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Abstract. A group G is invariably generated (IG) if there is a subset S ⊆ G such that for every
subset S′ ⊆ G, obtained from S by replacing each element with a conjugate, S′ generates G.
Likewise, G is finitely invariably generated (FIG) if, in addition, one can choose such a subset S
to be finite.

In this note we construct a FIG group G with an index 2 subgroup N C G such that N is
not IG. This shows that neither property IG nor FIG is stable under passing to subgroups of
finite index, answering questions of Wiegold and Kantor-Lubotzky-Shalev. We also produce first
examples of finitely generated IG groups that are not FIG, answering a question of Cox.

1. Introduction

A subset S invariably generates a group G if for every function f : S → G the subset {sf(s) |
s ∈ S} is a generating set of G. We say that G is invariably generated (IG) if it contains an
invariable generating subset (equivalently, if G invariably generates itself). Similarly, G is finitely
invariably generated (FIG) if it has a finite invariable generating subset.

The term “invariably generated” was invented by Dixon [6] in 1988, though the notion itself
appeared in the literature earlier. In 1975 Wiegold [26] considered the class of groups X such that
G ∈ X if and only if for every transitive action of G on a set Ω, with |Ω| ≥ 2, at least one element
g ∈ G acts on Ω without fixed points. The fact that the latter property holds for all finite groups
was proved by Jordan [12] in 1872, more that 100 years earlier. Jordan’s theorem was revisited
by Serre [24] in 2003, who gave several applications to Number Theory and Topology.

In [26] Wiegold observed the following.

Remark 1.1. For a group G the following statements are equivalent:

• G ∈ X ;
• for each proper subgroup H < G,

⋃
g∈GH

g 6= G;

• if S is a subset of G containing a representative from each conjugacy class, then G = 〈S〉;
in other words, G is IG.

Given two subsets A,B of a group G we will say that A is pointwise conjugate into B if A ⊆ BG,
i.e., each a ∈ A is conjugate to some b ∈ B. The above remark tells us that G is IG if and only if G
is not pointwise conjugate into a proper subgroup. Wiegold proved that the class X of IG groups
is closed under extensions and restricted direct products [26]. Since finite groups (by Jordan’s
theorem [12]) and abelian groups are in X , it follows that all virtually solvable groups are IG. On
the other hand, the easiest examples of non-IG groups are non-abelian free groups [26].

In 2014 Kantor, Lubotzky and Shalev [13] studied invariable generation for infinite linear groups
and defined the property FIG. Similarly to Remark 1.1, a group is FIG if and only if there is
a finite subset S ⊆ G which is not pointwise conjugate into any proper subgroup of G. One of
the main results from [13] states that a finitely generated linear group is FIG if and only if it
is virtually solvable. They also showed that the class of FIG groups is closed under extensions
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and contains all finitely generated abelian-by-polycyclic groups. In fact, the argument from [13,
Lemma 2.8] (see also [26, Theorem 2.1.(i)]) proves the following.

Lemma 1.2. Suppose that G is a group, N 6 K 6 G and NCG. If S is an invariable generating
subset of K and T is an invariable generating subset of G/N then S∪T1 is an invariable generating
subset of G, where T1 ⊆ G is any preimage of T in G.

This lemma easily yields that each of the properties IG and FIG is inherited by finite index
overgroups. Wiegold [27, p. 573] and Kantor, Lubotzky, Shalev [13, Open Problems 1,2] asked
whether the same can be said for finite index subgroups. Our first result gives a negative answer
to these two questions.

Theorem 1.3. There exists a torsion-free group G with a subgroup N CG, of index 2, such that
G is invariably generated by two elements but N is not invariably generated. More precisely, there
are two elements a, b ∈ G such that all of the following hold.

(i) {a, b} invariably generates G;
(ii) the subgroup N = 〈a2, b, aba−1〉 has index 2 in G;

(iii) H = 〈a2, b〉 is free of rank 2, freely generated by {a2, b}, and |N : H| =∞;
(iv) N =

⋃
f∈N H

f .

Note that the first example of a non-IG subgroup of an IG group was given by Wiegold in [27].
More examples of IG, FIG and non-IG infinite groups have been recently obtained in [7, 8, 3,

5]. Property FIG implies IG, by definition; in fact, FIG is strictly stronger as any non-finitely
generated abelian group is IG but not FIG. However, prior to this work none of the known
examples answered the following basic question, asked by Cox in [5]: is property IG equivalent to
FIG for finitely generated groups? Our second theorem shows that this is not the case.

Theorem 1.4. There exists a finitely generated torsion-free group G which is IG but not FIG.
More precisely, G is generated by two elements and there is an infinite family of subgroups Hj < G,
j = 0, 1, 2, . . . , such that all of the following conditions are satisfied.

(i) For all j ∈ N ∪ {0}, Hj is a malnormal finitely generated free subgroup of G;
(ii) for each i ∈ N there exists r ∈ Hi \ {1} such that 〈r〉 ∩ gHjg

−1 = {1}, for any j < i and
all g ∈ G;

(iii) every finite subset of G is pointwise conjugate into Hj, for some j ∈ N ∪ {0};
(iv) the intersection hHjh

−1 ∩Hi is cyclic, for all i 6= j and all h ∈ G;
(v) if M is a proper subgroup of G, then there exists j ∈ N ∪ {0} and v ∈ G such that

M ⊆ vHjv
−1.

Recall that a subgroup H of a group G is called malnormal if gHg−1∩H = {1} for all g ∈ G\H.
The fact that any group G satisfying properties (i)–(v) from Theorem 1.4 is not FIG follows from
(iii). Condition (ii) shows that G 6=

⋃
g∈GH

g
j for any given j ∈ N ∪ {0}, and since each proper

subgroup of G is conjugate into some Hj , by (v), we can use Remark 1.1 to conclude that G is
IG.

Thus even for finitely generated groups property FIG is more restrictive than property IG. In
view of Theorems 1.3 and 1.4, [5, Corollary A] implies that every finitely generated group can be
embedded in a FIG group that has a non-IG subgroup of finite index or in a finitely generated
IG non-FIG group. In particular, there is a continuum of such groups.

After this paper was written, the author learned that Goffer and Lazarovich obtained similar
results to Theorems 1.3,1.4 independently in [9]. Their work also answers the questions of Wiegold,
Kantor-Lubotzky-Shalev and Cox mentioned above. Both our paper and [9] are based on the small
cancellation theory over hyperbolic groups developed by Ol’shanskii [21]. However, [9] works with
this theory directly, while our approach uses the author’s previous results from [18].
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1.1. Ideas of proofs. Let us briefly outline the constructions of the groups from Theorems 1.3
and 1.4. In both of them the group G is obtained as a direct limit of torsion-free hyperbolic
groups, using a “small cancellation quotient theorem”. In the original form such a theorem was
proposed by Gromov [10, 5.5], and then proved by Ol’shanskii in [21]. The statement has later
been extended to relatively hyperbolic groups by Osin [23] and then to acylindrically hyperbolic
groups by Hull [11]. The version that we will use here was obtained by the author in [18, 17]
and allows to preserve certain quasiconvex subgroups in the small cancellation quotient: see
Theorem 2.6 below. This version has an advantage over the versions from [23, 11] in not having
to require that the preserved collection of quasiconvex subgroups be malnormal in the ambient
hyperbolic group, which is important for the constructions that we present here.

To prove Theorem 1.3 we start with a group G0, freely generated by {a0, b0}, let H0 = 〈a20, b0〉
and N0 = 〈a20, b0, b

a0
0 〉 C G0. We enumerate all elements of G0: f0 = 1, f1, f2, . . . , and construct

non-elementary torsion-free hyperbolic groups G1, G2, . . . by induction, so that for each Gn+1 is
a quotient of Gn, n ≥ 0. To obtain Gn+1 from Gn, together with an epimorphism φn+1 : Gn →
Gn+1, we first embed Gn into an HNN-extension Ln, in which the image of fn+1 is conjugate to an
element of the image of H0 ∪ 〈a0〉. We then use Theorem 2.6 to produce a torsion-free hyperbolic
group Gn+1, and an epimorphism ηn+1 : Ln → Gn+1 such that ηn+1 is injective on the image of

H0 in Ln and Gn+1 is generated by the images of a0 and b
fn+1

0 . In particular, ηn+1(Gn) = Gn+1

and we set φn+1 : Gn → Gn+1 to be the restriction of ηn+1 to Gn. We define the epimorphism
ψn+1 : G0 → Gn+1 by ψn+1 = φn+1 ◦ · · · ◦ φ1, and set an+1 = ψn+1(a0), bn+1 = ψn+1(b0),
Hn+1 = ψn+1(H0) and Nn+1 = ψn+1(N0). By carefully controlling the kernel of ηn+1 we ensure
that Nn+1 still has index 2 in Gn+1 and ψn+1(fn+1) is conjugate into Hn+1∪〈an+1〉 via an element
of Nn+1 in Gn+1. Finally we define G as the direct limit of the sequence (Gn)∞n=0, let a, b ∈ G and
H,N 6 G be the natural images of a0, b0 ∈ G0 and H0, N0 6 G0 respectively. By construction,

every Gi is generated by ai and b
ψi(fi)
i , whence G = 〈a, bf 〉 for all f ∈ G, so that {a, b} is an

invariable generating set of G. On the other hand, the condition that ψi(fi) ∈ HNi
i ∪〈ai〉Ni in Gi,

i ∈ N, is sufficient for showing that N =
⋃
f∈N H

f . The actual argument is somewhat technical,
since various conditions need to be preserved at each step in order for the inductive argument to
work and for Theorem 2.6 to be applicable.

The proof of Theorem 1.4 is more involved because the difference between properties IG and
FIG is quite subtle. We start with a free group G0 of rank 3, set H00 = {1}, and enumerate
all of the finite subsets S0 = ∅, S1, S2, . . . , and all of the finitely generated subgroups Y0 = {1},
Y1, Y2, . . . in G0. The torsion-free hyperbolic group Gn+1, together with a collection of malnormal
quasiconvex subgroups Hn+1,j 6 Gn+1, j = 0, . . . , n + 1, are constructed by induction on n. We
define Ln as an HNN-extension of the free product Gn ∗X, where X is a free group of finite rank
and the image of Sn+1 is pointwise conjugate into X in Ln. Thereafter Gn+1 is produced as a small
cancellation quotient of Ln in such a way that the natural homomorphism ηn+1 : Ln → Gn+1 is
surjective on Gn and on the image of Yn+1 in Gn, unless this image is cyclic or is contained in
a conjugate of Hnj in Ln, for some j = 0, . . . , n. We let Hn+1,j 6 Gn+1 be the image of Hnj ,
for j ≤ n, and Hn+1,n+1 = ηn+1(X). As before, G is defined as the direct limit of the sequence
(Gn)∞n=0, and for each j ≥ 0, Hj is defined as the image of Hjj under the natural epimorphism
Gj → G. It is straightforward from the construction that every proper finitely generated subgroup
of G (being the image of some Yj), will be contained in a conjugate of Hj , for some j ≥ 0. The
much stronger condition (v) is proved by combining the malnormality of each subgroup Hjj 6 Gj
with property (iv) from the claim of the theorem.

The constructions we use to prove Theorems 1.3,1.4 are fairly flexible and one can produce
examples with additional properties: see Remarks 3.1,3.2 and 4.5.
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2. Preliminaries

2.1. Notation and terminology. In this paper we will denote by Z the set of all integers, by
N = {1, 2, . . . } the set of all natural numbers, and by 2N = {2, 4, . . . } the set of all even natural
numbers.

Let G be a group, x, y ∈ G be any elements and A,B ⊆ G be any subsets. We will use the
following notation:

xy = yxy−1, Ax = xAx−1, AB = {bab−1 | a ∈ A, b ∈ B}.

We will say that x is commensurable to y in G, x
G
≈ y, if some non-zero power of x is conjugate

to some non-zero power of y in G. Note that
G
≈ is an equivalence relation on G.

As usual, CG(x) = {g ∈ G | gx = xg} will denote the centralizer of x in G.

Definition 2.1. Let η : L → G be a homomorphism between groups L and G, and let Q ⊆ L
be any subset. We will say that η preserves conjugacy on Q if for all x, y ∈ Q, η(y) ∈ η(x)G in
G implies that y ∈ xL in L. We will also say that η preserves centralizers on Q if CG(η(x)) =
η(CL(x)) for all x ∈ Q.

Finally, recall that a group is called elementary if it has a cyclic subgroup of finite index.
Throughout the paper we will often use the basic fact that a torsion-free elementary group is
necessarily cyclic.

2.2. One subgroup of a free group. The following elementary facts about a specific subgroup
of a free group of rank 2 will be used in the proof of Theorem 1.3.

Lemma 2.2. Let G be a free group of rank 2 with free generating set {a, b}, let H = 〈a2, b〉 6 G
and N = 〈a2, b, ba〉 6 G. Then

(i) N CG and |G : N | = 2, in particular, |N : H| =∞;
(ii) H ∩Ha = 〈a2〉;

(iii) if al ∈ hG, for some h ∈ H and some l ∈ Z, then al ∈ hH ;
(iv) CG(al) = 〈a〉 for any l ∈ Z \ {0}, and CG(u) ⊆ H if u ∈ H \ 〈a2〉H .

Proof. Claim (i) follows from the observation that N is the kernel of the homomorphism from G
onto Z/2Z, sending a to 1 and b to 0, which also implies that {a2, b, ba} is a free generating set of
N . Therefore H ∩Ha = 〈a2〉, as Ha = 〈a2, ba〉, so (ii) holds.

Now, suppose that h = xalx−1 ∈ H for some x ∈ G and l ∈ Z. Since a /∈ N and H ⊂ N we
see that l must be even, so al ∈ H. As |G : N | = 2, there exist k ∈ {0, 1} and t ∈ N such that
x = tak, so h = talt−1 in N . Observe that H is malnormal in N , being a free factor, hence either
l = 0 and h = 1 or t ∈ H. This proves claim (iii).

The fact that CG(al) = 〈a〉, for any l ∈ Z \ {0}, is obvious. Now suppose that u ∈ H is an
element such that CG(u) 6⊆ H. Since H is malnormal in N , there must exist v ∈ CG(u)\N . Thus
v = fa for some f ∈ N , so u = uv = fuaf−1, and w = f−1uf = ua ∈ Ha is conjugate to u ∈ H
in N .

Recall that N is freely generated by S = {a2, b, ba}, and H = 〈a2, b〉, Ha = 〈a2, ba〉 are
freely generated by subsets of S. Therefore we can write u = hu1h

−1 and w = h′w1h
′−1, where

u1, h ∈ H, w1, h
′ ∈ Ha, and the elements u1, w1 are cyclically reduced over S. The conjugacy

criterion for cyclically reduced elements in the free group N (see [15, Proposition I.2.14]) implies
that u1 = an = w1, for some n ∈ 2N. Hence u = hanh−1 ∈ 〈a2〉H , and (iv) holds. �
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2.3. Hyperbolic groups and quasiconvex subsets. Let G be a hyperbolic group in the sense
of Gromov [10]. This means that G is generated by a finite set S, and the Cayley graph Γ(G,S)
is δ-hyperbolic, for some δ ≥ 0 (see [4, Part III.H] for a detailed exposition). A subset Q of G is
said to be quasiconvex if there exists ε ≥ 0 such that any geodesic joining two elements of Q in
Γ(G,S) is contained in the ε-neighborhood of Q.

We outline basic properties of quasiconvex subsets in the following remark.

Remark 2.3. Let G be a hyperbolic group and let Q ⊆ G. Then

(1) the quasiconvexity of Q is independent of the choice of a finite generating set S for G;
(2) any elementary subgroup of G is quasiconvex;
(3) if G is a free group of finite rank then any finitely generated subgroup of G is quasiconvex;
(4) finite unions and products of quasiconvex subsets of G are also quasiconvex;
(5) if K is a quasiconvex subgroup of G then K is itself hyperbolic and any quasiconvex subset

of K is also quasiconvex in G.

Properties (1)–(3) are well-known (cf. [1, Chapter 3] and [25]); see [16, Lemma 2.1 and Propo-
sition 0.1] for property (4). Finally, property (5) follows from [1, 3.3.8] and [18, Remark 6].

Lemma 2.4. If G is a torsion-free hyperbolic group and c ∈ G is a non-trivial element then
CG(c) is a malnormal infinite cyclic subgroup of G, generated by some d ∈ G. In particular,
CG(dm) = 〈d〉, for any m ∈ Z \ {0}.

Proof. This is an immediate consequence of [21, Lemma 1.16] and the fact that torsion-free ele-
mentary groups are cyclic. �

Lemma 2.5. Let G be a torsion-free hyperbolic group and let x, y, z ∈ G be elements satisfying
yl = zxkz−1, for some k, l ∈ Z \ {0} . Then y ∈ CG(x)z.

Proof. By Lemma 2.4, CG(x)z = CG(xz) is malnormal inG, so, sinceG is torsion-free, yl ∈ CG(x)z

implies that y ∈ CG(x)z. �

Following [18] we say that a subset Q of a group G is small relative to a subgroup F 6 G if
F 6⊆ P1Q

−1QP2 for any finite subsets P1, P2 of G.
The next result was obtained by the author in [18], as part of his PhD thesis [17], and generalized

an earlier theorem of Ol’shanskii [21].

Theorem 2.6. Suppose that L is a torsion-free hyperbolic group, F 6 L is a non-elementary
subgroup, Q ⊆ L is a quasiconvex subset and U = {u1, . . . , un} is any finite collection of elements
of L. If Q is small relative to F in L then there exist elements w1, . . . , wn ∈ F satisfying the
following. Let K C L be the normal closure of the elements uiwi, i = 1, . . . , n, let G = L/K and
let η : L→ G be the natural homomorphism. Then

(a) G is a non-elementary torsion-free hyperbolic group;
(b) the restriction of η to Q is injective and η(R) is quasiconvex in G for every quasiconvex

subset R of L with R ⊆ Q;
(c) η preserves centralizers on Q (in the sense of Definition 2.1);
(d) η preserves conjugacy on Q (in the sense of Definition 2.1).

Proof. The statement is essentially a special case of [18, Theorem 1] (indeed, any non-elemen-
tary subgroup of a torsion-free hyperbolic group is a G-subgroup by [21, Theorem 1]). The main
difference is that here we do not require the homomorphism φ to be surjective on F , but we
simply ask for the image of F to contain the images of the given elements ui, i = 1, . . . , n. This
allows us to specify that kerφ = K is the normal closure of elements of the form uiwi, for some
wi ∈ F , i = 1, . . . , n. The latter can be seen from the explicit form of the extra relators imposed
on L to obtain G in the proof of [18, Theorem 1]: see equation (21) and Section 7 in [18]. �



6 ASHOT MINASYAN

In the case when Q is a finite union of cosets of quasiconvex subgroups the condition of being
small relative to F was characterized in [18] as follows.

Theorem 2.7 ([18, Theorem 3]). Let L be a hyperbolic group and let F 6 L be any subgroup.
Suppose that H1, . . . ,Hk are quasiconvex subgroups of L such that |F : (F ∩ gHig

−1)| =∞ for all

g ∈ L and all i = 1, . . . , k. Then the quasiconvex subset Q =
⋃k
i=1Hi ⊆ L is small relative to F

in L.

The next lemma shows that the map η from Theorem 2.6 preserves malnormality of any sub-
group contained in Q.

Lemma 2.8. Suppose that η : L → G is a homomorphism between groups L and G, and H is a
malnormal subgroup of L. If η preserves conjugacy and centralizers on H then η(H) is malnormal
in G.

Proof. Assume that d = cg, for some c, d ∈ η(H) \ {1} and some g ∈ G. Choose a, b ∈ H \ {1}
such that η(a) = c and η(b) = d. Since η preserves conjugacy on H, b = ah, for some h ∈ L,
which implies that h ∈ H as H is malnormal in L.

Now, cg = d = cη(h) in G, so η(h)−1g ∈ CG(c) = η(CL(a)), since η preserves centralizers on H.
Moreover, CL(a) ⊆ H, as H is malnormal in L, so g ∈ η(h)η(CL(a)) ⊆ η(H). Therefore η(H) is
malnormal in G. �

The following statement is essentially a corollary of one of the author’s results from [19].

Lemma 2.9. Let H1, H2 be subgroups of a hyperbolic group L, with H1 quasiconvex, let G be
any group and let η : L→ G be a homomorphism. Suppose that the following two conditions are
satisfied:

(i) η preserves conjugacy on H1 ∪H2;
(ii) the intersection Hg

1 ∩H2 is elementary, for every g ∈ L.

Then for all h ∈ G, the intersection η(H1)
h ∩ η(H2) is elementary in G.

Proof. Choose any h ∈ G and denote A = η(H1)
h∩η(H2) 6 G. Thus A 6 η(H2) is conjugate into

η(H1) in G. Let B 6 H2 be a preimage of A under η. Then B is pointwise conjugate into H1 by
(i), and, as L is hyperbolic and H1 is quasiconvex, we can apply [19, Proposition 1] to conclude
that |B : (B ∩Hg

1 )| <∞ for some g ∈ L. But B ∩Hg
1 ⊆ H2 ∩Hg

1 is elementary by condition (ii),
hence B is elementary, and so is A = η(B). �

2.4. HNN-extensions. We will need the following statements about HNN-extensions.

Lemma 2.10. Let G be a hyperbolic group, let X = 〈x〉, Y = 〈y〉 be infinite cyclic subgroups of

G. Suppose that either X or Y is malnormal in G and x
G
6≈ y. Then the HNN-extension

L = G∗Xt=Y = 〈G, t ‖ txt−1 = y〉
is hyperbolic, and for any quasiconvex subgroup H 6 G, H is quasiconvex in L.

Proof. The hyperbolicity of L under the above assumptions was first proved by Bestvina and
Feighn [2, Corollary 2.3]. Since cyclic subgroups in hyperbolic groups are always quasiconvex
(see Remark 2.3), G will be quasiconvex in L by a result of Kharlampovich and Myasnikov [14,
Theorem 4]. Claim (5) of Remark 2.3 now shows that H is quasiconvex in L. �

Lemma 2.11. Suppose that G is a group and X,Y 6 G are isomorphic subgroups, with an
isomorphism τ : X → Y , and C 6 G is any subgroup. Let L be the HNN-extension

L = G∗Xt=Y = 〈G, t ‖ txt−1 = τ(x), x ∈ X〉.
(a) If C and Y are malnormal in G and C ∩ Y G = {1} then C is malnormal in L.
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(b) If u, v ∈ G are elements such that v /∈ uG and u /∈ XG ∪ Y G then v /∈ uL in L.

Proof. See [18, Lemma 10.1] for (a) and [20, Lemma 3.4] for (b). �

3. Invariable generation may not pass to finite index subgroups

Proof of Theorem 1.3. The desired group G will be constructed as a direct limit of torsion-free
hyperbolic groups. Let G0 be a free group freely generated by two elements a0, b0 ∈ G0. Let
N0 = 〈a20, b0, a0b0a

−1
0 〉, so that |G0 : N0| = 2, and let H0 = 〈a20, b0〉 and Q0 = H0 ∪ Ha0

0 . Then
{a20, b0} is a free generating set for H0, and H0, Q0 are quasiconvex in G0 by part (3) of Remark 2.3.
Let {f0 = 1, f1, f2, . . . , } be an enumeration of all elements of G0.

For each i ∈ N we will construct a group Gi and an epimorphism φi : Gi−1 → Gi, so that
for ψi = φi ◦ · · · ◦ φ1 : G0 → Gi , ai = ψi(a0) ∈ Gi, bi = ψi(b0) ∈ Gi, gi = ψi(fi) ∈ Gi,
Ni = ψi(N0) = 〈a2i , bi, aibia

−1
i 〉 C Gi, Hi = ψi(H0) = 〈a2i , bi〉 6 Gi and Qi = ψi(Q0) = Hi ∪Hai

i
the following conditions hold:

Gi is a torsion-free hyperbolic group generated by ai, bi;(3.1)

|Gi : Ni| = 2, so that 〈ai〉 ∩Ni = 〈a2i 〉;(3.2)

ψi is injective on Q0, Hi and Qi are quasiconvex in Gi;(3.3)

CGi(a
l
i) = 〈ai〉, for all l ∈ Z \ {0}, and CGi(u) ⊆ Hi if u ∈ Hi \ 〈a2i 〉Hi ;(3.4)

if ali ∈ hGi , for some l ∈ 2N and h ∈ Hi, then ali ∈ hHi ;(3.5)

gi ∈ HNi
i ∪ 〈ai〉

Ni ;(3.6)

Gi = 〈ai, bgii 〉.(3.7)

Setting ψ0 : G0 → G0 to be the identity map, we see that for i = 0 conditions (3.1)–(3.7) are all
satisfied (either by construction or by Lemma 2.2). We now proceed by induction, and thus assume
that for some n ∈ N ∪ {0}, groups G0, . . . , Gn, enjoying properties (3.1)–(3.7), have already been
constructed. We are going to construct a group Gn+1 and an epimorphism φn+1 : Gn → Gn+1 so
that (3.1)–(3.7) hold for i = n+ 1.

Denote c = ψn(fn+1) ∈ Gn. We shall first define an intermediate torsion-free hyperbolic group
Ln, containing Gn, and an index two normal subgroup Mn C Ln such that Mn ∩ Gn = Nn and
c ∈ (Hn ∪ 〈an〉)t, for some t ∈ Mn. If c = 1 then set Ln = Gn, Mn = Nn and t = 1. So, assume
that c 6= 1 and let d ∈ Gn be an infinite order element such that CGn(c) = 〈d〉 (cf. Lemma 2.4).

If d ∈ HNn
n in Gn then set Ln = Gn, Mn = Nn and let t ∈ Mn be any element such that

d, c ∈ Ht
n. Similarly, if d

Gn≈ an, then d, c ∈ CGn(an)z, for some z ∈ Gn, by Lemma 2.5. So,
recalling (3.4), we get d, c ∈ 〈an〉t in Gn, where t ∈ Nn is the element such that z = taεn, for some
ε ∈ {0, 1}. Thus we can again take Ln = Gn, Mn = Nn and t as above.

So, further we can assume that d is not commensurable to an in Gn and d /∈ HNn
n .

Case 1: d /∈ Nn. We claim that d cannot be commensurable to any element from Hn, so

(3.8) 〈d〉Gn ∩Hn = {1}.

Indeed, if d
Gn≈ u ∈ Hn, then d would be conjugate into CGn(u) by Lemma 2.5. But u /∈ 〈an〉Gn ,

as d
Gn

6≈ an, hence CGn(u) ⊆ Hn ⊂ Nn by (3.4). The latter would imply that d ∈ Nn, because Nn

is normal in Gn, contradicting the assumption of this case.
So, in Case 1 we define Ln as the HNN-extension

(3.9) Ln = 〈Gn, t ‖ tant−1 = d〉.
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Case 2: d ∈ Nn. Since Hn
∼= H0 is non-elementary, by [21, Lemma 3.8] there exists an infinite

order element e ∈ Hn such that

(3.10) e
Gn

6≈ an, e
Gn

6≈ d and CGn(e) = 〈e〉.
Thus in Case 2 we define Ln as the HNN-extension

(3.11) Ln = 〈Gn, t ‖ tet−1 = d〉.
Now suppose that we are in one of the above two cases. The group Ln is torsion-free and

hyperbolic, and Hn is quasiconvex in Ln by Lemmas 2.4, 2.10. Therefore Qn = Hn ∪ Han
n is

quasiconvex in Ln by Remark 2.3. Let ξ : Gn → Z/2Z denote the epimorphism with kernel Nn.
Observe that in each of the presentations (3.9), (3.11) above the free letter t conjugates elements
which have the same image under ξ in Z/2Z. Therefore ξ can be extended to an epimorphism

ξ̂ : Ln → Z/2Z by letting ξ̂(t) = 0. Observe that Mn = ker(ξ̂) is the normal closure of Nn and t
in Ln, and satisfies

(3.12) |Ln : Mn| = 2 and Mn ∩Gn = Nn.

We shall now check that conditions (3.4) and (3.5) are satisfied for i = n, when Gn is replaced
by Ln and Nn is replaced by Mn. Note that the associated subgroups (〈an〉 and 〈d〉 in Case 1,
and 〈e〉 and 〈d〉 in Case 2) of the HNN-extension Ln are malnormal in Gn by Lemma 2.4, and
their Gn-conjugates can only intersect trivially. Therefore any malnormal cyclic subgroup of Gn
will remain malnormal in Ln by part (a) of Lemma 2.11. It follows that

(3.13) CLn(aln) = 〈an〉, ∀ l ∈ Z \ {0}, and CLn(u) = CGn(u) ⊆ Hn, ∀u ∈ Hn \ 〈a2n〉Hn .

Assume that for some l ∈ 2N, aln is conjugate in Ln to an element h ∈ Hn. We will show
that these two elements are actually conjugate in Gn. Arguing by contradiction, suppose that
h /∈ (aln)Gn . If h ∈ (akn)Gn , for k 6= l, then, since 〈an〉 is malnormal in Ln, akn cannot be conjugate
to aln in Ln, contradicting our assumption. Thus h /∈ 〈an〉Gn . If we are in Case 1 above, the latter,
combined with (3.8), implies that aln /∈ hLn by part (b) of Lemma 2.11, which again contradicts
the assumption that h is conjugate to aln in Ln. Similarly, in Case 2, in view of (3.10) and the

assumption that an
Gn

6≈ d, part (b) of Lemma 2.11 shows that h /∈ (aln)Ln , leading to another
contradiction. Thus we have shown that aln ∈ hGn . After recalling (3.5), we see that the following
has been established:

(3.14) if aln ∈ hLn , for some l ∈ 2N and h ∈ Hn, then aln ∈ hHn .

We will now construct the group Gn+1 as a quotient of Ln, using Theorem 2.6. Denote F =
〈an, bcn〉 ∩ Nn 6 Gn and observe that |〈an, bcn〉 : F | = 2. Note that the subgroup 〈a2n, bcn〉 6 F is
non-elementary (otherwise aln = (bkn)c, for some l ∈ 2N, k ∈ Z \ {0}, which, by (3.5), would imply
that aln ∈ (bkn)Hn , contradicting the fact that a2n and bn freely generate Hn by (3.3)). Therefore
F is non-elementary.

Let us prove that Qn = Hn ∪Han
n is small relative to F in Ln. Indeed, by Theorem 2.7, it is

sufficient to show that |F : (F ∩Hx
n)| =∞ for all x ∈ Ln. Arguing by contradiction, assume that

(3.15) |F : (F ∩Hx
n)| <∞ for some x ∈ Ln.

Since a2n ∈ F , by (3.15) there must exist l ∈ 2N and h ∈ Hn such that aln = hx. So, in view of
(3.14), we can find y ∈ Hn satisfying aln = hy. The latter yields that h = y−1alny = x−1alnx, so that
xy−1 ∈ CLn(aln) = 〈an〉 by (3.13). Hence x = akny, for some k ∈ Z, and Hx

n = aknHna
−k
n . Since F is

normalized by an, by definition, the latter, combined with (3.15), implies that |F : (F ∩Hn)| <∞
and |F : (F ∩Han

n )| <∞, hence

(3.16) |F : (F ∩ (Hn ∩Han
n ))| <∞.
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But, by the injectivity of ψn on Q0 (3.3) and part (ii) of Lemma 2.2, we have

Hn ∩Han
n = ψn(H0) ∩ ψn(Ha0

0 ) = ψn(H0 ∩Ha0
0 ) = ψn(〈a20〉) = 〈a2n〉.

Thus (3.16) yields |F : (F ∩ 〈a2n〉)| < ∞, contradicting the fact that F is a non-elementary
subgroup of Gn. Hence we have proved that Qn is small relative to F in Ln.

Therefore we can apply Theorem 2.6 to Ln, F , Qn and U = {bn, t}. Let w1, w2 ∈ F be the
elements from the claim of this theorem, let Kn denote the normal closure of the elements bnw1

and tw2 in Ln, let Gn+1 = Ln/Kn, let ηn+1 : Ln → Gn+1 be the natural epimorphism and
φn+1 : Gn → Gn+1 be the restriction of ηn+1 to Gn 6 Ln. Denote ψn+1 = φn+1 ◦ψn : G0 → Gn+1,
an+1 = φn+1(an) = ψn+1(a0), bn+1 = φn+1(bn) = ψn+1(b0), etc., as in the beginning of the proof,
for i = n+ 1. Then the following conditions will be satisfied by Theorem 2.6.

(a) Gn+1 is a torsion-free hyperbolic group. Moreover, since Ln = 〈an, bn, t〉 and ηn+1(t) =
ηn+1(w

−1
2 ) ∈ ηn+1(Gn), we see that ηn+1(Gn) = Gn+1, i.e., φn+1 : Gn → Gn+1 is surjective

and Gn+1 = 〈an+1, bn+1〉. Hence (3.1) holds for i = n+ 1.
(b) The restriction of φn+1 to Qn is injective and Hn+1 = φn+1(Hn), Qn+1 = φn+1(Qn) are

quasiconvex in Gn+1. Thus (3.3) holds for i = n+ 1.
(c) For all x ∈ Hn, CGn+1(ηn+1(x)) = ηn+1(CLn(x)). In view of (3.13) and the injectivity of

ηn+1 on Hn, this implies that (3.4) holds for i = n+ 1.
(d) ηn+1 preserves conjugacy on Hn. In view of (3.14), this implies that (3.5) holds for

i = n+ 1.

Observe that bn+1 = φn+1(bn) = φn+1(w
−1
1 ) ∈ φn+1(F ) in Gn+1. Since F ⊂ 〈an, bcn〉 and

Gn+1 = 〈an+1, bn+1〉, we can conclude that Gn+1 = φn+1(〈an, bcn〉) = 〈an+1, b
gn+1

n+1 〉, where gn+1 =
φn+1(c) = ψn+1(fn+1). Thus (3.7) holds for i = n+ 1, and it remains to check that Gn+1 satisfies
(3.2) and (3.6).

Note that Nn+1 = φn+1(Nn) is a normal subgroup in Gn+1 of index at most 2 because φn+1 is
surjective and |Gn : Nn| = 2. Obviously Nn+1 ⊆ ηn+1(Mn). The opposite inclusion follows from
the fact that Mn is generated, as a normal subgroup of Ln, by Nn and t, and

(3.17) ηn+1(t) = ηn+1(w
−1
2 ) ∈ ηn+1(F ) ⊆ ηn+1(Nn) = Nn+1.

Hence Nn+1 = ηn+1(Mn) in Ln. Recall that, by construction, bn, t ∈ Mn and w1, w2 ∈ F ⊂ Mn

in Ln, yielding that ker ηn+1 = Kn ⊆ Mn. Therefore Gn+1/Nn+1
∼= Ln/Mn

∼= Z/2Z, i.e., Nn+1

has index 2 in Gn+1. It follows that condition (3.2) holds for i = n+ 1.
By construction, ψn(fn+1) = c either belongs to 〈an〉t (Case 1) or to Ht

n (Case 2) in Ln.
Therefore condition (3.6) for i = n + 1 follows from (3.17). This concludes the inductive step in
our argument, and thus finishes the construction of a sequence of hyperbolic groupsG0, G1, G2, . . . ,
together with epimorphisms φi : Gi−1 → Gi, i ∈ N, satisfying properties (3.1)–(3.7) above.

We can now define the group G as the direct limit of the sequence (Gi−1, φi)i∈N. In other
words, G = G0/K, where K =

⋃∞
i=1 kerψi. Let ψ : G0 → G be the natural epimorphism, so that

kerψ = K and ψ factors through ψi : G0 → Gi, for each i ∈ N.
Let a = ψ(a0), b = ψ(b0), H = ψ(H0) = 〈a2, b〉 6 G and N = ψ(N0) = 〈a2, b, ba〉CG. We will

now check that G, H and N satisfy the properties from the claim of Theorem 1.3.
The group G is torsion-free as a direct limit of torsion-free groups Gi. The index |G : N | = 2

because, by (3.2), kerψi ⊆ N0 for all i ∈ N. By (3.3), each ψi is injective on Q0, hence the same
is true for ψ. It follows that H ∩ Ha = ψ(H0 ∩ Ha0

0 ) = 〈a2〉 (by Lemma 2.2), and H ∼= H0 is
freely generated by a2 and b. If |N : H| < ∞ then |N : Ha| < ∞, since a normalizes N , hence
|N : (H ∩Ha)| <∞, which would mean that N is virtually cyclic, contradicting the fact that it
contains a non-abelian free subgroup H. Therefore we can deduce that |N : H| =∞.

Given any x, y ∈ G, the subgroup 〈ax, by〉 is conjugate to the subgroup 〈a, bg〉, where g = x−1y.
By construction, g = ψ(fi), for some i ∈ N ∪ {0}, and (3.7) implies that Gi is generated by
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ai = ψi(a0) and bgii = ψi(b
fi
0 ). It follows that G = 〈a, bg〉, since ψ factors through ψi. Hence

G = 〈ax, by〉 and {a, b} is an invariable generating set for G.
It remains to show that every element of N is conjugate to an element of H in N . Indeed, (3.6)

easily implies that G = HN ∪ 〈a〉N , and since

〈a〉N ∩N = (〈a〉 ∩N)N = 〈a2〉N ⊂ HN ,

we can conclude that N = HN , as required. This finishes the proof of Theorem 1.3. �

Remark 3.1. Let G be the group constructed in the proof of Theorem 1.3. Then centralizers of
non-trivial elements in G are cyclic.

Indeed, for any g ∈ G \ {1}, g has infinite order and g2 ∈ N , so, by claim (iv) of the theorem,
g2 is conjugate to some element u ∈ H \ {1}. If CG(u) ⊆ H, then CG(u) = CH(u) is cyclic, as
H is free. Otherwise, (3.4) implies that u ∈ 〈a2〉H and CG(u) is conjugate to 〈a〉. Thus CG(u)
is cyclic, so the same is true for CG(g2). Therefore CG(g) must also be cyclic, as a subgroup of
CG(g2) (in fact, in this case CG(g) = CG(g2)).

Remark 3.2. The construction of the group G and its index two subgroup N in Theorem 1.3 is
fairly flexible, and many additional properties can be achieved:

• by adding a sufficiently large finite subset of Gi to Qi at each step, one can ensure that
G is lacunary hyperbolic (see [22] for the definition and properties of lacunary hyperbolic
groups);
• by modifying N0 and G0 with the help of Theorem 2.6, one can arrange N to be a quotient

of any given torsion-free non-elementary hyperbolic group; in particular, N and G can be
made to satisfy Kazhdan’s property (T);
• by changing the construction at each step, one can achieve even more and ensure that N

is a common quotient of all non-cyclic torsion-free hyperbolic groups;
• it should be possible to extend the method of proof to produce examples of FIG groups with

non-IG subgroups of index k, for every k ≥ 2, though additional technical modifications
will be necessary.

4. Finitely generated IG groups that are not FIG

Proof of Theorem 1.4. As before, the desired group G will be constructed as a direct limit of
hyperbolic groups Gi, i ≥ 0. Let G0 be the free group of rank 3, freely generated by {a0, b0, c0},
and set Q0 = H00 = {1} 6 G0. Let S0 = ∅, S1 = {1}, S2, . . . be an enumeration of all finite
subsets of G0, let Y0 = {1}, Y1 = 〈a0〉, Y2 = 〈a0, b0〉, . . . be an enumeration of all finitely generated
subgroups of G0.

Let G1 be a copy of G0, with a fixed isomorphism φ1 : G0 → G1. Define H10 = φ1(H00) = {1},
H11 = 〈b1, c1〉, where b1 = φ1(b0) ∈ G1, c1 = φ1(c0) ∈ G1, and let Q1 = H10 ∪ H11 = φ1(Q0) ∪
H11 ⊂ G1.

Now suppose that for some n ≥ 1 and each i = 1, . . . , n we have already constructed a group
Gi, an epimorphism φi : Gi−1 → Gi, and subgroups Hij 6 Gi, j = 0, 1, . . . , i, such that Hij =
φi(Hi−1,j), whenever j ∈ {0, . . . , i − 1}. We let ψi : G0 → Gi be the epimorphism defined by

ψi = φi◦· · ·◦φ1, set Ti = ψi(Si) ⊂ Gi, Zi = ψi(Yi) 6 Gi, andQi =
⋃i
j=0Hij = φi(Qi−1)∪Hii ⊆ Gi.

Arguing by induction, we assume that the following conditions hold for every i = 1, . . . , n:

Gi is a non-elementary torsion-free hyperbolic group;(4.1)

φi is injective on Qi−1, and Hij is free and quasiconvex in Gi, j = 0, . . . , i;(4.2)

φi preserves conjugacy and centralizers on Qi−1;(4.3)
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Hij is malnormal in Gi, for all j = 0, . . . , i;(4.4)

for all g ∈ Gi, 0 ≤ j < k ≤ i, the intersection Hg
ij ∩Hik is cyclic;(4.5)

|Gi : Hii| =∞ and there exists x ∈ Hii \ {1} such that 〈x〉 ∩

i−1⋃
j=1

HGi
ij

 = {1};(4.6)

Ti ⊆ HGi
ii ;(4.7)

one of the following conditions is satisfied:(4.8)

• Zi = Gi, or

• Zi is cyclic, or

• |Zi : (Zi ∩Hu
ij)| <∞ for some j = 0, 1, . . . , i, and some u ∈ Gi.

Note that for i = 1 the group G1, the epimorphism φ1 : G0 → G1, and the subgroups H10, H11 6
G1 satisfy all of the above properties by definition, so the base of induction has been established.
Our aim now is to construct a group Gn+1, an epimorphism φn+1 : Gn → Gn+1 and a subgroup
Hn+1,n+1 6 Gn+1, enjoying properties (4.1)–(4.8) for i = n+1. As before, our method involves an
intermediate torsion-free hyperbolic group Ln and a free quasiconvex subgroup X 6 Ln, such that
Gn 6 Ln and ψn(Sn+1) is pointwise conjugate into X in Ln. The group Gn+1 will be obtained
as a small cancellation quotient of Ln, and the subgroup Hn+1,n+1 6 Gn+1 will be defined as the
image of X in Gn+1.

Recall that ψn : G0 → Gn is the epimorphism φn ◦ · · · ◦ φ1, and suppose that ψn(Sn+1) \
{1} = {s1, . . . , sl} ⊂ Gn, for some l ∈ N ∪ {0}. Let d1, . . . , dl ∈ Gn be the elements satisfying
CGn(sk) = 〈dk〉, for k = 1, . . . , l (cf. Lemma 2.4). Let X be a free group of rank l + 1, with free
basis {x0, x1, . . . , xl}. We define the group Ln by the following presentation:

(4.9) Ln = 〈Gn, x0, . . . , xl, t1, . . . , tl ‖ tkxkt−1k = dk, k = 1, . . . , l〉.
Since Gn is torsion-free, each of d1, . . . , dl has infinite order in Gn, so Ln is an l-fold HNN-

extension of the free product Gn ∗ X with associated cyclic subgroups. The group Gn ∗ X is
hyperbolic, as a free product of hyperbolic groups, and Gn, X are both quasiconvex in it (for
example, by [18, Lemma 1.2]). After applying Lemma 2.10 l times, we see that Ln is a torsion-free
hyperbolic group and Gn, X are quasiconvex in it. Therefore Hnj is a quasiconvex subgroup of
Ln, for each j = 0, . . . , n, by part (5) of Remark 2.3.

Now, Gn and X are malnormal in Gn∗X, being free factors, hence 〈dk〉 and Hnj are malnormal
in Gn ∗X, for all k = 1, . . . , l and j = 0, . . . , n, by (4.4). Observe that for any group A and any
cyclic group 〈x〉, 〈x〉 and every malnormal subgroup of A are malnormal in the free product
A∗ 〈x〉; moreover, no non-trivial element of A is conjugate to an element of 〈x〉. Therefore we can
apply claim (a) of Lemma 2.11 l times to show that Hnj and X are malnormal in Ln, for every
j = 0, . . . , n. It follows that CL(h) ⊆ Hnj for all h ∈ Hnj \ {1}, j = 0, . . . , n; in particular,

(4.10) CL(h) = CGn(h), for every h ∈ Qn \ {1}.
From the presentation (4.9) it is easy to see that there is a retraction ρ : Ln → Gn, such

that the restriction of ρ to Gn is the identity map, ρ(x0) = 1, ρ(xk) = dk and ρ(tk) = 1 for all
k = 1, . . . , l. It follows that

(4.11) two elements of Gn are conjugate in Ln if and only if they are conjugate in Gn.

For the next part it will be more convenient to think of Ln as the fundamental group of a graph
of groups with two vertices v1, v2 and l+1 edges e0, . . . , el, joining these two vertices: see Figure 1.
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The vertex groups in this splitting will be Gn for v1 and X for v2, the edge group for e0 will be

e0

e1

el

v1 v2

Figure 1. The underlying graph for the splitting of Ln.

trivial, and the edge groups for e1, . . . , el will be infinite cyclic. This gives rise to an action of Ln
on the Basse-Serre tree T corresponding to this splitting. Vertex stabilizers for this action are
conjugates of Gn or X in Ln and edge stabilizers are cyclic. Hence the intersection of stabilizers
of two distinct vertices of T is cyclic, which immediately yields the following observations:

(4.12) Gun ∩X is cyclic, for all u ∈ Ln, and

(4.13) if w ∈ Ln \Gn then Gwn ∩Gn is cyclic.

The last observation, combined with (4.5), implies

(4.14) for all u ∈ Ln, 0 ≤ j < k ≤ n, the intersection Hu
nj ∩Hnk is cyclic.

Let Q = Qn∪X =
⋃n
j=1Hnj ∪X ⊂ Ln and Z = ψn(Yn+1) 6 Gn. If Z is non-elementary and Q

is small relative to Z in Ln, then set F = Z. Otherwise, set F = Gn. Recall that Gn is torsion-free
and non-elementary (by (4.1)), hence (4.6) implies that |Gn : Hnj | = ∞, for each j = 0, . . . , n.
Combined with (4.13), this yields that |Gn : (Gn ∩ w−1Hnjw)| = |Gwn : (Gwn ∩Hnj)| = ∞ for all
w ∈ Ln and j = 0, . . . , n. On the other hand, |Gn : (Gn ∩ u−1Xu)| =∞ for all u ∈ Ln by (4.12).
Therefore we can apply Theorem 2.7 to conclude that Q is small relative to Gn in Ln. Thus, in
any case, F is non-elementary, Q is small relative to F in Ln and F ⊆ Gn.

Since Q is quasiconvex in Ln (by part (4) of Remark 2.3), we can apply Theorem 2.6 to Ln,
F , Q and U = {x0, . . . , xl, t1, . . . , tl}. Let Gn+1 denote the resulting quotient of Ln, let ηn+1 :
Ln → Gn+1 be the natural epimorphism, which identifies each element of U with some element
of F in Gn+1. Since F ⊆ Gn and Ln = 〈Gn, U〉, we see that Gn+1 = ηn+1(Ln) = ηn+1(Gn), i.e.,
the restriction φn+1 : Gn → Gn+1, of ηn+1 to Gn, is surjective. Set Hn+1,n+1 = ηn+1(X) 6 Gn+1,

Hn+1,j = φn+1(Hnj) 6 Gn+1 if 0 ≤ j ≤ n, and Qn+1 =
⋃n+1
j=0 Hn+1,j . Let ψn+1 = φn+1 ◦ ψn :

G0 → Gn+1, Tn+1 = ψn+1(Sn+1) ⊂ Gn+1, Zn+1 = ψn+1(Yn+1) 6 Gn+1.
Theorem 2.6 implies that all of the following hold.

(a) Gn+1 is a non-elementary torsion-free hyperbolic group, so (4.1) is true for i = n+ 1.
(b) The restriction of ηn+1 to Q = Qn ∪X is injective, and Hn+1,j is a quasiconvex subgroup

of Gn+1, for all j = 0, . . . , n+ 1. It follows that φn is injective on Qn, and Hn+1,j
∼= Hnj ,

0 ≤ j ≤ n, Hn+1,n+1
∼= X are free subgroups of Gn+1. Thus (4.2) holds for i = n+ 1.

(c) ηn+1 preserves centralizers on Q, hence, by (4.10), φn+1 preserves centralizers on Qn.
(d) ηn+1 preserves conjugacy on Q:

(4.15) if g, h ∈ Qn ∪X, then ηn+1(h) ∈ ηn+1(g)Gn+1 in Gn+1 implies h ∈ gLn in Ln.

Combined with (4.11), this immediately shows that φn+1 preserves conjugacy on Qn.
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Claims (c) and (d) above imply that (4.3) holds for i = n + 1. We can also apply Lemma 2.8
to deduce that for every j = 0, . . . , n+ 1, Hn+1,j is malnormal in Gn+1, i.e., (4.4) is satisfied for
i = n+ 1.

The fact that (4.5) is satisfied in Gn+1 follows from Lemma 2.9. Indeed, for any 0 ≤ j < k ≤
n+ 1, Hn+1,j and Hn+1,k are images, under ηn+1, of subgroups contained in Qn ∪X in Ln, so the
assumptions of Lemma 2.9 are satisfied by (4.15), (4.14) and (4.12).

By the above argument, Hn+1,n+1∩Hn+1,1 is cyclic, and since Hn+1,1
∼= H11 (by (4.2)) is a free

group of rank 2, we can immediately deduce that Hn+1,n+1 must have infinite index in Gn+1. Now,
since the generator x0, of X, does not participate in any of the defining relations from (4.9), we see

that Ln ∼= B ∗ 〈x0〉, where B = 〈Gn, x1, . . . , xl, t1, . . . , tl〉 6 Ln. In particular, 〈x0〉 ∩HLn
nj = {1},

for all j = 0, . . . , n, which can be combined with (4.15) to give 〈ηn+1(x0)〉 ∩HGn+1

n+1,j = {1}, for all

j = 0, . . . , n. As ηn+1(x0) is an infinite order element of ηn+1(X) = Hn+1,n+1, we can conclude
that (4.6) is satisfied for i = n+ 1.

The inclusion (4.7) for i = n + 1 is an immediate consequence of the construction of Ln as
the HNN-extension (4.9), and it remains to verify that Gn+1 satisfies (4.8) for i = n + 1, where
Zn+1 = ψn+1(Yn+1) = ηn+1(Z). But this is indeed the case due to our choice of the subgroup
F 6 Gn above and Theorem 2.7.

Thus we have checked that Gn+1, φn+1 : Gn → Gn+1 and Hn+1,n+1 6 Gn+1 satisfy all of the
properties (4.1)–(4.8) for i = n+ 1, which completes our inductive construction.

Let G be the direct limit of the sequence (Gi−1, φi)i∈N. Then G can be described as the quotient
of G0 by K =

⋃∞
i=1 kerψi, and the natural epimorphism ψ : G0 → G factors through ψi : G0 → Gi,

for each i ∈ N. Let ξi : Gi → G denote the resulting epimorphism such that ψ = ξi ◦ ψi, for each
i ∈ N. A commutative diagram involving epimorphisms between the groups G0, Gi, Gi+1 and G,
i ∈ N, discussed so far, is depicted in Figure 2 below.

G0 Gi Gi+1

G

ψi

ψi+1

ψ

φi+1

ξi
ξi+1

Figure 2. A commutative diagram of maps between G0, Gi, Gi+1 and G.

Lemma 4.1. For all j ≥ 0 the epimorphism ξj : Gj → G preserves conjugacy on Qj.

Proof of Lemma 4.1. Suppose ξj(h) = ξj(g)q, for some g, h ∈ Qj and some q ∈ G. Let g0, h0, q0 ∈
G0 be arbitrary preimages of the elements g, h, q in G0, so that g = ψj(g0), h = ψj(h0) and

q = ψ(q0). Then h−10 gq00 ∈ kerψ =
⋃∞
n=1 kerψn, so h−10 gq00 ∈ kerψi, for some i ∈ N. Moreover, we

can assume that i > j, as kerψi ⊆ kerψi+1 for all i. Hence g′ = ψi(g0) is conjugate to h′ = ψi(h0)
in Gi. Let ϕ : Gj → Gi be the epimorphism defined by ϕ = φi ◦ · · · ◦ φj+1, and observe that
g′ = ϕ(g) and h′ = ϕ(h), so that g′, h′ ∈ ϕ(Qj) in Gi. Since h′ ∈ (g′)Gi we can apply (4.3) i − j
times to conclude that h ∈ gGj in Gj , as required. �

The next statement also follows from (4.3) and can be proved similarly to Lemma 4.1.

Lemma 4.2. For all j ≥ 0 the epimorphism ξj : Gj → G preserves centralizers on Qj.

We can now start checking that G satisfies all the properties listed in the statement of The-
orem 1.4. The group G is indeed 2-generated, because it is a quotient of G2, and G2 = Z2 is a
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quotient of Z = 〈a1, b1〉 = φ1(Y2), by construction (Z is non-elementary and Q1 = 〈b1, c1〉 is small
relative to Z in L1, as {a1, b1, c1} is a free generating set of G1). Since Gi is torsion-free, for each
i ∈ N, G is also torsion-free.

Observe that ξj(Hjj) = ξi(Hij) in G, whenever 0 ≤ j ≤ i, and denote this subgroup Hj 6 G.
The epimorphism ξj is injective on Hjj by (4.2), so Hj

∼= Hjj is finitely generated and free.
Moreover, in view of (4.4) and Lemmas 4.1, 4.2, we can apply Lemma 2.8 to conclude that Hj is
malnormal in G. Thus claim (i) of Theorem 1.4 has been established.

Now, by (4.6), for each i ∈ N there is x ∈ Hii \ {1} such that 〈x〉 ∩HGi
ij = {1} in Gi, whenever

0 ≤ j < i. Set r = ξi(x) ∈ Hi, then r 6= 1 in G, by (4.2), and 〈r〉 ∩HG
j = {1}, provided 0 ≤ j < i,

by Lemma 4.1. This proves claim (ii) of Theorem 1.4.
If S is an arbitrary finite subset of G, then S = ψ(Si), for some i ∈ N ∪ {0}, and Ti = ψi(Si)

is pointwise conjugate into Hii in Gi, by (4.7). Consequently, S = ξi(Ti) is pointwise conjugate
into the subgroup Hi = ξi(Hii) in G, which establishes claim (iii) of Theorem 1.4.

Claim (iv) of the theorem follows from the lemma below.

Lemma 4.3. For all i, j ≥ 0, i 6= j, and all h ∈ G, the intersection Hh
j ∩Hi is cyclic in G.

Proof of Lemma 4.3. Without loss of generality, suppose that j < i. By construction, Hj =
ξi(Hij) and Hi = ξi(Hii), where Hij and Hii are quasiconvex subgroups of the hyperbolic group
Gi (see (4.1) and (4.2))), and Hij ∪Hii ⊆ Qi. Recalling Lemma 4.1 and (4.5), we see that all the

assumptions of Lemma 2.9 are satisfied, whence Hh
j ∩Hi must be cyclic for any h ∈ G. �

Thus it remains to prove claim (v). The next lemma will be used for this.

Lemma 4.4. If N is a non-cyclic proper finitely generated subgroup of G, then there exists
j ∈ N ∪ {0} and v ∈ G such that N ⊆ Hv

j .

Proof of Lemma 4.4. By construction, there must exist i ∈ N such that N = ψ(Yi) = ξi(Zi).
Since N is proper and non-cyclic in G, Zi will be a proper non-cyclic subgroup of Gi. In view
of (4.8), the latter implies that |Zi : (Zi ∩Hu

ij)| < ∞ for some j = 0, 1, . . . , i, and some u ∈ Gi.
Hence |N : (N ∩ Hv

j )| < ∞ in G, where v = ξi(u) ∈ G, so Hv
j contains a finite index normal

subgroup of N . Since G is torsion-free and Hv
j is malnormal, N must be contained in Hv

j . �

To finish the proof of Theorem 1.4, it remains to show that every proper subgroup M < G is
contained in a conjugate of some Hj , j ∈ N ∪ {0}. If M is cyclic, this follows from claim (iii)
of the theorem, so we can suppose that M is non-cyclic. Take any x ∈ M \ {1}. By claim (iii),
x ∈ HG

k , for some k ∈ N ∪ {0}, and, after replacing M with a conjugate, we can assume that
x ∈ Hk. Then CG(x) is cyclic by Lemma 4.2 and Lemma 2.4. Since M is non-cyclic, it cannot be
contained in CG(x), so there must exist y ∈ M such that N = 〈x, y〉 6 M is non-abelian. Hence
N ⊆ Hv

j for some j ∈ N ∪ {0} and some v ∈ G, by Lemma 4.4.

Now, consider any z ∈ M . The subgroup P = 〈x, y, z〉 is non-cyclic and proper in G, so,
according to Lemma 4.4, there exist i ∈ N ∪ {0} and u ∈ G such that P ⊆ Hu

i . Observe that
N ⊆ Hv

j ∩Hu
i is non-cyclic, hence i = j, by Lemma 4.3, and Hu

j = Hv
j , as Hj is malnormal in G.

It follows that z ∈ P ⊆ Hv
j , whence M ⊆ Hv

j , as required.

Thus we have shown that G satisfies claim (v), so the proof of Theorem 1.4 is complete. �

Remark 4.5. It is easy to see that the group G constructed in Theorem 1.4 satisfies the following
properties:

• every proper subgroup of G is free;
• G is simple;
• the centralizers of non-trivial elements are cyclic.
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Similarly to Remark 3.2, with extra work we can impose additional properties on G, such as
lacunary hyperbolicity and being a quotient of any given (or, even, every) non-cyclic torsion-free
hyperbolic group.
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