.m) in MATLAB for different value of β is shown in appendix C.2. However in 

order to find β, a root finding method needs to be considered (before this determinant 

calculation in the script). The Root Sign Change method is used in this project as a first 

step to find the roots of Equation 3.46 and 3.47 by finding sign change intervals in the 

determinant function by varying β. Muller’s method (implemented in muller_old.m), 

described later in Section 3.4.7.1, uses these intervals as an initial guess to find a more 

precise value of β. This specific combination of methods was chosen because they are a 

compromise between simplicity (required because this is a rolling project) and accuracy 

(required because the determinant function is sensitive to wayward changes in β). 

Interval sizing for the Sign Change Root Finder method is of critical importance because 

a grid too coarse may lead to some roots not being identified (resulting in missing values 

of β) and because a grid too fine will result in a script that takes a great amount of time 

to execute. Through experimentation, the most suitable domain and step-size for β 

values was found to be 0:100:50000; this was implemented in 

Sign_Change_Root_Finder.m file in appendix C.3. The calculated values of wavenumber 

may be real and complex; real value of wavenumbers corresponds to propagating wave 

modes. Here, we are working with a lossless system, so only the real roots are 

considered, but for the further work Muller’s method can be used to find the complex 

roots as well.  In the Section 3.4.7.1 the Muller’s method and other root finding 

methods will describe and the difficulty of these methods will discuss.  

Since β values for each torsional mode can be found at each frequency, a value 

known as the cut-off frequency needs to be found so that the dispersion curves can be 

plotted. The cut-off frequency is the frequency at which the phase velocity of a given 

dispersive mode approaches infinity from a higher frequency value. Mathematically 

speaking, it is also the value at which the wavenumber is zero. The cut-off frequency can 

also be defined as 
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(3.48) 

The MATLAB script written for this project will only plot phase velocities after the 

cut-off frequency. Considering this, the phase velocity plot for torsional modes, T(0,m), 

of a stainless steel tube (Outer diameter 1.905 cm, wall thick 0.165 cm;                         

                          is shown in Figure 3.6. This graph is comparable to 

the same torsional modes dispersion curve written by Rose (pp 162, 1999). 

 

Figure 3.6. Phase velocity plot for torsional modes, T(0,m), of a stainless steel tube (Outer 

diameter 1.905 cm, wall thick 0.165 cm;                           This graph is 

comparable to the same torsional modes dispersion curve written by Rose (pp 162, 1999). 
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 Now that the phase velocity dispersion curves for torsional modes can be found, it 

is possible to find the group velocity dispersion curves. The group velocity at a point is 

related to the phase velocity at a point by  

   
  

  
 

    

          
  

(3.49) 

Considering this, the group velocity plot for torsional modes, T(0,m), of a steel pipe 

(Outer diameter 6 cm, wall thick 0.35 cm;                           is shown 

in Figure 3.7. This graph is comparable to torsional modes dispersion curve written by 

Zenghua Liu et al. (2006).   

 

Figure 3.7. Group velocity plot for torsional modes, T(0,m), of a steel pipe (Outer diameter 6 cm, 

wall thick 0.35 cm;                          This graph is comparable to the same 

torsional modes dispersion curve written by Zenghua Liu et al. (2006). 
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3.4.7.2 Longitudinal phase and group velocity dispersion curves 

In addition to the torsional mode dispersion curves discussed previously, it is also 

necessary to find the dispersion curves for the longitudinal mode. This is because of for 

finding the mode conversion which happens between torsional and longitudinal modes. 

The main difference is that the torsional and longitudinal modes have different 

characteristic functions. The functions differ also in the fact that the longitudinal one is 

itself a function of frequency, meaning that Muller's method needs to be applied for 

each frequency value separately. This is cumbersome, so a more time-efficient solution 

needs to be considered. 

In this implementation, the determinant function’ four by four matrix’ (Equation 

3.39) is calculated for each possible value of k for each frequency separately. The script 

finds the real sign changes in the function, thus finding the values of k that satisfy the 

characteristic equation. The domain and step-size for the k values to search through was 

found through experimentation, because they can cause the same problems as a poor 

domain choice for   as discussed in the previous section. The k values that correspond 

to roots are used to find the phase velocity by Equation (3.42).This yields the phase 

velocity dispersion for longitudinal modes L(0,m), of a schedule 40 (Outer diameter        

7 cm, wall thick 0.55 cm; is shown in Figure 3.8. This graph is compared with the same 

torsional modes dispersion curve written by Demma (2003).   
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Figure 3.8 . Phase velocity dispersion for longitudinal modes L(0,m), of a schedule 40 (Outer 

diameter 7 cm, wall thick 0.55 cm. This graph is comparable to the same torsional modes 

dispersion curve written by Demma (2003). 

Due to time constraints, and the fact that the MATLAB simulation is not the main focus 

of this project, the group velocity was found using a script written by Seco and Jimenez 

(2012).  

3.4.7.3 Flexural phase and group velocity dispersion curves 

Similar process chose for Flexural mode same as longitudinal mode. The Flexural 

mode is non axially symmetric mode and circumferential order is not zero (described in 

section 3.4.3) but longitudinal mode is axially symmetric and the circumferential order is 

always zero. This difference change the determinant function ‘four by four matrix’ 

(Equation 3.39). Also, The domain and step-size for the k values to search through was 

found through experimentation, and the step size compare to longitudinal modes are 

smaller because some roots were missing. Figure 3.9 shows the phase velocity 

dispersion curves for a 3.4 cm diameter steel pipe with 5 mm wall thick in vacuum. The 

frequency views from 1 kHz to 400 kHz. The graph was calculated using the technique 

outlined in section 3 and implemented in MATLAB (see Appendix C). 
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Figure 3.9. Phase velocity of 5mm wall thick, with 3.4 cm external diameter steel pipe in vacuum 

(                          

 

3.4.7.4 Root finding methods 

Background 

Research into ultrasonic NDE techniques for the inspection of hollow cylinder 

structures relies on the use of modelling tools which calculate dispersion curves and use 

them in experimental work. Calculating roots for dispersion curve generation is 

challenging, especially in some regions of wavenumber and frequency (Graff, 1991). The 

traditional numerical methods are based on determination of the zeros of the frequency 

equation by using an iterative root finding algorithm. Many researchers use iterative 
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techniques, such as linear or quadratic interpolation or extrapolation algorithms, which 

have very fast convergence on a single root. Newton-Raphson, bisection, and Mueller 

are used as safer iteration methods at the expense of speed. The bisection method 

takes an interval [i , i+1] such that f(i) and f(i+1) have opposite signs and then finds the 

midpoint of [i , i+1]. The root can lie on [i , (i +( i+1))/2] or [(i + (i+1))/2, i+1] which shows 

from the function sign change. Iteration will repeat the bisection until the interval is 

sufficiently small. Newton-Raphson is the other iterative method which finds the root by 

considering its derivative, and an initial value.  

M ller’s method is a useful root finding method for function, particularly those with 

both real and complex roots. It was presented by David E. Muller in 1956. M ller 

extends the idea of the secant method which works with a quadratic polynomial. If 

three initial guesses               and      are given for an unknown root. Muller’s 

method asserts that the next logical value to consider 

                  . 

Here: 

(3.50) 

    
    

       
       

  
(3.51) 

            
      (3.52) 

                        
             

            (3.53) 

          
                

         
            (3.54) 

                   (3.55) 

   
  
    

  
(3.56) 

The M ller’s method plots the parabola that passes through the three points 

provided. It takes the intersection of the  horizontal axis and the parabola as the next 

approximation. The order of convergence of Muller's method is approximately 1.84 

(Mekwi, 2001). In this project, Muller’s method will typically be used to solve the 

Characteristic equation function (FuncToRoot.m). The implementation of Muller’s 

method written for this project is in Muller.m. 

http://en.wikipedia.org/wiki/Parabola
http://en.wikipedia.org/wiki/X-axis
http://en.wikipedia.org/wiki/Rate_of_convergence
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3.4.8 Cut-off frequency relation with wall thick and pipe size  

When the torsional mode has chose as an excitation mode finding the first cut-off 

frequency in order to find the working boundary is important. I t is possible to 

propagate the non dispersive mode T(0,1) at frequencies bellow at which the first 

dispersive mode T(0,1). Hence, by comparing different cut-off frequencies by changing 

different pipe size and wall thick changing, the relation between them has found. Three 

different cases were evaluated, and graphs were plotted by the MATLAB program which 

was written for dispersion curve finding (Appendix D). 

First, the thickness of the pipe wall was changed while the internal radius was laid 

constant; the cut-off frequency reduced as thickness increased. For example, as shown 

in Figure 3.10. when the thickness is 1.5 mm and the pipe internal radius is 5mm, the 

first dispersive mode appears at 1MHz, the second one at 2MHz and so on. 

 

Figure 3.10. Cut-off frequency of T(0,m)modes results are shown for a steel pipe for m=2 to m=4, 

against pipe wall thick for the pipe with an inner radius of 50 mm(Outer diameter 6 cm, wall thick 

0.35 cm;                         . 

 

Here results were calculated for a pipe with constant mean radius while wall thickness is 

constant. Figure 3.11 shows how the cut-off frequency reduced as pipe size increased. 

For example when the wall thickness is 2mm the first dispersive mode T(0,2)start from 
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800 kHz and the second one start from 1.7 MHz and so on. So when the pipe thickness 

increased the cut-off frequencies decreased.   

 

Figure 3.11. Cut-off frequency of T(0,m)modes results are shown for a steel pipe for m=2 to m=4, 

against pipe thickness for constant mean radius, (Outer diameter 6 cm, wall thick 0.35 cm; 

                       . 

 

When the pipe radius becomes for a constant wall thickness the cut-off frequency 

reduced (Figure 3.12). For example when the internal radius and external radius are 

30mm and 33mm, the first dispersion mode comes at 500 kHz, the second dispersion 

mode 1 MHz and so on.  
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Figure 3.12. Cut-off frequency of T(0,m) modes results are shown for a steel pipe for m=2 to 

m=4, against scale factor (Outer Radii/Inner Radii= 1.1), (Outer diameter 6 cm, wall thick 0.35 cm; 

                       . 

 

In summation it found the cut-off frequency is related to the pipe thickness and pipe 

diameter, for small size pipes the first cut-off frequency is higher than the first cut-off 

frequency in larger size pipes. 

 

3.4.9 Choose the number of transducers 

Lowe and Cawley (2006) have affirmed that Plant Integrity Ltd. and Guided 

Ultrasonic Ltd. have used rings of new shear dry-coupled piezoelectric transducers 

(Imperial College university patent) which are shown in Figure 3.13. Each transducer 

module includes two (or more) transducers that are dry coupled and aligned along the 

longitudinal direction of the pipe diameter, Figure 3.14. Alleyne and Cawley (1996) 

suggested an array of dry-coupled piezoelectric transducers which excite cylindrical 

lamb waves for 7 cm _ 30 cm diameter pipes. Both Plant Integrity Ltd. and Guided 

Ultrasonic Ltd. produce the systems with piezoelectric transducers for 5 cm pipes. Eight 

modules are used in the Mini-Test tool to generate torsional wave modes for 5 cm 

pipes, and twelve modules for 7.5 cm and sixteen modules are used for 10 cm pipes.  
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Figure 3.13. Strain gauge incorporated into dry-coupled transducer (Alleyne, 1996). 

 

 

Figure 3.14. The transducer produced by Guided Ultrasonic Ltd (Guided ultrasonic ltd., 2012). 

 

The number of piezoelectric transducers is related to order of modes of waves, pipe 

diameter and transducer spacing. The number of piezoelectric transducers must be 

greater than the highest order of modes of the wave; it can be present in the frequency 

range of the signal (Alleyne, 1998). For example, Alleyne explains how we can find out 

how many elements we can use for a 7.5 cm pipe to excite axially symmetric and 

asymmetric waves. Figure 3.15 shows the predicted group velocity dispersion curves for 

cylindrical lamb waves in (outer diameter 7.5 cm, wall thickness 0.55 cm) steel pipe over 

the frequency range 0-100 kHz (Alleyne, 1996). For instance, if flexural mode 13 is 

required at least 16 piezoelectric elements are needed in the range of frequency up to 

100 kHz. It is also mentioned by Alleyne that the axially symmetric L(0,2) mode at a 
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frequency 70 kHz is an attractive mode to use for long distance propagation, which is 

fast and nondispersive at a frequency of 70 kHz. However, 12 piezoelectric transducer 

elements can be used for exciting an axially symmetric L(0,2) mode. 

 

 

Figure 3.15. The predicted group velocity dispersion curves for 7.5 cm steel pipes over the 

frequency range 0 -100 kHz (Alleyne, 1996). 

 

The number of piezoelectric transducers is roughly proportional to the pipe 

diameter. For example for a 15 cm diameter pipe, 32 piezoelectric elements around the 

pipe have been used, and 16 for a 7.5 cm pipe as mentioned previously (Alleyne, 1996). 

Another factor that should be taken into account is that if the system is to excite a pure 

axially symmetric mode then the transducer spacing ∆ around the pipe should be less 

than half a wavelength λ of the inspection mode (∆ < λ/2) according to Nyquist-shanon 

sampling criterion.  

In this project 3.4 cm diameter steel pipe with 5 mm wall thick had chosen to inspect 

and at least eight transducers at frequency less than 100 kHz are needed according to 

Alleyne suggestions. Table 3.3 shows for a 3.4 cm diameter pipe how many transducers 

are needed at different frequencies (The shear wave velocity on pipe is assumed 
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            which will show in Section 5). After calculation it shows from table 3.3 

at least seven transducers are needed at 100 kHz frequency. 

   

Frequency 
(Hz) 

Wave 
velocity 

(    ) 

Wave 
length(m) 

Pipe 
Circumference 

(m) 

Delta Number of 
transducers 

10000 3309 0.33 0.107 0.17 1 
20000 3309 0.17 0.107 0.08 2 
30000 3309 0.11 0.107 0.06 2 
40000 3309 0.08 0.107 0.04 3 
50000 3309 0.07 0.107 0.03 4 
60000 3309 0.06 0.107 0.03 4 
70000 3309 0.05 0.107 0.02 5 
80000 3309 0.04 0.107 0.02 6 
90000 3309 0.04 0.107 0.02 6 

100000 3309 0.03 0.107 0.02 7 
150000 3309 0.02 0.107 0.01 10 
200000 3309 0.02 0.107 0.01 14 
300000 3309 0.01 0.107 0.01 20 
400000 3309 0.01 0.107 0.00 27 

 

Table 3.3 Number of transducers predicted for 3.4 cm diameter pipe at different frequencies (The 

shear wave velocity on pipe is assumed             which will show in Section 5).  
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Section 4 

4 Torsional modes properties 

4.1 Background 

In section 3 the guided wave characteristics of hollow cylinders were presented, in 

this section the torsional mode T(0,1), and other modes, are considered in order to 

compare the potential of different modes of propagation. Also, the difficulty in each 

mode will describe. Difficulty of using torsional guided waves has been about 

‘discontinuities in the geometry’ of guided wave presented by Ditiri (1994), Alleyne and 

Crawley (1996), Alleyne and Pavlakovic (2001). Examples of the discontinuities of the 

geometry are;  welds connecting two parts together, curved parts attached to the main 

structure, free ends and corrosion defects on discontinuities due to material property 

alteration. Ditiri (1994) worked on characterization of circumferential cracks in 1.88 cm 

diameter, 0.6 mm wall thickness hollow cylinder when the L(0,2) mode was incident. 

Alleyne and Cawley (1998) worked on declaration of  a part-circumferential notch in a 

pipe with 7 cm diameter with 5.5 mm wall thickness when the axially symmetric L(0,2) 

mode was incident. In 2001 Alleyne and Pavlakovic reported their work on a 5 cm 

diameter pipe with 5.5mm wall thickness, to find different defects using axially 

symmetric L(0,2) and T(0,1) modes.  

Furthermore the ability of guided waves to locate cracks and notches including 

effect of defect size on the reflected echo has been investigated by many researchers, 

Ditiri (1994), Alleyne (1998), Demma et al.(2003), Carandente (2011) and Hu (2011). The 

most recent works such as Demma et al.(2003), Carandente (2011) and Xiongwei Hu 

(2011) was with the axially symmetric T(0,1) mode and in a 7 cm diameter with 5.5 mm 

thickness steel pipes. Most of the previous investigators studied large pipes generally 

greater than 7 cm diameter, with axially symmetric L(0,2) and T(0,1) modes. In this 

project the challenges of using the axially symmetric and non-dispersive T(0,1) modes  

for small diameter pipes was investigated.  

 



57 
 

4.2 Choice of guided modes for testing  

In a hollow cylinder, many different modes can potentially propagate at any 

frequency. It is important to choose a mode which is easily readable and reliably 

interpreted, which is also different for each specific defect. The basic factors that 

influence the choice of wave mode selection were defined by Wilcox et al.           

(Demma, 2003) as dispersion, attenuation, sensitivity, excitability, detect ability, mode 

selectivity, and in implementation speed of single test, testing tool design and the level 

of difficulty of analyzing the data should all be considered. In this project, attenuation 

factor of propagation modes was not considered because it is not applicable to lossless 

single layer steel pipe in vacuum conditions (as is these testing condition). For most 

applications, lower orders are used for selecting the propagating wave                    

(Alleyne and Pavlakovic, 2001), and non-dispersive curves in torsional mode and non-

dispersive area in longitudinal mode are used (Demma, 2003). 

4.3 Torsional modes advantages 

The T(0,2) mode is a dispersive axially symmetric mode, with mode shape and cut-

off frequencies shown in Figure 3.6. At the axially symmetric modes torsional modes are 

used preferably over longitudinal modes as;  

 The mode shape of the torsional T(0,1) mode is not frequency dependent. 

However, longitudinal modes in some frequency ranges are not frequency 

dependent.  

 A large advantage of Torsional mode is that is unaffected by non-viscous fluid 

content (Alleyne and Pavlakovic, 2000). The rate of energy loss into the liquid is 

proportional to the radial displacement at the pipe surface, hence as a torsional 

wave has no radial displacement so it is unaffected by non-viscous liquid loading 

on the outside or inside of the pipe, The L(0,2) mode has non-zero radial 

displacement, hence it loses energy slowly into a fluid surrounding the pipe.  

 A torsional mode can detect longitudinal cracks, whereas the longitudinal mode is 

essentially insensitive to narrow effects especially paralleled to the pipe axis as it 



58 
 

does not have radial displacement. Zenghua Liu et al. (2006)  reveal that T(0,1) 

mode at 45kHz for 6 cm diameter with 3.5 mm wall steel pipe can find both 

circumferential and longitudinal defects compared to the longitudinal mode which 

proves that the torsional modes are dominant for all kinds of defect detection in 

pipes for their sensitivity.  

 

However, the range of inspection in longitudinal mode L(0,2) is larger than the 

respective torsional mode. Also, as torsional modes are sensitive to circumferential 

changes, if there is a support bracket on the pipe, the reflected signal is strong and if 

there is corrosion on the bracket it is not easy to find it (Alleyne and Pavlakovic, 2000). 

In this project an incident T(0,1) mode is considered as a complete non-dispersive axially 

symmetric mode, but mode conversion to the non-symmetric modes could happen at 

non-axisymmetric defects.  
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Section 5 

5 Experimental 

In this Section, implementation of different tests on plates and pipes will describe. 

The first step of starting the experimental tests was choosing the appropriate 

transducer for generating waves on plate and pipe. When transducers were purchased 

from Plant Integrity Ltd. test were started by preparing the other equipment which was 

needed. Experiments started with finding a way to couple the shear piezoelectric 

transducers on plate and pipe, find the appropriate frequency to generate waves. Wave 

velocity measurement was important to find the other parameters such as end pipe and 

defect location. Hence, torsional wave velocity (3309          was found on pipe as 

well as shear and longitudinal wave velocity on plate. Although, the number of 

transducers were limited but the appropriate position of transducers (one receiver and 

one transmitter in each module) will recommend. Finally pipe with defects will 

examined and the advantages of using more transducers and placing the receiver in 

different position around the pipe will describe. The main problem which is the 

compromise between the limited number of transducers due to budget constraints and 

working in lower frequency (50 kHz) to have lower reverberation level with missing the 

defect echoes will discuss. 

 

5.1 Guided wave instruments 

Since ten years ago ultrasonic researchers and companies made different 

instruments to inspect large length of pipe. The UK company Guided Ultrasonic Ltd. 

introduced as a world leader in developing guided wave inspection equipment. The 

wavemaker (Instrument made by Guided Ultrasonic Ltd.) has an ability to apply rapid 

screening a long length of pipe to detect axial and circumferential cracking, external and 

internal corrosion.  Guided wave methods were originally restricted to laboratory 

experiments and research, but over time industry adopted these methods over the 
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more traditional NDE inspection methods. As mentioned in Section 2.2.2 three different 

transducers are used in guided waves technology. Both Plant Integrity Ltd and Guided 

Ultrasonic Ltd clamp an array of piezoelectric elements individually to the pipe surface 

for their guided wave systems. Electromagnetic Acoustic Transducers (EMAT) are mostly 

used for higher frequency testing (20 kHz to 10 MHz),  resolution and range are affected 

by wave propagation frequency. IZFP (Germany) and Sonic Sensor (United States of 

America) are the most famous companies which produce EMAT transducers. 

Magnetostrictive technology (MsS) is cheaper and easier to process than piezoelectric 

transducer systems, but it is more difficult to obtain satisfactory mode control; this 

means it has not become popular in industry (Lowe and Cawley, 2006).                              

A magnetostrictive transduction technology has been developed, and sensors are 

produced at SWRI (United States of America) and M.K.C Korea. 

In this experimental test four shear piezoelectric transducers and two modules were 

purchased to fix transducers on pipe from Plant Integrity Ltd. The piezoelectric 

transducers with 1.4 cm long, 1.2 cm width and 1 cm height have an active surface with 

1.3 cm long, 0.3 cm width and 0.1 cm thickness. Piezoelectric motion direction and 

active surface (white part) are shown in Figure 5.1. Transducers are mounted in modules 

to have an easy access for placing on plate and pipe. In each module three transducers 

in shear position can be mounted. Figure 5.2 shows the two modules when one 

transducer is mounted in each. 

  

Figure 5.1. Piezoelectric transducers with 1.4 cm long, 1.2 cm width and 1 cm height. 

Piezoelectric motion is along the length direction and active surface is a white part with 1.3 cm 

long, 0.3 cm width and 0.1 cm thickness. 
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Figure 5.2. Two modules with 6 places for transducers when two transducers are already placed. 

When modules are placed on a pipe, transducers motion is in shear format. 

 

5.2 Experimental setup 

The plate case tests were performed on different sizes of plate depends on the tests 

and different instrument had used. A function generator (HP 33120A) triggered tone 

bursts of two cycles with a 10 Hz burst rate and an 18V peak-peak voltage and a signal 

amplifier (ORTEC Precision ac Amplifier 9452) was used to amplify the signals 70dB gain 

with a 1MHz and 100 kHz low pass and high pass filters. The system used the through–

transmission method; two identical transducers (a receiver and a transmitter) were used 

(Figure 5.3). The input and output signals were digitized by the oscilloscope (LeCroy 

9304C) and stored in computer. The oscilloscope was used to average the signal with 

300 sweeps in its math function. Results from oscilloscope and controlling the 

oscilloscope were done with computer using GPIB by the MATLAB Scripts originally 

written by Yuan (2012) and it was modified for this project (MATLAB Scripts are given in 

Appendix F). 
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Figure 5.3. Experimental setup of two modules on plate. 

The tests on pipe were done with a similar instrument as tests on plate and just a 

filter (KROHN-HITE, model: 3202 filter) was added. Figure 5.4 shows the experimental 

setup on pipe. Also, all the equipments specification used for tests on plate and pipes 

are given in Appendix E.  

 

Figure 5.4. Experimental setup of two modules on pipe. The distances shows the transmitter and 

receiver transducers are 100 mm a part and each transducer is 170 mm and 2640 mm far from 

the end of the pipe. 

Frequency bandpass filters including low-pass and high-pass, are very common in 

signal processing and are also used in several different applications using guided waves 

(Alleyene and Cawley, 1997). In the experimental tests bandpass filter was used, when 

the signals were rectified, some high frequencies were removed and it made the 

rectified signal smoother. Also, there are some projects that show the use of bandpass 

filters to reduce the amplitude of echoes (Gatts et al., Accessed: Aug 2011). 
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5.3 Coupling error for dry pressure coupling 

Random coupling errors arise because shear transducers (receivers and 

transmitters) will not be perfectly coupled on to the pipe unless a non-Newtonian 

viscous fluid (like honey) is used. Variation of coupling pressures will reduce the 

amplitude of the T(0,1) mode to be excited into the pipe. High normal pressures on 

smooth hard surfaces can facilitate passage of sufficient energy when a coupling fluid is 

not used. It is possible to generate a shear wave on a thick pipe with sufficient and 

stable coupling. In order to investigate this, a variable force was applied by using 

weights on each module to vary the clamping load. The tests were carried out on a 

galvanized steel plate with 3mm thick. The transmitting transducer was driven with a 

tune burst of two cycles of a 200 kHz and a voltage of 18 Vp–p applied across the 

transducer. The incident signal’s frequency 200 kHz and voltage 18 Vp-p (Open circuit 

output of voltage connected to the transducers) is also fixed during the tests. For the 

test setup, the receiver was placed 200 mm away from the transmitter. The results from 

Figure 5.5 indicate that the clamping load of under 40N is sufficient to achieve stable 

coupling on plate as there is not much variation in the transmitted amplitude when the 

force changes.   

 

Figure 5.5. Amplitude receiver output vs. clamping load in dry-coupled case. The transmitting 

transducer was driven with a tune burst of two cycles of a 200 kHz a voltage of 18 Vp–p applied 

across the transducer. The receiver is placed 200 mm away from the transmitter. 
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To assess the repeatability of this experiment, the received level for a certain load 

was taken multiple times after removing and replacing the weights to measure how 

much the signal changed. This test was undertaken with a load of 13.5N for eleven 

repetitions. The result of this test is expressed in the graph below. Test 11 (in Figure 5.6) 

is the last test which is the value shown in Figure 5.5. 

 

Figure 5.6. This test was undertaken with a load of 13.5N for eleven repetitions. The amplitude 

output of first arrival shown in each tests. The transmitting transducer was driven with a tune 

burst of two cycles of a 200 kHz a voltage of 18 Vp–p applied across the transducer. The receiver 

is placed 200 mm away from the transmitter. 

 

The data in the above graph has a standard deviation of 1.7dB. These results suggest 

that using weights to apply a force on the pipe is inconsistent and not reliable (due to 

the low repeatability of the test). This occurred because it was impossible to place the 

weights in exactly the same location on the modules, so the force on each of the 

transducers varied. When the force changed to the 45 N the variation was not as much 

as 13.5 N, hence for the rest of experimental test 45 N used as clamping load. 

Further tests on pipe were performed by using cable ties to apply a clamping force 

(Figure 5.7). This approach used because it was not easy to stabilize weights on a pipe 

when the transducers are rotating around the circumference of the pipe. Using cable 
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ties neatly solved this repeatability problem. For further work, a collar designed for 

clamping such as that shown, in Figure 5.8, is recommended. However, it would need to 

be redesigned because the collar designed by Plant Integrity Ltd. operates only on pipes 

larger than 3.75 cm. 

  

Figure 5.7. The left picture shows modules on plate (200 mm far apart) with weights on it for 

coupling and the right picture shows modules (100 mm far apart) on pipe which coupled with 

cable tie. 

 

Figure 5.8. 5 cm Mini-Test collar assembly for Plant Integrity Ltd (Plant integrity ltd.,2012). 

 

5.4 Frequency tuning on plate 

Guided wave focusing can be achieved when an array of transducers is used, 

specifically by timing the firing and excitation amplitude of the individual elements on 

the pipe. However, since only two modules were available due to budget constraints, 

that was not possible.  In this case, the excitation frequencies were varied over a given 

range to maximise the amplitude of the response. In this Section tried to find a proper 

frequency for generating waves on different plates. 
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The plate case tests were done using a galvanized mild steel plate with a thickness of 

3mm. The system uses the through–transmission method; two identical transducers (a 

receiver and a transmitter) were used (Figure 5.9).  

 

Figure 5.9. Experimental setup of two transducers and two modules on plate. 45N load was 

applied on each module due to the clamping force. 

Figure 5.10 shows the result obtaining by frequency tuning. These results were 

obtained with a constant transducer distance of 100 mm by applying forces of 45N and 

13.5N in two different tests by changing frequency. These results show that, in the test 

using 45N force, the amplitude of direct transition is maximised in the 200 kHz-250 kHz 

frequency band. Due to this, 200 kHz was chosen as a test frequency to find the shear 

wave velocity in the plate case.  

 

Figure 5.10. Variation of direct arrival amplitude with frequency with two different clamping 

load 45N and 13.5N. 
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Also, the frequency chosen should be less than the first nondispersive mode’s cut-

off frequency; hence group velocity dispersion curves were considered to find the cut-

off frequencies (Figure 5.11). In Figure 5.11 the first non-dispersive mode cut-off 

frequency is approximately 540 kHz and the frequency was chose 200 kHz to be lower 

than the first cut-off frequency.   

 

Figure 5.11. Dispersion curves for SH (Shear-horizontal) mode for n=0 to n=7 in 

 Frequency           (Shear velocity: 3250     ). 

It is important to note that if the force on the transducers changes, this maximum 

frequency changes also as shown in Figure 5.10. This shows the importance of a good 

coupling between the transducers and the surface; a poor coupling used with the 

correct frequency will provide incorrect results. 

5.5 Frequency tuning on pipe 

Frequency tuning with the axis-symmetric mode T(0,1) was performed as an important 

and first step of each experiment (Liu et al., 2006). Here frequency tuning was used to 

find a proper frequency for detecting the pipe end and defect clearly. The tests were 

carried out on a 3.4 cm diameter steel pipe with 5mm wall thick. Tests were performed 

with one transmitter and one receiver, 100 mm apart, with the transmitter placed 

170mm away from one end of the pipe, and both were placed on the left side of the 
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pipe as shown in Figure 5.4 in section 5.2. When transducers are placed on pipe and 

incident wave was generated as described in Section 5.2, the echoes from the end pipe 

and direct arrival expected to receive from the receiver. Figure 5.12 shows five main 

propagation paths that may occur during the test; the reflections generated by these 

paths are labeled on in Figures 5.12 and 5.13. 

 

Figure 5.12. Schematic diagram shows five wave propagation path in the pipe for direct and 

pipe-end echoes. First transmission is from direct arrival between receiver and transmitter and 

the second one is the pipe-end echo from the left side. The third and fourth echoes come from 

the right pipe-end and the fifth echo is from the left pipe-end. 

Defect responses are frequency-dependent so it is necessary to find the correct 

frequency in order to find the defect and have the maximum amplitude response. Also 

high frequency guided waves are utilized when sensitivity to small defects is important. 

In general, guided waves in the frequency range of 100 kHz - 800 kHz were used to 

identify defects as small as 0.1% of the pipe’s total cross-sectional area (CSA). But Low 

frequency guided waves are used for inspecting larger distances where sensitivity to 

small defects is not a main concern. The frequency range of 20 kHz - 100 kHz can be 

used to inspect defects as small as 5% of the pipe’s CSA (Demma, 2003). This report is 

concerned specifically with pipes with a 3.4 cm diameter with small size defects (0.1% 

CSA), so a higher frequency is preferable. However, after tests with different frequency 

which shows in Figure 5.13, understood higher frequencies (60 kHz – 200 kHz) produce 

stronger reverberations; this does not allow us to see the defect’s reflection (This will 
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discuss in Section 5.9). The reason why this reverberation comes will discuss in this 

section. 

 

Figure 5.13. Echoes amplitude for different frequencies. The tests were done on a 3.4 cm 

diameter steel pipe with 5mm wall thick, with one transmitter and one receiver, 100 mm apart, 

with the transmitter placed 170mm away from one end of the pipe, and both were placed on the 

left side of the pipe. Direct arrival is the first wave and then the pipe end echoes are appeared 

and between the first end echo and second end echo in frequency higher than 50 kHz the 

reverberation appeared. The tests were done on a clean pipe without any defects(In each tests 

signal amplitude was add up with a constant number). 
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From research was done, found that when the single piezoelectric shear transducer 

attaches to the pipe it will excite longitudinal and flexural modes as well as torsional 

modes, however the array of elements were attached around the pipe (axially 

symmetric position recommended) to suppress the non axially symmetric F(m,n) modes 

(Alleyne and Cawley, 1996). 

 In the following test three different frequencies below first torsional non-dispersive 

mode (below 350 kHz) have chosen to clarify where this reverberation comes from. In 

Section 5.6.1 the reverberation and noise level are compared in different frequencies 

which show by increasing the frequency the reverberation and noise have increased. 

The dispersion graphs used to describe each mode’s velocity variation with frequencies 

on 34 mm outer diameter with 5 mm thickness steel pipe (            .Basically, 

the group velocity dispersion curves was used to find each mode wave velocity and 

consequently the effects of different modes on received signal reverberation.   

 

Figure 5.14. Group velocity dispersion curves for steel pipe (Outer diameter: 34 mm and 5mm 

wall thickness)(Source: PCDISP MATLAB scripts written by Seco and Jimenez (2012) ). 
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The dispersion curves shown in Figure 5.14 shows modes propagate at 50 kHz, 100 

kHz and 200 kHz. For each propagating mode time travel along the pipe was calculated 

as shown at Table 5.1. For example at 50 kHz, T(0,1), L(0,1), F(1,1), F(1,2), F(2,1) and 

F(3,1) propagated at different group velocities. The first echo from the pipe end should 

travel 440 mm , at a group velocity of 3309      when T(0,1) is excited and the echo 

would have appeared at 133μs, but the other modes are slower and appear after that as 

described in Table 5.1. 

 50 kHz 100 kHz 200 kHz 

Modes cg 

(    ) 

Predicte

d travel 

time 

along 

440mm 

(μs) 

Predicted 

travel 

time 

along 

5380mm 

(μs) 

cg 

(    ) 

Predicted 

travel 

time 

along 

440mm 

(μs) 

Predicted 

travel 

time 

along 

5380mm 

(μs) 

cg 

(    ) 

Predicted 

travel 

time 

along 

440mm 

(μs) 

Predicted 

travel 

time 

along 

5380mm 

(μs) 

T(0,1) 3309 133.0 1625.9 3309 133.0 1625.9 3309 133.0 1625.9 

L(0,1) 2700 163.0 1992.6 2350 187.2 2289.4 3150 139.7 1707.9 

L(0,2) - - - 5300 83.0 1015.1 5250 83.8 1024.8 

F(1,1) 1990 221.1 2703.5 2500 176.0 2152.0 3150 139.7 1707.9 

F(1,2) 2700 163.0 1992.6 2700 163.0 1992.6 3200 137.5 1681.3 

F(1,3) - - - 2990 147.2 1799.3 5100 86.3 1054.9 

F(2,1) 2250 195.6 2391.1 2700 163.0 1992.6 3050 144.3 1763.9 

F(2,2) - - - 2200 200.0 2445.5 3000 146.7 1793.3 

F(2,3) - - - - - - 4300 102.3 1251.2 

F(3,1) 1300 338.5 4138.5 2500 176.0 2152.0 3010 146.2 1787.4 

F(3,2) - - - - - - 2550 172.5 2109.8 

F(4,1) - - - 1880 234.0 2861.7 2700 163.0 1992.6 

F(5,1) - - - - - - 2500 176.0 2152.0 

F(5,2) - - - - - - 1400 314.3 3842.9 

Table 5.1. Group wave velocity and time travel of different modes in different frequencies. 
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After calculating all mode travel times they were compared with the received signal 

from the receiver (Figure 5.15) to find how reverberation match with the unwanted 

modes (here longitudinal and flexural). Figure 5.15 shows the received signal at 50 kHz 

when one transmitter and one receiver were used, they were placed in front of each 

other in 0ᵒ. In figure 5.15 the unwanted modes such as L(0,1) and F(1,2), F(2,1), F(1,1), 

L(0,1) and F(1,2), F(2,1) and F(1,1) are found match with the unwanted waves in results. 

 

Figure 5.15. Received signal for the zero-degree configuration at 50 kHz. 

Table 5.1 and Figure 5.15 are shown each longitudinal and flexural modes. As 

mentioned by Alleyne and Cawley (1996) increasing the number of element will 

suppress the flexural modes; tests were carried out by using 16 different receiver 

positions axially around the pipe (for one receiver used) and finally the average is 

presented. Figure 5.16 shows that the flexural and longitudinal modes amplitudes are 

decreased dramatically when 16 receivers arranged 22.5° around the pipe. The 

unwanted modes amplitude decreased dramatically which is seen in Figure 5.16. 
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Figure 5.16. Average received signal around the circumference of the pipe, obtaining by 

averaging signals when receiver attached at 16 different positions (each 22.5° apart) at 50 kHz. 

When the frequency increases to 100 kHz and 200 kHz, it is clear from Figure 5.13 and 

Table 5.1 that the number of non axially symmetric modes has increased and as a result 

the received signal displays signal from many different modes. In this case using an array 

of transducers and receivers around the pipe will suppress the unwanted modes.  

To summarize, in order to use higher frequencies a number of elements are necessary 

to reduce the generation of unwanted modes. Here two modules were available to 

place transducers on the pipe, hence a lower frequency (50 kHz) was chosen to reduce 

the generation of unwanted modes. In Section 5.8 the impact of using low frequencies 

on finding small defects is described. 

 

5.6 Wave velocity measurements 

5.6.1 Shear Horizontal (SH) and longitudinal wave velocity measurements on plates 

Piezoelectric transducers can generate both shear Horizontal (SH) and longitudinal 

waves on plates. The position of the transducer for each transmission case is different; 

to generate shear horizontal waves, the transducers should be placed so that the waves 

propagate in the same direction for both transducers, and particle motion is 
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perpendicular to the wave propagation. This case is shown in Figure 5.17. One 

transmitter and one receiver were used to measure the direct arrival travel time from 

the transmitter to the receiver.  Tests were carried out in two different materials 

(galvanized mild steel and stainless steel plates) for a variety of transducer distances to 

find the shear velocity for each material.  

 

 

 

 

Figure 5.17. Shear horizontal propagation and the piezoelectric receiver and transmitter setup. 

The image on the right shows the position of two modules with the weights above. 

To achieve the results shown in Figure 5.18, a function generator generated tone 

bursts of two cycles with a 10 Hz burst rate with 18 Vp-p voltages (Open circuit output 

of voltage connected to the transducers) and a frequency of 200 kHz. The power 

amplifier used a 70dB gain with 1MHz and 100 kHz upper and lower filters to amplify 

the signal at the receiver.  
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Figure 5.18. Shear horizontal wave velocity (Distance of transmission / Travel time) results for 

stainless steel and galvanized mild steel plate. Least squares regression was used to estimate the 

slope and standard error in the slope. 

The results in Figure 5.18 show that the shear velocity in galvanized mild steel is 

3255        and is 3222           in stainless steel. 

To generate longitudinal waves, the transmitter’s and receiver’s wave propagation 

direction match; however in the case that particle motion is parallel with this direction 

as shown in Figure 5.19. Again, one transmitter and one receiver are used to measure 

the direct signal travel time for varying distances. Tests with the same parameters as the 

shear configuration tests were carried out in the longitudinal configuration to find the 

longitudinal velocities for each material. 

Galvanized mild steel 
y = 3.25x - 6.21 

 

Stainless steel  
y = 3.22x - 5.48 
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Figure 5.19.Transducer setup for the longitudinal propagation test. The image on the right 

shows the position of two modules with the weights above. 

The same electrical setup and excitation signal used in the shear test was applied to 

the transducer. The results in Figure 5.20 show that the longitudinal velocity in 

galvanized mild steel is 5396           and is 5262          in stainless steel. 

 

Figure 5.20. Longitudinal wave velocity (Distance of transmission / Travel time) results for 

stainless steel and galvanized mild steel plate. Least squares regression was used to estimate the 

slope and standard error in the slope. 

 

Galvanized mild steel 
y = 5.39x + 1.5023 

 

Stainless  steel 
y = 5.26x - 5.237 
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5.6.2 Torsional wave velocity measurements on pipes 

A similar process for finding the torsional wave velocity on the plate was used in the 

pipe case. The transducers were mounted in modules and were placed on the pipe to 

generate torsional waves. The first mode (known as T(0,1)) was generated. The group 

velocity was found by dividing the total distance travelled by the time taken, though it is 

important to note that for this non-dispersive mode the phase velocity and group 

velocity are equal. The same electrical setup and excitation signal were used as 

previously. The steel pipe under test had a thickness of 5 mm and an outer diameter of 

34 mm. As shown in Figure 5.21, the transmitter was fixed close to the left end of the 

pipe and the receiver was moved along the length of the pipe; a measurement of the 

travel time of the wave is taken at various lengths. The tests were performed in a pipe 

without any defects so the pipe end reflection is also a pure T(0,1) which travels with an 

axial phase velocity equal.  

 
 

Figure 5.21. Transducer configuration for the pipe case. 

In Figure 5.18, the travel time of echo reflected from the far end of the pipe as well as 

direct signal were used to find the shear velocity. The shear velocity calculated using just 

the direct response was 3309         . 
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5.7 Transmitter and receiver position 

From previous research it is known that when piezoelectric transducers vibrate, they 

generate waves which can be sent in all directions, though the strength of the vibration 

tends to be strongest in one direction. This is shown by the zero-degree line of the left 

transducer (transmitter) in Figure 5.22. Likewise, the receivers will have directionality so 

that their response varies with the angle of the transmitting wave. Drawing from this, it 

is clear that the angle of the receiving transducer (with respect to the transmitter) will 

affect the amplitude of the output. Hence an experiment was devised to find this 

dependency. 

 

  

Figure 5.22. Experimental setup and 
piezoelectric position (Modules are hidden 
bellow weights). 
 

Figure 5.23. Amplitude (dB re 1V) of receiver 
signal vs. transducer angle.  The ‘line’ represents 
what was measured and the ‘line with points’ 
expresses the theory due to the constrains of 
plotting points on polar graph in Excel. 
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In order to investigate the above, the transmitter was kept at a constant position 

and the receiver was rotated in angle by fifteen degrees (Figure 5.22.). A measurement 

of the received amplitude was taken, and the receiver was rotated further, until an 

entire rotation had been completed. This experiment was repeated five times and the 

results were averaged to produce the graph shown in Figure 5.23. 

These results were obtained with the following sending parameters: frequency = 200 

kHz, amplitude = 18V p-p (Open circuit output of voltage connected to the transducers), 

transmitter spacing = 200 mm. These results show that the amplitude is greatest at 0° 

and 180° of rotation, and least at 90° and 270°. This is because the receiver detects the 

vibration in a particular direction; when the receiver axis is perpendicular to the in 

crossing direction the signal, strength is greatly reduced. Another important point to 

note is that the output is approximately symmetrical. Furthermore, since this 

experiment is conducted at the centre of a plate, reflections from the plate edges will 

not interfere with the results. In Figure 5.23, the ‘line’ represents what was measured 

and the ‘line with points’ expresses the theory due to the constrains of plotting points 

on polar graph in Excel. The theory considers that the cosine of the angle of the receiver 

determines the strength of the received signal. However, the experimental results differ 

from this due to factors that have already been discussed (Section 5.5). 

Once an understanding of how piezoelectric transducers generate shear waves had 

been obtained, experimental work was carried out on the pipe to find a suitable position 

for the transducers. The different transducer configurations that were examined are 

shown in Figures 5.24, 5.25 and 5.26. The traditional commercial approach uses an array 

of transducers around the pipe; this works via the pulse-echo system with the same 

transducer to transmit and receive. In order to enhance the echoes from the end of the 

pipe and from the defect, the idea of using two transducers in phase was considered (as 

shown in Figure 5.24 and Figure 5.27); the constructive interference would improve this 

reading. The original method required the use of only one transmitter and one receiver 

used at a frequency of 50 kHz. The advantages of this frequency have been discussed 
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previously in the section 5.5 of this report. Using two transducers (Figure 5.24) in phase 

was not practical since a frequency of 50 kHz in this case produces a wave with 

wavelength 66.2 mm; this cannot be achieved with the modules provided since the 

closest slot distance is 54 mm. Hence, one transmitter and one receiver were used in 

the layout shown in Figure 5.27. Placing the transducers at a 135ᵒ angle on the pipe as 

shown in Figure 5.26 was considered, but the difficulty of providing appropriate 

coupling without a collar provided unconvincing results. 

  

Figure 5.24. Two transmitters and two receivers. Figure 5.25. One transmitter and one 

receiver. 

 
 

Figure 5.26. Transmitters and receivers in the 

135ᵒ position.  

Figure 5.27. Transmitter distance within 

modules is 54 mm. 

 

To summarise, finding defects with one transmitter and one receiver is used for this 

project. The receiver was moved around the pipe and the average received signal was 
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analysed. From the rotating-receiver experiment shown in section 5.8.1, the position of 

receiver should be always parallel to the receiver to get the maximum and most reliable 

amplitude.  

 

5.8 Defect Finding 

The lowest torsional mode T(0,1) at 50kHz was excited to detect defects in a 2912 

mm long, 34 mm external diameter and 5 mm wall thick steel pipe using shear mode 

piezoelectric transducers. Three different artificial defects were generated in the pipe. 

The defects were added in steps, and are described in Table 5.2. The first two were 

simple radial drill holes, the third was a slot. These are shown in Figure 5.28. As 

mentioned in section 5.7 of this report, one transmitter and one receiver were used to 

generate and receive signals 

Defect Distance 

from 

transmitter 

(mm) 

Distance 

from 

receiver 

(mm) 

Depth Circumferential 

length (mm) 

Axial 

Length 

(mm) 

Cross Section 

Area 

(CSA) 

Defect#1 2270 2200 40%(2 mm) 4 4 1.7% 

Defect#2 2270 2200 100%(5 mm) 4 4 4.39% 

Defect#3 2270 2200 100%(5 mm) 20 4 8.3% 

Table 5.2. Description of all defects used in the study (All defects’ circumferential position are 

equal to 0ᵒ). 

As shown in Figure 5.28, defects of different size were added to the pipe and tests 

were carried out to see if they could be detected. The first test was with defect #1 which 

was not found; even when averaging the results of rotating the receiver through 22.5ᵒ 

intervals. The reason for averaging the signals was discussed later in section 5.8. 

 

 



82 
 

 

 

   

 

Figure 5.28. Different defects tested on the pipe. 

At a frequency of 50 kHz, the wavelength is calculated as   =66.2mm when             

Cs= 3309    . This signal wavelength is probably too large to find a small defect, hence 

for finding the defects as small as 4 mm length the frequency should increase. From 

section 5.5, the high reverberation is a problem for finding the small defects, so simply 

increasing the frequency doesn’t solve this problem. Even for a through hole (defect #2), 

no detection was possible. 

Defect #3 with a 20mm circumferential length and a 4mm axial length produced 

reasonable echoes (and hence successful detection) as shown in Figure 5.29. The 

reverberation level is 27.95 dB re 1mV (Calculated by finding standard deviation of 

reverberation level) and the normalized echo amplitude with respect to the echo from 

the end of the pipe is -19dB. In order to increase the sensitivity of the system, the signal 

of the receiver was averaged over the entire pipe circumference as it was rotated. 
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Figure 5.29. The average response used to find defect #3 obtained by averaging over 8 

circumferential position of the receiver for pipe with defect#3. The defect echo is identified at 

1355μs. 

5.8.1 Average response measurement by rotating the receiver 

Using the transmitter and receiver in different modules results in echoes off both 

directions of the pipe. Figure 5.30 shows the echoes received by the receiver when the 

transmitter vibrates, as well as their direction. In this Figure, middle numbers (1,2 and 3) 

show the echoes from the defect, the right and left numbers(1,2,3,4 and 5) are from the 

first direct transmission and the echoes due to the end of the pipe. The scale shows how 

far the defect is from the receiver and distance away from the ends of the pipe. 



84 
 

 

Figure 5.30. Echo Schematic. One transmitter and receiver are placed on the pipe and the echoes 

from pipe end and defect as well as the direct arrival between transmitter and receiver is shown. 

The transmitter and receiver are 70 mm away from each other and the transmitter is 200 mm 

from the left end of the pipe. 

In this case the transmitter and receiver are 70 mm away from each other and the 

transmitter is 200 mm from the left end of the pipe. By using CS = 3309     , the 

location of the defects can be predicted. Table 5.3 produced the travel time for the first 

direct transmission, defect and pipe ends. The deviation of the experimental results 

from the theory is 1 % error. 

Type Distance (mm) Calculated travel Time 

(μs) 

Average travel 

time from results 

(μs) 

Direct transmission 70 2 18 

Echo from left end 470 142 136 

First echo from defect 4470 1351 1349 

Second echo from defect 4870 1472 1470 

Third echo from defect 5010 1514 1517 

First echo from end 5354 1618 1618 

Second echo from end 5754 1739 1738 

Third echo from end 5894 1781 1781 

Forth echo from end 6294 1902 1903 

Table 5.3. Compare the results from theory and experiments.  
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5.9 Noise and reverberation analysis 

Signals with frequencies of 50 kHz, 100 kHz and 200 kHz combined with a bandpass filter 

were applied to the transmitter in turn. The resulting signal to reverberation ratio (echo 

signal from defect#3) and reverberation were measured and tabulated in Table 5.4 

below.  

 

Frequency Echo signal to 

reverberation ratio(dB) 

Reverberation (dB re mV) 

50 KHz 8.9 3.5 

100 KHz 6.36 23.5 

200 KHz 5.1 27.9 

Table 5.4 Signal per noise ratio and reverberation level in different frequencies. 

 

From the Table 5.4, it can be seen that as frequency increases the reverberation 

level increases. High reverberation level at high frequency was the problem that caused 

the defect to be lost in reverberation as shown in Figure 5.31. When the small defect 

(Defect #1) was studied, it was not clear where the echoes were.  
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Figure 5.31. Average response measured using a single transmitter and rotating the receiver at 

50 kHz and 100 kHz for defect #1 and defect #3. Left top: Average response measured using 

single transmitter and rotating a receiver each 22.5ᵒ at 50 kHz for defect#1. Right top: Average 

response measured using single transmitter and rotating a receiver each 22.5ᵒ at 100 kHz for 

defect#1. Left bottom: Average response measured using single transmitter and rotating a 

receiver each 45ᵒ at 50 kHz for defect#3. Right bottom: Average response measured using single 

transmitter and rotating a receiver each 45ᵒ at 100 kHz for defect#3.(Predicted defect echoes 

location is shown in a dotted line box). 
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Figure 5.31 shows the defect echo just before the echo due to the end of the pipe. 

The dashed boxes show where the echo should be. For the smaller defect (#1), it is not 

obvious where the defect is regardless of frequency; this is likely due to the 

reverberation problem. The difference is clear for the lower frequency and larger 

defects, however. 

 

5.10 Defect reflection characteristics 

The tests were run with one transducer and reflect from the defect is in different 

direction and modes. In general, when the defect is symmetric there is a mode 

conversion to other symmetric modes which have near wave velocity with T(0,1) will 

appear and when the reflection is non axially symmetric the non axially symmetric mode 

(Flexural) as well as other mode will be expected to appear. Figure 5.32 shows clearly 

when one transmitter with array of receivers used and the reflection signals from the 

defect. 

 

Figure 5.32. Defect reflections in different angels from defect which received by number of 

receivers. 

The reflections delay time from one receiver can be calculate and it is useful for 

other methods like focusing method. In focusing method (Figure 5.33) the first array of 

receiver receive the signal and the defect position and characteristic will be understood 

then other methods like Angular profile tuning and signal based focusing can be applied 

(To Kang, Accessed: Aug 2011). The transmitting then is applied by considering the delay 
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time which calculated to have focus of energy of all transducers on defect position, this 

increase the amplitude of the echo from the defect. 

 

Figure 5.33. Defect reflection in different angle when focus method is applied. 

Test were carried out by finding the amplitude change of the echo when the receivers 

are placed in different position around the pipe. As mentioned in Section 5.7 one 

transmitter placed fix on a pipe and the receivers are rotating for doing averaging of the 

signal from receivers. 

It was predicted that maximum amplitude is achieved when the transmitter and 

receiver are in line with the defect (i.e. the zero degree case). However, Figure 5.34. 

above shows that this occurs in the 45ᵒ case, which the reason was not clear. 

Furthermore, the polar graph shows that the maximum amplitude is symmetric. This is 

due to the fact that defect #3 itself is symmetric. It is also worth noting that the peak 

amplitude is minimal in the 180 degree case because it is the farthest distance that the 

signal has to travel from the defect. 
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Figure 5.34. Amplitude (V) of defect echo against time for each receiver angle. The central polar 

graph shows the maximum amplitude (dB re 1V) as a function of the receiver angle. 

 

5.11 Experimental conclusion 

Tests were carried out on plate and pipe, in each case different results were 

compared. The challenge of high reverberation level at high frequency was presented 

from the dispersion curve as a result of unwanted modes (Longitudinal and Flexural). 

Using just one transmitter and receiver was not appropriate to suppress the unwanted 

modes. Rotating the receiver around the pipe and average the signals suppressed some 

of the unwanted modes. In this condition, defect size 8.3% CSA found by using one 
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transmitter and one receiver locate 0ᵒ in front of each other, when the torsional wave 

T(0,1) at 50 kHz generated.     
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Section 6 

6 Conclusions 

6.1 Main finding of this thesis 

As previously discussed, ultrasonic guided waves were studied to help create 

MATLAB scripts. These scripts found the phase and group velocities of Shear Horizontal 

(SH) waves on plates with varying thickness. After this, the phase velocity of torsional, 

longitudinal and flexural modes at lower frequencies were implemented on pipes with 

varying diameters and wall thicknesses. Difficulties of this work were illustrated in 

Section 3.4.7. 

The experimental tests were performed on a steel pipe with a diameter of 3.4 cm a 

wall thickness of 5 mm. From three different defect sizes, a defect of 8.3% CSA in size 

was found by using one transmitter and one receiver on the pipe, transmitting at a 

frequency of 50 kHz. Increasing the frequency caused an increase in the reverberation 

level when only two transducers were used. In order to decrease the reverberation level 

at higher frequencies, increasing the number of receivers and transmitters in order to 

suppress the unwanted modes were described. Two transducers were used in this 

project, and it was found that by rotating the receiver around the pipe allowed the 

defects to be found after processing the received signals (after taking measurements at 

discrete angles, and averaging the results). In averaging the signal, some modes 

cancelled each other out, leaving the resultant signal with a low reverberation level. 

 

6.2 Future work 

As is often case in projects such as this, time and money and the management of 

them is of great importance. If time and money were less limiting in this project, this 

section describes how this work can be taken further. 
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Firstly, the MATLAB scripts could be improved in a number of ways. The effect of 

losses (due to pipe contents and its underground surroundings) in the pipe system could 

be accounted for in the MATLAB scripts. The implementation of a two-layered pipe in 

the MATLAB script could help to expand the scope of research for this project. If more 

time was available for executing the script, the accuracy of the root finder could be 

improved by reducing the step size. 

Secondly, a larger number of transducers would help to further this investigation. 

The reflection from the defect and pipe end has been shown to increase with frequency, 

though this has problems as described in Section 5.5. To solve these problems (including 

detection of smaller defects), a larger number of transducers is recommended. For a 

pipe with 3.4 cm diameter, it is estimated that eight transducers would be required if 

the frequency was chose 100 kHz. Hence, the possibility of finding smaller defects by 

increasing the frequency and the number of transducer can be examined. 

Finally, in this project the circumferential defects were found. The feasibility of using 

torsional waves for finding longitudinal defects can be studied. Also, as described in 

Section 4.3 the reflections from asymmetric defects are a combination of asymmetric 

and axially symmetric modes. This further influences the reverberation of the system; 

another point for further investigation. 
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Appendix A 

Matrix elements  

Matrix elements of equation 3.37 as below are presented here: 
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Appendix B 

MATLAB Scripts 

main.m 

 

% This script plots the dispersion curves for Shear Horizontal guided 

wave in plates.  
% 
% 
% Written by Bahareh Zaghari, bz2e11@soton.ac.uk. 
% 
% 
%In the graph solid curves denote symetric modes and dashed curves 

denote antisymmetric modes. 
% This file has checked with graph in page 245 Rose book and graph in 

Jacob 

  
%% Preamble 
clear;clc;close all; 
%% 
%Shear Horizontal in plate 

  
Cs = 3250;% Steel shear velocity. 
d = 0.003;%Thickness of plate in mm. 
f = 10:1e4:6e6; %Frequency (domain). 
n = 0:7;%Number of modes. 

  

  

  
for jt = 1:length(n) 

     
    Fcutoff = n(jt) * Cs / 2 / d; %Finding the cut-off frequency. 
  %% Calculate the phase and group velocity. 
    new_freq = Fcutoff:1e4:f(end); 
    cp = zeros( 1, length(new_freq) );% Phase velocity array 

declaration. 
    cg = zeros( 1, length(new_freq) );% Group velocity array 

declaration. 

     

    for it = 1:length(new_freq) 
        cp(it)= 2*Cs*( (new_freq(it)*d) / sqrt( 4*(new_freq(it)*d)^2 - 

n(jt)^2 * Cs^2) );% Finding the phase velocity. 
        cg(it)= Cs*sqrt( 1- (  (n(jt)/2)^2/(new_freq(it)*d/Cs)^2  ));% 

Finding the group velocity 
    end 
     %% Plot phase and group velocity. 
    if( mod(n(jt),2) == 1 ) 
        figure(1); 
        hold on; 
        plot( new_freq*d/1000, cp, '--','linewidth',3 ); 
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        figure(2); 
        hold on; 
        plot( new_freq*d/1000, cg, '--','linewidth',3 ); 

      
    else 
        figure(1); 
        hold on;  
        plot( new_freq*d/1000, cp, '-','linewidth',3 ); 

         
        figure(2); 
        hold on;  
        plot( new_freq*d/1000, cg, '-','linewidth',3 ); 
    end 

     
end 
    figure(1); 
    grid on; 
    axis([0,f(end)*d/1000,0,1e4]); 
    xlabel( 'Frequency-Thickness (MHz-mm)','fontsize',16 ); 
    ylabel( 'Phase Velocity Cp= \omega / k (ms^-^1)','fontsize',16 ); 
    title( 'Dispersion Curves for SH mode (Plate thickness: 

3mm)','fontsize',16); 

     

   
    figure(2); 
    grid on; 
    axis([0,f(end)*d/1000,0,5e3]); 
    xlabel( 'Frequency.Thickness (MHz.mm)','fontsize',16 ); 
    ylabel( 'Group Velocity Cg = d \omega / dk (ms^-^1)' 

,'fontsize',16); 
    title( 'Dispersion Curves for SH mode (Plate thickness: 

3mm)','fontsize',13 ); 
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Appendix C 

MATLAB Scripts 

C.1 main.m 

 

 

% This script plots the dispersion curves for torsional, longitudinal 

and 
% flexural modes for a given pipe configuration. The system is assumed 

to 
% be lossless, attenuation is not present, and the pipe is assumed to 

be a 
% single-layer steel pipe. 
% 
% Written by Bahareh Zaghari, bz2e11@soton.ac.uk. 

  
clear;clc;close all; 

  
%% Declaring common constants and arrays. 

  
cl = 6290; % Longitudinal wave velocity (ms^(-1)) 
cs = 3260; % Shear wave velocity (ms^(-1)) 
n = 0; % Circumferential order (unitless) 
m = 0:5;%Counter variable 
f = 10:1e4:4e5; % Frequency domain (Hz). 
a = 0.012; % Internal pipe radius (m). 
b = 0.017; % External pipe radius (m). 
f_khz_thickness = f*10^(-3); % Frequency for plotting (kHz). 

  
%% Torsional mode: Finding beta bounds. 

  
root_ests(1,:) = [1,1]; 
for it = 1:length(m) % For each counter variable, 
    new_roots = Sign_Change_Root_Finder( m(it), a, b ); % Find the mth 

root 
    root_ests( it, : ) = new_roots( it, : );            % and store it. 
end 

     
%% Torsional mode: Other calculations 

  
for jt = 1:length(m) % For each m,  
    %% Use Muller's method to find precise values of beta. 
    beta = muller_old( @FuncToRoot, [ root_ests(jt,1), 

0.5*(root_ests(jt,1) + root_ests(jt,2) ), root_ests(jt,2) ], 10^(-5), 

10000, n, a, b ); 

     
    %% Declare arrays 
    k = zeros( 1, length(f) ); 
    omega = zeros( 1, length(f) ); 
    cp = zeros( 1, length(f) ); 
    cg = zeros( 1, length(f) ); 
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    %% Calculate cut-off frequency and the frequency array index that 

best corresponds to it. 
    fcutoff(jt) = cs*(beta)/2/pi; % Cut-off frequency. 

  
    start_it = 1; % Consider the first array index. 
    while( fcutoff(jt) > f(start_it) && start_it < length(f) ) % If 

this index is before the cut-off frequency, 
        start_it = start_it + 1; % Increase it. 
    end 

  
    %% Calculate the phase and group velocity for this m. 

     
    for it = start_it:length(f) %For each frequency value past the cut-

off frequency 
        k(it) = sqrt( ( 4*pi^2*f(it).^2  / cs^2 ) - beta^2 ); % 

Calculate wavenumber. 
        omega(it) = 2*pi*f(it); % Calculate omega. 
        cp(it) = omega(it)/k(it); % Calculate phase velocity. 
        cg(it) = k(it).*cs./sqrt(k(it).^2 + beta^2); % Calculate group 

velocity 
    end 

     

    %% Plot phase and group velocity for this m. 

     
    figure(1); % Phase velocity 
    plot( 

f_khz_thickness(start_it:end),real(cp(start_it:end)),'o','Color',[m(jt)

/m(end),0,0],'linewidth',1); 
    grid on; 
    hold on; 
    axis([f_khz_thickness(1) f_khz_thickness(end) 0 15000 ]); 
    set(gca,'YTick',[0,3,6,9,12,15]*1000) 
    xlabel( 'Frequency (kHz)' ); 
    ylabel( 'Phase Velocity Cp =\omega / k (ms^-^1)' ); 
    title( 'Dispersion Curves' ); 

  
    figure(2); % Group velocity 
    plot( f_khz_thickness(start_it:end),real(cg(start_it:end)),'o', 

'Color',[m(jt)/m(end),0,0],'linewidth',1); 
    grid on; 
    hold on; 
    axis([f_khz_thickness(1) f_khz_thickness(end) 1000 6000]); 
    set(gca,'YTick',[0,1,2,3,4,5,6]*1000) 
    xlabel( 'Frequency (kHz)' ); 
    ylabel( 'Group Velocity Cg = d \omega / dk (ms^-^1)' ); 
    title( 'Dispersion Curves' ); 

     
end 

  
% Plot the T(0,1) mode seperately. 
figure(1); 
plot( [f_khz_thickness(1),f_khz_thickness(end)], 

[cs,cs],'k','linewidth',3); 
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figure(2); 
plot( [f_khz_thickness(1),f_khz_thickness(end)], 

[cs,cs],'k','linewidth',3); 

  
%% Longitudinal mode: Preamble 

  
figure(1); % Plot scatter points on the phase velocity graph. 
hold on; 
grid on; 

  
plot_tol = 50; 
k_re = 0:1:3000; % Real wavenumber domain (for root finder) 
%Longitudinal works well with K_re:0.1 and 1000 frequency interval 
det = zeros(length(k_re),length(f)); % Matrix to store determinany 

values for varying wavenumber and frequency. 
fprintf( 'Longitudinal calculation: %f percent complete.\n', 0 ); 

  
%% Longitudinal mode: Other calculations 

  
for jt = 1:length(f) % For each frequency value,           
    %% Finding determinant for each wavenumber. 

     

    for it = 1:length(k_re) % For each wavenumber value,         
        det(it) = determinant_function( k_re(it), 0, a, b, cs, cl, 

f(jt) );         
    end 

     
    %% Plot point if root exists for each wavenumber.     
    for it = 1:length(k_re-1) % For each wavenumber value, 
        if( det(it) * det(it+1) < 0 ) % If there is a root, 

             
            this_cp = 2*pi*f(jt)/(k_re(it) + k_re(it+1))*2; % Calculate 

the corresponding phase velocity. 

             
            if((this_cp >= cl-plot_tol && this_cp <= cl+plot_tol)&&( 

this_cp >= cs-plot_tol && this_cp <= cs+plot_tol)) 

                 
            else  % If value is accceptable, 
                scatter( f(jt)/1000, 2*pi*f(jt)/(k_re(it) + 

k_re(it+1))*2 ); % Plot it. 

            
            end 
        end 
    end 

     
    fprintf( 'Longitudinal calculation: %f percent complete.\n', 

jt/length(f)*100 ); 

     
end 

  
%% Flexural mode 

  
figure(1);% Plot scatter points on the phase velocity graph. 
hold on; 
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grid on; 

  

  
k_re = 0:0.11:3000;% Real wavenumber domain (for root finder) 
det = zeros(length(k_re),length(f));      
fprintf( 'Flexural calculation: %f percent complete.\n', 0 ); 

  

  
for jt = 1:length(f)    

     
      for it = 1:length(k_re) 
        if (jt <= 30000) 
        det(it) = determinant_function_Flexural( k_re(it), 1, a, b, cs, 

cl, f(jt) ); 
        else 
        det(it) = determinant_function( k_re(it), 1, a, b, cs, cl, 

f(jt) ); 
        end 
    end 

     
    for it = 1:length(k_re-1) 
        if( det(it) * det(it+1) < 0 ) 
            this_cp = 2*pi*f(jt)/(k_re(it) + k_re(it+1))*2; 
            if ((this_cp >= cl-plot_tol && this_cp <= cl+plot_tol)&&( 

this_cp >= cs-plot_tol && this_cp <= cs+plot_tol)) 

  
            else% If value is accceptable, 
                scatter( f(jt)/1000, this_cp,'filled' ); 
                hold on; 
                kt = kt + 1; 
            end 
        end 
    end 

     
   fprintf( 'Flexural calculation: %f percent complete.\n', 

jt/length(f)*100 ); 
 end 

  

  

 

Appendix C.2 FuncToRoot.m 
 

function out = FuncToRoot( beta,n,a,b ) 
% This function represents the characteristic equation for torsional 

modes; 
% the equation is satisfied when out is equal to zero. 
% 
% Written by Bahareh Zaghari, bz2e11@soton.ac.uk. 

  
if(imag(beta) ~= 0) % If beta is real, 
    out = besseli( n, beta*a ) * besselk( n, beta*b ) -besseli( n, 

beta*b ) * besselk( n, beta*a ); 
else  % If beta is imaginary, 
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    out = besselj( n, beta*a ) * bessely( n, beta*b ) -besselj( n, 

beta*b ) * bessely( n, beta*a );     
end 

  
end 

 

C.3 Sign_Change_Root_Finder.m 
 

function roots = Sign_Change_Root_Finder( n, a, b ) 
% This function finds the sign changes of the function FuncToRoot 

(already 
% defined in the namespace) with arguments n, a and b. These sign 

changes 
% are expressed in the matrix roots with an upper bound and lower bound 

for 
% a root in each column. 
% 
% Written by Bahareh Zaghari, bz2e11@soton.ac.uk. 
%% Define arrays. 

  
beta = 0:100:50000; %Range of beta values to analyse (function domain) 
l = length(beta); 
y = zeros( 1, l ); %Solutions (function range) 

  
for it = 1:l 
    y(it) = real( FuncToRoot( beta(it), n, a, b ) ); %Calculating 

result. 
end 

  

%% Finding sign changes. 

  
roots = 0; %Initially allocating the root matrix. This value is 

returned if no roots are found. 
jt = 1; %Root iterator 

  

for it = 1:l-1 %For each element except the final one, 

  
    if( y(it) * y(it + 1) < 0 ) %If there is a sign change between this 

and the next element, 
        roots(jt,1) = beta(it);   % 
        roots(jt,2) = beta(it+1); % Store the root 
        jt = jt + 1;              % 
    end 
end 

  
end   

 

       

C.4 muller_old.m 
 

function root = muller_old(f,z,tol,max_it,n,a,b) 
% This function is an implementation of Muller's method. This will find 

the 
% root of a function f given three estimates in increasing order of 
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% magnitude z(1), z(2) and z(3). It will solve to a tolerance of tol or 
% until max_it iterations are reached. It passes the arguments n, a and 

b 
% to the function f. 
% 
% Written by Bahareh Zaghari, bz2e11@soton.ac.uk. 
%% Preamble 
q=3; % Three initial guesses are considered. 
it = 1; % Number of iterations. 
fz = zeros(1,q); % Function evaluation of z. 

  
while( abs(z(q) - z(q-1)) > tol && abs(z(q-2) - z(q-1)) > tol && it < 

max_it )     
% While tolerance or max iteration criteria are not satisfied, 

  
    %% Calculating f(z) for each guess and checking for roots. 
    fz(q) = real( f(z(q),n,a,b) ); 
    fz(q-1) = real( f(z(q-1),n,a,b) ); 
    fz(q-2) = real( f(z(q-2),n,a,b) ); 

     
    if( fz(q) * fz(q-1) < 0 && fz(q-1) * fz(q-2) < 0 ) % If roots exist 

in both brackets, 
        fprintf( 'Muller: Error 1.\n' ); % Print an error. 
    end 

     
    %% Calculating the next root. 
    h = z(q) - z(q-1); 
    h_prev = z(q-1) - z(q-2); 
    r = h / h_prev; 

  
    a_coeff = r * fz(q) - r * (1+r) * fz(q-1) + r^2 * fz(q-2); 
    b_coeff = (2*r+1) * fz(q) - (1+r)^2 * fz(q-1) + r^2 * fz(q-2); 
    c_coeff = (1+r) * fz(q);     

     
    E = sqrt(b_coeff^2 - 4*a_coeff*c_coeff);  
    root1 = -2*c_coeff /(b_coeff + E);  
    root2 = -2*c_coeff /(b_coeff - E); 

  
    zmax = max(z(q-2:q)); 
    zmin = min(z(q-2:q)); 

     
    %% Choosing which root (root1 or root2) to consider. 
    if( z(q) + h*root1 > zmax || z(q) + h*root1 < zmin ) % If root1 is 

outside the upper and lower bounds, 
        z_new = z(q) + h*root2; % Use root2. 
    else 
        z_new = z(q) + h*root1; % Otherwise use root1. 
    end 

     

    %% Ordering the new three root guesses.     
    if( fz(q) * fz(q-1) < 0 ) 
        if( z_new > z(q-1) ) 
            z(q-2) = z(q-1); 
            z(q-1) = z_new; 
        else 



110 
 

            z(q-2) = z_new; 
        end 
    else      
        if( z_new > z(q-1) ) 
            z(q) = z_new; 
        else 
            z(q) = z(q-1); 
            z(q-1) = z_new; 
        end 
    end 

     
    it = it + 1; % Increment the iterator 

  
end 

  
%% Output result (and error if appropriate) 
if( it == max_it ) % If maximum number of iterations was reached before 

tolerance limit, 
    fprintf( 'Muller: Error 2.\n' ); % Print an error. 
end 

  
root = z(q-1); 

  

end 

 

C.5 determinant_function.m 
 

function out = determinant_function( k,n,a,b,cs,cl,f ) 
% This function represents the characteristic equation for longitudinal 
% modes; the equation is satisfied when out is equal to zero. 
% 
% Written by Bahareh Zaghari, bz2e11@soton.ac.uk. 

  
%% Calculating values of beta and alpha. 
beta = sqrt ((2*pi*f)^2 / cs^2 - k^2); 
alpha = sqrt ( ((2*pi*f)^2/cl^2) - ((2*pi*f)^2/cs^2) + beta^2 ); 
beta_1 = abs(beta); 
alpha_1 = abs(alpha); 

  
%% Determining which bessel functions and signs to use for the 

characteristic equation. 
if( alpha^2 > 0 && beta^2 > 0 ) 

     
    lambda1 = 1; 
    lambda2 = 1; 

     
    Zn_alpha_a = besselj( n,alpha*a   ); 
    Zm_alpha_a = besselj( n+1,alpha*a );%Zm = Zn+1 
    Wn_alpha_a = bessely( n,alpha*a   ); 
    Wm_alpha_a = bessely( n+1,alpha*a );%Wm = Wn+1  

     
    Zn_alpha_b = besselj( n,alpha*b   ); 
    Zm_alpha_b = besselj( n+1,alpha*b );%Zm = Zn+1 
    Wn_alpha_b = bessely( n,alpha*b   ); 
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    Wm_alpha_b = bessely( n+1,alpha*b );%Wm = Wn+1  

     

    
    Zn_beta_a = besselj( n,beta*a   ); 
    Zm_beta_a = besselj( n+1,beta*a );%Zm = Zn+1 
    Wn_beta_a = bessely( n,beta*a   ); 
    Wm_beta_a = bessely( n+1,beta*a );%Wm = Wn+1 

     
    Zn_beta_b = besselj( n,beta*b   ); 
    Zm_beta_b = besselj( n+1,beta*b );%Zm = Zn+1 
    Wn_beta_b = bessely( n,beta*b   ); 
    Wm_beta_b = bessely( n+1,beta*b );%Wm = Wn+1 

   
elseif( alpha^2 < 0 && beta^2 > 0 ) 

      
    lambda1 = -1; 
    lambda2 = 1; 

     
    Zn_alpha_a = besseli( n,alpha_1*a   ); 
    Zm_alpha_a = besseli( n+1,alpha_1*a );%Zm = Zn+1 
    Wn_alpha_a = besselk( n,alpha_1*a   ); 
    Wm_alpha_a = besselk( n+1,alpha_1*a );%Wm = Wn+1 

     
    Zn_alpha_b = besseli( n  ,alpha_1*b ); 
    Zm_alpha_b = besseli( n+1,alpha_1*b );%Zm = Zn+1 
    Wn_alpha_b = besselk( n  ,alpha_1*b ); 
    Wm_alpha_b = besselk( n+1,alpha_1*b );%Wm = Wn+1 

     

     

    Zn_beta_a = besselj( n,beta*a   ); 
    Zm_beta_a = besselj( n+1,beta*a );%Zm = Zn+1 
    Wn_beta_a = bessely( n,beta*a   ); 
    Wm_beta_a = bessely( n+1,beta*a );%Wm = Wn+1 

     
    Zn_beta_b = besselj( n,beta*b   ); 
    Zm_beta_b = besselj( n+1,beta*b );%Zm = Zn+1 
    Wn_beta_b = bessely( n,beta*b   ); 
    Wm_beta_b = bessely( n+1,beta*b );%Wm = Wn+1  

      

        
elseif( alpha^2 < 0 && beta^2 < 0 ) 

       
    lambda1 = -1;  
    lambda2 = -1; 

     
    Zn_alpha_a = besseli( n,alpha_1*a   ); 
    Zm_alpha_a = besseli( n+1,alpha_1*a );%Zm = Zn+1 
    Wn_alpha_a = besselk( n,alpha_1*a   ); 
    Wm_alpha_a = besselk( n+1,alpha_1*a );%Wm = Wn+1 

     
    Zn_alpha_b = besseli( n  ,alpha_1*b ); 
    Zm_alpha_b = besseli( n+1,alpha_1*b );%Zm = Zn+1 
    Wn_alpha_b = besselk( n  ,alpha_1*b ); 
    Wm_alpha_b = besselk( n+1,alpha_1*b );%Wm = Wn+1 
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    Zn_beta_a = besseli( n,beta_1*a   ); 
    Zm_beta_a = besseli( n+1,beta_1*a );%Zm = Zn+1 
    Wn_beta_a = besselk( n,beta_1*a   ); 
    Wm_beta_a = besselk( n+1,beta_1*a );%Wm = Wn+1 

     
    Zn_beta_b = besseli( n,beta_1*b   ); 
    Zm_beta_b = besseli( n+1,beta_1*b );%Zm = Zn+1 
    Wn_beta_b = besselk( n,beta_1*b   ); 
    Wm_beta_b = besselk( n+1,beta_1*b );%Wm = Wn+1 

     
end 

    
%% Calculation of the numerical value of the characteristic equation. 

  

C11 = (2*n*(n-1) - (beta^2 - k^2)*a^2) * Zn_alpha_a + 2*lambda1 * 

alpha_1 * a * Zm_alpha_a; 
C12 = 2*k*beta_1*a^2*Zn_beta_a - 2*k*a*(n+1)*Zm_beta_a; 
C14 = (2*n*(n-1)-(beta^2-k^2)*a^2)*Wn_alpha_a + 2*alpha_1*a*Wm_alpha_a; 
C15 = 2*lambda2*k*beta_1*a^2*Wn_beta_a - 2*(n+1)*k*a*Wm_beta_a; 

  
C31 = 2*n*k*alpha_1*Zn_alpha_a + 2*lambda1*k*alpha_1*a^2*Zm_alpha_a; 
C32 = -n*beta_1*a*Zn_beta_a + (beta^2-k^2)*a^2*Zm_beta_a; 
C34 = -2*n*k*a*Wn_alpha_a + 2*k*alpha_1*a^2*Wm_alpha_a; 
C35 = -lambda2*n*beta_1*a*Wn_beta_a + (beta^2-k^2)*a^2*Wm_beta_a; 

  
C41 = (2*n*(n-1) - (beta^2 - k^2)*b^2) * Zn_alpha_b + 2*lambda1 * 

alpha_1 * b * Zm_alpha_b; 
C42 = 2*k*beta_1*b^2*Zn_beta_b - 2*k*b*(n+1)*Zm_beta_b; 
C44 = (2*n*(n-1)-(beta^2-k^2)*b^2)*Wn_alpha_b + 2*alpha_1*b*Wm_alpha_b; 
C45 = 2*lambda2*k*beta_1*b^2*Wn_beta_b - 2*(n+1)*k*b*Wm_beta_b; 

  
C61 = 2*n*k*alpha_1*Zn_alpha_b + 2*lambda1*k*alpha_1*b^2*Zm_alpha_b; 
C62 = -n*beta_1*b*Zn_beta_b + (beta^2-k^2)*b^2*Zm_beta_b; 
C64 = -2*n*k*b*Wn_alpha_b + 2*k*alpha_1*b^2*Wm_alpha_b; 
C65 = -lambda2*n*beta_1*b*Wn_beta_b + (beta^2-k^2)*b^2*Wm_beta_b; 

  
out = det( [ C11 C12 C14 C15; 
             C31 C32 C34 C35; 
             C41 C42 C44 C45; 
             C61 C62 C64 C65] ); 

                   
end 
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Appendix D 

MATLAB Scripts 

D.1 torsional_1.m 

% This script plots the dispersion curves for torsional modes for a 

given pipe configuration. 
%The system is assumed to be lossless, attenuation is not present, and 

the pipe is assumed to be a 
% single-layer steel pipe. 
% 
% Written by Bahareh Zaghari, bz2e11@soton.ac.uk. 

  
clear;clc;close all; 

  
%% Declaring common constants and arrays. 

  
cl = 6290; % Longitudinal wave velocity (ms^(-1)) 
cs = 3260; % Shear wave velocity (ms^(-1)) 
cp1 = cs; 
n = 0; % Circumferential order (unitless) 
m = 0:2;%Counter variable 
f = 10:1e4:4e5; % Frequency domain (Hz). 
a = 0.05;%Internal pipe radius (m). 
b = 

[0.051,0.05125,0.0515,0.052,0.0525,0.053,0.0535,0.054,0.0545,0.055,0.05

55];%External pipe radius (m). 
fcutoff = zeros( length(m), length(b) ); 

  
%% 

  
for kt = 1:length(b) 

  
    root_ests(1,:) = [1,1]; 
    for it = 1:length(m) 
        new_roots = Sign_Change_Root_Finder( m(it), a, b(kt) ); 
        root_ests( it, : ) = new_roots( it, : ); 
    end 

     
    for jt = 1:length(m) 

         
        beta = muller_old( @FuncToRoot, [ root_ests(jt,1), 

0.5*(root_ests(jt,1) + root_ests(jt,2) ), root_ests(jt,2) ], 10^(-5), 

10000, n, a, b(kt) ); 
        k = zeros( 1, length(f) ); 
        k_f = k; 
        omega = k; 
        cp = k; 

         
        %Cutoff Frequency 
        fcutoff(jt,kt) = cs*(beta)/2/pi; 
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        start_it = 1; 
        while( fcutoff(jt,kt) > f(start_it) && start_it < length(f) ) 
            start_it = start_it + 1; 
        end 

         
        for it = start_it:length(f) 
            k(it) = sqrt( ( 4*pi^2*f(it).^2  / cs^2 ) - beta^2 ); 
            k_f(it) = 4*pi^2*f(it)/k(it)/cs^2; 
            omega(it) = 2*pi*f(it); 
            cp(it) = omega(it)/k(it); 
        end 

         
        if( kt == 1 )         
            figure(1); 
            plot( 

f(start_it:end),real(cp(start_it:end)),'Color',[m(jt)/m(end),0,0],'line

width',3 ); 
            grid on; hold on; 
            axis([f(1) f(end) 0 15000 ]); 
            set(gca,'YTick',[0,3,6,9,12,15]*1000) 
            xlabel( 'Frequency (MHz)','FontSize',13 ); 
            ylabel( 'Phase Velocity \omega / k (ms^-^1)','FontSize',13 

); 
            title( 'Dispersion Curves for Torsional 

Modes','FontSize',13 ); 

             
            figure(2); 
            plot( f(start_it:end),real(2.*pi./k_f(start_it:end)), 

'Color',[m(jt)/m(end),0,0],'linewidth',3 ); 
            grid on; hold on; 
            axis([f(1) f(end) 1000 6000]); 
            set(gca,'YTick',[0,1,2,3,4,5,6]*1000) 
            xlabel( 'Frequency (MHz)','FontSize',13 ); 
            ylabel( 'Group Velocity d \omega / dk (ms^-

^1)','FontSize',13 ); 
            title( 'Dispersion Curves for Torsional 

Modes','FontSize',13 );         
        end 

         
    end 

     
end 

  
figure(1); 
plot( [f(1),f(end)], [cp1,cp1],'k','linewidth',3); 

  
figure(2); 
plot( [f(1),f(end)], [cp1,cp1],'k','linewidth',3); 

  
figure(3); 
for it = 1:length(m) 
    plot( (b-a)*10^3, fcutoff(it,:)*10^(-6), '-o', 'Color', 

[0,0,it/length(m)], 'linewidth', 3 ); 
    hold on; 
end 
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grid on; 
axis tight; 
xlabel( 'Pipe Thickness (mm) [Inner Radius = 50mm]','FontSize',11 ); 
ylabel( 'Cut-off Frequency (MHz)','FontSize',11 ); 
title( 'Cut-off Frequency against Pipe Thickness for Varying Outer 

Radius.','FontSize',12 ); 

 

D.2 torsional_2.m 

 

% This script plots the dispersion curves for torsional modes for a 

given pipe configuration. 
%The system is assumed to be lossless, attenuation is not present, and 

the pipe is assumed to be a 
% single-layer steel pipe. 
% 
% Written by Bahareh Zaghari, bz2e11@soton.ac.uk. 

  
clear;clc;close all; 

  
%% Declaring common constants and arrays. 

  

cl = 6290; % Longitudinal wave velocity (ms^(-1)) 
cs = 3260; % Shear wave velocity (ms^(-1)) 
cp1 = cs; 
n = 0; % Circumferential order (unitless) 
m = 0:2;%Counter variable 
f = 10:1e4:4e5; % Frequency domain (Hz). 
a = [0.0500,0.04975,0.0495,0.0490,0.0485,0.0480,0.0475,0.0470]; 

%Internal pipe radius (m). 
b = [0.0510,0.05125,0.0515,0.0520,0.0525,0.0530,0.0535,0.0540]; 

%External pipe radius (m). 
fcutoff = zeros( length(m), length(b) ); 

  
% NB: length(a) must equal length(b). 

  
%% 

  
for kt = 1:length(b) 

  
    root_ests(1,:) = [1,1]; 
    for it = 1:length(m) 
        new_roots = Sign_Change_Root_Finder( m(it), a(kt), b(kt) ); 
        root_ests( it, : ) = new_roots( it, : ); 
    end 

     
    for jt = 1:length(m) 

         
        beta = muller_old( @FuncToRoot, [ root_ests(jt,1), 

0.5*(root_ests(jt,1) + root_ests(jt,2) ), root_ests(jt,2) ], 10^(-5), 

10000, n, a(kt), b(kt) ); 
        k = zeros( 1, length(f) ); 
        k_f = k; 
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        omega = k; 
        cp = k; 

         

        %Cutoff Frequency 
        fcutoff(jt,kt) = cs*(beta)/2/pi; 

         
        start_it = 1; 
        while( fcutoff(jt,kt) > f(start_it) && start_it < length(f) ) 
            start_it = start_it + 1; 
        end 

         
        for it = start_it:length(f) 
            k(it) = sqrt( ( 4*pi^2*f(it).^2  / cs^2 ) - beta^2 ); 
            k_f(it) = 4*pi^2*f(it)/k(it)/cs^2; 
            omega(it) = 2*pi*f(it); 
            cp(it) = omega(it)/k(it); 
        end 

         
        if( kt == 1 )         
            figure(1); 
            plot( 

f(start_it:end),real(cp(start_it:end)),'Color',[m(jt)/m(end),0,0] ); 
            grid on; hold on; 
            axis([f(1) f(end) 0 15000 ]); 
            set(gca,'YTick',[0,3,6,9,12,15]*1000) 
            xlabel( 'Frequency (MHz)' ); 
            ylabel( 'Phase Velocity \omega / k (ms^-^1)' ); 
            title( 'Dispersion Curves for Torsional Modes'); 

             

            figure(2); 
            plot( f(start_it:end),real(2.*pi./k_f(start_it:end)), 

'Color',[m(jt)/m(end),0,0]); 
            grid on; hold on; 
            axis([f(1) f(end) 1000 6000]); 
            set(gca,'YTick',[0,1,2,3,4,5,6]*1000) 
            xlabel( 'Frequency (MHz)' ); 
            ylabel( 'Group Velocity d \omega / dk (ms^-^1)' ); 
            title( 'Dispersion Curves for Torsional Modes');         
        end 

         
    end 

     

end 

  
figure(1); 
plot( [f(1),f(end)], [cp1,cp1],'k','linewidth',2); 

  
figure(2); 
plot( [f(1),f(end)], [cp1,cp1],'k','linewidth',2); 

  
figure(3); 
for it = 1:length(m) 
    plot( (b-a)*10^3, fcutoff(it,:)*10^(-6), '-o', 'Color', 

[0,0,it/length(m)], 'linewidth', 3 ); 
    hold on; 
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end 
grid on; 
axis tight; 
xlabel( 'Pipe Thickness (mm) [Mean Radius = 50.5mm]' ,'FontSize',10); 
ylabel( 'Cut-off Frequency (MHz)','FontSize',10); 
title( 'Cut-off Frequency against Pipe Thickness for Constant Mean 

Radius.','FontSize',10 ); 

 

D.3 torsional_3.m 

% This script plots the dispersional curves for torsional modes for a 

given pipe configuration. 
%The system is assumed to be lossless, attenuation is not present, and 

the pipe is assumed to be a 
% single-layer steel pipe. 
% 
% Written by Bahareh Zaghari, bz2e11@soton.ac.uk. 

  
clear;clc;close all; 

  
%% Declaring common constants and arrays. 

  
cl = 6290; % Longitudinal wave velocity (ms^(-1)) 
cs = 3260; % Shear wave velocity (ms^(-1)) 
cp1 = cs; 
n = 0; % Circumferential order (unitless) 
m = 0:2;%Counter variable 
f = 10:1e4:4e5; % Frequency domain (Hz). 
scales = [1.25,1.5,2,2.5,3,4,5,6,7]; 
a = zeros( 1, 1+length(scales) ); 
b = zeros( 1, 1+length(scales) ); 
a(1) = 0.01;  %Internal pipe radius (m). 
b(1) = 0.011; %External pipe radius (m). 

  
for jt = 1:length(scales) 
    a(jt+1) = a(1)*scales(jt); 
    b(jt+1) = b(1)*scales(jt); 
end 

  
fcutoff = zeros( length(m), length(b) ); 

  

%% 

  
for kt = 1:length(b) 

  
    root_ests(1,:) = [1,1]; 
    for it = 1:length(m) 
        new_roots = Sign_Change_Root_Finder( m(it), a(kt), b(kt) ); 
        root_ests( it, : ) = new_roots( it, : ); 
    end 

     
    for jt = 1:length(m) 
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        beta = muller_old( @FuncToRoot, [ root_ests(jt,1), 

0.5*(root_ests(jt,1) + root_ests(jt,2) ), root_ests(jt,2) ], 10^(-5), 

10000, n, a(kt), b(kt) ); 
        k = zeros( 1, length(f) ); 
        k_f = k; 
        omega = k; 
        cp = k; 

         
        %Cutoff Frequency 
        fcutoff(jt,kt) = cs*(beta)/2/pi 

         
        start_it = 1; 
        while( fcutoff(jt,kt) > f(start_it) && start_it < length(f) ) 
            start_it = start_it + 1; 
        end 

         

        for it = start_it:length(f) 
            k(it) = sqrt( ( 4*pi^2*f(it).^2  / cs^2 ) - beta^2 ); 
            k_f(it) = 4*pi^2*f(it)/k(it)/cs^2; 
            omega(it) = 2*pi*f(it); 
            cp(it) = omega(it)/k(it); 
        end 

         
        if( kt == 1 )         
            figure(1); 
            plot( 

f(start_it:end),real(cp(start_it:end)),'Color',[m(jt)/m(end),0,0],'line

width',3 ); 
            grid on; hold on; 
            axis([f(1) f(end) 0 15000 ]); 
            set(gca,'YTick',[0,3,6,9,12,15]*1000) 
            xlabel( 'Frequency (MHz)' ); 
            ylabel( 'Phase Velocity \omega / k (ms^-^1)' ); 
            title( 'Dispersion Curves for Torsional Modes' ); 

             
            figure(2); 
            plot( f(start_it:end),real(2.*pi./k_f(start_it:end)), 

'Color',[m(jt)/m(end),0,0],'linewidth',3 ); 
            grid on; hold on; 
            axis([f(1) f(end) 1000 6000]); 
            set(gca,'YTick',[0,1,2,3,4,5,6]*1000) 
            xlabel( 'Frequency (MHz)' ); 
            ylabel( 'Group Velocity d \omega / dk (ms^-^1)' ); 
            title( 'Dispersion Curves for Torsional Modes' );         
        end 

         
    end 

     
end 

  
figure(1); 
plot( [f(1),f(end)], [cp1,cp1],'k','linewidth',3); 

  
figure(2); 
plot( [f(1),f(end)], [cp1,cp1],'k','linewidth',3); 
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figure(3); 
for it = 1:length(m) 
    plot( (b-a)*10^3, fcutoff(it,:)*10^(-6), '-o', 'Color', 

[0,0,it/length(m)], 'linewidth', 3 ); 
    hold on; 
end 
grid on; 
axis tight; 
xlabel( 'Scale Factor' ,'FontSize',11); 
ylabel( 'Cut-off Frequency (MHz)','FontSize',11 ); 
title( 'Cut-off Frequency against Scale Factor. [ Outer Radii/Inner 

Radii = 1.1]','FontSize',12 ); 
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Appendix E 

Equipment specifications 

 

Function generator 

Hp 33120A, 15MHz Function/arbitrary waveforms generator. Built-in 12-bit 40 MSa/s 

arbitrary waveform capability. 

Oscilloscope 

LeCroy 9304C, QUAD 200MHz, 100MS/s, 50 Kpts/ch. 

Signal amplifier 

ORTEC Precision ac Amplifier 9452. 

Filter 

Filter model 3202. KROHN-HITE CORPORATION. 20 Hz to 2 MHz. 
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Appendix F 

MATLAB Scripts 

  

F.1 MainProgram.m 

%% Main Program(); 

  
% 
%   This program is coded by Rambo Yuan at 1st June 2012 and modified 

by  
%   Bahareh Zaghari (bz2e11@soton.ac.uk)at 1st August 2012. 
% 
%   This program is used for the oblique transmittance experiment by 

using  
%   the LeCroy 9304C oscilloscope, HP 33120A Waveform Generator and 

Step Motor. 
%   The transmittance spectrum of the object is investigate from output 

signals. 
%   Before running this code, please make sure that The LeCroy 9304C is  
%   connected with the computer using NI's GPIB interface; 
% 
%   Important Note: 
%   1. The program use Ch1 and Ch3 to recieve the output signal from 
%   transducer in different Volt_Div. Hence, TA and TB are used to 

sweep  
%   the signals in Ch1 and Ch3 respectively. Take care Waitsweep() and  
%   Readsignal() defaultly recognise TA and TB as the chosen signal. 

  
clc; 
clear; 
%% Global Constant; 

  

FreqMax=4e6;    % Concerned frequency up to 1MHz; 
Est_FreqStep=1e3;   % Estimate frequency steps 1KHz; 
Est_Fs=1e8;      % Estimate Sampling Frequency 100MS/s, Related to 

TDIV(20us); 

  
%% Global Parmeters; 

  

  
NFFT=2^nextpow2(Est_Fs/Est_FreqStep); 
Act_FreqStep=Est_Fs/NFFT; 
Fr=0:Act_FreqStep:FreqMax; 
FreqNum=length(Fr); 

  

  

  
%% Initialization : Find the Instruments and verfify it. 
% Find and test the Oscilloscope; 
Osc = gpib('ni', 0, 4);  %connect to GPIB 
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set(Osc, 'InputBufferSize', 1000000); % Set the buffer(I/O Buffer: 

256), after 1000000buffer size instrument starts analysing. 
set(Osc, 'Timeout', 3.0);%Time out is for internal clock. from 25nsec 

to 20sec. 
fopen(Osc); 
% query(Osc, '*rst') 
query(Osc, '*idn?') 
fprintf(Osc, 'buzz beep'); 

  
% Presetting the Oscilloscope and the waveforms; 
fprintf(Osc, 'cfmt off,word,hex\n');          %comm_format;select the 

format for sending data 
fprintf(Osc, 'chdr off\n');                   %comm_header;controls 

formating the query responces 
% fprintf(Osc, 'trse edge,sr,ex,ht,off\n');     % Set trigger type; 
% fprintf(Osc, 'ex:trsl pos\n');                % Set trigger type; 
fprintf(Osc, 'wait'); 

  
fprintf(Osc, 'c1:tra on\n');        % open the c1; 
fprintf(Osc, 'c3:tra on\n');        % open the c3; 

  

  
 fprintf(Osc, 'tdiv 0.5ms\n');      % Set the timebase to be 50 us for 

one grid; 
% fprintf(Osc, 'trdl -270e-6s\n');  % Set the time delay to be -230 us; 
 fprintf(Osc, 'c1:vdiv 0.1v\n');   % Set the Volt_Div of C1; 
% fprintf(Osc, 'c1:ofst 0\n');      % Set the Volt_Offset of C1; 
fprintf(Osc, 'wait'); 

  

fprintf(Osc, 'ta:tra on\n');      % open the ta; 
fprintf(Osc, 'ta:def eqn,''avgs(c1)'', maxpts,1000000,sweeps,400\n'); % 

set ta; 
% fprintf(Osc, 'ta:vpos 0\n'); 
% fprintf(Osc, 'ta:hpos 5\n');  
% fprintf(Osc, 'ta:vmag 1\n'); 
% fprintf(Osc, 'ta:hmag 1\n'); 
fprintf(Osc, 'wait'); 

  
% fprintf(Osc, 'tb:tra on\n');      % open the ta; 
% fprintf(Osc, 'tb:def eqn,''avgs(c3)'', maxpts,1000000,sweeps,100\n'); 

% set ta; 
fprintf(Osc, 'wait'); 

  

%% Calibration the transducer's signal and reading the data; 
input('Press Enter when you get ready for the signal calibration?'); 
[Mag_c3,PPV_c3,Lvl_c3]=Presetsignalc3(Osc); 
Waitsweepc3(Osc); 
[Ref_Xt_c3,Ref_Yt_c3,Ref_Par_c3]=Readsignalc3(Osc,Mag_c3,PPV_c3); 

  

  
[Mag,PPV,Lvl]=Presetsignal(Osc); 
Waitsweep(Osc); 
[Ref_Xt,Ref_Yt,Ref_Par]=Readsignal(Osc,Mag,PPV); 
Ref_Yw=Signalprocess(Ref_Xt,Ref_Yt,Ref_Par,NFFT,FreqNum,FreqMax,Act_Fre

qStep); 
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Ref_Yt_INV = Ref_Yt'; 
Ref_Xt_INV = Ref_Xt'; 

  
%% 
%Calculate SNR 

  
% s = std(Ref_Yt); 
% mean = mean(Ref_Yt); 
% SNR = mean/s; 

  

  
%% 
fclose(Osc); 

 

F.2 Presetsignal.m 

 
function [Mag,PPV,val]=Presetsignal(Osc) 
% 
%   This program is coded by Rambo Yuan at 1st June 2012 and modified 

by  
%   Bahareh Zaghari (bz2e11@soton.ac.uk)at 1st August 2012. 
% 
%% 
Lvl=[2e-3 5e-3 1e-2 2e-2 5e-2 0.1 0.2 0.5 1.0 2.0]; 
str=query(Osc, 'c1:pava? pkpk');%return current parameters .mask test 

values 
val=regexpi(str,'[UF]','match','once'); % detect the overflow of volt; 
%%% NOTE: 'once' is very important here. If the command lacks it, the 
%%% return value will be a 'cell' type, otherwise be 'string' type; 

  
if val=='' 
    val=regexpi(str, '([0-9e.+-]+)','match','once'); 
else 
   % fprintf(Osc, 'c1:vdiv 0.5v\n');   % Set the Volt_Div of c1; 
    fprintf(Osc, 'wait'); 
    str=query(Osc, 'c1:pava? pkpk'); 
    val=regexpi(str, '([0-9e.+-]+)','match','once'); 
end 

  
PPV=str2double(val);        % Get the Peak to Peak Volt; 
Li=find(8.*Lvl > PPV);      % Find the best volt/div for the signal; 
val=Lvl(Li(1)); 
% str=strcat(['c1:vdiv ' num2str(val) 'v\n']); 
% fprintf(Osc, str); 
fprintf(Osc, 'wait'); 
% fprintf(Osc, 'ta:vmag 1\n'); 

  
Mag=8*val/PPV; 

 

 



124 
 

F.3 Presetsignalc1.m 

function [Mag,PPV,val]=Presetsignalc1(Osc) 
% 
%   This program is coded by Rambo Yuan at 1st June 2012 and modified 

by  
%   Bahareh Zaghari (bz2e11@soton.ac.uk)at 1st August 2012. 
% 
%% 
Lvl=[2e-3 5e-3 1e-2 2e-2 5e-2 0.1 0.2 0.5 1.0 2.0]; 
str=query(Osc, 'c1:pava? pkpk');%return current parameters .mask test 

values 
val=regexpi(str,'[UF]','match','once'); % detect the overflow of volt; 
%%% NOTE: 'once' is very important here. If the command lacks it, the 
%%% return value will be a 'cell' type, otherwise be 'string' type; 

  

if val=='' 
    val=regexpi(str, '([0-9e.+-]+)','match','once'); 
else 
    fprintf(Osc, 'c1:vdiv 0.5v\n');   % Set the Volt_Div of c3; 
    fprintf(Osc, 'wait'); 
    str=query(Osc, 'c1:pava? pkpk'); 
    val=regexpi(str, '([0-9e.+-]+)','match','once'); 
end 

  
PPV=str2double(val);        % Get the Peak to Peak Volt; 
Li=find(8.*Lvl > PPV);      % Find the best volt/div for the signal; 
val=Lvl(Li(1)); 
str=strcat(['c1:vdiv ' num2str(val) 'v\n']); 
fprintf(Osc, str); 
fprintf(Osc, 'wait'); 
fprintf(Osc, 'ta:vmag 1\n'); 

  
Mag=8*val/PPV; 

 

F.4 Presetsignalc3.m 

function [Mag,PPV,val]=Presetsignalc3(Osc) 
% 
%   This program is coded by Rambo Yuan at 1st June 2012 and modified 

by  
%   Bahareh Zaghari (bz2e11@soton.ac.uk)at 1st August 2012. 
% 
%% 
Lvl=[2e-3 5e-3 1e-2 2e-2 5e-2 0.1 0.2 0.5 1.0 2.0]; 
str=query(Osc, 'c3:pava? pkpk');%return current parameters .mask test 

values 
val=regexpi(str,'[UF]','match','once'); % detect the overflow of volt; 
%%% NOTE: 'once' is very important here. If the command lacks it, the 
%%% return value will be a 'cell' type, otherwise be 'string' type; 

  
if val=='' 
    val=regexpi(str, '([0-9e.+-]+)','match','once'); 
else 
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%     fprintf(Osc, 'c3:vdiv 1v\n');   % Set the Volt_Div of c3; 
    fprintf(Osc, 'wait'); 
    str=query(Osc, 'c3:pava? pkpk'); 
    val=regexpi(str, '([0-9e.+-]+)','match','once'); 
end 

  
PPV=str2double(val);        % Get the Peak to Peak Volt; 
Li=find(8.*Lvl > PPV);      % Find the best volt/div for the signal; 
val=Lvl(Li(1)); 
% str=strcat(['c3:vdiv ' num2str(val) 'v\n']); 
% fprintf(Osc, str); 
fprintf(Osc, 'wait'); 
%fprintf(Osc, 'ta:vmag 1\n'); 

  
Mag=8*val/PPV; 

 
F.5 Readsignal.m 
 

function [Xtag,Ytag,Par]=Readsignal(Osc,Mag,PPV) 
% 
%   This program is coded by Rambo Yuan at 1st June 2012 and modified 

by  
%   Bahareh Zaghari (bz2e11@soton.ac.uk)at 1st August 2012. 
% 
%% 
Mag_Coef=0.85; 
Tag='ta:'; 

  
% Magnify the tag to best resolution; 
str=strcat(['ta:vmag ' num2str(Mag*Mag_Coef)]); 
fprintf(Osc, str); 
fprintf(Osc, 'wait'); 

  
% Read the parameter of Tag; 
Cmd={'insp? ''last_valid_pnt'''; 
    'insp? ''vertical_gain'''; 
    'insp? ''vertical_offset'''; 
    'insp? ''horiz_interval'''; 
    'insp? ''horiz_offset'''}; 
Par=zeros(5,1); 
% Par(1): Num of points for the waveform; 
% Par(2): Vertical gain; 
% Par(3): Vertical offset; 
% Par(4): Horiz interval, also the sampling period time (Ts); 
% Par(5): Horiz offset, the time delay from the trigger to the first 

point; 

  
for i=1:5 
    str=char(strcat(Tag,Cmd(i))); 
    str=query(Osc, str); 
    str=regexpi(str, ':\s+([0-9e.+-]+)\s+"','tokens','once'); 
    if strcmp(str,'') 
        disp('Warning: (Readsignal) Failure to obtain a parmeter!');  
    end 
    Par(i)=str2double(str); 
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end 

  
% Check the Buffersize and set the loading number of points; 
if Par(1)*4>get(Osc, 'InputBufferSize') 
    disp('Warning: (Readsignal) The waveform data have overflow the 

BufferSize!'); 
    fclose(Osc); 
    return; 
end 
str=strcat('wfsu sp,0,np,',num2str(Par(1)),',fp,0,sn,0'); 
fprintf(Osc,str);           % waveform_setup; 
disp(strcat('Num of Pnts for Signal:', num2str(Par(1)))); 

  
% Read the Tag's waveform data; 
str=strcat(Tag,'wf? dat1'); 
data = query(Osc, str); 
% data2 = fgets(Osc); % If the data is overflow the Buffersize; 

  
% Transfer the Hex words to floats; 
Ytag=zeros(1,Par(1)); 
for i=1:Par(1) 
    t=hex2dec(data(4*(i-1)+1 : 4*i)); 
    if t>32767; t=t-65536; end 
    Ytag(i)=t; 
end 
Ytag=Ytag.*Par(2)-Par(3); 
Xtag=(1:Par(1)).*Par(4)+Par(5); 

  
%%% Check the Pk 2 Pk Value; 
P2P=max(Ytag)-min(Ytag); 

  
if abs(P2P-PPV)/PPV > 0.05 
    disp('Warning: (Readsignal) Tolerance is exceeded during reading 

the waveform!') 
end 

  

% Plot the input waveform; 
figure(1); 
subplot(2,2,1:2); 
grid on; 
box on; 
hold on; 
plot(Xtag,Ytag,'Linewidth',2); 

  
xlabel('Time delay from trigger (s)'); 
ylabel('Amplitude (V)'); 
 

 

F.6 Readsignalc3.m 
 

function [Xtag,Ytag,Par]=Readsignalc3(Osc,Mag,PPV) 
% 
%   This program is coded by Rambo Yuan at 1st June 2012 and modified 

by  
%   Bahareh Zaghari (bz2e11@soton.ac.uk)at 1st August 2012. 
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% 
%% 
Mag_Coef=0.95; 
Tag='tb:'; 

  
% Magnify the tag to best resolution; 
str=strcat(['tb:vmag ' num2str(Mag*Mag_Coef)]); 
fprintf(Osc, str); 
fprintf(Osc, 'wait'); 

  

% Read the parameter of Tag; 
Cmd={'insp? ''last_valid_pnt'''; 
    'insp? ''vertical_gain'''; 
    'insp? ''vertical_offset'''; 
    'insp? ''horiz_interval'''; 
    'insp? ''horiz_offset'''}; 
Par=zeros(5,1); 
% Par(1): Num of points for the waveform; 
% Par(2): Vertical gain; 
% Par(3): Vertical offset; 
% Par(4): Horiz interval, also the sampling period time (Ts); 
% Par(5): Horiz offset, the time delay from the trigger to the first 

point; 

  
for i=1:5 
    str=char(strcat(Tag,Cmd(i))); 
    str=query(Osc, str); 
    str=regexpi(str, ':\s+([0-9e.+-]+)\s+"','tokens','once'); 
    if strcmp(str,'') 
        disp('Warning: (Readsignal) Failure to obtain a parmeter!');  
    end 
    Par(i)=str2double(str); 
end 

  
% Check the Buffersize and set the loading number of points; 
if Par(1)*4>get(Osc, 'InputBufferSize') 
    disp('Warning: (Readsignal) The waveform data have overflow the 

BufferSize!'); 
    fclose(Osc); 
    return; 
end 
str=strcat('wfsu sp,0,np,',num2str(Par(1)),',fp,0,sn,0'); 
fprintf(Osc,str);           % waveform_setup; 
disp(strcat('Num of Pnts for Signal:', num2str(Par(1)))); 

  
% Read the Tag's waveform data; 
str=strcat(Tag,'wf? dat1'); 
data = query(Osc, str); 
% data2 = fgets(Osc); % If the data is overflow the Buffersize; 

  
% Transfer the Hex words to floats; 
Ytag=zeros(1,Par(1)); 
for i=1:Par(1) 
    t=hex2dec(data(4*(i-1)+1 : 4*i)); 
    if t>32767; t=t-65536; end 
    Ytag(i)=t; 
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end 
Ytag=Ytag.*Par(2)-Par(3); 
Xtag=(1:Par(1)).*Par(4)+Par(5); 

  
%%% Check the Pk 2 Pk Value; 
P2P=max(Ytag)-min(Ytag); 

  
if abs(P2P-PPV)/PPV > 0.05 
    disp('Warning: (Readsignal) Tolerance is exceeded during reading 

the waveform!') 
end 

  
% Plot the input waveform; 
figure(1); 
hold on; 
subplot(subplot(2,2,3:4)); 
grid on; 
box on; 
hold on; 
plot(Xtag,Ytag,'Linewidth',2); 

  
xlabel('Time delay from trigger (s)'); 
ylabel('Amplitude (V)'); 
 

 

F.7 Signalprocess.m 
 

function 

[YwOut]=Signalprocess(Xt,Yt,Par,NFFT,FreqNum,FreqMax,Act_FreqStep) 
% 
%   This program is coded by Rambo Yuan at 1st June 2012 and modified 

by  
%   Bahareh Zaghari (bz2e11@soton.ac.uk)at 1st August 2012. 
% 
%% 
%%%% Explan Par: 
% Par(1): Num of points for the signal; 
% Par(2): Vertical gain; 
% Par(3): Vertical offset; 
% Par(4): Horiz interval, also the sampling period time (Ts); 
% Par(5): Horiz offset, the time delay from the trigger to the first 

point; 

  

% Clear the Volt offset of the signal; 
% PartYt=Yt(Xt>3.5e-4); 
AvgY=mean(Yt); 
Yt=Yt-AvgY; 

  
% Add a tukey window on the signal to prevent Spectrum Leakage; 
Trst_Pnts=500;     % Transition points of the window from 0 to 1; 
NumSig=Par(1);      % Num of points for the signal; 
TkWin=tukeywin(NumSig,2*Trst_Pnts/NumSig)'; 
Yt=Yt.*TkWin; 

  
% Discrete Fast Fourier Transform; 
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Fs=1./Par(4); 
Sw = fft(Yt,NFFT)/NumSig; 
Yw=2*abs(Sw(1:NFFT/2+1));     % Single-sided amplitude spectrum 
Fr = Fs/2*linspace(0,1,NFFT/2+1); 

  
% Check the Act_FreqStep is same with current Frequency interval; 
if (Fr(2)-Fr(1)-Act_FreqStep)/Act_FreqStep > 0.01 
    disp('Warning: (SignalProcess) Frequency Step is not correct!'); 
end; 

  

% Check whether there is a Spectrum Leakage to higher frequency band; 
SumAmpl=sum(Yw); 
HighBand=sum(Yw(Fr > FreqMax)); 
if HighBand > 0.05*SumAmpl 
    disp('Warning: (SignalProcess) Significant Spectrum Leakage 

happened!'); 
end 

  
% Output the result for desired frequency range; 
YwOut=Yw(1:FreqNum); 
% Plot single-sided amplitude spectrum. 
figure(2); 

  
hold on; 
box on; 
plot(Fr,Yw,'Linewidth',2); 
xlabel('Frequency (Hz)'); 
ylabel('Amplitude |Y(f)|'); 
xlim([0 FreqMax]); 

  

  
 

F.8 Waitsweep.m 
 

function [Chk]=Waitsweep(Osc) 
% 
%   This program is coded by Rambo Yuan at 1st June 2012 and modified 

by  
%   Bahareh Zaghari (bz2e11@soton.ac.uk)at 1st August 2012. 
% 
%% 
query(Osc, 'inr?');     % clear the internal state register; 
Chk=0; 
Quant=quantizer([16 0]); % used for Waitsweep(); 
tic; 
fprintf(Osc, 'clsw'); 
flag=1; 
while flag 
    str=query(Osc, 'inr?'); 
    str=regexpi(str, '([0-9]+)','match','once'); 
    tt=str2double(str); 
    str=num2bin(Quant,tt); 
    t=toc; 
    if str(8)=='1'|| t>80;  flag=0;  end; 
end 
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toc; 
if str(8)~='1' 
    Chk=1; 
    disp('Warning: (Waitsweep) Wait terminated while sweep have not 

finished!'); 
end; 
 

 

 

F.9 Waitsweepc3.m 
 

function [Chk]=Waitsweepc3(Osc) 
% 
%   This program is coded by Rambo Yuan at 1st June 2012 and modified 

by  
%   Bahareh Zaghari (bz2e11@soton.ac.uk)at 1st August 2012. 
% 
%% 
query(Osc, 'inr?');     % clear the internal state register; 
Chk=0; 
Quant=quantizer([16 0]); % used for Waitsweep(); 
tic; 
fprintf(Osc, 'clsw'); 
flag=1; 
while flag 
    str=query(Osc, 'inr?'); 
    str=regexpi(str, '([0-9]+)','match','once'); 
    tt=str2double(str); 
    str=num2bin(Quant,tt); 
    t=toc; 
    if str(9)=='1'|| t>80;  flag=0;  end; 
end 
toc; 
if str(9)~='1' 
    Chk=1; 
    disp('Warning: (Waitsweep) Wait terminated while sweep have not 

finished!'); 
end; 

 


