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modulation approaches the performance of its

coherent counterpart
Lixia Xiao, Member, IEEE, Pei Xiao, Senior Member, IEEE, Hang Ruan, Naoki Ishikawa, Member, IEEE, Lei

Lu, Yue Xiao, and Lajos Hanzo, Fellow, IEEE

Abstract—A simplified rectangular differential spatial modu-
lation (S-RDSM) scheme is conceived for massive multiple-input
multiple-output (MIMO) systems dispensing with the channel
state information (CSI). In the proposed S-RDSM scheme, the
information bits are first mapped to a conventional SM symbol
and then rectangular differential encoding is invoked between
a pair of SM symbols. Then a non-coherent detector relying
on a forgetting factor is developed, which requires no CSI at
the receiver. Explicitly, a low-complexity hard limited maximum
likelihood (HL-ML) detector is conceived for our generalized S-
RDSM scheme, which is characterized by our theoretical analysis.
Furthermore, we derive the optimal forgetting factor in closed
form, which is capable of significantly reducing the complexity
of the associated optimization. Finally, the upper bounds of
the average bit error probability (ABEP) are derived using the
moment generating function (MGF), and are validated by our
simulation results. Both the theoretical and simulation results
have shown that the proposed S-RDSM system outperforms the
existing non-coherent schemes, despite operating at 10% of the
benchmarker’s complexity, whilst approaching the performance
of its coherent SM counterpart at a comparable complexity.

Index Terms—Rectangular Differential Spatial Modulation,
Spatial Modulation, Average Bit Error Probability, Maximum
Likelihood.

I. INTRODUCTION

LARGE-SCALE multiple-input multiple-output (MIMO)
schemes [1]-[3] are capable of significantly increasing the

capacity, hence they are deemed to constitute a key technology
for next-generation wireless systems. In massive MIMO, the
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transmitter and/or the receiver employs numerous antennas,
which require numerous radio frequency (RF) chains, hence
imposing a substantial implementation cost, energy consump-
tion and signal processing complexity as well as pilot over-
head. In order to simplify the massive MIMO structure, sparse
RF chain based spatial modulation (SM) aided MIMO systems
have been developed in [5]-[14], where the information bits are
conveyed both by the activated transmit antenna (TA) indices
as well as by the classic amplitude phase modulation (APM)
symbols. Hence SM constitutes a promising low-cost massive
MIMO solution for next generation wireless communications
[5]-[14].

However, the benefits of the massive SM-MIMO have been
mainly exploited under the idealized simplifying assumption
of having perfect channel state information (CSI), even though
relying on a tolerable pilot overhead is challenging. In order
to address these challenges, differential spatial modulation
(DSM) techniques [15]- [35], which rely on a single RF
transmit structure dispensing with CSI knowledge have been
developed. As for the DSM system, there is a pair of classic
categories: square DSM (SDSM) [15]- [31] and rectangular
DSM (RDSM) [32]-[35].

Specifically, for the SDSM system, one out of Q spreading
matrices (SPMs) is activated to disperse Nt symbols to Nt
TAs via Nt time instants. The design of SPM plays an
important role in striking a trade-off between the transmit
rate and the performance of the SDSM system. Specifically,
the popular SPM designs include but are not limited to: 1)
full SPM (FSPM) design [15]-[29] and 2) full-diversity (FD)
SPM design [30]-[31]. For a FSPM-SDSM system, there is
a total of Q = 2blog2(Nt!)c legitimate SPMs, where b·c is
the floor operator. Each Nt ×Nt-element full rank SPM has
a single nonzero element in each column. As Nt increases,
the value of Q increases exponentially, which makes bit-to-
symbol mapping, demapping and signal detection challenging.
It has been demonstrated in [24], [25] that the FSPM-SDSM
structure is capable of supporting at most Nt = 32 TAs. In
order to reduce the number of SPMs, FD-SDSM has been
developed in [30]-[31], where there is only a total of Q = Nt
legitimate SPMs for bit-to-symbol mapping, and each SPM
only transmits a single APM symbol via Nt time slots. Hence
the transmission rate is significantly reduced compared to its
coherent SM counterpart. Consequently, the known SDSM
systems are not suitable for large-scale MIMO configurations.

To circumvent the aforementioned problem, RDSM systems
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are developed in [32]- [35] based on the concept of FD-
SDSM. Specifically, the information bits are firstly mapped
to a full-diversity SPM, then they are converted to a non-
square matrix after differential coding. Hence, one out of
Q = log 2(Nt) SPMs is activated to convey a single symbol
via T time instants. Furthermore, the transmission rate of the
RDSM using T = 1 is comparable to that of its coherent
SM counterpart. As a result, RDSM becomes a promising
candidate for large-scale MIMO communications dispensing
with CSI.

In the existing RDSM systems, non-coherent detection relies
on the previous estimated symbols, hence tends to suffer from
error propagation. To improve the performance of RDSM, a
new non-coherent detector relying on a forgetting factor is
designed in [32]-[35]. Specifically, in [32]-[33], the forgetting
factor is chosen by minimizing the mean square error of the
reference signal Ŷ. In [34], the forgetting factor is determined
through maximizing the effective signal to noise ratio (SNR).
However, these design methods require time-consuming ex-
haustive search, where a large number of random variables
are generated. To address this limitation, in [35], an adaptive
forgetting factor is proposed, which does not require off-line
optimization. However, it only relies on the current received
symbols. Thus, this adaptive forgetting factor typically result
in a locally optimal solution, rather than the global optimum.
On the other hand, the locally optimal nature of this forgetting
factor and the resultant error propagation of RDSM render
the derivation of average bit error probability (ABEP) bound
challenging. Moreover, the exhaustive search based maximum
likelihood (ML) detector employed in the RDSM of [32]-[35]
imposes a high complexity.

Against this background, the new contributions of this paper
are as follows:

1) We propose a simplified RDSM (S-RDSM) system for
massive MIMO downlink communications. Specifically,
the information bits are first mapped to a conventional
SM symbol. Then rectangular differential encoding is
employed relying on a pair of adjacent SM symbols,
where the complexity of the bit-to-symbol mapping and
demapping is comparable to that of its coherent SM
counterpart.

2) We employed the hard limited ML (HL-ML) detector for
the new generalized S-RDSM system in our theoretical
analysis. The complexity of our HL-ML based S-RDSM
is independent of the constellation size L, and it is a
linear function of Nt for any value of T . Our simulation
results indicate that our solution is capable of operating
at 10% complexity of its ML counterpart in the massive
MIMO configurations considered.

3) We demonstrate that the transmit signal cardinality of
the proposed S-RDSM system is the same as that of its
coherent SM counterpart and it is much lower than that
of the existing RDSM schemes [33]-[35]. Furthermore,
we show that the error propagation encountered by the
proposed S-RDSM system is mainly owing to a pair
of consecutive blocks. Based on this observation, the
approximate ABEP upper bound of our proposed S-
RDSM system is derived using the moment generating
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Fig. 1. System model of conventional DSM systems.

function (MGF) and its accuracy is confirmed by our
simulation results.

4) We propose a new forgetting factor, which relies on all
the bits of the entire transmission block and optimize it
by deriving a closed-form expression, which is capable
of significantly reducing the complexity of the forgetting
factor optimization.

The remainder of this paper is organized as follows. Section
II provides a rudimentary review of the conventional DSM
systems. In Section III, the system model and HL-ML detector
of our proposed S-RDSM system are introduced. In Section
IV, the ABEP upper bound of our S-RDSM system is derived.
Section V presents our simulation results. Finally, Section VI
concludes this paper.

Notation: ‖·‖2 denotes the Frobenious norms of a matrix.
|·| represents the cardinality of a set. (·)T , (·)∗ and (·)H stand
for the transpose, the conjugated, and the Hermitian transpose
of a vector/matrix. 〈x〉 returns the value of x mod Nt. b·c is
the floor operation. diag[·] returns a square diagonal matrix
with the elements of vector. INt is the (Nt × Nt)-element
identity matrix. x � y and x � y indicate that x is much
greater and much smaller than y, respectively. E(x) denotes
the expectation operator of x.

II. REVIEW OF CONVENTIONAL DSM SYSTEMS

Let us consider a DSM system having Nt TAs and Nr
receiver antennas (RAs). The system models of the square
DSM and non-square DSM systems are depicted in Fig. 1.

A. Conventional square DSM systems

In the SDSM system, the information bits are conveyed
by the activated SPM Aq q = 1, ..., Q as well as by the
APM symbols via Nt time slots. As shown in Fig. 1, the
information bit segment of length B is partitioned into two
parts: 1) B1 = log2(Q) bits are mapped to one of the SPMs
Aq; and 2) B2 bits are mapped to L-PSK symbols s1, ..., sNt
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Fig. 2. System model of the proposed S-RDSM system.

that are transmitted by the activated SPM Aq . As a result, the
i-th signal block is expressed as

Xi = Aqdiag[s1, s2..., sNt ]. (1)

Differential encoding is employed between a pair of adjacent
blocks as

Si = Si−1Xi, (2)

where S0 = INt .
Let us denote that H̃i ∈ CNr×Nt and Ñi ∈ CNr×Nt

the channel and the noise matrices, whose elements obey the
complex Gaussian distributions CN (0, 1) and CN

(
0, σ2

)
. The

i-th block’s received signal Yi ∈ CNr×Nt can be expressed
as

Yi = H̃iSi−1Xi + Ñi. (3)

Assuming that the channel coefficients remain near-constant
over W time blocks, i.e., we have H̃1 ≈ H̃W , the ML detector
of SDSM can be formulated as

X̂i = arg min
Xi∈X

‖Yi −Yi−1Xi‖2, (4)

where X is the set of SDSM symbols.
The main difference of SDSM system lies in the design of

Aq . Based on the design of Aq , there are two popular types of
SDSM systems, namely FSPM-SDSM and FD-SDSM, which
are introduced as follows.

1) Full SPM based SDSM system:
In the FSPM-SDSM system, there is a total of Nt! SPMs

but only Q = 2blog2(Nt!)c SPMs are required for conveying
Nt symbols. For each (Nt ×Nt)-element full-rank SPM,
there is only a single nonzero element in each column.
Hence, the transmission rate of the FSPM-SDSM scheme is
RFSPM = [2blog2(Nt!)c +Ntlog2(L)/Nt] bpcu, where bpcu
denotes bits per channel use. For a large value of Nt, Q
becomes excessive, which makes finding the list bit-to-symbol
mapping and demapping challenging.

2) Full diversity based SDSM system:
In the FD-SDSM system, we have a total of Q = Nt SPMs

as

{A1 · · · ,ANt} =
{
INt ,M,M2, · · · ,MNt−1

}
, (5)

where the matrix M is defined as

M=


0 0 · · · 0 u
1 0 · · · 0 0

0 1
. . . 0 0

...
...

. . .
...

...
0 0 · · · 1 0

 , (6)

where u is designed differently in [30] and [31], respectively.
In the FD-SDSM system, each activated SPM only transmits
a single L-PSK symbol via Nt time slots. The transmission
rate of the FD-SDSM system is RFD = log2(NtL)/Nt, which
is low for the massive MIMO antenna configuration.

B. Conventional non-square DSM systems

Again in the RDSM systems, the information bits are
conveyed by the activated SPMs Aq q = 1, ..., Q as well
as by the APM symbols via T (1 ≤ T ≤ Nt) time slots.
The SPM is selected based on (5) and (6) with u = ej2π/L.
As shown in Fig.1 (b), B1 = log2(Nt) bits are spread by
one of the SPMs Aq and B2 = log2(L) bits are modulated
to an L-PSK symbols si as Xi = Aqsi. Then differential
coding is employed according to Si = Si−1Xi, where
S0 = [Ê1, · · · , Êk, · · · ÊNt/T ], which can be obtained by [34].
Finally, the encoded transmit signal is converted to a non-
square matrix form formulated as

Ti = SiÊ1, (7)

where Ê1 ∈ CNt×T is designed differently in [34]. The
transmission rate of the RDSM system is RCN = log2(NtL)/T
bpcu.

Let us denote that Hi ∈ CNr×Nt and Ni ∈ CNr×T the
channel and the noise matrices, whose elements obey the
complex Gaussian distributions CN (0, 1) and CN

(
0, σ2

)
. The

i-th block’s received signal Yi ∈ CNr×T can be expressed as

Yi = HiSi−1XiÊ1 + Ni. (8)

Assuming that the channel coefficients remain near-constant
over W time blocks, i.e., we have H1 ≈ HW , the detector of
RDSM in [34] is expressed as

X̂i = arg min
Xi∈XR

∥∥∥Yi − Ŷi−1Xi

∥∥∥2

, (9)
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where XR is the set of RDSM symbols and the value of Ŷi−1

is defined by

Ŷ(i) =


Nt/T∑
k=1

Y(k)ÊH
k , ifi=Nt/T,

Y(i)Ê(1−α) + Ŷ(i− 1)X̂(i)Ê(α),

(10)

with  Ê(α) = αÊ1Ê
H
1 +

Nt/T∑
k=2

ÊkÊ
H
k ,

Ê(1−α) = (1− α)ÊH
1 .

(11)

Due to the complex design of (Ê1, ..., Êk, ..., ÊNt/T ) and the
introduction of α, it is difficult to derive the ABEP and the
low-complexity detector for the conventional RDSM system.

III. PROPOSED SIMPLIFIED RECTANGULAR DSM SYSTEM

A. System model

In this section, a novel simplified RDSM system termed as
S-RDSM is proposed. The system model is shown in Fig. 2.
Specifically, log 2(Nt) + log 2(L) bits are first mapped to a
conventional SM symbol [6] xi as

xi=[0, · · · , 0︸ ︷︷ ︸
qi−1

, si, 0, · · · , 0︸ ︷︷ ︸
Nt−qi

]T , (12)

where qi is the activated TA and si is the mapped L-PSK
symbol. Then xi is mapped to a square matrix by

Xi =


...

... · · · si · · · 0

si 0 · · · 0
. . .

...
...

. . . . . .
... · · · si

0 · · · si 0 · · · 0

 ∈ CNt×Nt

↑ ↑ ↑ ↑
qi Nt 1 qi − 1

. (13)

Next, differential coding is employed according to

Si = Si−1Xi, (14)

where S0 = INt . Finally, the encoded S-RDSM transmit
symbol is formulated as

Ti = Si−1XiE1 = Si−1X
[1:T ]
i , (15)

where E1 and X
[1:T ]
i are the first T columns of INt and Xi,

respectively. The transmission rate of the proposed S-RDSM
system is RER = log2(NtL)/T bpcu.

B. ML detector with the forgetting factor α

At the receiver, the reference symbols are defined as the
0-th block signal and the corresponding received signal Y0

∈ CNr×Nt is formulated as:

Y0 = H0INt + N0, (16)

and the i-th (i > 0) block’s received signal Yi ∈ CNr×T can
be expressed as

Yi = HiSi−1XiE1 + Ni, (17)

where H0 ∈ CNr×Nt vs Hi ∈ CNr×Nt , and N0 ∈ CNr×Nt
vs Ni ∈ CNr×T denote the channel and the noise matrices,
whose elements obey the complex Gaussian distributions
CN (0, 1) and CN

(
0, σ2

)
. Assuming that the channel coeffi-

cients remain near constant over W time blocks, i.e., we have
H1 ≈ HW ≈ H0, the received signal Yi can be represented
by

Yi = HiX1 · · ·Xi−1XiE1 + Ni. (18)

Hence, the ML detector without the forgetting factor α is
expressed as

x̂i = arg min
xi∈X

∥∥∥Yi − Ỹi−1XiE1

∥∥∥2

, (19)

where χ is the set of SM symbol, Ỹi−1 = Y0X1 · · ·Xi−1Xi

and Xi is obtained by xi via (13). Due to the non-square
structure, the performance of (19) can be further improved by
introducing the forgetting factor α as

x̂i = arg min
xi∈X

∥∥∥Yi − Ŷi−1XiE1

∥∥∥2

, (20)

where Ŷi is defined as

Ŷi =

{
Y0, if i = 0,

YiE
(1−α) + Ŷi−1X̂iE

α, if i > 0,
(21)

with E(1−α) ∈ CT×Nt and Eα ∈ CNt×Nt given by

E(1−α) = [(1− α)IT ,OT , · · · ,OT ] ,

Eα =


αIT OT · · · OT
OT IT · · · OT

...
...

. . .
...

OT OT · · · IT

 , (22)

where α ∈ [0, 1], OT is the (T ×T )-element zero matrix. It is
plausible that (20) is the same as (19) for the case of α = 1.

Furthermore, the ML detector with α of (20) can also be
represented by

(q̂i, ŝi) = arg min
∀X

[∥∥∥Yi − Ŷi−1XE1

∥∥∥2
]

= arg min
∀(q,s)

[
T∑
τ=1

∥∥∥Yτ
i − Ŷ

〈q+τ−1〉
i−1 s

∥∥∥2
]

= arg min
∀(q,s)

[
T∑
τ=1

∥∥∥Ŷ〈q+τ−1〉
i−1 s

∥∥∥2

−2<
(

T∑
τ=1

(Yτ
i )
H

Ŷ
〈q+τ−1〉
i−1 s

)]
= arg min

∀(q,s)

[
T∑
τ=1

∥∥∥Ŷ〈q+τ−1〉
i−1

∥∥∥2

−2<[
T∑
τ=1

(Yτ
i )
H

Ŷ
〈q+τ−1〉
i−1 s]

]
.

(23)

C. Low-complexity HL-ML detector

In this section, our low-complexity HL-ML detector is
developed, which detects the activated SPM index and APM
symbol separately. For the conventional ML detector of (23),
each antenna index corresponds to L constellation symbols and
we find the optimal one from NtL indices. In the proposed
HL-ML detector, we first obtain the optimal constellation
symbol for each antenna index by match filter (MF). Then we
estimate the final result from Nt ones, which can significantly
reduce the complexity.
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TABLE I
ADVANTAGES OVER EXISTING DSM SCHEMES.

[10]
2013

[11,12,14]
2014

[17]
2015

[19]
2015

[20]
2015

[13]
2016

[15]
2016

[16]
2016

[18]
2017

[25-26]
2017

[21-24]
2018
2019

[27-30]
2017-
2019

Proposed

Single or two
RF chain X X X X X X X X X X X X X

Finite
cardinality X X X X X X X X X X X X

Low
complexity X X X X

High
throughput X X X

High
diversity X X X X X X

Large
scale X X

Specifically, we first obtain the optimal constellation symbol
s̃q (q = 1, ..., Nt) for each antenna index as

s̃q = D

(
T∑
τ=1

(Ŷ
〈q+τ−1〉
i−1 )

H
Yτ
i /

T∑
τ=1

∥∥∥Ŷ〈q+τ−1〉
i−1

∥∥∥2
)
, (24)

where D(·) denotes the digital demodulation function. Then
the activated SPM index is estimated by

q̂i= arg min
q=1,...,Nt

[
T∑
τ=1

∥∥∥Ŷ〈q+τ−1〉
i−1

∥∥∥2

−2<[
T∑
τ=1

(Yτ
i )
H

Ŷ
〈q+τ−1〉
i−1 s̃q]

]
.

(25)
After obtaining the optimal index q̂i, the symbol can be

finally acquired by

ŝi = D

(
T∑
τ=1

(Ŷ
〈q̂i+τ−1〉
i−1 )

H
Yτ
i /

T∑
τ=1

∥∥∥Ŷ〈q̂i+τ−1〉
i−1

∥∥∥2
)
. (26)

We note that (25) and (26) have been proven to be the same
as (23) in Appendix A. According to [23], the complexities
of the ML and HL-ML detectors are quantified in terms of
the number of real-valued floating point (flop) operations. For
specific matrices A ∈ Cm×n, B ∈ Cn×p, c ∈ Cn×1 and
d ∈ Cn×1, the operations of AB, ‖c‖2F and c ± d require
8mnp − 2mp, 4n − 1, and 2n flops, respectively [12]. The
complexity of ML and HL-ML detectors can be expressed as

CML = ( 6NrT︸ ︷︷ ︸
Ŷi−1XiE1

+ 2NrT︸ ︷︷ ︸
Yi−Ŷi−1XiE1

+ 4NrT︸ ︷︷ ︸
‖·‖2

)NtL,

CHL−ML = [ (4Nr − 1)T︸ ︷︷ ︸
T∑
τ=1

∥∥∥Ŷ〈q+τ〉i−1

∥∥∥2

+ (8NrT − 2T )︸ ︷︷ ︸
T∑
τ=1

(Yτ
i )HŶ

〈q+τ〉
i−1

+ 2︸︷︷︸
ŝi

+2]Nt

= 12NrTNt − 3TNt + 4Nt.
(27)

The resultant complexity reduction ratio can be formulated as:

rc = (CML − CHL−ML)/CML= 12NrTL−12NrT+3T−4
12NrTL

≈ 1− 1
L .

(28)

According to (28), it is plausible that the proposed low-
complexity detector is capable of reducing the complexity to
about 25%, 12.5%, 6.25% and 3.125% of that of the ML
detector for QPSK, 8-PSK, 16-PSK and 32-PSK, respectively.

TABLE II
COMPARISONS WITH EXISTING DSM SYSTEMS.

Scheme Transmission
rate

Cardinality
of transmit

signal

Detection
compelxity

order
FAM

-SDSM [17]
2blog2(Nt!)c

Nt
+log2(L)

Nt! O(Nt!)

FD
-SDSM [30] log2(NtL)

Nt
NtL2 O(NtL)

RDSM [34] [35] log2(LNt)/T NtL2 O(NtL)
STBC

-RDSM [33] log2(L
2Nt/2)/2 � NtL O(Nt)

Proposed
S-RDSM log2(LNt)/T NtL O(Nt)

D. Advantages over the existing DSM schemes

Table I and II compares the proposed S-RDSM scheme to
the existing DSM schemes. In the proposed S-RDSM scheme,
we have u = 1 of (6), which is the main difference with
respect to the conventional RDSM scheme of [34]. As ob-
served from Tables I and II, the advantages of the proposed S-
RDSM represented by its simple structure may be summarized
as follows.

1) High throughput: The throughput of the S-RDSM
scheme using T = 1 is comparable to that of coherent
SM, which is much higher than that of the existing
SDSM systems [15]-[31].

2) Finite cardinality: The cardinality of the proposed S-
RDSM’s transmit signal is |Si| = |X1X2 · · ·Xi| =
NtL, which is much lower than that of the existing DSM
schemes. As a result, the unbounded differential constel-
lation size issues are further mitigated. The cardinality
of the encoded signal of different RDSM schemes is
calculated in detail as follows.
The main difference between the proposed S-RDSM
scheme and the RDSM scheme of [34] is that u of (6)
is equal to 1. According to (6), we have

M1 =


0· · · 0u
1· · · 00
...

. . .
...

...
0· · · 10

 , · · · ,MNt =


u0· · · 0
0u· · · 0
...

...
. . .

...
00· · · u


...

MLNt =


uL 0 · · · 0
0 uL· · · 0
...

...
. . .

...
0 0 · · · uL

 ,MLNt+1 =


0 0 0 uL+1

uL 0 0 0
...

. . .
...

...
0 0 uL 0

 .
(29)
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Since u = ej2π/L is designed in [34], we have uL = 1.
The cardinality of the transmit signal of [34] is |Si| =
|Mi||S| = NtL

2, where |S| is the cardinality of the L-
PSK symbol.
In the proposed S-RDSM system, we have u = 1.
The cardinality of the corresponding transmit signal is
|Si|p = NtL.

3) Simplified transmit structure: More importantly, as a
benefit of the finite cardinality and special structure, the
error propagation in the proposed S-RDSM system is
mainly imposed by a pair of adjacent blocks, which is
helpful for our ABEP performance analysis and it will
be exploited in the next section.

IV. SIMPLIFIED FORGETTING FACTOR OPTIMIZATION

A. Conventional optimization

Assuming that no error is encountered by the previous (i−1)
blocks, the reference signal can be formulated as:

Ŷi−1 = HSi−1 + N̂i−1, (30)

with N̂i−1 = Ni−1E
(1−α) + N̂i−2X̂i−1E

α, where N̂0=N0,
which is demonstrated in Appendix B. The forgetting factor
can be optimized according to:

α̂= arg min
α

W/T∑
i=1

E(
∥∥∥N̂i

∥∥∥2

) ≈ arg min
α

W/T∑
i=1

E(
∥∥∥Ñi

∥∥∥2

), (31)

with
Ñi = NiE

(1−α) + Ñi−1M1E
α, (32)

where Ñ0=N0 and M1 is the M of (6) with u = 1.

B. Proposed optimization

According to (31), the optimal forgetting factors have to
be obtained through simulation, where a large number of
random variables are generated. To reduce the complexity of
the optimization, the closed form of (31) is derived in this
section. Specifically, (32) can be further represented by

Ñi = NiE
(1−α) + Ñi−1M1E

α

=NiE
(1−α) + Ni−1E

(1−α)M1E
α + · · ·+

N1E
(1−α)(M1E

α)i−1 + N̂0(M1E
α)i

= [Ñ1
i ,Ñ

2
i , · · · , Ñ

Nt
i ],

(33)

where we have

Ñu
i ∼ CN (0, (

i−1∑
j=0

∥∥Ψu
j

∥∥2
+ ‖Υu

i ‖
2
)σ2), u = 1, ..., Nt, (34)

with
Ψi = Ψi−1M1E

α,
Υi = Υi−1M1E

α, (35)

where Ψ0 = E(1−α),Υ0 = INt , Ψu
j and Υu

i denote the u-th
column of Ψj and Υi, respectively. The average noise variance
of the i-th block is expressed as:

σ2
i =

Nt∑
u=1

(
i−1∑
j=0

∥∥Ψu
j

∥∥2
+ ‖Υu

i ‖
2

)
Nt

σ2, (36)

which plays an important role in the ABEP analysis. Then
W/T∑
i=1

∥∥∥Ñi

∥∥∥2

in (31) can be represented by

ϕ =

W/T∑
i=1

∥∥∥Ñi

∥∥∥2

=

W/T∑
i=1

Nt∑
u=1

∥∥∥Ñu
i

∥∥∥2

=

W/T∑
i=1

Nt∑
u=1

ϕui , (37)

where ϕui =
∥∥∥Ñu

i

∥∥∥2

. Hence, the mean value of (37) can be
expressed as

E

W/T∑
i=1

∥∥∥Ñi

∥∥∥2

 = E (ϕ) =
∂Mϕ(s)

∂s
|s=0, (38)

where Mϕ(s) =
∫
ϕ

eϕsfϕ(ϕ)dϕ. Since we have

2ϕui

(
i−1∑
j=0

∥∥Ψu
j

∥∥2
+ ‖Υu

i ‖
2
)σ2

∼ χ2(2Nr), (39)

the MGF of ϕui can be further obtained by

Mϕui
(s) = (1− (

i−1∑
j=0

∥∥Ψu
j

∥∥2
+ ‖Υu

i ‖
2
)σ2s)−Nr . (40)

Then, the MGF of ϕ is given by

Mϕ(s) =

W/T∏
i=1

Nt∏
u=1

(1− (

i−1∑
j=0

∥∥Ψu
j

∥∥2
+
∥∥∥Υ̃u

i

∥∥∥2

)σ2s)−Nr .

(41)
As a result, (38) is represented by

∂Mϕ(s)

∂s
|s=0 =

W/T∑
i=1

Nt∑
u=1

(

i−1∑
j=0

∥∥Ψu
j

∥∥2
+ ‖Υu

i ‖
2
)σ2Nr. (42)

Finally, (31) is simplified according to:

α̂ = arg min
α

E

(
W/T∑
i=1

∥∥∥Ñi

∥∥∥2
)

= arg min
α

{
W/T∑
i=1

Nt∑
u=1

[
(
i−1∑
j=0

∥∥Ψu
j

∥∥2
) + ‖Υu

i ‖
2

]
σ2Nr

}

= arg min
α

{
W/T∑
i=1

Nt∑
u=1

[
(
i−1∑
j=0

∥∥Ψu
j

∥∥2
) + ‖Υu

i ‖
2

]}

= arg min
α

{
W/T∑
i=1

[
‖Υi‖

2
+
i−1∑
j=0

∥∥Ψj

∥∥2

]}
.

(43)
It is plausible that the forgetting factor optimization is inde-
pendent of both Nr as well as of σ2 and can be expressed in
closed form without relying on any simulations.

C. Effective SNR analysis

According to (36), the average noise variance of W/T
blocks is expressed as

σ̄2
v =

W/T∑
i=1

[
‖Υi‖

2
+
i−1∑
j=0

∥∥Ψj

∥∥2

]
W/T︸ ︷︷ ︸
β

σ2, (44)
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Fig. 3. Theoretical forgetting factor design and effective SNR analysis for
T = 1, which is suitable for all the SNRs.
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Fig. 4. Theoretical forgetting factor design and effective SNR analysis for
T = 2, which is suitable for all the SNRs.

which is used for performance prediction. Moreover, the
specific effective SNR analysis can be derived based on the
noise variance of (36). In particular, the SNR-loss of the i-th
block due to non-coherent detection can be formulated as:

SNRP
i = 1

σ2+σi2
= 1

1+

Nt∑
u=1

i−1∑
j=0
‖Ψuj ‖2+‖Υui ‖

2

Nt

SNRCoherent
i

= SNRCoherent
i −10log10[1 +

Nt∑
u=1

i−1∑
j=0

∥∥Ψu
j

∥∥2
+ ‖Υu

i ‖
2

Nt
]︸ ︷︷ ︸

Lost SNR (dB)

.

(45)
As a result, the average SNR-loss for W/T blocks is expressed
as

SNRLost =

W/T∑
i=1

−10log10[1 +

Nt∑
u=1

(
i−1∑
j=0
‖Ψuj ‖2+‖Υui ‖

2

)
Nt

]

W/T
.

(46)
In order to gain further insights, Figs. 3 and 4 present the

optimal forgetting factor via (43), the average noise variance β
of (44) and the average SNR-loss of (46) in the case of T = 1
and T = 2, respectively. As observed from Fig. 3, the value
of β decreases as W increases and Nt/W decreases, hence
resulting in reduced performance loss. Specifically, the value
of β may be reduced to around 0 for Nt = 4 and W = 212,
which indicates that non-coherent detection did not impose any
extra noise and it is capable of approaching the performance
of its coherent counterpart. Similar trends can be observed in
the case of T = 2 in Fig. 4.

V. ABEP ANALYSIS OF S-RDSM SYSTEMS

In this section, the ABEP bound of the proposed S-RDSM
scheme is derived. In the proposed S-RDSM system, non-
coherent detection relies on the previous estimated data, which
may result in error propagation. As a result, the analysis of
error propagation is pivotal in the derivation of the ABEP
bound of the proposed S-RDSM system. Assuming that the
transmit signals of the i-th, the (i + 1)-st and the (i + 2)-nd
block are xti and xmi+1, xpi+2, respectively, and the correspond-
ing estimated signals are xji , xki+1 and xri+2, respectively, the
error propagation and the ABEP analysis are discussed in the
sequel.

A. Error propagation analysis
Assuming that no error occurs at the i-th and (i + 1)-st

block, according to (30), the reference signals Ŷt
i and Ŷm

i+1

having no error are formulated as

Ŷt
i = YiE

(1−α) + Ŷi−1X
t
iE

α

= HSi−1(Xt
iE1E

(1−α) + Xt
iE

α) + NiE
(1−α) + N̂i−1X

t
iE

α

= HSi + NiE
(1−α) + N̂i−1X

t
iE

α,
Ŷm
i+1 = Yi+1E

(1−α) + Ŷt
iX

m
i+1E

α

= Yi+1E
(1−α) + YiE

(1−α)Xm
i+1E

α + Ŷi−1X
t
iE

αXm
i+1E

α

= HSi+1 + Ni+1E
(1−α) + N̂iX

m
i+1E

α.
(47)

When an error occurs during a block signal’s detection, the
reference signals will include erroneous results, which results
in error propagation. Assuming that the erroneous result starts
at the i-th block, the error propagations of both the (i+ 1)-st
block, the (i+ 2)-nd blocks are analyzed.

1) Error occurs at the i-th block:
Assuming that the error occurs at the i-th block and

the transmit signal xti is estimated to xji , the probability
P (xti → xji ) of this pairwise error probability (PEP) event can
be calculated as
P (xti → xji |H)

= P (‖Yi − Ŷi−1X
t
iE1‖

2
≥ ‖Yi − Ŷi−1X

j
iE1‖

2
)

=P (‖Ni−N̄t
i‖

2≥‖HSi−1(Xt
iE1−Xj

iE1)+Ni−N̄j
i‖

2
)

≈ Q
(√
‖HSi−1(Xt

iE1−Xj
iE1)‖2

2(σ2 + σ2
i )

)
,

(48)
where we have N̄t

i = N̂i−1X
t
iE1, N̄j

i = N̂i−1X
j
iE1 and σ2

i

can be obtained via (36). According to (86)-(94) of Appendix
C, we have

P
(
xti → xji

)
= [ 1

2 −
1
2

√
c1

1+c1
]
TNr−1∑
k=0

(
TNr − 1 + k
k

) [
1
2 + 1

2

√
c1

1+c1

]k
,

(49)
where c1 = |xti − xji |2/4(σ2 + σ2

i ).
Since the i-th block’s signal Xt

i is estimated as Xj
i , the

reference signals Ŷj
i having one error can be expressed as

Ŷj
i = YiE

(1−α) + Ŷi−1X
j
iE

α

= (HSiE1 + Ni)E
(1−α) + (HSi−1 + N̂i−1)Xj

iE
α

= HSi−1(Xt
iE1E

(1−α)+Xj
iE

α)+NiE
(1−α) + N̂i−1X

j
iE

α.
(50)

This erroneous reference signals will give rise to error propa-
gations during the ensuring signal detection.
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2) Error propagation of the (i+ 1)-st block:
For the detection of the (i + 1)-st block with no error

propagation, there are only two outcomes: 1) xmi+1 has the
smallest Euclidean distance (ED); 2) xui+1 (xui+1 6= xmi+1)
has the smallest ED. When the erroneous reference signals
are employed for signal detection, there are also two error
events corresponding to these two outcomes. However, at high
SNRs, both P (xti → xji ) � 10−3 and P (xmi+1 → xui+1) �
10−3 hold true, hence we have P (xmi+1 → xmi+1) ≈ 1 and
2B∑
u 6=m

P (xmi+1→xui+1)� 10−3. Then it is readily seen that

P (xti→xji )

2B∑
u6=m

P (xmi+1→xui+1)︸ ︷︷ ︸
�10−3P (xti→xji )

� P (xti → xji )P (xmi+1→xmi+1)︸ ︷︷ ︸
P (xti→xji )

.

(51)
Hence, the error propagation imposed by the events of xji 6= xti
and xui+1 6= xmi+1 can be neglected. As a result, we mainly
consider the error propagation caused by the events of xji 6= xti
and xui+1 = xmi+1. In this case, we originally have∥∥∥Yi+1 − Ŷt

iX
m
i+1E1

∥∥∥2

= min
xi+1∈χ

∥∥∥Yi+1 − Ŷt
iXi+1E1

∥∥∥2

.

(52)
Since xti has been estimated to xji , the detection of the (i+1)-
st block signal becomes∥∥∥Yi+1 − Ŷj

iX
k
i+1E1

∥∥∥2

= min
xi+1∈χ

∥∥∥Yi+1 − Ŷj
iXi+1E1

∥∥∥2

.

(53)
Specifically, the right parts of (52) and (53) can be further
represented by

Yi+1 − Ŷt
iXi+1E1 = HSiX

m
i+1E1 + Ni+1

−(HSi + NiE
(1−α) + N̂i−1X

t
iE

α)Xi+1E1

= HSi−1(Xt
iX

m
i+1E1 −Xt

iXi+1E1)+

Ni+1−NiE
(1−α)Xi+1E1 − N̂i−1X

t
iE

αXi+1E1︸ ︷︷ ︸
Ni+1(α)

,
(54)

and

Yi+1 − Ŷj
iXi+1E1 = HSiXi+1E1 + Ni+1

−(HSi + NiE
(1−α) + N̂i−1X

j
iE

α)Xi+1E1

= HSi−1(Xt
iX

m
i+1E1 −Xj

iXi+1E1)+

Ni+1−NiE
(1−α)Xi+1E1 − N̂i−1X

j
iE

αXi+1E1︸ ︷︷ ︸
Ni+1,e(α)

.
(55)

Since the variances of Ni+1(α) and Ni+1,e(α) are similar,
we have∥∥∥Yi+1 − Ŷt

iX
m
i+1E1

∥∥∥2

≈
∥∥∥Yi+1 − Ŷj

iX
k
i+1E1

∥∥∥2

. (56)

Then it becomes plausible that Xt
iX

m
i+1 = Xj

iX
k
i+1 and

Xt
ix
m
i+1 = Xj

ix
k
i+1. Specifically, assuming that (qti , s

t
i),

(qmi+1, s
m
i+1), (qji , s

j
i ) and (qki+1, s

k
i+1) are the SPM index and

APM symbol of xti, xmi+1, xji and xki+1, both the index lj,ki+1

and the symbol sj,ki+1 of Xj
ix
k
i+1, as well as the index lt,mi+1 and

the symbol st,mi+1 of Xt
ix
m
i+1 can be obtained by

lj,ki+1 =

{
qji + qki+1 − 1, if qji + qki+1 − 1 ≤ Nt,
qji + qki+1 − 1−Nt, else,

lt,mi+1 =

{
qti + qmi+1 − 1, if qti + qmi+1 − 1 ≤ Nt,
qti + qmi+1 − 1−Nt, else,

sj,ki+1 = sjis
k
i+1, s

t,m
i+1 = stis

m
i+1.

(57)

Since Xj
ix
k
i+1 = Xt

ix
m
i+1 holds true, we have

lj,ki+1 = lt,mi+1, s
j,k
i+1 = st,mi+1. (58)

As a result, for a given transmit signal xti and xmi+1 as well
as for the erroneous result xji , the (i+ 1)-st block signal will
be definitely detected as

qki+1 =


qti + qmi+1 − q

j
i +Nt, if q

t
i + qmi+1 − q

j
i < 1,

qti + qmi+1 − q
j
i , if 1 ≤ qti + qmi+1 − q

j
i ≤ Nt,

qti + qmi+1 − q
j
i −Nt, if Nt < qti + qmi+1 − q

j
i ,

ski+1 = sj∗i s
t
is
m
i+1.

(59)
3) Error propagation of the (i+ 2)-nd block:
For the detection of the (i + 2)-nd block without error

propagation, there are also two outcomes: 1) xpi+2 has the
smallest ED; 2) xui+1 (xui+2 6= xpi+2) has the smallest ED,
which results in different error propagations. Due to the same
reason as illustrated in the (i + 1)-st block’s analysis, the
error propagation is mainly caused by the events of xji 6= xti,
xmi+1 6= xki+1 and xui+2 = xpi+2.

Based on the erroneous estimated results xji and xki+1, the
reference signal used for the (i + 2)-nd block’s detection is
updated via (21) as

Ŷk
i+1 = Yi+1E

(1−α) + Ŷj
iX

k
i+1E

α

= Yi+1E
(1−α) + (YiE

(1−α) + Ŷi−1X
j
iE

α)Xk
i+1E

α

= Yi+1E
(1−α) + YiE

(1−α)Xk
i+1E

α + Ŷi−1X
j
iE

αXk
i+1E

α

= HSi+1E1E
(1−α) + HSiE1E

(1−α)Xk
i+1E

α+
HSi−1X

t
iE

αXm
i+1E

α + Ni+1E
(1−α) + NiE

(1−α)Xk
i+1E

α

+N̂i−1X
t
iE

αXm
i+1E

α

= HSi(X
m
i+1E1E

(1−α) + E1E
(1−α)Xk

i+1E
α + EαXm

i+1E
α)

= HSi+1 + HSi[E1E
(1−α)(Xk

i+1E
α −Xm

i+1E
α)]

+Ni+1E
(1−α) + NiE

(1−α)Xk
i+1E

α + N̂i−1X
t
iE

αXm
i+1E

α.
(60)

For the case of α = 1, we have HSi[E1E
(1−α)(Xk

i+1E
α−

Xm
i+1E

α)] = NiE
(1−α)Xk

i+1E
α = ONr×Nt . Then it be-

comes plausible that we have Ŷk
i+1 = Ŷm

i+1 and hence no
error is encountered by the reference signal Ŷk

i+1.
For the case of α 6= 1, since xti has been estimated to xji ,

xmi+1 has been estimated to xki+1, the detection of the (i+2)-nd
block becomes∥∥∥Yi+2 − Ŷk

i+1X
r
i+2E1

∥∥∥2

= min
xi+2∈χ

∥∥∥Yi+2 − Ŷk
i+1Xi+2E1

∥∥∥2

.

(61)
Specifically, the values of Yi+2 − Ŷk

i+1X
p
i+2E1 and
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Yi+2 − Ŷk
i+1X

r
i+2E1 can be further represented by

Yi+2 − Ŷk
i+1X

p
i+2E1

= HSi[E1E
(1−α)(Xk

i+1E
α −Xm

i+1E
α)]Xp

i+2E1︸ ︷︷ ︸
Nerror
i+2,p

+Ni+2

−(Ni+1E
(1−α)+NiE

(1−α)Xk
i+1E

α+N̂i−1X
t
iE

αXm
i+1E

α)Xp
i+2E1︸ ︷︷ ︸

Ni+2,e,p(α)

,

(62)

Yi+2 − Ŷk
i+1X

r
i+2E1

= HSi+2E1 −HSi+1X
r
i+2E1−

HSi[E1E
(1−α)(Xk

i+1E
α −Xm

i+1E
α)]Xr

i+2E1︸ ︷︷ ︸
Nerror
i+2,r

+Ni+2

−(Ni+1E
(1−α)+NiE

(1−α)Xk
i+1E

α+N̂i−1X
t
iE

αXm
i+1E

α)Xr
i+2E1︸ ︷︷ ︸

Ni+2,e,r(α)

.

(63)
Since the variances of Ni+2,e,p(α) and Ni+2,e,r(α) are close

to σ2
i+2, and the average variances of Nerror

i+2,r and Nerror
i+2,p are

similar, we have

P (Xp
i+2 → Xr

i+2|Ŷk
i+1)

= P (‖Yi+2 − Ŷk
i+1X

r
i+2E1‖2) ≤ P (‖Yi+2 − Ŷk

i+1X
p
i+2E1‖2)

= Q

(√
‖HSi+1(X

p
i+2E1−Xri+2E1)‖2

2(σ2 + V (Nerror
i+2 ) + σ2

i+2

)
,

(64)
where V (Nerror

i+2) denotes the variance of Nerror
i+2,r or Nerror

i+2,p.
Upon considering T = 1 and M = 4 for example, the value
of V (Nerror

i+2) belongs to the set

V (Nerror
i+2) = (0, α2

1α
2, α2

1, 2α
2
1α

2, 2α2
1, 4α

2
1α

2, 4α2
1), (65)

with α1 = 1 − α. The corresponding probabilities can be
obtained via (98) of Appendix D as

P (V (Nerror
i+2 = α2

1α
2) = (Nt−1)2M2

(NtM)3Nt
,

P (V (Nerror
i+2 = α2

1) = (Nt−1)22M2

(NtM)3Nt
,

P (V (Nerror
i+2 = 2α2

1α
2) = 2M2

(NtM)3 ,

P (V (Nerror
i+2 = 2α2

1) = 2(Nt−1)M2

(NtM)3 ,

P (V (Nerror
i+2 = 4α2

1α
2) = M2

(NtM)3 ,

P (V (Nerror
i+2 = 4α2

1) = (Nt−1)M2

(NtM)3 .

(66)

The average value of V (Nerror
i+2) can be obtained by (65)-(66).

To provide further insights, Table III presents the value of
V (Nerror

i+2) for T = 1 and M = 4. Observe from Table III that
the probability of V (Nerror

i+2) = α2
1 = (1 − α)2 is the largest

and decreases as Nt increases. Since α is chosen close to 1,
the value of V (Nerror

i+2) = α2
1 is small. To be more specific,

Table IV presents the average value of V (Nerror
i+2) for α = 0.8

and M = 4. Observe from Table IV that the average value of
V (Nerror

i+2) is close to zero in the context of large-scale MIMO
setups. As a result, we have

P (Xt
i → Xj

i ,X
p
i+2 → Xr

i+2)

= P (Xp
i+2 → Xr

i+2|Ŷk
i+1)P (Xt

i → Xj
i )

≈ P (Xp
i+2 → Xr

i+2)P (Xt
i → Xj

i ).

(67)

Since P (Xp
i+2 → Xr

i+2) � 10−3 at high SNRs, we have
P (Xt

i → Xj
i ,X

p
i+2 → Xr

i+2) � P (Xt
i → Xj

i ). It can

TABLE III
THE VALUE OF V (N ERROR

i+2 ) OF (65) AND ITS CORRESPONDING
PROBABILITY OF (66) FOR T = 1 AND M = 4.

Nt
P V (N error

i+2 ) 0 α2
1α

2 α2
1 2α2

1α
2 2α2

1 4α2
1α

2 4α2
1

Nt = 4 0.58 0.09 0.28 7e-3 0.02 4e-3 0.01
Nt = 8 0.77 0.03 0.19 1e-2 7e-3 5e-4 3e-3
Nt = 16 0.88 7e-3 0.11 1e-4 2e-3 1e-4 9e-4

TABLE IV
AVERAGE VALUE OF V (N ERROR

i+2 ) FOR α = 0.8 AND M = 4 CALCULATING
BY (65) AND (66).

T
Nt 4 8 16

T = 1 0.0182 0.0095 0.0049
T = 2 0.0328 0.0182 0.0095

be concluded that the error propagation of the (i + 2)-nd
block can be neglected. Hence the error propagation is mainly
encountered by a pair of adjacent blocks.

B. Approximate upper bound of the S-RDSM system

According to our error propagation analysis, the ABEP of
the (i+ 1)-st block is mainly associated with the i-th block’s
signal detection, which has two estimated results at the i-th
block: 1) xji = xti; 2) xji 6= xti. Hence the approximate upper
ABEP bound of the (i+ 1)-st block can be formulated as:

PUb,i+1 =
1

2B

2B∑
t=1

P i+1
b,xti→xti

P (xti → xti)︸ ︷︷ ︸
ABEP of xji=xti

+

1

2B

2B∑
t=1

2B∑
j=1

P i+1

b,xti→xji
P (xti → xji )︸ ︷︷ ︸

ABEP of xji 6=xti

,

(68)

where P i+1
b,xti→xti

and P i+1

b,xti→xji
denote the ABEP of the con-

ditions of xji = xti and xji 6= xti at the (i + 1)-st block,
respectively.

1) Calculation of P (xti → xti):
The probability of P (xti → xti) is obtained by

P
(
xti → xti

)
=


0, if

2B∑
j=1,j 6=t

P (xti → xji ) > 1,

1−
2B∑

j=1,j 6=t
P (xti → xji ), else.

(69)

2) Calculation of P i+1
b,xti→xti

:
In this case, we can ignore the effect of error propagation,

hence the value of P i+1
b,xti→xti

can be formulated as:

P i+1
b,xti→xti

=
1

B2B

2B∑
t=1

2B∑
j=1,j 6=t

P (xmi+1 → xki+1)d(xmi+1,x
k
i+1),

(70)
where d(xmi+1,x

k
i+1) is the Hamming distance (HD) of xmi+1

and xki+1, P (xmi+1 → xki+1) denotes the PEP, which can be
obtained by (49) with c1 = |xmi+1 − xki+1|2/4(σ2 + σ2

i+1).



10

0 5 10 15 20 25

SNR/dB

10-4

10-3

10-2

10-1

100
B

E
R

Coherent SM theo.

Pro. S-RDSM,       , sim.=1a

Pro. S-RDSM,       , theo.=1a

Pro. S-RDSM, opt.   , sim.a

Pro. S-RDSM, opt.   , theo.a

T=1

T=2

10-5

Fig. 5. Theoretical ABEP results of the proposed S-RDSM system with
Nt = 4, Nr = 4,W = 256, which are calculated by (73).

3) Calculation of P i+1

b,xti→xji
: For the case of the event of

xti → xji , the value of P i+1

b,xti→xji
can be formulated as:

P i+1

b,xti→xji
=

1

B2B

2B∑
m=1

2B∑
k=1

P (xmi+1→xki+1|xti→xji )d(xmi+1,x
k
i+1),

(71)
where P (xmi+1 → xki+1|xti → xji ) is the PEP event under the
condition of xji 6= xti, which is close to 1 based on our error
propagation analysis and d(xmi+1,x

k
i+1) can be obtained by

(59). By substituting (69), (70), (71) and (49) into (68), we
can derive the approximate upper bound of the ABEP as

PUb,i+1 = 1
2B

2B∑
t=1

P i+1
b,xti→xti︸ ︷︷ ︸
by (70)

P
(
xti → xti

)︸ ︷︷ ︸
by (69)

+
2B∑
j 6=t

P
(
xti → xji

)
︸ ︷︷ ︸

by (49)

1
B2B

2B∑
m=1

d[(qki+1, s
k
i+1), (qmi+1, s

m
i+1)︸ ︷︷ ︸

by (59)

 .
(72)

As a result, the average approximate upper ABEP bound
for W/T blocks is obtained by

PUb =

W/T∑
i=1

PUb,i+1

W/T
. (73)

VI. SIMULATION RESULTS

In this section, the performance of the proposed S-RDSM,
of the existing RDSM and of coherent SM systems are com-
pared in flat Rayleigh fading channels. In all the comparisons,
the HL-ML detector is employed for the proposed S-RDSM
system and the ML detector is used for the other systems.

Figs. 5-8 portrays the theoretical ABEP upper bounds of
our proposed S-RDSM systems in conjunction with different
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Fig. 6. Theoretical ABEP results of the proposed S-RDSM system with
Nt = 8, Nr = 4,W = 256, which are calculated by (73).
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Fig. 7. Theoretical ABEP results of the proposed S-RDSM system with
Nt = 16, Nr = 4,W = 256, which are calculated by (73).

number of TAs Nt = 4, 8, 16, 64 at W = 256, Nr = 4. The
factors of α = 0.88, 0.84, 0.78, 0.71, 0.62 are used for Nt =
4, 8, 16, 64 at T = 1, while α = 0.87, 0.81, 0.73, 0.64, 0.55 are
used for Nt = 4, 8, 16, 64 at T = 2. Moreover, the theoretical
coherent SM results having an identical throughput are added
as benchmarkers.

Observe from Figs. 5-8 that the upper bounds derived
for the proposed S-RDSM systems operating both with and
without a forgetting factor become very tight upon increasing
the SNR values. Furthermore, the proposed S-RDSM system
using the optimized forgetting factor is capable of providing
significant performance gains over its counterpart operating
without a forgetting factor. As the ratio Nt/W decreases, the
performance advantage of using the optimal factor becomes
more dominant.

Figs. 9 and 10 compare the performance of the proposed
S-RDSM system to that of the existing RDSM systems and
coherent SM systems at 8 bpcu and 9 bpcu, respectively.
Specifically, in Fig. 8, Nt = 64, Nr = 4, T = 1, L = 4
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Fig. 8. Theoretical ABEP results of the proposed S-RDSM system with
Nt = 64, Nr = 4,W = 256, which are calculated by (73).

and W = 256, 512, 1024, 2048 are used for the proposed S-
RDSM system, while Nt = 64, Nr = 4, T = 1, L = 4
and W = 256 are used in the conventional RDSM [34]
systems; α = 0.62, 0.7, 0.78, 0.84 are employed for W =
256, 512, 1024, 2048; Nt = 64, Nr = 4, L = 4 are employed
for the coherent SM system. In Fig. 9, Nt = 128, Nr = 4, T =
1, L = 4 are employed for both the proposed S-RDSM and the
conventional RDSM systems, while Nt = 128, Nr = 4, L = 4
are employed for its coherent SM counterpart. α = 0.7 and
α = 0.8 are selected for W = 1024 and 2048, respectively.
Furthermore, the coherent SM relying on realistic estimated
channel has been added for comparison. According to [37],
the estimated channel matrix can be expressed as

_

H = H + He, (74)

where He ∈ CNr×Nt , whose elements obey the complex
Gaussian distributions CN

(
0, σ2

e

)
.

It is observed from Figs. 9-10 that the performance of the
proposed S-RDSM system is comparable to that of convention-
al RDSM systems, despite its simplified structure. As predicted
in Fig. 3(b), the performance of the proposed S-RDSM system
improves, as the value of W increases. This is because as
W increases, the average noise variance imposed by the non-
coherent detector is reduced. Furthermore, it is also seen from
Figs. 9-10 that the proposed S-RDSM system is capable of
providing a 1.5-dB performance gain over the coherent SM
with σ2

e = σ2.

VII. CONCLUSIONS

Simplified rectangular differential spatial modulation was
conceived for massive MIMO downlink communication with-
out the knowledge of CSI. The proposed S-RDSM system
retains all the advantages of its coherent SM counterpart,
including its high transmit rate, low-complexity bit-to-symbol
mapping and signal detection. The approximate ABEP upper
bounds of the proposed S-RDSM system have been derived
and validated by the simulation results. Furthermore, we
proposed a novel forgetting factor optimization method relying
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Fig. 9. Performance comparisons of the proposed S-RDSM systems to the
existing RDSM and coherent SM systems having Nt = 64 at 8 bpcu.
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Fig. 10. Performance comparisons of the proposed S-RDSM systems to the
existing RDSM and coherent SM systems having Nt = 128 at 9 bpcu.

on a closed-form expression instead of simulations, as seen
in the literature. Both the simulation and theoretical results
have demonstrated that the proposed S-RDSM system using
the optimized forgetting factor is capable of approaching
the performance of its coherent counterpart, but without CSI
knowledge, which is very attractive for future massive MIMO
communications.

APPENDIX A
PROOF OF HL-ML DETECTOR

According to (23), (25) and (26), it becomes plausible that
the main difference between the ML detector and the HL-ML
detector is the way of obtaining ŝi. If we can prove that the
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following expression

s̃q = arg min
∀s

[
T∑
τ=1

∥∥∥Ŷ〈q+τ−1〉
i−1

∥∥∥2

−2<(
T∑
τ=1

(Yτ
i )
H

Ŷ
〈q+τ−1〉
i−1 s)

]
= arg max

∀s
<(

T∑
τ=1

(Yτ
i )
H

Ŷ
〈q+τ−1〉
i−1 /

T∑
τ=1

∥∥∥Ŷ〈q+τ−1〉
i−1

∥∥∥2

︸ ︷︷ ︸
a+jb

s),

(75)
holds true, then we can conclude that the outputs of the HL-
ML detector and the ML detector are identical.

Specifically, assuming s̃q = D(a− jb) = c+ jd, s = c1 +
jd1 6= s̃q and c2 + d2 = c21 + d2

1 = 1, we have

|a− jb− s̃q|2 < |a− jb− s|2, (76)

hence we obtain
(a− c)2 + (b+ d)2 < (a− c1)2 + (b+ d1)2

m
−2ac+ c2 + 2bd+ d2 < −2ac1 + c1

2 + 2bd+ d1
2

m
ac− bd > ac1 − bd1
m
< [(a+ jb)(c+ jd)] > < [(a+ jb)(c1 + jd1)] .

(77)

As a result, to satisfy (75), we should have
s̃q = D(a− jb)

= D

[
(
T∑
τ=1

(Yτ
i )
H

Ŷ
〈q+τ−1〉
i−1 /

T∑
τ=1

∥∥∥Ŷ〈q+τ−1〉
i−1

∥∥∥2

)

∗]
= D

[
T∑
τ=1

(Ŷ
〈q+τ−1〉
i−1 )

H
Yτ
i /

T∑
τ=1

∥∥∥Ŷ〈q+τ−1〉
i−1

∥∥∥2
]
.

(78)

According to the above analysis, when s̃q is defined by (24),
then (25) and (26) yield the same performance as the ML
detector of (20).

APPENDIX B
PROOF OF EQ. (30)

Ŷi−1 = Yi−1E
(1−α) + Ŷi−2X̂i−1E

α

= Yi−1E
(1−α) + (Yi−2E

(1−α) + Ŷi−3X̂i−2E
α)X̂i−1E

α

= Yi−1E
(1−α) + Yi−2E

(1−α)X̂i−1E
α

+Yi−3E
(1−α)X̂i−2E

αX̂i−1E
α

+· · ·+ Y1E
(1−α)X̂2E

α · · · X̂i−1E
α+Ŷ0X̂1E

α · · · X̂i−1E
α

= H(Si−1E1E
(1−α) + Si−2E1E

(1−α)X̂i−1E
α + · · ·+

S1E1E
(1−α)X̂2E

α· · ·X̂i−1E
α+X̂1E

αX̂2E
α· · ·X̂i−1E

α)+N̂i−1
(79)

with
N̂i−1=Ni−1E

(1−α) + Ni−2E
(1−α)X̂i−1E

α + · · ·+
N1E

(1−α)X̂2E
α · · · X̂i−1E

α + N0X̂1E
αX̂2E

α · · · X̂i−1E
α

(80)
Assuming that no error is encountered by the previous (i− 1)
blocks, since E1E

(1−α)+Eα=INt , we have

Si−1E1E
(1−α) + Si−2E1E

(1−α)X̂i−1E
α + · · ·+

S1E1E
(1−α)X̂2E

α · · · X̂i−1E
α + X̂1E

αX̂2E
α · · · X̂i−1E

α

= Si−1E1E
(1−α) + Si−2E1E

(1−α)X̂i−1E
α + · · ·+

S1X̂2E
α · · · X̂i−1E

α

= Si−1E1E
(1−α) + Si−2X̂i−1E

α

= Si−2(X̂i−1E1E
(1−α) + X̂i−1E

α)
= Si−2X̂i−1
= Si−1.

(81)

Hence, Eq. (71) can be simplified by (30).

APPENDIX C
PROOF OF EQ. (49)

According to (48), the PEP event of P (xti → xji |Hi) can
be expressed as

P (xti → xji |Hi)

= P

(∥∥∥Yi − Ŷi−1X
t,[1:T ]
i

∥∥∥2

≥
∥∥∥Yi − Ŷi−1X

j,[1:T ]
i

∥∥∥2
)

= P (‖Ni−Ñt
i︸ ︷︷ ︸

Θi,t

‖
2
≥ ‖Ni−Ñj

i︸ ︷︷ ︸
Θi,j

−HiSi−1(X
t,[1:T ]
i −X

j,[1:T ]
i )︸ ︷︷ ︸

∆

‖
2
)

= P

(
T∑
τ=1

∥∥Θτ
i,t

∥∥2 ≥
T∑
τ=1

∥∥Θτ
i,j −∆τ

∥∥2
)
,

(82)
where Ñt

i = N̂i−1X
t,[1:T ]
i , Ñj

i = N̂i−1X
j,[1:T ]
i ,

∆τ ,Θτ
i,t,Θ

τ
i,j are the τ column of ∆,Θi,t,Θi,j . Since we have

Θi,t ∈ CN (0, σ2 +σ2
i ),Θi,j ∈ CN (0, σ2 +σ2

i ) at high SNRs,
(82) can be further represented by

P (xti → xji |Hi) = P (

T∑
τ=1

2<
[(

Θτ
i,t

)H
∆τ
]
≥

T∑
τ=1

‖∆τ‖2),

(83)
with

2<
[(

Θτ
i,t

)H
∆τ
]
∈ N (0, 2(σ2 + σ2

i ))‖∆τ‖2). (84)

Hence, we can obtain that

T∑
τ=1

2<
[(

Θτ
i,t

)H
∆τ
]
∈ N (0, 2(σ2 + σ2

i )

T∑
τ=1

‖∆τ‖2), (85)

and P (xti → xji |Hi) can be expressed as

P (xti → xji |Hi) ≈ Q


√√√√ T∑
τ=1

‖∆τ‖2/2(σ2 + σ2
i )

 , (86)

where we have Q(x) = 1
π

π
2∫
0

exp
(
− x2

2 sin θ2

)
dθ. As a result,

the PEP value can be expressed as

P
(
xti → xji

)
= 1

π

π
2∫
0

∫
γ

fγ(γ) exp
(
− γ

4(σ2+σ2
i ) sin θ2

)
dθ

= 1
π

π
2∫
0

Mγ(− 1
4(σ2+σ2

i ) sin θ2 )dθ,

(87)

where γ =
∥∥∥HiSi−1(xti − xji )

∥∥∥2

=
T∑
τ=1
‖∆τ‖2 and

Mγ(s) =
∫
γ

eγsfγ(γ)dγ =
∫
∆

e

T∑
τ=1
‖∆τ‖2s

f∆(∆)d∆

=
∫

∆1

e‖∆
1‖2sf∆1(∆1)d∆1 · · ·

∫
∆1

e‖∆
T‖2sf∆T (∆T )d∆T

=
∏T
τ=1M‖∆τ‖2s(s).

(88)



13

Moreover, the value of ‖∆τ‖2 can be further expressed as

γτ = ‖∆τ‖2 =
∥∥∥HiSi−1(X

t,[τ ]
i −X

j,[τ ]
i )

∥∥∥2

=
∥∥∥hlt,τi si−1s

t
i − hlj,τi

si−1s
j
i

∥∥∥2

=
Nr∑
r=1

∣∣∣hrlt,τi si−1s
t
i − hrlj,τi si−1s

j
i

∣∣∣2︸ ︷︷ ︸
γτr

.

(89)

According to (57), the index of the τ -th column of Xt
i and

Xj
i can be expressed as

lt,τi =

{
qi−1 + qti + τ − 2, if qi−1 + qti + τ − 2 ≤ Nt;
qi−1 + qti + τ − 2−Nt, if qi−1 + qti + τ − 2 > Nt,

lj,τi =

{
qi−1 + qji + τ − 2, if qi−1 + qti + τ − 2 ≤ Nt;
qi−1 + qji + τ − 2−Nt, if qi−1 + qti + τ − 2 > Nt,

(90)
where qi−1 and si−1 are the SPM index and APM symbol of
the first column of Si−1. Hence, γτr can be further expressed
as

γτr =

{
|si−1|2|sti − s

j
i |2|hrlt,τi |

2, if qti = qji ,

|si−1|2|hrlt,τi sti − hrlj,τi
sni |2, if qti 6= qji .

(91)

Since |hr
lt,τi
|2 ∼ EXP(1) and |hr

lt,τi
sti − hrlji

sni |
2 ∼ χ2(2)

follow the exponentially and chi-square distributions, respec-
tively, while the MGF of γτr is given by

Mγτr
(s) =

{
(1− |sti − s

j
i |2s)

−1
, if qti = qji ,

(1− 2s)
−1
, if qti 6= qji .

= (1− |xti − xji |2s)−1.

(92)

According to (88) and (92), the MGF of γ is obtained by

Mγ(s) =
T∏
τ=1

Nr∏
r=1

Mγτr
(s) = (1− |xti − xji |

2
s)
−TNr

. (93)

According to (87), the value of P
(
xti → xji

)
can be finally

formulated as

P
(
xti → xji

)
= 1

π

π
2∫
0

∫
γ

fγ(γ) exp
(
− γ

4(σ2+σ2
i ) sin θ2

)
dθ

= 1
π

π
2∫
0

(1 +
‖xti−x

j
i‖

2

4(σ2+σ2
i )

)
−TNr

dθ

= [ 1
2 −

1
2

√
c

1+c ]
TNr−1∑
k=0

(
TNr − 1 + k
k

) [
1
2 + 1

2

√
c

1+c

]k
,

(94)
where c = ‖xti − xji‖2/4(σ2 + σ2

i ).

APPENDIX D
PROOF OF (66)

In this section, we demonstrated that the value of
HSi[E1E

(1−α)(Xk
i+1E

α − Xm
i+1E

α)]Xi+2E1 is always a
zero matrix or a matrix having small values. Assuming that

Ỹi = HSiE1, whose elements obey CN (0, 1) we have

ỸiE
(1−α)Xm

i+1E
αXi+2E1

=
[
(1− α)Ỹ1

i , · · · , (1− α)ỸT
i ,0, · · · ,0

]
Xm
i+1E

αXi+2E1

=
[
(1− α)smi+1Ỹ

qmi+1

i , · · · , (1− α)smi+1Ỹ
T
i ,0, · · · ,0,

(1− α)smi+1Ỹ
1
i , · · · , (1− α)smi+1Ỹ

qmi+1−1

i

]
EαXi+2E1,

ỸiE
(1−α)Xk

i+1E
αXi+2E1

=
[
(1− α)Ỹ1

i , · · · , (1− α)ỸT
i ,0, · · · ,0

]
Xk
i+1E

αXi+2E1

=

[
(1− α)ski+1Ỹ

qki+1

i , · · · , (1− α)ski+1Ỹ
T
i ,0, · · · ,0,

(1− α)ski+1Ỹ
1
i , · · · , (1− α)ski+1Ỹ

qki+1−1

i

]
EαXi+2E1.

(95)

To achieve a high throughput, we usually have T = 1, so
that we have

V (Nerror
i+2)

= V [ỸiE
(1−α)(Xm

i+1 −Xk
i+1)EαXr

i+2E1]

=

{
V (Y∆), if qki+1 = qmi+1, s

k
i+1 6= smi+1,

Vm + Vk, if qki+1 6= qmi+1,

(96)

with

Y∆ =

[
· · · (1− α)Λi+1Ỹ

qki+1

i , · · · ,0,
]

EαXr
i+2E1

V (Y∆)

=

(1− α)2α2Λ2
i+11, if q

k
i+1 = qri+2 = 1,

(1− α)2Λ2
i+11, if q

k
i+1 6= 1,

〈
qki+1 + qri+2 − 1

〉
= 1,

0Nr×1, else,

Vm = V (ỸiE
(1−α)Xm

i+1E
αXr

i+2E1)

=

{
(1− α)2α21, if qmi+1 = qri+2 = 1
(1− α)21, if qmi+1 6= 1,

〈
qmi+1 + qri+2 − 1

〉
= 1

0, else
Vk = V (ỸiE

(1−α)Xk
i+1E

αXr
i+2E1)

=

(1− α)2α21, if qki+1 = qri+2 = 1,
(1− α)21, if qki+1 6= 1,

〈
qki+1 + qri+2 − 1

〉
= 1,

0, else,
(97)

where V (x) represents the variance of x and Λi+1 = smi+1 −
ski+1.

V (Nerror
i+2)

=



(1− α)2α2Λ2
i+11, if q

k
i+1 = qmi+1 = qri+2 = 1,

(1− α)2Λ2
i+11, if q

k
i+1 = qmi+1 6= 1,

〈
qmi+1 + qri+2 − 1

〉
= 1,

(1− α)2α21, if qri+2 = 1, qmi+1 = 1, qki+1 6= 1,
(1− α)2α21, if qri+2 = 1, qmi+1 6= 1, qki+1 = 1,
(1− α)21, if qri+2 6= 1, qmi+1 6= qki+1,

〈
qmi+1 + qri+2 − 1

〉
= 1

0, else.
(98)

According to (98), we can obtain the corresponding probabil-
ities by (66).
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