The University of Southampton
University of Southampton Institutional Repository

Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20′N and 13°30′N, Mid Atlantic Ridge)

Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20′N and 13°30′N, Mid Atlantic Ridge)
Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20′N and 13°30′N, Mid Atlantic Ridge)

Microbathymetry data, in situ observations, and sampling along the 13°20′N and 13°20′N oceanic core complexes (OCCs) reveal mechanisms of detachment fault denudation at the seafloor, links between tectonic extension and mass wasting, and expose the nature of corrugations, ubiquitous at OCCs. In the initial stages of detachment faulting and high-angle fault, scarps show extensive mass wasting that reduces their slope. Flexural rotation further lowers scarp slope, hinders mass wasting, resulting in morphologically complex chaotic terrain between the breakaway and the denuded corrugated surface. Extension and drag along the fault plane uplifts a wedge of hangingwall material (apron). The detachment surface emerges along a continuous moat that sheds rocks and covers it with unconsolidated rubble, while local slumping emplaces rubble ridges overlying corrugations. The detachment fault zone is a set of anostomosed slip planes, elongated in the along-extension direction. Slip planes bind fault rock bodies defining the corrugations observed in microbathymetry and sonar. Fault planes with extension-parallel stria are exposed along corrugation flanks, where the rubble cover is shed. Detachment fault rocks are primarily basalt fault breccia at 13°20′N OCC, and gabbro and peridotite at 13°30′N, demonstrating that brittle strain localization in shallow lithosphere form corrugations, regardless of lithologies in the detachment zone. Finally, faulting and volcanism dismember the 13°30′N OCC, with widespread present and past hydrothermal activity (Semenov fields), while the Irinovskoe hydrothermal field at the 13°20′N core complex suggests a magmatic source within the footwall. These results confirm the ubiquitous relationship between hydrothermal activity and oceanic detachment formation and evolution.

faulting, hydrothermal field, mass wasting, mid-ocean ridge, oceanic core complex, oceanic detachment fault
1525-2027
1451-1482
Escartín, J.
43307177-8a31-43f6-a803-32ead6382526
Mével, C.
8c55f020-7c37-403f-b4a9-149556462364
Petersen, S.
875014f4-eace-4bed-b9f4-44f75757c678
Bonnemains, D.
e497fd49-7bca-4143-becd-6b761b67ac91
Cannat, M.
a20fa97e-e8ff-4fee-a35b-3dd86bf27f1a
Andreani, M.
e0675a30-8a22-484e-a8b4-a4186d9a7965
Augustin, N.
7c83ff76-a3b8-4788-b40f-616062037694
Bezos, A.
8de0f45e-0a01-46d0-9842-54099a02ad61
Chavagnac, V.
db0737e8-19d9-4464-a235-9a544197471f
Choi, Y.
43a46a26-38dc-42ed-9bb7-28b0dfb083bb
Godard, M.
0bfe00d4-a306-4519-bce5-2c4305a15e1d
Haaga, K.
81d59e18-67f7-4957-ad7c-851d636325d8
Hamelin, C.
a1338291-1084-4b2f-aa1a-7c110a09b1b0
Ildefonse, B.
226d2f9b-a624-47df-b62e-6edba9ce59cd
Jamieson, J.
0122a2d2-4388-4492-8671-2be1abcb2ae2
John, B.
08999a65-9d4f-4b55-a84b-3caabe584ef0
Leleu, T.
0f7d0f90-04c0-4e95-9e72-839db1ed288a
MacLeod, C.J.
bee8897a-df69-460c-8a8f-21b753182f5b
Massot-Campos, M.
a55d7b32-c097-4adf-9483-16bbf07f9120
Nomikou, P.
050e8389-60f3-4fb7-a3f5-cd472dcca71f
Olive, J.A.
39cd8d91-2300-4559-9256-d257c27906b2
Paquet, M.
c5a395c7-0108-4b91-ba70-b02c935bdc5d
Rommevaux, C.
bec297cd-6a67-4163-a151-664b07c4412d
Rothenbeck, M.
1d5ba79c-d650-42ea-b432-23a1f8fd53cf
Steinfuhrer, A.
6e4e1d21-c1e7-4e4b-9c02-96b717517d00
Tominaga, M.
25aedd1e-45a6-4f0f-9367-48a08454841f
Triebe, L.
e8d532aa-67fe-4648-bd8d-a32c79a6ede5
Campos, R.
a55d7b32-c097-4adf-9483-16bbf07f9120
Gracias, N.
a5e6835e-8a5d-44fc-9b85-7040914bb105
Garcia, R.
55cc4650-b47b-4991-be54-3959909792c5
Escartín, J.
43307177-8a31-43f6-a803-32ead6382526
Mével, C.
8c55f020-7c37-403f-b4a9-149556462364
Petersen, S.
875014f4-eace-4bed-b9f4-44f75757c678
Bonnemains, D.
e497fd49-7bca-4143-becd-6b761b67ac91
Cannat, M.
a20fa97e-e8ff-4fee-a35b-3dd86bf27f1a
Andreani, M.
e0675a30-8a22-484e-a8b4-a4186d9a7965
Augustin, N.
7c83ff76-a3b8-4788-b40f-616062037694
Bezos, A.
8de0f45e-0a01-46d0-9842-54099a02ad61
Chavagnac, V.
db0737e8-19d9-4464-a235-9a544197471f
Choi, Y.
43a46a26-38dc-42ed-9bb7-28b0dfb083bb
Godard, M.
0bfe00d4-a306-4519-bce5-2c4305a15e1d
Haaga, K.
81d59e18-67f7-4957-ad7c-851d636325d8
Hamelin, C.
a1338291-1084-4b2f-aa1a-7c110a09b1b0
Ildefonse, B.
226d2f9b-a624-47df-b62e-6edba9ce59cd
Jamieson, J.
0122a2d2-4388-4492-8671-2be1abcb2ae2
John, B.
08999a65-9d4f-4b55-a84b-3caabe584ef0
Leleu, T.
0f7d0f90-04c0-4e95-9e72-839db1ed288a
MacLeod, C.J.
bee8897a-df69-460c-8a8f-21b753182f5b
Massot-Campos, M.
a55d7b32-c097-4adf-9483-16bbf07f9120
Nomikou, P.
050e8389-60f3-4fb7-a3f5-cd472dcca71f
Olive, J.A.
39cd8d91-2300-4559-9256-d257c27906b2
Paquet, M.
c5a395c7-0108-4b91-ba70-b02c935bdc5d
Rommevaux, C.
bec297cd-6a67-4163-a151-664b07c4412d
Rothenbeck, M.
1d5ba79c-d650-42ea-b432-23a1f8fd53cf
Steinfuhrer, A.
6e4e1d21-c1e7-4e4b-9c02-96b717517d00
Tominaga, M.
25aedd1e-45a6-4f0f-9367-48a08454841f
Triebe, L.
e8d532aa-67fe-4648-bd8d-a32c79a6ede5
Campos, R.
a55d7b32-c097-4adf-9483-16bbf07f9120
Gracias, N.
a5e6835e-8a5d-44fc-9b85-7040914bb105
Garcia, R.
55cc4650-b47b-4991-be54-3959909792c5

Escartín, J., Mével, C., Petersen, S., Bonnemains, D., Cannat, M., Andreani, M., Augustin, N., Bezos, A., Chavagnac, V., Choi, Y., Godard, M., Haaga, K., Hamelin, C., Ildefonse, B., Jamieson, J., John, B., Leleu, T., MacLeod, C.J., Massot-Campos, M., Nomikou, P., Olive, J.A., Paquet, M., Rommevaux, C., Rothenbeck, M., Steinfuhrer, A., Tominaga, M., Triebe, L., Campos, R., Gracias, N. and Garcia, R. (2017) Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones (13°20′N and 13°30′N, Mid Atlantic Ridge). Geochemistry, Geophysics, Geosystems, 18 (4), 1451-1482. (doi:10.1002/2016GC006775).

Record type: Article

Abstract

Microbathymetry data, in situ observations, and sampling along the 13°20′N and 13°20′N oceanic core complexes (OCCs) reveal mechanisms of detachment fault denudation at the seafloor, links between tectonic extension and mass wasting, and expose the nature of corrugations, ubiquitous at OCCs. In the initial stages of detachment faulting and high-angle fault, scarps show extensive mass wasting that reduces their slope. Flexural rotation further lowers scarp slope, hinders mass wasting, resulting in morphologically complex chaotic terrain between the breakaway and the denuded corrugated surface. Extension and drag along the fault plane uplifts a wedge of hangingwall material (apron). The detachment surface emerges along a continuous moat that sheds rocks and covers it with unconsolidated rubble, while local slumping emplaces rubble ridges overlying corrugations. The detachment fault zone is a set of anostomosed slip planes, elongated in the along-extension direction. Slip planes bind fault rock bodies defining the corrugations observed in microbathymetry and sonar. Fault planes with extension-parallel stria are exposed along corrugation flanks, where the rubble cover is shed. Detachment fault rocks are primarily basalt fault breccia at 13°20′N OCC, and gabbro and peridotite at 13°30′N, demonstrating that brittle strain localization in shallow lithosphere form corrugations, regardless of lithologies in the detachment zone. Finally, faulting and volcanism dismember the 13°30′N OCC, with widespread present and past hydrothermal activity (Semenov fields), while the Irinovskoe hydrothermal field at the 13°20′N core complex suggests a magmatic source within the footwall. These results confirm the ubiquitous relationship between hydrothermal activity and oceanic detachment formation and evolution.

This record has no associated files available for download.

More information

Accepted/In Press date: 17 February 2017
e-pub ahead of print date: 23 February 2017
Published date: 1 April 2017
Keywords: faulting, hydrothermal field, mass wasting, mid-ocean ridge, oceanic core complex, oceanic detachment fault

Identifiers

Local EPrints ID: 443959
URI: http://eprints.soton.ac.uk/id/eprint/443959
ISSN: 1525-2027
PURE UUID: 2543389b-6911-4c6d-a292-abceb00867a2
ORCID for M. Massot-Campos: ORCID iD orcid.org/0000-0002-1202-0362
ORCID for R. Campos: ORCID iD orcid.org/0000-0002-1202-0362

Catalogue record

Date deposited: 18 Sep 2020 16:30
Last modified: 17 Mar 2024 03:54

Export record

Altmetrics

Contributors

Author: J. Escartín
Author: C. Mével
Author: S. Petersen
Author: D. Bonnemains
Author: M. Cannat
Author: M. Andreani
Author: N. Augustin
Author: A. Bezos
Author: V. Chavagnac
Author: Y. Choi
Author: M. Godard
Author: K. Haaga
Author: C. Hamelin
Author: B. Ildefonse
Author: J. Jamieson
Author: B. John
Author: T. Leleu
Author: C.J. MacLeod
Author: P. Nomikou
Author: J.A. Olive
Author: M. Paquet
Author: C. Rommevaux
Author: M. Rothenbeck
Author: A. Steinfuhrer
Author: M. Tominaga
Author: L. Triebe
Author: R. Campos ORCID iD
Author: N. Gracias
Author: R. Garcia

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×