Deciding SHACL Shape Containment through
Description Logics Reasoning

Martin Leinbergerl,[0000700017643773429], Phlhpp Seifer27[0000700027742172060]7

Tjitze Rienstra', Ralf Lamme]?,[0000-0001-9946-4363] 514 Steffen
Staah?3:410000—-0002—-0780—4154]

! Inst. for Web Science and Technologies, University of Koblenz-Landau, Germany
{mleinberger,rienstra}@uni-koblenz.de
2 The Software Languages Team, University of Koblenz-Landau, Germany
{pseifer,laemmel}@uni-koblenz.de
3 Institute for Parallel and Distributed Systems, University of Stuttgart, Germany
steffen.staab@ipvs.uni-stuttgart.de
4 Web and Internet Science Research Group, University of Southampton, England

Abstract. The Shapes Constraint Language (SHACL) allows for for-
malizing constraints over RDF data graphs. A shape groups a set of
constraints that may be fulfilled by nodes in the RDF graph. We investi-
gate the problem of containment between SHACL shapes. One shape is
contained in a second shape if every graph node meeting the constraints
of the first shape also meets the constraints of the second. To decide
shape containment, we map SHACL shape graphs into description logic
axioms such that shape containment can be answered by description logic
reasoning. We identify several, increasingly tight syntactic restrictions of
SHACL for which this approach becomes sound and complete.

1 Introduction

RDF has been designed as a flexible, semi-structured data format. To ensure
data quality and to allow for restricting its large flexibility in specific domains,
the W3C has standardized the Shapes Constraint Language (SHACL)®. A set
of SHACL shapes are represented in a shape graph. A shape graph represents
constraints that only a subset of all possible RDF data graphs conform to. A
SHACL processor may validate whether a given RDF data graph conforms to a
given SHACL shape graph.

A shape graph and a data graph that act as a running example are pre-
sented in Fig. 1. The shape graph introduces a PaintingShape (line 1-4) which
constrains all instances of the class . It requires the presence of at least
one —exhibitedAt—> property (line 3) as well as that each node reachable via the
—creator—> property from a conforms to the PainterShape (line 4). The
PainterShape (lines 5-8) requires all incoming —creator—> properties to conform
to PaintingShape (line 6) as well as the presence of exactly one —birthdate—> prop-
erty. Lastly, the shapes define a CubistShape (lines 9-11) which must have an

5 https://www.w3.org/TR/shacl/

2 M. Leinberger et al.

| :PaintingShape a sh:NodeShape;

2 sh:targetClass :Painting;

3 sh:property [sh:path :exhibitedAt; sh:minCount 1;];

4 sh:property [sh:path :creator; sh:node :PainterShape; J].

6 :PainterShape a sh:NodeShape;
/ sh:property [sh:inversePath :creator; sh:node :PaintingShape;];

8 sh:property [sh:path :birthdate; sh:minCount 1; sh:maxCount 1;];
9

10 :CubistShape a sh:NodeShape

11 sh:property [sh:path ([sh:inversePath :creator] :style);

12 sh:minCount 1; sh:value :cubism;].

(a) Example for a SHACL shape graph.

Museum Painting

type type
1 1
<—exhibitedAt-—creator—»birthdate—» “25.10.1881"
st;llle

(b) Example for a data graph that conforms to the shape graph.

Fig. 1: Example of a shape graph (a) and a data graph (b).

incoming —creator—> property from a node that has an outgoing —style— property
to the node . The graph shown in Fig. 1 conforms to this set of shapes as
it satisfies the constraints imposed by the shape graph.

In this paper, we investigate the problem of containment between shapes:
Given a shape graph S including the two shapes s and s, intuitively s is con-
tained in s’ if and only if every data graph node that conforms to s is also a
node that conforms to s’. An example of a containment problem is the question
whether CubistShape is contained in PainterShape for all possible RDF graphs.
While containment is not directly used in the validation of RDF graphs with
SHACIL, it offers means to tackle a broad range of other problems such as SHACL
constraint debugging, query optimization [5, 1] or program verification [16]. As
an example of query optimization, assume that CubistShape is contained in
PainterShape and that the graph belng querled conforms to the shapes A
query querying for : 7X and : ?Y - such that : ?X ~style—>(cubism), : 7X -creator—>: ?Y: and
{7X -exhibitedAt—?Z can be optlmlzed Since nodes that are results for : ?Y must
conform to CublstShape and CubistShape is contained in PalnterShape nodes
that are results for : ?X: must conform to PaintingShape. Subsequently, the pat-
tern ¢ ?X> exhlbltedAt—r?_Z_'} can be removed without consequence.

Given a set of shapes S, checking whether a shape s is contained in another
shape s’ involves checking whether there is no counterexample. That means,
searching for a graph that conforms to S, but in which a node exists that con-

Deciding SHACL Shape Containment through DL Reasoning 3

forms to s’ but not to s. A similar problem is concept subsumption in description
logics (DL). For DL, efficient tableau-based approaches [4] are known that either
disprove concept subsumption by constructing a counterexample or prove that
no counterexample can exist. Despite the fundamental differences between the
Datalog-inspired semantics of SHACL [10] and the Tarski-style semantics used
by description logics, we leverage concept subsumption by translating SHACL
shapes into description logic knowledge bases such that the shape containment
problem can be answered by performing a subsumption check.

Contributions We propose a translation of the containment problem for SHACL
shapes into a DL concept subsumption problem such that the formal semantics
of SHACL shapes as defined in [10] is preserved. Our contributions are as follows:

1. We define a syntactic translation of a set of SHACL shapes into a description
logic knowledge base and show that models of this knowledge base and the
idea of faithful assignments for RDF graphs in SHACL can also be mapped
into each other.

2. We show that by using the translation, the containment of SHACL shapes
can be decided using DL concept subsumption.

3. Based on the translation and the resulting description logic, we identify syn-
tactic restrictions of SHACL for which the approach is sound and complete.

Organization The paper first recalls the basic syntax and semantics of SHACL
and description logics in Section 2. We describe how sets of SHACL shapes are
translated into a DL knowledge base in Section 3. Section 4 investigates how to
use standard DL entailment for deciding shape containment. Finally, we discuss
related work in Section 5 and summarize our results. An extended version of this
paper including full proofs and additional explanations is available on Arxiv®.

2 Preliminaries

2.1 Shape Constraint Language

The Shapes Constraint Language (SHACL) is a W3C standard for validating
RDF graphs. For this, SHACL distinguishes between the shape graph that con-
tains the schematic definitions (e.g., Fig. 1la) and the data graph that is being
validated (e. g., Fig. 1b). A shape graph consists of shapes that group constraints
and provide so called target nodes. Target nodes specify which nodes of the data
graph have to be valid with respect to the constraints in order for the graph to
be valid. In the following, we rely on the definitions presented by [10].

Data graphs We assume familiarity with RDF. We abstract away from concrete
RDF syntax, representing an RDF Graph G as a labeled oriented graph G =
(Va, Eq) where Vi is the set of nodes of G and E¢g is a set of triples of the

5 https://arxiv.org/abs/2008.13603

4 M. Leinberger et al.

form (v1,p,v2) meaning that there is an edge in G from v; to ve labeled with
the property p. We use V to denote the set of all possible graph nodes and £
to denote the set of all possible triples. A subset Vo C V represents the set of
possible RDF classes. We use G to denote the set of all possible RDF graphs.

Constraints While shape graphs and constraints are typically given as RDF
graphs, we use a logical abstraction in the following. We use Ny to refer to the
set of all possible shape names. A constraint ¢ from the set of all constraints @
is then constructed as follows:

pu=T[s|v]|dr1 A2 |70 [Znp.d 1)
pu=pl| p|p1/p2 (2)

where T represents a constraint that is always true, s € Ng references a shape
name, v € V is a graph node, —¢ represents a negated constraint and >, p.¢
indicates that there must be at least n successors via the path expression p that
satisfy the constraint ¢. For simplicity, we restrict ourselves to path expressions p
comprising of either standard properties p, inverse of path ~p, and concatenations
of two paths p;/p2. We therefore leave out operators for transitive closure and
alternative paths. We use P to indicate the set of all possible path expressions.
A number of additional syntactic constructs can be derived from these basic
constructors, including ¢; V ¢ for =(—d1 A —¢2), <y p.¢ for =(Zn410.0),=n p.@
for (<pnp-@) A (Znp-¢), and ¥V p.¢p for <gp.—¢. As an example, the constraint of
CubistShape (see Fig. 1) can be expressed as >; ("creator/style).cubism.

Evaluation of constraints is rather straightforward with the exception of ref-
erence cycles. To highlight this issue, consider a shape name Local with its con-
straint Vknows.Local. In order to fulfill the constraint, any graph node reachable
through —knows— must conform to Local. Consider a graph with a single vertex
whose —knows— property points to itself . Intuitively, there are two possible
solutions. If is assumed to conform to Local, then the constraint is satisfied
and it is correct to say that conforms to Local. If is assumed to not
conform to Local, then the constraint is violated and it is correct to say that
does not conform to Local. We follow the proposal of [10] and ground eval-
uation of constraints using assignments. An assignment o maps graph nodes v
to shape names s. Evaluation of constraints takes an assignment as a param-
eter and evaluates the constraints with respect to the given assignment. The
case above is therefore represented through two different assignments—one in
which Local € o((¢1)) and a different one where Local ¢ o((b1)). We require
assignments to be total, meaning that they map all graph nodes to the set of all
shapes that the node supposedly conforms to. This disallows certain combina-
tions of reference cycles and negation in constraints, in essence requiring them
to be stratified. In contrast, [10] also defines partial assignments, lifting this re-
striction. Due to the lack of space, we refer to [10] for an in depth discussion on
the differences of total and partial assignments.

Definition 1 (Assignment). Let G = (Vg, Eg) be an RDF graph and S a
set of shapes with its set of shape names Names(S). An assignment o is a total

Deciding SHACL Shape Containment through DL Reasoning 5

function o : Vg — 2Nomes(S) mapping graph nodes v € Vg to subsets of shape
names. If a shape name s € o(v), then v is assigned to the shape name s. For
all s & o(v), the node v is not assigned to the shape s.

Evaluating whether a node v in G satisfies a constraint ¢, written [¢]""%7, is
defined as shown in Fig. 2.

[[T]]U’G’J = true true if
—d]? G — v,G,o _
true if [¢1]"% 7 = true A [-¢] = [4] —'false
[o1 A ¢2HU‘G’G = [p2]?C7 = true false otherwise

false otherwise

Iqv,G,o
v'] .
false otherwise

{true ifv=1

true if [{ve | (v1,v2) € [F]€A
[Znpd177 = { [= truc} > n o] {true it s € o(v)
S =

false otherwise false otherwise

[Pl = {(v1,v2) |3p: (v1,p, v2) € Eg}
[Pl = {(v2,01) | (v1,v2) € []}
[p1/p2]€ = {(v1,v2) [3v:(v1,0) € [1]€ A (v,v2) € [p2]“}

Fig. 2: Evaluation rules for constraints and path expressions.

Shapes and Validation A shape is modelled by a triple (s, ¢,q). It consists of
a shape name s, a constraint ¢ and a query for target nodes g. Target nodes
denote those nodes which are expected to fulfill the constraint associated with
the shape. Queries for target nodes are built according to the following grammar:

qu=_L1|{v1,...,u,} | class v | subjectsOf p | objectsOf p (3)

where L represents a query that targets no nodes, {v; ...v,} targets all explic-
itly listed nodes with vy,...,v, € V, class v targets all instances of the class
represented by v where v € V¢, subjects0f p targets all subjects of the prop-
erty p and objects0f p targets all objects of p. We use Q to refer to the set
of all possible queries and [¢]l¢ to denote the set of nodes in the RDF graph G
targeted by the query ¢ (c.f. Fig. 3).

A shape graph is then represented by a set of shapes S whereas S represents
the set of all possible sets of shapes. We assume for each (s, ¢,q) € S that, if a

[class v2]a = {v1 | (v1, type,v2) € Eg}
[[SllbjectSOf p]]c = {Ul | Ty : (’U1,p7 ’Uz) S Eg}
[objectsOf pla = {v2 | Fv1 : (vi,p,v2) € Eg}

[Lle =0
{vi,-..svon}le =4{v1,.-.,vn}

Fig. 3: Evaluation of target node queries.

6 M. Leinberger et al.

S1={

(PaintingShape, >1exhibitedAt.T A Vcreator.PainterShape,class Painting),
(PainterShape, =jibirthdate.T A V “creator.PaintingShape, 1),
(CubistShape , > “creator/style.cubism, 1)
}

Fig. 4: Representation of the shape graph shown in Fig. 1a as a set of shapes.

shape name s’ appears in ¢, then there also exists a (s',¢’,¢') € S. Similar to
[10], we refer to the language represented by the definitions above as £. As an
example, Fig. 4 shows the shape graph defined in Fig. 1a as a set of shapes.

Validating an RDF graph means finding a faithful assignment. That is, finding
an assignment for which two conditions hold: First, if a node is a target node of
a shape, then the assignment must assign that shape to the node. Second, if an
assignment assigns a shape to a graph node, the constraint of the shape must
evaluate to true. Third, when a constraint evaluates to true (false) on a node,
that node must (not) be assigned to the corresponding shape.

Definition 2 (Faithful assignment). An assignment o for a graph G =
(Vi, Ec) and a set of shapes S is faithful, iff for each (s,¢,q) € S and for
each graph node v € Vi, it holds that:

- seo(v) & [¢]rC.
—veE[dle =se<a).

A graph that is valid with respect to a set of shapes is said to conform to the
set of shapes.

Definition 3 (Conformance). An RDF graph G conforms to a set of shapes S
iff there is at least one faithful assignment o for G and S. We write Faith(G, S)
to denote the set of all faithful assignments for G and S.

A A

type type
mncars |«—exibitedAt— guernica |—creator—>| picasso | birthdate—>{ “25.10.1881"
, (picasso)
style
¥

01(())=0 o1(()) = {PaintingShape} o1(()) = {PainterShape, CubistShape}
Fig. 5: Faithful assignment o; for S; and the data graph shown in Fig. 1b.

For the data graph shown in Fig. 1b, there is a faithful assignment oy that
maps PaintingShape to and both PainterShape and CubistShape to

(see Fig. 5). The assignment is faithful because all instances of are

Deciding SHACL Shape Containment through DL Reasoning 7

Constructor Name Syntax Semantics

atomic property name D pl C Al x AT

inverse role re {(02,01) | (01,02) € 7'}

role composition 1079 {(01,02) | (01,0) € ril A (0,02) € 7“21}
atomic concept name A Al c AT

nominal concept {o1,...0n} {o{, ceey ofl}

top T Al

negation -C AT\ !

conjunction cnbD c'np!

qualified number restriction >, 7.C {o1 | [{o1 | (01,02) € 7' N2 € CT}| > n}

Fig.6: Syntax and semantics of roles r (above the line) and concept expressions
C, D (below the line).

Name Syntax Semantics
concept inclusion CcCCD ctc D!
concept assertion o:C ol e !
role assertion (01,00) : 7 (o],0%) er!

Fig.7: Syntax and semantics of axioms.

assigned to PaintingShape and all nodes that are assigned to a shape satisfy
the constraints of the shape.

2.2 Description Logics

We focus on the highly-expressive DL ALCOZQ(o) as well as decidable sub-
sets of this logic. We follow routine syntax and interpretation-based semantics
(c.f. [4,13,3]). Sig(K) = (Na, Np, No) is the signature of a knowledge base K
comprising of a set of atomic concept names N4 that is a subset of the set of
all possible atomic concept names N4, a set of atomic property names Np (a
subset of A/p) and a set of object names No (a subset of NVp). From these, more
complex role expressions, denoted by r, and concept expressions, denoted by C
and D, are built (see Fig. 6) whereby C denotes the set of all possible concept
expressions and R the set of all possible role expressions.

Axioms are either concept inclusions, concept assertions or role assertions (see
Fig. 7). We use C = D as a shorthand for the two axioms C C Dand D C C.Ina
given interpretation I = (A, -7) comprised of a universe A and an interpretation
function -, an axiom %) is either true or false. An interpretation in which all
axioms of K are true is a model of K. We use Mod(K) to denote the set of all
models of K. An axiom) is entailed by K written K | ¢ if it is true in all
models of K. Lastly, we use K for the set of all possible knowledge bases.

8 M. Leinberger et al.

3 From SHACL Shape Containment to Description Logic
Concept Subsumption

Given two shapes s and s’ that are elements of the same set of shapes S, we say
that s is contained in s’ if any node that conforms to s will also conform to s’
for any given RDF data graph G as well as any given faithful assignment for S
and G.

Definition 4 (Shape Containment). Let S be a set of shapes with s,s' €
Names(S). The shape s is contained in shape s’ if:

VG € G:Vo € Faith(G,S) : Vv € Vg : s € o(v) = s’ € o(v) with s, s’ € Names(S)
We use s <:g s’ to indicate that shape s is contained in s’ with respect to S.

Both SHACL and description logics use syntactic formulas inspired by first-
order logic. However, their semantics are fundamentally different. For SHACL,
we follow the Datalog-inspired semantics introduced by [10]. Description logics
on the other hand adopt Tarskian-style semantics. To decide shape containment,
we map sets of shapes syntactically into description logic knowledge bases such
that the difference in semantics can be overcome.

The function Tghapes maps a set of shapes S to a description logic knowl-
edge base K using four auxiliary functions (see Fig. 8): First, Tyame maps
shape names, RDF classes as well as properties and graph nodes onto atomic
concept names, atomic property names and object names. Second, Tyole maps
SHACL path expressions to DL role expressions. Third, Tconstr maps constraints
to concept expressions. Fourth, Tiarger maps queries for target nodes to concept
expressions. The function Tshapes maps a set of shapes S to a set of axioms such
that s <:g s’ is true if K° |= Thame(5) C Thame(s)-

T /Tshapes\/ === — & built using
1Shape ' == - - = - - = , Axioms |
et \ _———_ —> maps to
’ X \l \/
1 1
_______ - e
: ! ! Target Node 1 I Concept !
! \ Quer |7 Ttarget Expression |
oo S Y, L Bxpression,
- = -1 Constraint | e : RN
L N N | Tconstr 1 | SO
1" ~
n B _*_ _ ! | ! \/ e
II: ' Path ! \ TTOle*\) " Role T !
1 . le—=-=- oo) 1
" \ Expression | | Graph\| ’II : Object : : Expression : |
nm =" """ I Nadae 1— ' S5 " Name ! ===~
" ! \ Node ' =—7, o1 Name v |
] -0 1 |
R | iomic Properys |
L
\ I\R_Df _pr_o;_:e:t}_/, n Tname : Name) \l
c--"= r e mmee et === -
1 Shape , it ! Atomic Concept '
1

Fig. 8: Syntactic translation of SHACL to description logics.

To prove this property, we show that every finite model of K can be used
to construct an RDF graph G and an assignment that is faithful with respect

Deciding SHACL Shape Containment through DL Reasoning 9

to G and S. Likewise, a model of K5’ can be constructed from an assignment
that is faithful with respect to S and any given RDF graph G.

3.1 Syntactic Mapping

We map the set of shapes S into a knowledge base K by constraints and
target node queries of each shape using the functions Tyole, Tconstr, Ttarget, and
Tshapes- All those functions rely on Tame which maps atomic elements used in
SHACL to atomic elements of a DL knowledge base:

Definition 5 (Mapping atomic elements). The function Thame : Ng U Ve U
VUE — NaUNpUNg is an injective function mapping shape names and RDF
classes onto atomic concept names, graph nodes onto object names as well as
properties onto atomic property names.

Definition 6 (Mapping path expressions to DL roles). The path mapping
function Tyole : P — R, is defined as follows:

Trole (P) = Tname (p)

Trole(Ap) = 7—role(p)_

Trole (Pl /P2) = Trole(pl) O Trole (P2)

Definition 7 (Mapping constraints to DL concept expressions). The
constraint mapping Teonstr : Y — C is defined as follows:

Tconstr (T) =T

Tconstr(s) = Tname(s)

Tconstr (U) = {Tname(v)}

Tconstr (¢1 A ¢2) = Tconstr(dﬁ) M Tconstr(¢2)
Tconstr (_‘QS) = T'Tconstr (¢)

Tconstr()n P¢) = Zn Trole (p)~7—c0nstr(¢)

Definition 8 (Mapping target node queries to DL concept expres-
sions). The target node mapping Tiarget : @ — C is defined as follows:

Ttarget (J-) =1
Ttarget({vlv o ;Un}) = {Tname(vl); DR Tname(vn)}
Ttarget(C]-ass U) = Tname(v)

Ttarget (Subjects0f p) = I Thame(p). T
Tiarget (ObjectsOf p) = ITname(p) ™. T

The mapping Tearget () Of a target query g is defined such that querying for the
instances of g returns exactly the same nodes from the data graph. Likewise,
the mapping Teonstr(¢) is defined such that it contains those nodes for which
¢ evaluates to true and T that the interpretation of the role expression con-
tains those nodes that are also in the evaluation of the path expression. Tghapes
generalizes the construction to sets of shapes:

Definition 9 (Mapping sets of shapes to DL axioms). The shape mapping
function Tehapes : S = K is defined as follows:

Tshapes(S) = U {Ttarget (Q) C Tname(s)a 7—constr(ﬁﬁ) = Tname(s)}
(s,9,9)€S

10 M. Leinberger et al.

To illustrate the function Tghapes, the translation of the set of shapes Tghapes(S1) =
K5 is shown in Fig. 9.

KV = {Painting C PaintingShape,
>1exhibitedAt. T MV creator.PainterShape = PaintingShape,
1 C PainterShape,

>1birthdate. T M Vcreator .PaintingShape = PainterShape,
1 C Cubist,

>1creator o style.{cubism} = CubistShape }

Fig. 9: Translation Tyhapes(S1) = K of the set of shapes S;.

3.2 Construction of Faithful Assignments and Models

Given our translation, we now show that the notion of faithful assignments of
SHACL and finite models in description logics coincide.

Definition 10 (Finite model). Let K be a knowledge base and I € Mod(K)
a model of K. The model I is finite, if its universe Al is finite [7]. We use
Modﬁn(K) to refer to the set of all finite models of K.

Given an RDF data graph G, a set of shapes S and an assignment o that is
faithful with respect to S and G, we construct an interpretation ‘¢ that is a
finite model for the knowledge base K.

Definition 11 (Construction of the finite model I‘¢-7*). Let S be a set
of shapes, G = (Vg,Eg) an RDF data graph and o an assignment that is
faithful with respect to S and G. Furthermore, let Thoqe be the inverse of the
function Tyame. The finite model 16 for the knowledge base Tshapes(S) = K
is constructed as follows:

1. All objects are interpreted as themselves: Yo € No : o! = o.
2. A pair of objects is contained in the interpretation of a relation if the two
objects are connected in the RDF data graph:

G,o0 [G,o

Vpe Np:Voi,00 € No : (0{(TL0y) E pI(G’mif(Tnode(ol),p, Tnode(02)) €
(Ec \ {(v1, type,v2) € Eg}).

3. Objects are in the interpretation of a concept if this concept is a class used
in the RDF data graph and the object is an instance of this class according
to the graph:

VA, € Nsy :Yo € Np : ol 7 € Ai(c‘m if (Thode(0), type, Thode(As)) € Eg.

4. Objects are in the interpretation of a concept if the concept is a shape name
and the assignment o assigns the shape to the object:

VA; € N4 : Vo € No - ol 7 € Ag(G’m if Thode(As) € 0(Tnode(0)).

Deciding SHACL Shape Containment through DL Reasoning 11

The interpretation I‘“>” is a model of the knowledge base K. Before we
show this, it is important to notice that the interpretation of role expressions
constructed through 7c contains the same nodes in the interpretation I (G0
as the evaluation of the path expression.

Lemma 1. Let S be a set of shapes, G an RDF data graph and o an assignment
that is faithful with respect to S and G. Furthermore, let I‘“% be an interpre-
tation for K. It holds that ¥(o1,02) € Tmle(p)l(c’m = (Thode(01), Thode(02)) €
[p]€ for any path expression p.

Proof. The interpretation ‘@’ contains all properties of the RDF graph. The
result is then immediate from the evaluation rules of path expressions (c. f. Fig. 2)
and semantics of role expressions (c.f. Fig. 6). O

Theorem 1. Let S be a set of shapes, G an RDF data graph and o an assignment
that is faithful with respect to S and G. Furthermore, let K be a knowledge
base that is constructed through Tshapes(S). The interpretation IG s q finite
model Of K (](G,a) ': K(S)).

Proof (Sketch). I‘G-? is finite because the RDF graph G has only a finite num-
ber of graph nodes. Furthermore, ‘> satisfying the axioms created by Tshapes
can be shown via induction over the mapping rules for Teonstr and Target- O

Furthermore, we show that any finite model I of a knowledge base K% built
from a set of shapes S can be transformed into an RDF graph G‘’ and an
assignment oI such that o” is faithful with respect to S and G*I”. We construct
G‘P and ‘"’ in the following manner:

Definition 12 (Construction of G‘”> and o). Let S be a set of shapes
and K a knowledge base constructed via Tshapes(S). Furthermore, let I €
Mod™ (K ") be a finite model of K. The RDF graph G" = (VS EZ?) and
the assignment oI’ can then be constructed as follows:

1. The interpretations of all relations are interpreted as relations between graph
nodes in the RDF graph:
Vp € Np : (of,01) € p! = (Tuode(0), P, Thode(0)) € EE.
2. The interpretations of all concepts that are not shape mames are triples
indicating an instance in the RDF graph:
VA€ N4 : (of € AT A A ¢ Names(S)) = (Tnode (0), tyPe, Tnode(4)) € EZ.
8. The interpretations of all concept names that are shape names are used to
construct the assignment
oP’: VA€ Ny:(of € AT AAENames(S)) = Tnode(A) € 0 (Thode(0)).

An assignment o‘” constructed in this manner is faithful with respect to the

constructed RDF graph G and the set of shapes S.

Theorem 2. Let S be a set of shapes and KfS) be a knowledge base constructed
through Tehapes(S). Furthermore, let I € Modhn(K(S)) be a finite model for K.
The assignment o’ is faithful with respect to S and G.

12 M. Leinberger et al.

Proof (Sketch). The two axioms that are generated by Tghapes coincide with the
two conditions for faithful assignments (c.f. Definitions 2 and 9). This can be
shown by induction over the translation rules. O

3.3 Deciding Shape Containment using Concept Subsumption

Given the translation rules and semantic equivalence between finite models of a
description logic knowledge base and assignments for SHACL shapes, we can
leverage description logics for deciding shape containment. Assume a set of
shapes S containing definitions for two shapes s and s’. Those shapes are repre-
sented by atomic concepts in the knowledge base K 5*. As the following theorem
proves, deciding whether the shape s is contained in the shape s’ is equivalent
to deciding concept subsumption between s and s’ in K using finite models.

Theorem 3 (Shape containment and concept subsumption). Let S be a
set of shapes and K’ the knowledge base constructed via Tohapes (). Let |=fn
indicate that an axiom is true in all finite models. It holds that:

s <ig S/ g K(S) ':ﬁn Tnamc(s) E Tnamc(sl)

Proof (Sketch). Using Theorems 1 and 2, any counterexample for one side can
always be translated to a counterexample for the other side. O

As an example, reconsider the translation of the set of shapes Tghapes(S1) = K Sv
(see Fig. 9). From K% follows that K’ [~ CubistShape C PainterShape
as there is a finite model I; € Mod™ (K ‘5"’) in which the concept expression
CubistShape 1 —PainterShape is satisfiable (see Fig. 10).

LAl |
! style creator’ _ __ birthdate’ X
: °® /\./\:‘ ° : ° ° 1
i cubism! B |
X CubistShape’! !

(a) Model of KV showing that CubistShape [Z PainterShape.

<—sty|e—creator—> <—birthdate- by

o1 (O) =0 o (O) = {CubistShape} o1([)) = {PainterShape}

(b) Graph and assignment showing that CubistShape is not contained in PainterShape.

Fig. 10: Counterexamples for CubistShape <:g, PainterShape.

An important observation is that it is possible to express arbitrary concept
subsumptions C' C D despite the syntactic restrictions of Tshapes-

Lemma 2. For any aziom C T D, one can define some (s,$,q) € S and
(s',¢',q") € S such that Teonstr(#) = C and Teonstr (@) = D and Tenapes(S) =
CCD.

Deciding SHACL Shape Containment through DL Reasoning 13

Proof (Sketch). Given constraints ¢ and ¢', it is possible to introduce unique
shape names s¢ and sp as well as an RDF class v¢o. Constraint ¢ is then extended
with ve, allowing shape sp to target ve. O

For shapes belonging to the language £, the corresponding description logic
is ALCOZQ(0). To the best of our knowledge, finite satisfiability has not yet
been investigated for ALCOZQ(0). Path concatenation can be restricted such
that the fragment of SHACL corresponds to the description logic SROZQ. The
fragment for which constraints map to syntactical elements of SROZQ, called
L% yses the following constraint grammar:

¢T€St1’ = T | s | v | (/j)lrestr A ¢2restr | ﬁ(blrestr | Hp.qj)restr |>np.¢restr

Finite satisfiability is known to be decidable for SROZQ [14] and all its sublogics
such as ALCOZQ which completely removes role concatenation.

4 Deciding Shape Containment using Standard
Entailment

While shape containment can be decided using finite model reasoning (c. f. Theo-
rem 3), practical usability of our approach depends on whether existing reasoner
implementations can be leveraged. Implementations that are readily-available
rely on standard entailment which includes infinitely large models. We therefore
now focus on the soundness and completeness of our approach using the standard
entailment relation.

Using standard entailment, the description logic ALCOZQ(o) which corre-
sponds to the language L, satisfiability of concepts, and thus concept subsump-
tion, is undecidable [13]. First-order logic is semi-decidable. As ALCOZQ(o)
can be translated to first-order logic through a straightforward extension of the
translation rules for SROZQ [21], ALCOZQ(o) is also semi-decidable. There-
fore, a decision procedure can verify whether a formula is entailed in finite time,
but may not terminate for non-entailed formula. More restricted description log-
ics such as SROZQ, which corresponds to £**% are decidable, meaning that
an answer by the decision procedure is guaranteed in finite time. However, the
question arises whether the satisfiability of a concept implies the existence of a
finite model.

Definition 13 (Finite Model Property). A description logic has the finite
model property if every concept that is satisfiable with respect to a knowledge
base has a finite model [4].

If C' is a concept expression that is satisfiable with respect to some knowledge
base K that belongs to a description logic having the finite model property, then
there must be a finite model of K that shows the satisfiability of C'. Thus, finite
entailment and standard entailment are the same if a description logic has the
finite model property.

14 M. Leinberger et al.

Proposition 1. The finite model property does not hold for the description
logic ALCOZQ [7] or more expressive description logics such as ALCOZQ(o)
and SROZQ. If a concept expression C' is satisfiable with respect to a knowledge
base K written in ALCOZQ or a more expressive description logic, then it may
be that there are only models with an infinitely large universe.

Given Proposition 1, it may be that there are only models with an infinitely
large universe that show the satisfiability of a concept expression. There are three
different possibilities: (1) Thame($) M “Tname(s’) is neither finitely nor infinitely
satisfiable, meaning that K%’ |= Thame(s) C Thame(s’). It follows that s <:g s
is true, as there is no counterexample. (2) Thame(8) M = Tname(s’) is not finitely,
but only infinitely satisfiable. It follows that K = T ame(s) T Tname(s'), but
s <:g &' is true since the infinitely large model has no corresponding RDF graph.
(3) Thame($) M —Thame(s’) is both, finitely and infinitely, satisfiable. It follows that
K F Thame(8) € Tname(s”) and indeed s <:g s is false since the finite model
can be translated into an RDF graph and a faithful assignment. Deciding shape
containment for the shape languages that are translatable into ALCOZQ(o),
SROZQ or ALCOLQ is therefore sound, if the decision procedure terminates.

Theorem 4. Let S be a set of shapes of the language L™, It then holds that:

s <ig s« 7-shapes(S) ': Tname(s) C Tname(sl)

Proof. For L£r®' the corrseponding DL is SROZQ for which the finite model
property does not hold. If K = T ame(s) T Thame(s’), then there is neither a
finitely nor an infinitely large model in which Tame(8) M —Thame(s’) is satisfiable.
The shape s must therefore be contained in the shape s’ as there is no RDF
graph and assignment that acts as a counterexample. O

However, the approach is incomplete as it may be that s <:g s’ but K £
Tname(8) £ Tname(8) because due to an infinitely large model in which Thame(s) M
“Thame(8") is satisfiable.

To restore the finite model property, inverse path expressions have to be
removed. That is, the set of SHACL shapes S must belong to the language
fragment £"°™"V that uses the following grammar:

GUOMINV T |y [5 | g POMINY A gonOniny | _gnon-inv |5, o, gnon-inv
"™ = 1| {vy1,...,v,} | class v | subjectsOf p
As a result, the description logic that corresponds to £V is ALCOQ.
Proposition 2. The description logic ACCOQ has the finite model property [17].

Subsequently, for SHACL shapes that belong to £"°™"¥ shape containment
and concept subsumption in the knowledge base constructed from the set of
shapes are equivalent.

Theorem 5. Let S be a set of shapes belonging to L™, Let K’ be the
knowledge base constructed through Tshapes(S). Then it holds that

5 <58 & K E Thame(s) C Tname(s')

Deciding SHACL Shape Containment through DL Reasoning 15

Proof (Sketch). Due to ALCOQ having the finite model property, it is always
possible to construct counterexamples for either side (c.f. Theorem 3). O

In summary, using standard entailment our approach is sound and complete
for the fragment of SHACL not using path concatenation or inverse path ex-
pressions. If inverse path expressions are used, then the approach is still sound
although completeness is lost. Once arbitrary path concatenation is added, the
resulting DL becomes semi-decidable. While an answer is not guaranteed in finite
time, shape containment is still sound.

5 Related Work

SHACL containment has also been studied by [19], whereas this work studies
theoretical shape satisfiability (and thus containment) by defining an equisatis-
fiable FOL language. In contrast, our approach focuses on practical applicability
by leveraging standard entailment of description logic reasoners. Before SHACL,
several constraint-based schema languages for RDF have been proposed before
SHACL. Among those are [2,12]. To the best of our knowledge, containment
has not been investigated for those languages. Additionally, SPIN? proposed
the usage of SPARQL queries as constraints. Then, the containment problem
for constraints is equivalent to query containment. ShEx [6] is a constraint lan-
guage for RDF that is inspired by XML schema languages. While SHACL and
ShEx are similar approaches, the semantics of the latter is rooted in regular bag
expressions. Validation of an RDF graph with ShEx therefore constructs a single
assignment whereas the SHACL semantics used in this papers deals with mul-
tiple possible assignments. The containment problem of ShEx shapes has been
investigated in [22]. Due to the specific definition of recursion in ShEx, any graph
that conforms to the ShEx shapes will also conform to an equivalent SHACL
definition. However, not all graphs that conform to SHACL shapes conform to
equivalent ShEx shapes.

Similar to dedicated constraint languages, there have been proposals for the
extension of description logics with constraints. While standard description log-
ics adopts an open-world assumption not suited for data validation, extensions
inlcude special constraint axioms [23, 18], epistemic operators [11], and closed
predicates [20]. Constraints constitute T-Box axioms in these approaches, mak-
ing constraint subsumption a routine problem.

Lastly, containment problems have been investigated for queries [15,8]. The
query containment problem is slightly different as result sets of queries are typ-
ically sets of tuples whereas in SHACL we deal with conformance relative to
faithful assignments. Given an RDF graph and a set of shapes there may be
several, different faithful assignments. Operators available for SHACL are more
expressive than operators found in query languages for which subsumption has
been investigated. In particular, recursion is not part of most query languages.
There is a non-recursive subset of SHACL that is known to be expressible as

" http://spinrdf.org/

16 M. Leinberger et al.

SPARQL queries [9]. When constraints are expressed as queries, containment of
SHACL shapes becomes equivalent to query containment. Recursive fragments
of SHACL, however, cannot be expressed as SPARQL queries.

6 Summary

In this paper, we have presented an approach for deciding SHACL shape contain-
ment by translating the problem into a description logic subsumption problem.
Our translation allows for using efficient and well-known DL reasoning imple-
mentations when deciding shape containment. Thus, shape containment can be
used, for example, in query optimization. We defined a syntactic translation of a
set of shapes into a description logic knowledge base. We then showed that finite
models of this knowledge base and faithful assignments of RDF graphs can be
mapped onto each other. Using finite model reasoning, this provides a sound and
complete decision procedure for deciding SHACL shape containment, although
the decidability of finite satisfiability in ALCOZQ(o) is still an open issue. As
part of future work, we plan to adapt the proof used by [14], which comprises
of a translation of SROZQ into a fragment of first-order logic for which finite
satisfiability is known. To ensure practical applicability, we also investigated the
soundness and completeness of our approach using standard entailment. Our
findings are summarized in Fig. 11. Our approach is sound and complete for

SHACL Fragment DL Sound Complete Terminates
L ALCOIQ(0) Yes No Not guaranteed
Lrest SROZQ Yes No Yes
Lroniny ALCOQ Yes Yes Yes

Fig.11: Soundness and completeness for deciding shape containment through
description logics reasoning using standard entailment.

the SHACL fragment £"°™" that uses neither path concatenation nor inverse
roles, as the finite model property holds for the corresponding description logic
ALCOQ. Thus, finite entailment and standard entailment are the same for this
description logic. The finite model property is lost as soon as inverse roles are
added. Using standard entailment, our procedure is still sound for the fragment
L7 which translates into SROZQ knowledge bases, but is incomplete due to
the possibility of a knowledge base having only infinitely large models. Lastly,
the SHACL fragment £ translates into ALCOZQ(o) knowledge bases. Our ap-
proach is sound, but incomplete. However, due to the semi-decidability of the
description logic, it may be that the decision procedure does not terminate.

Acknowledgements. The authors gratefully acknowledge the financial support
of project LISeQ (LA 2672/1-1) by the German Research Foundation (DFG).

Deciding SHACL Shape Containment through DL Reasoning 17

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

Abbas, A., Geneves, P., Roisin, C., Layaida, N.: SPARQL Query Containment with
ShEx Constraints. In: Proc. ADBIS. pp. 343-356. LNCS, Springer (2017)
Akhtar, W., Cortés-Calabuig, A., Paredaens, J.: Constraints in RDF. In: Proc.
Semantics in Data and Knowledge Bases. p. 23-39. Springer (2010)

Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press (2017)

Beneventano, D., Bergamaschi, S., Sartori, C.: Semantic Query Optimization by
Subsumption in OODB. In: Proc. Flexible Query-Answering Systems (FQAS). pp.
167-187. Roskilde University (1996)

Boneva, 1., Gayo, J., Prud’hommeaux, E.G.: Semantics and Validation of Shapes
Schemas for RDF. In: Proc. ISWC. pp. 104-120. LNCS, Springer (2017)
Calvanese, D.: Finite Model Reasoning in Description Logics. In: Proc. KR. pp.
292-303. Morgan Kaufmann (1996)

Chaudhuri, S., Vardi, M.: Optimization of Real Conjunctive Queries. In: Proc.
PODS. p. 59-70. ACM (1993)

Corman, J., Florenzano, F., Reutter, J., Savkovic, O.: Validating Shacl Constraints
over a Sparql Endpoint. In: Proc. ISWC. pp. 145-163. LNCS, Springer (2019)
Corman, J., Reutter, J.L., Savkovic, O.: Semantics and Validation of Recursive
SHACL. In: Proc. ISWC. pp. 318-336. LNCS, Springer (2018)

Donini, F.M., Nardi, D., Rosati, R.: Description Logics of Minimal Knowledge and
Negation As Failure. ACM TOCL 3(2), 177-225 (Apr 2002)

Fischer, P.M., Lausen, G., Schéatzle, A., Schmidt, M.: RDF Constraint Checking.
In: Proc. EDBT/ICDT. pp. 205-212. CEUR-WS.org (2015)

Grandi, F.: On expressive Description Logics with composition of roles in number
restrictions. In: Proc. LPAR. pp. 202-215. LNCS, Springer (2002)

Kazakov, Y.: RIQ and SROIQ Are Harder than SHOIQ. In: Proc. KR. pp. 274-284.
AAAT Press (2008)

Klug, A.: On Conjunctive Queries Containing Inequalities. J. ACM 35, 146-160
(1988)

Leinberger, M., Seifer, P., Schon, C., Lammel, R., Staab, S.: Type Checking Pro-
gram Code Using SHACL. In: Proc. ISWC. pp. 399-417. LNCS, Springer (2019)
Lutz, C., Areces, C., Horrocks, I., Sattler, U.: Keys, nominals, and concrete do-
mains. Journal of Artificial Intelligence Research 23, 667-726 (2004)

Motik, B., Horrocks, I., Sattler, U.: Adding Integrity Constraints to OWL. In:
Proc. OWLED. CEUR Workshop Proceedings, vol. 258. CEUR-WS.org (2007)
Pareti, P., Konstantinidis, G., Magavero, F., Norman, T.J.: SHACL Satisfiability
and Containment. In: Proc. ISWC. LNCS, Springer (2020)

Patel-Schneider, P.F., Franconi, E.: Ontology Constraints in Incomplete and Com-
plete Data. In: Proc. ISWC. pp. 444-459. LNCS, Springer (2012)

Rudolph, S.: Foundations of Description Logics, pp. 76-136. Springer (2011)
Staworko, S., Wieczorek, P.: Containment of Shape Expression Schemas for RDF.
In: Proc. PODS. pp. 303-319. ACM (2019)

Tao, J., Sirin, E., Bao, J., McGuinness, D.L.: Integrity Constraints in OWL. In:
Proc. AAAT. AAAT Press (2010)

