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The use of virtual sensing allows the frequency range of a local active noise control1

system at a listener’s ears to be extended beyond what is possible when only2

controlling at remote physical sensors, particularly if head tracking is also used to3

determine the position of the virtual sensors. As the frequency range is extended,4

however, the uncertainties in the acoustic responses become more significant and5

the design of multichannel adaptive controllers that are robustly stable to these6

uncertainties becomes more important. In order to fully characterise the uncertain-7

ties due to the combination of all the possible changes in the acoustic environment8

a very large number of measurements would, in principle, need to be taken. For9

uncertainties due to the simultaneous change in position of several objects within the10

acoustic environment, however, it is shown that the uncertainties can be accurately11

predicted by the superposition of the uncertainties due to the change in position of12

the objects individually. This allows the uncertainty due to the change in position of13

a number of objects to be rapidly evaluated from a limited number of experiments14

and considerably simplifies the controller design process, which is illustrated here for15

an active headrest system using two different virtual sensing techniques.16

17

Keywords: Active control Additive uncertainty Robust design Virtual sensing18

ajz1a19@soton.ac.uk

2

mailto:jz1a19@soton.ac.uk


I. INTRODUCTION19

Local active sound control, close to a listener’s ear, has the potential to work up to a20

higher frequency than global active sound control systems, which aim to reduce the sound21

throughout an enclosure1. In particular, secondary loudspeakers incorporated into a headrest22

can be used for local active control at the ears of a seated listener2,3. The spatial extent23

of the zone of quiet generated around an error microphone whose output is cancelled by24

such a local active control system is of the order of 1/10 of an acoustic wavelength4,5. At25

higher frequencies, it is thus important to control the sound pressure close to the listener’s26

ear, which can be difficult if physical error microphones are used. Using some assumptions27

about the nature of the sound field to be controlled, virtual sensing techniques enable the28

pressure at virtual error microphone positions, close to the listener’s ears, to be estimated29

from the output of a number of remote monitoring microphones, without the use of physical30

microphone at listener’s ears6–9.31

Using head tracking technology, the coordinates of two virtual error microphones can also32

be updated to always ensure control at the positions of a listener’s ears6. It has been shown33

that under favourable conditions, such as system can achieve significant attenuation in the34

sound at the listener’s ears at frequencies up to at least 1 kHz10. As well as needing to make35

assumptions about the nature of the sound field to be controlled, an adaptive local control36

system also requires an estimate of the plant responses, from the secondary loudspeakers37

to the monitoring microphones and the virtual error microphones. Both the primary sound38

field and the plant responses are subject to uncertainties in practical environments and it is39
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important that the stability and performance of the local control system is robust to these40

uncertainties.41

One important application of such a local active headrest system is in the control of mid-42

frequency road noise in vehicles, since it is known that global active control systems only43

work well up to about 300 Hz in this application11,12. Assuming that the position of the44

head can be accurately tracked, the main sources of uncertainty in the acoustic responses45

are due to changes in the positions of the seats or other passengers within the vehicle. One46

way of designing the controller in this case is to assume that the uncertainty is unstructured47

and that its magnitude is less than some upper bound13,14. Since the phase information48

and the interdependence between the uncertainties in the individual frequency responses is49

then lost, a controller designed to be robust to such uncertainty can be very conservative50

and its performance will not be as good as one designed to be robust only to the specific51

kind of uncertainties found in practice. It would, in principle, be necessary to measure all52

possible combinations of these perturbations that give rise to these uncertainties in order53

to have the data needed to design a controller that was robust to the all conditions of the54

possible uncertainties that could be encountered. Making the conservative assumption that55

there are 10 such individual perturbations in the sound field, for example, there would be56

10 cases in which only one perturbation was present, 45 cases for the combination of any57

two perturbations and 120 cases for the combination of three perturbations, for example, as58

shown in Table I. Adding up all the different possibilities for the number of perturbations, it59

is clear that over 1000 experiments with different vehicle configurations would, in principle,60

need to be performed to capture all possibilities.61
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In this paper it is shown how the uncertainty associated with a number of these per-62

turbations occurring simultaneously can be accurately approximated by the superposition63

of the uncertainties associated with each perturbation occurring individually. Following the64

example, it would only be necessary to undertake 10 measurements of the acoustic responses65

subject to the individual uncertainties, and then the uncertainties associated with all of the66

combinations of these perturbations could be calculated offline. In practice, this technique67

could be used to efficiently identify the combinations of uncertainty that would have the68

greatest effect on the stability and performance of an adaptive multichannel active control69

system, and hence enable the design of a control system that is robust to the worst case70

uncertainty that it will encounter.71

Sec. II of this paper describes a series of experiments in which the acoustic responses for72

a headrest-based active control system were measured in a vehicle under various conditions.73

The uncertainty in the frequency responses due to two changes occurring simultaneously in74

the vehicle is then compared with those calculated by superposing the uncertainties due to75

the individual changes. In Sec. III, a time domain interpretation is used to help understand76

the success of this superposition of uncertainties and also illustrate its limitations. This77

also shows how computational methods could also be used to further reduce the number of78

experiments necessary to calculate the worst-case uncertainty. The design of adaptive active79

feedforward control systems that are robust to such a worst-case uncertainty is illustrated80

in Sec. IV, using two different virtual sensing strategies, before some overall conclusions are81

drawn in Sec. V.82
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II. ESTIMATION OF THE UNCERTAINTY IN THE FREQUENCY DOMAIN83

BY SUPERPOSITION84

Fig. 1(a) illustrates the active control system used for the measurements when installed85

on the seat headrest in a medium-sized car15. The two secondary loudspeakers are denoted86

L1 and L2 and the physical monitoring microphones, used to estimate the pressure at the87

virtual error microphones, are denoted M1 to M4. Fig. 1(b) then shows the position of88

a dummy head in the driver’s position, with microphones denoted E1 and E2 in the ears,89

which can be used as the error sensors during the identification, or training, stage of the90

active control system design. The left hand front seat is designated Seat 1, the right hand91

front seat is Seat 2 and the rear left and right hand seats are designated as Seats 3 and92

4, as shown in Fig. 1(c). Measurements of the responses between the loudspeakers and93

microphones were conducted in the vehicle car cabin with 10 different uncertainties as listed94

in Table II.95

Fig. 2 shows the magnitude and phase of the frequency response measured from one96

of the secondary loudspeakers, L2, to one of the monitoring microphones, M1, under four97

different conditions. These conditions include the nominal one, with the seats in their98

normal positions, one with Seat 2 being moved forward only, one with the back of Seat 399

being lowered only and finally with both Seat 2 moved forward and Seat 3 back lowered at100

the same time. The frequency response of the relatively small secondary loudspeakers falls101

off sharply below about 100 Hz, so that the measured responses are very small and noisy102

in this frequency region. At higher frequencies, differences of up to 7 dB in magnitude and103
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40◦ in phase can still be seen between the various measurements of the frequency response,104

with the variations generally becoming larger at higher frequencies.105

Assuming that the complex frequency response under nominal conditions is denoted106

G0(jω), the frequency responses measured with two individual perturbations in the vehicle107

can be written as108

G1(jω) = G0(jω) + ∆G1(jω), (1)

G2(jω) = G0(jω) + ∆G2(jω), (2)

where ∆G1(jω) and ∆G2(jω) are the frequency responses of the additive uncertainties109

in these two cases. If both of these perturbations occur simultaneously, we can write the110

frequency response as111

G1,2(jω) = G0(jω) + ∆G1,2(jω) (3)

If this uncertainty were to be estimated from the superposition of the uncertainties due to112

the two individual perturbations, this can be written as113

∆Ĝ1,2(jω) = ∆G1(jω) + ∆G2(jω) (4)

Fig. 3 shows a comparison between the measured and the estimated uncertainties in the114

responses shown in Fig. 2 when both Seats 2 and 3 are moved, corresponding to G1,2(jω)115

and ∆Ĝ1,2(jω) above. It can be seen that there is remarkably good agreement, in both116

magnitude and phase, between the uncertainties due to the two perturbations occurring117

together and that calculated from the superposition of the two perturbations occurring in118

isolation. The physical reasons for this similarity will be explored in the following section, but119

to further illustrate the accuracy of this superposition, Fig. 4 shows the measured response120
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between the secondary source L2 and the physical error microphone E1, in the dummy121

head, under two other conditions, where Seat 2 was moved back and a dummy person was122

positioned in Seat 3. In this figure, the maximum change in the response is up to 10 dB in123

magnitude and 30 degrees, except for the phase change at around 700 Hz. Fig. 5 shows the124

comparison between the measured uncertainties and that calculated by the superposition of125

the uncertainties when the two perturbations in Fig. 4 are applied. Again, good agreement126

in the combined uncertainty is observed. The frequency response of the uncertainties are127

relatively noisy compared with the individual frequency responses, since they represent the128

small difference between two large individual responses, each of which has some random129

measurement errors. Similar results are observed for other combinations of the uncertainties130

in the responses from the secondary loudspeakers to the monitoring and error microphones.131

III. INTERPRETATION OF THE UNCERTAINTIES IN THE TIME DOMAIN132

Although, from a frequency domain perspective, there does not appear to be any obvious133

reason for the success in predicting the uncertainty using superposition, this can be under-134

stood more clearly in the time domain. Fig. 6 shows the inverse Fourier transforms of the135

frequency responses shown in Fig. 2, i.e. the impulse responses, from the secondary source136

L2 to the monitoring microphone M1, under the four different conditions used in Fig. 2. It is137

clear that the responses before about 4 ms are very similar in all cases, since this corresponds138

to the direct field due to propagation between the loudspeaker and the microphone as if the139

seat were under anechoic conditions with no other reflections. There are clear differences in140

the later response, however, since these are affected by reflections due to the positions of141
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the seats in the vehicle. These differences become greater in the final part of the impulse142

responses, which are due to multiple reflections.143

Taking the inverse Fourier transforms of Eqs. (1) and (2) we can write the impulse144

responses due to the individual perturbations as145

g1(t) = g0(t) + ∆g1(t), (5)

g2(t) = g0(t) + ∆g2(t), (6)

where g0(t) is the impulse response under nominal conditions and ∆g1(t) and ∆g2(t) are the146

time domain uncertainties in the plant response. We can similarly expressed the measured147

and estimated impulse responses due to both perturbations, as in Eqs. (3) and (4), as148

g1,2(t) = g0(t) + ∆g1,2(t), (7)

∆ĝ1,2(t) = ∆g1(t) + ∆g2(t), (8)

Fig. 7 shows the individual uncertainties in the time domain and Fig. 8 shows a time149

domain comparison between the estimation of the uncertainty using the superposition of the150

individual uncertainties and that measured with these two perturbations acting together,151

calculated from the results in Fig. 6.152

Since the direct field is almost unaffected by the change in the seat positions, the impulse153

responses of the uncertainties in Fig. 7 are very small before about 4 ms. The changes in the154

responses due to the initial reflections are large compared to the changes in the later part of155

the response, which are due to multiple reflections . The impulse response of the measured156

uncertainty due to the movement of the two seats and the estimate of this uncertainty,157

from the superposition of the uncertainty due to each of the seats being moved alone, in158
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Fig. 8, are very similar up to about 12 ms, since the initial reflections are well predicted159

by superposition. The prediction becomes less accurate with time, however, due to the160

multiple reflections, which eventually generates a reverberant field. The accuracy of the161

superposition of the additive uncertainty thus appears to be due to the additive nature of162

the early reflections.163

This physical insight can be further understood from the simplified geometry illustration164

in Fig. 9, in which the direct and reflected acoustic paths from a loudspeaker to a microphone165

are shown in an anechoic environment with two reflecting objects. Fig. 9(a) shows the166

assumed geometry and the corresponding idealised impulse response, showing the direct167

propagation path from the loudspeaker to the microphone, the first reflection from object168

1, the first reflection from object 2, and finally the multiple reflections from both objects.169

Fig. 9(b) shows the change in the impulse response when object 1 is moved closer to the170

loudspeaker, so that the first reflection peak is now earlier and the dip indicates the absence of171

the original first refection. Similarly Fig. 9(c) shows the change in the impulse response when172

object 2 is moved further away from the loudspeaker, so that the first reflection peak now173

occurs later and the initial dip is due to the absence of the original first reflection. The part174

of the impulse response due to the direct path is unaltered in the geometries of Figs. 9(b)175

and 9(c), so there is no change in the impulse response earlier than the first reflection.176

Also, since the magnitude of the early reflections is large compared to that due to multiple177

reflections later on, they play a more significant role in the changes in the impulse responses178

and hence the uncertainty. Finally, Fig. 9(d) shows the change in the impulse responses179

when both object 1 is brought closer and object 2 is moved further from the loudspeaker,180
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and in this case there is both a peak due to the earlier refection from object 1 and a peak181

due to the absence of the later reflection from object 2. It is clear that the overall change182

in the impulse response due to the first reflections is exactly equal to the sum of the two183

individual changes shown in Figs. 9(b) and 9(c), although the later multiple reflections will184

change somewhat. So, the success of the superposition of the uncertainties in the frequency185

domain is mainly due to the superposition of the effects of the early reflections, which form186

the dominant part of the uncertainty responses when considered in the time domain.187

Although we have only considered the uncertainty in the response from one loudspeaker188

to one microphone above, in a multichannel system it is convenient to arrange the responses189

from each loudspeaker to each microphone in a matrix of plant responses. The matrix of190

plant frequency responses measured under a perturbed condition could then be written as191

G1(jω) = G0(jω) + ∆G1e(jω) + ∆G1r(jω) (9)

where G0(jω) is the matrix of nominal responses, with no perturbations, G1e(jω) is the192

matrix of uncertainties due to changes in the early reflections and G1r(jω) is that due to193

changes in the more reverberant field. As noted above, the magnitudes of the elements in194

G1e(jω) will be considerably greater than those in G1r(jω). It is also noteworthy, however,195

that the form of the individual responses in the elements of the matrix G1e(jω) will all be re-196

lated and determined by the geometry of the changes within the enclosure. In the terms used197

for robust multichannel control systems, this matrix of uncertainties is described as being198

structured13,14. In contrast, the smaller terms in G1r(jω) will be related to one another in a199

more complicated way and in a completely reverberant field will be uncorrelated. In terms200

of robust multichannel control, this form of uncertainty is described as being unstructured.201
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As well as being able to directly measure G1e(jω) due to a number of individual changes202

within the environment, it would also be possible to estimate the terms in this matrix from203

a simple acoustic model involving reflections under anechoic conditions, in a multichannel204

version of the arrangement illustrated in Fig. 9. Similarly, the amplitudes of the multiple205

reflections could be modelled to estimate the magnitude of the elements in G1r(jω). In this206

way, a limited number of experimental measurements could be enhanced, using a simple207

model, to estimate the uncertainty associated with the movement of many objects within208

the acoustic environment.209

IV. ROBUST STABILITY IN CONTROL SYSTEMS USING VIRTUAL SENSORS210

Virtual sensing systems are important in active noise control, since they allow the upper211

frequency of control to be increased, as mentioned in the introduction, but their stability212

then becomes more sensitive to uncertainties in the environment. In this section we illustrate213

how the superposition of uncertainties measured in a vehicle can be used to predict the214

stability of active control systems using various virtual sensing strategies and also help to215

tune these strategies to be robust to the whole range of operating conditions that will be216

encountered in practice. Two different virtual sensing strategies that are widely used in217

active sound control systems will be considered: the remote microphone, RM, method16,17
218

and the additional filter, AF, method18. The block diagrams of feedforward control systems219

using these two remote sensing methods are shown in Fig. 10, in which x is a vector of220

reference signals and W if the matrix of responses of the multichannel adaptive controller.221
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In both methods the outputs of the physical monitoring microphones, m, are the sum222

of the disturbances at these microphones, dm, and contributions from the controller, W,223

filtered by the physical plant response Gm. The analysis is performed in the frequency224

domain but the explicit dependence in frequency is suppressed for notational convenience.225

For the remote microphone method, shown in Fig. 10(a), the signals at the virtual error226

microphones are explicitly estimated, as ê. This is achieved by first using an estimate of the227

plant response to the monitoring microphones, Ĝm measured during an identification phase,228

to cancel the effect of the controller to give an estimate of the disturbance at the monitoring229

microphones, dm, and then using an “observation filter”, O, to predict the disturbances at230

the virtual error sensors, de, from the estimated disturbance at the monitoring microphones,231

d̂m. Finally, the identified estimate of the plant response at the virtual microphones, Ĝe,232

is used to calculate the contribution due to the control signals at this microphone, which is233

added to d̂e to give the estimated signal at the error microphones, ê. The estimated virtual234

error signals are then minimise using the FxLMS algorithm, with the reference signals filtered235

by Ĝe. It can be shown10,19 that the multichannel adaptive control system using the RM236

method is stable provided the following condition is met at all frequencies present in the237

reference signals238

Re
(

eig
[
ĜH

e Ĝe + ĜH
e O

(
Gm − Ĝm

)])
> 0, (10)

where the superscript (·)H denotes the Hermitian, complex conjugate, transpose of the ma-239

trix. The design of the observation filter, O, involves the regularised inversion of the power240

spectral density matrix of disturbance at the monitoring microphones, Sdmdm
19,241

OOpt = Sdmde [Sdmdm + βI]−1 . (11)
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The choice of regularisation parameter, β, has been shown to be a trade-off between242

obtaining a good estimate of ê and reducing the condition number of the matrix being243

inverted, which determines the robustness of the virtual sensing method. If the elements in244

the observation filter matrix have large magnitudes, due to ill-conditioning in Eq. (11), it245

can be seen from Eq. (10) that this magnifies the effect of any difference between Gm and246

Ĝm, and so makes the stability more sensitive to such differences.247

Fig. 10(b) shows the other widely used virtual sensing algorithm, the additional filter248

method. In this method the outputs of the monitoring microphones are compared with249

those of an “additional filter”, H, which has been previously designed during an identifica-250

tion phase of the algorithm to be equal to the response between the reference signals and251

the monitoring microphones when the virtual error sensors are perfectly controlled. The252

difference between the two signals, ε, is thus a measure of how well the system is control-253

ling the virtual error sensors, and the mean square value of this signal is minimised using254

the FxLMS algorithm. This updates the controller, W, using the product of the measured255

difference signal, ε, and the reference signal, x, filtered by the internal estimate of the plant256

response to the monitoring microphones, Ĝm.257

The control system using the AF method thus reduces to a more conventional multichan-258

nel adaptive control system, which is stable provided that the following condition is met at259

all frequencies present in the reference signals14260

Re
(

eig
[
ĜH

mGm

])
> 0, (12)

The stability condition for adaptive controllers using either the AF or the RM methods261

of virtual sensing thus depend, in rather different ways, on the difference between the matrix262
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of physical plant responses between the secondary sources and the monitoring microphones,263

Gm, and the internal estimate of this matrix that is used within the adaptive algorithm,264

Ĝm. If there is no difference between Gm and Ĝm, then both methods are stable since the265

satbility conditions in both Eqs. (10) and (12) will be satisfied.266

A series of simulations has being conducted, using the plant responses measured for the267

10 perturbations in the vehicle arrangement described above, to test the stability conditions268

for these two algorithms under different operating conditions. It has been assumed that the269

internal estimate of the plant response from the secondary loudspeakers to the monitoring270

microphones, Ĝm, is given by the nominal responses measured in the vehicle, with no per-271

turbations. The various physical plant responses, Gm, are then assumed to include different272

combinations of the measured perturbations, as calculated using the superposition method.273

Fig. 11(a) shows the set of 10 plots of the real parts of the smallest eigenvalues in Eq. (10)274

as a function of frequency, for the RM method, with each individual measured perturbation275

in Gm. Since the real parts of these eigenvalues under all of these conditions are always pos-276

itive, the control system is predicted to remain stable for all cases of a single perturbation.277

Fig. 11(b) shows the results in the case where the 45 combinations of two perturbations are278

included, as calculated by superposition of the uncertainties, together with the 10 individual279

ones and since the real parts of all the eigenvalues are again positive, the control system280

is predicted to be stable for all pairs of perturbations occurring simultaneously. When the281

120 possible combinations of three perturbations are also included together with the cases282

above, however, as in Fig. 11(c), the smallest eigenvalue in some cases becomes negative at283

particular frequencies, at around 400 Hz and 900 Hz for example, indicating that the con-284
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trol system would be unstable with this combination of perturbations. It is then possible to285

track down which specific combinations of uncertainty cause instabilities at which frequency.286

Finally, Fig. 11(d) shows the set of cases when all 1024 combinations of all the perturbations287

are exhaustively considered. In this case the instabilities are predicted to occur at similar288

frequencies to those in Fig. 11(c), but at 400 Hz for example, the probability of an instability289

increases from about 1% with three perturbations to about 20% with all possible pertur-290

bations. The simulations have been performed with no regularisation in the design of the291

observation filter, although it is known that increasing this regularisation factor will improve292

the robustness of the controller. The calculation of these results provide a principled method293

of choosing the regularisation factor at each frequency in order to ensure stable operation294

over all operating conditions, whilst maintaining the best possible performance.295

Fig. 12 shows the corresponding results for the real parts of the eigenvalues that determine296

the stability condition for the AF method, in Eq. (12). In this case it is clear that the real297

parts of the eigenvalues remain positive at all frequencies, for all possible combinations of298

the measured uncertainty. No additional steps thus need to be taken in this case to ensure299

the robust stability of an adaptive controller using the AF method. If the magnitudes of300

the uncertainties were larger, so that additional robustness was required, a leakage factor301

could be selectively introduced into the adaptive algorithm at the frequencies of potential302

instability to guarantee stability. Although it is beyond the scope of the present paper, it303

is also important to consider the robust performance, in addition to the robust stability, in304

the comparison of control systems using different virtual sensing methods. Whereas the AF305

method is robust to changes in the plant responses, its performance is found to be rather306

16



sensitive to changes in the properties of the reference signals, and so the best choice of virtual307

sensing method depends very much on the particular application.308

V. CONCLUSIONS309

As the frequency range of active sound control systems is extended, using virtual sensing310

methods for example, the effect of uncertainties in the acoustic responses on the stability311

of the control system becomes more significant. It is important when designing control312

systems that are robustly stable that all possible combinations of operating condition are313

accounted for. To fully characterise the uncertainties due to all possible changes in the314

acoustic environment, however, a very large number of measurements would, in principle,315

need to be taken. For uncertainties due to the simultaneous change in position of several316

objects within the acoustic environment it is shown that the uncertainties can be accurately317

predicted by the superposition of the uncertainties due to the change in the positions of the318

objects individually.319

This is initially illustrated using a set of measurements taken for an active headrest system320

in a vehicle under a variety of conditions. A time-domain explanation for the superposition321

of the measured uncertainties is put forward, based on the changes in the early reflections.322

The superposition property allows the uncertainty due to the movement of a number of323

objects to be rapidly evaluated from a limited number of experiments when the objects are324

moved individually, which can considerably simplify the controller design process. This is325

illustrated for the active headrest system using an adaptive feedforward control system with326

two different virtual sensing techniques, the remote microphone method and the additional327
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filter method. The stability with the additional filter method is found to be inherently328

robust to the range of changes calculated from measurements in a vehicle, but that of the329

remote microphone method without regularisation of the observation filter is not. The330

remote microphone method does, however, have other advantages over the additional filter331

method, such as good performance when the characteristics of the reference signals are332

subject to change. The stability condition calculated under all of the different operating333

cases, synthesised using uncertainty superposition, allows the parameters of the adaptive334

algorithm to be tuned at specific problematic frequencies to ensure robust stability, allowing335

the performance at other frequencies to be preserved.336

The superposition of additive uncertainties would not be valid for all systems. For ex-337

ample if a mechanical system were characterised by lightly damped and isolated modes, the338

effect of an increase in stiffness or a decrease in mass might almost cancel each other out339

if applied simultaneously, whereas the individual additive uncertainties would not cancel.340

The superposition of uncertainties has been shown above to be a reasonable approximation341

for systems governed by wave propagation and reflections, however, and so should be gen-342

eralizable to other systems where uncertainty in the acoustic responses affects the system343

performance, such as in transducer array systems for audio reproduction and in acoustic344

sensing.345
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TABLE I. Number of combinations of cases for different numbers of perturbation

Number of

0 1 2 3 4 5 6 7 8 9 10 Total

perturbation

Number of

1 10 45 120 210 252 210 120 45 10 1 1024

cases

TABLE II. List of 10 perturbations conducted for the measurement in the test vehicle.

Perturbation type

Seat 1 moved forward Seat 4 back lowered

Seat 2 moved back Dummy in Seat 2

Seat 2 moved forward Dummy in Seat 3

Seat 2 back lowered Box in front of Seat 1

Seat 3 back lowered Box in front of Seat 2
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(a) (b)

(c)

FIG. 1. The arrangement of the secondary loudspeakers, L1 and L2, in the headrest of the test

vehicle, together with the monitoring microphones, M1 to M4, and the error microphones in the

ears of the dummy head, E1 and E2. Front and side views of seat 1 are shown in (a) and (b), and

a plan view of the whole vehicle, showing the numbering of the seats is shown in (c).
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FIG. 2. Acoustic response from loudspeaker L2 to monitoring microphone M1, measured under

nominal conditions and two conditions with individual perturbations, due to seat 2 being moved

forward and the back of seat 3 being lowered, and then with both perturbations acting together.
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FIG. 3. Additive uncertainty, calculated from the results in Fig. 2, when measured with the two

perturbation conditions acting together and when this is predicted from the sum of the additive

uncertainties of two conditions separately.
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FIG. 4. Acoustic response from loudspeaker L2 to error microphone E1, measured under nominal

conditions and two conditions with individual perturbations, due to Seat 2 being moved back and

a dummy head and torso being placed in Seat 3, and then with both perturbations acting together.
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FIG. 5. Additive uncertainty, calculated from the results in Fig. 4, when measured with the two

perturbation conditions acting together and when this is predicted from the sum of the additive

uncertainties of two conditions separately.
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FIG. 6. Impulse response from loudspeaker L2 to monitoring microphone M1, measured under

nominal conditions and two conditions with individual perturbations, due to Seat 2 being moved

forward and Seat 3 being lowered, and then with both perturbations acting together.
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FIG. 7. Impulse response of the additive uncertainty, calculated from the results in Fig. 6, when

measured with the two perturbation conditions acting separately.
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FIG. 8. Impulse response of the additive uncertainty, calculated from the results in Fig. 7, when

measured with the two perturbation conditions acting together and when this is predicted from

the sum of the additive uncertainties of two conditions separately.
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(a) (b)

(c) (d)

FIG. 9. Schematic to illustrate the change in the direct and reflected acoustic paths from a

loudspeaker to a microphone in the change of the impulse responses in an anechoic environment

with two reflecting objects.
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(a)

(b)

FIG. 10. Block diagrams of two virtual sensing methods for active noise control: (a) RM method,

(b) AF method.
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FIG. 11. The real parts of the smallest eigenvalue, shown as a cluster of points, for the stability

of the RM method, when including up to 1, (a), 2, (b), 3 (c) and 10 (d) perturbations measured

in the vehicle. The points coloured in red are those with negative eigenvalues. The eigenvalue

spectrum under the nominal condition is shown by the solid black line.
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FIG. 12. The real parts of the smallest eigenvalue, shown as a cluster of points, for the stability of

the AF method, when including up to 1, (a), 2, (b), 3 (c) and 10 (d) perturbation(s) measured in

the vehicle. The eigenvalue spectrum under the nominal condition is also shown as the solid black

line.
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