
GeoSPARQL+: Syntax, Semantics and System for
Integrated Querying of Graph, Raster and Vector

Data

Timo Homburg1, Steffen Staab3, Daniel Janke2

timo.homburg@hs-mainz.de steffen.staab@ipvs.uni-stuttgart.de
1Mainz University Of Applied Sciences, DE 3Universität Stuttgart, DE, and

danijank@uni-koblenz.de WAIS Research Group,
2Universität Koblenz, DE University of Southampton, UK

Abstract. We introduce an approach to semantically represent and query
raster data in a Semantic Web graph. We extend the GeoSPARQL vocabu-
lary and query language to support raster data as a new type of geospatial
data. We define new filter functions and illustrate our approach using sev-
eral use cases on real-world data sets. Finally, we describe a prototypical
implementation and validate the feasibility of our approach.

Keywords: GeoSPARQL, raster data, Geospatial Semantics

1 Introduction

The Geospatial Semantic Web [16,9] has grown in size and importance in the
last decade. It is estimated that about 80% of all data has a geospatial rela-
tion [19]. Therefore, GeoSPARQL [6] has been developed and became an OGC1

and W3C2 recommendation allowing for the representation and querying of
geospatial data in the semantic web. GeoSPARQL and comparable approaches
[24,22] only provide support for geospatial vector data. However, geospatial
data may also take the shape of a raster. It may, e.g., be obtained from aerial im-
agery or from simulation data to support tasks such as city planning and risk
assessment as shown by the examples depicted in Figure 1.
Raster data must not be represented as vector geometries, because vector rep-
resentations of raster data

1. are inefficient implying overconsumption of data storage. Raster data can
be large and may be compressed efficiently.

2. are ineffective representations as they lack operations needed to query raster
data e.g. raster algebra operations that transform raster data in ways not
applicable to vector data.

3. lack the semantics needed to appropriately represent raster data. Raster
data is often visualized with RGB values, such as varying shades of blue for
different flood altitudes. A semantic representation, however, should not

1 https://www.opengeospatial.org
2 https://www.w3.org

https://www.opengeospatial.org
https://www.w3.org

represent color shades, but rather the underlying semantics, which should
refer to data from the actual nominal, ordinal, interval or ratio scales and
what they stand for.

We propose GeoSPARQL+, an extension of the GeoSPARQL query language,
and the GeoSPARQL+ ontology in order to integrate geospatial raster data into
the Semantic Web.
Let us consider the analysis of a flood as our running example. Our running
example is depicted in Figure 1a showing the overlay of two related datasets:

1. Vector data representing the roads of Cologne
2. Raster data representing the altitudes of a simulated flood

A query in one of our real-world use cases asks for all the road sections not
covered by more than 10cm of water. This is only possible if the data model
can represent raster data, vector data, semantics (road, water, depth, 10cm) and
allows for joint querying of these representations. Existing geographical infor-
mation systems lack the explicit representation of semantics and require the
user to manually adapt his high-level information need into a query of the low-
level representation. The GeoSPARQL standard [6] and systems that currently
support geographic information in the Semantic Web [6,24,22,14,10,26,15] do
not represent raster data, thus, they do not allow for asking such questions.

(a) Floodmap depicting the flood altitude
and a road network. The map legend in-
formally describes the semantics of colors
in terms of a fractional scale of flood alti-
tudes.

(b) Fire hazard risks displayed in different
shades of red with darker shades imply-
ing higher risk levels. The map legend in-
formally describes the risks using an ordi-
nal scale.

Fig. 1: Visualizations of two sources of risk in Cologne

In the remainder of this paper, we will assume that there are data sources
that contain vector data (e.g. roads in Figure 1) and raster data (e.g. flood al-
titudes Figure 1a or fire hazards figure 1b). We describe a GeoSPARQL+ ontol-
ogy which allows a data engineer to integrate these data into an RDF graph. A
user may issue a semantic query against the RDF graph using GeoSPARQL+.
To allow for these capabilities, this paper makes the following contributions:

1. Semantic Representation of Raster Data: A data model that allows for repre-
senting raster data and its semantics (Section 4).

2. GeoSPARQL Vocabulary Extension: This vocabulary extension defines how to
relate the raster data to semantic descriptions (Section 5.1).

3. GeoSPARQL Query Language Extension: A SPARQL extension which allows
the interoperable use of semantic graph data, semantic vector geometries,
and semantic raster data and uses map algebra [35] to combine and modify
rasters (Sections 5.2 and 5.3).

4. Prototypical Implementation: An open source implementation of the proposed
approach for geospatial vector and raster data (Section 6).

5. Requirements and Feasibility Check: Deriving requirements of GeoSPARQL+
by discussing relevant use cases (Section 3), assessing their feasibility and
conducting a performance check of the implemented system (Section 7).

The tasks of data integration and visualization of query results are beyond the
focus of this paper. More technical details about the supported functions may
be found in our companion technical report [18].

2 Foundations For Extending GeoSPARQL

In this publication we limit ourselves to 2D representations in order to remain
concise. We see no major issue in extending our approach to higher dimen-
sional representations. We assume that all geographical representations relate
to coordinate reference systems (CRS), as postulated in [9]. For conciseness of
illustration we discard these relations and transformations between CRSs.

2.1 Geometry

We formally define several OGC Simple Feature geometries [17], which we use
in the remainder of this paper.

Definition 1. (Geometry) A geometry g ∈ Geo, with Geo representing the set of all
geometries, is an instantiation of one of the following data structures:

1. A geometry g may be a Point p = (x,y), p ∈ R2, or
2. A LineString defined as a list of at least two different points denoted as g =

(p0, p1, . . . , pn), pi ∈ R2, or
3. A Polygon g represented as a LineString with g = (p0, p1, . . . , pn), p0 = pn, pi ∈

R2 and all other points being unique. We further restrict ourselves to valid Poly-
gons. In valid Polygons lines do not cross each other. A Polygon includes the en-
compassed area.

4. A geometry g may also be a Rectangle, which is a special polygon comprised of four
LineStrings with the angles between connected LineStrings being 90◦. Rect⊂Geo
is the set of all rectangles.

5. Finally, a geometry may be a GeometryCollection g, which itself is a finite set of
geometries g = {g1, . . . , gk}, gi ∈ Geo.

MultiPolygons and MultiLineStrings are examples of GeometryCollections.

We assume that the function geom2pset : Geo → 2R2
exists which converts a

geometry to a PointSet representation.

2.2 RDF, SPARQL and GeoSPARQL

In order to semantically describe and query raster data we build upon the fol-
lowing standard definitions of SPARQL 1.1 [12,27]. We provide the first formal
definitions of the operators and filter functions which GeoSPARQL [6] adds to
the SPARQL query language and describe the resulting modified definitions of
SPARQL 1.1 in the following. In order to keep the definitions concise enough
for this paper, we formalize syntax and semantics with 3 exemplary operators
and 2 exemplary filter functions. We pick GeoSPARQL specific elements such
that they are representative for the most common types of signatures. The dif-
ferences between SPARQL 1.1 and the GeoSPARQL extensions are marked in
blue fonts.

Definition 2. (RDF Triple and RDF Graph) Let I, B and L be disjoint sets of IRIs,
blank nodes and literals, respectively. An element of the set (I ∪ B)× I × (I ∪ B ∪ L)
is called a triple t ∈ T with T denoting the set of all triples. G ∈ 2(I∪B)×I×(I∪B∪L) is
called an RDF graph. GL ⊂ L is the set of all geometry literals.

In an RDF triple (s, p,o), s, p and o are called subject, predicate and object, respec-
tively. Geometry literals (GL) are serialized according to the GeoSPARQL stan-
dard either as Well-Known-Text (WKT)[36] literals or as Geography Markup
Language (GML)[29] literals.

Definition 3. (Triple Pattern) Let V be a set of variables that is disjoint to I, B and L.
An element of (I ∪ B ∪ L ∪V)× (I ∪V)× (I ∪ B ∪ L ∪V) is called a triple pattern.

The set of variables occurring in a triple pattern tp is abbreviated as var(tp).

Definition 4. (Expression) An expression is

Expression ::= ?X with ?X ∈ V
| c with constant c ∈ L ∪ I.
| E1 ∩ E2 with E1, E2 being expressions.
| geof:buffer(E1, E2, E3) with E1, E2, E3 being expressions
| geof:distance(E1, E2) with E1, E2 being expressions

Definition 5. (Filter Condition) A filter condition is

FilterCondition ::= ?X = c with ?X ∈ V and c ∈ I ∪ L
| ?X = ?Y with ?X,?Y ∈ V
| ¬F with filter condition F
| F1 ∨ F2 with filter conditions F1 and F2
| F1 ∧ F2 with filter conditions F1 and F2
| E1 = E2 with E1, E2 being expressions
| E1 ∩ E2 with E1, E2 being expressions

∩, = , ∩ correspond to the GeoSPARQL operators geof: intersection, geof:equals
and geof: intersects respectively [11]. We provide complete list of all GeoSPARQL
functions in our technical report that extends this paper [18].

Definition 6. (Basic Graph Pattern) A basic graph pattern (BGP) is

BGP ::= tp a triple pattern tp
| {B} a block of a basic graph pattern B
| B1.B2 a conjunction of two basic graph patterns B1 and B2
| B FILTER F a filter pattern with BGP B and filter condition F
| B BIND (E AS ?X) a bind with BGP B, expression E and variable ?X.

Definition 7. (Select Query) A select query is defined as SELECT W WHERE B with
W ⊆ V and basic graph pattern B.

Definition 8. (Variable Binding) A variable binding is a partial function µ : V 7→
I ∪ B ∪ L. The set of all variable bindings is Φ.

The abbreviated notation µ(tp) means that variables in triple pattern tp are sub-
stituted according to µ.

Definition 9. (Compatible Variable Binding) Two variable bindings µ1 and µ2 are
compatible, denoted by µ1 ∼ µ2, if

∀?X ∈ dom(µ1) ∪ dom(µ2) : µ1(?X) = µ2(?X)

Thereby dom(µ) refers to the set of variables of variable binding µ.

Definition 10. (Join) The join of two sets of variable bindings Φ1, Φ2 is defined as

Φ1 ▷◁ Φ2 = {µ1 ∪ µ2|µ1 ∈ Φ1 ∧ µ2 ∈ Φ2 ∧ µ1 ∼ µ2}

Definition 11. (Expression evaluation) The evaluation of an expression E over a
variable binding µ, denoted by JEKµ, is defined recursively as follows:J?XKµ := µ(?X) with ?X ∈ V.JcKµ := c with c being a constant, literal or IRI.JE1 ∩ E2Kµ := JE1Kµ ∩ JE2Kµ retrieves a geometry g ∈ Geo that represents

all Points in the intersection of JE1Kµ,JE2Kµ ∈ Geo [6]Jgeof:buffer(E1, E2, E3)Kµ := g retrieves a bounding box g ∈ Rect of radiusJE2Kµ ∈ R around JE1Kµ ∈ Geo using the unit
given in JE3Kµ ∈ I [6]Jgeof:distance(E1, E2)Kµ := c returns the minimum distance c ∈ R

between JE1Kµ ∈ Geo and JE2Kµ ∈ Geo [6]

Definition 12. (Filter Condition Satisfaction) Whether variable binding µ satisfies a
filter condition F, denoted by µ |= F, is defined recursively as follows:

µ |= ?X = c holds if ?X ∈ dom(µ) and µ(?X) = c.
µ |= ?X = ?Y holds if ?X ∈ dom(µ), ?Y ∈ dom(µ) and µ(?X) = µ(?Y).
µ |= ¬F holds if it is not the case that µ |= F.
µ |= F1 ∨ F2 holds if µ |= F1 or µ |= F2.
µ |= F1 ∧ F2 holds if µ |= F1 and µ |= F2
µ |= E1 = E2 holds if JE1Kµ ∈ Geo, JE2Kµ ∈ Geo and

geom2pset(JE1Kµ) = geom2pset(JE2Kµ)
µ |= E1 ∩ E2 holds if JE1Kµ ∈ Geo, JE2Kµ ∈ Geo and

geom2pset(JE1Kµ) ∩ geom2pset(JE2Kµ) ̸=∅.

Definition 13. (SPARQL evaluation) The evaluation of a SPARQL query Q over an
RDF graph G, denoted by JQKG, is defined recursively as follows:

JtpKG := {µ|dom(µ) = var(tp) ∧ µ(tp) ∈ G} with triple pattern tp.J{B}KG := JBKG with basic graph pattern B.JB1.B2KG := JB1KG ▷◁ JB2KG with basic graph patterns B1 and B2.JB FILTER FKG := {µ|µ ∈ JBKG ∧ µ |= F} with basic graph pattern B
and filter condition F.JB BIND (E AS ?X)KG := with basic graph pattern B,

{µ ∪ {?X 7→ JEKµ}|µ ∈ JBKG ∧ ?X /∈ dom(µ)} expression E and variable ?X.JSELECT W WHERE BKG := {µ|W |µ ∈ JBKG} with basic graph pattern B and W ⊆ V

Thereby µ|W means that the domain of µ is restricted to the variables in W.

3 Use Case Requirements

We now define requirements for use cases we have encountered when collabo-
rating with companies developing geographical information systems.

U1 Client: Rescue Forces; Use case: Emergency rescue routing
Rescue vehicles and routing algorithms guiding them need to know which
roads are passable in case of flooding.
Example query: "Give me all roads which are not flooded by more than 10cm"

U2 Client: Insurance; Use case: Risk assessment
Insurances evaluate the hazard risk for streets and buildings in order to cal-
culate the insurance premium.
Example query: "Assess the combined risk of fire and flood hazards for all build-
ings in the knowledge base"

U3 Client: Disaster Management Agency; Use case: Rescue capacity planning
In case of disasters, the number of people present at a specified time and
place needs to be estimated to prepare hospitals for casualties.
Example query: "Give me the roads which contain elements at risk which are
open to the public at 23rd May 2019 10.20am" Note: An element at risk is a term
in disaster management describing a class of buildings affected by certain
disasters [18].

U4 Client: City Planning Agency; Use case: Rescue facility location planning
Rescue forces should be stationed in a way that they can react fast to possi-
ble hazards and city planners should position rescue stations accordingly.
Example query: "Give me the percentage of served hazardous areas, i.e. areas
within a bounding box of 10km around a to-be-built rescue station at a given geo-
coordinate"

These example queries can currently not be expressed using GeoSPARQL. Ab-
stracting from the given natural language query examples we have defined a
graph data model for raster data and the syntax and semantics of GeoSPARQL+
that allow us to respond to these queries.

4 Modeling Raster Data

We have analyzed the requirements for representing raster data using examples
like the ones depicted in Figure 1 and use cases in Section 3. These examples
show that we need to transform the following visual elements into semantic
representations:

1. Raster geometry: A raster covers a geometrical area. In this paper, we limit
ourselves to rectangular areas though other geometries might be supported
in the future.

2. Atomic values: In visualizations of raster data, atomic values are mapped
onto pixel values. In simple cases this is a one-to-one mapping. Depending
on the resolution of the raster and the rendered picture, it may also be a n:1
or 1:n or even an n:m mapping.

3. Atomic value geometry: Each atomic value represents the situation in a ge-
ometry area, typically in a rectangular area.

4. Raster legend: A raster legend is a description of the semantic interpreta-
tion of the raster’s atomic values. This description includes a categorical,
ordinal, interval or fractional scale.

We formally define a raster following [20] as:

Definition 14. (Raster) Let R be the set of all
rasters and S the set of all scales. A Raster r ∈ R
is a partial function r : R2 7→ S which maps po-
sitions onto a scale S ∈ S. We define a scale as a
partially ordered set. In addition, every scale de-
fines a NODATA value, a unique value which is
not to be used elsewhere in the scale definition.
The domain of a raster dom(r) is the closed,
rectangular region represented by its raster ge-
ometry for which its atomic values are defined.

dom(r) can be represented by a rect-
angle defined by its four corners
(pl ,pb,pr,pt), where pi = (xi,yi) and
xl ≤ xr, xl ≤ xt, xl ≤ xb, xr ≥ xt, xr ≥ xb and
yl ≥ yb,yt ≥ yr,yl ≤ yt,yb ≤ yr.

Figure 2 shows an example of a raster.
In order to execute geometric operations
on raster data and geometries we assume a
function raster2geom(r) returning dom(r)
as a geometric object. In order to compare
rasters to other rasters we assume an equal-
ity function. rastervaleq(r,r) compares the
rasters atomic values and its domains.

pt

pt

pr

pr
pb

pb

pl

pl

ct
ct

cr
crcb

cb

cb

cl

clcl ri,j

Fig. 2: Raster representation: The
raster r is represented using a raster
geometry dom(r), a subdivision in
cells and a scale S ∈ S.

Definition 15. (Raster Literal) The set RL ⊂ L with GL∩RL = ∅ represents the set
of all raster literals.

We use the CoverageJSON format [8] to serialize rasters to raster literals, but
many other textual serializations or even binary serializations are possible. These
representations assume that the raster geometry is divided uniformly into rect-
angular cell geometries (atomic value geometries in our previous definition). A
cell c is a pair (g, s) ∈ Rect×S. We relate a cell c to a raster r via a pair of indexes
(i, j). ri,j refers to a specific cell indexed by (i, j) in a raster r. ri,j(x,y) is unde-
fined for values outside of the cell and has the identical value for all positions
within the cell. Thus, given x,y such that ri,j(x,y) is defined, c may be defined
as (raster2geom(ri,j),ri,j(x,y)).
The function cellval : R×R×R→R retrieves the atomic value of a given raster
cell. The function cellval2 : R → {R} retrieves atomic values of all raster cells.
Raster Algebra or map algebra is a set based algebra to manipulate raster
data. Following [35] we assume the definition of scale-dependent raster alge-
bras with operations ¬ , ⊕ and <⃝ defined for the following signatures:

(1) ¬ : R → R, (2) ⊕ : R × R → R. (3) <⃝ : R × R → R

The three operations we indicate here, their formal definitions given in [35],
are examples for a broader set of possible raster algebra operations. Most other
algebraic operators exhibit the same signatures as one of these three example
operations. Hence, syntax and semantics of other operators can be integrated
into GeoSPARQL+ taking the integration of example operators as templates.
The ¬ function converts each atomic value different from 0 to 0, all 0 values
to 1 and does not change NODATA values. The ⊕ function creates a new raster
with the domain of the first raster. The resulting raster contains all values of
the first raster which have no correspondence with the atomic values of the sec-
ond raster (i.e. not map to the same position). All values with a correspondence
are added together or ignored if one of the input values is the NODATA value
of either of the two rasters. This function can be used to combine risks of fire
and flood hazards given in two different rasters representing the same area.
The <⃝ function takes one raster and one constant. It returns a new raster with
the domain of the given raster. Atomic values smaller than the given constant
are kept, all other values become the NODATA value. One application of this
function is to only keep the flood altitude values displayed in Figure 1a which
signify an altitude value smaller than a given constant.
Implementations like PostGIS [31] and JAI [32] provide 26 and 108 raster func-
tions respectively. Out of those we have implemented 14 in our system which
we describe in [18].

5 GeoSPARQL+

In order to describe raster data semantically,we must define (i) their geometries,
(ii) their atomic values, (iii) the atomic value geometries, and (iv) the semantic
meaning of raster’s atomic values. The latter is specified in this section. When

the raster’s contents have been described, new functions are needed to filter,
relate or modify the raster’s atomic values in order to be useful in the applica-
tion cases we would like to solve. Therefore we extend the GeoSPARQL query
language to include such functions in Sections 5.2 and 5.3

5.1 The GeoSPARQL+ Vocabulary

We define the new GeoSPARQL+ vocabulary (cf. Figure 3).

Fig. 3: We use vocabularies of three different ontologies: The GeoSPARQL ontol-
ogy describes the concepts geo:SpatialObject and geo:Feature, the OGC coverage
hierarchy describes the abstract concepts of coverages and the unit of measure-
ment vocabulary describes legends of raster data.

A raster is described by its semantic class (geo2:Raster), and a scale which de-
scribes the semantic content of its atomic values. In Figure 3, we depict the ex-
ample of a semantic class ex:FloodArea which is assigned an instance of geo2:Raster
with a CoverageJSON literal (Listing 1) including the raster’s type, a CRS, the
raster’s atomic values and their description. In order to re-use the representa-
tions of the CoverageJSON format, we model rasters in a concept hierarchy of
OGC coverage types. By the OGC definition, a raster is a special type of cov-
erage which is rectangular, i.e. a grid, and is georeferenced. This definition is
reflected in Figure 3 in the given concept hierarchy. The instance of geo:Raster
connects to an instance of om:Scale describing its legend and unit of measure-
ment derived from the units of measurements ontology (UOM) as well as the

scales NODATA value.
1 {"type" : "Coverage","domain" : { "type" : "Domain", "domainType" : "Grid",

"axes": { "x" : { "values": [−10,−5,0] },"y" : { "values": [40,50] }
3 "referencing": [{"coordinates": ["y","x"],"system": {

"type": "GeographicCRS","id": "http://www.opengis.net/def/crs/EPSG/0/4979"}}]},
5 "observedProperty" : {

"ranges" : { "FloodAT" : { "type" : "NdArray", "dataType": "float",
7 "axisNames": ["y","x"], "shape": [2, 2], "values" : [0.5, 0.6, 0.4, 0.6]}}}

Listing 1: Coverage JSON Literal example

5.2 GeoSPARQL+ Syntax

We added several new operators to the GeoSPARQL+ query language that al-
low to filter, modify and combine rasters as well as polygons. Due to space limi-
tations, we present only one example for each of the three possibilites. A full list
of the implemented functions is provided in [18]. geometryIntersection calcu-
lates intersections between arbitrary combinations of Geometries and Rasters,
returning a Geometry. To get a raster as result instead, the rasterIntersection can
be used. + and < provide two examples of raster algebra expressions.
GeoSPARQL+ defines the following new expressions to replace definition 4:

Definition 16. (GeoSPARQL+ Expression)

Expression ::= ?X with ?X ∈ V
| c with constant c ∈ L ∪ I.
| geometryIntersection(E1, E2) with E1, E2 being expressions
| rasterIntersection(E1, E2) with E1, E2 being expressions
| E1 + E2 with E1, E2 being expressions
| E1 < E2 with E1, E2 being expressions
| ¬ E with E being an expression
| raster2geom(E) with E being an expression
| rastervaleq(E1, E2) with E1, E2 being expressions
| geom2raster(E1, E2) with E1, E2 being expressions

GeoSPARQL+ does not introduce new filter conditions in comparison to
GeoSPARQL. However, the semantics of the previously defined filter condi-
tions = and ∩ are extended to also include raster literals.

5.3 GeoSPARQL+ Semantics

We define the semantics of a GeoSPARQL+ expression in Definition 17. In order
to specify the intersection we map geometries and rasters to the corresponding
PointSets. The result is a Geometry or Raster based on the selection of the user.
In the special case of the intersection of two geometries, when a raster should be
returned, we require a default value represented by parameter E3 to which the
atomic values of the created raster are mapped. The raster algebra functions
geo2:rasterPlus and geo2:rasterSmaller are mapped to their respective raster

algebra expression defined in Section 4.
GeoSPARQL+ adds the following evaluations of expressions to definition 11:

Definition 17. (GeoSPARQL+ Expression Evaluation)

JgeometryIntersection(E1, E2)Kµ := JE1Kµ ∩ JE2Kµ

if JE1Kµ and JE2Kµ ∈ GeoJgeometryIntersection(E1, E2)Kµ := JE1Kµ ∩ raster2geom(JE2Kµ)
if JE1Kµ ∈ Geo and JE2Kµ ∈ RJgeometryIntersection(E1, E2)Kµ := JgeometryIntersection(E2, E1)Kµ

if JE1Kµ ∈ R and JE2Kµ ∈ GeoJrasterIntersection(E1, E2)Kµ := r ∈ R with ∀i, j : ri,j = r1i,j
if JE1Kµ = r1,JE2Kµ = r2 ∈ R
and dom(r1i,j) ∩ dom(r2i,j) ̸= ∅JrasterIntersection(E1, E2)Kµ := r ∈ R with ∀i, j : ri,j = r1i,j
if JE1Kµ = r1 ∈ R and JE2Kµ = g ∈ Geo
and dom(r1i,j) ∩ g ̸= ∅JrasterIntersection(E1, E2)Kµ := JrasterIntersection(E2, E1)Kµ

if JE1Kµ = r1 ∈ R and JE2Kµ = g ∈ GeoJrastervaleq(E1, E2)Kµ := r ∈ R with ∀i, j : dom(r1i,j) ∩ dom(r2i,j) ̸= ∅
and cellval(r1i,j) == cellval(r2i,j)
if JE1Kµ = r1,JE2Kµ = r2 ∈ RJ ¬ EKµ := r ∈ R with ∀i, j : ri,j = ¬ r1i,j if JEKµ = r1 ∈ RJE1 + E2Kµ := JE1Kµ + JE2Kµ if JE1Kµ, JE2Kµ ∈ RJE1 < E2Kµ := JE1Kµ < JE2Kµ if JE1Kµ,JE2Kµ ∈ RJgeom2raster(E1, E2, E3, E4)Kµ := r ∈ R with
∀(x,y) ∈ geof:buffer(JE1Kµ,1,uom:meter)
r(x,y) = JE2Kµ

if JE1Kµ ∈ Geo,JE2Kµ,JE3Kµ,JE4Kµ ∈ R

with JE3Kµ · JE4Kµ indicating the number of cells

We define the semantics of a GeoSPARQL+ filter condition in Definition 18. The
geo2:equals method returns true if two Raster or two Geometries are identical.
The geo2: intersects method returns true if the PointSets of two Raster or Ge-
ometries overlap. GeoSPARQL+ replaces the evaluation of the filter condition
from definition 12 as follows:

Definition 18. (GeoSPARQL+ Filter Condition Satisfaction)

µ |= E1 = E2 holds if JE1Kµ,JE2Kµ ∈ Geo and
geom2pset(JE1Kµ) = geom2pset(JE2Kµ).

µ |= E1 = E2 holds if JE1Kµ ∈ R and JE2Kµ ∈ Geo
and geom2pset(raster2geom(JE1Kµ)) = geom2pset(JE2Kµ)

µ |= E1 = E2 holds if JE1Kµ ∈ Geo and JE2Kµ ∈ R and µ |= E2 = E1
µ |= E1 = E2 holds if JE1Kµ,JE2Kµ ∈ R

and geom2pset(raster2geom(JE1Kµ))
= geom2pset(raster2geom(JE2Kµ))

µ |= E1 ∩ E2 holds if JE1Kµ ∈ R, JE2Kµ ∈ R
and geom2pset(raster2geom(JE1Kµ))
∩geom2pset(raster2geom(JE2Kµ)) ̸=∅

µ |= E1 ∩ E2 holds if JE1Kµ ∈ Geo, JE2Kµ ∈ R
and geom2pset(JE1Kµ) ∩ geom2pset(raster2geom(JE2Kµ)) ̸=∅

µ |= E1 ∩ E2 holds if JE1Kµ ∈ R, JE2Kµ ∈ Geo and µ |= E2 ∩ E1

Further Functions We have provided a couple of example functions and their
signatures in order to show the principles of working with raster data. In prac-
tice, one needs a much larger set of functions and signatures. In particular the
signatures geo:area: Geo →R, geo2:max: R→R are used. geo:area is a GeoSPARQL
function calculating the area of a Geometry, geo2:max calculates the maximum
atomic value of a raster. We also use the additional raster algebra functions
geo2:isGreater: RxR → R and geo2:rasterUnion RxR → R. The first one returns a
raster which only includes atomic values greater than a given constant and the
second one is the complement of the geo2:rasterIntersection function.

6 Implementation

The implementation3 is built on Apache Jena [22] and geosparql-jena [3] and
extends the ARQ query processor of Apache Jena with the GeoSPARQL+ func-
tions defined in section 5. ARQ registers functions in an internal function reg-
istry which maps URIs to function implementations. The implementations were
done in Java and used the Java Topology Suite library to implement vector ge-
ometry related functions, Apache SIS4 to represent rasters in Java and the Java
Advanced Imaging Library (JAI) [21] to implement raster algebra operations.
In addition, new literal types needed to be implemented in ARQ. geosparql-
jena already provides support for vector literals (WKT and GML). To represent
rasters we implemented CoverageJSON and Well-Known-Binary (WKB) liter-
als with appropriate parsers for (de)serialization. In addition we implemented
further functions defined in the SQL/MM standard [34]. These functions help
to prepare/modify vector geometries before they are compared or combined
with rasters. Finally, we combined our implementation to work with a Apache
Jena Fuseki triple store used for the feasibility study in Section 7.

7 Feasibility
We work with the following datasets:
1. A vector dataset (GeoJSON): Road network of Cologne from OpenStreetMap
2. A vector dataset (GeoJSON) of elements at risk extracted from OpenStreetMap
3. Two rasters (flood altitude and fire hazards) of Cologne provided by a com-

pany simulating hazards

The RDF graph contains the classes ex:Road, classes for elements at risk and the
classes ex:FloodRiskArea, ex:FireRiskArea for the rasters described in Section 5.

3 https://github.com/i3mainz/jena-geo
4 http://sis.apache.org

https://github.com/i3mainz/jena-geo
http://sis.apache.org

7.1 GeoSPARQL+ Queries

The feasibility check includes the four use cases defined in Section 3 and defines
two queries per application case in GeoSPARQL+ and an equivalent query in
SQL/MM [34]. The GeoSPARQL+ query is executed on our prototypical im-
plementation, the second query is executed on a POSTGIS implementation. For
brevity we only illustrate the GeoSPARQL+ queries in Listings 2 to 5.
The first query (Listing 2) solves usecase U1 and uses the raster algebra func-
tion geo:rasterSmaller (<) (line 5) to filter those parts of a flood raster where
roads that are still passable.

1 SELECT ?road WHERE {
?road a ex:Road ; geo:hasGeometry ?roadseg . ?roadseg geo:asWKT ?roadseg_wkt .

3 ?floodarea a ex:FloodRiskArea ; geo2:asCoverage ?floodarea_cov .
?floodarea_cov geo2:asCoverageJSON ?floodarea_covjson .

5 BIND(geo2:rasterSmaller(?floodarea_covjson,10) AS ?relfloodarea)
FILTER(geo2:intersects(?roadseg_wkt,?relfloodarea))}

Listing 2: Use Case 1: Flood Altitude

The second query (Listing 3) solving use case U2 adds the values of two differ-
ent rasters (fire and floodhazard) of the same area together (geo2:rasterPlus (+)
line 8) and extracts atomic values of the combined raster to assign a risk value
to each given building. The maximum risk value per building is returned.

1 SELECT ?building (MAX(?riskvalue) AS ?riskmax) WHERE {
?building a ex:Building ; geo:hasGeometry ?building_geom .

3 ?building_geom geo:asWKT ?building_wkt .
?floodarea a ex:FloodRiskArea ; geo2:hasCoverage ?floodcov.

5 ?floodcov geo2:asCoverageJSON ?floodcov_covjson .
?firearea rdf:type ex:FireRiskArea ; geo2:hasCoverage ?firecov.

7 ?firecov geo2:asCoverageJSON ?firecov_covjson .
BIND (geo2:rasterPlus(?firecov_covjson,?floodcov_covjson) AS ?riskarea)

9 BIND (geo2:cellval2(geo2:rasterIntersection(?building_wkt,?riskarea)) AS ?riskvalue)
FILTER(geo2:intersects(?building_wkt,?riskarea))}

Listing 3: Use case 2: Risk assessment

The third query (Listing 4) solving use case U3 combines the assessment of
properties of vector geometries (line 10) with assessments gained from rasters
(line 7) and GeoSPARQL functions like geo:buffer and geo:intersects (line 11-
12) to evaluate roads with a higher priority to be evacuated.

1 SELECT ?road WHERE{
?road a ex:Road ; geo:hasGeometry ?roadgeom . ?roadgeom geo:asWKT ?road_wkt .

3 ?ear a ear:ElementAtRisk ; geo:hasGeometry ?eargeom ; ex:openTime ?earopen ; ex:closeTime ?earclose .
?eargeom geo:asWKT ?ear_wkt .

5 ?floodarea a ex:FloodRiskArea ; geo2:hasCoverage ?floodcov. ?floodcov geo2:asCoverageJSON ?
floodcov_covjson .

?firearea rdf:type ex:FireRiskArea ; geo2:hasCoverage ?firecov. ?firecov geo2:asCoverageJSON ?
firecov_covjson .

7 BIND (geo2:rasterPlus(?firecov_covjson,?floodcov_covjson) AS ?riskarea)
BIND("2019−05−23T10:20:13+05:30"^^xsd:dateTime AS ?givendate)

9 FILTER(?givendate>?earopen AND ?givendate<?earclose)
FILTER(geo:intersects(geo:buffer(?road_wkt,2,uom:meter),?ear))

11 FILTER(!geo:intersects(?road_wkt,?riskarea))}

Listing 4: Use case 3: Rescue Capacity Planning

Roads with a higher priority are near elements at risk for which we provide an
ontology model in the appended technical report. The element at risk definition
simplifies this query in comparison to an equivalent POSTGIS query, as the se-
mantics are already explicitly stated.
Finally, the query for use case U4 (Listing 5) combines the GeoSPARQL func-
tions geo:area (line 8) and geo:buffer (line 7) with GeoSPARQL+ functions to in-
tersect geometries and rasters (line 7-8) and to return a rasters geometry (line 8).

SELECT ?hazardcoveragepercentage WHERE {
2 ?floodarea a ex:FloodRiskArea; geo2:hasCoverage ?floodcov.

?floodcov geo2:asCoverageJSON ?floodcov_covjson .
4 ?firearea rdf:type ex:FireRiskArea ; geo2:hasCoverage ?firecov.

?firecov geo2:asCoverageJSON ?firecov_covjson .
6 BIND(geo2:rasterUnion(?firecov_covjson,?floodcov_covjson) AS ?hazardriskarea)

BIND(geo2:geometryIntersection(?hazardriskarea,geo:buffer(?locationtocheck,10,uom:km)) AS ?
intersectarea)

8 BIND(geo:area(?intersectarea)/geo2:raster2geom(?hazardriskarea) AS ?hazardcoveragepercentage)
BIND("POINT(49.2,36.2)"^^geo:wktLiteral AS ?locationtocheck)}

Listing 5: Use case 4: City Planning

7.2 Results

We measured the execution times of the introduced GeoSPARQL+ queries in
comparison to equivalent SQL/MM [36] queries run on a POSTGIS implemen-
tation. The results are shown in Table 1.

Use case GeoSPARQL+ POSTGIS
Use case 1 112,423ms 86,817ms
Use case 2 164,865ms 108,357ms
Use case 3 134,865ms 112,817ms
Use case 4 184,865ms 140,357ms

Table 1: Execution times of the given queries in the GeoSPARQL+ prototype vs.
the comparison implementation in POSTGIS.

Table 1 shows that the execution time of our prototype is significantly longer
than that of the native POSTGIS implementation.

7.3 Discussion

In Section 5 have shown that the query solutions for use cases U1-U4 exploit
different elements of GeoSPARQL+. Use case U1 relates a raster to a vector data
set, use case U2 showcases the need of raster algebra operators to solve ques-
tions of combined risks, use case U3 combines values gained from rasters with
attributes gained from vector data at the same geographic location. Both use
case U2 and U3 make use of raster-aware filter functions. Finally, the query to
solve use case U4 utilizes the raster to geometry function to create intersections
between rasters with certain characteristics. We therefore illustrated the useful-
ness of GeoSPARQL+. Our prototypical implementation exhibits a slight per-
formance decay between 23% and 34% for various example queries. We specu-

late that this degradation comes from overhead of dealing with semantics, lack
of geospatial indices for rasters and further caches as well as a lack of technical
optimizations that POSTGIS as a mature well-used system comes with. Con-
sidering that our implementation merely constitutes a proof of concepts, we
consider this a graceful degradation and an acceptable result. Future work may
consider an improvement of its performance.

8 Related Work

[23] and [28] proposed stSPARQL and SPARQL-ST, which extend SPARQL with
spatiotemporal query capabilities for vector data. Spatiotemporal aspects for
raster data and vector data are not considered by our approach but we see no
major issues to combine the ideas of stSPARQL with our work. This is relevant
as not only rasters with spatiotemporal aspects exist, but the content of raster
data may also change over time.
Some approaches like LinkedGeoData [5] convert SPARQL queries to SQL
queries in order to execute them on a native geospatial-aware SQL database.
Similarly, hybrid systems such as Virtuoso [15] add a semantic layer on top of
a relational database such as POSTGIS [31]. In principle, this would allow for
accessing raster data, but has only been used to store and distribute vector data
(cf. [5]). We attribute this to a lack of semantic description of raster data which
we address in this publication. Furthermore, we provide a solution indepen-
dent of SQL datatabases and independent of the need for query conversions
from SPARQL to SQL.
Relational spatial databases like POSTGIS [31] or OGC geospatial webservices
[25] along with software suites such as QGIS5 and their accompanying libraries
can handle, import, modify and query raster data, in particular with raster al-
gebra. None of the aforementioned systems combines the advantages of linked
data with the ability to semantically describe or access raster data information.
In addition to the previously mentioned work, there is a line of work that rep-
resents raster data as linked data ([33,30,13]). These works do not consider how
to query raster data. Hence, they lack the expressiveness required to cover
our use cases. Similarly, [7] wrap raster data from a POSTGIS database and
make it available as vector data that can be queried with GeoSPARQL. Because
GeoSPARQL has no means for asking raster-specific queries (e.g. raster alge-
bra), this work also lacks the expressiveness that our approach provides.
Another line of work includes representing and querying multi-dimensional
arrays, SciSPARQL [4]. While there is an overlap between managing raster data
and arrays, raster data has geometric aspects that our approach supports (e.g.
raster cell geometries, intersections and conversions between rasters and poly-
gons, semantic descriptions of scales) that are not available when the underly-
ing data model is restricted to arrays of real numbers. Hence, [4] can not sup-
port our use cases, e.g. lacking intersecting street data and flooding data as we
illustrate in Figure 1a.

5 https://qgis.org/de/site/

https://qgis.org/de/site/

9 Conclusion

We presented GeoSPARQL+ a novel approach that allows for the semantic de-
scription and querying of raster data in the semantic web. We expect these new
capabilities to make publishing geospatial data in the geospatial semantic web
more attractive and consider contributing this work to the currently discussed
revision of GeoSPARQL [1,2]. Future work could explore the semantic descrip-
tion of further OGC coverage types such as trajectories or even point clouds.
Also, non-grid-based raster types should be investigated, as well as the repre-
sentation of 3D rasters.
Acknowledgements. Work by Steffen Staab was partially supported by DFG
through the project LA 2672/1, Language-integrated Semantic Querying (LISeQ).

References

1. Abhayaratna, J., van den Brink, L., Car, N., Atkinson, R., Homburg, T., Knibbe,
F., McGlinn, K., Wagner, A., Bonduel, M., Holten Rasmussen, M., Thiery,
F.: Ogc benefits of representing spatial data using semantic and graph tech-
nologies (2020), https://github.com/opengeospatial/geosemantics-dwg/raw/
master/white_paper/wp.pdf

2. Abhayaratna, J., van den Brink, L., Car, N., Homburg, T., Knibbe, F.: Ogc geosparql
2.0 swg charter (2020), https://github.com/opengeospatial/geosemantics-dwg/
tree/master/geosparql_2.0_swg_charter

3. Albiston, G.L., Osman, T., Chen, H.: Geosparql-jena: Implementation and bench-
marking of a geosparql graphstore. Semantic Web Journal (2019)

4. Andrejev, A., Misev, D., Baumann, P., Risch, T.: Spatio-temporal gridded data pro-
cessing on the semantic web. In: 2015 IEEE International Conference on Data Science
and Data Intensive Systems. pp. 38–45. IEEE (2015)

5. Auer, S., Lehmann, J., Hellmann, S.: Linkedgeodata: Adding a spatial dimension to
the web of data. In: ISWC. pp. 731–746. Springer (2009)

6. Battle, R., Kolas, D.: Enabling the geospatial semantic web with parliament and
geosparql. Semantic Web 3(4), 355–370 (2012)

7. Bereta, K., Stamoulis, G., Koubarakis, M.: Ontology-based data access and visual-
ization of big vector and raster data. In: IGARSS 2018-2018 IEEE International Geo-
science and Remote Sensing Symposium. pp. 407–410. IEEE (2018)

8. Blower, J., Riechert, M., Roberts, B.: Overview of the coveragejson format (2017)
9. Van den Brink, L., Barnaghi, P., et al.: Best practices for publishing, retrieving, and

using spatial data on the web. Semantic Web 10(1), 95–114 (2019)
10. Cerans, K., Barzdins, G., et al.: Graphical schema editing for stardog owl/rdf

databases using owlgred/s. In: OWLED. vol. 849 (2012)
11. Consortium, O.G., et al.: Ogc geosparql-a geographic query language for rdf data.

OGC Candidate Implementation Standard 2 (2012)
12. Consortium, W.W.W., et al.: Sparql 1.1 overview (2013)
13. Consortium, W.W.W., et al.: The rdf data cube vocabulary (2014)
14. Contributor, E.F.: Rdf4j. rdf4j.org [Online]. (2020)
15. Erling, O.: Virtuoso, a hybrid rdbms/graph store. IEEE Data Eng. 35(1), 3–8 (2012)
16. Fonseca, F.: Geospatial semantic web. Encyclopedia of GIS pp. 388–391 (2008)
17. Herring, J., et al.: Opengis R⃝ implementation standard for geographic information-

simple feature access-part 1: Common architecture [corrigendum] (2011)

https://github.com/opengeospatial/geosemantics-dwg/raw/master/white_paper/wp.pdf
https://github.com/opengeospatial/geosemantics-dwg/raw/master/white_paper/wp.pdf
https://github.com/opengeospatial/geosemantics-dwg/tree/master/geosparql_2.0_swg_charter
https://github.com/opengeospatial/geosemantics-dwg/tree/master/geosparql_2.0_swg_charter

18. Homburg, T., Staab, S., Janke, D.: Geosparql+: Syntax, semantics and system for inte-
grated querying of graph, raster and vector data. extended version. technical report
(2020) (at arxiv.org). Tech. rep., Mainz University Of Applied Sciences (2020)

19. Huxhold, W.E., et al.: An introduction to urban geographic information systems.
OUP Catalogue (1991)

20. ISO, I.: 19123: Geographic informationschema for coverage geometry and functions.
The International Organization for Standardization: Geneva, Switzerland (2005)

21. Jaiswal, D., Dey, S., Dasgupta, R., Mukherjee, A.: Spatial query handling in semantic
web application: An experience report. In: 2015 Applications and Innovations in
Mobile Computing (AIMoC). pp. 170–175. IEEE (2015)

22. Jena, A.: A free and open source java framework for building semantic web and
linked data applications (2019)

23. Koubarakis, M., Kyzirakos, K.: Modeling and querying metadata in the semantic
sensor web: The model strdf and the query language stsparql. In: Extended Semantic
Web Conference. pp. 425–439. Springer (2010)

24. Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: a semantic geospatial
dbms. In: International Semantic Web Conference. pp. 295–311. Springer (2012)

25. Nogueras-Iso, J., Zarazaga-Soria, F.J., Béjar, R., Álvarez, P., Muro-Medrano, P.R.: Ogc
catalog services: a key element for the development of spatial data infrastructures.
Computers & Geosciences 31(2), 199–209 (2005)

26. Ontotext: Graphdb. graphdb.ontotext.com [Online]. (2020)
27. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of sparql. In: ISWC.

pp. 30–43. Springer (2006)
28. Perry, M., et al.: Sparql-st: Extending sparql to support spatiotemporal queries. In:

Geospatial semantics and the semantic web, pp. 61–86. Springer (2011)
29. Portele, C.: Opengis R⃝ geography markup language (gml) encoding standard. Open

Geospatial Consortium (2007)
30. Quintero, R., Torres, M., Moreno, M., Guzmán, G.: Towards a semantic representa-

tion of raster spatial data. In: International Conference on GeoSpatial Sematics. pp.
63–82. Springer (2009)

31. Ramsey, P., et al.: Postgis manual. Refractions Research Inc 17 (2005)
32. Santos, R.: Java advanced imaging api: a tutorial. Revista de Informática Teórica e

Aplicada 11(1), 93–124 (2004)
33. Scharrenbach, T., Bischof, S., Fleischli, S., Weibel, R.: Linked raster data (2012)
34. Stolze, K.: Sql/mm spatial: The standard to manage spatial data in a relational

database system. In: BTW 2003–Datenbanksysteme für Business, Technologie und
Web, Tagungsband der 10. BTW Konferenz. Gesellschaft für Informatik eV (2003)

35. Tomlin, C.D.: Map algebra: one perspective. Landscape & Urban Planning 30 (1994)
36. Wirz, D.: Ogc simple features (for sql and xml/gml). university of Zurich, depart-

ment Geography| Zurich (2004)

	GeoSPARQL+: Syntax, Semantics and System for Integrated Querying of Graph, Raster and Vector Data
	Introduction
	Foundations For Extending GeoSPARQL
	Geometry
	RDF, SPARQL and GeoSPARQL

	Use Case Requirements
	Modeling Raster Data
	GeoSPARQL+
	The GeoSPARQL+ Vocabulary
	GeoSPARQL+ Syntax
	GeoSPARQL+ Semantics

	Implementation
	Feasibility
	GeoSPARQL+ Queries
	Results
	Discussion

	Related Work
	Conclusion

