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ABSTRACT 
The ground-steering system is a part of the nose landing gear, which is fundamental to an aircraft’s safety. A sensing 
mechanism estimates the wheel direction, which is then fed back to the controller in order to calculate the error between the 
desired steering angle and the actual steering angle. As in many safety-critical control systems, the sensing mechanism for the 
nose wheel direction requires the use of multiple redundant sensors to estimate the same controlled signal. A virtual sensing 
technique is commonly employed, which estimates the steering angle using the measurements of multiple remote 
displacement sensors. The wheel position is then calculated on the basis of the nonlinear alignment of these sensors. 

In practice, however, each sensor is subject to uncertainty, minor and major faults and there is also ambiguity associated with 
the estimate of the steering angle because of the geometric nonlinearity. The redundant sensor outputs are thus different from 
each other, and it is important to reliably estimate the controlled signal under these conditions. 

This paper presents the development of a digital twin of the ground-steering system, in which the effect of uncertainties and 
faults can be systematically analysed. A number of state estimation algorithms are investigated under several scenarios of 
uncertainty and sensor faults. Two of these algorithms are based on a least squares estimation approach, the other algorithm, 
instead, calculates the steering angle estimate using a soft-computing approach. It is shown that the soft-computing 
estimation algorithm is more robust than the least squares based methods in the presence of uncertainties and sensor faults. 
The propagation of an uncertainty interval from the sensor outputs to the steering angle estimate is also investigated, in order 
to calculate the error bounds on the estimated controlled signal. The optimal arrangement of the sensors is also investigated 
using a parametric study of the uncertainty propagation, in which the optimal model parameters are the ones that generates 
the smallest uncertainty interval for the estimate. 
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INTRODUCTION 
The ground-steering system is a part of the nose landing gear, which is fundamental to an aircraft’s safety. A ground-steering 
system commonly consists of two linear actuators (electric or hydraulic), a power supply, a control valve, a follow-up device 
between the gear and the steering collar, a sensing mechanism, a control valve, a pilot control (switch) and a pilot-operated 
steering wheel, which can be either a bar or the rudder pedals or a combination of them [1]. The feedback signal of the 
ground-steering control loop is the steering angle of the nose wheel, which is then used to calculate the error between the 
desired steering angle and the actual steering angle. 

Although the wheel direction cannot usually be measured directly with an angular sensor, a virtual sensing technique is 
adopted, which estimates the steering angle using redundant measurements remote from the position of interest. Multiple 
linear displacement sensors are arranged on a mechanism that is similar to the dual push-pull steering mechanism [2] and the 



nonlinear geometry of the sensor arrangement is used to calculate the wheel angular position. If the sensors were to operate 
perfectly, only a subset of them would need to be used for the estimation. In practice, however, the sensors are subject to 
uncertainty, minor or major faults and their operation may be nonlinear. Therefore, it is crucial to reliably estimate the 
controlled signal under these conditions, assessing the degree of confidence with which each sensor should be treated. 

This paper presents the development of a digital twin of the ground-steering system, in which the effect of uncertainties and 
faults can be systematically analysed. Three state estimation algorithms are discussed that calculate the steering angle 
estimate under several scenarios including model uncertainty, measurement noise and sensor faults. 

The paper is organized as follows. The development of the digital twin is first presented in section 2. An interval type of 
uncertainty in the sensor outputs is then introduced in section 3 in order to calculate the propagated uncertainty interval in the 
steering angle estimation. Three state estimation algorithms are investigated in section 4, two of which are least squares based 
approaches and the remaining one is a soft-computing method. The results of the comparison among the estimation 
algorithms in terms of estimation accuracy when the digital twin is affected by model uncertainty, sensor noise and potential 
sensor faults, are presented in section 5. The conclusions are summarized in section 6. 

DIGITAL TWIN OF THE GROUND-STEERING SYSTEM 
The steering angle is estimated using a virtual sensing technique, which consists of multiple linear variable differential 
transformer (LVDT) sensors remotely located from the position of interest. The wheel direction is then calculated based on 
the nonlinear geometry of the sensor alignment. A model of the ground-steering sensing mechanism is shown in Figure 1, in 
which four LVDTs are used, two on the left arm and two on the right arm. The model parameters, which are given in Table 1, 
have been selected according to the study in [2]. 

According to the schematic in Figure 1, the controlled signal 𝛼𝛼 is estimated from the measurements of the left (𝑑𝑑𝐿𝐿1,𝑑𝑑𝐿𝐿2) and 
right (𝑑𝑑𝑅𝑅1,𝑑𝑑𝑅𝑅2) LVDTs, respectively. In practice, however, the model parameters of the sensing mechanism are subject to 
uncertainty, as well as the sensor outputs. The LVDTs can also be affected by minor or major faults and there is ambiguity 
associated with all of the sensors due to the nonlinearity. The digital twin of the ground-steering system consists of the 
sensing mechanism model together with the uncertainties associated with its parameters, the noise in the sensor outputs and 
the potential faults in the LVDTs. 

 
Figure 1: Schematic of the ground-steering sensing mechanism for the steering angle estimation, which includes the 4 LVDT sensors. 
 



The nonlinear relationship between the wheel direction and the outputs from the LVDTs can be studied through a kinematic 
analysis of position in which it is assumed that the model parameters are exact and the output from the sensors are ideal, 
hence without any noise of faults.  

Table 1: Assumed model parameters, according to the schematic of Figure 1. 
Parameter Value Units 

𝑒𝑒 200 mm 
𝑙𝑙 153 mm 
𝜂𝜂 44 deg 
𝛾𝛾 26 deg 

 

The derivation of the relationship between the steering angle and the sensor outputs can be found in [3] and is omitted in this 
paper. However, it results in the following set of equations, 

 
�
𝑑𝑑𝐿𝐿𝐿𝐿2 = 𝑙𝑙2 + 𝑎𝑎2 + 𝑏𝑏2 − 2𝑙𝑙[𝑎𝑎 cos(𝛼𝛼 + 𝛾𝛾) + 𝑏𝑏 sin(𝛼𝛼 + 𝛾𝛾)]
𝑑𝑑𝑅𝑅𝑅𝑅2 = 𝑙𝑙2 + 𝑎𝑎2 + 𝑏𝑏2 − 2𝑙𝑙[𝑎𝑎 cos(𝛼𝛼 − 𝛾𝛾) − 𝑏𝑏 sin(𝛼𝛼 − 𝛾𝛾)]

, (1) 

in which 𝛼𝛼 is the steering angle, (𝑑𝑑𝐿𝐿𝐿𝐿 ,𝑑𝑑𝑅𝑅𝑅𝑅) are the sensor outputs and 𝑙𝑙, 𝑎𝑎, 𝑏𝑏, 𝛾𝛾 are the model parameters. The relationship 
between the outputs from the LVDTs and the steering angle defined by Eq. (1) is also shown by the solid red line in Figure 
2(a). Since it was assumed that the sensor were ideal, hence without being affected by noise and faults, both right LVDTs 
give the same output and both left LVDTs give the same output. In this case only a subset of the four sensors would be 
needed to calculate the steering angle. A couple of one left and one right sensor measurements will determine a unique value 
of the steering angle, as shown in Figure 2(a). The red line in Figure 2(a) can be projected onto the x-y plane, which results 
on the black solid line shown in Figure 2(b). This curve relates a subset of left and right sensor measurements to its unique 
steering angle value. However, if only a left or a right sensor output was used, there would be ambiguity on the value of the 
actual steering angle, because the nonlinear relationship between the steering angle and each sensor output generates double 
solutions. When both left and right steering angle are used, only two out of the four possible solutions are recurring and can 
be considered as the actual steering angle. 

The set of Eqs. (1) can be rewritten in an explicit form in order to solve the inverse problem of determining the unknown 
steering angle from the known sensor outputs. Hence, Eq. (1) becomes, 

 
�

sin(𝛼𝛼)[𝑏𝑏 cos(𝛾𝛾) − 𝑎𝑎 sin(𝛾𝛾)] + cos(𝛼𝛼)[𝑎𝑎 cos(𝛾𝛾) + 𝑏𝑏 sin(𝛾𝛾)] − 𝑙𝑙2+𝑎𝑎2+𝑏𝑏2−𝑑𝑑𝐿𝐿𝐿𝐿
2

2𝑙𝑙
= 0

sin(𝛼𝛼)[𝑎𝑎 sin(𝛾𝛾) − 𝑏𝑏 cos(𝛾𝛾)] + cos(𝛼𝛼)[𝑎𝑎 cos(𝛾𝛾) + 𝑏𝑏 sin(𝛾𝛾)] − 𝑙𝑙2+𝑎𝑎2+𝑏𝑏2−𝑑𝑑𝑅𝑅𝑅𝑅
2

2𝑙𝑙
= 0

. (2) 

Given a pair of measurements (𝑑𝑑𝐿𝐿 ,𝑑𝑑𝑅𝑅), the steering angle estimate can be found by solving Eq. (2) by iteration using for 
example Newton-Raphson method. In this ideal scenario without uncertainties and faults, the solution of Eq. (2) generates the 
same solution of Eq. (1), which is shown with the red line in Figure 2(a). 



 

 

 
(a)  (b) 

Figure 2: (a) Variation of the steering angle with respect to the left and right sensor outputs. The true steering angle is shown with the red 
solid line ( ) and its projection to the x-y plane with the black solid line ( ). (b) Admissible sets of right and sensor 
displacements (𝑑𝑑𝑅𝑅 ,𝑑𝑑𝐿𝐿); each set of right and left sensor output correspond to a unique value of the steering angle. 

INTERVAL UNCERTAINTY PROPAGATION 
In practice, the outputs from the sensors deviate from the ideal values because they are subject to measurement noise and 
faults. In this section we assume that none of the sensors is faulty, but all of them are subject to an interval type of uncertainty 
around the true measurement values. The output intervals from the sensors can then be written as,  

 [𝑑𝑑𝐿𝐿𝐿𝐿] = �𝑑𝑑𝐿𝐿𝐿𝐿 𝑑𝑑𝐿𝐿𝐿𝐿�, [𝑑𝑑𝑅𝑅𝑅𝑅] = �𝑑𝑑𝑅𝑅𝑅𝑅 𝑑𝑑𝑅𝑅𝑅𝑅�, (3) 

where 𝑑𝑑 = 𝜇𝜇𝑑𝑑 − ∆𝑑𝑑 is the lower bound and 𝑑𝑑 = 𝜇𝜇𝑑𝑑 + ∆𝑑𝑑 is the upper bound of the uncertainty interval, whereas [𝑑𝑑] denotes 
the interval of possible values with an unspecified probability density function [4]. The interval [𝑑𝑑] has a mean value 𝜇𝜇𝑑𝑑 and 
an uncertainty amplitude ∆𝑑𝑑. According to Eqs. (1,2), an uncertainty on the sensor outputs causes an uncertainty on the 
steering angle, which can be written as, 

 [𝛼𝛼] = [𝛼𝛼 𝛼𝛼], (4) 

where 𝛼𝛼 = 𝜇𝜇𝛼𝛼 − ∆𝛼𝛼,𝑙𝑙 and 𝛼𝛼 = 𝜇𝜇𝛼𝛼 + ∆𝛼𝛼,𝑢𝑢 are the lower and upper bounds of the steering angle interval [𝛼𝛼]. The mean value of 
the steering angle interval is denoted as 𝜇𝜇𝛼𝛼, whereas, ∆𝛼𝛼,𝑙𝑙 and ∆𝛼𝛼,𝑢𝑢 are the lower and upper bounds of the propagated 
uncertainty, respectively. 

Figure 1 shows, with the thick black lines, the left and right LVDT outputs with respect to the steering angle, according to 
Eq. (1). The thinner horizontal black lines represent interval uncertainties around an admissible measurement pair (𝑑𝑑𝐿𝐿 ,𝑑𝑑𝑅𝑅), 
which is shown with green lines. The uncertainty bounds shown in Figure 1 have been set to ∆𝑑𝑑 = ±10mm for each sensor 
for visual clarity. 



 
Figure 3: Position of the left ( ) and right ( ) sensors versus the steering angle. Propagation of an uncertainty interval around a 

true measurement value ( , ). The interval uncertainty has been set to a large value (∆𝑑𝑑 = ±10mm) for visual clarity. 
 

Each uncertainty interval associated with each sensor output generates two uncertainty intervals on the steering angle. All the 
propagated uncertainty intervals can be combined to calculate the smallest uncertainty interval around the true value of the 
steering angle. The upper and lower bounds of the propagated uncertainty interval around the true steering angle are shown in 
Figure 4 for all steering angles between −90∘ and +90∘. The upper and lower error bounds on ∆𝛼𝛼  scale approximately 
linearly on the magnitude of ∆𝑑𝑑, up to ∆𝑑𝑑 = ±20mm. 

 
Figure 4: Lower an upper bounds of the error in the estimation of the steering angle, ∆𝛼𝛼,𝑙𝑙 and ∆𝛼𝛼,𝑢𝑢, for an interval uncertainty in the sensors 

of ∆𝑑𝑑 = ±10mm. The propagated uncertainty scales approximately linearly with ∆𝑑𝑑 up to ∆𝑑𝑑 = ±20mm. 
 

The geometric parameters presented in Table 1 can be varied in a parametric study to investigate how they affect the 
propagated uncertainty. Figure 5(a,b,c,d) show the influence of the parameters 𝑒𝑒, 𝜂𝜂, 𝑙𝑙,𝛾𝛾 on the propagated uncertainty, 
respectively. The contour plots of Figure 5 show only the upper bound of the uncertainty interval, as this is symmetric with 
respect to the true value of the steering angle. For each design parameter, an optimal value can be determined, which 
generates the smallest interval of propagated uncertainty. The optimal values of the parameters are indicated with the red 
lines in Figure 5(a,b,c,d). The ground-steering sensing mechanism can then be redesigned using the newly determined values 
of the sensor arrangements. This guarantees a smaller propagation of uncertainties from the sensors to the estimated steering 
angle. It should be noticed that the parameters 𝑒𝑒,𝜂𝜂 and 𝛾𝛾 indicated in Table 1 are very close to the optimal parameters shown 



in Figure 5(a,b,d). The optimal parameter 𝑙𝑙, instead, is larger than the one appearing in the table, but the values of the 
propagated uncertainty are very close to each other, making this difference almost negligible. 

 

 

 
(a)  (b) 

 

 

 
(c)  (d) 

Figure 5: Parametric analysis of the propagated uncertainty interval with respect to the values of the model parameters of Table 1. 
Maximum error in the steering angle estimation for a measurement uncertainty ∆𝑑𝑑 = ±1mm: (a) varying 𝑒𝑒; (b) varying 𝜂𝜂; (c) varying 
𝑙𝑙; (d) varying 𝛾𝛾. The red dashed lines represent the optimal values of the parameters that generate the smallest uncertainty interval on 
the steering angle. 

STATE ESTIMATION ALGORITHMS 
The previous section dealt with the measurement uncertainty propagation, however, the true value of the steering angle was 
assumed to be known. In practice, the steering angle is the unknown variable and the only variables that are known are the 
outputs from the LVDTs and the model parameters. Both the model parameters and the sensor outputs, however, are affected 
by uncertainties on their values, and the sensors are subject to potential faults. Hence, it is crucial to reliably estimate the 
controlled signal 𝛼𝛼 and to calculate the level of uncertainty associated with this estimation. This section presents a 
comparison among three different algorithms for the estimation of the steering angle. The first algorithm is based on an 
ordinary least-squares (OLS) approach that is commonly implemented in Global Positioning Systems (GPS), where the 
position of a GPS receiver is calculated using the signals sent by a set of redundant satellites [5, 6]. For the OLS estimation 
algorithm, the set of Eqs. (2) can be rewritten in matrix form as follows, 

 𝐀𝐀𝐱𝐱� = 𝐝𝐝 − 𝐯𝐯�, (5) 



which is also known as observation equation, where  

 

𝐀𝐀 =

⎣
⎢
⎢
⎡
(𝑏𝑏 cos𝛾𝛾 − 𝑎𝑎 sin 𝛾𝛾) (𝑎𝑎 cos𝛾𝛾 + 𝑏𝑏 sin𝛾𝛾)
(𝑏𝑏 cos𝛾𝛾 − 𝑎𝑎 sin 𝛾𝛾) (𝑎𝑎 cos𝛾𝛾 + 𝑏𝑏 sin𝛾𝛾)
(𝑎𝑎 sin𝛾𝛾 − 𝑏𝑏 cos𝛾𝛾) (𝑎𝑎 cos𝛾𝛾 + 𝑏𝑏 sin𝛾𝛾)
(𝑎𝑎 sin𝛾𝛾 − 𝑏𝑏 cos𝛾𝛾) (𝑎𝑎 cos𝛾𝛾 + 𝑏𝑏 sin𝛾𝛾)⎦

⎥
⎥
⎤
, (6) 

is the matrix of model parameters, 

 𝐱𝐱� = �sin𝛼𝛼�
cos𝛼𝛼��, 

(7) 

is the vector of estimated states, 

 

𝐝𝐝 = 1
2𝑙𝑙

⎩
⎪
⎨

⎪
⎧𝑙𝑙

2 + 𝑎𝑎2 + 𝑏𝑏2 − 𝑑𝑑𝐿𝐿12

𝑙𝑙2 + 𝑎𝑎2 + 𝑏𝑏2 − 𝑑𝑑𝐿𝐿22

𝑙𝑙2 + 𝑎𝑎2 + 𝑏𝑏2 − 𝑑𝑑𝑅𝑅12

𝑙𝑙2 + 𝑎𝑎2 + 𝑏𝑏2 − 𝑑𝑑𝑅𝑅22 ⎭
⎪
⎬

⎪
⎫

, (8) 

is the vector containing the measurements, also known as observation vector, and 𝐯𝐯� is the error vector between the estimated 
and the measured observations. The OLS estimate is computed by minimizing the sum of the squared errors, which results in, 

 𝐱𝐱� = �𝐀𝐀𝐓𝐓𝐀𝐀�−𝟏𝟏𝐀𝐀𝐓𝐓𝐝𝐝, (9) 

And the steering angle estimation is derived from Eq. (9) as follows, 

 
𝛼𝛼� = atan �

sin𝛼𝛼�
cos𝛼𝛼�

�. (10) 

The OLS estimator is computationally inexpensive and provides accurate enough estimates with noisy measurements, 
however, it lacks of robustness in presence of larger deviations or faults in the sensors. This motivates to look for estimation 
algorithms that are more robust against outliers. Given the four measurements from the left and right LVDTs, eight possible 
steering angles are calculated by solving the inverse kinematic problem given in Eq. (2). The solutions given by the left 
sensors can be written as, 

 
𝛼𝛼�𝐿𝐿𝐿𝐿,1,2 = 2 atan�

𝑏𝑏±�𝑎𝑎2+𝑏𝑏2−𝐿𝐿𝑖𝑖
2

𝑎𝑎+𝐿𝐿𝑖𝑖
� − 𝛾𝛾, (11) 

and for the right sensors as, 

 
𝛼𝛼�𝑅𝑅𝑅𝑅,1,2 = 2 atan�

−𝑏𝑏±�𝑎𝑎2+𝑏𝑏2−𝑅𝑅𝑖𝑖
2

𝑎𝑎+𝑅𝑅𝑖𝑖
�+ 𝛾𝛾, (12) 

where 𝐿𝐿𝑖𝑖 and 𝑅𝑅𝑖𝑖 have been defined as, 

 𝐿𝐿𝑖𝑖 ≜
𝑙𝑙2+𝑎𝑎2+𝑏𝑏2−𝑑𝑑𝐿𝐿𝐿𝐿

2

2𝑙𝑙
, 𝑅𝑅𝑖𝑖 ≜

𝑙𝑙2+𝑎𝑎2+𝑏𝑏2−𝑑𝑑𝑅𝑅𝑅𝑅
2

2𝑙𝑙
. (13) 

The eight possible steering angle estimates cast the observation vector as follows, 



 𝜶𝜶� = {𝛼𝛼�𝐿𝐿1,1 𝛼𝛼�𝐿𝐿1,2 𝛼𝛼�𝐿𝐿2,1 𝛼𝛼�𝐿𝐿2,2 𝛼𝛼�𝑅𝑅1,1 𝛼𝛼�𝑅𝑅1,2 𝛼𝛼�𝑅𝑅2,1 𝛼𝛼�𝑅𝑅2,2}. (14) 
One of the most common methods of robust estimation are M-estimators, which can be regarded as a generalization of the 
OLS with a higher tolerance for outliers. In this case, instead of using the sum of the squared errors, the cost function can be 
written as [7], 

 ∑ 𝜌𝜌(𝑒𝑒𝑖𝑖)𝑛𝑛
𝑖𝑖=1 , (15) 

where 𝜌𝜌(𝑒𝑒) is a general function of the error. Solving Eq. (15) is equivalent to solve a weighted least squares problem. 
However, in this case, the weights depend upon the errors, the errors depend upon the estimates, and the estimates depend 
upon the weights. Hence, an iterative approach is required, which is called iteratively reweighted least squares (IRLS) [7]. 
The IRLS algorithm works as follow, 

• Select an initial estimate, such as the OLS estimate, or the median estimate; 
• At each iteration calculate the error residuals 𝑒𝑒𝑖𝑖 and associate weights from the previous iteration; 
• Solve for the new weighted least squares estimate, 

 𝛼𝛼� = �𝐇𝐇𝐓𝐓𝐖𝐖𝐖𝐖�−1𝐇𝐇𝐓𝐓𝐖𝐖𝛂𝛂�, (16) 

where 𝛂𝛂� is given by Eq. (14), 𝐇𝐇 ∈ ℝ8x1 with all elements of 𝐇𝐇 equal to 1/8 , and 𝐖𝐖 is a diagonal matrix containing the 
weights; 

• The previous two steps are repeated until the estimate converges. 

Different 𝜌𝜌(𝑒𝑒) can be used for the IRLS algorithm, the one used in this paper is the Huber objective function [7], for which 
the weight become, 

 𝑤𝑤(𝑒𝑒𝑖𝑖) = �1
|𝑒𝑒𝑖𝑖| ≤ 𝑘𝑘

𝑘𝑘/|𝑒𝑒𝑖𝑖| |𝑒𝑒𝑖𝑖| > 𝑘𝑘, (17) 

where 𝑘𝑘 is a tuning constant, which has been chosen to be twice the median absolute deviation (MAD) in this study. The 
estimator is more robust against outliers for smaller values of 𝑘𝑘. 

Although the IRLS is more robust against outliers with respect to the OLS, it is not always able to deal with sensor faults, 
because in certain circumstances more than half of the elements of Eq. (14) are incorrect and far from the true value of the 
steering angle. A different approach for the estimation of the steering angle is the soft-computing (S-C), or soft-voting 
method. The S-C approach is a sensor management technique that is similar to the majority voting approach, but in this case 
the observations are assigned weights that are based on fuzzy membership functions and the final estimate is computed as a 
weighted average of all valid observations. The S-C algorithm can be summarized as follows [8, 9]. Each element of the 
observation vector given by Eq. (14) is assigned a weight and the consolidated steering angle estimate is the weighted 
average of all valid observations, 

 𝛼𝛼� = ∑ 𝑤𝑤𝑖𝑖𝛼𝛼�𝑖𝑖𝑛𝑛
𝑖𝑖=1 , (18) 

where 𝑤𝑤𝑖𝑖  denotes the weight assigned to the observation 𝛼𝛼𝑖𝑖 and 𝑛𝑛 is the number of valid observations. The weights 𝑤𝑤𝑖𝑖  are 
calculated as, 

 𝑤𝑤𝑖𝑖 = 𝜇𝜇𝑖𝑖
∑ 𝜇𝜇𝑗𝑗𝑛𝑛
𝑗𝑗=1

, (19) 

where 𝜇𝜇𝑖𝑖 is the membership degree of 𝛼𝛼𝑖𝑖 and is bounded between zero and one. The membership degree of each signal is 
computed as shown in Figure 6, where the current value of each observation (red vertical line) forms the centre of its 



corresponding membership function, which is shown with the black solid line. The membership degree of the signal is the 
largest membership degree of the remaining valid observations (green vertical lines) according to, 

 𝜇𝜇𝑖𝑖 = max
𝑖𝑖≠𝑗𝑗

𝜇𝜇𝑖𝑖�𝛼𝛼�𝑗𝑗�. (20) 

There are various shapes for the membership functions, such as triangular, trapezoidal, sigmoidal or polynomial. A 
polynomial membership function has been used in this paper, which has a flat top between ±2° and is null for observation 
differences above 7°. This membership function is shown in Figure 6. 

 
Figure 6: Soft-computing (S-C) membership function. The current value of each observation (red line) forms the centre of its corresponding 

membership function (black line), which is then used to determine the membership degree of this observation using the other valid 
observations (green lines). 

 

The implementation of the S-C algorithm is illustrated in Figure 7. The vector of observations is split into the eight 
observation signals that are then sorted. The membership degrees of the signals are computed according to Eq. (20), 
reorganized in the original order and combined in a vector. Finally, the consolidated steering angle estimation is computed 
according to Eqs. (18,19). 

 
Figure 7: Schematic of the soft-computing algorithm. 
 

 



RESULTS 
The methods of OLS, IRLS and S-C are compared in this section for the following scenarios, 

• First, the ideal scenario in which both the model parameters and the sensor outputs are assumed to be known perfectly. 
The results of implementing the OLS, IRLS and S-C approaches are shown in Figure 8(a,b) with the dash-dotted red, 
dashed green and solid blue line, respectively. The black solid line represents the true value of the steering angle. 

 

 

 
(a)  (b) 

Figure 8: Comparison amongst estimation algorithms for an ideal scenario. (a) Estimated steering angle; (b) Accuracy of the estimation. 
 

• The second scenario includes an uncertainty of ∆ = ±2mm for the model parameters given in Table 1, and measurement 
noise of ∆𝑑𝑑 = ±2mm for the LVDT sensors, however, faults have not been taken into account in this scenario. The 
results are shown in terms of estimated steering angle and estimation accuracy in Figure 9(a,b). 

 

 

 
(a)  (b) 

Figure 9: Comparison amongst estimation algorithms including uncertainty in the model parameters and measurement noise of ∆ = ±2mm 
and ∆𝑑𝑑 = ±2mm, respectively. (a) Estimated steering angle; (b) Accuracy of the estimation. 

 

• The third and final scenario includes parameter uncertainties (∆ = ±2mm), measurement noise (∆𝑑𝑑 = ±2mm), and 
sensor faults. In this case, the faulty sensor id one of the left LVDTs, 𝑑𝑑𝐿𝐿1, which is locked at 120mm. The results and 
comparison amongst the different estimation algorithms are shown in terms of estimated steering angle and estimation 
accuracy in Figure 10(a,b). 



 

 

 
(a)  (b) 

Figure 10: Comparison amongst estimation algorithms including uncertainty in the model parameters, measurement noise of ∆ = ±2mm 
and ∆𝑑𝑑 = ±2mm, respectively and a faulty sensor 𝑑𝑑𝐿𝐿1 = 120mm. (a) Estimated steering angle; (b) Accuracy of the estimation. 

 

The results presented in Figure 8 and Figure 9 show that the least squares based estimators can have a slightly better accuracy 
than the S-C algorithm when none of the sensors is faulty, regardless of the uncertainty. Figure 10, however, show that the S-
C approach is more robust to sensor faults when compared to the OLS and the IRLS. In fact, it is the only one of the three 
proposed methods to give a consistent estimation accuracy across all the scenarios that have been studied. 

CONCLUSION 
This paper presented the estimation of wheel direction in ground-steering systems for aircraft using the measurements of 
remote and redundant LVDT sensors subject to uncertainties and faults. Firstly, the digital twin of the ground steering system 
has been introduced, which consists of a kinematic model of the sensing mechanism together with the model uncertainties, 
the measurement noise and the potential sensor faults. The nonlinear relationship between the steering angle and the sensor 
outputs was then discussed.  

Secondly, an interval type of uncertainty was introduced for each LVDT output and was propagated through the model to 
calculate the maximum error in the steering angle estimation. The variation of such error with the wheel position was also 
presented. A parametric study of the uncertainty propagation was carried out in order to calculate the optimal arrangement of 
the sensors that generates the smallest error in the estimation of the steering angle. 

Finally, three estimation algorithms were presented for the estimation of the wheel direction in presence of model 
uncertainties, measurement noise and sensors faults. Two least squared based approaches, namely ordinary least squares 
(OLS) and iteratively reweighted least squares (IRLS), and a soft-computing (S-C) method were introduced. A comparison 
among these three methods under different scenarios of uncertainties and faults was carried out in terms of accuracy of the 
estimation for a steering angle ranging from −90° to +90°. It is shown that the S-C estimation algorithm is more robust than 
the least squares based methods in presence of uncertainties and sensor faults. Future work will relate to the definition of a 
metric that calculates the degree of confidence in the estimate and the monitoring of the sensor conditions. 
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