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Abstract

Motivated by the analysis of data from the UK Millennium Cohort Study on
emotional and behavioural disorders, we develop an M-quantile regression model for
multivariate longitudinal responses. M-quantile regression is an appealing alterna-
tive to standard regression models; it combines features of quantile and expectile
regression and it may produce a detailed picture of the conditional response variable
distribution, while ensuring robustness to outlying data. As we deal with multi-
variate data, we need to specify what it is meant by M-quantile in this context,
and how the structure of dependence between univariate profiles may be accounted
for. Here, we consider univariate (conditional) M-quantile regression models with
outcome-specific random effects for each outcome. Dependence between outcomes
is introduced by assuming that the random effects in the univariate models are de-
pendent. The multivariate distribution of the random effects is left unspecified and
estimated from the observed data. Adopting this approach, we are able to model
dependence both within and between outcomes. We further discuss a suitable model
parameterization to account for potential endogeneity of the observed covariates. An
extended EM algorithm is defined to derive estimates under a maximum likelihood
approach.

Keywords: Correlated random effects; Finite mixtures; Influence function; Multi-
variate responses; Nonparametric maximum likelihood; Robust regression.
1 Introduction

The analysis of longitudinal data may help obtain in-depth information on the evolution
of a response of interest over time. In empirical applications, we need to account for
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dependence between observations taken from the same unit at different time occasions. In
a regression framework, this is often achieved by considering subject-specific random effects
in the linear predictor; the corresponding model is known in the literature as random or
mixed effect model, see Laird and Ware (1982) for early developments.

Recently, there has been an increasing interest in the application of quantile regres-
sion to longitudinal data to study how the effect of observed covariates changes across the
range of the (conditional) response distribution, and to obtain a more detailed picture of
the phenomenon of interest (Koenker, 2004). Geraci and Bottai (2007) propose a quan-
tile regression model for longitudinal observations with subject-specific random intercepts
having either a Gaussian or an Asymmetric Laplace density. Liu and Bottai (2009) and
Geraci and Bottai (2014) further extend this proposal to general models with random
intercepts and slopes. Alfo et al. (2017) consider finite mixtures of quantile regression
models where the discrete distribution represents a nonparametric estimate of an unspec-
ified, possibly continuous, distribution for the random effects. The time constant random
effect model has been extended to time-varying subject-speficic intercepts by Farcomeni
(2012); Marino et al. (2016) develop a mixed hidden Markov quantile regression model
where both time-constant and time-varying random effects are considered. The interested
reader may refer e.g. to Marino and Farcomeni (2015) for a review on quantile regression
models for longitudinal data. Further, one may refer to Kulkarni et al. (2019) for a review
on joint quantile regression models of multiple longitudinal responses.

M-quantile regression generalizes quantile regression by considering influence functions
(Breckling and Chambers, 1988). Although M-quantiles have a less intuitive interpretation
when compared to standard quantiles (Jones, 1994), M-quantile regression offers a number
of specific advantages: (7) it allows for robust estimation; (i) it can trade robustness
for efficiency by modifying the tuning constant in the influence function; (7) it offers
computational stability as a wide range of continuous influence functions can be used
(Tzavidis et al., 2016). Regression modeling beyond the mean of the response has found a
lot of attention in the last years and expectile regression provides a quantile-like extension
to mean regression (Newey and Powell, 1987; Kneib, 2013). See Waltrup et al. (2015) for a
comparison of expectile regression with quantile regression. As expectile regression is based
on an asymmetric (weighted) least squares estimate, flexible models and smoothing can be
directly transferred from mean regression. In fact, extensions of expectile regression have
been introduced that allow for smoothing (Schnabel and Eilers, 2009), semiparametric,
and geoadditive modeling (Sobotka and Kneib, 2012), inference (Sobotka et al., 2013),
Bayesian (Waldmann et al., 2017) and frequentist model selection (Spiegel et al., 2017).
However, expectile regression is sensitive to outliers as much as mean regression. In this
regard, M-quantiles provide a robustification of expectiles through the use of influence
functions, so that M-quantile regression can also be seen as a generalization of expectile
regression.

The extension of M-quantile regression to longitudinal data is quite recent. Tzavidis
et al. (2016) propose a model with Gaussian subject-specific random intercepts and suggest
the use of pseudo-BLUP equations (see e.g. Harville, 1976) to derive parameter estimates.
Alfo et al. (2017) consider a discrete specification for the distribution of subject-specific
random intercepts. As noted before, the likelihood function resembles that of a finite
mixture, and the model is referred to as Finite Mixture of M-Quantile regression models



(FMMQ). This class of models has also been applied to handle unobserved heterogeneity
in assessing the effect of meteorology and traffic on air quality data (Del Sarto et al., 2019).

In the analysis of multivariate longitudinal responses, the research interest may focus
not only on defining a regression model for each response, but also on investigating (and
interpreting) the structure of dependence between responses. The univariate approaches
we have mentioned so far are not appropriate for this purpose, as they provide only partial
(univariate) pictures of such a complex phenomenon. For an extensive discussion on models
for fitting (at the mean) multivariate longitudinal data, see Verbeke et al. (2014). Here,
the authors present a review on several approaches to model multiple outcomes measured
repeatedly within a set of study participants. In particular, they focus on advantages and
disadvantages of different families of models that can be distinguished based on whether or
not latent variables are assumed for the time dimension and/or for the outcome dimension.

The idea of extending M-estimates and M-quantiles to multivariate settings dates
back to Breckling and Chambers (1988), who discuss how to provide a robust technique
for summarizing the distribution of multidimensional data. The definition is based on a
simple generalization of the one-dimensional loss function for quantiles and M-quantiles.
However, this approach does not produce intuitive results in certain situations. For exam-
ple, the estimated quantiles may be outside the convex hull of the data (Breckling et al.,
2001). An alternative definition, based on a multivariate generalization of the univariate
estimating equations for quantiles and M-quantiles, is discussed in Breckling et al. (2001).
In the quantile regression framework, the extension to multivariate responses is dealt by
Petrella and Raponi (2019). They account for the association among several responses
while studying the effect of observed predictors on different quantiles of the marginal
(univariate), conditional distribution of the responses. Earlier references in the quantile
regression context are Chakraborty (2003) and Hallin et al. (2010).

However, these proposals are designed for cross-sectional data only and, thus, they
do not allow to model dependence between observations taken repeatedly from the same
subject over time. To handle such a complex data structure, we propose to extend the
univariate FMMQ introduced by Alfo et al. (2017) to the multivariate context. We define
a set of univariate equations with outcome-specific random effects to model the associa-
tion within individual profiles (same response recorded at different time occasions from
the same subject); the multivariate distribution of the outcome-specific random effects
accounts for the dependence between the individual univariate profiles (different responses
from the same subject at the same occasion). The model is similar to the one proposed
by Kulkarni et al. (2019) in the context of joint quantile regression models for multiple
longitudinal data, apart from the different scale induced by the Asymmetric Laplace distri-
bution they use and the M-estimation (and M-quantiles) we consider here. In this respect,
a comparison between the two methods would not be well-grounded.

We also consider potential endogeneity of the observed covariates and show how the
auxiliary regression approach by Mundlak (1978) can be simply adapted to the current
M-quantile framework. Smith et al. (2015), Arellano and Bonhomme (2016), and Weidner
and Moon (2017) discuss similar approaches in the quantile regression framework. To
the best of our knowledge, the present manuscript represents the first attempt to account
for both issues (multivariate dependence and endogeneity) in the context of M-quantile
regression.



The proposed model is motivated by the analysis of data from the Millennium Cohort
Study (MCS), a multi-disciplinary research project covering around 19,000 children who
were born in the UK during 2000/02 (http://www.cls.ioe.ac.uk). Extending the analy-
sis by Tzavidis et al. (2016), we build a joint model for emotional and behavioral disorders
as a function of neighborhood and family risk factors, allowing for potential endogeneity
issues through an auxiliary regression approach.

The paper is organized as follows. In Section 2, the Millennium Cohort Study is
introduced and the data are described; in Sections 3 and 4, we present the M-quantile
regression model for longitudinal responses and its extension to the multivariate frame-
work. The analysis of the MCS data is discussed in Section 5. The last section contains
concluding remarks and outlines potential future research agenda.

2 The Millennium Cohort Study data

The Millennium Cohort Study (MCS in the following) is a longitudinal study on the growth
of around 19,000 children in the United Kingdom. It involves children living in the UK
at nine months of age, who were born between September 1,2000 and August 31,2001 in
England and Wales, or between November 23,2000 and January 11,2002 in Scotland and
Northern Ireland, whose families were eligible to receive child benefits.

To better address the effect of social disadvantage on children outcomes, the study
was designed to over-represent children with deprived backgrounds, with a specific focus
on those areas in the country characterized by high concentration of ethnic minorities.
In detail, for England, the population was grouped into three different strata: the first
stratum, ethnic minority, includes children living in wards where the proportion of ethnic
minorities was not less than 30% at the 1991 Census. The second stratum, disadvantaged,
includes children living in wards, not in the first stratum, which fell into the poorest 25%
wards based on the Child Poverty Index. The third stratum, advantaged, includes all
other children. For Wales, Scotland, and Northern Ireland, the population was stratified
into the disadvantaged and the advantaged strata only, due to the low presence of ethnic
minorities. MCS wards were randomly selected within each stratum and country; then a
list of all children turning nine months old during the survey window and living in the
selected wards was populated. Overall, a cohort of 18,818 children was eligible and was
followed for up to seven time periods. The first measurement took place when children
were about 9 months old; subsequent measures were recorded at 3,5,7,11, 14, and 17 years
of age. For further details, see e.g. Plewis et al. (2007)

Children’s emotional and behavioral disorders were measured by means of the Strengths
and Difficulties Questionnaire (SDQ); see Goodman (1997). This covers five different do-
mains: emotional symptoms, peer problems, conduct problems, hyperactivity, and pro-
social behavior. Each domain is measured by five items, for a total of 25 items. For each
item, a score equal to 0 is given if the response is not true, 1 if it is somewhat true and 2
if it is certainly true. The internalizing SDQ score (i-SDQ) is the sum of the scores to the
items in the domains of emotional symptoms and peer problems. With 10 items, it ranges
in the interval [0,20]. The externalizing SDQ score (e-SDQ) is the sum of the scores to
the items in the domains of conduct problem and hyperactivity; also in this case, with



10 items, it ranges in the interval [0,20]. The two outcomes of interest were recorded for
children who were, at least, 3 years old (wave 2 and more) only.

To study the impact of demographic and socio-economic factors on children disorders,
we focus on the following covariates. ALE;; measures the number of potentially Adverse
(stressful) Life Events experienced by the family in the priod between two consecutive
waves. This variable is obtained by summing the responses to 11 items from the Adverse
Life Event scale; see Tiet et al. (1998). SED, measures Socio-Economic Disadvantage and
it is obtained by summing responses to four items on family poverty. KESSM reports
maternal depression according to the Kessler scale (Kessler and Mroczek, 1992), with
a range in [0,24], where higher values identify more severe depression symptoms. IMD
measures neighborhood deprivation via the Index of Multiple Deprivation; it varies in
the range [1,10] and lower values correspond to areas with higher deprivation. We also
consider child age (Age), maternal education (no qualification, GCSE, and University
degree), ethnicity (non-white/white), gender, and the stratification variable as covariates.

In this paper, we focus on 9,021 children living in England, who participated in, at
least, one of the waves 2,3, and 4 of the study and present complete covariate informa-
tion. Using these eligibility criteria, data on 7,055 children are available at the first time
occasion, on 7,938 children at occasion 2, and on 7,078 children at occasion 3. Only
5,342 children out of 9,021 (59.22%) present complete information on i-0SDQ and e-SDQ
scores, while the remaining ones (40.78%) have incomplete response information. In the
following, we assume a MAR mechanism. A graphical representation of the available data
is provided in the Supplementary Material (Section ?77?).

Our main interest here is on analyzing the impact of neighborhood and family risk
factors on children emotional and behavioral problems. We should remark two issues: (7)
the effect of one or more risk factors may not be constant across the distribution of the
SDQ scores; (i) our interest relies on understanding the effect of observed covariates on
(conditionally) higher SDQ scores associated with more problematic children. In what
follows, we address both issues.

3 M-quantile regression for longitudinal data

M-quantile regression extends the ideas of M-estimation (Huber, 1964) to location param-
eters of a conditional response distribution. The M-quantile of order ¢ € (0,1) for the
conditional density f(y | «) is the solution to the following estimating equation:

[ = 11@uty 25015y | 21y =

Here, 9,(u) = 2¢(u/o,){ql(u > 0) + (1 — ¢)I(u < 0) denotes an asymmetric influence
function, that is, the first derivative of an asymmetric loss function p,(-), and o, is a
suitable scale parameter. When (¢) = e, we obtain the expectile of order ¢. In this
sense, expectiles can be seen as a quantile-like generalization of the mean and, at the
same time, M-quantiles can be seen as a robustification of expectiles through the influence
function ¥ (-). On the other hand, when ¢ (g) = sign(e), we obtain the standard quantile
of order q.



In the regression context and for a given choice of ¥, Breckling and Chambers (1988)
define a linear M-quantile regression model of order ¢ € (0,1) as follows:

MQq(yz | mza,@b) = méﬁ(p 1= 17 ey N (1)

In this paper, we use the Huber influence function () = eI(—c < ¢ < ¢)+csign(e) I(|e| >
¢), where ¢ denotes a suitable tuning constant. Note that when ¢ — oo, ¥(¢) = € and
M-quantile regression reverts to expectile regression, so that the latter can be seen as a
particular case of the former. Therefore, by choosing a large enough value for ¢, we obtain
expectile regression estimates. For a specified ¢ and a continuous #(-), an estimate
Bq can be derived via a simple Iterative Re-Weighted Least Squares (IRWLS) algorithm.

The asymptotic theory for Bq follows directly from well-known results for M-estimation;

see Section 2.2 of Breckling and Chambers (1988). Proofs of consistency for Bq and the
analytic expression for the corresponding asymptotic covariance matrix with stochastic
regressors are discussed in Bianchi and Salvati (2015).

With longitudinal data, subject-specific random effects are used in the model speci-
fication to account for omitted covariates and describe dependence between observations
from the same subject. To introduce notation, let Y;; denote a continuous longitudinal
response and y;; the observed value for the ¢-th subject, ¢ = 1,...,n, at time occasion
t=1,...,T;. Foragiven ¢ € (0,1), let x;; = (1,...,74,)" and B, be a p-dimensional
design vector and the associated vector of parameters, respectively. We consider that
s > 1 covariates, denoted by w;; = (1, wys, . .., wys) = (1, w;)’, are associated to a vector
of subject-specific random effects b;; = (bi14,...,bisq). The individual-specific effects
may represent random variation with respect to the corresponding elements in 3,, and in
this case the corresponding covariate terms are included in both @;; and w;;, or rather
be unconstrained, with the global set of covariates split between the two. In the follow-
ing, we consider the former approach, so that w;; C x;. The vector of subject-specific
random effects b; , includes the intercept and, possibly, further slopes that are assumed
to vary with individuals. The modeling structure is completed by the distribution of the
random effects, conditional on the (7; x p)-dimensional matrix of individual covariates
X, denoted by fp,(bi, | Xi;3,), where 3, identifies a (possibly M-quantile dependent)
covariance matrix. Details on the specification of such a distribution are provided in the
subsequent sections for the general case of multivariate longitudinal responses.

The M-quantile regression model of order ¢ for Yj;, conditional on the observed covari-
ates x;; and the subject-specific random effects b; 4, is defined by

MQq(yit | Tit, big; V) = m;tﬁq + w;tbi,Q‘ (2)

Repeated measurements coming from the same subject are assumed to be independent
conditional on b;, (local independence assumption) and estimates for 3, are obtained by
solving the equation

n

T;
Z qu[yit — MQq(yit | xit, big; )]s = 0 (3)

i=1 t=1

via an IRWLS algorithm. Estimation of model parameters can be cast in a maximum like-
lihood framework by specifying a parametric form for the conditional response distribution



associated to a specific influence function (). Here, our choice for the Huber influence
function corresponds to the so-called Generalized Asymmetric Least Informative (GALI -
Bianchi et al., 2018) density

— Yit — Mo,
Fo e i) = (o, exp { =, [ 245 20| 1 (@)
q

where B, is a normalizing constant ensuring the density integrates to one, o, is a scale
parameter, i, = MQ,(yir | Xit,biq; 1) is a location parameter defined according to
equation (2), and

puw) = 10l < 0+ (e = 5 ) 1l > o)

Adopting a GALI conditional density, we obtain a likelihood equation of the type in
(3). Based on the local independence assumption, the joint (conditional) density of the

individual response vector v, = (yi1, ..., yir) is
T;
Jo(Yi 1 big: Xo) = T [ fa (e | bigo in) (5)
t=1

Given the modeling assumptions, the log-likelihood function for the observed data is
obtained by integrating out the unobservables b; ;,7 = 1,...,n. That is,

U () = Zlog {/qu (Wi | big, Xi) foq(big | X 2q>dbi,q} ; (6)
i=1

As stated above, we remark that, by representing the conditional response distribution
via the GALI density, we may cast standard estimation of M-quantile regression into
a maximum likelihood context. This approach is similar to the one used in quantile
regression modeling, where the Asymmetric Laplace Distribution (ALD - Yu and Moyeed,
2001) is considered for similar purposes.

4 Modeling multivariate longitudinal responses

In this section, we extend the approach defined for the univariate case to the analysis of
an H-dimensional, longitudinal, outcome. Let us denote by Yy and yun,h = 1,..., H,
the h-th continuous longitudinal response and the corresponding observed value for the
i-th subject, ¢ = 1,...,n, at time occasion t = 1,...,7T;. Let x;, be a p-dimensional
design vector, and X;;, the corresponding (7; x p)-dimensional design matrix. We denote
by bing = (binigs-- - binsg) the s-dimensional vector of subject- and outcome-specific
random effects associated to the vector of covariates w;y, C @;y,.

For a given M-quantile ¢ € (0, 1), we assume that, conditional on by, , and the observed
design matrix X;j,, measurements for the hA-th response taken on subject i at different time



occasions are independent (local independence assumption). As a result, the conditional

density for the individual response vector y,, = (vin, - -, Yiryn)’ 18
T;
fq (yih ‘ bih,anih) = qu (yith | bih,qawith)a h = 17"-7H7 (7)
t=1

where f, (yin | bing, Tin) denotes the GALI density, with scale 0, and location i 4
defined by

Withg = MQq(Yitn | Titn, bing; ) = w;thlgh,q + wgthbih,q- (8)

As in the univariate setting, By, 4 denotes the vector of constant effects for covariates @i,
on the (conditional) g-th M-quantile of Yj;,, while by, , is the vector of subject-specific
random effects capturing heterogeneity between units and modeling dependence between
responses in y,;,,t = 1,...,n.

To account for association between multiple outcomes recorded on the same sub-
ject, we introduce a further assumption. In particular, we assume that, conditional on

by ={bi1g .-, bing}, responses y,;, ...,y are independent. Therefore, the conditional
density for the multivariate individual sequence y; = {y;1, ..., Y,y } is:
H
fo(yi | big, Xi) = H fa Win | bing: Xin) , (9)
h=1

where X; collects all design matrices for subject 7. Under the proposed specification,
dependence between responses Y;;, and Y is induced by dependence between the corre-
sponding random effects b; pq, and b; pr4.

Since these latter effects are unobserved, one approach to obtain the observed data
likelihood is based on integrating them out. According to equation (9), the individual
contribution to the observed data log-likelihood for the g-th M-quantile is, therefore, given
by

fa () = log { [ 5218 X0) ] X 2q>dbz~,q} , (10)

while the observed data log-likelihood is, for n independent subjects,
b ()= lig (). (11)
i=1

4.1 Handling potential endogeneity

It is worth noting that, often, individual-specific effects are included to account for poten-
tial omitted covariates, as they provide a simple and efficient way to model the impact of
time-constant individual-specific features that are not included in the model. A standard
assumption is that observed covariates are uncorrelated with the omitted ones (exogene-
ity assumption). That is, fo,(big | Xi;3,) = foq(big;X,). Often, this assumption is
relaxed for the less stringent assumption of weak erogeneity of the observed covariates:
E( ;;h,quh) = COV(bihﬂ, X2h> =0.



However, in many circumstances, exogeneity does not hold and this issue (known as
endogeneity) should be taken into consideration to obtain valid inference. The impact of
endogeneity may be described by considering differences in the within and between effects
of observed covariates on the conditional response distribution. The former measure the
impact of dynamics in time-varying covariates on the temporal evolution of the response.
The latter refer to the association between individual mean levels of the observed covariates
and corresponding mean levels in the responses. Obviously, time-constant covariates can
be associated to between effects only. According to Bartels (2008), when we consider the
model specifications in equations (2) and (8) and assume fi,4(biq | X433 Xg) = foq(b; X, ),
we implicitly state that within and between effects for time-varying covariates are equal.
However, when this is not the case, parameter estimates correspond to an uninterpretable
weighted average of the two effects, and may simply reflect the impact of unobserved
covariates as mediated by the observed ones; see Krishnakumar (2006); Neuhaus and
Kalbfleisch (1998). Further, estimates of variance components may be severely biased; see
Grilli and Rampichini (2011).

To handle potential endogeneity, we consider an auxiliary regression approach (Mund-
lak, 1978) in the current M-quantile specification:

{ bing = E(bing | Xin) + b g
E(bing | Xin) = ApgZin,

where &;;, = Tfl > ip is the vector of individual means used as an (informal) instrument.
We may note that the residual latent effects b}, , are now, at least approximately, free from
X in. Using such a parameterization, the M-quantile regression model in (8) can be written
as

MQq(Yitn | Tith, bing; V) = X, B4 + Wiy, bin g
= w;thlBh,q + w;th [Ahyqiih + b:h,q}
- (mith - a_zih)//ﬁh,q + j;h {IBh,q + A;L,q [17 Qbith]} + w;thb:h,q
= (Titn — &in) By + T [Bh,q +A + Aﬁfj)zbitﬁ] Wl bl s

(12)

where AS()Z and Af:) are used to denote the first and the remaining columns of Ay,

respectively, while 8, , and é;, 4 = B, , + Aﬁ; represent the within and the between effects
for the observed covariates on the g-th M-quantile of the conditional response distribution,
respectively. On the other hand, b}, , is a vector of subject-specific random effects captur-
ing unobserved, individual-specific, heterogeneity uncorrelated with X;,. In the following,
we simplify the notation and suppress the asterisk when referring to such a vector. The
projection of the observed covariates onto the spaces spanned by the mean and the devia-
tion from the mean is known in the literature as the QP decomposition. Further references
on endogeneity in the context of mean and quantile regression are Bell and Jones (2015)

and Abrevaya and Dahl (2008), among others.



4.2 The random effect distribution

In the context of univariate M-quantile regression for longitudinal data (H = 1), Alfo et al.
(2017) propose to leave the random effect distribution unspecified and estimate it from the
observed data by means of a NonParametric Maximum Likelihood (NPML - Aitkin, 1996,
1999) approach. This is known to lead to a discrete estimate defined over a finite number
of locations (Laird, 1978; Lindsay, 1983a,b) and to approximate the likelihood function
via a finite mixture.

In this paper, we extend this approach to the multivariate context. For a given q €
(0,1) level, we assume that the (possibly continuous) distribution of the random effects is
approximated by a discrete distribution defined over a finite set of multivariate locations

{Cl,(p H CKq,q} with Ck ,q (Ckl,qv LR Ck:H,q)la Ckh,q € RS7 and masses

kg = Pr(big =C(p,) = {( it = Crigr - - Dillg = CkH,q>}7

where 1,4, > 0,Vk =1,...,K;and ), mq = 1.

The association between multiple responses coming from the same subject arises
through the common latent structure. Since locations may vary with the specific re-
sponse, the proposed approach directly allows for negative association between the differ-
ent outcomes, thus overcoming a drawback of standard shared parameters models, where
bing =big,Vh=1,..., H, see e.g. Wu and Carroll (1988) and Wu and Bailey (1989).

For a given M-quantile level ¢ € (0, 1), conditional on the membership to the k-th
component of the finite mixture (where b; ; = ¢ ,) and the set of observed covariates @y,
we assume that responses Y, follow a GALI distribution with location parameter

Mithk,q = MQq(yith \ Lith, Ckh,q§ w) =
= (Tin — a_:ih)//Bh,q + &,0n,4 + Agfj)ﬂ’ith + w;'tthh,q' (13)

The observed data likelihood in equation (11) can therefore be written as

n K,
:ZIOg{qu (yz | Ck,qui) Wk,q}, (14)
i=1 k=1

where, due to local independence,

H T,
fq (yz | Ck,szi) = HH With | Chn.g> Tith),
h=1t=1

and f,(Yin | Crpgs Taen) is the GALI density with scale 044 and location parameter ik, q
defined by equation (13). Under the proposed specification, as for the univariate case,
the likelihood function resembles that of a finite mixture; for this reason, we will refer
to it as multivariate Finite Mixture of M-Quantile regression models (mFMMQ). The
computational details of the EM algorithm for maximum likelihood estimation are reported
in Section 77 of the Supplementary Material. There, we also discuss the procedure to derive
the estimate for the covariance matrix of model parameter estimates and the corresponding
standard errors, as well as that for selecting the optimal number of mixture components

10



K.

! While the discrete nature of f; ,(b;; 3,) may seem unappealing, it is worth highlighting
that most approximation techniques used to deal with mixed effect models based on a
parametric distribution of the random effects are exactly of the type in equation (14).
The only substantial difference is that, under the proposed framework, locations ¢ , and
masses 7y, 4 are directly estimated from the observed data, rather than being fixed a priori.
This implies that, if the standard zero mean, multivariate, Gaussian assumption was
reasonable, the NPML estimate of the random effect distribution would have symmetric,
bell-shaped, margins centered around zero. This clearly would come at the cost of a limited
loss in efficiency of parameter estimates. Based on such considerations, the proposal can
be seen as a flexible approach to model dependence among multivariate longitudinal data,
which does not rely on parametric assumptions and, therefore, is more in line with the
spirit of M-quantile regression.

4.3 Studying the association between responses

As stated before, one of the main advantages of the proposed specification is that we
may explicitly study the association between multivariate responses. Potential research
questions entail the direction of such a dependence and the corresponding magnitude. As
regards the former, we may be interested in understanding whether the outcomes are likely
to occur jointly or, rather, if they move in the opposite direction. Furthermore, it can be
relevant to understand whether specific values of the responses are more or less likely to
jointly occur, that is understanding whether association among outcomes varies with q.
In this sense, postulating a random effect distribution depending on the M-quantile level
allows us to provide an answer to such questions.

More in detail, to study the association among multiple outcomes, we may rely on
the estimated covariance matrix of the random effects. Under the proposed modeling
approach, this matrix can be estimated as follows

Eq = {2h7h’>q} ?
hoh'=1,.. H

where
Kq

~ ~ ~ ~ ~ !/
Ehvhlyq = Z <Ckh,q - Ch,q) (Ckh’,q - Ch,q) ﬁk#b
k=1
and Ch,q - Zk: Ckh,qﬁ-kvq‘

Block diagonal elements in 2(1 correspond to the covariance matrix for the random
effects in a given response equation and, as usual, provide information on the impact that
sources of unobserved heterogeneity have on the (conditional) distribution of that response.
On the other hand, off-block diagonal elements correspond to covariances between random
effects in different response equations. To give an example, when s = 1 (i.e. when a random
intercept model is considered), the quantity

Ky

Ohh,g = Z <(kh,q - C_h,q> (Ckh’,q - Eh’,q) Th,q

k=1

11



provides an indirect measure of association between Yj;, and Yy, for a given M-quantile
level q.

5 Analysis of the Millennium Cohort Study data

In this section, we analyze data from the MCS to understand how individual covariates,
especially those associated with neighborhood and family risk factors, influence children’s
emotional and behavioral disorders, measured by means of the i-SDQ and the e-SDQ
scores, respectively.

To start, we analyze MCS data via the univariate FMMQ approach by Alfo et al.
(2017). Here, the potential dependence between internalizing and externalizing scores is
not taken into account. A second step of analysis involves the proposed mFMMQ spec-
ification, with the aim of deriving insight on the association between the two outcomes
under investigation. Both analyses are based on the assumption of exogeneity of observed
covariates. In the following, we refer to such models as the univariate and the multivariate
pooled FMMQ approaches, respectively, and denote them by uFMMQ, and mFMMQ),.
Last, we consider the auxiliary regression approach based on the QP decomposition dis-
cussed in Section 4.1. We refer to such a model as the multivariate within-between FMMQ
and denote it as mFMMQ,;. The latter analysis is meant to avoid possible bias in the
parameter estimates due to endogeneity and to provide more reliable estimates of the ef-
fects of children socio-economic conditions on the evolution of children’s psychopathology
over time.

We focus on the right tail of the response distribution and estimate the model for
g = {0.50,0.75,0.90}. These levels are generally associated with more severe problems
(conditional on the observed covariates and the random effects). Results from the above
analyses are reported in Sections 5.1-5.3.

We must notice that M-quantile regression is designed to deal with continuous data,
while the SDQ scores are indeed discrete. However, the sum over 20 different items and the
structure of the observed covariates provide sufficient variability to justify the proposed
approach. A potential alternative could be that of considering a power transformation of
the response (such as the logarithmic one). However, the literature on this topic mainly
concerns models that estimate the conditional mean. There are only a few contributions
on the use of power transformations in the context of linear quantile regression (Mu and
He, 2007); these exploit the equivariance property typical of this class of models. However,
as we model M-quantiles, this appealing property does not hold any longer, making such
an approach not really appropriate.

5.1 The univariate FMMQ with pooled effects

For a given M-quantile level ¢ € (0,1) and a given response h = 1,2, we consider the
following univariate model specifications:

{ MQq(i-SDQy; | Tit; Ciy1.g5 V) = Chtg + T1ieBr1g + 2821 45

(15)
MQq(e-SDQ;; | @it Cry2,45 %) = Cro2ig + wllit/612,q + 55',21'/322@7
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fort=1,2,3,i=1,...,n, withn=9,021, ky, =1,..., Ky 4 and ks = 1,..., Ky ,. In the
model above, x1;; and x,; denote the vectors of time-varying and time-constant covariates,
respectively. In particular, the former includes ALE;;, SED,, KESSM, IMD and the age
variable (centered around the mean). In Tzavidis et al. (2016), the relationship between
age and each of the outcomes of interest is modeled using a linear and a quadratic term,
by this providing evidence of a more complex than a linear effect of such a covariate. Here,
to allow for more flexibility and in order to estimate the shape of such relationships from
the data, we introduce a polynomial spline with B-spline basis functions with 4 degrees of
freedom. We have selected the degree of the spline for ¢ = 0.50 using BIC and then we have
kept the degree fixed at the other values of ¢ for ease of comparison. We have tested also the
other continuous covariates for nonlinearities, but we have found no evidence. On the other
hand, x,; includes maternal education (reference = no qualification), ethnicity (reference
= non-white), gender (reference = female) and stratification (reference = advantaged
stratum). To complete the model, we consider the following finite mixture probabilities

{ 7Tk11,q = Pr(biLq = Ck11,q)a k’l = 1, ce ,KLq,
7Tk22,q = Pr(biqu = Ckz?,q)a k’g = 1, ce ,KQVq,

for the two model equations.

For each response h and each M-quantile level ¢ € (0,1), we consider a varying num-
ber of mixture components (K;, = Ky, = 2,...,15) and a multi-start strategy. A
first deterministic solution is obtained by setting component probabilities to g, 5, =
1/ Kpg kn =1,..., K4, and fixed parameters in the longitudinal data models equal to
the estimates from the corresponding homogeneous linear models. Component-specific
random intercepts are then obtained by adding K} , Gaussian quadrature locations to the
corresponding (fixed) effect from the linear model above. For each value K}, ,, we derive
d(Kp,,—1) random starting solutions from the deterministic ones by randomly perturbing
model parameters (d = 3). For given h and ¢, the solution corresponding to the highest
log-likelihood value is retained as the optimal one. To identify the optimal number of mix-
ture components Kj; , we consider the BIC index; this has led us to select K7, = {4,4,2}
for i-SDQ and K3, = {9, 3,2} for e-SDQ, for ¢ = {0.50,0.75,0.90} respectively.

We report in Table 1 the estimates for fixed model parameters in equation (15). By
looking at these results, we notice that the estimated parameters for the e-SDQ have
stronger magnitude than those associated to the i-SDQ scores. Mother’s education has
a significant effect on the evolution of children’s emotional and behavioral disorders; the
higher the educational level, the smaller the SDQ scores and the stronger the absolute
magnitude of these estimates as we move towards higher M-quantiles. Lower i-SD(Q) scores
are generally observed for white children, with an effect that becomes stronger moving
towards the right tail of the (conditional) response distribution. On the other hand,
e-SDQ scores do not seem to be influenced by race, but at ¢ = 0.9, with a positive
and significant effect for such a variable. Males typically present higher internalizing
and externalizing problems, while the stratification variable doesn’t play a significant
role, except when focusing on internalizing disorders and looking at the center of the
distribution. As expected, children belonging to the disadvantaged or to the ethnic stratum
present higher i-SDQ scores. As regards the effect of age, both scores reduce until children
reach the mean age (about 5 years) and show another peak around the age of 7 during
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Table 1: MCS data. uFMMQ), specification. Fixed parameter estimates for i-SDQ and
e-SDQ scores at different M-quantiles.

i-SDQ e-SDQ
q = 0.50 qg=0.75 g =0.90 q=0.50 q=0.75 g =0.90
Est Se Est Se Est Se Est Se Est Se Est Se
Intercept 2.990 0.269 3.859 0.270 4.714 0.336 6.443 0.285 7.136 0.390 7.599 0.524
Degree -0.752 0.070 -0.915 0.099 -1.035 0.138 -1.349 0.104 -1.436 0.173 -1.794 0.206
Gese -0.473 0.068 -0.585 0.100 -0.615 0.133 -0.608 0.100 -0.629 0.139 -0.777 0.186
White -0.300 0.059 -0.378 0.080 -0.506 0.151 0.076 0.082 0.255 0.162 0.468 0.195
Male 0.067 0.031 0.159 0.048 0.365 0.076 0.754 0.053 0.920 0.088 1.193 0.116

Ethnic St. 0.212 0.077 0.174 0.103 0.182 0.176 -0.074 0.107 -0.211 0.185 -0.109 0.238
Disadv. St. 0.103 0.039 0.068 0.064 0.048 0.100 0.119 0.067 0.185 0.118 0.283 0.151
BS(age), 0.395 0.491 0.527 0.638 -0.178 1.072 0.982 0.727 1.368 0.888 2.282 1.462

)
BS(age), -1.713  0.322 -2.060 0.422 -1.668 0.701 -6.212  0.459 -6.984 0.553 -7.549 0.915
BS(age), 1.026 0.400 1.315 0.530 1.244 0.881 1.273 0.565 1.797 0.689 2.443 1.157
BS(age), -0.400 0.139 -0.405 0.185 -0.248 0.308 -3.116  0.179 -3.335 0.223 -3.087 0.356
ALEy; 0.079 0.013 0.117 0.019 0.208 0.031 0.126 0.018 0.176 0.026 0.265 0.038
SED, 0.075 0.018 0.084 0.025 0.112 0.038 0.126  0.027 0.185 0.040 0.313 0.050
KESSM 0.145 0.006 0.185 0.010 0.259 0.013 0.182 0.008 0.220 0.013 0.261 0.017
IMD -0.024 0.007 -0.043 0.010 -0.076 0.018 -0.058 0.011 -0.077 0.018 -0.067 0.023

primary school and then decrease again. The effect of age is much stronger for e-SDQ
rather than for i-SDQ), but this difference decreases as we move towards higher values of
q. Figure 4 displays these effects for the multivariate within-between FMMQ model. For
reasons of space, we have not included such a plot for the uFMMQ),, specification, but the
main features are similar.

Family and neighborhood risk factors play a central role in explaining the evolution of
emotional and behavioral disorders over time. Adverse life events, family poverty measured
by SEDy4, and maternal depression are all positively associated with both i-SDQ and e-
SDQ. The worse the socio-economic conditions, the higher the scores, and such effects
are more pronounced at the right tail of the conditional response distribution. For IMD,
we observe a negative and significant effect, whose absolute magnitude generally increases
with ¢, especially when looking at the internalizing outcome. That is, higher scores are
observed for children living in more deprived areas. For a clearer interpretation of these
parameters, we report a graphical representation of the estimates for varying M-quantile
levels in the Supplementary Material (see Figure ?77).

The results discussed so far are generally in line with those reported by Tzavidis et
al. (2016). To allow for comparison, we have fitted the univariate FMMQ model on the
same set of covariates used in that paper —i.e. using a quadratic term to model the effect
of age instead of the B-spline — and we have observed a slight improvement in terms of
efficiency. This is likely due to the higher flexibility of the finite mixture approach, where
the subject-specific random intercepts are not constrained to a specific parametric form.
Results are not reported for reasons of space, but they are available from the Authors
upon request.

To conclude the analysis, we report in Figure 1 the cumulative density function of the
random intercepts. From this figure, it is evident that, for both outcomes, the estimated
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Figure 1: MCS data. uFMMQ), specification. Estimated cumulative density function of
the discrete random intercepts for i-SDQ (a) and e-SDQ (b) scores at different M-quantiles.
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distribution is quite far from symmetry and/or unimodality, thus making the Gaussian
assumption rather inappropriate in this application. We also observe that locations for
the e-SDQ score have higher variability than those for the i-SDQ. Last, looking at Figure
1, we notice that the probability of locations with a relatively larger value increases as we
move from ¢ = 0.50 to ¢ = 0.90, thus highlighting how higher M-quantile levels identify
(conditionally) more severe disorders.

5.2 The multivariate FMMQ with pooled effects

In this section, we extend the previous analysis and consider the proposed multivariate
specification with pooled effects only. We considered the same linear predictors reported
in equation (15). However, in this case, we explicitly model the dependence between
children’s internalizing and externalizing disorders by tying the discrete random intercepts
in the two equations via the common prior probabilities

Thq = Pr(birg = Gr1g, bizg = Crag)

For each M-quantile ¢ € {0.50,0.75,0.90}, we have run the estimation algorithm for a vary-
ing number of mixture components (K, = 2,...,15) and considered the same multi-start
strategy described in Section 5.1. For each ¢, we have selected the optimal model via the
BIC index; this has lead us to select Ky = {9,5,2} components for ¢ = {0.50,0.75,0.90},
respectively.

We report in Table 2 the fixed parameter estimates for demographic and socio-economic
covariates. Based on these results, we may infer similar conclusions to those obtained
through the univariate specification described in Section 5.1. However, a by-product of
the proposed multivariate approach is the possibility to study the dependence structure
between the outcomes of interest. This allows us to understand whether internalizing and
externalizing disorders are related or not and investigate the nature of such a dependence.
Do internalizing and externalizing symptoms occur jointly? Does one disorder exclude the
other? As stated above, to answer such questions, we may rely on the estimated covari-
ance between the random effects in the equations for the i-SDQ and the e-SDQ scores. We
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Table 2: MCS data. mFMMQ), specification. Fixed parameter estimates for i-SDQ and
e-SDQ scores at different M-quantiles.

i-SDQ e-SDQ
q = 0.50 qg=0.75 g =0.90 q=0.50 q=0.75 g =0.90
Est Se Est Se Est Se Est Se Est Se Est Se
Intercept 3.097 0.165 4.077 0.231 4.745 0.385 6.376 0.279 7.290 0.300 7.637 0.533
Degree -0.696 0.077 -0.851 0.101 -1.109 0.152 -1.242 0.139 -1.523 0.156 -1.724 0.224
Gese -0.422 0.070 -0.536 0.095 -0.635 0.147 -0.535 0.137 -0.699 0.138 -0.757 0.201
White -0.335 0.068 -0.464 0.087 -0.431 0.141 0.107 0.091 0.263 0.132 0.417 0.203
Male 0.031 0.039 0.172 0.051 0.358 0.085 0.732 0.062 0.946 0.086 1.261 0.135

Ethnic St. 0.201 0.076 0.186 0.117 0.233 0.162 -0.061 0.121 -0.133 0.158 -0.078 0.226
Disadv. St. 0.074 0.044 0.068 0.061 0.049 0.102 0.098 0.077 0.220 0.101 0.309 0.164
BS(age), 0.294 0.526 0.208 0.686 0.381 1.057 1.008 0.771 1.216 0.896 2.686 1.460

)
BS(age), -1.643 0.349 -1.946 0.449 -2.084 0.695 -6.188 0.483 -6.883 0.560 -7.755 0.873
BS(age), 0.971 0.446 1.303 0.561 1.898 0.889 1.204 0.596 1.646 0.698 2.568 1.098
BS(age), -0.433 0.142 -0.496 0.199 -0.313 0.331 -3.081 0.184 -3.352 0.228 -2.984 0.360
ALEy; 0.075 0.013 0.120 0.020 0.237 0.031 0.120 0.020 0.148 0.025 0.289 0.040
SED, 0.053 0.021 0.067 0.027 0.151 0.039 0.107 0.031 0.131 0.037 0.321 0.054
KESSM 0.135 0.007 0.193 0.010 0.275 0.014 0.169 0.009 0.193 0.011 0.274 0.018
IMD -0.027 0.007 -0.058 0.011 -0.089 0.017 -0.049 0.013 -0.063 0.017 -0.081 0.026

have 612,050 = 2.260, 012,075 = 2.815, and 612,0.90 = 3.635, which suggest the presence of a
positive association between the two scores. Furthermore, by focusing on the magnitude
of 0124, we observe that such association increases with ¢. This translates into a higher
chance for children to jointly have high i-SDQ and e-SDQ scores, especially when more
severe symptoms are present (right tail of the distribution). The estimated covariance
and correlation matrix of the random parameters at different M-quantile levels under the
mFMMQ), specification are reported in the Supplementary Material; see Table ?7.

5.3 The multivariate FMMQ with auxiliary regression

To conclude the analysis, we consider the multivariate FMMQ based on the QP decompo-
sition. As stated before, the aim is that of providing further insight into the MCS data and
separating the effect of covariates’ dynamics from effect associated to the corresponding
mean levels. These are time-constant and may be possibly correlated with the random
intercepts introduced in the model. For each M-quantile level ¢ € {0.50,0.75,0.90}, we
considered the following equations:

MQ,(-SDQy; | ®it, Ck1,q5 %) = Crig + wllz‘tﬁn,q + (@21t — 3_32i),/321,q + &9;01,4 + wéiﬁfﬂ,q?

MQy(e-SDQy, | @it Crag3 ) = Crag + w’lit/@m,q + (21t — 532i),ﬁ22,q + &9 09,4 + wgi/832,q'
(16)
In this case, @y, includes the set of B-spline basis functions for the variable age (cen-
tered around the overall mean), while x;5; includes the remaining time-varying covariates:
ALE;;, SEDy4, KESSM, and IMD. These are centered around their individual means, &»;.
Last, x3; denotes the vector of time-constant covariates (maternal education, ethnicity,
gender, and the stratification variable). As stated in Section 4.1, the fixed parameters
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in equation (16) have a different interpretation when compared to those discussed in the
previous sections. In particular, the parameters By, , and By, , provide a measure of the
direct effect that changes in individual covariates have on the dynamics of the SDQ scores.
On the other hand, the parameters 95, and B, , measure the impact of differences be-
tween children’s global conditions (across all years of observation) on the M-quantile levels
of the outcomes under investigation.

As before, we have run the estimation algorithm for varying K, that is K, = 2, ..., 15,
and considered a multi-start strategy to avoid local maxima. The optimal solution has
been identified via the BIC index, which has led us to select a model with Ky = {7,4,2}
components for ¢ = {0.50,0.75,0.90}, respectively. Table 3 reports parameter estimates
under the mFMMQ,,;, specification for the internalizing and the externalizing scores in the
top and the bottom panel, respectively.

As expected, when looking at the estimated effects of time-constant covariates (mater-
nal education, ethnicity, gender, and stratification), we derive similar conclusions to those
obtained from the mFMMQ), approach discussed in Section 5.2. However, when focusing
on the effect of time-varying covariates, it is evident that the QP decomposition provides
a deeper understanding of the phenomenon of interest. We report in Figures 2-3 the es-
timated between (upper panel) and within (bottom panel) effects for the (time-varying)
covariates associated to children’s socio-economic conditions on the i-SDQ and the e-SDQ
scores, respectively. By looking at these figures, we observe that the magnitude of the
within effects estimated under mFMMQ),,, approach are generally smaller than those ob-
tained when considering pooled effects only (see Table 2) for both i-SDQ and e-SDQ scores.
On the contrary, between parameters seem to have a higher impact on the distribution of
the SDQ scores. That is, overall socio-economic conditions explain a higher portion of the
SDQ variability than the corresponding dynamics. These findings highlight the potential
dependence between sources of unobserved heterogeneity and the observed covariates, an
issue which is quite common when dealing with observational studies and that makes our
proposal an interesting modeling approach for analyzing the MCS data. Figure 4 shows
the estimated shapes of the effect of age on the two scores at different levels of ¢. As
noted when discussing the univariate models, both scores reduce until children reach the
mean age (about 5 years) and show another peak around the age of 7 and then decrease
again. This pattern is significant in particular for e-SDQ. In fact, the effect of age is much
stronger for e-SDQ rather than for i-SDQ, but this difference decreases as we move towards
higher M-quantile levels.

Last, parameter estimates for the mFMMQ,, specification leave substantially un-
changed the inferential conclusions on the association between i-SD(@Q and e-SD(Q scores
discussed in Section 5.2. That is, children are likely to experience internalizing and ex-
ternalizing disorders that are coherent and related to each other, especially when these
are more severe. The estimated covariance and correlation matrix for the random ef-
fects at different M-quantile levels under the mFMMQ),,;, specification are reported in the
Supplementary Material (Table ?77).

To conclude, we report in Table 5.3 the BIC values associated to the optimal model
specifications in terms of number of mixture components for nFMMQ),, and mFMMQ),,,,
for the three M-quantile levels under investigation. Obviously, as it is typically done with
nested modes, standard penalized likelihood criteria such as the BIC can also be exploited
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Table 3: MCS data. mFMMQ),,, specification. Fixed parameter estimates for i-SDQ (top
panel) and e-SDQ scores (bottom panel) at different M-quantiles.

i-SDQ
q=0.50 q=0.75 g =0.90

Between Within Between Within Between Within

Est Se Est Se Est Se Est Se Est Se Est Se
Intercept 2.858 0.185 3.841 0.227 4.370 0.359
Degree -0.630 0.072 -0.785 0.098 -1.038 0.141
Gese -0.384 0.069 -0.511 0.093 -0.614 0.131
White -0.317 0.060 -0.436 0.087 -0.406 0.132
Male 0.038 0.034 0.159 0.050 0.355 0.084
Ethnic St. 0.195 0.078 0.158 0.115 0.184 0.169
Disadv. St.  0.070 0.044 0.042 0.063 -0.023 0.111
BS(age), 0.239 0.500 -0.090 0.662 0.222 1.020
BS(age), -1.616 0.326 -1.771  0.437 -2.092 0.665
BS(age), 0.903 0.406 1.018 0.550 1.788 0.835
BS(age), -0.467 0.144 -0.577 0.198 -0.548 0.312
ALEq; 0.101 0.023 0.054 0.016 0.190 0.036 0.077 0.022 0.395 0.055 0.107 0.033
SED, 0.083 0.024 -0.043 0.031 0.084 0.036 -0.043 0.040 0.150 0.049 -0.047 0.058
Kessm 0.175 0.009 0.084 0.009 0.255 0.012 0.102 0.012 0.350 0.019 0.130 0.017
IMD -0.022 0.008 -0.004 0.018 -0.058 0.012 -0.008 0.024 -0.089 0.021 -0.002 0.036

e-SDQ
q=0.50 q=0.75 q=10.90

Between Within Between Within Between Within

Est Se Est Se Est Se Est Se Est Se Est Se
Intercept 6.042 0.308 6.861 0.355 7.006 0.508
Degree -1.174 0.138 -1.436 0.164 -1.622 0.224
Gese -0.497 0.128 -0.668 0.149 -0.710 0.190
White 0.130 0.106 0.273 0.146 0.409 0.191
Male 0.720 0.062 0.932 0.088 1.279 0.129
Ethnic St.  -0.089 0.140 -0.163 0.175 -0.107 0.226
Disadv. St.  0.086 0.080 0.175 0.109 0.236 0.166
BS(age), 0.917 0.769 1.085 0.882 2.822 1.436
BS(age), -6.136  0.481 -6.863 0.560 -8.019 0.855
BS(age), 1.090 0.594 1.560 0.699 2.683 1.064
BS(age), -3.121 0.188 -3.450 0.229 -3.206  0.343
ALE; 0.181 0.042 0.080 0.022 0.283 0.059 0.082 0.025 0.539 0.079 0.078 0.038
X 0.167 0.052 -0.010 0.040 0.169 0.056 0.004 0.046 0.345 0.072 0.029 0.065
Kessm 0.221 0.014 0.116 0.011 0.263 0.019 0.131 0.012 0.343 0.024 0.166 0.018
IMD -0.040 0.015 -0.026 0.024 -0.057 0.020 -0.035 0.027 -0.073 0.031 -0.018 0.044

Table 4: MCS data. BIC values for mFMMQ,, and mFMMQ,,,, at different M-quantiles.

=050 ¢=07 ¢=0.90

mFMMQ,  203505.0 214423.8 237968.8
mFMMQ,,, 203392.2 214211.3 237434.1
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Figure 2: MCS data. mFMMQ),, specification. Estimates of the between (upper panel)
and the within effects (bottom panel) for i-SDQ scores at different M-quantiles. Panels
(a)-(e): ALE; panels (b)-(f): SED; panels (c)-(g): Kessm; panels (d)-(h): IMD.
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Figure 3: MCS data. mFMMQ),,, specification. Estimates of the between (upper panel)
and the within effects (bottom panel) for e-SDQ scores at different M-quantiles. Panels
(a)-(e): ALE; panels (b)-(f): SED; panels (c)-(g): Kessm; panels (d)-(h): IMD.

0.5 0.7

0.3

0.1

0.00 0.05 0.10 0.15

@ (b) © )
n
o
3 \
™ o q
y
- H
= & g
T T T T T T o T T T T T T
0.5 0.75 0.9 0.5 0.75 0.9 0.5 0.75 0.9 0.5 0.75 0.9
q q q q
() ® © (h)
= =
o o o
J 1 o TR
o
g 3 / _
o o i
= 2 3
T — ™ - U d T T T o T T T o T T T
0.5 0.75 0.9 05 0.75 0.9 0.5 0.75 0.9 "05 0.75 0.9
q q q q

19



Figure 4. MCS data. mFMMQ,,, specification. Estimates of the effect of age for i-SDQ
and e-SDQ scores at different M-quantiles. Dashed lines represent 95% confidence bounds.
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to identify the optimal specification in terms of explanatory variables to include in the
linear predictor. By looking at the above table, it is evident that mFMMQ),,, provides a
better fitting to the data than mFMMQ, and in this sense should be preferred. Clearly,
a similar strategy cannot be adopted to chose among the univariate (mFMMQ) and the
multivariate specifications, as the former is not nested within the latter. In this sense,
from our perspective, the choice should be driven by the need (or not) of studying the
association between outcomes. If researchers think this is an important aspect to take into
account and /or there is the suspect that the outcomes are associated, than the multivariate
approach represents a natural way of proceeding. On the other side, if studying association
is not a central matter and/or it is difficult to presume association between outcomes, then
the univariate approach represents the simpler and preferable modeling strategy.

6 Conclusions

In this paper, we propose an M-quantile regression model for multivariate, continuous, lon-
gitudinal data by extending the finite mixture of M-quantile regression models proposed by
Alfo et al. (2017) to a multivariate context. Correlated, subject-specific, random effects
are used to account for dependence within the same response and association between
responses observed on the same subject. We exploit the proposed mFMMQ regression
model based on subject- and outcome-specific random intercepts only to analyze data on
internalizing and externalizing SDQ scores from the Millennium Cohort Study. Clearly,
a more complex specification, based on random intercepts and slopes could have been
adopted, but for ease of interpretation, we decided not to follow this root. In this ap-
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plication, we also handle potential endogeneity of the observed covariates by defining an
auxiliary regression model in the spirit of Mundlak (1978).

The results of the MCS data analysis are in line with those discussed by Tzavidis
et al. (2016). Together with a more flexible specification of the random effect distribution,
some further insights are provided and these better characterize children behavioral and
emotional disorders in terms of static levels and dynamic changes of socio-economic con-
ditions. The proposed analysis provides evidence of two interesting aspects with respect
to those provided by previous analysis: (i) children likely experience both internalizing
and externalizing disorders, especially the more severe ones; (ii) behavioral and emotional
disorders are mainly affected by overall children socio-economic conditions rather than by
the corresponding variations over time.

Simulation results reported in the Supplementary Material prove the reliability of these
findings, in terms of bias and efficiency. Here, it is also shown that such good properties
also hold when model assumptions are not fulfilled and, above all, when the standard
Gaussian assumption for the random effects does not hold, as for the present applica-
tion. With respect to point (i) above, we may further highlight some important aspects
of the proposed approach. First, it considers a potentially varying strength in the asso-
ciation between the analyzed outcomes, as the estimate of the random effect distribution
is (M-)quantile-specific. This could be particularly appropriate to those phenomena that
experience so-called tail dependences; see, e.g., Venter (1997). Moreover, the proposed
approach may be used to define a classification of the analyzed individuals based on the
estimated posterior distribution of component membership; this may be of great help for
the prediction of the outcome(s) of interest in a more efficient way, when compared to
parametric approaches; see Neuhaus et al. (2013).

The proposal may be extended in a number of directions. First, we may consider
time-varying random parameters in a hidden Markov model perspective, to capture time-
varying sources of unobserved heterogeneity. A further step may be to separately model
dependence between and within outcomes, with the aim of enhancing model flexibility.
Furthermore, in the spirit of quantile regression for discrete outcomes, we may also extend
the proposed mFMMQ approach to deal with non-continuous responses, such as counts.
Quantile regression for cross-sectional count data has been developed in the literature.
It relies on the equivariance property of quantiles to monotone transformations and is
based on the use of a jittering approach. In the present framework, two issues need
to be addressed: (i) the use of M-quantiles means that properties holding for quantile
regression are no longer valid; (77) the presence of random effects makes the problem more
demanding. A starting point could be the approach for count data developed by Tzavidis
et al. (2015) and Dreassi et al. (2014) for M-quantile regression based on robust generalized
linear models that uses quasi-likelihood.

Finally, when several conditional quantiles or M-quantiles are estimated, two or more
functions can potentially ‘cross over’ at some point in the space defined by the covariates.
This is called quantile crossing and may be due to model misspecification, collinearity,
or to the presence of outlying values. The problem occurs because each conditional M-
quantile function is independently estimated, i.e. without enforcing the property that at
each value of x, the M-quantiles of y are ordered by ¢. Also the multivariate FMMQ can
suffer from M-quantile crossing problems. He (1997) propose a simple way of building this
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restriction into fitted quantile regression lines by a-posteriori restricting them relative to
the median regression line. This approach has been adapted to M-quantile regression by
Pratesi et al. (2009) and Salvati et al. (2012). Alternatively, Frumento and Salvati (2020)
impose a parametric structure that can stabilize the behavior of the estimated regression
coefficients, especially in the tails, and alleviate the M-quantile crossing problem. Finally,
in the context of quantile regression, Schnabel and Eilers (2013) define a surface, called
a quantile sheet, on the domain of the independent variable and the probability ¢ that
is monotonically increasing when using moderate or large amounts of smoothing in the
direction of ¢. All these solutions could be adapted to the multivariate FMMQ and
explored to overcome the issue.
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