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Abstract
Acoustic black holes (ABHs) are tapered structural features that can achieve high levels of structural damping
within lightweight constraints. It has previously been proposed to integrate feedforward active vibration
control into an ABH to enable control over a broad spectrum, however, the time advance information required
in this control strategy is not always available. Therefore, this paper investigates a feedback control system,
where a piezoelectric patch is used to provide the control actuation and a remote damping method is used to
examine the different compensators available to control either the local taper vibration or the reflected wave
component. The investigation highlights that at most frequencies minimising the taper vibration does not
significantly affect the reflected wave, however minimising the reflected wave enhances the taper vibration.
It is also shown that in some cases both quantities can be reduced and that it is possible to maintain the passive
ABH performance whilst simultaneously limiting the taper vibration, which reduces structural fatigue.

1 Introduction

An ABH can be realised as a smoothly varying structural feature that tapers from a thicker to a thinner profile
[1]. The flexural wave speed in a beam can be related to the thickness of the structure and so as a flexural
wave travels down the taper its speed is reduced, resulting in a low amount of reflected energy from the tip.
In practice, a small amount of damping material is required to achieve good passive performance [2] and it
has been shown that this damping material can be optimally placed to minimise vibration [3–5] or radiated
sound [6]. The properties of the damping material can also be modified using temperature [7]. In addition to
studies into the damping, there have been a variety of studies that examine different ways to tune the narrow
and broadband performance of an ABH by varying the geometric design parameters, such as taper length,
power law and tip height [3, 4, 8–14]. Different ABH constructions have also been examined such as rolling
up a long taper to reduce the size of the ABH whilst maintaining good low frequency performance [15].
In addition to the passive tuning methods available, it has been proposed that active components could be
used to enhance an ABH. The active ABH (AABH) could then be subjected to a number of different active
control strategies in order to minimise different cost functions and this was demonstrated in the context of
a feedforward wave-based control system in [16]. This feedforward control strategy required time-advance
knowledge of the disturbance signal, something that is not always available in industrial applications. A
feedback approach may, therefore, provide a number of practical benefits and a controller can be designed
that uses a local feedback loop to minimise a remote quantity [17–19]. To provide further insight into
the effect of wave control and to demonstrate a different approach to using an AABH, this paper presents an
investigation into the frequency domain implementation of the feedback remote damping vibration controller
designed in [17]. The tradeoff between minimising the local taper vibration and minimising the reflected
wave component is examined over a broad frequency range. The paper is organised as follows. Section 2
presents the experimental setup used in this investigation, a brief overview of the wave decomposition method
used to estimate the wave components in the structure and uses the geometric controller design from [17] to
highlight four control strategies that can be used to calculate a control compensator. Section 3 contains the
results from a frequency domain implementation of each control strategy and the conclusions of this work
are presented in Section 4.



2 Controller Design

In this section, the geometric controller in [17] is presented for use on an active ABH termination. Initially,
the experimental setup is described from which the frequency responses have been acquired. The wave de-
composition method used to estimate the reflected wave component is outlined and the frequency responses
are then used to examine the tradeoff between minimising the local taper vibration and minimising the re-
flected wave component. Four control case studies are then selected and the corresponding compensator
values are calculated.

2.1 Experimental Setup

Table 1 lists the dimensions of the experimental setup and a diagram of the setup is presented in Figure 1.
The primary force, FP, was implemented by driving a shaker with broadband white noise using a sampling
frequency of 22 kHz. The secondary force, FG, was produced by driving the piezoelectric transducer with
broadband white noise using a sampling frequency of 22 kHz. Accelerometers 1 and 2 were used to calculate
the reflected wave component in the beam, φ−, and accelerometer 3 was used to measure the local vibration in
the taper. The frequency responses measured at each of the locations can be written in terms of contributions

Table 1: Dimensions of the experimental setup

Parameter Value
Beam length 300 mm
Beam height 10 mm
Beam width 40 mm
ABH length 70 mm

ABH power law 4
ABH tip height 0.5 mm

Piezo length 61 mm
Piezo height 0.4 mm
Piezo width 35 mm

Piezoelectric	
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Figure 1: The physical system showing how the local vibration is measured in the taper and the reflected
wave is calculated in the beam section.

from the primary and secondary sources as{
φ−(ω)
a3(ω)

}
=

[
g11(ω) g12(ω)
g21(ω) g22(ω)

] {
u(ω)
d(ω)

}
, (1)

where g11 is the frequency response between the piezoelectric transducer and the accelerometer on the taper,
g12 is the frequency response between the primary force and the accelerometer on the taper, g21 is the
frequency response between the piezoelectric transducer and the reflected wave component and g22 is the



frequency response between the primary force and the reflected wave component [17]. d is the signal driving
the primary shaker and the control signal, u, that is used to drive the piezoelectric transducer can be calculated
using the feedback control law,

u(ω) = −κ(ω)a3(ω). (2)

A block diagram of the control system is shown in Figure 2.
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Figure 2: A block diagram showing the feedback control system. The local signal from accelerometer 3 is
fed back through a compensator, κ, to obtain the control signal, u. The control signal is used to drive the
piezoelectric transducer and the control of both the taper vibration and the reflected wave component can be
examined.

2.2 Calculating the reflected wave component

In the frequency domain, the incident and reflected wave components, φ+(ω) and φ−(ω), can be written in
terms of the signal measured at the two accelerometers, a1 and a2, as{

a1(ω)
a2(ω)

}
= −ω2

[
eik∆/2 e−ik∆/2

e−ik∆/2 eik∆/2

] {
φ+(ω)
φ−(ω)

}
, (3)

where ω is the angular frequency, k is the flexural wavenumber and ∆ is the sensor separation [20, 21].
Equation 3 can be rearranged to give{

φ+(ω)
φ−(ω)

}
=

[
(h1(ω) − h2(ω)) (h1(ω) + h2(ω))
(h1(ω) + h2(ω)) (h1(ω) − h2(ω))

] {
a1(ω)
a2(ω)

}
, (4)

where

h1(ω) =
−i

4ω cos(k∆/2)
; h2(ω) =

1
4ω sin(k∆/2)

. (5)

In order to implement Equation 4 in the time domain, h1(ω) + h2(ω) and h1(ω) − h2(ω) can be approximated
using discrete-time FIR filters [20, 22, 23], which gives the vectors of filter coefficients h1+2 and h1−2 re-
spectively. To ensure that the filters are causal, a small delay can be applied to the frequency responses prior
to calculating the filters. Although effective, these wave decomposition filters are subjected to some limita-
tions imposed by the sensor separation and sensor array location, which results in lower and upper frequency



limits. In this investigation, the frequency range of interest has been limited to 400 Hz – 10 kHz and further
information regarding the derivation of these limits can be found in [20, 22, 23].

2.3 Remote Damping Circles

In order to find a compensator, κ, that minimises either or both the local vibration and reflected wave com-
ponent, the closed loop transfer functions can be written as∣∣∣∣∣ 1

1 + g11(ω)κ(ω)

∣∣∣∣∣ < 1 (6)∣∣∣∣∣1 − κ(ω)g12(ω)g21(ω)
g22(ω)(1 + g11(ω)κ(ω))

∣∣∣∣∣ < 1, (7)

where satisfying Equation 6 results in a reduction of the local vibration at accelerometer 3 and satisfying
Equation 7 results in a reduction of the reflected wave component [17]. The frequency dependency is sup-
pressed from this point forward for clarity, but it should be assumed unless stated otherwise. As shown
in [17], Equation 7 can be also be expressed as

|β + 1| < 1, (8)

where

β =

(
1

1 + g11κ
− 1

)
g12g21

g11g22
(9)

and Equation 6 can be expressed in terms of β as∣∣∣∣∣βg11g22

g12g21
+ 1

∣∣∣∣∣ = |γ + 1| < 1. (10)

Both Equation 8 and Equation 10 describe a unit circle with a centre point (-1, 0) on the complex plane and
are expressed in terms of β. Therefore, if Equation 10 is plotted as a unit circle on the complex γ-plane,
Equation 8 can be mapped onto the γ-plane as a circle with a centre point at −g̃ [17], where

g̃ =
g11g22

g12g21
(11)

and radius |g̃|. The centre point of each of these circles can be used to calculate a compensator that minimises
the respective error signal and the points around the outer edge of each circle can be used to calculate a
compensator that neither attenuates or enhances the error. Both circles will intersect at the origin (0,0) of the
complex plane, which represents no control being implemented. A point, γ, from the complex plane can be
selected and the corresponding compensator calculated as

κ =
γ

(1 + γ)g11
. (12)

Two examples are given in Figure 3 at 600 Hz and at 5186 Hz. From the results shown in Figure 4(a), it
can be seen that the (−1,0) point that corresponds to minimisation of the local vibration lies within the circle
of control of the reflected wave. Since the point lies approximately half way between the ± 0 dB circle and
the − 6 dB circle, a compensator calculated from this point will result in the reflected wave being attenuated
by approximately 3 dB. In this case, a blue circle marks this point because it corresponds to the optimum
local vibration reduction without an enhancement of the reflected wave. If, however, the reflected wave is
minimised by calculating a compensator from the point −g̃, then the local vibration will be enhanced by
a little over 6 dB because this point falls just outside of the + 6 dB circle. To reduce the reflected wave
without enhancing the local vibration, the point marked by the blue circle at approximately (−1.9,−0.4) can
be used to calculate a compensator. Figure 4(b) shows a similar set of results, however, in this case the
frequency being controlled is 5186 Hz. This frequency also represents a more common set of circles, where
minimising either quantity will result in enhancement of the other. From these results, it can be seen that
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Figure 3: The red circle representing control of the reflected wave component plotted with respect to the
black unit circle representing control of the local vibration at (a) 600 Hz and (b) 5186 Hz. The solid lines
represent 0 dB of attenuation, the dot-dash lines represent 6 dB of attenuation and the asterisk represents
minimisation of the respective quantity. The blue circles represent the best possible control in each case
without enhancing either the local vibration or the reflected wave component.

a compensator calculated from the (−1,0) point will minimise the local vibration, but will slightly enhance
the reflected wave. A compensator calculated from the −g̃ point will minimise the reflected wave but will
strongly enhance the local vibration. Calculating a compensator from the blue circle at (−0.9,−0.3) will result
in the best possible reduction in the local vibration, approximately 11 dB, without enhancing the reflected
wave. Similarly, calculating a compensator from the blue circle at (−0.6,−0.6) will attenuate the reflected
wave by approximately 2 dB without enhancing the local vibration. Each of these control cases will be
examined in the following section. It is important to note that this implementation has been performed in
the frequency domain and does not take into account issues such as stability, robustness and causality that
will be present in real-time implementation. Approaches that resolve these issues for the design of a remote
vibration controller can be found in [17–19].

3 Frequency Domain Tonal Control

In this section, the results from an offline frequency domain implementation of the 4 control cases highlighted
in Section 2.3 are presented. The four control cases are minimisation of the local vibration, minimisation of
the reflected wave, reduction of the local vibration without enhancing the reflected wave and reduction of
the reflected wave without enhancing the local vibration. In each case, regularisation has been added to the
selected γ to constrain the maximum attenuation to approximately 20 dB for clarity and to avoid unrealistic
levels of control. The results from these control implementations are presented over a frequency range of
400 Hz – 10 kHz and can be seen in Figure 4.

From the results presented in Figure 4, it can be seen that when control is set to minimise the local taper
vibration (shown by the solid blue lines), the vibration in the taper is reduced by approximately 20 dB at
all frequencies, which is simply limited by the level of regularisation used in the study. The corresponding
reflected wave component is generally unchanged, varying by approximately ± 1 dB over the bandwidth
presented. However, there are specific frequencies and frequency bands that are attenuated or enhanced
slightly more. For instance, at 600 Hz, the resonant frequency used as an example in Figure 4(a), there is
approximately 3 dB of attenuation, which is consistent with the prediction. The band of frequencies around
the resonance at 1640 Hz are enhanced by up to 8 dB. The final notable change is the large reduction around
4100 Hz, which is approximately 10 dB.
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Figure 4: Feedback control implemented for the four cases and presented in terms of the response and at-
tenuation. The effect that each compensator has in the local vibration is shown in the top plots and the effect
that each compensator has in the reflected wave is shown in the bottom plots. The uncontrolled case is rep-
resented by 0 dB of attenuation, the local minimisation case is represented by a solid blue line, the reflected
wave minimisation case is represented by a solid yellow line, the local reduction without enhancement of the
reflected wave case is represented by a dashed red line and the reflected wave reduction without enhancement
of the local vibration is represented by a purple dashed line.

When control is set to minimise the reflected wave component (shown by the solid yellow lines), the results
in Figure 4 show that the reflected wave component is reduced by approximately 20 dB at all frequencies,
which is again limited by the selected level of regularisation. It can be seen from the response in the taper, that
this control strategy leads to a significant increase in the taper vibration of up to 40 dB. There are, however,
two narrow frequency bands where the local vibration is reduced by up to 12 dB and these are around 620 Hz
and 4108 Hz. This control strategy is of particular interest because one of the key performance criteria of an
ABH is its reflection coefficient. It has been previously shown that the reflection coefficient can be controlled
using a feedforward architecture [16] and this study provides more insight into the effect that minimising the
reflection coefficient has on the vibration level in the taper. It is clear that vibration is significantly enhanced
and this may lead to structural fatigue.

In order to reduce effects of structural fatigue, the reflected wave can be controlled without enhancing the
level of vibration in the tip or, alternatively, the local vibration in the tip can be reduced without enhancing the
reflected wave component, thus maintaining the passive performance of the ABH whilst reducing structural
fatigue. The performance of the former control strategy is shown by the dashed purple line in Figure 4 and the
latter control strategy is shown by the dashed red line. When control is implemented to reduce the reflected
wave component without enhancing the local vibration in the taper, it can be seen from the results in Figure
4 that there are only two narrow bandwidths where the reflected wave can be reduced by approximately



20 dB without enhancing the taper vibration. These narrow bandwidths occur around 610 Hz – 624 Hz and
4090 Hz – 4134 Hz. There is also a reasonable reduction in the reflected wave of around 6 dB – 8 dB at and
around the 200 Hz, 600 Hz, 1328 Hz, 1654 Hz and 1964 Hz resonances. When control is set to reduce the
local taper vibration without enhancing the reflected wave component, it can be seen from Figure 4 that there
are a number of wide frequency bands where the taper vibration can be reduced by approximately 20 dB
without enhancing the reflected wave. These frequency bands are 422 Hz – 622 Hz, 1100 Hz – 1350 Hz,
1970 Hz – 2550 Hz, 3524 Hz – 3620 Hz, 4032 Hz – 4122 Hz and 5044 Hz – 5144 Hz. It can also be seen
from the results in Figure 4 that there is a good reduction in the local taper vibration outside of these bands
of up to 16 dB.

4 Conclusions

This paper has presented an investigation into the use of feedback control in an active ABH. In this study,
a remote damping method has been used to examine how four different control strategies affect the local
vibration in the taper and the reflected wave component. The results from this investigation have shown
that when the local taper vibration is controlled, there is very little effect on the reflected wave component,
which limits the use of this control strategy in the improvement of ABH performance. This indicates that
a control strategy such as pure velocity feedback is unlikely to have any significant performance benefits,
except perhaps at one or two very specific frequencies. When the reflected wave is controlled, the vibration
in the taper is greatly enhanced. This control strategy can be compared to the feedforward control strategy
presented in [16] and provides more insight into what actively reducing the reflection coefficient does to the
ABH taper. Although the performance has been greatly improved in terms of the reflected wave control,
the enhancement of vibration in the thin region of the taper may increase structural fatigue and lead to
early failure in industrial applications. When the reflected wave is controlled without enhancing the local
vibration in the taper, it has been shown that there are only a small number of narrow bands where a large
reduction in the reflected wave can be achieved. However, a reasonable level of control can be performed
at the resonant frequencies and so this control strategy may be of interest if examining the radiated sound
from the structure, which has not been addressed in this paper. When the local vibration in the taper is
controlled without enhancing the reflected wave component, is has been shown that at a significant number of
frequencies, including the resonances, the local taper vibration can be greatly reduced without incurring any
enhancement in the reflected wave. This control strategy may, therefore, be useful in industrial applications
where a passive ABH provides enough damping but is suffering from fatigue due to high vibrational levels
in the taper. Therefore, the final two control strategies have shown that, in applications where it may not be
suitable to completely minimise the reflected wave in the taper, a compromise can be met where limitations
can be set on the vibration level in the taper and the reflection attenuating performance can be maintained or
improved whilst adhering to these limits.
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