
1

Improper Gaussian Signaling for Computationally
Tractable Energy and Information Beamforming

H. Yu1,2, H. D. Tuan2, A. A. Nasir3, T. Q. Duong4 and L. Hanzo5

Abstract—The transmit time-switching (transmit-TS) approach,
under which the energy and information are transferred over
different fractions of a time slot has proved its supremacy
over the power splitting (PS) approach of simultaneous wireless
information and power transfer, where PS splits the power of the
received signal for energy harvesting and information decoding.
For integrating data and energy transfer, this paper develops new
classes of beamforming that are suitable for improper Gaussian
signaling which is capable of network throughput improvements
while maintaining high computational efficiency in its design.

Index Terms—Improper Gaussian signaling, multi-user interfer-
ence system, energy-harvesting, nonconvex optimization, quality-
of-service (QoS).

I. INTRODUCTION

Modern wireless networks aim to deliver both information
and energy over wireless channels [1]–[3]. Recent studies have
shown [4], [5] that the transmit time-switching (transmit-TS),
which transmits power within a fraction of the time slot (TS)
and then transmits information within the remaining fraction, is
capable of outperforming the power splitting (PS) approach of
simultaneous wireless information and power transfer (SWIPT),
where PS splits the power of the received signal for energy-
harvesting (EH) and information detection (ID). In contrast
to PS, which relies on a joint data and energy beamformer,
transmit-TS benefits from having a distinct energy transmit
beamformer (ETBF) for power delivery and information trans-
mit beamformer (ITBF) for information delivery and thus is
very efficient. More particularly, it has been shown in [6] that
under the same quality-of-service (QoS) for harvested energy,
transmit-TS relying on conjugate beamforming (CBF) for EH
and zero-forcing beamforming (ZFBF) for ID, substantially
outperforms the SWIPT technique of [7] in terms of the
users’ max-min information throughput. ZFBF is applicable
when the number of users served is much lower than the
number of transmit antennas (TAs) so the right inverse of the
channel matrix is well conditioned. As the number of users
increases, forcing the multi-user interference to zero becomes
impossible because instead of simple ZFB, one has to employ
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other computationally tractable beamforming classes such as
regularized ZFBF (RZF-BF) [8], which regularizes the channel
matrix for the right inversion, or generalized ZFBF (GZF-
BF) [9], which nullifies the approximated interfering matrices.
However, proper Gaussian signaling (PGS) is only optimal in
interference-free systems [10]. As a further development, we
have shown in [11] that improper Gaussian signaling (IGS) (see
e.g. [12], [13] and references therein) is capable of substantially
improving the information throughput of energy-harvesting
aided networks. However, a beamforming design challenge
of IGS is its computational tractability, since it poses large-
dimensional nonconvex problems, which involve Nt(K+ 2M)
complex decision variables for scenarios of an Ntantenna base
station (BS) serving K EH users (EUs) and M information-
receiving users (IUs). IGS is conventionally based on widely
linear beamforming, which consists of a pair of beamformers,
namely one for proper Gaussian sources and one for their
conjugate. Hence, the RZF-BF and GZF-BF schemes used in
PGS cannot be readily extended to the associate widely linear
beamforming. By contrast, based on linear beamforming of
improper Gaussian sources, this paper develops a new class of
RZF-BF and GZF-BF that is eminently suitable for IGS, which
involves only K +M real decision variables and M complex
decision variables for computation. A byproduct is thus RZF-
BF and GZF-BF under IGS for information transmission, which
cannot be found in the existing literature. To sum up, we
provide a brief comparison of the related literature in Table
I. The problem of the information users’ max-min throughput

TABLE I: A brief comparison of the related literature.

Contents
Literature This work [11] [4] [7]

transmit TS
√ √ √

SWIPT
√ √ √

PGS
√ √ √

IGS
√ √

CBF only
√

RZF-BF
√

GZF-BF
√

optimization subject to the EH constraints of energy users under
the transmit-TS approach is addressed in Section II and Section
III. Section IV also addresses a similar problem, but under
the PS regime to show that IGS also helps improve the ID
performance in SWIPT. The simulations provided in Section V
confirm the advantage of the transmit-TS over PS under IGS,
and the advantage of IGS over PGS under SWIPT. Section VI
concludes the paper.
Notation. Bold-face lower-case and upper-case letters are re-
spectively used for vectors and matrices; [X]2 is XXH , and
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〈X,Y〉 =, trace(XHY); we also use 〈A〉 , trace(A); for
a set of subscription indexes S, xS , {xs : s ∈ S}
and xS > 0 means that xs > 0 ∀s ∈ S , while {A} > 0
means a > 0 ∀a ∈ A; In is the identity matrix of size
n × n; diag[a1, a2] is a diagonal matrix of size 2 × 2 with
the diagonal entries a1 and a2. Col[hi]Mi=1 arranges the vectors
hi, i = 1, . . . ,M into a single (column) vector. The following
inequalities are frequently used in the paper for all matrices V,
positive semi-definite matrices X and X̄ and matrix V̄, positive
definite matrices Y and Ȳ of size n× n [14], [15]:

ln |In + XY−1| ≥ ln |In + X̄Ȳ−1|+ 2n− 〈Ȳ−1,Y〉
−〈X̄ + Ȳ, (X + Y)−1〉, (1)

ln |In + [V]2Y−1| ≥ ln |In + [V̄]2Ȳ−1| − 〈[V̄]2Ȳ−1〉
+2<{〈V̄HȲ−1V〉 − 〈Ȳ−1 −

(
[V̄]2 + Ȳ

)−1
, [V]2 + Y〉. (2)

II. RZF-BF UNDER IGS

Consider the downlink of a Nt-antenna aided BS serving K
EUs indexed by ek, k ∈ K , {1, . . . ,K}, which have to be
located sufficiently near to the BS, and M IUs indexed by dm,
m ∈ M = {1, . . . ,M}. There is a potential overlap between
the sets of EUs and IUs namely for users, who act as both EUs
and IUs. All users are equipped with a single antenna.

Under transmit-TS, a fraction of time 0 < 1/t1 < 1
is used for power transfer, while the remaining fraction of
time 0 < 1/t2 < 1 is used for information transfer. Let
hej ∈ C1×Nt be the channel spanning from the BS to
EU ej , and sej be the energy symbol with |sej |2 = 1.
By using CBF

∑K
k=1

√
p̃kh

H
ek
sek for energy transfer, so p̃K

represent the power allocation, the energy harvested by EU ej
is (1/t1)ζ‖yej‖2 = (1/t1)ζπj(p̃K), where

πj(p̃K) =

K∑
k=1

|hejhHek |
2p̃k, j ∈ K, (3)

and 0 < ζ < 1 is the efficiency of energy conversion at the EH
receiver, which is set to the typical value of 0.5 in the paper.

Let hd` ∈ C1×Nt be the channel from the BS to IU d`. For
information transfer during the remaining 1/t2 fraction of time,
the transmit signal for IU dm termed as xdm is generated from
an improper Gaussian source sdm as

xdm = fmsdm , (4)

where fm ∈ CNt is a pre-defined vector, with ‖fm‖ = 1.
Define

√
β` , ‖hd`‖, h̃d` = hd`/‖hd`‖, H , Col[hdi ]

M
i=1,

and H̃ , Col[h̃di ]
M
i=1. We will use the following innovative

class of RZF-BF proposed in [14]:[
f1 . . . fM

]
= H̃H(H̃H̃H + αIM )−1, (5)

which regularizes only the ill-conditioned part H̃ of the channel
matrix H, instead of the conventional RZF-BF [8] defined by[

f1 . . . fM
]

= H(HHH + αIM )−1,

which regularizes the whole channel matrix H.
The signal received at IU d` is

yd` = hd`

M∑
m=1

fmsdm + nd` , ` ∈M, (6)

where nd` ∼ CN (0, σ) is the background noise.
For p` = E(|sd` |2) and q` = E((sd`)

2), the augmented
covariance of sd` is defined by

C(p`, q`) ,

[
p` q`
q∗` p`

]
. (7)

For G`,m = diag[h`fm, (h`fm)∗], the information throughput
at UE d` is (1/2t2)r`(pM, qM) with [16]

r`(pM, qM) = ln
∣∣I2 + G`,`C(p`, q`)G

H
`,`L−1` (pM, qM)

∣∣
(8)

for L`(pM, qM) ,
∑
m∈M\{`}G`,mC(pm, qm)GH

`,m + σI2.
It is straightforward to show that when all information

sources sdm are proper Gaussian (q` ≡ 0):

r`(pM, 0) = 2 ln

(
1 +

|h`f`|2p`∑
m∈M\{`} |h`fm|2pm + σ

)
and the information throughput at UE d` is the conventional
throughput (1/t2)r`(pM, 0).

For the linear functions π1(p̃K) ,
∑K
j=1 ‖hej‖2p̃j and

π2(pM) ,
∑M
m=1 ‖fm‖2pm, we aim for solving the following

problem of max-min throughput optimization:

max
{p̃K>0,pM>0,t1,t2}>0,qM,γ

γ (9a)

s.t. πj(p̃K) ≥ emint1/ζ, j ∈ K, (9b)
r`(pM, qM) ≥ 2γt2, ` ∈M, (9c)

1/t1 + 1/t2 ≤ 1, (9d)
|qm| ≤ pm,m ∈M, (9e)

π1(p̃K)/t1 + π2(pM)/t2 ≤ P, (9f)
‖hej‖2p̃j ≤ P, j ∈ K; ‖fm‖2F pm ≤ P,m ∈M, (9g)

where (9b) is the energy constraint of EUs in terms of their
minimum required energy, the slack variable γ is introduced
in (9c) to express the IUs minimum throughput; (9d) restricts
the energy and information transfer within a time slot; the
constraint (9e) guarantees that C(p`, q`) is qualified to be the
augmented covariance of an improper Gaussian source with
power pm; (9f) is the total power transmit constraint under a
given budget P , and (9g) is a physical transmission constraint.
Also, α = Mσ/P in (5) is set. This problem is nonconvex
because the two constraints (9c) and (9f) are nonconvex: the
left hand side (LHS) of (9c) is a nonconcave function, while
its right hand side (RHS) is a nonconvex function, and both
terms in (9f) are nonconvex functions (since they are linear
fractional functions). To propose a path-following algorithm
for computing (9), we have to develop inner approximations
for these constraints.

Let (p̃
(κ)
K , p

(κ)
M , q

(κ)
M , t

(κ)
1 , t

(κ)
2 , γ(κ)) be the feasible point for

(9) found from the (κ−1)-th iteration. By using the inequality
(1), we have

r`(pM, qM) ≥ r
(κ)
` (pM, qM), (10)

with r
(κ)
` (pM, qM) , a

(κ)
` −

〈L−1` (p
(κ)
M , q

(κ)
M ),L`(pM, qM)〉 − 〈G`,`C(p

(κ)
` , q

(κ)
` )GH

`,` +

L`(p(κ)M , q
(κ)
M ),

(
G`,`C(p`, q`)G

H
`,` + L`(pM, qM)

)−1
〉, for

a
(κ)
` = r`(p

(κ)
M , q

(κ)
M ) + 4, which is a concave function. Thus,
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Algorithm 1 Path-following algorithm for computing (9)

1: Initialization: Fix some (t
(0)
1 , t

(0)
2 ) and good

γ(0) to randomly generate a feasible point
(p̃(0), p

(0)
K , q

(0)
M , t

(0)
1 , t

(0)
2 , γ(0)) for the convex constraints

(9b), (9e), (9f), (9g). Iterate max(p̃K,pM,η)>0,qM η s.t.
(9b), (9e), (9f), (9g), r(κ)` (pM, qM) ≥ 2γ(0)t

(0)
2 η until

reaching η ≥ 1. Reset (p̃
(0)
K , p

(0)
M , q

(0)
M , t

(0)
1 , t

(0)
2 , γ(0)) ←

(p̃
(κ)
K , p

(κ)
M , q

(κ)
M , t

(0)
1 , t

(0)
2 , γ(0)) as a feasible point for (9).

Set κ = 0.
2: Repeat until convergence of the objective function

in (9a): Solve the convex problem (13) to generate
(p̃

(κ+1)
K , p

(κ+1)
M , p

(κ+1)
M , t

(κ+1)
1 , t

(κ+1)
2 , γ(κ+1)) for (9). Set

κ← κ+ 1.
3: Output (p̃

(κ)
K , p

(κ)
M , p

(κ)
M , t

(κ)
1 , t

(κ)
2 , γ(κ)) and accept it as

the optimal solution for (9).

the nonconvex constraint (9c) is innerly approximated [17] by
the following convex constraint1

r
(κ)
` (pM, qM) ≥ γ(κ)t(κ)2

(
γ/γ(κ) + t2/t

(κ)
2

)2
, ` ∈M, (11)

where its RHS, which is a convex quadratic function, is an
upper approximation [17] of the nonconvex function on the
RHS of (9c).

Furthermore, the nonconvex constraint (9f) is innerly approx-
imated by the following convex constraint

π1(p̃
(κ)
K )t

(κ)
2

4t1

(
π1(p̃K)

π1(p̃
(κ)
K )

+
t2

t
(κ)
2

)2

+ π2(pM) ≤ Pt2. (12)

At the κ-th iteration, we solve the following
convex problem to generate the next feasible point
(p̃

(κ+1)
K , p

(κ+1)
M , q

(κ)
M , t

(κ+1)
1 , t

(κ+1)
2 , γ(κ+1)) for (9):

max
{p̃K,pM,t1,t2,γ}>0,qM

γ s.t. (9b), (9d), (9e), (9g), (11), (12). (13)

Note that γ(κ+1) and γ(κ) are the optimal value and
a feasible value for (13) respectively, hence we have
γ(κ+1) > γ(κ) as far as γ(κ+1) 6= γ(κ). As such, the
sequence {(p̃(κ)K , p

(κ)
M , q

(κ)
M , t

(κ)
1 , t

(κ)
2 , γ(κ))} is of improved fea-

sible points for the nonconvex problem (9) converges at least
to a locally optimal solution of (9) [4]. Algorithm 1 provides
the pseudo-code for implementing the proposed path-following
computational procedure.

III. GZF-BF UNDER IGS

For each m ∈ M, the matrix Hm of size (M − 1) × Nt
obtained by excluding hdm from the matrix H of size M ×Nt
expresses the interference of the transmit signal for IU dm to
other IUs. We employ the singular value decomposition (SVD)

Hm = UmΣmVm,

where Um is an orthogonal matrix (UH
mUm = INt ) of size

(M − 1)×Nt, Σm is a diagonal matrix of size (M − 1)×Nt,

1(11) is an inner convex approximation of the nonconvex constraint (9c) in
the sense that each feasible point for the former is also feasible for the latter
and provides a lower bound for the optimal value of the former.

which contains the singular values σm,`, ` = 1, . . . , Nt of Hm

in decreasing order on its diagonal, and Vm is an unitary matrix
of size Nt ×Nt.

Let ηm , rank(Hm), and ιm , max{2, ηm/3}. By keeping
only the largest ηm − ιm singular values and setting all other
singular values on the diagonal of Σm to zero to obtain Σ̂m,
we define

Ĥm , UmΣ̂mVm,

which is the best rank (ηm − ιm) approximation of Hm.
Let ξξξm,i ∈ CNt , i = 1, . . . , ιm be the base of the

null space of Ĥm. Instead of RZF-BF defined from (5), for
αm , {αm,i, i = 1, . . . , ιm}, we seek the beamformer fm in
(4) in the form

fm(αm) =

ιm∑
i=1

αm,iξξξm,i, αm,i ∈ C. (14)

Like (8), for α , {αm,m ∈ M}, the information throughput
at UE d` is (1/2t2)r̂`(α, pM, qM) with

r̂`(α, pM, qM) = ln |I2 + G`,`(α)C(p`, q`)G
H
`,`(α)

×Ψ−1` (α, pM, qM)| (15)

where G`,m(α) , diag[h`fm(αm), (h`fm(αm))∗], and

Ψ`(α, pM, qM) ,
∑

m∈M\{`}

[G`,m(α)
√
C(pm, qm)]2 + σI2.

Similarly to (9), the problem of max-min throughput optimiza-
tion is formulated by

max
{p̃K,pM,t1,t2,γ}>0,qM,α

γ s.t. (9b), (9d)− (9g), (16a)

r̂`(α, pM, qM) ≥ 2γt2, ` ∈M, (16b)
ιm∑
i=1

|αm,i|2 ≤ 1,m ∈M, (16c)

where (16c) guarantees that ||fm(αm)|| ≤ 1,m ∈M.
For fm = fm(α

(0)
m ) with α

(0)
m , {α(0)

m,i, i = 1, . . . , im} and
α
(0)
m,i , e−∠(hdmξξξm,i)|hdmξξξm,i|/(

∑ιm
i=1 |hdmξξξm,i|2)1/2,

we solve the convex problem (13) to generate
(p̃

(0)
K , p

(0)
M , p

(0)
M , t

(0)
1 , t

(0)
2 , γ(0)).

At every κ-th iteration, we process the following alternating
optimization steps:

1) Alternating optimization of the normalized beamformer
weights αm: For α(κ)

m , {α(κ)
m,i, i = 1, . . . , ιm} and α(κ) ,

{α(κ)
m ,m ∈M}, we use the inequality (2) to obtain

r̂`(α, p
(κ)
M , q

(κ)
M ) ≥ r̂(κ)` (α)

with the concave function r̂
(κ)
` defined by r̂

(κ)
` (α) , ã

(κ)
` +

2<{〈C(p
(κ)
` , q

(κ)
` )GH

`,`(α
(κ))Ψ−1` (α(κ), p

(κ)
M , q

(κ)
M )G`,`(α)〉}−

〈Ψ−1` (α(κ), p
(κ)
M , q

(κ)
M )− (Ψ`(α

(κ), p
(κ)
M , q

(κ)
M ) + [G`,`(α

(κ))√
C(p

(κ)
` , q

(κ)
` )]2)−1, [G`,`(α)

√
C(p

(κ)
` , q

(κ)
` )]2 +

Ψ(α, p
(κ)
M , q

(κ)
M ))〉, where ã

(κ)
` , r̂`(α

(κ), p
(κ)
M , q

(κ)
M ) −

〈[G`,`(α(κ))

√
C
A,(κ)
` ]2Ψ−1` (α(κ), p

(κ)
M , q

(κ)
M )〉.

We then solve the following problem to generate a better
α(κ+1):

max
α

min
`=1,...,M

ρ̃
(κ)
` (α) s.t. (16c). (17)
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2) Alternating power optimization of improper
Gaussian sources: With fm = fm(α

(κ+1)
m ), we

solve the convex problem (13) to generate a better
(p̃

(κ+1)
K , p

(κ+1)
M , q

(κ+1)
M , t

(κ+1)
1 , t

(κ+1)
2 , γ(κ+1)).

The above steps generate a sequence {{fm(α
(κ)
m ),m ∈

M}, p̃(κ)K , p
(κ)
M , q

(κ)
M , t

(κ)
1 , t

(κ)
2 , γ(κ)} of improved feasible

points for (16), which converges to a feasible point
satisfying the Karush-Kuhn-Tucker (KKT) condition in α (in
(p̃K, pM, qM, t1, t2, γ), resp.) with (p̃K, pM, qM, t1, t2, γ) (α,
resp.) held fixed.

GZF-BF tailored to proper Gaussian sources for PGS : With
the proper Gaussian source sdm having E(|sdm |2) = 1 in (4)
and (6), the information throughput at UE d` is (1/t2)ρ`(α)
with ρ`(α) = ln

[
1 + |hd`f`(α`)|2/L`(α)

]
, where L`(α) ,∑

m∈M\{`} |hd`fm(αm)|2 + σ. Instead of (9) we now have
to deal with the problem

max
{p̃K>0,t1,t2,γ}>0,α

s.t. (9b), (9d) (18a)

ρ`(α) ≥ 2γt2, ` ∈M, (18b)
π1(p̃K)/t1 + π̃2(α)/t2 ≤ P, (18c)

‖hej‖2p̃j ≤ P, j ∈ K;

ιm∑
i=1

|αm,i|2 ≤ P,m ∈M, (18d)

associated with π̃2(α) ,
∑M
m=1

∑ιm
i=1 |αm,i|2. Let

(p̃
(κ)
K , α

(κ)
M , t(κ), t(κ), γ(κ)) be the feasible point for (9)

found from the (κ − 1)-th iteration. By exploring the
inequality (2), we have

ρ`(α) ≥ ρ(κ)` (α) (19)

with the concave function ρ
(κ)
` (α) ,

a
(κ)
` + 2<{(hd`f`(α

(κ)
` ))∗hd`f`(α`)}/b

(κ)
` −

c
(κ)
`

(
|hd`f`(α`)|2 + L`(α)

)
, for a

(κ)
` = ρ`(α

(κ)) −
|hd`f`(α

(κ)
` )|2/b(κ)` , b

(κ)
` = L`(α

(κ)), and c
(κ)
` =

|hd`f`(α
(κ)
` )|2/(b(κ)(b(κ)` + |hd`f`(α

(κ)
` )|2)).

Algorithm 2, which is based on (19), provides the pseudo-
code for implementing the proposed path-following computa-
tional procedure, which converges at least to a locally optimal
solution of (18), similarly to Algorithm 1.

IV. EXPLOITING IGS FOR CONVENTIONAL PS
Without loss of generality, we assume that the EUs

e1, . . . , enc and the IUs d1, . . . , dnc are the same, which
constitute the set of simultaneous EUs and IUs. Accordingly,
we define Nc , {1, . . . , nc}. For computational tractability,
the PS must use the CBF

∑
k∈K\Nc h

H
ek
sek +

∑
m∈M hHdmsdm

[7], but in contrast to [7] both sek and sdm are assumed to be
improper Gaussian, since they will result in the same harvested
energy, but the improper Gaussian sek will impose much
weaker interference in ID compared to its proper Gaussian
counterpart. Thus, in addition to (7), for k ∈ Ne , K \ Nc
we define furthermore

C(p̃k, q̃k) =

[
E(|sek |2) E((sek)2)
E∗((sek)2) E(|sek |2)

]
=

[
p̃k q̃k
q̃∗k p̃k

]
, (21)

and G̃`,k = diag[(hd`h
H
ek

)/‖hd`‖2, (hd`hHek)∗/‖hd`‖2], and
G`,m = diag[(hd`h

H
dm

)/‖hd`‖2, (hd`hHdm)∗/‖hd`‖2].

Algorithm 2 Path-following algorithm for computing (18)

1: Initialization: Initialize a feasible point
(p̃

(0)
K , α(0), t

(0)
1 , t

(0)
2 , γ(0)) for (18). Set κ = 0.

2: Repeat until convergence of the objective function in
(22): Solve the following convex problem to generate the
next feasible point (p̃

(κ+1)
K , α(κ+1), t

(κ+1)
1 , t

(κ+1)
2 , γ(κ+1))

for (18):

max
(p̃K,t1,t2,γ}>0,α

γ s.t. (9b), (9d), (18d) (20a)

ρ
(κ)
` (α) ≥ 2γt2, ` ∈M, (20b)

1

2t1

K∑
j=1

‖hej‖2
(

(p̃j)
2

p̃
(κ)
j

+ p̃
(κ)
j

)
+

1

t2
π̃2(α) ≤ P. (20c)

Set κ→ κ+ 1.
3: Output (p̃

(κ)
K , α(κ), t

(κ)
1 , t

(κ)
2 , γ(κ)) and accept it as the

optimal solution of (18).

The IU d` employs a power splitter to divide its re-
ceived signal yd` = hd`

(∑
k∈Ne h

H
ek
sek +

∑
m∈M hHdmsdm

)
+

ndn during the whole time slot into two parts in
the proportion of 0 < 1/α` < 1. The first part√

1/α`yd` is processed and used for EH, yielding the har-
vested energy πPS

` (p̃Ne , pM)/α`, where πPS
` (p̃Ne , pM) ,

ζ
(∑

k∈Ne p̃k|hd`h
H
ek
|2 +

∑
m∈M pm|hd`hHdm |

2
)
. The second

part
√

1/β`yd` with 1/β` = 1− 1/α`, is used for ID, yielding
the information throughput (1/2)rPS

` (p̃Ne , q̃Ne , pM, qM, β`),
with

rPS
` (p̃Ne , q̃Ne , pM, qM, β`) ,

ln
∣∣I2 + C(p`, q`)Λ

−1
` (p̃Ne , q̃Ne , pM, qM, β`)

∣∣ ,
where Λ`(p̃Ne , q̃Ne , pM, qM, β`) ,∑
k∈Ne G̃`,kC(p̃k, q̃k)G̃H

`,k +∑
m∈M\{`}G`,mC(pm, qm)GH

`,m + ((σ + σc/β`)/‖hd`‖2)I2.
Here σc = −90 dBm is the additional noise introduced by
the ID receiver circuitry. Note that we have 1/α` ≡ 0
for ` ∈ M \ Nc, i.e. there is no PS for ID-only
IU. Analogously, there is no PS for EH-only EUs ej ,
j ∈ Ne, whose harvested energy is πPS

j (p̃Ne , pM) ,
ζ
(∑

k∈Ne p̃k|hejh
H
ek
|2 +

∑
m∈M pm|hejhHdm |

2
)
.

Thus, by setting αk ≡ 1 for k ∈ K \ Nc and 1/αm ≡ 0 for
m ∈M\Nc, the problem of max-min throughput optimization
subject to EH constraints is formulated as

max
p̃Ne>0,pM>0,q̃Ne ,
qM,αNc>0,βNc>0

min
`∈M

rPS
` (p̃Ne , q̃Ne , pM, qM, β`) (22a)

s.t. (9e), |q̃k| ≤ p̃k, k ∈ Ne, (22b)
1/α` + 1/β` ≤ 1, ` ∈ Nc, (22c)

πPS
j (p̃Ne , pM) ≥ emin

j αj , j ∈ K, (22d)∑
j∈Ne

‖hej‖2p̃j +
∑
`∈M

‖ hd`‖2p` ≤ P, (22e)

which is nonconvex due to the non-concave nature of the
objective function (22a).

Let (p̃
(κ)
Ne , q̃

(κ)
Ne , p

(κ)
M , q

(κ)
M , α

(κ)
Nc , β

(κ)
Nc ) be the feasible point

for (22) that is found from the (κ − 1)-th iteration. By using
the inequality (1), we obtain rPS

` (p̃Ne , q̃Ne , pM, qM, β`) ≥
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Algorithm 3 Path-following algorithm for computing (22)

1: Initialization: Initialize a feasible point for the convex
constraints of (22b)-(22e). Set κ = 0.

2: Repeat until convergence of the objective function
in (22): Solve the convex problem (23) to generate
(p̃

(κ+1)
Ne , p̃

(κ+1)
Ne , p

(κ+1)
M , q

(κ+1)
M , α

(κ+1)
Nc ) for (22). Set κ →

κ+ 1.
3: Output (p̃

(κ)
Ne , p̃

(κ)
Ne , p

(κ)
M , q

(κ)
M , α

(κ)
Nc ) and accept it as the

optimal solution of (22).

r
PS,(κ)
` (p̃Ne , q̃Ne , pM, qM, β`) with the concave function
r

PS,(κ)
` defined by r

PS,(κ)
` (p̃Ne , q̃Ne , pM, qM, β`) ,

a
(κ)
` − 〈B(κ)` ,Λ`(p̃Ne , q̃Ne , pM, qM, β`)〉
−〈C(κ)` , (C(p`, q`) + Λ`(p̃Ne , q̃Ne , pM, qM, β`))

−1,
for a

(κ)
` = rPS

` (C̃
A,(κ)
Ne , C

A,(κ)
M , β

(κ)
` ) + 4, 0 ≺

B(κ)` = Λ−1` (p̃
(κ)
Ne , q̃

(κ)
Ne , p

(κ)
M , q

(κ)
M , β

(κ)
` ), 0 ≺ C(κ)` ,

C(p
(κ)
` , q

(κ)
` ) + Λ`(p̃

(κ)
Ne , q̃

(κ)
Ne , p

(κ)
M , q

(κ)
M , β

(κ)
` ).

At the κth iteration, the following convex optimization
problem can be solved to generate the next iterative feasible
point (p̃

(κ+1)
Ne , q̃

(κ+1)
Ne , p

(κ+1)
M , q̃

(κ+1)
M , α

(κ+1)
Nc ) for (22):

max
(p̃Ne ,pM)>0,q̃Ne ,
qM,(αααNc ,χχχNc )>0

min
`∈M

r
PS,(κ)
` (C̃A

Ne ,C
A
M, β`)

s.t. (22b)− (22e). (23)

Algorithm 3 provides the pseudo-code for implementing the
proposed path-following computational procedure, which con-
verges at least to a locally optimal solution of (22), similarly
to Algorithm 1.

V. SIMULATION RESULTS

In our simulations, the users are randomly placed within
a radius of 100 meters from the BS. To ensure meaningful
wireless energy harvesting, we place K = 5 EUs within a
radius of 8 meters from the BS. Unless specified otherwise, we
assume M = 11 IUs in our simulations. We consider nc = 3
overlapping users, who act as both EUs and IUs. Thus we have
K = {1, 2, ..., 5}, M = {1, 2, ...,M} and Nc = {1, 2, 3}.
The channel spanning from the BS to a user at a distance
of d meters is generated as h =

√
10−σPL/10h̃ with the path

loss σPL = 30 + 10β log10(d) dB and the normalized channel
gain vector h̃. Here, h ≡ hek if it refers to the channel
between the BS and the k-th EU or h ≡ hd` if it refers to the
channel between the BS and the `-th IU and β is the path-loss
exponent. Generally, the normalized channel vector h̃ follows
the Rayleigh distribution with β = 3. However, for the channels
between the BS and the nearby users (located within 8-meter
radius from the BS), the normalized channel vector h̃ follows
the Rician distribution with Rician factor of 10 dB and β = 2.
We set the energy harvesting threshold as emin ≥ −20 dBm
with ζ = 0.5. This is because to enable EH, the power of the
signal received at the EUs must exceed the threshold of −21
dBm (assuming 13 nm CMOS technology [18]). The bandwidth
is set to B = 20 MHz, the carrier frequency is set to 2 GHz, and
the power spectral density of noise is −174 dBm/Hz. Unless
specified otherwise, we assume Nt = 10 antennas at the BS,

the transmit power budget of P = 31 dBm and emin = −20
dBm. Thus, the computation for RZF-BF and GZF-BF involves
K +M = 16 real and M = 11 complex decision variables vs.
the number Nt(K+2M) = 270 of complex decision variables
for the computation of beamformers in [11].

In all figures, RZF-BF-IGS represents IGS under transmit-
side TS approach with RZF-BF (Algorithm 1), GZF-BF-IGS
represents IGS under transmit-side TS approach with GZF-
BF, PS-IGS represents IGS under conventional PS approach,
RZF-BF-PGS represents PGS under transmit-side TS approach
with RZF-BF, GZF-BF-PGS represents PGS under transmit-
side TS approach with GZF-BF, and PS-PGS represents PGS
under conventional PS approach.

Fig. 1 plots the max-min throughput versus the number of
IUs M . Fig. 1 shows that the max-min throughput decreases
with the increase in the number of IUs because the presence
of more users competing for the given fixed resources limits
their achievable minimum throughput. We can observe that the
IGS based algorithms (RZF-BF-IGS, GZF-BF-IGS and PS-
IGS) outperform the respective PGS based algorithms (RZF-
BF-PGS, GZF-BF-PGS and PS-PGS), respectively. Fig. 1 also
shows that the transmit-side TS based algorithms (RZFB-IGS,
GZFB-IGS, RZFB-PGS, GZFB-PGS) clearly outperform the
conventional PS based algorithms (PS-IGS, PGS-PGS), how-
ever the performance gap becomes smaller with the increase of
M .

Fig. 2 and Fig. 3 plot the max-min throughput versus the
transmit power budget P and the energy harvesting threshold
emin, respectively. As excepted, the max-min throughput in-
creases upon increasing the available power budget in Fig. 2
due to the availability of more power and decreases with the
increase of emin in Fig. 3, because more resources are required
for fulfilling the increased energy harvesting requirement. Upon
comparing the performance of RZF-BF and GZF-BF, we can
observe that they achieve similar performance under IGS, but
GZF-BF slightly outperforms RZF-BF under PGS. Fig. 2 and
Fig. 3 also show the supremacy of IGS over PGS and the
supremacy of the transmit-TS approach over the conventional
PS approach. Note that the surprising gap between the per-
formances of the transmit-TS approach and the conventional
PS approach is due to the fact that the former technique
exploits the option of distinct energy and information transmit
beamformers, while the latter relies on a joint energy and data
beamformer.

VI. CONCLUSIONS

The paper has developed new regularized zero-forcing beam-
forming and generalized zero-forcing beamforming for im-
proper Gaussian signaling to serve both energy and information
users in an energy-harvesting aided network. They help IGS
outperform its proper Gaussian counterpart in terms of the
information users’ max-min throughput under the same QoS
for the energy users. It would be interesting to study their
performance both under a nonlinear harvesting model [19] and
realistic channel uncertainties [20].
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