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Abstract

The prediction of crystal structures from first principles requires highly accurate energies

for large numbers of putative crystal structures. The accuracy of solid state density functional

theory (DFT) calculations is often required, but hundreds or more structures can be present

in the low energy region of interest, so that the associated computational costs are prohibitive.

Here, we apply statistical machine learning to predict expensive hybrid functional DFT (PBE0)

calculations using a multi-fidelity approach to re-evalute the energies of crystal structures pre-

dicted with an inexpensive force field. The method uses an autoregressive Gaussian process,

making use of less expensive GGA DFT (PBE) calculations to bridge the gap between the force

field and PBE0 energies. The method is benchmarked on the crystal structure landscapes of

three small, hydrogen bonding organic molecules and shown to produce accurate predictions

of energies and crystal structure ranking using small numbers of the most expensive calcula-

tions; the PBE0 energies can be predicted with errors of less than 1 kJ mol−1 with between

4.2-6.8% of the cost of the full calculations. As the model that we have developed is prob-

abilistic, we discuss how the uncertainties in predicted energies impact on assessment of the

energetic ranking of crystal structures.

1 Introduction

Molecular crystal structure prediction (CSP) aims to predict the set of likely crystal structures of

a molecule through computational methods alone, starting from no more than the chemical dia-

gram. The crystal structure adopted by a molecule is important because it affects many properties

of materials, including physical and chemical stability,1,2 melting points,3–5 solubility,6 morphol-

ogy,7 porosity8–10 and electronic/optoelectronic properties.11,12 The relationship between molec-

ular structure and crystal structure is complicated by the phenomenon of polymorphism, where

different crystal structures of the same chemical composition can be accessed experimentally, ei-

ther concomitantly or under different crystallization conditions. Thus, a given molecule can have

very different materials properties, depending on polymorph, and control of crystal structure can

be exploited in matters as simple as improving the daily experience of eating chocolate,13 or as
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severe as preventing drug ineffectiveness.14–16

The role of CSP must be to predict all likely crystal structures, along with a measure of their

likelihood. There have been high profile cases in the pharmaceutical industry where failing to an-

ticipate polymorphism of a drug had serious consequences. In one case, Rotigotine, a prescription

for the treatment of Parkison’s disease, began crystallizing to an unknown polymorph in transder-

mal patches.14,15 This new form was thermodynamically more stable than the original polymorph,

less soluble, and thus less efficient. In another case, an unknown polymorph of Ritonavir, a drug

for the treatment of HIV, was accidentally produced, which was considerably less soluble and thus

less bioavailable.16 As well as imposing substantial costs for the drug companies, the temporary

removal of these drugs from the market also interrupts the patients’ treatment. CSP could form

part of a strategy to minimize such risks, by guiding experiments for the preparation of undiscov-

ered polymorphs or providing additional confidence that no such undiscovered polymorphs exist.

Applications of CSP are also developing in the area of functional materials discovery by linking

molecular structure to likely materials structures and, hence, to properties of interest; this process

can be used to screen and prioritise potential synthetic targets.17–20

CSP is usually approached as a problem in global optimization. Possible crystal structures cor-

respond to local minima on a high dimensional energy surface determined by the structural degrees

of freedom defining a crystal structure (unit cell dimensions, molecular positions and orientations,

and intramolecular degrees of freedom). The process of CSP can be conceptually split into explo-

ration for putative crystal structures, followed by their ranking, usually based on calculated lattice

energies. The global energy minimum is assumed to correspond to the most likely observable

crystal structure.21,22 However, the prevalence of polymorphism23 demonstrates that other higher

energy crystal structures are also important and the energetic range of observed polymorphism

gives an indication of the region of the crystal energy landscape that will normally include all ob-

servable crystal structures. A study of over 500 pairs of known polymorphs24 revealed that over

half of the pairs had a lattice energy difference of less than 2 kJ mol−1, and only 5% had an energy

difference higher than 7.2 kJ mol−1. CSP has revealed that small organic molecules often have
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dozens, and sometimes over 100 possible crystal structures within this small energy range.25 A

reason behind the plurality of low energy crystal structures is the weak nature of packing forces

such as dispersion interactions, hydrogen bonding, and less specific polar interactions. For most

molecules, there are many ways that these interactions can combine to form similarly low-energy

crystal structures.

The small differences in lattice energies between competing crystal structures imply that a very

good energy resolution is needed for reliable energy rankings. This requires the computation of

crystal energies with a high level of theory, for which solid state, periodic implementations of

density functional theory (DFT) have become a popular approach.22 The cost of solid state DFT

is too high to use for the entire CSP process. This is because a thorough sampling of the lattice

energy surface typically requires the generation and optimization of tens or hundreds of thousands

of trial crystal structures.26 It is, therefore, more common to take a hierarchical approach,27–30

where crystal structures are initially generated and ranked using lower cost methods (e.g. force

fields), followed by re-ranking of the lowest energy predicted crystal structures using DFT. Final

energy calculations using generalized gradient approximation (GGA) exchange-correlation DFT

functionals often suffice for ranking of structures in an organic molecular CSP.27 However, there

are sensitive cases that require energies at a higher level of theory.31–33 For example, the use

of hybrid DFT functionals reduces delocalization error and improves calculated lattice energies

of molecular organic crystals by, on average, 2-3.6 kJ mol−1,34 with the greatest improvements

for hydrogen bonded structures. Reducing delocalization error has been shown to be critical for

modelling of some cocrystals and systems with conformational variability between crystal struc-

tures.31,33,35 However, energy evaluation with hybrid DFT functionals can become prohibitively

expensive, even for CSP of very small molecules, because of the cost of evaluating the exact ex-

change energy. The situation becomes worse as the size of the molecule increases. A fast, accurate

approach to achieve energies of equivalent quality to hybrid DFT would be highly desirable.

State-of-the-art statistical machine learning methods provide promising tools to achieve this

goal. They have been actively used for estimation of the potential energy surface of various classes
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of materials.36–40 Gaussian Process Regression (GPR) is of particular interest here. GPR can

provide a probabilistic description of a wide variety of functional behavior, interpolate computed

data, and tends to outperform other prediction methods for small data problems.41 The latter is

a crucial feature when the collection of large training data sets is computationally unaffordable.

Minimizing the required training set size, as well as efficient choice of such sets, especially at

the hybrid level of DFT, is crucially important to obtain an effective and cost-effective approach

that can be practically applied to CSP. GPR has previously been applied to directly learning the

DFT relative energies of sets of predicted crystal structures,42 as well as to learning the differences

between relative energies at force field and quantum mechanical levels of theory.42,43 These earlier

studies have demonstrated promising results for the application of GPR for acheiving DFT-quality

predicted rankings at substantially lowered computational cost.

In this paper, we develop and apply multi-fidelity (multi-level) statistical machine learning

methods to learn differences in lattice energies of a hierarchy of simulation methods that are com-

monly adopted during the structure exploration and final ranking stages of CSP. A fast, approxi-

mate force field that is used at the early stages of a global structure search is set as the baseline, and

the machine learning models are developed to refine its results, first to predict GGA DFT lattice

energies and then hybrid DFT. In the following, we start by optimizing data gathering costs, and

we then train the machine learning model on the energy differences between models in the energy

hierarchy. The quality of the constructed models is verified by application to CSP for three molec-

ular crystals known to be challenging in terms of energy ranking: oxalic acid, maleic hydrazide,

and urazole.

2 Methods

2.1 Choice of molecules and CSP datasets

The data sets used in this work consist of crystal structure-lattice energy pairs at three different

levels of accuracy and computational complexity in their energy evaluation. The lowest level was

evaluated using an atomic multipole-based force field (described below). The intermediate level
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consists of periodic dispersion-corrected GGA DFT energies using the Perdew–Burke-Ernzerhof

(PBE) functional.44 While most of the relevant physics is already accounted for in these GGA

calculation, DFT calculations with the PBE0 hybrid exchange-correlation functional45 were per-

formed as the high level for a better treatment of the effect of electron exchange and correlation on

the ranking of crystal structures.

Three small molecules were chosen to test the methods developed here: oxalic acid, maleic

hydrazide and urazole (Fig. 1). All three are small enough so that it is affordable to evaluate

the energies for all predicted crystal structures at the highest level of theory considered here, so

that errors from the GPR models can be assessed. Two of the molecules (oxalic acid and maleic

hydrazide) have known polymorphism and all three are known to be challenging for obtaining ac-

curate energy rankings either between their known polymorphs46 or in previous CSP studies.47

All three molecules are strongly hydrogen bonding, where the inclusion of exact exchange in hy-

brid DFT functionals is expected to improve the predicted energies.34 The multiple hydrogen bond

donors and acceptors in all three molecules lead to several possible hydrogen bond motifs in their

low energy crystal structures, whose relative stability is strongly affected by the electrostatics47

and intermolecular exchange-repulsion.46

(a) oxalic acid
(b) maleic
hydrazide

(c) urazole

Figure 1: The three molecules studied here (CSD reference codes48 for each experimentally deter-
mined form are given in parentheses): (a) oxalic acid α (OXALAC0549) and β (OXALAC0750)
polymorphs; (b) maleic hydrazide monoclinic (MALEHY0151), triclinic (MALEHY1052), and
MH3 monoclinic (MALEHY1253) polymorphs and (c) urazole (KOXRIY54).

The data sets used here consist of low-energy crystal structures found in previous CSP stud-

ies.43 The crystal structures were generated using quasi-random sampling followed by local energy

minimization to locate the local minima on each molecule’s lattice energy hypersurface using the

Global Lattice Energy Explorer code.26 Crystal structures were generated in the 11 most frequently
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occupied space groups (P21/c, P212121, P1, P21, Pbca, C2/c, Pna21, Cc, Pca21, C2, P1) with one

independent molecule in the crystallographic asymmetric unit (Z′ = 1). The molecular structure

was held rigid throughout, at the DFT optimized geometry of the isolated molecule.

Lattice energy minimization was performed using the FIT+DMA55 anisotropic atom-atom

force field, which consists of an empirically parameterized exp-6 intermolecular repulsion-dispersion

potential and electrostatics described by atomic multipoles up to hexadecapole on all atoms. Mul-

tipoles were obtained from a distributed multipole analysis of the B3LYP/6-311G** charge den-

sity.56 Charge–charge, charge–dipole and dipole–dipole interactions were calculated with Ewald

summation. All other interactions were calculated between whole molecules with a centre-of-mass

separation of less than 25 Å. After removal of duplicates, predicted crystal structures within the

lowest 25 kJ mol−1 of the energy landscape for each molecule were kept. These datasets consist

of 526, 388 and 468 crystal structures of oxalic acid, maleic hydrazide and urazole, respectively.

2.2 Solid state DFT

Periodic DFT single-point energy calculations were performed on the force field optimized crystal

structures with both the VASP 57–60 code, using plane-wave (PW) basis sets, and CRYSTAL1761 us-

ing Gaussian Type Orbital (GTO) basis sets. The justification of the choice of basis set is discussed

in Section 3.2. Generally speaking, PWs are intrinsically periodic, fast for both energy and its gra-

dient calculations, and the quality of a PW basis set is improvable by a single parameter, namely

the electronic kinetic energy cut-off. PW calculations were used for the intermediate level (PBE)

energy evaluations. However, due to the extremely high computational costs involved in exact

exchange calculations with PW basis sets, the highest level, hybrid functional (PBE0) calculations

were performed using GTO basis sets. Furthermore, we exploited symmetry in CRYSTAL17, which

sped up the PBE0 energy evaluations by a factor of up to the number of equivalent molecules in

the unit cell.

PW calculations in VASP used the projector-augmented wave (PAW) method and standard

pseudopotentials with a plane-wave energy cut-off of 600 eV and maximum k-point spacing of
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0.05 Å−1. GTO calculations in CRYSTAL17 employed different basis sets and composite methods,

details of which are described in Section 3.2. Electronic k-points were sampled uniformly to a

resolution of at least 0.02 Å−1. Truncation criteria for bielectronic integrals, TOLINTEG, of 12 12

12 12 24 was enough for good convergence in most of the structures, however, there were cases

that we had to increase these values to 14 14 14 14 28.

The missing long-range correlation effects in DFT calculations are accounted for by applying

the Grimme D3 dispersion correction in both PBE and PBE0 calculations.62–64 Hereafter, we use

PBE and PBE0 to refer to dispersion-corrected PBE-D3 and PBE0-D3 calculations. To correct for

the basis set superposition error (BSSE)65 present in GTO calculations, we used the geometrical

counterpoise (gCP) correction with automatic parameter setup66,67 in all GTO calculations.

Lattice energies were calculated by subtracting the intramolecular energy of the constituent

molecules of a crystal in the gas-phase from the total energy of the crystal, always at the same

level of theory (functional and basis set). Further details are in the supporting information.

2.3 Structural descriptors

Structural descriptors are required to convert the atomistic structure of each predicted crystal struc-

ture into a suitable input for the statistical machine learning method. Cartesian coordinates are

not a suitable choice because they are not invariant under translation, rotation and reflection of

the whole system. Among available atomic descriptors which satisfy these requirements, we use

atom-centered symmetry functions68,69 to describe the local (radial and angular) environment of

each atom. We choose these descriptors of atomic local environments because of their success in

the development of machine learned force fields69 and previous machine learning applications to

energy model improvement for molecular crystals.43

We used the recent modification to symmetry function descriptors that separates element pairs

in radial symmetry functions of the form69

GR
m =

all atoms

∑
j 6=i

e−η(Ri j−Rs)
2

fc(Ri j) (1)
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in which the index m is over a set of Rs parameters, Rs is the shift in the center of the Gaussian

peak, η is the width of Gaussians, and fC(Ri j) is the cut-off function defining the local atomic

environment:

fC(Ri j) =


0.5× cos(πRi j

RC
)+0.5 f or Ri j ≤ Rc

0.0 f or Ri j > Rc

.

For the radial part, we used a cut-off radius of 9.3 Å, a fixed width of η = 50 for the Gaussian

functions, and 32 equispaced shifts in the center of the Gaussian peaks. Thus, for a system with

NE element types, there are NE ×32 radial symmetry functions for each atom.

Concerning the angular description of the environment, element triplets are separated in a set

of angular functions of the form:

GA
m = 21−ζ

all atoms

∑
j,k 6=i

(1+ cos(θi jk−θs))
ζ

× e−η(
Ri j+Rik

2 −Rs)
2

fC(Ri j) fC(Rik)

(2)

in which θi jk measures the angle centered on atom i between vectors Ri j and Rik. θs is the shift

in the position of the maximum in the cosine function, Rs is the shift in the center of the radial

Gaussian peak, and fC(R) is the cut-off function. For the angular environment, a cut-off radius of

6.27 Å, 8 equispaced Rs’s, and 8 equispaced θs’s were used, which results in NE(NE + 1)/2× 64

angular symmetry functions for each atom. Separation by atom types has proven to provide a better

resolution of the atomic environment description.69

Examples of how the symmetry functions vary with different stacking and hydrogen bonding

arrangements are shown in the supporting information (Figs. S17-S20).

2.4 Multi-fidelity Gaussian process modelling

We use Bayesian GPR70 to model the relationship between the crystal structures and the response:

lattice energies evaluated at multiple levels of accuracy and corresponding computational complex-

ity. Each structure is uniquely identified by the vector of the structural descriptor values x ∈ Rs,
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concatenated symmetry functions as described in Section 2.3. In a system with Sr radial and Sa

angular symmetry functions, the dimensionality of structures with NA atoms is s = NA× (Sr +Sa).

GPR is an adaptive non-parametric modelling approach with prior beliefs about the behaviour

of the relationship, or function, of interest described by a prior Gaussian process. Probabilistic

inference and predictions are obtained by updating this prior using collected data.

For one level of computational complexity, a Gaussian process prior on y(x), the response for

descriptor vector x, is denoted GP{ f T (x)β , k(x,x′;φ ,σ2,τ2)} and results in the responses from

any collection of n structures, represented by the descriptor vectors xi, i = 1 . . .n, having the prior

predictive multivariate normal distribution

y(x1), . . . ,y(xn)∼ N[( f (x1), . . . , f (xn))
T

β , K(x1, . . .xn;φ ,σ2,τ2)].

The mean is a linear combination of regression functions stored in f (xi) with coefficient vector

β . The (i, j)th element k(xi,x j;φ ,σ2,τ2) of the covariance matrix K(x1, . . .xn;φ ,σ2,τ2) is defined

through the correlation kernel κ(xi,x j;φ), variance parameter σ2 > 0 and a regularization param-

eter, or nugget, τ2 ≥ 0. For non-deterministic data, the nugget measures random variation around

the mean response. For deterministic systems, addition of a nugget is still common and beneficial,

improving the conditioning of the prior covariance matrix and providing some robustness of the

assumed form of the correlation kernel.71 Hence

k(xi,x j;φ ,σ2,τ2) = σ
2[κ(xi,x j;φ)+ τ

2
1(xi,x j)],

where 1 is the indicator function: 1(xi,x j) = 1 if and only if xi = x j, and 0 otherwise. The choice

of the correlation kernel should reflect prior beliefs about the degree of response smoothness and

the sensitivity of the response to the difference between structures. In this work we use an isotropic

squared exponential correlation kernel, with the distance between the structures introduced through
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the Euclidean distance between the vectors of descriptors:

κ(xi,x j;φ) = exp
(
−1

2
||xi− x j||2/φ

)
.

The hyperparameter φ > 0 quantifies the prior correlation between y(xi) and y(x j), with larger

values resulting in higher correlation. We denote the adjusted correlation matrix by Σ(·,φ), so that

K(·;φ ,σ2) = σ2Σ(·,φ).

When the same response, in this case lattice energy, is measured at different levels of computa-

tional complexity and accuracy, a hierarchical Autoregressive Gaussian Process (ARGP) model72

can be constructed, which links a higher-level complexity response, yt (e.g. PBE0 lattice energies),

to a lower-complexity response, yt−1 (PBE lattice energies), through a scaling parameter ρ , with

the difference δ modelled as a GPR, independently of the GPR assumed for yt−1. For our problem:


y0(x) = FF(x),

y1(x) = ρ0y0(x)+δ1(x),

y2(x) = ρ1y1(x)+δ2(x),

(3)

with

δt(x)∼ GP[βt ,kt(x,x′;φt ,σ
2
t ,τ

2
t )]

for t = 1,2 and FF(x) being the force field energy. The force field provides a useful approximation

of the physical contributions to the interactions between molecules and its negligible computational

cost ensures FF(x) is fixed and known for all possible training and test molecules.

In addition to the obvious relationships between y1 and y2 through ρ1 and δ1, model (3) also

assumes that once y1 has been observed at point x, no other observation of y1 at any x′ 6= x furthers

our knowledge about the higher level response y2(x). That is, Cov(y1(x′),y2(x)|y1(x)) = 0, a

natural Markov property for multi-level responses.
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The joint prior distribution of the responses at levels 1 (PBE) and 2 (PBE0) is then

y2(x)

y1(x′)

 ∼ N

 ρ1(ρ0FF(x)+β1)+β2

ρ0FF(x′)+β1

,

 ρ2
1 σ2

1 [1+ τ2
1 ]+σ2

2 [1+ τ2
2 ] ρ1k1(x,x′;φ1,σ

2
1 ,τ

2
1 )

ρ1k1(x,x′;φ1,σ
2
1 ,τ

2
1 ) σ2

1 [1+ τ2
1 ]


 .

Extensive research has been conducted regarding fitting of ARGP models and their variations.73–75

We adopt the recursive Bayesian multi-fidelity approach,76 suitable for nested training sets. Se-

quential estimation of GPRs is performed for the two levels; first, a standard GPR for y1(x) is

fitted on the n1 structures composing the lower-level training set D1 = {x1, . . . ,xn1}. Secondly, the

higher-level response y2(x) is modelled with a GPR on the subset D2 ⊆ D1 of size n2, with the

GPR prior for y1(x) in (3) being replaced by its GPR posterior obtained at the first stage.

To complete the model specification, where possible we choose conjugate normal and inverse

gamma (IG) prior distributions for the model parameters, conditional on lower-level responses,

that allow for straightforward updated inference and predictive distributions in closed form:

ρ0,β1|σ2
1 ,y0 ∼ N(b10,σ

2
1 R1); σ

2
1 |y0 ∼ IG(α1,γ1),

ρ1,β2|σ2
2 ,y1 ∼ N(b20,σ

2
2 R2); σ

2
2 |y1 ∼ IG(α2,γ2).

Here Rt are appropriately sized (here – 2× 2) prior variance-covariance matrices, containing

the prior variance scaling between σ2
t and linear coefficients of the model. We chose Rt to be the

identity matrices, prior means for linear terms bt0 = (0.5,0)T , and both shape and scale parameters

αt and γt were set to 1. Regularization parameters τ2
t = 10−5 were chosen to resolve any com-

putational singularity issues when inverting Σt . After the data yt is available at level t = 1,2, the
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posterior joint distributions of the parameters are also normal-inverse-gamma:

(ρt−1,βt |yt ,yt−1,σ
2
t )∼ N(Σ̃t µt , Σ̃t), (4)

Σ̃t = σ
2
t [F

T
t Σ
−1
t Ft +R−1

t ]−1, µt =
1

σ2
t
[FT

t Σ
−1
t yt +R−1

t bt0],

(σ2
t |yt)∼ IG

(nt

2
+αt , Qt(yt ,γt ,b0t ,Σt ,Ft)

)
. (5)

Here Σt is the nt × nt correlation matrix at level t and matrix Ft = [yt−1(Dt),1nt ]; the detailed

expression for Qt can be found in the literature.76

Uniform prior distributions were assumed for correlation hyperparameters φ1,φ2, and an em-

pirical Bayes approach employed. For posterior inference, these parameters were set equal to their

posterior mode.

Conditional on parameters ρt−1, βt and σ2
t , the posterior predictive distribution for the high-

est level response (PBE0) is Gaussian. However, the marginal posterior predictive distribution,

with these parameters integrated out with respect to their posterior distributions (4) and (5), is not

available in closed-form. However, its mean and variance are available, and take the following

form:

E[y2(x∗)|y1,y2] = f̂2(x∗)Σ̃2µ2+

kT
2 (x∗)Σ

−1
2 (y2−F2Σ̃2µ2), (6)

Var[y2(x∗)|y1,y2] = (ρ̂2
1 + Σ̃2,1,1)Var[y1(x∗)|y1]+

Q2

n2 +2(α2−1)
(1− kT

2 (x∗)Σ
−1
2 k2(x∗))+

( f̂2(x∗)− kT
2 (x∗)Σ

−1
2 F2)Σ̃2( f̂2(x∗)− kT

2 (x∗)Σ
−1
2 F2)

T
, (7)

where ρ̂ is the posterior mean of ρ , Σ̃2,1,1 is the first diagonal element of

Σ̃2, k2(x∗) = [κ2(x∗,x21;φ2), . . . ,κ2(x∗,x2n2;φ2)]
T is the vector of correlations between the unob-

served structure x∗ and the training set for the highest level response and f̂2(x∗)= {E[y1(x∗)|y1],1}.

Sampling from the posterior predictive distribution can proceed via Monte Carlo methods or by
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approximating this distribution by a t-distribution with 2α2+n2 degrees of freedom, mean (6) and

variance (7). After checking the adequacy of this approximation for our examples, we adopt this

latter approach for computational convenience.

2.5 Training

For each of the three molecules, training sets for the lower fidelity response (PBE) were chosen

that included between 10% to 70% of all structures (in increments of 5%). These training sets

were chosen to be nested, that is, the 65% set is a subset of the 70% set and so on. For each of

these training sets, nested subsets were chosen again containing between 10% to 70% of structures

(in increments of 5%) for which the higher fidelity response (PBE0) was made available. The

size of these high level training sets are given as percentages of the lower level training set from

which they are drawn. Each subset was chosen as a maximin space-filling design,77 maximizing

the minimum Euclidean distance in descriptor space between structures. Hence a collection of 169

nested training sets were constructed, containing between 1% and 49% of the whole data set. We

use the nomenclature “L%/H%” training set to refer to a set containing evaluations of PBE for L%

of the original structures and evaluations of PBE0 for H% of the PBE training set. The 30% of

structures that were not included in any training set were reserved as a test set.

3 Results

3.1 Data Collection

Given the predicted crystal structures taken from previous work with structures optimized at the

force field level, the first stage in this work was the re-evaluation of their lattice energies at higher

levels of theory. Our final target in this work is the evaluation of lattice energies using the hybrid

PBE0 functional with the D3 dispersion correction.

Because of the availability of fast Fourier transforms when using PWs, their use as basis sets is

efficient for GGA DFT calculations. Although the exploitation of symmetry in CRYSTAL17 using

GTO basis sets would be helpful for larger unit cells with more molecules involved, we decided on
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Figure 2: Calculated relative lattice energies of the oxalic acid data set from GTO basis set calcula-
tions vs PW calculations for (a) PBE/def2-SVP, (b) PBE/def2-TZVP, (c) PBE0/def2-SVP, and (d)
PBE0/def2-TZVP. The mean absolute error (MAE), maximum absolute error (MAX) and correla-
tion to the PW values are reported in the inset of each plot. All 526 crystal structures are included
in the PBE calculations, while PBE0 comparisons were preformed for 17 crystal structures.

PBE within VASP as a fast and accurate lower level of energy re-evaluation.

The choice of the calculation method for collecting the high level PBE0 data points is more sig-

nificant. This is because of the extremely high cost of exact exchange calculations when employing

delocalized basis sets such as PWs, which has limited the use of such sets in hybrid functional cal-

culations. GTOs, on the other hand, require much less (up to 2 orders of magnitude) resources to

achieve equivalent accuracy of a PW method.78 The cost of GTO calculations depends on the size

of basis set and basis sets of at least triple-zeta quality including one set of polarization functions

have been shown to provide good agreement with converged PW results.78

Thus, we have performed a comparison of GTO basis sets to PW calculations on the lattice

15



energies of one of our sets of CSP structures, oxalic acid. We first compared the results of well-

converged VASP PBE lattice energies on the full set of 526 oxalic acid crystal structures to those

from CRYSTAL17 using the Ahlrich’s-type split valence double-zeta (def2-SVP) and triple-zeta

(def2-TZVP)79 basis sets (Fig 2). Enlarging the basis set from def2-SVP (Fig. 2a) to def2-TZVP

(Fig. 2b) reduces the mean absolute error (MAE) and maximum absolute error (MAX) in relative

lattice energies (always measured relative to the global energy minimum structure, which is the

same in PBE and PBE0), and improves the correlation to PW results considerably. Absolute lattice

energies are also improved significantly, from an MAE of 43 kJ mol−1 with def2-SVP to less than

1 kJ mol−1 with def2-TZVP (Fig. S1). The PBE/def2-TZVP results show an excellent linear

relationship to those from PW calculations, as well as small differences in the absolute lattice

energies.

To assess whether this convergence is also observed for PBE0, calculations were performed on

a subset of the oxalic acid predicted crystal structures (Fig. 2c and d). We started from 20 crystal

structures in 7 space groups. Errors in relative lattice energies with the smaller def2-SVP basis set

are too large (MAE = 4.18 and MAX = 9.83 kJ mol−1), considering the close energetic spacing

of predicted structures, with an R2 of 0.502 to the PBE0/PW relative lattice energies. The results

using the larger def2-TZVP basis set have much better correlation to PW (R2 = 0.929) while MAE

and MAX errors are 1.40 and 3.41 kJ mol−1, respectively. Given the much lower computational

cost of PBE0/def2-TZVP than PW basis sets, we used this GTO basis set for PBE0 calculations of

the energies for the full CSP structure sets for all three molecular systems (oxalic acid, urazole and

maleic hydrazide).

We also tested two simplified DFT schemes, HSE-3c and B97-3c,80 as possible intermediate

energy models. Both methods use modified, smaller basis sets combined with semi-empirical

corrections. B97-3c and HSE-3c lattice energies are both strongly correlated to the PW results

(R2 = 0.984 and 0.869, respectively, Fig. S2). However, when the cost of calculations is taken into

account, neither method offered an advantage over PBE/PW for the small molecules studied here.
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3.2 CSP landscapes
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Figure 3: Lattice energy vs density distributions of the predicted oxalic acid crystal structures cal-
culated using (a) the FIT+DMA force field, (b) PBE, and (c) PBE0, all at the force field geometries.
Each point corresponds to a distinct predicted crystal structure. The two known forms of oxalic
acid, α and β , are marked with black circles.

The energy-density distribution of predicted crystal structures of oxalic acid is presented in Fig.

3, showing all structures that lie within 25 kJ mol−1 of the global minimum from the force field

calculations. While the two known polymorphs, α and β , have very different packing motifs, their

experimentally determined lattice energies are very close, with α lying slightly lower than β .81

The force field lattice energies predict the β polymorph to be the lowest energy structure (Fig. 3a),

but incorrectly produce over 70 other crystal structures below α , which is more than 7 kJ mol−1

above the global minimum.

The known crystal structures of urazole and maleic hydrazide are also predicted poorly by the

force field calculations; their landscapes are provided in the SI (Figs. S4 and S6). The three known

polymorphs of maleic hydrazide lie between 5.74 and 7.83 kJ mol−1 above the global minimum,

and the only known crystal structure of urazole lies 3.39 kJ mol−1 above than the global minimum.

While the FIT+DMA force field has been successful for CSP of many small molecules,7,82–85 these

three molecules were chosen as known failures, where it is clear that a higher level of theory is

necessary for successfully ranking the crystal structures.

All higher level energy evaluations in this work are performed at the force field optimized

structures, with no further optimization. For all three molecules, re-evaluation of the energies
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at the PBE and PBE0 levels of theory improve the position of the experimentally known crystal

structures on their CSP landscapes (Figure 3b,c and SI). PBE retains the low energy of β -oxalic

acid and brings the α polymorph to the global minimum, while PBE0 further increases the relative

stability of α to around around 5 kJ mol−1 below that of β . These energy differences compare well

with the lattice energy difference of around 3 kJ mol−1 between α and β when fully re-optimized

at PBE0.86 Similarly, the known structure of urazole is re-ranked to the global energy minimum

with PBE and 2nd lowest energy structure with PBE0, 1.04 kJ mol−1 above the global minimum.

and the three polymorphs of maleic hydrazide are all brought closer to the global minimum with

PBE and PBE0 (see Figs S4, S6).

Thus, we conclude that single point energy re-evaluations using solid state DFT map the force

field results for all three molecules to more realistic energy rankings in which the known experi-

mental crystal forms are either the global minimum or very close to the global minimum on their

respective landscapes. The performance of DFT methods might be limited by the single point na-

ture of the energetic re-evaluation and, so, optimization on the GPR modelled energy surface is a

clear next step of development, but is reserved for future work.

Ideally, one would prefer to evaluate the predicted crystal structures by the highest accuracy

possible, however, even after the speed-up gained from using GTOs and exploiting the symmetry

of crystals, the cost of hybrid functional calculations is still prohibitively high. In the specific

case of 526 single point energy evaluation of the oxalic acid data set, calculations at force field,

PBE and PBE0 levels of theory using 40 2.0 GHz Intel Skylake processors, took under a minute,

11 hours, and 101 days, respectively. The corresponding cost ratio is roughly 1:1,000:220,000,

and is expected to be more extreme for larger molecules. This large ratio of computational costs

highlights the motivation for an efficient, reliable estimation of PBE0 lattice energies. Average

timings for each molecule at each level of theory are provided in the SI (Table S1). The cost ratios

could vary depending on optimization of each type of calculation, but are used here as a guide to

the relative costs and, therefore, most efficient computational approach.

A multi-level approach seems promising rather than directly learning the most expensive model
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from the structural descriptors. This is because the force field energies are already in-hand for

every structure as a result of the global structure search, and are based on FIT+DMA, a physically

motivated force field that provides a good baseline. This is clear from the correlation to PBE lattice

energies (Fig. 4a). In particular, FIT+DMA provides accurate electrostatic energies, whose long

range might be impossible to model accurately based on descriptors of local atomic environments.

Furthermore, since most physics of the problem is captured at the PBE level, the PBE/PBE0 linear

correlation (Fig. 4b) is very high (R2≈ 0.98) and so much of the relationship between the expensive

PBE0 energies and the structural descriptor can be learned from PBE calculations, at a much

reduced computational cost. From these features, we anticipate model (3) being successful with

parameter ρ capturing the strong linear relationship between PBE and PBE0. Inadequacies in a

simple linear correlation will be described with the GPR prior on the difference δ , and learning δ

allows efficient prediction of PBE0 energies using less expensive evaluations of PBE.
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MAE = 10.24 kJ mol 1
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R2 = 0.978
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Figure 4: Correlations between lattice energies calculated using the three energy models for the
predicted crystal structures of oxalic acid. (a) Force field vs. PBE lattice energies, (b) PBE vs.
PBE0, and (c) force field vs. PBE0. Mean absolute error (MAE), maximum error (MAX), and
correlation (R2) are reported in the inset of each panel.

3.3 Prediction

We assess the quality of energy modelling by evaluating the prediction MAE and Continuous

Ranked Probability Score (CRPS) of the posterior predictive distributions.87 CRPS is a proper

scoring rule regularly used to assess probabilistic prediction skill, which accounts for both accuracy

and precision. For the probabilistic predictions from the GPR, CRPS provides a meaningful way of
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evaluating the distance between the posterior predictive distribution and the test observations. For a

deterministic point prediction, e.g. simply using values of force field energies, CRPS corresponds

with MAE. As we obtain a separate posterior predictive distribution for each structure – with

cumulative distribution function Gi – we use the mean of the scores calculated for Nt structures,

with yE
i denoting the true energy value of test structure i:

CRPS({Gi,yE
i }

Nt
i=1) =

1
Nt

Nt

∑
i=1

∫ +∞

−∞

(Gi(y)−1(y≥ yE
i ))

2dy.

CRPS is available in closed form for the t-distribution we use to approximate the posterior predic-

tive distribution, implemented in the R package scoringRules.88

3.3.1 Single fidelity GPR modelling

We first look at the predictions obtained from the first step of the recursive modelling: fitting a

GPR model to PBE with force field measurements as a fixed predictor. As per Section 2.5, we use

nested maximin designs as training sets. For comparison, we also present results for 30 randomly

selected training sets of each size (boxplots in Figure 5a). The MAE of the mean of the predicted

distribution in reproducing the test set PBE lattice energies decreases from just above 2 kJ mol−1

at a 10% training fraction (53 structures for oxalic acid) to 0.5 kJ mol−1 using 70% of structures

for training (Figure 5a), with the error improvements slowing down after the training fraction

reaches 40%, which is 210 structures from the oxalic acid data considered. On average, random

and maximin training set selection yield similar errors at small (< 30%) training fractions, but for

training fractions larger than 30%, the maximin training set selection leads to noticeably smaller

errors. This finding agrees with earlier observations for single fidelity GP prediction of lattice

energies.42

The observed relationship between the error and the training fraction holds true for the crystal

structure landscapes of all three molecules. The MAE and CRPS both decrease as the training

proportion increases (Fig. 5b), but at a slower rate for maleic hydrazide and urazole than for oxalic

acid. The different rates of decrease in the errors reflects the more complex structural landscapes
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Figure 5: Single fidelity (PBE) modelling. (a) MAE in reproducing OA lattice energies using
randomly chosen and maximin training sets. The boxplots represent results from 30 randomly se-
lected training sets for each training fraction. (b) CRPS (open symbols) and MAE (filled symbols)
in reproducing lattice energies of oxalic acid (OA, blue), urazole (U, orange) and maleic hydrazide
(MH, green). The force field (FF) based CRPS is 3.4 kJ/mol for OA and shown as a horizontal
grey line. FF-based CRPS of 6.4 kJ/mol for urazole and 14.1 kJ/mol for MH are not displayed.
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for urazole and maleic hydrazide, and thus more difficult relationships between structures and

lattice energies to model. This is confirmed by a principal component analysis of the descriptors

for each landscape of structures, in which it takes more components to capture the variability in

the descriptors of urazole and maleic hydrazide compared to oxalic acid (see Fig. S21). The MAE

and CRPS show similar trends and we shall hereafter evaluate the prediction quality in terms of

CRPS. All corresponding MAE values can be found in SI.

3.3.2 Multi-fidelity ARGP modelling
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Figure 6: Prediction of oxalic acid PBE0 lattice energies (±2 SD): (a) using the recursive approach
(Model A) on 30%/30% training sets; single GP regression models: (b) on the larger, 30%, training
set (Model B) and (c) on the smaller, 9%, training set (model C).

Predictions and true values of the PBE0 lattice energies for the oxalic acid test set (30% of

original structures) are presented in Figure 6 for three modelling strategies. Model A (Fig. 6a)

is the ARGP model, trained on PBE evaluations for 30% of all structures (training set I) and

PBE0 evaluations on 30% of this set (9% of all structures, training set II). These are compared

to predictions from two single-level PBE0 GPR models: model B (Fig. 6b) is trained on PBE0

energies obtained for training set I; and model C is trained on the PBE0 energies for training set

II (Fig. 6c). Hence, model B had available a greater number of expensive training points than was

the case for model A, and model C had the same number of expensive training points as model A

but did not make use of the larger number of cheaper points.

The CRPS from the ARGP model A is 1.114 kJ mol−1, compared with 1.112 kJ mol−1 for the
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predictions obtained from the expensive single GP model B. To obtain this very minor improve-

ment requires an increase in computational cost of more than a factor of 3: just 9% of the expensive

PBE0 data used for training model A compared to 30% for model B. The PBE calculations needed

for the ARGP model have only a small influence on the total computational cost. Model C, on

the other hand, has a comparable cost to the ARGP model; the difference in computational costs

occurs only from using the PBE data for 30% of the structures in model A. The CRPS for this

single GPR model is considerably higher, at 3.96 kJ mol−1.

The comparisons in Figure 6 show the clear benefits of the ARGP model, whose cost and

accuracy are determined by the training set sizes at the lower and higher levels. Figure 7 (and

Tables S3-S5 in SI) compares the prediction errors from, and relative computation costs of, ARGP

models for oxalic acid with differing sized training sets for PBE and PBE0. Analagous plots and

tables are provided for maleic hydrazide and urazole in the SI. Costs are defined relative to the

expense of obtaining the lattice energies of 1% of structures using PBE0. Thus, from the aver-

age timings (see Table S1), the cost of obtaining PBE evaluations for 1% of oxalic acid structures

is 4.56 ∗ 10−3. The computational costs of force field calculations and statistical modelling are

negligible. As an example, fitting the ARGP model using a 30%/60% training set incurs a cost

of (4.56 ∗ 10−3 ∗ 30)+ (1 ∗ 30 ∗ 60/100) = 18.14. This training set is almost as expensive as a

60%/30% set (18.27), since the number of PBE0 calculations is the same, but the mean prediction

CRPS decreases from 1.04 kJ mol−1 to 0.52 kJ mol−1, due to the increase in PBE training points

in the latter set. With the high-fidelity-only (single-level) GPR modelling approach, obtaining a

similar prediction error (0.53 kJ mol−1) requires running PBE0 computations on 55% of the struc-

tures, which is 3 times more costly. Similar tables are presented in the Supplementary information

for maleic hydrazide and urazole.

The typical energy differences seen between predicted crystal structures, and between observed

polymorphs, set target criteria for acceptable errors, which can inform the choice the training

fractions. Over 50% of observed polymorphs of organic molecules are separated in lattice energy

by less than 2 kJ mol−1,24 making this an upper bound for acceptable errors. The orange contour
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(a)

(b)

Figure 7: Landscapes of PBE0 prediction errors and recursive modelling costs for the range of
training sets for the oxalic acid data set: (a) CRPS prediction errors (kJ mol−1); (b) Relative
computational cost (where 1 corresponds to the cost of PBE0 calculations on 1% of structures).
The horizontal axis gives percentage of structures for which PBE evaluations are available, and the
vertical axis gives the relative percentage of the structures for which PBE0 was also available (so
each cell represents the performance/cost of a single L%/H% training set). The orange contour in
(a) separates the models which give errors above and below 2 kJ mol−1; red and black contours
delineate models that give better than 1 kJ mol−1 and 0.5 kJ mol−1 errors, respectively.
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in Figure 7 separates models that provide errors above and below 2 kJ mol−1 (CRPS), with red

and black contours showing stricter 1 and 0.5 kJ mol−1 thresholds, respectively. These contours

are nearly vertical, showing that the target errors can be met by increasing the lower-level, PBE,

training fraction without the expense of increasing the fraction of PBE0 calculations. Due to the

large cost ratio between PBE0 and PBE, the lowest cost model meeting the target error involves

the smallest PBE0 training fraction: only 10% of the lower level training set. To meet a smaller

target error of 0.5 kJ/mol requires 20% PBE0 for oxalic acid and is not achieved at all for maleic

hydrazide and urazole. Although small numbers of PBE0 calculations are required, these are

necessary for achieving the required accuracy; pure PBE-based models yield significantly larger

errors (see Table S2).

Table 1: Recursive modelling PBE0 energy prediction CRPS and MAE values and computa-
tional cost comparison for the molecular systems. The presented models are the least com-
putationally expensive to provide CRPS values below 2 kJ mol,−1 1 kJ mol−1 and the ones
providing the best achieved score values. Training proportions are displayed together with
the corresponding numbers of structures. Costs in CPU hours are calculated based on the
average timings per structure (see Table S1), calculated on 2.0 GHz Intel Skylake processors.

Molecule PBE/PBE0 Number of Time CRPS MAE
(%/%) structures (CPU.hr) (kJ/mol)

Oxalic
Acid

20/10 105/10 1,946 1.67 1.93

40/10 210/21 4,079 0.84 1.00

70/70 368/257 48,052 0.37 0.50

Urazole
25/10 117/11 2,971 1.80 2.00

65/10 304/30 8,086 0.94 1.22

70/70 327/228 59,092 0.84 1.10

Maleic
Hydrazide

15/10 58/5 1,886 1.88 1.96

50/10 193/19 7,105 0.94 1.22

70/70 270/189 66,978 0.60 0.83

The errors and costs of the lowest cost ARGP models that give errors below 2 and 1 kJ mol−1

are listed for all three molecules in Table 1, along with the most expensive 70%/70% models. For

oxalic acid, the 40%/10% model yields errors below 1 kJ mol−1 with a cost corresponding to only
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4.2% of the cost of PBE0 calculations on all crystal structures. Similar savings are possible for

maleic hydrazide and urazole, yielding errors below 1 kJ mol−1 at costs of 5.2% and 6.8% of the

full PBE0 cost, respectively.

3.3.3 Ranking

Figure 8: (a) Posterior rank distributions for the oxalic acid test structures. 105 PBE0 energy sam-
ples from the predictive posterior distribution, based on the recursive model trained on 40%/10%
of the data. The test structures are ordered along the horizonal axis according to the PBE0-based
ranking and edges of the boxplots outline the inter-quartile range of the sampled data. (b - e)
Posterior rank probabilities for the first four oxalic acid structures.

Another aspect of the modelling approach quality that is of a particular interest in CSP is the

accuracy of the energy ranking predictions. Inference regarding the rank predictions is derived by

sampling from the posterior predictive distributions for test structure lattice energies and examining

the resulting rank distributions. Figure 8a displays the ranks generated from 105 samples drawn

from the posterior predictive distribution from training the ARGP model on the 40%/10% training

sets. Figures 8b-e present a closer look at the sampled rank distributions for the first four predicted

structures. We find that the known crystal structures α and β are recognised with high certainty as

those with the lowest energies. In general, structures in the lower energy region, which is usually

of the main interest, are quite well identifiable, unlike those in the middle range, which have larger

uncertainties in ranking. This is likely due to the high number of structures with very close PBE0

energy values in the energy region > 8 kJ mol−1 above α (Fig. 6). The ranking of the lowest
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energy structures would become more uncertain for landscapes where many distinct structures are

found with energies near to the global energy minimum.
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Figure 9: Distributions of Kendall correlations for the oxalic acid test structures : (a) for the
sequences of first ranked structures, based on samples from the ARGP model trained on 40%/10%
of the data and (b) for different training fractions, together with the relative average computational
costs.

To assess the quality of rank predictions, we measure the Kendall rank correlation coefficient

between the PBE0-based (“true”) rankings and the sampled ones. This coefficient assesses the

difference in the proportions of correctly and incorrectly ordered pairs among all possible pairs
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in two sequences of observations, thus providing a general measure of the degree of similarity

between the orderings. First we consider the correlations between the sampled (as above) and the

“true” ranks for the top ranked series of structures: from the first 10 to the first 100 (Fig. 9a). We

find that, while among the first 10 lower energy structures, on average, more than half of the pairs

are ordered concordantly, this proportion decreases as the energy range increases (i.e. in the first

20− 30 ranked structures). However, the correct ranking improves again for the test structures

with higher energies. For all 158 test structures, across all 105 posterior samples, the (average)

prediction ordering agrees with the PBE0-based one for 86% of pairs, and does not agree for 14%,

leading to a median correlation coefficient of 0.72.

Another relationship of interest is the trade-off between the amount of data used for model

training (and the associated costs) and the goodness of the posterior rank predictions, which is

displayed in Figure 9b, and ordered by the total number of structures used for training. We observe

the expected general tendency of the quality of posterior rank predictions to increase with the

training set size, and that the improvement becomes less steep as more structures are used for model

training. The results clearly demonstrate that the distribution of the training structures across the

two levels is important in producing higher rank correlations at low computational cost. As an

example, the distribution of sampled posterior rank correlations produced by the least expensive

model providing the CRPS value below 1 kJ mol−1 (trained on 40%/10% fractions, as listed in

Table 1) performs considerably better than the model trained on 30%/30% fractions, at less than

half of the cost.

4 Conclusions

We present a statistical machine learning approach to predict high quality, hybrid functional (PBE0)

DFT energies for crystal structure prediction by relating crystal structure to lattice energy, trained

on a subset of predicted crystal structures through descriptors of local atomic environments. The

main development that we present is a multi-fidelity model for energetic predictions. The recur-

sive GPR modelling approach takes advantage of correlations between lattice energies calculated
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using different methods to increase predictive accuracy using low numbers of the highest level,

most computationally demanding calculation. Thus, accurate predictions of the high-level calcu-

lated energies can be obtained at a fraction of the cost of the full calculations by making use of

less computationally demanding, lower-fidelity data. The method is applied to the crystal structure

landscapes of three small molecules that have proven challenging for force field-based prediction:

oxalic acid, maleic hydrazide and urazole.

Crystal structure prediction is a well-suited application for a statistical modelling approach

because of the large numbers of crystal structures, all with identical chemical composition and

differing only in the arrangement of their constituent molecules. For the three molecules studied

here, each crystal structure landscape contains between 388 and 526 distinct crystal structures in

the energy range studied and we show that PBE0 lattice energies can be predicted to an accuracy

of 1 kJ mol−1 with between 4.2 and 6.8% of the computational cost of the full PBE0 calculations.

This cost reduction is achieved by using a larger set of training structures calculated at a lower level

of theory, here the GGA functional PBE, after which a very small number of PBE0 calculations

are required for the second level of the model. As the cost of GGA and hybrid calculations scale

roughly as O(n3
e) and O(n4

e), respectively,89 this feature is of particular importance for larger

molecules and could bring substantial cost savings. Future work could also exploit derivative

(force) calculations, which are typically available for each simulation level and can be incorporated

into a joint model.90

It is also encouraging that the method has been effective despite differences in the types of

basis set used for the GGA (plane wave basis sets) and hybrid functional (Gaussian type basis

sets) calculations, so long as the basis sets are of sufficient quality. That these differences have

apparently not harmed the performance of the models allows us to take advantage of different solid

state DFT implementations to gain maximum efficiency in the calculations. More generally, the

savings that we see in high level calculations open up the use of even more accurate and demanding

calculations as the highest level of the model, because of the small number of structures on which

these calculations are necessary. One possibility to explore in the future is to incorporate more
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detailed dispersion models, such as the many-body dispersion (MBD)91 or exchange-hole dipole

moment (XDM)92 models in the higher level, where the dependence of dispersion on the electron

density can introduce a greater cost. Alternatively, it would be interesting to apply the approach

where the higher level differs more greatly from the low level; for example, non-local functionals,

where dispersion interactions are included without the need for a correction. However, where the

energy models differ more than those used in this work, we expect that the correlation between

energies at different levels will decrease and the upper level training fraction might need to be

larger. Another option here is the implementation of the multi-fidelity GP modelling approach

with fragment-based lattice energy models,43,93,94 enabling the use of wavefunction-based higher

levels and expanding the data set by learning fragment energies (dimers, trimers) rather than total

energies.

In the context of structure prediction, where the lowest energy structures are usually considered

most important, identifying the energetic ordering of the structures is particularly relevant. We

examined the performance of the model-based predictions in terms of the rankings and observed

good rank correlations with the full PBE0 results, particularly for the lower spectrum of the energy

values, corresponding to the most important structures.

As a statistical model, the predicted output for each structure is a distribution of energies, which

enables an assessment of the associated uncertainty for each of the test structures. The uncertainty

in final energetic predictions, as well as ranking, is an important consideration in applying a sta-

tistical machine learning model in applications of CSP. In this study, we were able to evaluate

the highest level response and, hence, the actual errors due to the small sizes of the molecules,

but probabilistic predictions and uncertainty evaluation can be obtained for larger systems, where

computing exact values becomes computationally infeasible. A comparison of prediction errors

and model uncertainties is shown in the supporting information (Fig. S16), demonstrating good

correlation and, thus, usefulness of the model uncertainties. The acceptable level of uncertainty

for a particular application can be used in selecting training set sizes and the prediction uncer-

tainties are important in the interpretation of results, for example the probability that a predicted,
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as-yet unobserved polymorph of a pharmaceutical molecule is lower in energy than known crystal

structures. The uncertainties in relative energies can also be incorporated in probabilistic interpre-

tations of structure-energy-property maps that have been developed for materials discovery using

CSP.18–20
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