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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE
INSTITUTE OF SOUND AND VIBRATION RESEARCH

Doctor of Philosophy

ROBUST OPTIMAL DESIGN USING PASSIVE AND
ACTIVE METHODS OF VIBRATION CONTROL

by David Keith Anthony

This thesis is concerned with the design of a lightweight cantilever structure to optimise the
vibrational energy transmitted from the base to the end. The methods by which this is achieved
are: 1) the use of geometric redesign of the structure (passive optimisation), ii) the application
of Active Vibration Control (AVC) techniques (active optimisation), iii) combinations of both
passive and active methods. However, even though the nominal performance of a structure may
be optimal, the sensitivity of the structure to small geometric perturbations (e.g., those
representing manufacturing tolerances) also needs to be considered. For some optimal
structures their performance deteriorates rapidly in the face of such perturbations, and a better
solution may be a structure with a slightly worse performance but that is robust to such
perturbations.

Optimised structures were designed using the methods outlined above. For passively
optimised structures, good reductions in vibration transmission were achieved using both
classical optimisation methods and genetic algorithms (GA). The structures attained using the
classical methods were not at all robust, to the extent that the nominal performance would not
be realised in practice. Using GA, in general, it was found that the wider the frequency band
over which the average performance was assessed, the more robust the structures produced.
For active control, optimal actuator positions were sought to achieve the best reductions
attainable using feedforward control. The control effort associated with an AVC system also
needs to be considered when selecting an optimal solution, and as with the performance, the
robustness in the face of geometric perturbations needs to be assessed. The choice of the
parameter representing the vibration was also investigated and it was found that the choice of
parameter can affect the success in reducing the physical vibration. Optimised structures were
also produced using both passive and active methods, and the robustness of their performance
and control effort evaluated. It was seen that the application of AVC with a geometrically
optimised structure is more effective and more efficient than with the unoptimised structure.

Finally, optimisation was considered so as to produce structures with performance which are
both optimal and robust to geometric perturbations. Different methods were used and it was
found that increases in robustness can be obtained whilst maintaining similar levels of nominal

performance, and with only a doubling of the required computational expense.
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CHAPTER 1

Introduction

1.0 INTRODUCTION TO THE PROBLEM OF VIBRATION ON
AEROSPACE STRUCTURES

Unwanted vibration in a structure can have many undesirable effects. It can cause damage to
the structure itself or components to which it is connected. It may prevent the structure being
used for its intended application if the vibration occurs in critical regions. The example
motivating the study here is that typical within the aerospace industry: to control the vibration,
originating from the main body of a satellite, at the far end of a boom arm where typically
antennae are mounted. Some structures (especially those employed in space) often have
inherently small amounts of damping and the transmission of vibration through the structure
can be an important issue. The need is even greater in lightweight structures as the controlling

inertial effects of the mass are reduced.

Traditional techniques to reduce vibration are to increase the mass and damping of the
structure. The former is normally in violation with design goals, and the latter is the most
regularly applied passive technique, but this can also increase the mass. It is desirable to
consider the dynamic behaviour of the structure during its design and it may be possible to the
optimise the inherent performance alleviating the need for any additional vibration control
measures. A more recent development has been the application of Active Vibration Control
systems that act to produce counter vibrations in order to reduce vibration. This may be
employed together with traditional techniques, but since there is an interaction between both
methods the successful application is often not a straightforward procedure. Alternatively,
where applicable and practical, vibration transmission can be reduced by dynamically isolating

the structure, again using the aforementioned techniques.

Previous work by Keane (1995b) has considered the optimisation of the geometry of a
lightweight two-dimensional structure comprised of 40 rigidly joined beams to minimise
vibration transmission. The positions of the joints were used as the optimisation variables. The
design was optimised in order to produce a structure that inherently had a much greater degree
of vibration isolation than the original, traditional, regular design (achieving an improvement of

three orders of magnitude). The study presented in this thesis uses an identical structure model

to that used by Keane.



Although the optimised designs show better performance in theory, practical design
implementations with exactly the required parameters may not be feasible, due to
manufacturing tolerances, for example. Even if this was not the case, the parameters might
change during service due to, for example, thermal expansion and contraction. If the effect of
these changes on the optimised performance is not studied then a design candidate that is
predicted to be the best (under nominal operating conditions) in service may yield less than
optimum performance. Another candidate design, although having a slightly lower optimised
performance under nominal operating conditions may be less sensitive (more robust) to

changing operating conditions, and is thus would be a more practical choice.

In aerospace structures the unwanted vibration originates from both acoustic and vibration
sources. Testing on the grounds of both form key constituent parts of a spacecraft programme.
Typical bandwidths are 30Hz to 10kHz for acoustic and 20Hz to 2kHz for vibration (Forgrave
et al, 1999). Often testing for both types of excitation is necessary as the structural response is
different. For vibration excitation the structure tends to acts as a high pass filter. This effect is

reported and experimentally demonstrated by Bondaryk (1997). Only structural excitation is

considered here.

1.1 BACKGROUND TO WORK PRESENTED IN THESIS

A brief background of several areas addressed in the thesis is presented here. The intention is to
give a general overview and not report an exhaustive survey. Where such surveys exist, to the

author’s knowledge, these are included.

1.1.1 METHODS OF MODELLING VIBRATIONS IN STRUCTURES

The systematic analysis of vibrations is normally first accredited to Rayleigh (1894). The
mathematical description of beams undergoing transverse or flexural vibration was achieved by
Euler and Bernoulli, (as detailed in Bishop & Johnson, 1960, for example), although this beam
model is sufficient for most cases an improved model was reported by Timoshenko (see for

example, Timoshenko, 1995).

A composite structure comprising of beams can be modelled as a system in a number of ways.
The three main approaches used are: Dynainic Stiffness method (Langley, 1990), Finite
Element Analysis (Zienkiewicz, 1965) and more recently Statistical Energy Analysis (Lyon,
1975).

The dynamic stiffness methods model a composite structure using a dynamic stiffness matrix

that describes all the degrees of freedom of the system. It uses a governing equation for each of



the elements, and thus its application is limited to structures where the components can be
represented by simple beam or plate models. For complex structures whose components cannot
be represented by such models, the structure may be divided into small elements (small in
relation to the smallest wavelength considered) each of which is represented by a model, which
depends on the element size and model order. Finite element analysis can solve the system by
equating motion and forces at the interfaces between all adjoining elements. For large models or
for high frequency analysis the number of elements required grows rapidly and is normally

limited either by computing storage capacity or solution time.

However, as with all deterministic modelling methods, as the frequency region of interest
becomes higher the response is complicated by the high modal density of the structure. The
response at each frequency is strongly dependent upon many modes (whereas at lower
frequencies the response at any one frequency is dominated by, at most, a few modes). Due to
the sensitivity of the relative phase of the modal responses and the exact modal frequencies, the
overall response becomes uncertain and sensitive to the smallest changes in the structure or its
parameters. Statistical energy analysis is a probabilistic analysis method in which the structure
1s divided into subsystems, each of which is described by its gross properties. The properties of
the connections between contiguous sub-systems, since the phase and the magnitude are
relatively unpredictable, are treated as random. The parameter that is used to describe the
system behaviour is the total time-averaged energy of the vibrations. Thus the ‘power flow’
between the subsystems, the power inputs and the external forces are used to describe the
structure’s response. Examples of statistical energy analysis used for beam structures are given

by Shankar and Keane (1997).

Receptance analysis is closely related to the dynamic stiffness method, it was reported by
Bishop and Johnson (1960). The receptance of composite systems may be determined from the
receptances of individual components. This was used to form the Greens functions that were
used as the basis of energy flows in a network of beams by Shankar and Keane (1995). The
method is computationally more costly than for using the dynamic stiffness method for the
same structure. The composite receptance matrix is of larger dimension than the dynamic
stiffness matrix as the solution defines all degrees of freedom for all structural components
separately. This leads to a longer solution time. One advantage is therefore that intermediate
information within the structure is readily available. A major advantage with this method is that
it is based on a modal solution of each element, and their modeshapes, if not readily represented
by a theoretical model, can be determined experimentally or from finite element analysis. Farag

and Pan (1997) also use a similar receptance method, additionally considering torsion of



beams. They state that their model ‘fills the gap” between finite element analysis and statistical

energy analysis, where each method has its own limitations.

1.1.2 ACTIVE CONTROL OF VIBRATION

Active Vibration Control (AVC) techniques use secondary control forces applied to the
structure by a controller which uses sensory information to reduce some measure of the
structural vibration caused by the originating primary vibration source. There has been a
wealth of research in this area over the last three decades, made possible by advances in digital
signal processing. The work has been extensively investigated and reported by Fuller et al
(1996) and Hansen and Snyder (1997). Generally, two types of control strategy are used;
feedforward and feedback. The former is the simpler control algorithm, but requires a coherent
measure of the primary vibration source in the form of a reference signal. This is often
available in practice, particularly for deterministic disturbances where, for example, a
tachometer can provide a reference signal for rotating machinery. Figure 1.1 shows the basic
scheme of a feedforward AVC system. The adaptive controller uses the reference signal and
error output to continuously adjust the secondary control forces to minimise the output error.
The parameter used as the output error signal is commonly an acceleration measurement but
some other parameters are discussed below. The reference signal provides a measure of the
primary force input, and for correct operation should not be affected the secondary force
outputs. Feedback control does not require such a reference signal, but there are limitations on
the performance due to causality and stability constraints. Feedback control is particularly used
to control individual modes in the low frequency region, whereas feedforward control can
operate on a frequency-by-frequency basis. Therefore it can be applied at frequencies where
higher modal densities exist. However, von Flotow (1988) discusses the limit that is imposed as
the modal density increases: the plant model will be inaccurate due to the uncertainty of such a
modal based model. Another alternative, for example, is to use a travelling wave based model.
Initially only feedback control was considered for broad band frequency control, however
recently this has also been shown to be achievable using a feedforward strategy (Vipperman et
al 1993). There are also practical causality constraints for feedforward AVC systems, which

become increasingly more stringent with increasing frequency for flexural waves as discussed

by Elliott and Billet (1993).

It is noted incidentally that genetic algorithms (which are discussed below) have also been
employed in AVC control algorithms to determine the response of the controller, for simple
broad band control of beam (Hossain ez al, 1995), and also to adapt a parametric controller for

active control of sound (Tang et al, 1996).



The success of such techniques depends on many factors including: the positioning of the
sensors and actuators on the structure, the parameter which is controlled and the types of
sensors and actuators used to measure each parameter. The latter is outside the scope of this
thesis. The effect of the choice of parameter minimised by the control system is discussed

below, and the effect of actuator position is discussed in the next sub-section.

1.1.2.1 IMPORTANCE OF THE CHOICE OF VIBRATION PARAMETER
MINIMISED

The success of an AVC system depends, in part, on the particular parameter used to represent
the vibration which is minimised by the controller. The most suitable parameter is sometimes
compromised on practical grounds, it is easier to control a readily measurable quantity such as
velocity, acceleration or force. Originally this parameter simply represented the magnitude of
the vibration in the region of one or a number of strategic points, however from early on the use
of a representation of energy flow (or power) was seen as a more effective practice. In general
structures are lightly damped and therefore the mechanical impedance is strongly dependent
upon the vibration frequency and also the positions of the sensors and actuators on a structure.
Therefore, a single measurement of velocity or force is not a sufficient representation of power.
Earlier use of power (Redman-White et al, 1987) demonstrated the advantage of using a power
measurement, despite the added complexity of such systems. Howard and Hansen (1997) show
that if either the force or the acceleration are minimised as a cost function for active vibration
isolation, this does not necessarily lead to the minimisation of the other. Pan and Hansen (1993)
demonstrate that the use of acceleration as a measurement to reduce power flow along a beam
is sufficient if the sensor is placed outside the near field of any power sources. Power is used as
the cost function parameter for vibration isolation by Bardou et al (1997), who compares
different types of strategy used (to minimise power supplied by the primary source or maximise
power absorbed by the secondary sources). Brennan et al (1995) also show that the best power

measurement strategy can depend upon the nature of the problem.

1.1.2 STRUCTURAL OPTIMISATION FOR DYNAMIC PERFORMANCE

There has been much research into the areas of structural optimisation, chiefly based in the
aerospace industry where lightweight lightly damped structures are abundant. Initially much of
the early work evolved around the static correction of space structure, which is still a continued

line of research, for example Furuya and Haftka (1995).

In terms of structural dynamic optimisation, much work has been reported by Keane. The
advent of structural optimisation by passive techniques has tended to evolve later than the

application of active vibration control, as the passive techniques often rely on the application of



recently developed non-classical optimisation techniques. Earlier work reported a simple
structural filter between two coupled rods which was optimised using classical and the more
recent evolutionary techniques (Keane, 1993). This was then extended to a two-dimensional
structure similar to those employed on satellites (Keane, 1994 and 1995b), culminating in a
passive design achieving values of vibration isolation comparable to that achievable using
active techniques. The success was borne out experimentally (Keane and Bright, 1995), and
extended to a three-dimensional structure (Keane and Brown, 1996). Another method of

passive structural optimisation is to add masses to the joints of the structure, as studied by

Bondaryk (1997).

The position of the sensors and actuators within the fields of both Active Control of Sound
(Nelson and Elliott, 1992) and AVC is identified as being a key element to the success of such
techniques; it is still the subject of much research. This area normally presents highly
combinatorial, multi-modal (and often discrete) optimisation problems. Even if classical
optimisation techniques can be used they need to be combined with other elements to ensure
that more global than local solutions result. Benzaria and Martin (1994) used gradient method
combined with a random sampling of the search space, and also noted that the problem is
highly sensitive to the data. A recent survey by Padula and Kincaid (1999) summarises much
of the history in this area, including its use for acrospace applications. Evolutionary algorithms
are now often used for such optimisation problems. The most commonly applied techniques are
genetic algorithms (Goldberg, 1989) or simulated annealing (Kirkpatrick ez al, 1983). These

techniques find very good, but not necessarily the optimum solutions.

In the application of lightweight structures, Chen et a/ (1991) used simulated annealing to find
the optimum positions of actuators on 54 and 150 beam structures, whilst additionally the
position of a number of beam dampers were simultancously optimised. Furuya and Haftka
(1996) use genetic algorithms to find optimal actuator positions for 8 actuators on a 1507 beam
structure. Simpson and Hansen (1996) use a simple model of an aircraft interior, and determine
optimum actuator positions using genetic algorithms, De Fonseca and Van Brussel (1999)
perform a comparative study of different optimisation techniques on a similar sensor and
actuator positioning problem in an aircraft trim panel. Both the latter two references had the
objective of minimising the sound radiated. De Fonseca and Van Brussel found that some
classical optimisation algorithms with random-based elements can sometimes perform better
than genetic algorithms. In general, variations of the genetic algorithm parameters undergo
trials in order to improve the convergence of the search. Furuya and Haftka (1993) use
different non-binary representation of actuator positions, and later (Furuya and Haftka, 1996)

used an initial population of relatively fit chromosomes together with a modified mutation



operator based on simulated annealing. However, improvement of the algorithms is likely to be
problem specific. It is also important to ensure that the control energy required by the control
system is realistic, this can be achieved by optimising the control system parameters as well as
the actuator positions, as reported by Onoda and Haftka (1987) and Kim et a/ (1997), for
example. Zimmerman (1993) showed that the consideration of the actuator mass is important,
and this can result in different optimal actuator positions on lightweight structures to those if

the actuators are considered mass-less.

Optimisation of both geometry or topology and actuator positioning has been reported. Liu et
al (1997) used simulated annealing, and Liu ef al (1998) and Furuya (1995) used both
simulated annealing and genetic algorithm optimisation, in order to simultaneously optimise
structure topology and the actuator positions. Here the beam cross-sections are variable and the
structure geometry fixed. The work reported by Keane, above, differs in that the structure
geometry is allowed to undergo changes with beams of fixed cross-section. Zhu et al (1999)
uses sequential quadratic programming optimisation to simultancously optimise the structure
and the controller. Both parallel and serial strategies are used, and the former is found to yield

better and more efficient solutions.

1.1.3 CONSIDERATION OF ROBUSTNESS TO PARAMETRIC UNCERTAINTY

Consideration of the robustness of optimal designs to structural changes began in the aerospace
industry with that for the static shape correction. Adelman and Haftka (1986) provide a review
of the deterministic methods used to address static and transient behaviour. More recently, and
for the robust optimisation of the dynamic performance of structures, Rao et al (1990)
considered robustness as part of a multi-objective optimisation for simple structures, and the
effects of such structures to thermal distortion has been reported by, for example, Haftka and
Adelman (1985) and by Farmer et a/ (1992). Hahn and Ferri (1997) evaluated the radiation
and scattering properties for a structural-acoustic problem using variations in values of
material properties to study the effect on the performance. Omoto and Elliott (1996) studied the
effect on a feedforward Active Control of Sound system by using a set of measurements
achieved from system perturbations. Furuya (1995) used the average response gained from the

random perturbation of beam length in a optimum AVC actuator placement problem.

Prediction of the response of structures by using probabilistic variations on system parameters
has been reported by Keane and Manohar (1993) and Manohar and Adhikar (1998).
Alternatively, computer experiments can by used to measure the robustness of a system.
Orthogonal arrays were used as a more efficient technique in place of Monte Carlo based

parameter adjustment for evaluating the trajectory of a satellite on re-entry (Lautenschlager et



al, 1995) and for the optimisation of design parameters for a satellite (Erikstad et al, 1995).
Finally, Nair et al (1998) report an efficient method of calculating the first-order response of a

system subject to parametric perturbations.

1.2 SCOPE AND CONTRIBUTION OF THESIS

The study of the sensitivity of the performance of a structure to parametric uncertainty
(robustness) is often a highly combinatorial task, and must be performed in addition to the
existing computational burden of optimisation. A study of structural optimisation using both
passive and active methods has been undertaken. This has been possible using the multi-
processor high performance computational facilities available within the Computational
Engineering and Design Centre (CEDC) at the University of Southampton. (As an indication of
the computational expense required, if all the optimisation work and robustness analysis results
presented in this thesis, had been run on a single processor with the hardware platforms
detailed, it would have required over 1.3 years of continuous computing effort.) The robustness
of the performance was investigated, with the aim of achieving optimal structure designs whose

performance can be realised in practice. Specifically the scope is defined:

1) To optimise a typical aerospace structure using passive and active methods, and using both
methods simultaneously, and to compare the performance and consequences of using each

method.

ii) To study the robustness of optimal structures, and provide a measure of expected

performance in practice.

i) To use measures of robustness to design for structures with optimal and robust

performance.

The contribution of this thesis has been: in the analysis of both passively optimised and
optimally actively controlled structures; to show that considering the robustness of the optimal
performance of structures is important in understanding the practical consequences of their
application; that the use of classical optimisation techniques can be counter-productive in
achieving robust solutions; and that it is possible to consider robustness during optimisation to

produce structures with optimal and improved robustness, and without substantial increases in
the computational expense required.
As well as being reported in this thesis, some of the work has also been accepted for

publication in a refereed journal. For passive optimisation and robustness analysis of the

structure, see (Anthony et al, 2000); for the application of active control with optimally placed



actuators and robustness analysis, see (Anthony and Elliott, 2000a); for the study of the
success of using different parametric representations of vibration, see (Anthony and Elliott,
2000b). (Further submissions are planned reporting the results and robustness analysis of the
structural optimisation using both passive optimisation and active control, an analysis of the
mechanisms by which the reductions have been achieved by the optimisation and the role

played by active control, and also the design of optimal and robust structures.)

1.3 OVERVIEW OF THESIS

The subsequent chapters of this thesis are structured as follows:

CHAPTER 2: The truss structure studied throughout this thesis is described, and details of the
receptance theory model used to predict the vibration transmission are given. The application of
Active Vibration Control techniques to the structure is described and four different cost

function parameters are derived.

CHAPTER 3: The background and supporting theory to the all the optimisation methods used
(both classical and evolutionary) are introduced, using supporting appendices. The adaptation
of genetic algorithm optimisation to incorporate a measure of parametric variation robustness
is explained. An alternative method of measuring the robustness of a system is that using
computer experiments with system parameter variations governed by orthogonal arrays. The

properties of such arrays are explained, and an example array is derived to demonstrate the

design procedure.

CHAPTER 4: The vibration transmission of the structure studied is passively optimised using
both classical and evolutionary algorithm methods, by allowing only the structure geometry to
vary. This is performed at a single frequency, and for the average over a narrow and a broad

frequency band. The robustness of all the optimal designs produced is evaluated.

CHAPTER 5: The average vibration transmission of the structure is reduced to the optimum
value achievable by applying Active Vibration Control (active optimisation) with optimum
actuator positions for one, two and three actuators, for the broad band frequency range. The
use of three other cost function parameters representing vibration is assessed to determine the
consequences of their use on the success of applying AVC. The robustness of the system

performance and the control effort required is evaluated for the best ten actuator positions in

each case.

CHAPTER 6: The average vibration transmission of the structure is optimised by using both

passive and active methods: by geometric redesign of the structure and by the application of



AVC using optimal actuator positions. Two strategies are used for this, the evaluation of
optimal actuator positions on a previously geometrically optimised structure, and the
simultaneous optimisation of both geometry and actuator positions. The robustness of all the

optimised design produced is evaluated.

A summary is then presented for all the optimised structure designs produced in this and the
preceding two chapters allowing the performance achieved, and control effort to be evaluated
against optimisation strategy. This was performed for both nominal performance and

performance with perturbed structure geometries.

CHAPTER 7: The incorporation of a measure of robustness into the optimisation parameter is
studied in order to design for optimal and robust structures. This is achieved by geometric
redesign for the average structure performance over a narrow frequency band. Two versions of
the noisy phenotype genetic algorithm and three different measures of robustness are used, each

with varying levels of additional computational complexity.

CHAPTER 8: A brief summary of all the work presented and the main findings are given, and

overall conclusions drawn. Recommendations for further study are also suggested.

10



Primary input

Unwanted ¢ > P
e o structure Plant
Vibration ®
Source (primary input to output)
. y

Adaptive Plant @ Force output

Reference signal Contoller Secondary (actuators to output) U
forces

(Error signal)
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CHAPTER 2

Dynamic Model of the Structure and the
Application of Active Vibration Control

2.0. INTRODUCTION

The structure whose dynamic performance is the subject of this thesis, is two-dimensional and
comprises of thin rigidly joined beams in a repeated bay design. This chapter outlines the
theoretical background to the mathematical models used to describe the dynamic response of
such a structure. The response of the overall structure is achieved by incorporating individual
beam models into a receptance analysis model which enables the coupling forces and the
velocities at each joint to be resolved. From these parameters the energy level in an individual

beam can be obtained. These parameters are the subject of the optimisation work which is

reported in later chapters.

In this thesis the optimisation is achieved by either the redesign of the structure geometry or the
application of Active Control of Vibration techniques, or by both methods. Predicting the effect
of Active Control of Vibration is achieved by solving a set of simultaneous equations involving
individual structure responses. The procedure for this and its application to an example
structure 1s also given. The practical success of Active Control of Vibration depends upon the
choice of cost function which is being minimised. The solutions for the minimised values of
alternative three cost functions are developed in preparation for a later comparison and

appraisal of the use of different cost functions in optimising the structural performance.

Finally, to enable an understanding of the mechanisms by which the vibration in the structures
has been reduced by optimisation, a power analysis of the structure is described, and the

constituent power components defined.

2.1 STRUCTURE SPECIFICATION AND OVERVIEW OF MODEL

The structure studied is shown in Figure 2.1 (after Keane, 1995b), in which the coordinate
units are in metres. It is a lightweight cantilever structure comprising of 40 beams of lengths
Im and 1.414m. The joints at coordinates (0,0) and (0,1) are hinged, all the other joints are
fixed (as if welded, for example). The structure and its vibration is considered in two

dimensions; motion is only considered in the x-y plane. A typical application for such a

12



structure is that of an antenna boom arm for use on a satellite. In this scenario the aim is to
reduce the vibration transmission from the base of the structure to the rightmost beam, where

an antenna may be mounted in practice.

The physical properties of the beams used in the model are: the axial rigidity, £A4, is 69.80MN;
the bending rigidity, £7, is 12.86 kNm’; the mass per unit length is 2.74kg/m. This is found to
correspond to an aluminium beam of rectangular cross-section with approximate dimensions 50
mm by 25 mm, with the longer dimension in the x-y plane. A Proportional damping model is
used for the beams (Tse, Morse and Hinkle, 1978) and all the modes of the uncoupled beams
have the same bandwidth. The value used is 20-s™ (sic. Shankar and Keane (1995) but may
also be written as (20/27) rad's™). This corresponds to a damping ratio of 5% at 200Hz. This
choice of damping parameter value is not untypical and was chosen so that a modal response
was clearly evident in the structure’s response, but not so low such that large resonant peaks

caused noise problems due to a large dynamic range (Keane, 1998).

The flexural vibration of each beam is modelled using the Euler-Bernoulli model (Bishop and
Johnson, 1960) and longitudinal vibration using a rod model, with both models using a modal
series summation. The response of the structure is analysed by studying the coupling between
all the individual beams. This is performed using a receptance analysis (Bishop and Johnson,
1960) in which the unknown displacements, forces and moments are solved for each beam end
when driven by the external force inputs. This is achieved at all the beam ends at cach joint by
equating the displacements and rotations, and summing the net forces and moments to zero.
From this analysis the power transmitted into or out of each beam end and externally applied

forces can be calculated. This process is described in detail in the next section.

The forces and moments at each beam end are solved by incorporating the individual beam
receptance relationships into a global receptance matrix, and calculating the inverse to this
matrix, which then enables the displacements and rotations to be evaluated. For the structure
analysed here the size of this matrix is approximately 170 by 170 elements. The optimisation
parameter used in the structural design is normally averaged across a frequency band, and
hence the dynamic response for each design scenario must be evaluated at a number of
frequencies, which can become computationally expensive. Therefore only the use of efficient
optimisation techniques is feasible, especially with regard to the size of the optimisation

problem, discussed in Chapter 4.

13



2.2 RECEPTANCE MODEL OF STRUCTURE

Initially, consider the general case of a single beam, shown in Figure 2.2. It is inclined by angle
O\ to the x-axis of the global coordinate system, which is shown in Figure 2.1. In order to study
the interaction between the beams, and therefore the response of the whole structure, the beam
behaviour at two, and sometimes three points needs to be considered. Firstly the response at
each end obviously needs to be analysed since this is the interface between beams or
mechanical ground, which form the end conditions for the beam. If a beam has an external
force input along its length, or the displacement of a beam along its length is of interest, then a
third position is also required. In order to distinguish between forces and displacements
specified in local coordinates (where the x-axis is along the beam length) and those specified in
the global coordinates (as shown in Figure 2.1), lower and upper case symbols are used to
indicate local and global coordinates, respectively. The frequency dependence is dropped in the
following, except where necessary, and it is assumed that the analysis is repeated at each
frequency of interest.

Three components of force acting on each point of the beam are considered. Specified in the

local beam coordinates: forces acting horizontally, vertically and rotary components. The

complex forces at each point are expressed in vector notation, the forces at end 1 for beam N

are represented by vector {f v }1 where,

fl

N

ot =170t @2.1)
M,

£}, and f)lN are the axial and transverse forces acting on beam N at end 1 respectively, and

M }V is the applied moment. Following the notation used in (from Shankar and Keane, 1995),

any external forces applied to the beam are applied at positions x,, x; and x, for axial,

transverse and rotary components respectively. Similarly the displacement and rotation at end 1

are represented by the complex vector {x N }1 , defined as,

Xy

xut =3unt- 2.2)
91
N

The vectors describing the forces and displacements at beam end 0, and those at the point of

external force inputs, follow the same format, and are not explicitly defined, in the interest of
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brevity. The displacement of the beam at end 1 is the summation of the displacement
components resulting from the forces at end 0, end 1 and, if applicable, an external force
applied to the beam. For example the displacement component at end 1 due to the external

forces applied to the beam is given in terms of the beam's Green function by,

{X N }ie,\'ternal) = [GN ]le'{fN }e 4 (23)
where [G ¥ ]le is explicitly,
GN,axial (1’ xa ) O 0
I:GN ]le = O GN,I)‘an (19 xr ) GN,tran (13 D xm ) ’ (24)
0 GN,I/‘an (D 17 xt ) GN,tr‘an (D 17 D xm )

and describes the displacement response at end 1 due to an external force. (Note that the
superscripts represent the type of Green function, three options are available for each symbol:
0, 1 and e. The superscripts do not describe the positions explicitly but simply distinguish
between each end of the beam and any external input. The first superscript defines the location
of the displacement response, due to an excitation force whose position is defined by the
second superscript). D denotes the derivative operator at either the point of response or
excitation, as denoted. The non-zero elements of the matrix are Green functions which describe
the displacement or rotational response to input forces or moments on the beam. Their notation
is,

Gy <input_type> (< response >,< excitation >).

The type of input force, <imput_type>, is either axial or tran (transverse), <response> is the
position that the displacement (in local beam coordinates) produced by the input force at
location <excitation>. All distances along the beam are referenced from end 0. Where the
response or excitation is either a bending moment or rotary component then the derivative of

either the force or displacement, respectively, with respect to distance along the beam at that

point is used.

The individual Green functions can be thought of as complex transfer receptances, each of
which 1s evaluated from a summation of a series of » modal contributions. # is sufficiently

large so that the n modal frequency is higher than, and makes an insignificant contribution at,

the highest frequency studied. So,

Gy <input_pe> (x, y) - Z o, (x)¢j (y )

(2.5)
J=0 leN(('O:;" -0’ +icd(‘0)

2
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where Iy 1s the length and py the mass per unit length of beam N. ¢{(x) is the value of the mass
normalised modeshape at position x from the end 0 of the beam, ¢y the natural frequency of the
j™ mode. The Green function is evaluated at frequency @, but the frequency dependence is
omitted, as noted above. ¢, is the beam damping, which is the same for all modes and all
beams. It can be related to the damping ratio { such that, ¢; = 2y for mode ;. Here
proportional damping is used and c, is specified directly, in the units of rad s, It can be shown
that for light damping (as for the value of damping used for the structure considered) that the
bandwidth of each beam mode is approximately equal to the value of ¢,. The modeshapes for
the axial and transverse mode must be normalised according to some consistent scheme, and

also rigid body motion of the beam, where permitted, must be taken into account.

The type of Green function implemented depends upon the end conditions of the beam. The two
end conditions that are applicable here are hinged-free and free-free. The hinged-free Green
functions are for beams that have one end jointed at the base of the structure. Although no
notation is used to distinguish between the different Green functions this is achieved by a
referenée fist for the beams which records their end conditions. On evaluating a Green function
for a beam this is referenced so the correct function is evaluated by the code. The use of the

different Green functions is illustrated in the example that follows.

The net displacement at the end 1 of the beam is the sum of the three displacement/rotation

components due to forces acting at ends 0 and 1 and any external forces. So,

T e (N 9 e (N % %) Y (M AR (2.6)

represents the net displacement at end 1. Hence each component is found from the Green
function matrix which gives the input force to output displacement response receptance at the

points on the beam studied multiplied by the force vector detailing the forces at the input point.

From the Green function matrices, such as that shown in (2.4), it can be seen that purely axial
forces only generate axial displacements, however there exists a coupling between the
transverse and rotary components, and both of these are capable of producing both transverse
and rotary components (both causing beam flexure). When beams are coupled together at
different incident angles coupling can exist between all vibration components. In order to

resolve inter-beam coupling correctly a global coordinate system must be used. This is as

shown in Figure 2.1. A coordinate transformation matrix [TN ] for each beam is defined,

16



cos@, -—sin0, 0
[T,]=|sin6, cos6, 0], 2.7)
0 0 1

which is used to define the local coordinate system for beam &, such that,

x?v X,ov
yr=[T it 2.8)
0% )¢

where uppercase characters denote global coordinates. Hence in order to convert local to global

. . -1,
coordinate systems the inverse [r, ] is used.

2.2.1 APPLICATION TO SMALL STRUCTURE EXAMPLE

In order to calculate the global receptances, enabling the vibration transmission across the
structure to be studied, all the displacements at each end of all beams coupled at one joint are
equated together and net force at each joint are equated to zero. This results in a large number
of simultaneous equations which are dealt with in matrix format. To illustrate the formation of
such a matrix a small example structure is used, which consists of one bay cantilever structure
which is shown in Figure 2.3. The structure consists of four similar rigidly joined beams. The
two leftmost points are mechanical ground and constrain the beams end by a hinged joint
(which constrains displacement but allows rotation). The other joint type is that of a ‘free’ end.
The beam and joint indexing is shown, as is the beam end notation. An external transverse
force 1s applied at a point along the length of Beam 1, similar to that applied to the structure in

this thesis. The component displacements for the three beam end at joint A are given, in full, by
LG} +[n G Y v (6. ={x.}. @9
TG ) + [l [6, 'Y +[L][6. ] ={X.}". e

[T4 ]_1 [G4 }le {f4 }e + [T4 ]‘1 [G4 ]10{f4 }0 + [T4 ]—1 [G4 ]“{f4 }1 = {X4 }1 . (21D

As Beams 1, 3, 4 each have an end which forms a hinged joint to mechanical ground, the Green
functions G,, Gs, and G4 are of the hinged-free type, whilst G, is of the free-free beam type.
This determines the modeshape used, as described above. There i1s only an external force on
Beam 1 and so the leftmost terms in (2.10) and (2.11) are zero. Similarly there is no

displacement component contribution from the ends of Beams 1 and 4 that are connected to
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mechanical ground. The second term on the left hand sides in (2.9) and (2.11) are therefore also

zero. So in this case,

[Tl ]-1 [Gl ]1e {fl }e + [Tl ]~1 [Gl ]11 {fl }1 = {Xl }] , (2.12)
[Tz ]Ml [Gz]OO {fz }O + [Tz ]_1 [Gz ]Ol{fz }1 = {Xz }o’ (2.13)

[T, ][]} ={x.}" (2.14)

All the beam end displacements are coupled by a rigid joint, and hence must all be equal. Since
{Xl}l = {Xz}o then,

(LG +[n 6 e} -6 ]t} =[n]'[c.]"{t}. @15
and since {X1 }1 = {X 4 }lthen,

G Y - e Y =[] e Y. e

Similarly equating the displacements for the two beam ends at joint B yields,

LG + [} - [L] 6]} =0. e

Next, considering the forces at the ends of the beams at each joint (using global coordinates)

the net force must be zero. Hence for joints A and B, respectively, this yields,

[T} + [, ]} + 1] {E} =o, (2.18)

[T,]71{8, } +[T,] ' {f,} =0. 2.19)

There are five unknowns (the force vectors at each non-constrained beam end) in the five

equations (2.15) to (2.19), and can, therefore be solved. This can be achieved using matrix
methods by assembling the [TN] and [G N] terms in as global matrix and the force vectors as

a concatenated force vector, using a consistent scheme,
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[t]'c]" rrle]" o [n]G] [y
[TI[G]" 0 In]'le]” o {t.y
[ 0] [T.][G.]" [ 0] [L]'[G.]" -T]G.]" | ?{{
T]" t,]" T,]” 0 0 £}
0 0 0 o lwy] ®
ELINCARTS
“[TI]‘][Gl]le{fl}g
= 0
0
L 0 o
and is more succinctly expressed,
CF=E, (2.21)

where C; is the structural coupling matrix, F the individual beam-end force vector and E the
vector of displacement components from externally applied forces. The forces at each beam end

are then solved from the inverse of Ci,

F=C.''E. (2.22)

5

In practice the explicit inverse is not determined directly, but instead a system of linear
equations is solved. Once the force vector F has been resolved, together with the appropriate
Green functions, the displacement or rotation at the ends of (or any point in between) a beam
can be found. The resolved forces are the coupling forces at each beam end, and at each joint

different forces act on each beam (though the net sum at a joint is zero).

2.2.2 CALCULATING ENERGY LEVEL WITHIN A BEAM
In order to calculate the energy level within the beam, the power dissipated in the beam must
first be found. The power at the end of each beam is considered in three components (two due

to linear motion and one due to rotation). Thus the power vector at end 1 of beam N (in global

coordinates) is,

e,V =4PL ¢ (2.23)

The power is derived from the conjugate product of the coupling force and the velocity at each
beam end. Velocities are derived from the displacements as the system being analysed at

discrete frequencies. The velocity vector representing the three velocity components at end 1 of

beam N is derived from the displacement, at frequency o,
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V. ! =iofX,}. (2.24)

It is re-iterated that the frequency dependence of the variables is omitted for clarity. The global
joint velocity is common to the beam ends which form a particular joint. It is the different
coupling forces at the end of each beam that determine the power transmitted between beams.
For each power component, using the product of the complex force and the conjugate of the
complex velocity the real part corresponds to the power transmitted. As the analysis is

performed at discrete frequencies, the time averaged power is given by half the real part of the

product;
[mevs
P, ¥ =-2~Re F), V.. . (2.25)
Foy oy

where * denotes complex conjugation. The forces have been transformed in the global
coordinate system (as performed for the displacement vector in (2.8)). The sign of the real part

allows the direction of power in each component to be ascertained.

The sum of all the end beam forces at a joint is zero (see (2.18) and (2.19)) and all the end
beam velocities are common, so the net transmission of power into (or out of) a joint is zero.
All the net energy flowing into a beam from each end, or from an external power input, must be

dissipated in the beam, so
P, ) +{p, F +{p, J +{P, } =0, (2.26)

dam
where {PN} " is the energy lost in the beam due to effect of damping. A positive value of

o . damp . p
power indicates power into the beam, and thus {PN} is negative by definition. Hence as

the remaining terms in (2.26) are known, then the average power loss in a beam can be
calculated. The energy level in beam N is the power dissipated in the beam divided by the
damping. The beam damping specification, ¢4, is given above. The energy level ey is thus

derived from the sum of the power transmitted in all planes in beam N,

ex=— S, 1. 2.27)

Cq j=XxY.0

and where {PxN}damp, for example, represents the power dissipated (2.26) in the x-axis

direction. In the optimisations considered in the thesis the objective function is either the energy

level at a single frequency, and is thus expressed as in (2.27) with the frequency dependence
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assumed, or the average energy level over a frequency band. The calculation of this average is

detailed in Section 2.5.

2.3 APPLICATION OF ACTIVE CONTROL TO THE STRUCTURE

To support the work detailed in Chapter 5, a model for the application of Active Vibration
Control (AVC) to the structure is described. The active control system modelled here uses
double-acting axial operating actuators. For simplicity, it is assumed that the addition of an
actuator to a beam does not alter the mechanical properties of that beam. The point of
application of the forces from the actuators are offset (by 10mm) from the ends of the beams. It
is noted that the force vector f used in this section is distinct to the force vector used in

Section 2.2, and that only global coordinates are used in this section.

The base vibration is modelled as a single transverse force of 1N applied at the middle of one
of the beams adjoined to the base (as shown in Figure 2.1). In AVC terminology this is called
the primary force. Two vectors defining the effect of the force and velocity components (for all
degrees of freedom considered) at the joints of the ends of Beam 40 in Figure 2.1, in the
absence of any other forces (i.e. without active control operative) are denoted f, and v,. AVC
applies secondary forces to 'counter’ vibrations on the structure. Their effect is determined by a
vector describing the values of secondary forces of each actuator £, and either a 'transformed'
" force or mobility transfer matrix (C or Y) which represents the resultant force or velocity
components from these secondary forces at the joints at the ends of the beam. The net force and
velocity vectors from the combination of both primary and secondary forces are then given by

the summations of these two components, thus the net force vector, f, is
f=f +Cf,, (2.28)

where the format of the force vector f, which describes the forces at the ends of Beam 40, is

given by,

T
f = [ { fx40,0, fy40,0 fe40.0} { fx40,1 fyzzo,/ fe40,1 H ' (2.29)

The net velocity vector, v, is
v=v + Yf | (2.30)

where the format of the velocity vector v is given by,

T
40,0 40,0 40,0 40,1 40,1 40,1
V= [{vx v, Vg } {vx v, Vo }] . (2.31)
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v, 1s the vector of the six velocity components due to the primary force only. f; being common

to the formulation of f and v. All the net and primary force and velocity vectors (f, fp Vo V,)
are of the same format.

The two 'transformed' force and mobility transfer matrices used, C and Y, are themselves

comprised of two terms, so (2.28) and (2.30) may be written,

f=f, +C'Tf, (2.32)

v=v, +Y'Tf, , (2.33)

where C' and Y' are the force transfer and mobility transfer matrices, which define the
mechanical coupling between the actuators and their effect of the force and velocity
components at the ends of Beam 40. T is a transformation matrix which maps each axial-only
secondary force onto six components in each plant matrix. This is required as force and
velocity components at the end of Beam 40 in all degrees of freedom are not independent, but
solely defined by the axial forces of the force vector, f.. (2.32) is then explicitly (shown

extended to the case with two secondary force actuators, denoted f;),

- rf40'0 - (fz;o,o
%00 ) ffo,o
Ty {{00 {1} fS]
40,0 d 40,0 40,0 40,0 40,0 {
/o = ;fpe n l:{cm -Cpg } {CZA -Cyp } :l 1} s,
[ 401 - 401 40,1 40,1 40,1 40,1 - >
fx f‘ CIA _CIB C?_A “CzB . .
o901 40,1 .
Iy f,
il 40,1
RELEE S ]

(2.34)

where, for example, f %% is the x-axis force component at end 0 of Beam40. The sub-

X

matrices in the C' matrix are of the format,

ey’ 0 0
C'=| 0 ¢’ 0| (2.39)

40,0

0 0

where ¢}’ is the individual force transfer function for the x-axis force component at end 0 of

Beam 40 for a unit axial force at end A of the beam where the first secondary actuator is
employed. This notation is extended to responses in the y-axis, rotational components; from
end B of the actuator beam position; and for end 1 of Beam 40. The signs of the sub-matrices

for secondary drive from end B are negative to give the proper representation of a double-
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acting actuator. The reason for the diagonal format of the sub-matrices is to ensure that all the
net force and net velocity components remain independent and only combined in the final inner

product between f and v ; so that the power flow components from the six degrees of freedom

are summed and not the force or velocity components. The {1} sub-matrices in T in (2.34) are

vectors which are explicitly,

=0 1111 1), (2.36)

and maps a single value for each secondary actuator value onto the all the six individual
transfer functions it relates to. For convenience the force transfer matrix and the transformation
matrix are combined to form a transformed force transfer matrix C, as used in (2.28). In a
similar way Y, as used in (2.30), is the transformed mobility transfer matrix, where the Y'

matrix (2.33) and its sub-matrices are defined,

40,0 40,0 40,0 40,0
Y'= YlA _YIB YzA —YZB 537
- 40,1 40,1 40,1 40,1 S B (2.37a)
YIA _Ylg YZA _YZB

v, 0 0
Y'=l 0yt 0 (2.37b)

0.0

0 0 y14Ae

where y;’j"’ is the individual transfer mobility, detailing the x-axis force component at end 0 of
Beam 40 for a unit axial force at end A of the beam where the first secondary actuator is
employed.

The flexural energy level in the beam arises as a result of the balance between the average
energy flowing into the beam at its ends, and the average dissipation of the energy due to its
damping. The damping is assumed to be proportional (Tse, Morse and Hinkle, 1978). The
power dissipated is equal to the net input power to Beam 40, which for harmonic vibration is
defined as half of the real part of the conjugate product of the complex force and velocity

vectors, at the joints at the ends of the beam,
1 H
P= ERe{f v}, (2.38)
which can be more conveniently expressed in the linear form,

P:%(va+va). (2.39)
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Using (2.28) and (2.30) to express this in terms of f_, the independent variable for the cost

function minimisation as,

1 H H H H H H H H
P= e (Cm Y+ YiO + 1] (Cly, + Y7L, )+ (£, Y v, O, + 1)y, +v0E, |
(2.40)
This is written in a general quadratic form,
J=x"Ax+x"b+b"x+c, (2.41)

where A is a Hermitian matrix, b is a complex vector (which is equivalent to the secondary

force vector f;) and ¢ is a real scalar. The positive scalar ¢ represents the value of the cost

function due to the primary excitation only (without active control; x =0 ). The x" Ax term

represents the value of the cost function due to the secondary source excitation only (without
primary source of structural excitation), and this is obviously always positive (unless there is
an external power input into Beam 40). Based on these physical grounds A will always be
positive definite (see (A.2)). This was verified in practice by confirming that all the eigenvalues
of A are positive. Thus, the derivation of the minimum value of the cost function can be
greatly simplified. Also, as the AVC system is over-determined (there are more degrees of
freedom for sensors than actuators) A is of full rank (which is also ensured if positive-
definite) and thus a minimum will always exist. The minimisation of the quadratic form in

(2.41) is detailed in the Appendix A. This yields the optimum secondary control vector,
x,=—A"Db, (2.42)
and, therefore, the optimum secondary force vector is,
f, :—(C*‘YJFY“C)_I(C“Vp +Y”fp). (2.43)
From Appendix A the minimised value of the dissipated power is of the form,
J,=c-b"A7b. (2.44)

Hence the minimum net dissipated power is explicitly,

P, :i[(fp”vp v fp)—(prY+fo)(CHY+ vic)'(cty, +Y“f,,)]. (2.45)
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The average energy level was used as the cost function. This is related by a simple scaling

factor, ¢4, the beam damping which is independent of frequency. Hence the minimum energy

level Eﬂ% , at frequency @, of the beam is,

Plw
E g (0)= (@) . (2.46)
Cq
The average energy level over a frequency band is also used as the parameter to be minimised.

The frequency average used is,

1 143
(E e, ) = > Eu, (0, +(k-1)Aw), (2.47)

k=1
where n is the number of frequency steps, A® the angular frequency spacing and o, the lower

angular frequency point. A%n is 5Hz for all cases. This is equivalent to the generic cost

function average given in Section 2.5. The total control effort required to achieve the AVC

reductions is taken to be the sum of the squares of the individuals secondary forces. The total

control effort, g, is then formally,

¢ =3 0 (@, + (k- DA)E, (@, +(k~1)Aw). (2.48)
k=1

The control is summed over the same frequency range as for the performance studied.

2.4 DEVELOPMENT OF ALTERNATIVE COST FUNCTIONS TO
REPRESENT VIBRATION

This section supports the work reported in Chapter 5, in which other Active Vibration Control
(AVC) cost functions are considered and compared. The values of different minimised cost
functions are derived. It is noted that the force vector f used in this section is that used in

Section 2.3, and that only global coordinates are used in this section.

2.4.1 THE RIGID BODY KINETIC ENERGY OF A BEAM

The minimisation of the flexural energy in the beam, calculated in Section 2.3, only accounts
for the motion of the beam due to its flexure. If the beam does not undergo flexure, its power
dissipation and therefore the flexural energy is zero. However the beam may still move as a
rigid body and this motion would not be detected by Ep... So, even though Ep,, may have been

reduced to its minimum value, there may exist a significant amount of undetected rigid body
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motion, which could dominate the motion of the beam, or any object connected to it. Therefore,
a cost function was sought which represents all the beam energy due to its motion; the flexural
energy level and the rigid body kinetic energy, E,qiq. The minimisation of this fotal vibrational

energy cost function would therefore be superior and achieve the best vibration reduction.
Considering the rigid body kinetic energy of Beam 40 due to movement in the axial direction,
globally the y-axis direction, the velocity of the centre of mass of the beam, v, , is given by the

average of the y-axis velocities at the end of the beam. At beam ends 0 and 1 the velocities are,
ve, O)=ReWle™} . v, ()=Refle™ ] (2.49a,b)

where Vy0 and Vy1 are complex amplitudes. The instantaneous rigid body kinetic energy is thus

described,

vh, @+v), @Y

KE (1) = Invm(t)——}72 s , (2.50)

where m 1s the total mass of the beam. For harmonic excitation the total time averaged kinetic

energy is given by,

- 0
KE, = 16Re{VV 2 vy 2.51)

The rigid body kinetic energy due to the translation of the centre of mass of the beam in its
transverse sense, in the x-axis direction, can be expressed in terms of the scaled real part of the
product of the x-axis velocities,

KE

rrans

~—Re{V AR A AN S 2.52)

When the beam rotates as a rigid body about its centre of mass the rotational kinetic energy is
1 .,
KE, 6 = 519 , (2.53)

where 7 is the second moment of mass of the beam about its centre and 9 is the angular

velocity of the beam. For small 0, the instantaneous kinetic energy can be expressed in terms

1
of end velocities, v. and v.

cm,

2
771[42 vfm (t) - vclm (t)

t)= - - , 2.54
KE,, (1)== ; (2.54)

26



where L is the beam length. For harmonic excitation the average kinetic energy can be

expressed by,

KE

I'OIX

_m 07,0% 0y 1" 17,1
= Re{rvY —2vovi +viv)'}. 2.55)

The x-axis velocity vectors therefore defines a combined measure of the x-axis translational and

rotational rigid body kinetic energies as,

KE . = Rely oy 1oyt iyl (2.56)
x,8 12 x 7 x x ' x x 7 x

Hence the total rigid body energy of the beam, E,q, is obtained from the sum of (2.51) and
(2.56);

m

Era = 5 RV + 600 4300+ arv v artvl +arlvlh s

rigid

This can be expressed succinctly in the matrix equation, where u represents the entire

bracketed term in (2.57),
. =" H
E pa = 18 Re{u} = i Re{u1 uz}, (2.58)

where u; and u, are defined as,

w =370 o) Wt 4y,

X

(2.592)

uzz(VyO v, v, v) v, VXI)T. (2.59b)

The change of the complex conjugation operation from u; to u, has no effect since the real part

of u 1is taken. w; may then be formed using the velocity vector, v, defined in (2.31),

(2.60)

S S~ o o O
O O O O O W
S O O O o O
O O O O ©
OO o W o o
(ool ar BN o BN o BN < BN o

Similarly for u,,
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01 00 0 0)(FV
000010 V)0
00001 0(F
u, = V= . 2.61
:=Q 10000 OffV @b
0 00100 V;
0001 0 0){F
Expressing the cost function (2.58) in linear form,
m
=—(u+u"), 2.62
rigid 96( ) ( )

where * is the conjugate operator. After some manipulation £,,4 can be expressed in the simple

linear matrix formulation using the velocity component scaling matrix N,

m

E,pa = % vINV. (2.63)
where v is the velocity vector (2.31), and
8 00 4 00
0 6 00 60
N 000 00O
= . 2.64
4 0 0 8 00 (264
0 6 00 60
0 000 00

Expanding (2.63) using (2.30) the cost function can be expressed in quadratic form,

m

H H H H H -
o (£, Y"NYE, + 5 Y Ny, +VINYE, + viNv, ). (2.65)

E rigid =

2.4.2 MINIMISING THE TOTAL VIBRATIONAL ENERGY OF THE BEAM
A global cost function is defined which is the fotal vibrational energy of Beam 40 of the

structure, £, combining flexural energy and rigid body kinetic energy,

=F

E flex

+E, - (2.66)

total

This is the sum of two quadratic functions (2.46) and (2.65) resulting in another quadratic form

which when expressed in the general quadratic form (2.41) the coefficients are,

A:—-l——(cHY+Y“c)+-’—’iYHNY, (2.67a)
96

4c,
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1 m
b —(Cva+Y“fp)+§gYHva, (2.67b)

—40(,
_ 1 H H m _p
C_E(fp v, +fop)+§gvp Nv,. (2.67¢)

The optimum secondary force vector, and the minimum cost function value are given in (2.42)

and (2.44) with the values of A, b and ¢ as given in (2.67).

The minimum value of the cost function is obtained if A is positive definite. The first term is
positive definite for all secondary actuator positions except on Beam 40 (see Section 2.3). The
second term 1s quadratic as N is real symmetric and hence semi-positive definite. The sum of a
semi-positive definite function and a positive definite function results in positive definite

function.

2.4.3 MINIMISATION OF THE SUM OF THE SQUARES OF THE
TRANSLATIONAL JOINT VELOCITIES

The first velocity-based cost function studied, Jyams, uses the sum of the squares of the
translational velocity components at the ends of beam 40. These measurements can be readily
obtained using standard accelerometers with the relevant orientations. To be consistent with the
cost function derived in the following section, this cost function is scaled so that it is equal to
the sum of the rigid body kinetic energies of each half-beam length of beam 40. The time
averaged values of kinetic energy at end 0, for example, of Beam 40 in the x-axis and y-axis

directions are therefore,

2

2 m

8

m

8

KEO —
y -

KE!=—W" Vil (2.68a,b)

for harmonic excitation. The velocity component adhering to previous notation (2.49). A
reduced velocity vector, containing only translational components, may be achieved by pre-

multiplying the velocity vector defined in (2.31) with the matrix P,
m ..
P= gmg(l 1011 0). (2.69)

The cost function Jy,a. 1s then,
J =v'Pv. (2.70)

rans

Expanding with (2.30) results in a quadratic function of the form (2.41) where,

A =Y"PY, (2.71a)
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b=Y"Pv , (2.71b)

— <« H
c=v, Pv_ . (2.71¢)

The optimum secondary force vector, and the minimum cost function value are given in (2.42)

and (2.44) with the values of A, b and ¢ as given in (2.71).

2.4.4 MINIMISATION OF THE WEIGHTED SUM OF THE SQUARES OF ALL
VELOCITY COMPONENTS

In order to provide a more comprehensive velocity-based cost function, the angular velocity at
each joint could also be measured. Even though devices to measure angular velocity are not as
commonplace as their translational counterparts, low-cost practical devices are readily
available. Intuitively, it is a good strategy to reduce all the velocity components at the ends of
the beam, to ideally zero. A cost function that pursues this aim is the sum of the squares of all
the velocity components. However the arbitrary combination of the squares of the translational
and rotary components will produce a cost function in which the relative ‘weighting’ between
these two different quantities will depend on the system of units (e.g., CGS, SI efc) in which
the cost function is defined. Whilst it is not possible to rigorously define this weighting, for
anything other than solely rigid body motion, an attempt is made to produce a sensible
weighting. This weighting is achieved by considering the kinetic energy represented by both the
linear and rotational velocity components. This cost function is easier to implement in practice
than the total energy cost function, since the measurement of flexural energy requires the inter-
beam coupling forces, which are not as easily obtained as a velocity measurement, especially

more so if the application of active control was an 'add-on' to an existing structure.

To determine a sensible weighting the beam is considered as two half-lengths. The halves are
assumed to move as rigid body levers whilst being hinged about the joints at the beam ends.
Each translational velocity component is then assumed to represent the kinetic energy of a
lumped mass equal to the mass of half of beam 40. Each rotational velocity component is
assumed to represent the kinetic energy due to the rotation of the distributed mass of each half-
beam length ‘lever’. This may appear to disregard the flexural motion of the beam - however in
the frequency region considered only the first transverse mode is significant. Considering the
beam as two ‘rigid body’ halves allows the first transverse mode to be approximated, giving

some credence to this approximation.

The kinetic energy of each half-length of beam 40 due to the translation in the x-axis and y-axis
directions is as given above in the derivation of the cost function J,a.s, (26). Considering the

average rotational kinetic energy of one-half of beam 40 with distributed mass, this is
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represented using the rotational velocity component at the beam end. So, at end 0 this is given

by,

KE? = [Ve"fz : (2.72)

96
The relative scaling between the translational and rotational components is therefore shown in

(2.68) and (2.72). A diagonal pre-multiplying matrix L. which allows the velocity squared cost

function J,; to be written using the velocity vector defined in (2.31),

J, =v'Lv, (2.73)
where L is
m 1 1
L=—di 11 — 1 1 —1. 2.74
8 lag( 12 12) 279

Expanding (2.73) with (2.30) results in a quadratic function of the form (2.41) where

A=Y"LY, (2.75a)
b=Y"Lv_, (2.75b)
c=v Lv . (2.75¢)

The optimum secondary force vector, and the minimum cost function value are given in (2.42)

and (2.44) with the values of A, b and ¢ as given in (2.75).

2.5 FREQUENCY-AVERAGED MEASURES OF VIBRATION AND
DEFINITION OF PERFORMANCE IMPROVEMENT

In previous sections various parameters representing the vibration of a beam have been derived.
It is usually more useful to assess vibration over as an average over a frequency band. This is

defined here for a generic parameter or cost function, CF, and is the same as the specific case

defined (2.47). The frequency average <CF > is thus defined,

(CF)= ! Z CF(w, +(k—1)Aw), (2.76)

s
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where 7 is the number of frequency steps, Aw the angular frequency spacing and wy, the lower

angular frequency point. Two frequency bands are used in the work presented here, both have a
common frequency spacing such that A%ﬂ: is SHz.
In the study of the reduction of the vibration transmission of the structure, the improvement is

measured by the reduction in one of the parameters representing the vibration in Beam 40.

Where the reduction is specified using decibels, this is defined as o ;;,

CF unopt
o,; =10log : (2.77)
opt
where CF,,,, is the value of the generic cost function, CF, for the unoptimised structure, and
CF . is the optimised (reduced) value.

opt

2.6 ANALYSIS OF POWER IN STRUCTURE

To understand the mechanisms of the vibration reduction in Beam 40 of the structure, the
power reduction 1is split into constituent parts, whose definitions are now derived. The
reductions in the vibrational energy of Beam 40 of the structure achieved by geometric redesign
can be attributed to one of two factors; the reduction in the power input to the structure and the
redistribution of the power dissipated in the beams such that a smaller proportion in dissipated
in Beam 40. The total reduction in the power dissipated in Beam 40 due to optimisation is

defined as,

Punopt
Trop = —2—, (2.78)

Py

where Pg"”" and P,, are the values of power dissipated in Beam 40 before and after
optimisation. The input power to the structure is dissipated in all the beams of the structure.
The ratio of the input power, P, , to P,, may be expressed as the sum of the power dissipated

in all the beams of the structure, which is denoted for each beam N as, P, . This is defined for

both an optimised structure and the unoptimised structure as,

T="t =N (2.79)
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40
P unopt
unopt N
N=1

unopt in

T = >unopr = unopt (280)
Py Py

where T"”' and T represent the power distribution between Beam 40 and the rest of the
structure for the unoptimised and optimised structures respectively and an increase in the value
indicates the redistribution of power within the structure as to reduce the power in Beam 40.
(2.78) can then be expressed as the product of two factors; one describing the reduction of the
input power and the other the change in the power dissipation distribution within the structure,

Punopt ‘unopt T
= ool (2.81)

unopt "
Py P, 1

m

TTOT

(2.81) may be expressed using decibels,

P416nopr nzlmopr T
10logl —— |=10log| —— [+10log| —— | (2.82)
40 ‘Pin T ’

Thus the reduction in power dissipation level in Beam 40, o, , may be expressed as the sum
of the reduction in the input power level to the structure ¢, , and the change in the power

redistribution level , O pppor »

Cror =% ppyr T Crepysr (2.83)

where the terms in (2.83) directly correspond to those in (2.82).

When Active Vibration Control techniques are applied to the structure, each actuator can
provide a source or a sink of energy. Assuming the actuators are placed on beams 4, B and C,
the power dissipated (or absorbed) by these beams is represented by Py, Pp and Pr. Negative
values indicate that the actuators are sourcing (or supplying) power to the structure. Separating

the actuator power terms, (2.80) becomes,

40
NP +P+P,+P,
N=l

P, _ N#4,B,C (2.84)
P P

(2.84) assumes an AVC system with three actuators, but is easily adapted to systems with less

actuators. Similarly as for (2.81), (2.78) can be expressed as the product of three factors,

P unopt P unopt T'
40 o

_ in
ITOT - - TACF Twzopt 4

P40 Pin

(2.85)
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where T, is the actuator contribution factor, and is defined,

P, + P, + P,
Tyer =1+ -
> Py
N=l1
N#4,B,C

(2.86)

Its meaning is explained below, with respect to its logarithmic form. 7' is the passive
redistribution factor, which is similar to T in (2.79), but it does not include all the beams on the

structure, only passive beams (those not containing an actuator), and is given by,

' 1 40
T=-— Py . (2.87)
P40 N=l
N#A4,B,C

Expressing (2.85) in decibels, in the same way as for (2.82), yields,

Cror = Oppyr 70 4cp +0' pepisr (2.88)

where o, is the reduction in level due to the actuator contribution, 'z, is the
attenuation due to the redistribution of the power between Beam 40 and the rest of the passive

beams in the structure. &, is defined,

[ P, +P,+P. >0 +ve
P, +P,+P. =0 0
40
O e - NZlPN <P +P;+F <0 —ve (2.89)
N#A4,B,C
40
P,+P,+P. < ZPN not defined.

N=1

L N#4B,C

Thus ¢, is positive if the net actuator contribution is to absorb power from the structure,

and negative if the net contribution is to supply power to the structure. However, it is not
defined is the net power supplied is greater than the power dissipated in all the passive beams.
In this case the primary force input to the structure would be absorbing power from the

structure.
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GLOSSARY OF SYMBOLS FOR CHAPTER 2

The major notation used in this chapter is listed below. Other symbols are defined locally.

A Hermitian matrix

b Complex vector

c, Common beam damping value

c Complex scalar

C Transformed transfer impedance matrix
C Transfer impedance matrix

C Structural coupling matrix

for Complex time phasor

E Vector of displacement components from externally applied forces
Efex Flexural energy of Beam 40

ey Energy level of beam N

E\igia Value of total kinetic energy due to rigid body movement of Beam 40
Eiorar Total vibrational energy of Beam 40

f Net force vector for Beam 40

f, Force vector for Beam 40 due to primary input

f, Vector of secondary forces

I, ¥ Force vector for beam N at end g, defined in local coordinates

F Individual beam end force vector for structure

Fy, Power vector for beam 40 at end a, defined in global coordinates

[G N ]ab Green function matrix for beam N with input at ¢ and response at b
I Second moment of mass of Beam 40 about centre of mass

J Generalised cost function value

Jait Value of the scaled sum of the squares of all velocity components (kinetic energy

due to rigid body motion of Beam 40)
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Jirans Value of the scaled sum of the squares of the translational velocity components

(rigid body kinetic energy only due to translation of Beam 40)

KE Time-averaged kinetic energy component
L Length of Beam 40
m Mass of Beam 40
P Power dissipated in Beam 40
P, Power input to structure after optimisation
 nopt Power input to structure before optimisation
P, Power dissipated in Beam N after optimisation
P Power dissipated in Beam N before optimisation
P Minimised dissipated power in Beam 40
{PN }a Power vector for beam N at position a, defined in global coordinates

dan, .. .
{P, 1"  Power dissipation vector for beam

q, AVC total control effort

t Time variable

[TN ] Global-local coordinate transformation matrix

T Transformation matrix

vy Instantaneous velocity at end a of Beam 40 in global direction b

v Net velocity vector for Beam 40

v, Velocity vector for Beam 40 due to primary input

15 Complex velocity amplitude at end a of Beam 40 in global direction b
{VN }a Velocity vector for beam NV at end a, defined in global coordinates
Vin Power vector for beam 40 at end g, defined in global coordinates

X General complex vector

{x N }a Displacement vector for beam N at end a, defined in local coordinates
{X N }a Displacement vector for beam N at end a, defined in global coordinates
Y Transformed transfer mobility matrix
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o REDIST
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o REDIST

(X'TOT

TACF

TTOT

unopt

T

Transfer mobility matrix

Power level reduction in Beam 40 due to operation of AVC

Power level reduction in Beam 40 due to reduction in input power

Power level reduction in Beam 40 due to power redistribution in structure

Power level reduction in Beam 40 due to power redistribution in structure between

passive beams
Total power reduction in Beam 40
Rotation of Beam 40

Power redistribution between Beam 40 and the rest of the beams in the structure

after optimisation

Power redistribution between Beam 40 and the rest of the passive beams in the

structure after optimisation
Actuator contribution factor
Reduction in power dissipated in Beam 40 due to optimisation

Power redistribution between Beam 40 and the rest of the structure before

optimisation

Angular frequency

Lower angular frequency
Angular frequency spacing

Frequency-averaged value
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Figure 2.1: Two-dimensional cantilever structure used as the subject of optimising (minimising)
the vibration transmission from the base to Beam 40. The global coordinate system and the
beam numbering is shown, and also the position of the primary force input, Ip-
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Figure 2.2: General notation of forces and moments at points of external application and at
beam ends, with respect to local beam coordinates.
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Figure 2.3: Small structure example used to illustrate the receptance model method.
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CHAPTER 3

Introduction to Optimisation and
Robustness Analysis Methods

3.0 INTRODUCTION

This chapter provides the background to the optimisation algorithms and methods of robustness
analysis used in this thesis. Due to the combinatorially large size of some of the optimisation
tasks addressed the use of traditional optimisation algorithms is either not possible or will not
yield the best results. However, some initial design optimisations are performed using a small
sample of traditional techniques for comparison. The traditional techniques used are briefly
described, with supporting theory where applicable in an appendix. The genetic algorithm is a
more recent optimisation technique which may be used to efficiently find good solutions to
combinatorially large or multi-modal search space problems. An introductory qualitative
background to genetic algorithms is supported by an appendix giving a more theoretical
analysis to describe the expected performance. A more recent optimisation algorithm called
Dynamic Hill Climbing, which is a heuristic method which combines elements of stochastic

methods and traditional techniques, and is also described.

Whilst optimisation algorithms are generally applied to search for optimal results under
nominal conditions, if any one of these solutions is very sensitive to small changes in any of the
optimisation variables then the predicted performance may not be practically realisable. This
may be either because engineering tolerances are greater than the accuracy of the computer
model, or due to changes experienced to any of the optimisation variables in the use of the
design. Solutions that are not sensitive to such changes are called robust. These solutions are
more desirable in practice, even if this is a compromise with the performance of the system
under nominal conditions. Robustness analysis is performed on all the optimisation candidates
produced in the work detailed in Chapters 4, 5 & 6 using a technique of re-evaluating the
design with an ensemble of random perturbations and this method is formally described. In
Chapter 7 the use of robustness as an integral part of the performance of the structure in the
optimisation process is studied. First it is necessary to achieve a more efficient measure of
robustness, and a technique using computer experiments based on orthogonal arrays is
assessed, which originates from the field of statistical experimental design and more recently in

the field of quality control. The properties of such orthogonal arrays are discussed and a small
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array is derived as an example. The second technique, incorporating robustness into the design
model is an extension of the standard genetic algorithm in which the interaction between the
genetic information and its environment is modelled. In the same way that for individuals to
survive they must be both fit and robust in biological systems, the use of additive random
perturbations to the phenotype within the genetic algorithm is used to achieve a similar goal:

design solutions with optimal and robust performance.

Throughout this chapter reference is made to the Design Exploration System used by the author
for the majority of the optimisation work presented in this thesis. This is a software application
containing a wide range of optimisation algorithms, and allows integration with user written
code. For brevity this will subsequently be referred to in this chapter by its proprietary name:

OPTIONS (Dynamics Modelling Ltd., 1996).

3.1 INTRODUCTION TO OPTIMISATION

Optimisation is the problem of finding the minimum value of a scalar quantity, £, which is a
function of other variables, called optimisation variables. The task is therefore to find the
optimum values of these variables. Hence, if U is the value of a function f (the objective

Jfunction), which is multivariate then, expressed mathematically, optimisation is defined,

min U = min /(x)= f(x,)

x=f, x, v ... %}

3.1)

where x is the vector of »n optimisation variables. The optimal optimisation variables are
denoted by the vector xq. In some cases, the object of optimisation may be to maximise the
objective function, this however, may still be expressed and dealt with as a minimisation task,

since,

max f(x)=min(- f(x)), (3.2)
and thus there is no loss of generality in studying the minimisation of an objective function.

The value of the objective function over all possible values of x forms a multi-dimensional
surface, which is often termed the search space. Most optimisations have a search space that is
bounded by extreme limits on the values of each of the optimisation variables. In addition other
constraints may be enforced which are due to limits on the values of parameters (called
constraints), which are functions of the optimisation variables. These constraints may be either
equality constraints or inequality constraints. One final form of constraint is that one or more

of the optimisation variables may only assume one of a set of discrete values. This is not
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considered here as, even though such a constraint is required in the combined
discrete/continuous variable optimisation reported in Chapter 6, it is achieved in a different
way. The regions of the search space that do not violate any constraints are called feasible,
similarly regions where any constraint is violated are called infeasible. Thus as well as defining
an outer boundary to the search space is it also possible to have isolated infeasible regions

within these boundaries.

Thus to complete the mathematical expression of optimisation, (3.1) it must then be

additionally subject to the constraints,
v, (x)=0 i=lp, (3.32)

0, (x)20 j=1gq. (3.3b)

The objective function is thus optimised subject to p equality constraints and g inequality

constraints. By convention the inequality constraints are non-negative, positive-bound

constraints are achieved by specifying -¢; instead.

To keep the search within feasible regions, penalry functions can be used to penalise the value
of the objective function, so as to make the value of the objective function in such regions
extremely undesirable and force the search back to feasibility. In effect this is achieved by
distorting the search space in or near regions of infeasibility. Two types of penalty function are

available with the OPTIONS software used, and both are briefly described.

The first, and simplest penalty function, requires no significant additional computational
overhead. It simply adds a correction to the objective function on the same pass as its
evaluation, and only in regions external to feasibility, otherwise it has no effect. For this reason
it is referred to here, as in the OPTIONS manual, as the One Pass External penalty function.

The penalised objective function, U, is
P g
U, =U)+rY|y,|+r>.(0,), (3.42)
i=] =1

where the < > operator defines the operation

< > o , o0 ”
o) = )
0 , a>0 (40)

The value of r used is typically 10%. Whilst being generally successful in its application the
penalty it provides is very severe, and it can sometimes stall a search prematurely. This can

occur if the minimum in the feasible region lies on, or close to a constraint boundary. If the
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search reaches the constraint boundary it will then attempt to crawl along this boundary to find
the minimum. If the search direction is coincidentally aligned with the constraint boundary the
steep wall imposed by this penalty function can fool the search to prematurely terminate as it
would need to pass through regions of increasing value in the search space to find lower regions
further along the boundary. The action of the One Pass External penalty function is illustrated

in one degree of freedom in Figure 3.1.

Another widely used penalty function is that proposed by Fiacco and McCormick (1968, as
cited by Siddall 1982). This penalty function begins to affect the value of the evaluated search
space as a boundary constraint is approached from within the feasible region. It does not
therefore tend to lead to the possible stalling of searches in these regions as with the One Pass
External penalty function. However the evaluation of the penalised objective function normally
requires a series of evaluations, with ever increasing severity, and hence it has a higher
computational overhead. The form implemented in the OPTIONS package used, defines the

penalised objective function, U, as

s

k p q
U, =UR)er S S+ 3 o) 65

=t QT 7 j=1

where the < > operator is as described for (3.4). The leftmost penalty term is the summation of

the reciprocal of the value of the satisfied constraints raised to the power s, the remaining two
terms are only non-zero for unsatisfied constraints. The penalty is therefore comprised of one
interior and two exterior terms which operate exclusively for each constraint. The penalised
objective function is evaluated a number of times with a decreasing value of r, which initially is
equal to one. The advantage of this recursive technique is that the current search point can
move along the boundary towards the true constrained minimum instead of being pushed
directly towards a point on the constraint boundary by the current search direction, as can
occur with the One Pass penalty function. A search using a One Pass penalty function may
then not be able to negotiate the ’brick wall’ constraint boundary that may be masking a better

minimum on or near the boundary.

The value of U, from the previous pass is used as the starting point for the next pass. This
process is repeated until the decrement in U, falls below a set threshold, which is defined as a
given fraction of the previous value of U,. The effect of the penalty function depends upon
whether the point in the current search space is feasible or infeasible. If feasible, as the search
point approaches a constraint boundary the exterior term (with the initial value of » as unity)
becomes small and the value of U, increases asymptotically as the search point moves further

towards the boundary. However as U, is re-evaluated with a decreasing value of r this
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asymptotic behaviour occurs nearer the actual constraint boundary, and the minimum point on
the penalised search space tends towards the boundary and the true constrained minimum. This
is shown for one-dimensional case in Figure 3.2, where the effect of decreasing r is shown. If
the search point is in the infeasible region, then with  at unity, little effect on the search space
is seen. As the value of » is successively decreased then the effect of the distortion caused by
the asymptotic behaviour is also decreased. Hence the unconstrained minimum on the search

space is distorted so that it is shifted towards the true constrained minimum.

The additional computational overhead is that required to re—evaluaté (3.5) for each pass, which
typically increases the computational load by a factor of 3. An efficient search strategy (Keane,
1999) is to commence a search using the One Pass External penalty function and then continue
from the ‘optimum’ found using the Fiacco-McCormick penalty function. The use of the latter

is to check whether the previous search had become stalled due to the reasons discussed above.

3.2 TRADITIONAL OPTIMISATION TECHNIQUES

Most traditional search algorithms rely on the fact that the search space is monotonically
decreasing across all its dimensions. Therefore a path to the minimum points can be gleaned
by, at simplest, taking steps in each dimension and determining the ‘downhill’ direction, or

using gradient information for this.

The field of optimisation, even that using traditional techniques, is extremely large and still an
area of much research. Indeed achieving a background in the state of the art 1s a daunting
process, not unlike some optimisation tasks themselves. A relatively small number of basic
approaches exist, but it is the number of different algorithms spawned from these approaches
through the development of each one, and also refinements and combinations of approaches,

which make this field so large.

The background of each of the algorithms which are used in Chapter 4 are now briefly
explained, however it is outside the scope of this thesis to give more comprehensive details and
the reader is referred to the references. Indeed different interpretations of the same algorithms
cause even more variants, even though they are commonly described using the same name. As
an example the OPTIONS software (used for the optimisations described in this thesis)
contains as many as three different variants of some algorithms, commonly named, but

available from different suites of software programs.
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3.2.1 HOOKE AND JEEVES METHOD

The Hooke and Jeeves search method (Hooke and Jeeves, 1961, as cited by Siddall, 1982) is a
direct search method; it does not require or calculate any gradient information about the search
space. The optimum is found by taking steps in the directions of each of the axes, and
maintaining the steps only if an improvement is made. When no further improvement can be
made the step size is reduced. The minimum step size is one of the search parameters and when
no further improvement is made at this point the search phase ends. Then the search space
vicinity local to the current point is ‘peppered’ with a number of randomly placed points, for
each of which the value of the objective function is additionally evaluated. If any of these points

yields a better result, then this is used as the basis for a new search phase. More formally the

search algorithm is:
1. Start at initial point in search space.
2. Make the current point the base point.

3. Make an exploratory search for each coordinate in turn: make an predetermined step in
positive sense, if an improvement is seen retain the step, otherwise try for a negative sense,

if no improvement is still made then maintain original coordinate.

4. A pattern move is then made for which steps are made in all coordinate directions. Each
being the difference between the coordinate value for the current and previous base points.

If an improvement is seen then maintain pattern move, otherwise cancel pattern move.

5. If the exploratory search has found a better point, then continue from 2, otherwise reduce

step size by pre-determined amount and continue from 2.

6. If no improvement is found with the exploratory search and the step size has reached a
pre-determined limit, then calculate the objective function at a number of randomly
determined points in the vicinity of the current optimum. If any of these yields an

improvement, make this point the initial point and repeat the search from 1.

In the implementation of this algorithm (SEEK from the Siddall suite of algorithms in
OPTIONS), only two search phases are permitted. The local random based search at the end of
the search phase helps to prevent the search stalling if the path is along a boundary constraint
where the search may stall due to the coincidental alignment of the coordinate system. This will
help to prevent stalling on a constraint boundary even when using the One Pass External

constraint.
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3.2.2 DAVIDON-FLETCHER-POWELL (DFP) & BROYDEN-FLETCHER-
GOLDFARB-SHANNO (BFGS) VARIABLE METRIC METHODS.

Variable metric methods (also called quasi-Newton methods) compute and update stored
gradient information about the search space, which is used by the algorithm. Two such methods
are Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS). In both
methods the search space is assumed to be quadratic (so that all partial derivatives of order
three and greater are zero). This, of course, is not always true. However using this second order
approximation to the search space, applied iteratively, the (local) minimum can be attained.
These methods are very similar and the BFGS method is actually a refinement of the DFP
method, affecting the update of an estimate of the Hessian matrix. The effect is small, only

affecting issues such as the convergence tolerance and round-off error.

Both algorithms are well known and widely used in the field of optimisation. Thus full details

are given in Appendix B, and also in (Press ef al, 1992) for the interested reader.

3.2.3 DYNAMIC HILL CLIMBING
Dynamic Hill Climbing is not a traditional technique, in fact the technique first described by

Yuret and de la Maza (1993) in conference proceedings and then in more detail in Yuret’s
Masters thesis (Yuret, 1994), is approximately 20 years more recent than the introduction of
genetic algorithms by Holland (1975). In general the use of this technique has not been well
reported, however El-Beltagy and Keane (1998), for example, have applied the technique to a
multi-peaked deceptive problem and found that it performs competitively with other popular
algorithms (including genetic algorithms in some circumstances). The technique is also one of
those included in the suite of optimisers in the OPTIONS package, and hence was readily

available to the author.

It 1s outside the scope of this thesis to fully describe the operation of the algorithm, which is
fully described in Yuret (1994). It has, in fact, more operations than a basic genetic algorithm

(which is described below). A brief résumé of the algorithm follows:

Whilst genetic algorithms have been used successfully, there are several factors which could be
improved upon, according to Yuret. Although genetic algorithms are good for finding regions
containing local optima, they are not particularly efficient or good at finding the actual value of
each optimal peak, that is, they are not very good hill climbers. Dynamic Hill Climbing
therefore has two distinct parts, or seuristics. The first is finding the peak of a local region, the
local optima. For this Yuret uses two heuristics: one whose step size changes to adapt to the
local terrain; the second is one which the directions of each step adapt to the directions of those

where recent success has been found. The later has a similar effect to changing the coordinate
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system, so that, the most successful direction is represented by a single step and not a

combination of others.

Having found a local optimum, the second part of the algorithm is concerned with restarting the
search at a point in the search space that is distinct from all previously discovered local optima.
In this way diversity in the algorithm is ensured and also the possibility of re-visiting local
optima more than once severely reduced. For high dimensional problems a random point in the
search space is shown to be very likely to be distant from any other point, whereas for low
dimensional search spaces a point randomly placed in the largest interval between previous

optima is used.

3.3 GENETIC ALGORITHMS

Genetic algorithms assign new sets of optimisation variables from combinations of a current set
of optimisation variables under some strategy in which, on average, those having better values
of evaluated objective function are more likely to survive (in rather simplistic terms).
Traditional methods of design optimisation often rely on gradient-based methods and where the
search space is continuous and uni-modal (and convex) they can perform very efficiently. In
designs where the search space is multi-modal and contains many sub-optima these methods
can result in a sub-optimal design choices as only the local neighbouring search space is

explored. Additionally if the search space is discontinuous then such methods cannot be used.

Evolutionary algorithms have emerged in recent years as being an effective and efficient
optimisation technique. They are a stochastic-based class of optimisers, that are not random
searches but have random elements in their algorithms that provide diversity to the search
enabling all areas of the search space to be available for possible search progression, from any
one point within the space. Evolutionary algorithms are best suited to finding optimal solutions
to highly combinatorial problems, where an exhaustive search is not practicable or where the
surface to be evaluated is multi-modal. In such circumstances the multiple local maxima would

deceive conventional gradient searching algorithms.

Evolutionary algorithm is a generic term for a number of guided random search methods, of
which the most popular two are genetic algorithms and simulated annealing. In general, genetic
algorithms sample the search space more diversely, however simulated annealing has the
advantage of requiring less computational effort. The choice, implementation and success of
evolutionary algorithms is dependent upon the application. Keane (1995a) shows how different
evolutionary algorithms sample a 'difficult' search space. The value of combining algorithms,

like genetic algorithms and simulated annealing, is also shown. In the optimisation application
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considered in this thesis, genetic algorithms have been used to enable comparison and
verification of the work done by Keane (1995b), who had previously found them to be the most

preferable optimisation method for the particular problem considered in this thesis.

For the type of problem for which evolutionary algorithms are often applied it can never
normally be established whether the true global optimal solution has been found. If repeated
application of the algorithm yields near-optimal solutions and in most cases these out perform
the existing design, then seeking the true globally optimum design is often not a necessity. In
many applications there is little difference in performance between the near-optimal and

globally optimal solutions.

3.3.1 GENERAL DESCRIPTION

Genetic algorithms are based on an abstraction of biological evolution. The genetic algorithm
was first reported by Holland (1975) but has been publicised mainly through the work of
Goldberg (1989). The optimisation process ‘evolves’ from one generation of design solutions to
the next by a process of ‘natural selection’. Each generation is formed from a population of a
set of chromosomes which are themselves strings of numbers (normally binary) representing all
of the optimisation variables. The total genetic information contained in a string (each of which
represents a design solution) is termed a genotype. As in biological systems the organism is
formed from the genotype and its interaction with its environment, the result of which is termed
a phenotype. This is put more into an engineering context by Bick et al (1997a) where they
suggest that the phenotype space represents the physical parameters to be optimised, while the
genotype space is the representation of these parameters by the algorithm in, for example,
binary strings. Thus any quantisation effects occurring in the phenotype representation can
readily be seen as ‘noise’. The fitness of each phenotype is evaluated by an objective function
(or fitness function). The value of this function is minimised (or maximised dependant on the
specific problem) in order to achieve the optimised design, and thus the smaller the value of

each evaluated phenotype the fitter the set of chromosomes (or design solutions) it represents.

The genetic algorithm is initialised with a pool of chromosome strings. Each subsequent
generation is then achieved by three key operations: selection, crossover and mutation. A
number of the previous generation’s chromosomes are selected such that those with greater
fitnesses have a higher probability of selection. Some of these chromosomes are then ‘mated’ in
pairs; two mating chromosomes swap information beyond a crossover point which is randomly
selected, and two offspring thus result. This is illustrated in Figure 3.3. The new generation is
made up of a proportion of newly formed and existing chromosomes from the previous

generation. The last operation, mutation, is a random bit change in a chromosome ‘bit’ with a
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small probability, as illustrated in Figure 3.4. The value of the bit is inverted for a binary
alphabet. This provides random diversity in the evolution and helps to prevent premature

convergence before too little evolutionary experience has been gained.

Only the basic operations necessary to define a genetic algorithm have been described above.
There are many additional operations which are applied to improve performance. One such
improvement is to prevent ‘crowding’ (normally termed niching or sharing) where too many
similar individuals exist in the vicinity of a local optimum and dominate a population. This
discourages diversity in the search. Further details are available in the general references given

at the end of this sub-section.

The average fitness of each generation successively increases and the process is halted after a
number of generations by a suitable convergence criterion. Normally the best solution
encountered through the entire optimisation is taken as the result. This is achieved using the
elitist strategy so that the best-so-far solution is guaranteed to survive into the next generation.
Goldberg (1989) analysed the underlying nature of the algorithm using schemata to represent
common patterns within the strings (a subset of the search space). Schemata (singular: schema)
are chromosome templates which represent a set of chromosome strings that have common
features. He showed that the schemata with higher fitnesses experience on average
exponentially increasing trials in subsequent generations. The bias towards particular schema,
representing a number of solutions, implies an implicit parallelism so that the search space is
sampled diversely and efficiently. This is discussed further in the next section. More recently
there has been much critical discussion regarding the early work of Goldberg (as for example
reported in Mitchell, 1996). In particular many caveats in his schema analysis have been
shown, especially when considering that a finite population is used in practice. However this
analysis still demonstrates the ‘mechanism’ by which genetic algorithms achieves better
solutions, by (after Mitchell, 1996) discovering promising solutions, emphasising their
significance in each population and recombining them to (possibly) produce even better

solutions.

A more complete description of genetic algorithms is available from Goldberg (1989), a well
referenced book which provides a good introduction to the early use of genetic algorithms, or
more recently Mitchell (1996), for example, or more comprehensive texts (Béck et al, 1997b)

on the entire area of evolutionary algorithms.

3.3.2 THEORETICAL ANALYSIS

As discussed in the previous section, although recently both more rigorous and critical analysis

of the schema theorem has been performed (Mitchell, 1996), the theorem still estimates the
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growth of fitter chromosome strings through evolution, and thus remains of use. The theorem is

also used as a basis for the analysis in the next section. However, the shortcomings of the

theorem are also briefly discussed below.

The analysis of the operation of genetic algorithms was studied by Goldberg using schemata to
represent sets of chromosomes by defining the values of the chromosomes at some positions
and allowing others to adopt any possible value. Using these the survival of each schema (and
all the chromosomes it represents) may be analysed. The result of this analysis is the well

known Schema Theorem or the Fundamental Theorem of Genetic Algorithms (Goldberg,

1989),

mQYJ+lﬁ2mOHJ)ngJ)l—j%flgz—(XEﬂpm : (3.6)
£ I-1
which defines the number of schema A in a current population from the number in the previous

generation. m(H,¢) is the number of schema A at generation ¢. f(H,¢) is the average fitness of the

schema H and f(¢) the average fitness of the entire population containing chromosomes of

length /. d(H) and O(H) are the defining length and order of schema H respectively. These are
defined by example in Figure 3.5 and more fully in Appendix B. p. and p,, are the probability
of crossover and mutation respectively. For readers unfamiliar with the Schema Theorem, this
1s derived in Appendix B. The existence of the mnequality in (3.6) stems partly from the
probability that during a crossover operation a chromosomes may be spilt within its defining
length, but this may have no effect due to similarities between the schema pair. Also, only the
disruptive effects of crossover and mutation on schema H are considered (Mitchell, 1996). 1t is

also feasible that these operations on instances of other schemata will generate instances of H.

Mitchell (1996) also discusses other areas where the Schema analysis is misleading or often
misinterpreted. The implicit parallelism previously mentioned is the term coined by Holland to
indicate that by processing the chromosome strings in a population the algorithm is implicitly
processing all the schemata whose instances fall within the population. However this does not
imply that the fittest individual of any schema will be found, it will be the schema with the best-
observed fitness, and this is based on the actual instances occurring within the population. In
general, it is in the realisation of using a finite population where the Schema Theorem starts to
fail. For example, at a later stage in the evolution there will be a larger proportion of fitter
strings and less unfit strings. With only a relatively small number of the latter the estimate of
an unfit schema can be unreliable if the performance is judged on very few individuals.
However, the basis by which the basic genetic algorithm achieves the net probabilistic effect of

selecting the fitter individuals in each generation is seen, despite the inaccuracies discussed.
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This discussion does not extend to other complexities, of which those preventing crowding were
briefly mentioned in the previous section and would be the most significant effect in the genetic

algorithm used in this work.

3.3.3 ROBUST DESIGN USING A NOISY PHENOTYPE FITNESS FUNCTION

In a biological system, the decoding of the genotype into the phenotype is a function of its
enviromment. During the decoding, perturbations in parameters, such as temperature and
nutritional imbalance, may occur. If a genotype is robust to such changes, then the resulting
phenotype will be insensitive to these perturbations. However if the decoding of a genotype is
sensitive to such perturbations then it is unlikely to survive into subsequent generations. First,
if a perturbation causes a fit genotype to be decoded as an unfit phenotype then by virtue of the
low fitness it is unlikely to be selected in the next generation. Second, if an unfit genotype is
decoded as a fit phenotype, it is likely to survive into the next generation. Even if it survives
crossover and mutation, it is unlikely to encounter the same value of perturbation and thus this
time may be decoded nearer or lower its true value. Thus those genotypes that are more robust
to the perturbations in decoding are more likely to survive. This is essentially the noisy
phenotype method reported and demonstrated on test problems by Tsutsui and Ghosh (1997).

More formally, the fitness function is evaluated with perturbations (or noise) added to the

optimisation variable vector x (3.1),

f(x—i—A)
A=1l5. 5, .. 51 G

where A is a perturbation vector, defined from individual, independent perturbations &;. The
distinction between this approach and those that add a single perturbation to the evaluated

objective function, i.e., f (X)+ O is made. The study of such noisy fitness functions has been

made (see references cited in Tsutsui & Ghosh, 1997), however these essentially provide a
measure of the terrain around the nominal point on the search space of the objective function.
This cannot be related to the optimisation variables unless the mapping to the objective
function is known. This mapping is often complex and usually highly multivariate. It is far
more pertinent to have knowledge of the robustness with relation to the optimisation variables

themselves, where the limits can, for example in production, be measured or enforced by

tolerances.

Using the schema theorem from the previous section it can be shown that using the noisy
phenotype method the same algorithm operation is achieved but using a modified fitness

function. This is shown for a one-dimensional case, initially, and extended to more dimensions
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later on. From (B.19) in Appendix B, the average fitness of population f (t) at evolutionary
time step ¢ may be expressed, in terms of the fitness function, f{x) and the probability of each

individual occurring within a population, p(x,?), of size n, and is,

zf( ) J' F0)p(x, £ )x, (3.8)
where 7 is each population individual. Thus the expected fitness of each schema, 77, is given as
S(H )= [ 1 ()p(x, H,1)dx, (3.9

where p(x,H,t) is probability of each individual occurring in schema A at evolutionary time
step . If a value of noise & is added to each population individual, x', then the average fitness

of the population becomes,
f'(f)= x +¥) fF p(x, ¢ )dx . (3.10)
i=1

F(x) is the expected value of the fitness function evaluating the noisy phenotypes, if the

distribution of the additive noise is given by g(J),

F)=[_ f(x+8)g(8)as. (3.11)

Hence the expected fitness of schema H is then given by,

f'(H,t):jF(x)p(x,H,t)dx‘ (3.12)

By comparison with (3.9) it is seen that in the same way (3.12) evaluates the expected fitness
of the noisy phenotype fitness function, F{x) in place of f{x). Thus a new Schema Function

adapted from (3.12) may be written which predicts the expected number of instances in each

schema at evolutionary time step ¢. So,

1)

Changing the integration variable allows F{(x) to be evaluated,

m(H,t+1)2m(H,t)f A, [)(1 P, d(H) O(H)pm], (3.13)

Fi)=[_r0)aly—x)y. (3.14)

Tsutsui & Ghosh (1997) consider the application of adding noise to the genotypes which has a

Gaussian distribution. In this thesis a uniform distribution is used to maintain consistency with
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the distributions used in assessing the robustness of the optimal design solutions reported in
Chapters 4, 5 & 6. This method, whilst providing a general idea of the robustness of the
solutions to perturbation, specifically provides a measure for perturbations with a uniform
distribution. Thus to minimise the robustness measured in this manner a similar distribution is
used. A brief discussion about the relevance of the distribution is discussed in Chapter 4, where

robustness analysis is first applied in the work detailed in this thesis.

To quantify the effect of adding noise to a schema representing a genotype a reduction factor is
defined. This follows Tsutsui & Ghosh (1997), except that a uniform noise distribution is used.
Assume that the objective function consists of a rectangular peak of a one-dimensional

function, and is defined to be

h —-w<<x<w

f(x) :{0 (3.15)

otherwise

The uniform distribution of the noise, over a range s, is defined such that the area underneath

the distribution is unity,

(3.16)

q(y)—“—{l/s —s/2<y<5/2

0 otherwise

Then depending on whether the rectangular peak in f{x) is narrower than the noise distribution
(i.e., fix) is considered to be unrobust) or not, a different expected value is obtained for the
genotype schema when the point in search space being evaluated is aligned with the centre of

the peak in f{), and defines a reduction factor:

h w2s
F(0)= WY < s (3.17)
S

It is emphasised that because the schemata are being analysed that the expected values of the
objective function evaluations are studied and not the fitness of individual, determinate
evaluations. Thus, from (3.17) when the peak is too narrow to be considercd robust the

expected value is reduced by a reduction factor of w/s, whereas if the width of the peak is

robust (w2 s) then the full value of the function is expected to be evaluated. In practice a
Boolean definition: “robust”/“not robust” is not made, where the function peak is not centrally
aligned with the noise distribution, but an overlap still exists, then a diminished expected value
is expected. This is illustrated using a function with four rectangular peaks, all of height 4, but
with different widths, shown in Figure 3.6 this function along with the probability distribution

for the noise added to the phenotype. E[F(x)] shows the expected effect of the additive noise on
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the evaluation of f{x). The four peaks represent all of the possible cases where w>s, w=s and
w <. It is seen therefore that the expectation of the evaluated function height is reduced if the

peak is narrower than the width of the noise distribution. For all cases the maximum value

diminishes at a spatial rate of i/ 2s.

As shown by Wiesmann et al (1998), an optimal value of the expected function £/F(x)] does
not always correspond to an optimal value of the original function. Indeed, where in regions
where two narrow peaks exist in close proximity, for example, then the maximum expected
value does not occur within the peaks of the function f(x). This is illustrated in Figure 3.7, an
example adapted from that shown in Figure 3.6, where the maximum expected value clearly
falls in non-optimal regions for the two cases of the scenario shown. Wiesmamn et al offer no
solution to this failing in the noisy phenotype method. As discussed in Chapter 7, however, the
search space for the application studied in this thesis is expected to be smoother than the

example shown here, and therefore the use of this method is still valid.

To consider the multi-dimensional case (3.11) is firstly expanded to represent a two

dimensional case with independent variables, x; and x;, as

o (H1)=
-”-xl f(xl + 5.\-1 )q(le )p(xl,H,thxldéxl _“‘\z f(xz + sz (sz )P(xz:Hathxzdez
(3.18)

The resulting fitness of schema H is thus the product of two integrals as there is no

interdependence between them. Hence the step to an n-dimensional case may be easily made,

where @ is the multidimensional fitness and £, (H,¢) the one-dimensional expected fitness, as

described in (3.12),

o(a,)=[] 1 H.1). (3.19)
i=1

Thus if the example above was extended to a the n-dimensional case the overall reduction

factor @ is the product of all the individual reduction factors,

®(0)= HF (0). (3.20)

where F(0) is the individual reduction factor for dimension 7, as in (3.17). Hence the reduction
factor can increase significantly as the number of dimensions in which the width of the

objective function peak is narrower than the rectangular noise distribution window becomes
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greater. For example, if for all » dimensions the width of the objective function peak was 90%
of the width of the noise distribution window, then the overall reduction factor is 0.9". In the
structure considered as the subject for optimisation in this thesis there are 36 optimisation

variables. For this case the overall reduction factor would be less than 0.02.

Thus the use of the noisy phenotype objective function allows the genetic algorithm to favour
more robust solutions, where the solution would be insensitive to perturbation in any of the
optimisation variables. The penalty in the evaluated fitness becomes increasingly severe the

greater the number of optimisation variables to which the design’s performance is sensitive.

3.4 MEASUREMENT OF ROBUSTNESS BY EXPERIMENTS

Robustness is the lack of sensitivity in a system to small, normally unspecified, changes in its
design parameters, or in the context of optimisation, in the optimisation variables. The simplest
way to test an optimised design for its robustness is to perform experiments in which the
optimisation variables undergo realistic changes, or perturbations, and measure the effect on
the optimised parameters of the design. In the robustness analysis considered in this thesis the
expected change in value of the objective function in the face of perturbations represents the
robustness. In such a way an expected measure of robustness may be achieved. The statistical
accuracy of such an estimate will depend upon the number of perturbations used and how well
the statistical distribution reflects those encountered in practice. If the robustness to
manufacturing tolerances is studied, then a statistical model for such perturbations might either
be available due to some measure of the error in a manufacturing process, or by prediction. In
many cases a Gaussian (or normal) distribution may be adopted. However in the robustness
analysis presented in this thesis a uniform distribution is used. This is because no information
about the perturbation distribution is known, and a uniform distribution is thought to provide
the most general case. Thus in this preliminary analysis no assumption is specifically made
about the nature of the perturbations, simply the effect of perturbations on robustness is

studied. A uniform distribution also simplifies the robustness analysis.

3.4.1 MULTI-VARIATE MONTE-CARLO EXPERIMENTS

One of the simplest methods of measuring the expected robustness of a system is to apply a
large number of randomly generated perturbations of pertinent magnitude to the optimisation
variables, and measure the change in the system performance by re-evaluating the objective
function value. If a sufficiently large number of perturbations are used then the statistical

distribution of the change in performance of the system can be estimated.
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Thus to investigate the robustness of a design, which has been previously optimised and is
characterised by an optimal optimisation vector, X, , the objective function f'is re-evaluated to

determine the effect of a set of perturbation vectors A, by forming a set of n perturbed values

of the objective function U ,.P to form a vector U, so that,

Ur=rle,n) wee U=l 0 Louzh om

The values of U” are then sorted in numerical ascending order, by assigning them to values of
YP

U? - Y” where Yp={Ylp Yy . Yp} such that Y <Y/, (3.22)

n

A probability limit is then calculated so that for a percentage, 0., of the n experimental results,
the performance is better than the value defined by the probability limit. In the robustness
analysis considered here this is the case when the value of the objective function is below the

value of the probability limit for o percent of experiments. The probability limit is thus defined

as,

Jo =Y oy (3.23)
fz)

where the function rnd rounds the argument to the nearest integer so that it can be used as an
index for the data Y”. The accuracy of this probability limit depends upon the number of
perturbed samples, 7, used. First, for small 7 the rad function will cause a ‘quantisation’ error
if o does not lie near an integer value, and effectively a slightly different probability limit is
evaluated. Secondly, the smaller the value of n the worse the estimate of the statistical

performance, which is actually achieved as #» tends to infinity. In all the cases considered in this

thesis o 1s 95%.

3.4.2 PERTURBATION ANALYSIS BY EXPERIMENTAL DESIGN

The statistical design of experiments is a process of planning experimehts to collect appropriate
data and subsequently analyse using statistical methods to obtain valid and objective
conclusions. The science of statistical experimental design first originated with the work of Sir
Ronald Fisher (1925) who was motivated by the optimisation of the yield of agricultural crops.
Rao (1947) first proposed the use of orthogonal arrays for factorial experimental design, and
the development of this field has been continued by, for example, Kempthorne (1952). Taguchi
(1987) developed the foundations of Robust Design with the main aim, initially, of improving

Quality in manufacture in Japan in the late 1940’s. All of this work had been aimed at
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statisticians until Phadke (1989) adapted some of these approaches specifically to engineering

applications, following Taguchi’s work.

Fractional factorial experimental design is an efficient method of evaluating the response of a
system to each system parameter, and provides good results if the interactions between these
parameters are small. Fractional factorial experiments were initially use for screening
experiments, to identify which system parameters are likely to have large effects on the system
response. These results would then indicate the factors that should be more thoroughly
investigated. In an engineering context the experiments are conducted to investigate the effect
of several factors (or parameters) on some phenomenon (or response) of a system.
Furthermore, in the application considered in this thesis the experiments conducted are
computer experiments, and thus there is no experimental error (exactly the same results being
yielded for each identical experiment) and experimental replication to address this is not

required, allowing the experimental design to be simplified.

Fractional factorial experiments are used here to define the perturbation vectors in (3.21). Each
row of the experimental arrays used corresponds to an instance of the perturbation vector A;
suitably scaled. Unlike using random uniformly distributed perturbations, where the
perturbation value can be any value between defined extremes, using orthogonal arrays only

either two or three different levels are used depending on the experimental design array used.

3.4.2.1 ONE-AT-A-TIME AND FULL FACTORIAL EXPERIMENTS

The effect of each factor alone on the change in performance of a system is termed the main
effect. If all the main effects are independent (i.e., are unaffected by the levels of any of the
other factors) then each main effect can be determined by one-at-a-time experiments where
each factor is altered separately and its effect registered. The values of the other factors are

unimportant. Hence, for each factor only one experiment needs to be performed for every factor

level.

If the effect produced by each factor is also dependent upon the levels of the other factors, then
using one-at-a-time experiments will provide inaccurate and ambiguous results due to
interactions between the factors. However, the average effect of a factor may be measured by
performing experiments over all the combinations of different levels for all the other factors.
This approach is known as a full-factorial experimental design. One of the advantages of this
is that the estimates of the main effects are formed using experiments over all the levels for
each factor, and are more representative of the range of conditions encountered in practice.
This can avoid misleading conclusions due to the presence of interactions, and additionally,

information is available to study specific interactions if these are of interest.
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To illustrate the effect of interactions between factors in a system, and how they can lead to
misleading conclusions unless the effect ofiinteractions is studied, two very simple systems are
considered, with one containing a strong level of interaction (after Montgomery, 1983).
Consider two systems X and Y, whose response to two, 2-level factors, 4 and B, is shown in
Table 3.1. Closer examination reveals that in system Y there is strong interaction between the
factors A and B. The sign of the effect ofieither factor depends on the level of the other. This is
demonstrated graphically in Figure 3.8. The degree to which the lines are non-parallel indicates
the degree of interaction. The average main effects of factor 4 and factor B (denoted by m4 and

mg) and the interaction between factors 4 and B (denoted /,5) are defined (after Montgomery,

1983), as
m, = f(AzaBl)"‘"f(Az’Bz)_f(A1>Bl)+f(AI’B2)’ (3.24)
2 2
m, = f(AlaBz)+f(AzaBz)_f(A1>Bl)+f(A2’BI)’ (3.25)
2 2
I, = f(AzaBz);:f(AwBJ_f(AzaBl);f(Alsz)' (3.26)

The main effect of a factor is therefore the difference between the average of the response at
one level and the average response at the other level. The interaction between factors is the
difference between the average of the response with both factors at the high and low level, and
the average of the responses with each factor at opposing levels. The numerical values of the
main effects of each factor and the interaction between them for both systems are given in
Table 3.2. Without investigating for the interaction Iy, it is seen that the main effects m4 and
mg would provide the misleading result that system Y is relatively insensitive to the effect of
factors A and B, compared with system X. However I,z reveals that a strong interaction exists
for system Y, which would only be evident, in this case, using a full factorial experimental
design. If one-at-a-time experiments had been performed, for example, with the main effect of
each factor estimated with the other factor at its low value, then the response for the factor
combination 4,,5, would not have been explicitly measured. In both cases it would have been
assumed that 4,8, would yield the largest response, which would be seriously in error for
system Y due to the strong interaction. Indeed the conclusion drawn (potentially in error) about
the response at factor combinations which are not exclusively tested may depend upon the,

probably arbitrary, choice of nominal level of the factors, other than the one being tested.
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3.4.2.2 FRACTIONAL FACTORIAL EXPERIMENTS

In the previous sub-section the advantages of full factorial experiments over one-at-a-time
experiments were discussed. For a small number of factors and/or with a small number of
factor levels this presents no practical problem, but the number of experiments required can
grow exponentially with either the number of factors or levels. In Chapter 7 such experiments
are performed with 36 factors with both two and three levels. To perform full factorial
experiments would require 2°° and 3*® experiments, respectively. It is not feasible to perform
such a large numbers of experiments, especially when these experiments themselves are also
used as part of a optimisation algorithm, which itself requires many thousands of evaluations.
A fractional factorial experimental design is one that only utilises some of the experiments
from its full factorial counterpart. In this way the number of experiments required can be
greatly reduced. Fractional factorial experiments using orthogonal arrays (which are discussed
below) are used as a potentially more efficient way of generating the probability limit defined in
(3.23). Fewer experiments are used, but the experiments are designed in order to provide
certain information, whereas the accuracy using random perturbations simply relies on a large
number of different samples and increasing the number of samples increases the accuracy only

in a probabilistic sense.

The compromise in using fractional factorial experimental designs is that less information is
gained about the system, and it becomes impossible to distinguish between the true main effects
of a factor and interactions between factors. It is said that the main effects are aliased with
certain interactions. However if the value of the interactions is known to be, or can be
considered to be small then reasonable estimates of the main effects can be achieved. In the
fractional factorial experiments considered in this thesis the full factorial experiment is reduced
to those requiring only one experiment more than the number of factors specified in the
‘standard’ orthogonal arrays used, even though the number of factors is sometimes greater than
required for a certain experiment design. This is the minimum experimental design in order to
achieve an estimate of the main effects for each factor individually. If the number of
experiments was reduced further then ‘aliasing” would exist between some of the main effects.
This effect is not desired as the sign of each of the interactions is not determinable and thus
whether the effect of each aliasing acts constructively or destructively. Thus a composite
measure of the main effects with less than the minimum number of experiments described
above is not feasible. The fractional factorial experiments are balanced, each level of each
factor is used equally in the experimental design. Additionally there is an orthogonal property
of the arrays that allows other types of analysis such as analysis of means and variance to be

performed. The orthogonal property is formally defined in the following sub-section. This
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property means that the estimates of the statistical properties for each factor individually may
be found. Such analyses are not used in this thesis, but are detailed in Montgomery (1983),

Taguchi (1987) and Phadke (1989).

The orthogonal arrays used for the fractional factorial experiments in this thesis are detailed in
Appendix C (after Taguchi, 1987, as cited by Phadke, 1989). It is too cumbersome to show the
derivations of such arrays here. In order to show the procedure of generating such an array, a
fractional factorial experiment is derived from a full factorial experiment for five two-level
factors. This is not one of the standard arrays catalogued originally by Taguchi. It is chosen as
it is not so small that the derivation is trivial (as with the Ly (2°) standard array, three two-level

factors) whilst not being too cumbersome to include here in full (as would the Lg (27) standard

array).

A full factorial experiment for five two level factor requires 32 (=2°) experiments. Denoting the
two levels as either positive or negative: ‘=" and ‘+’, the design is shown in Table 3.3, where
the factors are labelled 4 to £. All the possible combinations of the factors are thus required. In
order to generate a fractional factorial experiment rows are selected on the basis of
relationships between factors. These relationships are called design generators. The first

design generator used is,
I=ABD, (3.27)

where [ is the identity element, and is equivalent to ‘“+’ by definition (Montgomery, 1983). The
generator is interpreted by multiplication of the signs of the factors, and thus in (3.27) the
generator is satisfied if between the factors 4, B and D, either one or three of the factors have
the sign ‘+’. The value of this generator is shown in Table 3.3, following convention it is
written D=AB, which is one of the aliases of the generator. This is explained below. A positive

value in this column indicates the generator identity is satisfied. The second design generator

used is,
[=ACE , (3.28)

and its value appears in Table 3.3 under the heading £=A4C. The fractional factorial experiment

is defined by the defining relation, which is given by the combination of the two generators,
[=4BD=ACE , (3.29)

which is given in the rightmost column of Table 3.3, under column heading SEL. Other design
generators may be used in place of the ones employed here. Other definitions of design
generators or defining relations, including their complimentary or alternate halves may also be

used. This is outside the scope of this thesis, but is described by Montgomery (1983). It is
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noted that with the defining relation used here (as with the standard orthogonal arrays detailed
by Taguchi and Phadke) that a row exists with all the factors at the lowest level (in all cases
this is the first row). If this corresponds to a perturbation vector which has no effect on the
system, then the nominal response is considered within the experiments detailed by the
orthogonal arrays, removing the need for a further measurement to achieve this and improving
the efficiency of the analysis. The fractional factorial experimental design is summarised in
Table 3.4. Only 8 experiments are now required. In this table the factor signs: ‘-’ and ‘+°, have
been replaced by: 1 and 2 respectively, to maintain consistency with the orthogonal arrays

used, as specified in Appendix C.

By using design generators the main effects are deliberately aliased with interactions between
the factors, that is, some main effects and some interactions are indistinguishable. Thus unless
interactions are insignificant, then the estimated value of the main effects will contain errors
due to these. (3.27) signifies the aliasing of the main effect of D with the interaction between 4
and B. Noting that the multiplication of any factor by itself results in /7, the alias D=A4B can be

achieved from the generator (3.27),

DI=ABD.B=AB . (3.30)

Similarly the alias £=AC already used to for the generator (3.28) is given,

LE=ACEE=AC. (3.31)

Thus the main effect of £ is also aliased with the interaction between 4 and C. By similar
manipulation and combination of the design generators all the aliases are found (although in
this particular case no combinations of generators are required). These are summarised in
Table 3.5. Thus each entry shows the interactions between each factor. Obviously this table is
symimetric, and by convention only one half is shown with the diagonal elements shown

bracketed.

In this case, although all the main effects are aliased with interactions, not all possible
combinations of second order interactions are aliased with main effects. In all but one of the
two-level fractional factorial orthogonal arrays included in Taguchi (1987), and cited in Phadke
(1989), the number of columns (i.e., factors) is an integer power of two minus one. In these
cases the number of experiments performed is integer power of two (i.e., the number of
columns plus one). This is the maximum reduction attainable from a full factorial experiments
design while still allowing the individual main effects to be determined from the experimental
design. Even if the number of factors required is less than those defined in these arrays all the
experiments are still required, if the balancing property is to be retained. Thus in the fractional

factorial experiment design in Table 3.4, the number of experiments required is 8, which is the
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same as if a fractional factorial design for 7 factors had been derived. The only advantage in
the above design over a 7-factor design is that there are fewer interactions between factors. The
minimum number of experiments allows sufficient degrees of freedom to calculate the main
effects of each of the factors and also their mean, and thus the analysis of means (ANOM) and
analysis of variance (ANOVA). ANOM allows the average effect of each factor on the system
output and thus allow the optimum value to achieve a desired system response. From this the
optimum levels for each factor can be determined. ANOVA allows the average effect of
changes in each factor on the system output. This leads to the Taguchi’s and Phadke’s Signal
to Noise (SNR) ratio, which is based on the ratio of the square of the mean response of the

experiments, [1°, to the mean-squared-deviation about the mean, MSD, and is given by,

2
38
SNR =101 = 3.32

Og‘O(MSD) (3-32)

For a system for which the target response is a nominal value a function based on (3.32) is the
parameter which is minimised. This is not applicable in the use of the fractional factorial arrays

as used for the robustness analysis in this thesis where the smaller the system response the

better.

The generation of full and fractional factorial orthogonal arrays for experiments using three-
level factors is achieved using a similar procedure as described above. It is more complex as
modulo 3 (as opposed to modulo 2) arithmetic is required. This is outside the scope of this

thesis, but is detailed in Montgomery (1984).

3.4.2.3 THE ORTHOGONAL PROPERTY OF ARRAYS
The fractional factorial experiment design using orthogonal arrays, including that shown in
Table 3.4, possess an orthogonal property. This exists between the columns of the experimental

design array, and is defined as follows. Assume a column of the design to be L, which is

comprised of n elements, is

L={w, w, .. w} (3.33)

i

The contrast C; is defined if all the elements add up to zero. This can be assured if the mean of
the column is subtracted, and thus is independent of numerical level notation used (although the

levels must be a sequential run of integers).

C={w, w, . . w-L. (3.34)

1
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Two columns are orthogonal if their inner product is zero. Hence, columns L; and L, are

orthogonal if
¢.C, =0 i#y. (3.35)

For an orthogonal experimental design (3.35) must be satisfied between all columns.

3.4.2.4 A COMMENT ON THE FRACTIONAL FACTORIAL ORTHOGONAL
ARRAYS USED

The robustness analyses conducted in this thesis use two and three level orthogonal arrays both
requiring a minimum of 36 factors. Two standard orthogonal arrays from Phadke (1989), after
Taguchi (1987), are used. Maintaining the notation from these references, these are termed L.64
(two-level, 63 factor, 64 experiment array) and L81 (three-level, 40 factor, 81 experiment
array). These are included in Appendix C, and are included in their entirety even though only
the first 36 columns are required. An error in the 164 table (as printed in Taguchi (1987) and
repeated by Phadke(1989)) was detected by the author. The values at (experiment, column)
positions (32,28) and (32,29) should be 1, otherwise the orthogonal property of the table is lost.
This correction has been confirmed by the author (Phadke 1989) and corrected version of the

table is given in Appendix C.

3.4.2.5 COMMENTARY ON TAGUCHI'S METHODS

In a later edition of his book, Montgomery (4th edition, 1996) provides a critique of the
methods advocated by Taguchi (and thus also Phadke) with respect to experimental design.
Whilst Montgomery considers Taguchi’s basic philosophy ‘sound’ and recommended for
product design, he criticises Taguchi’s statistical methods as often being unnecessarily
complicated, inefficient and sometimes ineffective. The main criticisms are directed at the data
analysis that follow the use of the experiments using Taguchi’s orthogonal arrays, and that a
simplified consideration of aliasing can actually be counter-productive in understanding the
system performance. Only the orthogonal arrays presented by Taguchi are used here, and thus

the contentious area of the data analysis is avoided.
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Ay 20 30 A 20 40
Az 40 52 Az 50 12
SYSTEM X SYSTEM Y

Table 3.1. Responses of System X and System Y; two 2-level example systems.

4 g Lyp
SYSTEM X 21 11 1
SYSTEMY 1 -9 -58

Table 3.2. The main effects, m, and mj, and their interactions, Ly, of System X and System Y.
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Expt No. “
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EEG—
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-
N

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Table 3.3. Full factorial experimental design for a five-factor, two-level experiment.
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Expt No. A B C D E
1 1 1 1 1 1
2 1 1 2 1 2
3 1 2 1 2 1
4 1 2 2 2 2
5 2 1 1 2 2
6 2 1 2 2 1
7 2 2 1 1 2
8 2 2 2 1 1

Table 3.4. Fractional factorial experimental design for five factor, two-level experiment.

A B C D E
4 “4) D E B C
B (B) -~ A -
C © - A
D D) -
E E)

Table 3.5. Two-factor interactions between the factors in the fractional factorial experiment

shown in Table 3.4
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GLOSSARY OF SYMBOLS FOR CHAPTER 3

The major notation used in this chapter is listed below. Other symbols are defined locally.

A Experimental array factor

A, Level n of factor 4

B Experimental array factor

B, Level n of factor B

C Experimental array factor

C; Contrast of array column 7
d Defining length of schema
D Experimental array factor

E Experimental array factor

Average fitness of population

~1

f As for definition of £, but evaluated using noisy phenotype method

Ja Value of probability limit ¢ of perturbed objective function

f(H) Average fitness of schema H

fi Fitness of chromosome i

Fx) Expected value of fitness function evaluated using noisy phenotype method
H Schema

1 Identity element

Lis Interaction between factors 4 and B

/ Chromosomes length

L; Column i of array

m(H,t) Number of schema H occurring in generation ¢

my Main effect of factor A

n Number of chromosome strings in population
0 Order of schema

Pe Probability of crossover
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pm
p(xH,1)
p(xy)

q

N Q9 g o =¥

[o7]

81'

Probability of mutation

Probability of each individual x occurring in schema A in generation ¢
Probability of each individual x occurring in a population in generation ¢
Noise distribution

Penalty value

Evolutionary time step

Population individual

Individual vector element of x

Generalised vector

Optimised optimisation vector

Search space

Penalised search space

Vector of values of perturbed objective function

Ordered vector, UP

Perturbation value

Value of noise perturbation added to population individual i
Inequality constraint

Satisfied inequality constraint

Perturbation vector

Overall reduction factor

Equality constraint
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Figure 3.1: The operation of the One Pass External penalty function illustrated for one degree
of freedom, using penalty value 7.

U . . r=0.0016
Exterior region

r=0.04

r=0.0016

Original U

True constrained minimum Interior region

Figure 3.2: The operation of the Fiacco-McCormick penalty function illustrated for one degree
of freedom. (After Siddall, 1982)
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Figure 3.3: The operation of the genetic algorthim operator: Crossover.
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Figure 3.4: The operation of the genetic algorthim operator: Mutation.

A~ A (A

A Dol lxle[1]#] o
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B [x[ols[s[x[=[x]5] (.

Figure 3.5: Two schema, A and B, with the properties defining length and order denoted for

each.
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E[F(x)]

T T
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Figure 3.6: An example of the operation of the noisy phenotype genetic algorithm, with noise
distribution g(y), on the objective function f(z). The expectation of the evaluated objective

function is Eff(z)].

aly)

E[F(x)]

Figure 3.7: Example of features in the objective function f(z) which can result in false optimum,
for the noisy phenotype genetic algorithm with noise distribution ¢(y), as the value of the

expectation of the evaluated objective function, Eff(z)], shows.
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Figure 3.8: The response of systems X and Y to the two-level factors A and B. System Y has a

high level of interaction between A and B. (After Montgomery, 1983)
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CHAPTER 4

Passive Optimisation Methods and
Robustness Analysis

4.0 INTRODUCTION

This chapter describes the optimisation of a regular two-dimensional cantilever structure to
reduce the vibration transmission from the base to the end of the structure. The optimisation is
achieved by means of redesigning the structure geometry; by allowing the positions of the mid-
structural joints to be variable. Unlike the optimisations detailed in Chapters 5 and 6, no
external energy source is used in the reduction of the vibration, this optimisation strategy is

thus referred to as passive optimisation.

The method used here is that of redesigning of the structure geometry, as opposed to
maintaining the structure geometry and changing the vibration transmission of the structure by
varying the cross-sectional areas of the individual beams, as used by Liu et al. (1997 and
1998). In this work the cross-sectional area was allowed to diminish to zero, thus effectively
removing the beams and changing the structure topology. The author feels that altering the
geometry; constructing a structure using beams of a regular cross-section cut to different
lengths, is a more practical solution. It is more complex to machine each beam to a custom
cross-section, and if a discrete set of cross-sections were used then this would severely limit the
search space considered during optimisation. Also, the union of thick and very thin beams
might present practical difficulties, and any additional joint complexities may need to be
accommodated in the structure model. Although the static strength of the structures is not
considered in the optimisations used by the above authors or the present author, the removal of
beams from the structure is likely to result in a weaker static structure, than that by changing
the geometry. The effect of the optimisation by geometric redesign on static strength of the

structure is briefly considered in Section 4.3.

The optimised designs are achieved using a number of methods: three traditional optimisation
methods, using gradient and hill climbing based strategies; a fairly recent heuristic search
technique using hill climbing and stochastic-based method of restarting the search; genetic
algorithms, a type of evolutionary optimisation technique which is stochastically based. All the

optimisation methods were successful to varying degrees.
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Although in theory all the optimised designs show better performance than the unoptimised
structure, the practical design implementations may not be feasible with exactly the required
optimised parameters due to, for example, manufacturing tolerances. Even if this was not the
case, the parameters might change during service by, for example, thermal expansion and
contraction. If the effect of these changes on the optimised performance is not studied then an
optimised design that is predicted to be the best (under nominal operating conditions) in service
may yield less than optimum performance. Whereas another optimised structure, although
having a slightly lower optimised performance under nominal operating conditions, may be less
sensitive (more robust) to changing operating conditions and be a more practical choice. A
geometric perturbation analysis was performed for all the optimised structures produced in this
chapter. It was found that the method by which the optimisation seeks the optimal structure

designs can have serious consequences on the robustness of the structures produced.

This chapter is structured as follows: Section 4.1 defines the optimisation problem; Section 4.2
describes the application of non-evolutionary methods (three traditional methods and Dynamic
Hill Climbing); Section 4.3 details the application of genetic algorithms, and additionally brief
analyses of the change in power flow in the structures and the consequential change in static
performance of the structure, both due to optimisation, is reported; Section 4.4 reports the

robustness analysis applied to all the optimised structures. The conclusions are drawn in

Section 4.5.

Throughout this chapter reference is made to the design exploration system used for the
majority of the optimisation work presented in this thesis. For brevity this will again be referred

to in this chapter by its proprietary name: OPTIONS. See Chapter 3 for further details.

4.1 DEFINITION OF THE OPTIMISATION PROBLEM AND
IMPLEMENTATION OF OPTIMISATION

4.1.1 DEFINITION OF THE OPTIMISATION PROBLEM

The optimisation problem considered in this thesis is defined as being: to minimise the vibration
transmission of the structure shown in Figure 2.1, such that the effect of vibration forces acting
at the base of the structure have the minimum effect on the far most right beam, labelled
Beam 40. The excitation is modelled as a force applied to Beam 1 at the base of the structure.
This is applied in a transverse sense to the beam at 0.5m from the hinged end, and has an
arbitrary value of IN at all frequencies considered. The vibration of Beam 40 is represented by

a measure of the energy dissipated in the beam due to the flexure of the beam. In Chapter 5 an
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analysis is reported of the use of different parameters which can be used to represent the
vibration in Beam40. It transpires that the parameter used as the subject of all the
optimisations reported here is not, in fact, the most comprehensive. However, for this structure
the use of the flexural energy dissipated in Beam 40 is shown to still be a very good
representation of the overall vibrational energy, in the frequency range considered. It was also

the parameter used by Keane in his optimisation scenario (Keane, 1995b).

In the optimisation studied in this chapter, the optimisation variables are the non-extreme joint
positions; the relative positions between the fixed joints at coordinates (0,0) and (0,1) and the
end joints at coordinates (10,0) and (10,1) are to remain unchanged. Thus there are 18 joint
positions to be determined by the optimisation, each defined by its x and y coordinates, making
36 optimisation variables in total. So that the number of bays in the structure is maintained,
and to prevent joints touching or overlapping, limits are imposed on the freedom of each joint
coordinate. The limits are +0.25m about each nominal joint coordinate. This gives the joints the
maximum freedom without and parts of the structure being allowed to overlap. The structure
parameters were detailed in Chapter 2, as the optimisation details above are those used by

Keane (1995b), thus the optimisation scenario is identical.

4.1.2 IMPLEMENTATION OF THE STRUCTURE IN OPTIONS

All the optimisations reported in this chapter were achieved using the OPTIONS package. This
is linked to the computational model for the structure, based on the receptance analysis method,
detailed in Chapter 2. This is the same way in which optimised structures were previously
produced by Keane (1995b), and experimental verification by Keane and Bright (1995) also
showed that the optimisation had produced a structure which had a greatly reduced vibration
transmission in practice. A successful comparison of the receptance model with a finite element

analysis model was also shown by Shankar and Keane (1995), albeit with a larger value of

beam damping.

Each optimisation variable is coded into a 16 bit representation scaled linearly between the
limits. This gives a precision of about 10 um, which while practically unrealistic was retained
for consistency with aforementioned previous work of Keane. This precision is thought to
unjustifiably strict, and 12 bits may provide a more realistic precision (of 0.12mm) for such a
structure, however the number of bits does not affect the operation or the speed of the

algorithm.

In order to gain an appreciation for the complexity of the optimisation, Figure 4.1 shows the
contour plot showing the average energy level in Beam 40, over the frequency range 150Hz to

250Hz, with both the x and y coordinate variations allowed under optimisation limits for joint 8
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at coordinates (4,1). Here the true multi-modal nature of the problem is evident. This graph is
obtained, however, with the remaining optimisation variables at their nominal position whilst in
the optimisation process the surface shown here would also vary as other variables are

adjusted.

The size of the optimisation problem can be appreciated from the fact that there are 36
variables, each represented by a 16-bit number, giving 65536 (in the order of 10') possible
combinations. Even if 12-bit representation had been used, as discussed above, this still would
yield a search space in the order of 10" possible combinations. If the objective function took a
mere Ims to evaluate (in practice each objective function evaluation at each frequency took
about four seconds at each frequency value, on the hardware platform detailed later) then of the
order of 10" years would be needed to exhaustively explore the search space. Bick (1996)
uses for comparison quantities relating to the universe, stating 10%° as being the number of

stable elementary particles in the universe.

In the optimisations that follow in this chapter, the energy level of Beam 40 of the structure
(shown in Figure 2.1) is minimised over three frequency bandwidths. The objective functions
used represented the energy in Beam 40, 1) at a single frequency (185Hz), ii) as an average over
a 20Hz bandwidth (175Hz to 195Hz comprising five linearly spaced frequency points), and iii)
as an average over a 100Hz bandwidth (150Hz to 250Hz, using 21 linearly spaced frequency
points). These optimisations are subsequently referred to as single frequency, narrow band and

broad band optimisations.

4.2 OPTIMISATION USING NON-EVOLUTIONARY METHODS

The structure was optimised using traditional optimisation techniques, and a relatively new
technique called Dynamic Hill Climbing. The traditional techniques used are (referred to by the
names of their originators): Hook and Jeeves, Davidon-Fletcher-Powell (DFP) and Broyden-
Fletcher-Goldfarb-Shanno (BFGS). These techniques were described in Chapter 3. These four
optimisation techniques are taken as a representative sample of non-evolutionary algorithms
currently used. It is not intended to present an in-depth study comparing different optimisation
techniques, but a brief study to support the use of genetic algorithms for this type of
optimisation problem is included here. The use of other Evolutionary Algorithms was not
investigated, although Keane has already performed a comparison against Simulated Annealing

for a similar optimisation problem (see Keane, 1994).

Two penalty functions are available to the author by using OPTIONS: One Pass External and

Fiacco-McCormick. The first is a simple way of imposing constraints which has no significant
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further computational expense, the latter is a more sophisticated technique requiring successive
re-evaluations of the objective function, but can perform better than the One Pass External
method in some cases. These issues were discussed in detail in Chapter 3, as was the composite
optimisation strategy adopted here; using a two-phase search for all non-evolutionary
algorithms except Dynamic Hill Climbing (where the One Pass External is used). The
optimisation strategy is to initially perform a search using the One Pass External penalty
function, then restart the current point using the Fiacco-McCormick penalty function. This is
an efficient strategy as the first, and probably most significant, part of the search is performed
with no significant additional computational overhead. Then the Fiacco-McCormick penalty
function is used to enable the search to localise on the minimum. As discussed in Chapter 3, a
typical problem with the One Pass External penalty function is that it is possible it may
prematurely terminate its search when the minimum lies on or near a boundary on the search
space. The use of the Fiacco-McCormick penalty function, although computationally more
costly, is more adept in these situatioﬁs, However it is feasible that simply restarting the search,
which entails resetting search parameters (e.g. the step size, and in the case of DFP and BFGS,

the Hessian matrix to the identity matrix), may enable further successful exploration.

The parameters defining the non-evolutionary search techmiques used here are given in
Tables D.1 to D.5 in Appendix D. Both the fixed parameters and those capable of being
assigned in OPTIONS are given. As it was not intended to perform an in-depth analysis of
optimisation methods, then a sapient choice of parameters was made. With the Hook and
Jeeves algorithm and DFP, slight adjustment of the initial choices of the parameters OPT_TOL

and G, respectively, were made in order to encourage convergence.

The implementation of Dynamic Hill Climbing available in OPTIONS, always started the
search from the same initial point (i.e., the regular structure shown in Figure 2.1). Thus the
first local search would always be the same, and thus would be redundant if more than one
optimisation was performed, even using different random number seeds for the search
algorithms. For a high dimensional problem, such as the one considered here, the next search
start point is simply a random jump in the search space, as discussed in Chapter 3. Four
random structures were generated within the optimisation limits which, in addition to the
regular structure, provides a different start point for each search. In addition a different random
number seed was also used for each optimisation resulting in structures labelled with suffices
DHC_A to DHC_E. The regular structure is the start point corresponding to suffix DHC_A,

the other initial structure topologies are shown in Figure 4.2.
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4.2.1 SINGLE FREQUENCY OPTIMISATION USING NON-EVOLUTIONARY
METHODS

The results of applying the three traditional search techniques (DFP, BFGS and Hook &
Jeeves) are shown in Figures 4.3, 4.4 and 4.5. Each of these shows the final optimised structure
and resulting frequency response of the energy in Beam 40 after both phases of the search. The
frequency response for the unoptimised structure is shown with a dashed line and for the
optimised structure dotted. The actual frequency used for the objective function on the latter is
denoted by a cross. The frequency response over a wider frequency band, S0Hz to 350Hz, is
shown and is subsequently referred to as the wide band response. The wide band average
energy level is also shown. The optimisation history is shown separately for the first search
phase, where the One Pass External penalty function is applied, and also for the second phase,
in which the Fiacco-McCormick penalty function is used. The optimisation histories show the
result of each evaluation of the objective function used in the algorithms. However for the Hook
and Jeeves method, each single optimisation step requires more than one evaluation. Each
single step involves an exploratory search for each individual coordinate in is made, each
requiring the objective function to be evaluated, and then a pattern move. The results are also

included in Table 4.1, which summarises the optimisation results for this chapter.

In optimising the performance of the structure at a single frequency of 185Hz, the Hook and
Jeeves search is seen to achieve the best result at the end of both search phases, ultimately
giving an attenuation of over 73dB. However it takes the largest number of evaluations, due to
the apparent slow convergence of the second phase. The DFP and BFGS algorithms produce
similar results, which is not too surprising since they are closely related. The ‘spikes’ in the
optimisation history for the BFGS are thought to be due to points in the search where the
Hessian matrix becomes either singular or non positive-definite. Although the algorithms are
closely related, the implementation in OPTIONS uses different software suites. The most
apparent distortion in the optimised structures is seen as a result of applying the DFP algorithm

even though this is the least successful. The distortion in the bay second bay from the base is

pronounced (Figure 4.3).

Five optimised structures were achieved using the Dynamic Hill Climbing algorithm. Each
structure was obtained starting with one of the five different initial structures, and a different
random number seed at the beginning of the optimisation. The optimised structure with the best
performance is shown in Figure 4.6. This is also included in Table 4.1, along with the average
performance for the five structures. The best structure achieves a better attenuation than for all
the traditional methods. The average performance, however is not as good as that for the Hook

and Jeeves search. Another point in the favour of Dynamic Hill Climbing is that the resulting
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structures have been achieved using about one-third of the number of evaluations required by
the Hook and Jeeves algorithm in this case. The structure shown, SF_DHC_D, does not result
from using the regular structure as the start point of the optimisation and also shows the most

apparent distortion of all the optimised structures presented for this optimisation case.

4.2.2 NARROW BAND OPTIMISATION USING NON-EVOLUTIONARY
METHODS

The optimised structures resulting from applying the three traditional optimisation methods to
minimise the average vibration transmission over the narrow frequency band are shown in
Figures 4.7, 4.8 and 4.9, whose format is described above, the range of frequencies used for the
objective function are denoted by a solid line with crosses showing the component frequencies.
The results are also summarised in Table 4.1. As for the single frequency case, the Hook and
Jeeves search is seen to provide the best attenuation out of the three methods, after both search
phases, ultimately achieving an attenuation of 47dB. However, again this method shows slow
convergence in the second phase. The next best value of attenuation was achieved by the DFP
algorithm. In general the second phase is seen to provide little improvement in the performances
of the algorithms. The amount of apparent distortion in the optimised structures does not
provide any indication the attenuation achieved. The most apparent distortion is seen in the
optimised structure resulting from the DFP algorithm, while the least distorted appears to be

that resulting form the Hook and Jeeves search, which is the most successful.

Application of the Dynamic Hill Climbing algorithm resulted in five optimised structures, the
most successful of which, N_DHC_A, is shown in Figure 4.10. This optimised structure
achieves almost an attenuation of 70dB, and the average performance of all the five structures
is almost 66dB, which is still better that the attenuation achieved by any of the three traditional
methods. The best optimised structure results from using the regular structure as a start point,
but the resulting performance is not achieved from the minimum local to this point. It is also
seen that the average performance of the Dynamic Hill Climbing algorithm provides the best

performance for the least number of evaluations.

4.2.3 BROAD BAND OPTIMISATION USING NON-EVOLUTIONARY
METHODS

The result of applying the three traditional optimisation methods to the structure to minimise
the average performance over a frequency band of 150Hz to 250Hz is shown in Figures 4.11,
4.12 and 4.13. The format of these figures is as described above and the results are again
summarised in Table 4.1. As with the results reported for optimisation of the performance over

the previously reported frequency band and single frequency, the Hook and Jeeves search
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provides the best performance at the end of each search phase as well, achieving almost 25dB
attenuation in this case. Although, it is again, the computationally most expensive. The second
phase provides no improvement for the DFP algorithm and little improvement for the other two
methods. Again, slow convergence is seen for the Hook and Jeeves search. This method whilst
providing the best value of attenuation also results in the optimised structure which is the

apparently least distorted of the three.

The structure with the best optimised performance resulting from using the Dynamic Hill
Climbing algorithm, B_DHC_D, is shown in Figure 4.14. Its performance is given in Table 4.1
along with the average performance of the five optimised structures produced using this
algorithm. Structure B_DHC_D achieves over 10dB greater attenuation over the best achieved
with the three traditional methods, and the average performance of the structures is also better.
The average number of evaluations required using Dynamic Hill Climbing is in the middle of
the range for the three traditional methods. However, as the second phase of the optimisations
using traditional methods did not achieve much improvement in values of attenuation, their
values of optimised performance could be judged to have been achieved after the first phase.
Dynamic Hill Climbing is thus seen to be more successful but requires a greater computational
effort. Finally, it is noted that comparing the optimised structure B_DHC_D, with the initial
structure used for this optimisation (in Figure 4.2), that the optimisation has made the

originally very distorted structure, become apparently less distorted.

4.2.4 DISCUSSION OF OPTIMISATION RESULTS USING NON-
EVOLUTIONARY METHODS

The Hook and Jeeves search achieved the best performance out of all three traditional
optimisation methods employed, for optimisation of the performance at a single frequency and
also the average performance over two frequency bands. In all cases the second phase of the
search achieved very little improvement in the performance but was very computationally
expensive. However, the results achieved after the first phase are still better than for the other
two methods after the second phase. The next best method was the DFP algorithm, which was

except for the single frequency case was also the second best after the first search phase.

Dynamic Hill Climbing achieved better performance attenuation than the three traditional
methods. It is the only algorithm so far considered that allows a search that commences from an
initial point that is not the regular structure. (Unless, for example, with the Hook and Jeeves
search the initial step was so large that it resulted in a jump to a point in a different ‘valley’
with a lower value). Even where the best attenuation was found from an optimisation which

commences with the regular structure, it was not the first minimum evaluated in the
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optimisation run that provided the best minimum. This indicates that any of the minima local to
the regular structure does not provide the best performance, however well any of the algorithms
locate the true minima. (It cannot be guaranteed that all algorithms start at the same initial
point commence searching in the same direction, and therefore descend into the same local

minimum. )

Further investigation was not conducted to improve on the success of any of these algorithms,
or the speed at which convergence has been achieved. It will be seen that even though
performance improvements may well be achievable, when the robustness of the structures is
considered (in Section 4.4) attempts to improve the success of the optimisations using the three

traditional methods and Dynamic Hill Climbing may be academic.

The effect of the optimisations performed on the wide band response is also given in Table 4.2.
It is seen that for the DFP algorithm a trend is suggested in which the narrower the frequency
band over which the objective function is averaged the greater the wide band attenuation. This
result is surprising as the optimisation only considers the performance over the frequency band
used to evaluate the objective function, the response outside this band is an uncontrolled
consequence of optimisation. With the other two traditional methods, there is little difference in
the wide band response attenuation between the single frequency and narrow band optimisation,
however in the case of the broad band optimisation the reduction is smaller. The mean wide
band attenuation for the five optimisations using the Dynamic Hill Climbing algorithm are very
similar to those for the single frequency and broad band cases. A smaller attenuation in seen for
the narrow band case, although the range between the maximum to minimum values of

attenuation is very similar for all frequency bands.

4.3 GENETIC ALGORITHM OPTIMISATION

The use of genetic algorithm optimisation was applied to the structure optimisation problem,
previously described. As with the optimisations using non-evolutionary techniques, the energy
in Beam 40 of the structure was minimised at a single frequency, and the average energy was

also minimised over two frequency bands.

4.3.1 APPLICATION OF GENETIC ALGORITHM TO STRUCTURE

The binary strings representing the coordinates for the 18 variable joints of the structure are
concatenated to form one long ‘chromosome’ which is the unit of population for the genetic
algorithm optimisation. Details of the optimisation parameters uséd, which define the genetic

algorithm process in full, are contained in Table D.6 in Appendix D. The parameter names

81



used in OPTIONS and commonly used notation are also included. As with most optimisation
algorithms, the values of such parameters can affect the performance and therefore the success
of the optimisation. The values used here were, again, taken from the previous work by Keane
(1995b). Genetic algorithms were used an optimisation tool, and a study of the success of
genetic algorithms against various parameter values was not investigated. The parameters were

taken on the basis of the success reported by Keane.

4.3.2 GENERATION OF OPTIMAL DESIGNS

For the single frequency and narrow band optimisations the genetic algorithm was assigned to
calculate optimised candidate structures by evaluating 1000 structure designs (which were
realised as 5 generations, each of population size 200), and for the broad band optimisation
4500 structure designs (15 generations each of 300). The broad band optimisation was that
studied by Keane (1995b), the other optimisations are included to study the effect of averaging

the performance over a number of frequencies on, ultimately, the robustness of the performance

of the structures.

It 1s unlikely that the global optimum structure design will result for the optimisation (and even
if it did it would not be possible to verify this), but genetic algorithm optimisation was applied
to produce ten different candidate structures. These were uniquely achieved by discarding a
different number of random number samples, from the random number generator used by the
algorithm, before commencing the optimisation process. This is specified by the parameter
value GA_RANDM (see Table D.6). The values used were: 0 and then the first nine prime
numbers, and the resulting structures are labelled with label suffices “_A” to “_J”. As for the
non-evolutionary optimisation results discussed above, for each optimised candidate the energy
response for a wider bandwidth, 50Hz to 350Hz in 5Hz steps, was calculated and is
subsequently referred to as the wide band response. This enables the effect of optimisation in

the regions outside of frequency band considered by the optimisation to be seen.

4.3.2.1 SINGLE FREQUENCY OPTIMISATION

The optimisation was first performed using an objective function equal to the energy level of
Beam 40 at a single frequency, 185Hz. The single frequency optimisation, evaluated on
hardware platform A described in Appendix E, took approximately 1 hour to produce each

optimised candidate. A summary of the results for each case is included in Table 4.1 to enable

comparison with other optimisation techniques.

Figure 4.15 shows the best candidate geometry, SF_E, achieved from the ten optimisation

processes performed. Figure 4.16 shows the third best candidate geometry, SF_A, which as
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discussed below in Section 4.4, is a more practical structure to implement. The optimised
structure topology is shown in the top-left hand corner, the frequency response in the top right-
hand corner and the history of the objective function against generation in the bottom left-hand
corner, which shows the value of the best objective function value achieved after each
generation. The final linear value of the objective function is also stated. The frequency
response for the unoptimised structure is shown with a dashed line and for the optimised
structure as dotted. The frequency value used as the objective function is denoted by a cross.
The numerical results for all ten candidates are summarised in Table 4.3, and the reductions in
the objective function and wide band average energy level achieved are shown in decibels

relative to the unoptimised structure

As the frequency at which the performance is evaluated is in a dominant resonant peak in the
nominal response, it is not surprising that substantial reductions can be achieved in minimising
the objective function. Since the peaks in the frequency response are likely to occur due to the
cumulative effect of individual system resonances, and such resonances are often sensitive to
parametric changes. To diminish the resonance response is therefore relatively easily
achievable, but to reduce the response further requires that the conditions occurring at this
frequency have an overall destructive effect. Here the reductions achieved in the objective
function range from 53.0dB (structure SF_I) to 69.2dB (structure SF_E). The reduction of the

wide band response is more consistent, ranging from 4.7dB (structure SF_J) to 11dB (structure

SF_D).

4.3.2.2 NARROW BAND OPTIMISATION

This optimisation was performed with an objective function which was the average of the
energy level of Beam 40 at five frequencies, 175Hz to 195Hz in 5Hz steps. The candidate
geometry which gave the best performance produced by ten narrow band optimisations is
shown in Figure 4.17. The frequency range used by the objective function is shown as a solid
section on the dotted response, with crosses additionally denoting the actual frequency points
used. For this analysis each optimisation, evaluated on hardware platform A described in
Appendix E, took approximately 5 hours to produce each optimised candidate. The numerical

results for all ten candidates are summarised in Table 4.4.

All of the optimised structures achieved reductions in the objective function with a range of
38.1dB to 47.5dB. The average wide band response is also reduced from between 5.2dB to
12.5dB. Even though only a small part of the frequency range was considered during the
optimisation it is not surprising that this still achieves global reductions in the wide band

response, since the optimisation window covers a dominant resonance peak in the response of
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the structure. In the non-optimised case this peak is significant in the wide band frequency
average energy level. The structure achieving the best objective function reduction is structure
N_B, followed closely by structure N_G. The best wide band frequency average reductions are

found in structures N_J and N_I respectively.

4.3.2.3 BROAD BAND OPTIMISATION

This type of optimisation was finally performed with an objective function which was the
average of the energy level of Beam 40 at 21 frequencies, 150Hz to 250Hz in 5Hz steps. The
best of the ten optimised candidates produced is shown in Figure 4.18. Even though the
structural and optimisation algorithm parameters used were also those used by Keane (1995b),
the starting conditions used in his work could not be assured and therefore it is unlikely that
any of candidates produced here would be identical to any of those reported by Keane, which is
the case. However, the performance improvements achieved are of a similar magnitude. For
this analysis each optimisation, evaluated on hardware platform A described in Appendix E,
took approximately 105 hours to produce each optimised candidate. The numerical results for

all ten candidates are summarised in Table 4.5.

The best reduction achieved in the objective function 1s 34.5dB, structure B_E, which is shown
in Figure 4.18, followed closely by 34.1dB (structure B_F). However these structures do not
appear high in the ranking when ordered in terms of wide band response reduction. In this
respect the best two structures are structures B_D and B_A. The frequency range of the
objective function covers a more significant part of the wide band response than for the narrow
band optimisation, but the results show that this does not imply consistency in the ranking of

the best structures in both objective function and wide band response.

4.3.2.4 ANALYSIS OF POWER FLOW IN STRUCTURES OPTIMISED BY GENETIC
ALGORITHMS

The aim of the optimisation is to reduce the power dissipation in Beam 40 (which is
synonymous with reducing the energy level). With no external source of energy this is achieved
by two mechanisms; the reduction of the input power to the structure and the redistribution of
the power dissipated in the structure, so that a smaller proportion is dissipated in Beam 40. As
detailed in Chapter 2, these two effects may be represented by the level reductions oippyr and
Ogrepist- Both these have been calculated and are presented for the broad band case in
Table 4.6, in which the actual values of power are also given. The reduction in input power to
the structure shows little variation for the ten optimised structures and has an average value of
10.7dB. The redistribution of the power distribution shows a slightly greater variation, and has

an average value of 22.3dB. Thus these two effects are both important in the reductions
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achieved, although the power redistribution in the structure provides twice the reduction in level
than that for the input power. The three power components in the structure (the input power,
the power in Beam 40 and the power in the remainder of the structure) are depicted graphically
in Figure 4.19 for all ten optimised structures. The reduction in input power is apparent,
however due to the relatively small values of the power in Beam 40 for the optimised
structures, the height of these bars cannot been seen. This emphasises the relative values
between the components and is included here for comparison with results presented in
subsequent chapters. The details of the power distributions in all the beams of the structure for
the unoptimised structure and the optimised structure B_E are shown in Figure 4.20. The
optimisation has caused large decreases in the power dissipated in the beams near the base of

the structure, and the power transmitted through the structure is dramatically reduced.

For the single frequency and narrow band optimised structures only the values of oppyr are
shown in Tables 4.3 and 4.4. The values of Orgpist may be deduced from (2.83). It is seen that
similar reductions in the input power are found when an average is taken over each set of ten
candidates, but in general greater reductions are found as optimisation frequency band
decreases. For the narrow band case there is a wide variation in values for each structure, a
range of almost 10dB. As greater reductions are found in the attenuation of the power level of
Beam 40 with decreasing bandwidth, and since the average input reductions are similar, this
implies that the greater reductions are achieved with a greater redistribution of power within the

structure.

4.3.2.5 MODAL FREQUENCY ANALYSIS OF STRUCTURES OPTIMISED BY
GENETIC ALGORITHMS

A further investigation was performed in order to gain an insight into the mechanisms by which
the reductions in vibration transmission of the optimised structures have been achieved. Using
the finite element analysis (FEA) model package IDEAS-5 (Structural Dynamics Research
Corporation, 1997) a modal frequency analysis of the unoptimised and some optimised

structures were performed.

The geometry of the structures were imported to the FEA model, the beams where modelled
using 10 linear beam eclements per beam, each with the following parameters: Young’s
Modulus of Elasticity 6.03x10"° N/m?, Material density 2370 kg/mr’, beam cross-sectional
dimensions 47.02mm (x-y plane) by 24.59mm. These values were used so as to give the same
values of £4 and ET as specified for the beam in Section 2.1. Using FEA, beam inter-coupling
forces are not easily attainable, thus the modal analysis was conducted using one of the velocity

components at one end of Beam 40.
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A comparison for the velocity component, V.’ (the x-axis velocity component at end 1 of
Beam 40), was conducted using the receptance analysis method and the FEA method for the
unoptimised structure, and the results are shown in Figure 4.21. Also, this comparison was
performed for the three best optimised structures resulting from the genetic algorithm
optimisation for the single frequency, narrow band and broad band cases, and the results are
given: structure SF_E (Figure 4.22), structure N_B (Figure 4.24) and structure B_E
(Figure 4.26). In general it can be seen that, although there are discrepancies between the
responses produced by the models, reasonably good agreement is seen, and that the peaks and
troughs in the responses from both models occur at similar frequencies, although the
amplitudes are not always the same. The worse deviation is seen for the two responses for
structure B_E between 250Hz and 300Hz. A similar comparison was performed by Shankar
and Keane (1995) who achieved better apparent agreement between the velocity responses
obtained from the same two methods. However, there are two main differences between theirs
and the author’s model. First, a regular structure with only four-bays was used, and any
compounded modelling errors in each bay are thus greater in a structure with ten repeated bays.
Second, Shankar and Keane used a generous value of 100s” for the value of beam damping.
This is a factor of five greater and means that the individual modes will have a half-power
bandwidth of approximately 100Hz. Thus the resulting frequency response is much smoother,
and much less sensitive to errors in individual modal frequencies. The sensitivity of the
structural model, and thus the difficulties in obtaining an accurate match between two methods
of modelling, can be demonstrated by the small effects of rounding the beam dimensions used.
If the actual beam dimensions (47.02mm by 24.59num) were to be approximated as S0mm by
25mm, then the change in the first two natural bending frequencies of a Im length beam
changes from 244Hz and 672Hz, to 260Hz and 714Hz, as predicted by an Euler-Bernoulli
beam model. Thus errors caused by the sensitivity of the model frequencies might explain the
discrepancies in the amplitude mismatch of peaks in the velocity responses. As a peak in the
responses is likely to occur from the cumulative effect of a number of modal responses, then
any small changes in each individual modal frequency will affect the peak maximum, although

the change in frequency may not, in fact, be at all large.

The change in the modal frequency distribution of the optimised structures compared to that for
the unoptimised structure is shown in Figures 4.23, 4.25 and 4.27 for structures SF_E, N_B
and B_E respectively. First, it can be seen that for the unoptimised structure two modal clusters
occur, in the frequency range of interest, at 185Hz and 240Hz. With reference to the value of
energy level in Beam 40 against frequency (see, for example Figure 4.3) and velocity response,

in Figure 4.21, that there are peaks in both of these responses at these frequencies. It is
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assumed that these peaks occur due to the modal clusters. The effect of the optimisation
process for all cases appears to be to ‘smooth out’ the modal frequency distribution, and thus
remove the effect of the modal clustering. On each figure the frequency range over which the
performance is evaluated is shown, and it is seen that the dispersing of the modal clusters
occurs even for clusters outside this frequency range. Indeed, two further modal clusters can be
seen at frequencies 95Hz and 310Hz, which although they are well outside the frequency band

used for all the optimisation cases, have also been dispersed as a result of optimisation.

To investigate whether the ‘modal dispersion’ is due to the optimisation process, or simply the
irregularity of the optimised structures, two intermediate structure designs were randomly taken
from within the first generation of the genetic algorithm optimisation which resulted in
structure B_E. One intermediate design has worse performance than the unoptimised structure,
and the other one has better performance. The modal distributions of each were evaluated, and
are shown in Figures 4.28 and 4.29. It is seen in both cases that a ‘smoothing’ of the modal
frequency distribution has occurred, and thus it is concluded that the modal smoothing is
mainly due to the irregularity of the structure geometry. However, comparing these modal
distributions with those for the three optimised structures presented above it is seen that the
modal distributions for the optimised structures are ‘smoother’. Thus the optimisation does
provide an additional effect, and thus secks an irregular structure that has an optimal
performance. Simply providing an irregularity to the structure geometry, even though this may
‘smooth’ the modal distribution, does not necessarily imply a reduction in the vibration

transmission of the structure.

4.3.2.6 CONSEQUENCE OF OPTIMISATION ON STATIC STRENGTH OF
STRUCTURE

The static tip stiffness of the ten optimised structures obtained by genetic algorithm
optimisation using a broad band objective function was briefly investigated. The geometry of
the candidates was imported into a Finite Element Analysis package for this purpose. Each
beam of the structure was represented as 50 beam section models each having the same
physical properties as those used for the receptance theory model, as reported in
Section 4.2.3.5. A force, of arbitrary value 100N, was applied at joint 20 at position (10,1) in
the y-axis direction and the vertical deflection measured. The magnitude of the force has no
significance as a analysis used was a linear one and non-linear effects, such as buckling, are

not considered. From this the "static tip stiffness" of each structure was measured, and is

included in Table 4.5.
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Firstly, it is seen that the unoptimised structure has the highest tip stiffness. That is not
surprising since the unoptimised traditional design, historically, is based, no doubt, on static
strength. Structure B_J is the ‘weakest’ structure in this respect (and also is incidentally the
worst in terms of dynamic optimised behaviour). However, in general there in no observed
relationship between the ranking of the optimised structures and their static strength. The static
strength of the best optimised candidate shows a reduction to 67% of that of the unoptimised
structure. The optimised structure with the best static strength is B_J, ranked 6th by dynamic

performance, which only shows a reduction to 89% of the static strength.

4.3.2.7 DISCUSSION OF GENETIC ALGORITHM OPTIMISATION RESULTS

All optimisation trials using objective functions based on either an average of the energy levels
over a band of frequencies, or that using the energy level at a single frequency, have produced
substantial reductions in the objective function. It is not known whether the global optimum is
contained within each of the ten candidates. The mean and the maximum-to-minimum (max-to-
min) ratio of the range of objective function values and the wide band response values across
the ten candidates produced from each of the optimisation cases are shown in Table 4.2. The
wider the bandwidth of the objective function the smaller the mean reductions achieved across
the ten candidates, it can also be seen that the variation (max-to-min ratio) across the

candidates in each optimisation case decreases with optimisation bandwidth.

Each optimisation seeks to achieve a reduction in the objective function, and the resulting wide
band response indicates that this is achieved at the expense of the response outside the
optimisation 'window'. This is shown by increases in the structural vibration transmission at
some frequencies outside the objective function frequency range. Considering the reductions in
the wide band response for the optimised candidates for all three optimisation cases there are
only small differences in the mean reductions and variations (max-to-min) in the wide band
reductions across each set of ten candidates. This indicates that in a global (i.e., wide band)
sense the overall vibrational energy transmission achieved is similar, which is supported by
modal analysis of the optimised structures. This shows that a modal redistribution, while

dispersing modal clusters does not alter the general modal density.

The fact that simply applying random changes to the structure does not necessarily produce a
better design is evident from Figure 4.30. This shows the value of the objective function for all
the structure designs evaluated in the entire genetic algorithm which resulted in the best
structure for the broad band case, B_E, which is shown in Figure 4.18. The value of the
objective function for the unoptimised structure is 0.33 x10°J as marked on the y-axis. Each

generation contain consists of 300 design evaluations, which are plotted in a sequential fashion.
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It is seen that there many structures in the initial generation which have worse performance
than the regular structure although most are better. The first generation is made up of the
original, unoptimised structure design and the remaining initial population is randomly
composed. As the genetic algorithm proceeds, generation by generation, it is seen that the
average values of the each generation improves. However, even in the ninth generation a
structure design exists which has worse performance than the nominal design (at approximately
evaluation 2700). This may have resulted from either a crossover or a mutation operation, but

does not succeed to the following generation.

4.3.3 OVERALL SUMMARY OF THE SUCCESS OF THE ALL OPTIMISATION
METHODS

The results from all the optimisations detailed above are summarised in Table4.1. In
optimising the performance of the structure the most successful traditional optimisation
technique, out of three used, was the Hook and Jeeves search. Even though this exhibited very
slow convergence in the second search phase (using the Fiacco-McCormick penalty function),
its performance after the first phase (using the One Pass penalty function) was also found to be
better than the other two methods after both phases. From the five optimised candidates
resulting from using the Dynamic Hill Climbing algorithm, the best candidate was better than
any other candidates, including those using genetic algorithms. The mean energy attenuation
over the five candidates was better than for the mean for the ten candidates using genetic
algorithms, except for the broad band optimisation case. Thus it is seen that the two algorithms
that allow exploration of the search space away from the region local to the initial point which
represents the regular structure have produced structures with better optimised performance.
The way m which is this is achieved is different for these two algorithms. The candidates
produced using genetic algorithms are not necessarily at located at any local minima, as there is
no local “hill climbing’ (or descending) element to this algorithm. It has been suggested that a
good strategy is to use genetic algorithm optimisation followed by a gradient search (Ibaraki,
1997). In this way, the minima local to the solutions produced by the genetic algorithm are
guaranteed to be found. This strategy was not adopted here and the justification is
demonstrated by studying the robustness of each of the optimised candidates produced above,

which is reported in the following section.

The mechanisms by which the reductions in vibration transmission were achieved by the
optimise studies were also studied. Firstly a power analysis of the structures showed that the
reductions in the vibration were achieved by a decrease of power into the structure from the
primary force, but most significantly by a redistribution of power in the structure so less power

is dissipated in Beam 40. A modal analysis showed that peaks in the response of the regular
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structure were due to modes with similar modal frequencies. It was seen that irregular
structures did not contain this ‘clustering’ of modal frequencies whether their overall response
was better or worse than the unoptimised structure. The optimised structures had a greater
smoothing effect on the modal distribution, although as seen this is not the only explanation for
the reduced vibration transmission. Thus, the success of the optimised design candidates seems,
in part, therefore to come from the non-repetitive nature of the geometry. Although the non-
repetitive nature alone does not imply better performance, it is a common feature of all the
optimised candidates. Part of the success of all the optimisation methods can probably therefore
be attributed to the fact that the traditional periodic design is a particularly bad design in
respect to the transmission of vibrational energy. The periodicity of the structure, whilst being
favourable on aesthetic grounds allows similar frequency components, that would propagate
relatively unimpeded through one bay section, through all the bay sections. Also, the static
strength of some optimisation structures was evaluated. It was found that the static strength
was reduced in the range of 50% to 90% of that of the unoptimised structure, and thus there

was no significant compromise between static and dynamic performance, in this case.

4.4 ROBUSTNESS ANALYSIS

The robustness of the performance to geometric perturbations was analysed for each of the
optimised structures obtained using each optimisation method for the single frequency case, for
the narrow band and broad band objective functions, reported above. 300 sets of joint
perturbations were generated and applied to the joint positions of each structure and the
objective function re-evaluated and recorded. Each set contained 18 pairs of random numbers
distributed uniformly between -1 and 1. Each pair relating to the x and y coordinates for each
joint. The same 300 sets of joint perturbations were used for each analysis. Each of the joint
perturbations were added to the joint coordinates for each structure in turn, suitably scaled. The
change in the resulting objective function represents the sensitivity of the performance of the
structure to small changes in the joint positions. For all cases studied in this and subsequent
chapters 300 sets of joint perturbation were found to be sufficient to estimate the reported
probability distribution and probability limits derived. This was validated by comparing some
of the results with those produced using 1000 sets of joint distributions. Any changes in the

‘shape’ of the histograms or the probability limits were insignificant.
4.4.1 ROBUSTNESS OF UNOPTIMISED STRUCTURE

A brief study of the performance of the unoptimised structures due to geometric perturbations

was conducted. The perturbed performance is presented for a perturbation scaling factor of
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0.01 for the random perturbations. This causes the maximum perturbation to each joint
coordinate to be +10mm in both x and y axes. (The effect of this scaling factor is studied below
for the narrow band genetic algorithm optimisation case). The results are shown in Figure 4.31
by displaying the value of perturbed structure performance obtained using a histogram. For this
and following histograms the range is divided equally into ten bars between the minimum and
maximum values (when scaled logarithmically). The nominal (unperturbed) value is indicated
by a thin solid line superimposed upon each histogram plot and the nominal value is not part of
the data represented by the histogram. The average energy level over the frequency bandwidth
used for the optimisation is higher for the single frequency case as there is a strong resonant
peak in the frequency response at this frequency, similarly the narrow bandwidth has a higher
average than the broad band optimisation bandwidth. The robustness is determined by the
spread of the results, the narrower this is, the more robust the structure. It is seen that for all
the optimisation bandwidths considered the robustness is similar. The bold solid line is the 95%
performance probability limit probability, which determines the performance value for which
95% of the applied perturbations result in better performance. This is a measure of both the
nominal value and robustness and is used as an indicator in selecting the best, but practically

achievable structure. Thus is discussed in more detail in the following section.

4.4.2 ROBUSTNESS OF STRUCTURES OPTIMISED BY NON-
EVOLUTIONARY TECHNIQUES

The robustness of the optimised structures produced using the non-evolutionary methods was
studied, using a perturbation scaling factor of 0.01 (corresponding to +10mm joint coordinate
freedom). The results are shown in Figures 4.32, 4.34 and 4.36, when optimised at a single
frequency, and when optimised as the average performance over the narrow and broad
frequency bands, respectively. The robustness of each the performance of each structure is
indicated by the width of each histogram, the nominal performance is depicted by a thin solid
line. The thick bold line show the 95% probability limits. The 95% probability limits are also

summarised m Table 4.2.

The optimised candidate produced using the DFP and BFGS algorithms appear to have resulted
in relatively robust structures in for the single frequency, narrow band and broad band
optimisation cases. Additionally, the structure B_DHC_D, produced by the Dynamic Hill
Climbing algorithm is also seen to be robust. Thus if robustness alone was the foremost
performance criterion then these structures would be selected. However, if the absolute
performance is also important then the 95% probability limit enables candidate structures to be
selected on a basis combining both absolute performance and robustness. The best structures

are then seen to be SF_DHC_A, N_DHC_B and B_DHC_D for the single frequency, narrow
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and broad band cases respectively. It is noted that only the latter candidate would have been
chosen on grounds of nominal performance. All the optimised structural designs produced by
the non-evolutionary methods are less robust than the unoptimised structure, with the exception
of N_BFGS, B_DFP and B_BFGS. The single frequency optimised structures are very
unrobust, some of the histograms spreading over a range of four orders of magnitude, in
general the narrow band optimised structures are seen to be slightly more robust. The

robustness of the worse broad band optimised structures is a little over one order of magnitude.

It is apparent that for many of the optimised structures, the nominal performance is unlikely to
be realised in practice, as the performance deteriorates for all geometric perturbations applied.
This indicates the importance of robustness analysis in selecting a practical candidate, and the
inadequacy of using the nominal performance alone. Indeed, for most of the candidates
produced here there the nominal performance appears to give little indication of each
structure’s performance unless it is realised exactly in practice (with the precision specified by
the optimised design). It is also seen that, with the exception of B_DHC_D, there is a trade-off
between robust performance and nominal value. Thus only structures whose nominal
performance is likely to be realised, are in general, those structures whose nominal performance
is one of the lower ranked. The relative impracticality of the optimised designs produced using
non-evolutionary optimisation methods is apparent by comparison with the optimised

candidates produced in the following section.

An indication of the lack of robustness of the optimised structures achieved by the Hook and
Jeeves and Dynamic Hill Climbing methods can be gleaned from studying the optimisation
histories, as shown in Figures 4.5, 4.9 and 4.13, and Figures 4.6, 4.10 and 4.14, respectively.
In these techniques the hill climbing is composed of intermediate exploratory searches in each
joint coordinates in turn and pattern moves. The results of each objective function evaluation
for these is shown in the optimisation histories. The presence of large spikes in a history
indicates the ‘unrobustness’ of the present position in the search space, as the small changes
can be considered akin to a perturbation. Also, the ‘shotgun’ search at the end of the first phase
for the Hook and Jeeves search is similar to a perturbation analysis, giving an idea of the

robustness of the solution at this point in the optimisation.

4.4.3 ROBUSTNESS OF GENETIC ALGORITHM OPTIMISED STRUCTURES
A robustness analysis was performed for all ten optimised candidates resulting from the genetic
algorithm optimisation. For the narrow band optimised structures, the effect of the size of the

range of the perturbations used in the robustness analysis is also investigated. For all the results
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presented, a summary is included in Table 4.2 to enable comparison between the perturbed

performance with optimised structures resulting from other optimisation methods.

4.4.3.1 ROBUSTNESS OF SINGLE FREQUENCY OPTIMISED STRUCTURES

The robustness of the optimised structures obtained using genetic algorithm optimisation at a
single frequency was briefly studied for a perturbation scaling factor of 0.01. This causes the
maximum perturbation to each joint coordinate to be +10mm, as previously discussed. The
perturbed values of the objective function are displayed using a histogram to indicate the
statistical spread about the nominal value, Figure 4.33. As before, the nominal value is
indicated by a thin solid line superimposed upon each histogram plot, the 95% probability limit
by a bold solid line and the results are ranked in order of decreasing nominal performance. The
results are listed in Table 4.3. It can be seen that, for example, S_E and S_D are less robust
than structures S_A and S_G to small perturbations in structure geometry. If solely the
robustness of the structures were the paramount design goal then structure S_A is shown to
have the best performance in this respect. However even though this structure is more robust its

nominal (unperturbed) performance is not as good as structure S_E.

It can be seen that the entire distribution of the performance for structure SF_D is worse than
for the nominal structure for all perturbation cases (the nominal structure performance is not
included in the distribution population). The size of the joint perturbations used here represents
a generous manufacturing tolerance of 10mm. However it is unlikely that the nominal
performance of this structure would be still be practically realisable. As shown below, where
the effect of the size of the perturbations is studied, the perturbations used here are still
representative of the robustness seen for smaller perturbations. Comparing the perturbed
performance of the single frequency optimised structure with that of the perturbed performance
of the unoptimised structure in Figure 4.31, it is seen that in general the structures have a lower
robustness after optimisation. Only structures S_A and S_G have maintained a similar level

robustness through optimisation.

Considering the absolute perturbed structure performance the 95% probability limits indicate
that the best structure is seen to be structure S_A, followed closely by structure S_G and then
structures S_E, S_J and S_F. Structure S_A is shown in Figure 4.16. It was ranked third in
terms of nominal performance but is a more practical structure than S_E. This revelation is not

indicated by any characteristic of the topology of either structure.
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4.4.3.2 ROBUSTNESS OF NARROW BAND OPTIMISED STRUCTURES

The robustness of the narrow frequency band optimised structures was first investigated using
a scaling factor of 0.01 for the random joint coordinate perturbations up to *10mm. The
nominal and perturbed performance of each structure is shown in Figure 4.35 with the 95%
probability limits, shown following the convention of Figure 4.33. The results are also listed in
Table 4.4. On grounds of robustness alone structure N_I is the most robust structure, however
its absolute performance is generally worse than most of the other candidates. This optimised
structure is the only one whose robustness is comparable to the unoptimised structure, shown in
Figure 4.31. Using the 95% probability limit the best structure is seen to be structure N_B,

which for this optimisation case also happened to have the best nominal performance.

The choice of the maximum size of perturbations used above (determined by the perturbation
scaling factor) was arbitrary to some extent, though it was chosen in order to represent a
typical maximum manufacturing tolerance. In order to verify that the above results are not
dependent on this scaling factor, and that there is some degree of ‘linearity’ in the results
against small changes in the scaling factor, two additional scaling factors were investigated.
The results for scaling factors of 0.005 and 0.02 (perturbations of up to £5mm and +20mm)
are shown in Figures 4.38 and 4.39 respectively for the narrow band optimised structures. In
both cases the absolute values defining the distribution are changed due to the different size of
the applied perturbations. The ranking of the 95% probability limits for a scaling factor of
0.005 across the structures are almost identical to those for 0.01, although the differences
between structures N_C and N_H becoming smaller. The performance limits for a scaling of
0.02 shows more radical changes in ordering than for those with 0.01 scaling. In particular the
original ‘best choice’ performance of structure N_B has deteriorated. These results suggest that
a scaling factor of 0.02 is too large to be considered a ‘small” perturbation for these structures,

producing results strongly dependent upon the range of perturbation amplitudes.

4.4.3.3 ROBUSTNESS OF BROAD BAND OPTIMISED STRUCTURES

The robustness of the broad band optimised structures was also investigated using a
perturbation scaling factor of 0.01. The nominal and perturbed performance of each structure
is shown in Figure 4.37 with the 95% probability limits following the convention of
Figure 4.33. The results are also listed in Table 4.5. The most robust structure is structure
B_D followed closely by structure B_J, and these are seen to be more robust than the
unoptimised structure, whose perturbation performance is shown in Figure 4.31. In general it is
seen that the perturbations have less effect on the broad band optimised structures than the

other two cases, although the performance of some structures are clearly more sensitive to
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perturbations than others. This is shown by the reduced (vertical) baseline of the histograms.
For the least robust structure B_B this covers only one order of magnitude. Using the 95%

probability limit the best structures are seen to be structures B_E and B_H.

4.4.4 DISCUSSION OF ROBUSTNESS ANALYSIS RESULTS

The results of all the robustness analyses for all the optimised structures presented in this
chapter are summarised in Table 4.2. The promising performance of the non-evolutionary
methods, which appeared to be very good on the grounds of nominal performance, is not found
to be realisable as shown by the robustness analysis of the structures. Even though some of
these structures showed better nominal performance than the optimised structures produced by
genetic algorithm optimisation they are, in general, seen to be very unrobust. Their nominal
performance is unlikely ever to be realised in practice as any applied geometric perturbation
deteriorates their performance. The ‘optimality’ of such structures is thus seen to be false in a
practical sense. The differences between the nominal performance and the performance for the
95% probability limit for structures produced by non-evolutionary methods and genetic
algorithms is seen by comparing these values shown in Table 4.2. This is also readily apparent
by comparing Figures 4.36 and 4.37 for the broad band case, for example. The reason the
structures resulting from the use of non-evolutionary techniques are thought to be so unrobust
is the nature in which the optimisations produce optimal solutions. Gradient search methods
seck local minima, features in the search space that are often due to the destructive effects
between many individual responses of the structure. These minima are special positions in the
search space where these effects are simultaneously at a minimum, but as many rely on so
many contributory elements there are also often sensitive to changes in any one of them. These
may be visualised as very sharp dips or valleys in the search space, and the performance
indicated in such features are only attainable at this exact point in the search space, and
therefore sensitive to any changes in the optimisation parameters. The performance of the
optimised candidates produced by the genetic algorithm optimisation is seen not to be as
sensitive as those produced by the non-evolutionary methods, even though there is variation
between the robustness of individual optimised structures. In the selection of a practical
optimised candidate the analysis of the robustness of the structures is therefore still prudent.

The use of the optimised candidates produced by the non-evolutionary methods was not studied

further.

The optimised structures obtained using genetic algorithm optimisation for the single
frequency, and both narrow and broad band objective functions demonstrate different levels of

robustness. By comparing the spread of the distributions for the candidates for each case an
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indication of the typical robustness inherently achieved with each type of objective function can
be seen. A perturbation scaling of 0.01 (corresponding to perturbations up to +10mm) is
common for each optimisation case in Figures 4.33, 4.35 and 4.37. It is seen that for the same
perturbations the wider the frequency band considered by the objective function the smaller the
spread. For the single frequency case the spread of each candidate’s distribution varies from
three orders of magnitude to one order of magnitude, for the narrow band case the spread varies
from one to two orders of magnitude, for the broad band case all the candidates variations fall
approximately within one order of magnitude. Hence it is seen that the wider the bandwidth of
the objective function the more inherently robust the candidates produced by the optimisation.
However, only some of the candidates of the broad band optimisation are shown to be more

robust than the unoptimised structure.

Table 4.2 shows the mean and the maximum-to-minimum (max-to-min) ratio of the range of
the 95% probability limits across the ten candidates produced from each of the optimisation
cases. The mean of the 95% probability limits is seen to decrease with increasing objective
function bandwidth, whereas the max-to-min ratio is seen to decrease. This trend is similar to
that for the corresponding objective function value results. This is explained by the fact that the
95% probability limit is a combined measure of the nominal performance and the robustness
for each candidate. However, for the single frequency case, the max-to-min ratio is noticeably
greater due to the relative lack of robustness of the candidates produced from single frequency

optimisation.

The geometric perturbations used in the robustness analysis, and the results obtained from
them, are a measure of statistical performance due to an ensemble of uniformly distributed
perturbations. If the distribution of the perturbations was to differ greatly from being uniform,
then other optimised structures may be preferable. In the absence of any information about the
perturbation distribution then the assumption of uniform distribution is thought to be prudent.
If the distribution of the perturbations was known then this could be applied in the analysis to

produce more specifically relevant results.

4.5 CONCLUSIONS

Optimisation of an existing traditional design of a lightweight cantilever structure, to reduce the
vibrational energy transmission from the base to the end beam, was performed. The
optimisation criterion was based on three types of objective function, one using the energy level
at a single frequency (185Hz), one using an energy level average over a narrow band of

frequencies (175-195Hz), and one using an energy level average over a broad band of
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frequencies (150-250Hz). Optimised structures were achieved using three traditional methods
(consisting of two gradient based and one hill climbing technique), Dynamic Hill Climbing (a
hill climber with stochastic search restart) and genetic algorithms. The latter two methods have
random elements to their operation so five and ten candidates, respectively, were produced for

each.

The optimisation process achieves significant reductions in the energy transmission in the
frequency band over which the objective function was evaluated although, in general the energy
level over a wider frequency band remained fairly constant. A modal analysis for structures
produced using genetic algorithms showed that the very nature of irregular geometries
‘smoothes out” modal frequency clusters which are often responsible for peaks in the frequency
response, but only on a local basis. However, the virtue of an irregular structure does not imply
better performance and the optimisation process is still required to find the modal conditions
which result in the large reductions in vibration transmission seen. The amount of apparent
distortion in the optimised structures was not found to be a good indicator of the minimised
performance, the most distorted structures not necessarily being the best optimised structures.
The consequence of the optimisation of the structures (concerned with the dynamic
performance) on the static strength of the candidates obtained for the broad band genetic
algorithm optimisation was briefly studied. All these optimised candidates were found to have
an inferior static tip stiffness compared to the original, and there was no relationship found
between the static strength and the ranking of the optimised candidates. The static tip stiffness

was reduced by about 50% to 90% across all ten candidates, compared to the unoptimised

structure.

The robustness (lack of sensitivity) of the optimised performance to small changes in the
structure geometry of all optimised structures resulting from all optimisation methods was
analysed by applying small perturbations to the positions of the non-extreme joint positions. By
applying an common ensemble of random joint perturbations to each candidate the statistical
distribution of the resulting performance change could be studied. It was found that some
structures are more robust to such perturbations than others. In particular it was found that the
optimised structures produced by the optimisation methods that produce optimised structure be
seeking, exact, local minima are very unrobust. In many cases, to such an extent that it is
unlikely that the structures would be practically realisable. In general the optimised structures
resulting from genetic algorithm optimisation are much more robust, although to varying
degrees. The amount of apparent distortion of the optimised structures, or any form of the
geometry does not indicate the degree of robustness of a structure. In general it is found that the

wider the response bandwidth considered by the objective function in the optimisation process,
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the less the spread in nominal performance across the ten candidates produced in each case, and
also the more robust the design candidates obtained. This is thought to be because the wider
bandwidth will result in an objective function which is dependent upon the combined effect of

many modes and is therefore less sensitive to changes in any one particular mode.

A smaller and a larger size of random joint perturbations were additionally applied to the
narrow band genetic algorithm optimised candidates uniformly distributed between +5mm and
+20mm. It was found that a similar ranking of results was obtained for perturbation up to
+5mm and the original perturbation size (10mm). The ranking was not preserved
perturbations up to 220mm because, it is thought, they were no longer small compared to the

size of the structure.

The choice of the best optimised candidate depends upon both the absolute value of the nominal
(unperturbed) performance, and the robustness of the structures performance to perturbations.
A criterion is suggested which defines the best candidate to be that whose performance is the
best for 95% of all perturbations applied. This is used to indicate the statistical expectation of
the structure performance. This criterion is applied to the candidates enabling the best

candidate, in terms of both robustness and absolute performance, to be identified.
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Penalty Function

Optimisation | Optimisation One Pass Fiacco-McCormick / Final
Bandwidth method Objective Number of Objective Total Number
function . function .
attenuation evaluations attenuation of evaluations
(dB) (dB)

DFP 39.6 2667 49.6 6180

BFGS 41.6 2038 48.4 4375

Single HOOK &1 70.9 2576 73.4 9530
Frequency mean - - 68.1 3031
(185Hz) DHC | max - - 82.3 2773
mean - - 59.0 1000

GA max - - 69.2 1000

DFP 40.6 4646 41.0 5459

BFGS 29.2 2876 304 4939

Narrow HOOK & J 46.2 2400 47.2 8123
Band mean - - 65.9 4161
(175 - 195Hz) | DHC | max - - 69.8 6229 !
mean - - 42.9 1000

GA max - - 47.5 1000

DFP 22,6 1808 22.6 2018

BFGS 17.8 2037 19.9 4297

Broad HOOK &) 24.1 2473 24.9 8075
Band mean - - 28.4 4188
(150 - 250Hz) | DHC | max - - 36.8 4091
mean - - 32.6 4500

GA max - - 34.5 4500

! number of iterations corresponding to the DHC optimisation achieving the maximum attenuation.

TABLE 4.1. Summary of optimisation performance for all optimisation methods. Attenuation

refers to reduction achieved in optimisation bandwidth.




Optimisation Optimisation Objective Wide band 95% probability
Bandwidth method function response limit for objective
(dB) (dB) function (dB)
DFP 49.6 14.1 39.1
BFGS 48.4 9.95 34.7
Single HOOK & J 73.4 7.72 37.0
Frequency mean 68.1 7.03 334
(185Hz) DHC | max-to-min 20.5 10.1 21.8
mean 59.0 7.39 44.0
GA | max-to-min 16.2 6.03 21.1
DFP 41.0 8.28 34.4
BFGS 30.4 10.8 28.8
Narrow HOOK & J 47.2 8.61 26.0
Band mean 65.9 3.50 40.9
(175 - 195Hz) | DHC | max-to-min 6.04 12.0 10.4
mean 429 8.13 37.7
GA | max-to-min 9.31 7.32 10.6
DFP 22.6 4.93 19.6
BFGS 19.9 6.12 17.5
Broad HOOK & J 24.9 3.81 114
Band mean 28.4 8.3 20.0
(150 - 250Hz) | DHC | max-to-min 12.4 10.5 16.0
mean 32.6 9.07 29.7
GA | max-to-min 3.50 8.89 4.96

TABLE 4.2. Summary of optimisation performance, wide band responses and 95% probability

limits for all optimisation methods. Attenuation refers to reduction achieved in optimisation

bandwidth.
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reduction in reduction in 95% probability Power input

objective wide band limit for reduction

Rank | Structure function average energy objective (185Hz)
(185Hz) (50-350Hz) function (dB) (dB)

(dB) (dB)
- unopt. 0 0 - 0

1 SF_E 69.2 10.7 56.5 13.6
2 SF_D 67.3 11.0 39.6 10.5
3 SF_A 63.9 9.8 60.2 13.4
4 SF G 62.4 6.4 58.2 13.9
5 SF_J 60.9 4.9 55.6 15.0
6 SF_F 60.4 7.6 553 134
7 SF_C 60.3 6.5 39.1 14.4
8 SF_H 58.8 5.8 50.7 14.0
9 SF_B 56.5 8.0 39.1 139
10 SF_1 53.0 7.4 46.3 11.3
average 59.0 7.4 44.0 13.5

TABLE 4.3. Results summary for the Single Frequency objective function optimised

using genetic algorithms. Input power reduction is also shown.

reduction in reduction in 95% probability Power input
objective wide band limit for reduction

Rank | Structure function average energy objective (175-195Hz)

(175-195Hz) (50-350Hz) function (dB) (dB)
(dB) (dB)
- unopt. 0 0 - 0

i N_B 47.5 8.6 42.5 9.29
2 NG 47.1 9.8 36.6 12.7
3 N_F 45.5 7.8 42.2 14.3
4 N_J 44.9 12.5 41.7 13.4
5 N_A 44.4 6.7 413 5.83
6 N._C 43.8 8.5 39.7 13.2
7 N_H 432 6.6 40.2 13.0
8 N_D 41.8 5.2 36.3 8.31
9 N_I 41.5 10.7 39.0 8.87
10 N_E 38.1 9.6 31.9 11.1
average 42.9 8.1 37.7 11.7

TABLE 4.4. Results summary for the Narrow band objective function optimised using

genetic algorithms. Input power reduction is also shown.
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reduction in reduction in 95% probability

objective wide band limit for Static tip

Rank | Structure function average energy objective stiffness

(150-250Hz) (50-350Hz) fonction (dB) (KN/m)

(dB) (dB)
- unopt. 0 0 - 98.6
1 B E 34.5 9.5 31.9 65.6
2 B_F 34.1 7.2 31.1 69.0
3 B_H 33.9 9.0 31.7 75.8
4 B_B 33.3 12.3 27.8 69.2
5 B._C 32.8 5.3 29.2 66.0
6 B_J 32.3 11.6 30.9 87.6
7 B_A 32.3 12.7 29.8 83.3
8 B_G 32.0 8.4 30.0 71.7
9 B_D 31.6 14.2 30.2 54.3
10 B 1 31.0 8.3 26.9 46.8
average 32.6 9.1 29.7 -

TABLE 4.5. Results summary for the Broad band objective function optimised using

genetic algorithms. Input power reduction and static tip strength is also shown.

Primary force input power Power dissipated Power
Structure redistribution

(x10° W) Reduction (dB) in structure in Beam 40 (dB)

OUpuT (x10° W) (x10°W) OlREDIST

unoptimised 36.4 0 35.7 6.69x10° W 0

B_E 2.89 11.0 2.89 2.40 23.4
B F 2.82 11.1 2.82 2.58 23.0
B H 2.89 11.0 2.89 2.70 22.9
B_B 3.13 10.7 3.13 3.10 22.7
B C 4.59 9.0 4.59 3.55 23.8
B_J 3.75 9.9 3.75 3.93 22.4
B_A 2.53 11.6 2.53 3.93 20.7
B_G 2.52 11.6 2.52 4.19 20.4
B_D 3.64 10.0 3.64 4.59 21.6
B 1 3.55 10.1 3.55 5.37 20.8
average 3.23 10.7 3.23 3.63 22.3

TABLE 4.6. Power levels within the optimised structures, over a bandwidth of 150Hz

to 250Hz.
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Figure 4.24: Comparison of velocity response V! of Beam 40 obtained by receptance analysis
model (- - -) and FEA model (—) for the optimised structure N_B.
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Figure 4.25: Effect of optimisation on modal frequency distribution for optimised structure
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Figure 4.26: Comparison of velocity response V.! of Beam 40 obtained by receptance analysis
model (- - -) and FEA model (—) for the optimised structure B_E.
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Figure 4.27: Effect of optimisation on modal frequency distribution for optimised structure
B_E. Frequency band over which average performance is optimised is shown by dotted lines.

(+ unoptimised structure, () B_E)

116



400 T T T T T &
+ b

350 -

300+

N
(9]
Q
I
!
[
I
I
|
!
!
!
[
|
I
I
|
|
i
I
L1
il
Q%

200

Modal frequency (Hz)

=
Q
i
|
i
{
[
|
I
|
1

i
|
i
i
|
|
|
|
|
i
i
|
|

i

|

|

|

|

i

]

!

I

|

I

|

|

|

100 |- %@gz@oo 4

50

| ! 1 L 1
0 10 20 30 40 50 60 70
Mode number

Figure 4.28: Effect of optimisation on modal frequency distribution for the 103rd structure
design in the first generation of the GA optimisation resulting in structure B_E. The value
of the objective function is 0.55 x 1077 J, which is less than for the unoptimised structure.
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Figure 4.29: Effect of optimisation on modal frequency distribution for the 51st structure
design in the first generation of the GA optimisation resulting in structure B_E. The value
of the objective function is 0.43 x 1075 J, which is greater than for the unoptimised structure.
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Figure 4.36: Statistical distribution and 95% probability limits for the Broad Band optimised
structures achieved using non-evolutionary methods, for a perturbation scaling of 0.01.
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Figure 4.37: Statistical distribution and 95% probability limits for the Broad Band optimised
structures achieved using genetic algorithm optimisation, for a perturbation scaling of 0.01.
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Figure 4.38: Statistical distribution and 95% probability limits for the Narrow Band optimised
structures achieved using genetic algorithm optimisation, for a perturbation scaling of 0.005.

Average Energy Level (J)
S
T

L
»

—_
o
T

-13

10 " F

-14

l—" |
p=d
>

N_G

N_C

p=4
w

| 1 [ { 1 [ i | H

10

1 2 3 4 5 6 7 8 9 10

Rank in nominal optimised performance

Figure 4.39: Statistical distribution and 95% probability limits for the Narrow Band optimised
structures achieved using genetic algorithm optimisation, for a perturbation scaling of 0.02.

122



CHAPTER 5

Active Optimisation Methods
and Robustness Analysis

5.0 INTRODUCTION

The chapter describes the optimisation of the regular two-dimensional lightweight structure to
reduce the vibration transmission from the base to the end of the structure, the same
optimisation aim as defined in Chapter 4. However, the optimisation strategy used here is to
maintain the regular geometry of the structure and use feedforward Active Vibration Control
(AVC) methods. These methods were described in Chapter 2, and use secondary source
vibration actuators to 'counter' the primary vibration emanating from the structure base. As an
external source of energy is required to drive the actuators, this optimisation strategy is thus
referred to as active (or active-only) optimisation. The optimisation task is to find optimal

actuator positions which allow the best value of attenuation to be achieved.

In selecting the best optimal actuator positions the control effort required to drive the actuators
in the AVC system also needs to be considered, with the aim of finding positions which give
good values of attenuation with realisable levels of control effort. The robustness of the
performance of AVC systems to geometric perturbations is then studied, in the same way as for
the passively optimised candidates, presented in Chapter 4 to determine the most practical
systems. The robustness of the level of control effort required also needs to be considered, to
ensure that the energy demand of the system remains feasible in the face of small changes in the

geometry.

The level of success achieved by an AVC system is determined here by the reductions
achievable in the cost function (the parameter whose value is minimised as the optimisation
aim). The physical success in reducing the vibration is thus depends upon how well the cost
function represents the physical vibration. Parameters representing vibrational energy are
generally the best cost functions, but sometimes difficult to measure in practice. The effect of
using different cost functions as the focus of the optimisation is also studied. This allows the
parameter used to be critically accessed, especially in the light that it evolves that it is not, in

general, the most comprehensive measure of all of the vibrational energy.

In a feedforward AVC system for the control of broadband disturbances there exists causality

constraints due to delays introduced in the signal processing. Due to the dispersive nature of
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flexural waves this constraint becomes more stringent as the control frequency increases, as
discussed for example by Elliott and Billet (1993). The primary input force used represents a
vibration disturbance entering the structure by its base but is considered to be modelling the
effect of a source which is not itself immediately located on the base. Thus, it is assumed here
that if broadband disturbances are being controlled that there is sufficient advance between the
reference signal (which is taken directly from the source) and the vibration entering the

structure base, so that no such causality problem occurs.

This chapter is structured as follows: Section 5.1 defines the process of selecting the optimal
actuator positions on the regular structure, based on nominal performance, for differing
numbers of actuators. Section 5.2 studies the contributions of the AVC actuators to the
vibrational power in the structure, which is distinct from the control effort, to investigate their
mechanism of control. Section 5.3 investigates the use of three other AVC cost functions in the
optimisation process. Section 5.4 studies the robustness of the performance and control effort
requirements of AVC systems with optimal actuator positions. Conclusions from the chapter

are summarised in Section 5.5.

5.1 SELECTION OF OPTIMAL ACTUATOR POSITIONS

The success of AVC depends strongly on the actuator positions used. The physical reasons for
this were discussed in Chapter 2, in terms of the dynamic mechanical 'coupling' between the
primary forces and the secondary actuators and the end beam. The average energy level in
Beam 40 over the frequency band 150Hz to 250Hz was used as the parameter to be minimised.
This corresponds to maximising the average attenuation of this parameter. The frequency band
was comprised of 21 equally spaced frequency points, SHz apart, from 150Hz to 250Hz. This
is the same as used for broad band optimisation for the passive structure which was studied in
Chapter 4. Tt is assumed that the vibrational disturbance can be accurately represented by 21
tones at the stated frequencies and that a reference signal of sufficient quality exist so that the
optimum secondary force, and hence the attenuation, can be achieved independently at each
frequency. The total control effort was also calculated for each case. The control effort, which
has the units of N is evaluated for the IN transverse primary force used. If the primary force
was increased the control effort required would increase in proportion to the square of the

primary force.

Using the receptance analysis model, described in Chapter 2, transfer force and mobility
measurements between the primary force input location and both ends of all the possible

actuator locations, and both ends of Beam 40 were evaluated, for all frequencies considered.
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This then allows the matrices C and Y to be constructed for each actuator combination
cvaluated during the optimisation. The resulting values of AVC attenuation are calculated
using equations (2.45), (2.46), (2.76) and (2.77), and total control effort is calculated using
(2.43) and (2.48). These equations were implemented using MATLAB script (MathWorks,

Inc., 1997).

The optimum actuator positions were sought for the application of AVC using one, two and
three actuators. This was achieved by exhaustively evaluating the attenuation resulting for each
of the possible combinations of actuators positions, with each number of actuators. Beam 40
was not considered as a candidate position (as explained in section 2.3). Hence for one, two
and three actuators there are 39, 741 and 9139 possible combinations respectively. Using
hardware platform A (detailed in Appendix E) it took approximately 20 and 100 minutes to
find the best actuator positions for the two and three actuator cases respectively. Because
combinations and not permutations are sought it is important that the algorithm generating the
candidate actuator positions does not produce and then discard repeated combinations. This
would be very wasteful and would effect the run-time of such algorithms by a factor of 36! for
the three actuator case, for example. Even if the cost function was not evaluated for the
repeated combinations the formulation of all the permutations is still very expensive, and can

dominate the optimisation evaluation time.

The presence of an actuator on a beam was not considered to change its mechanical properties
so as not to unnecessarily complicate the study, although as discussed by Zimmerman (1993)
this can be an important consideration in a practical system. Zimmerman showed that the
inclusion of the actuator mass could change the optimum actuator positions for a specific
application. The purpose of the optimisations performed in this thesis is to investigate

optimisation methods and not to design a specific structure.

Figure 5.1 shows the ten best positions to minimise the average energy level in Beam 40 using
AVC with one actuator, the results are summarised in Table 5.1. The positions are ranked in
decreasing energy attenuation, which is also shown. The attenuation range is 10.8dB to 8.5dB.
The actuator positions do not appear to follow any particular rule, positions at the extreme
ends of the structure are included in the best ten. A general rule of thumb in active control is to
treat the unwanted vibration nearest its place of origin (Fuller er a/, 1996). This does not seem
to be borne out in the best ranked ten candidates. One of the actuators is, however, on the same
beam as the external vibration is introduced. The secondary actuator produces axial force

whilst the external primary force is, however, in the transverse direction, and a large value of

control effort is required in this case.
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The total control effort required to achieve each level of attenuation (for the primary force
used) is also shown alongside each actuator position. There is a large range of control effort
values ranging from 1,390 to 17,200 N°. This illustrates the fact that the choice of candidate
must be made on the basis of both achievable attenuation and total control effort required. The
second best ranked candidate is likely to be the position chosen in practice since it has good
control performance and a low control effort. It is emphasised that the total control effort does
not represent the vibrational power applied by the actuators, this is studied in the following

section.

Figures 5.2 and 5.3 shows the ten best sets of actuator positions for two and three actuators
respectively and the results are summarised in Tables 5.3 and 5.5. For two actuators the
achievable values of attenuation range from 31.1dB to 26.9dB, with total control effort range
from 11,000 to 53,900 N”. Here the 3rd ranking set of actuator locations appears to be a good
practical choice since it has good control performance and a low control effort. For three
actuators the range of achievable values of attenuation is 50.8dB to 44.0dB, and the total
control effort range is 24,400 to 234,000 N° This range is large due to one 'rogue' set of
actuator locations with a particularly high value of control effort. With two actuators, there
again appears to be no particular rule in the placement of the actuators for the best ten AVC set
of actuator positions. However the actuator positions chosen are all found to be only on the
first 7 leftmost structure bays. This trend in seen to continue for the three actuator case, the
actuators now only appearing in the 5 leftmost structure bays; the left half of the structure. The
values of attenuation achieved using two actuators are similar to those achieved by the
optimised structures resulting from the passive optimisation, detailed in the previous chapter.
Figure 5.4 shows the best ten actuator positions for four actuators. This case is not considered
any further since the values of attenuation shown (up to 119dB) would not be achievable in
practice using a control system with a realistic noise floor. However, the inclusion of these
results does demonstrate the trend noted above; that the larger the number of actuators the more
the actuator position found are closer to the primary excitation at the base of the structure.
Here the actuators are restricted to the 4 leftmost bays. Furthermore it was found that the best

5 sets of actuator positions only use actuator positions in the 3 leftmost structure bays.

The effective total control effort of the primary force is 21N, since the primary force at each
frequency is I1N. The control effort required by the AVC system is much larger is all cases. The
smallest control effort of all the optimal positions presented is for the single actuator position

SG_B, and is greater by a factor of over 60.

It is possible to augment the cost function used here in the ranking of each AVC actuator

position, with a term to penalise positions with higher control efforts and produce a bias

126



towards lower control effort solutions. This has been previously implemented (Back and Elliott,

1995), but was not considered here, since it would unnecessarily complicate the study.

The frequency band average attenuation is shown in Figures 5.1 to 5.4. Within the frequency
band different levels of attenuation are achieved at individual frequencies. Figure 5.5 shows
that the attenuation response at the 21 individual frequencies considered, for the application of
AVC with actuator positions DB_A (shown in Figure 5.2). Since a feedforward control
strategy is used, the AVC system has no effect to the performance of the vibrational energy to
Beam 40 outside the band of frequencies controlled. Comparing the vibrational energy
reduction achieved by both the passive optimisation (detailed in Chapter 4) and active
optimisation, it is found that the application of AVC with two actuators produces similar

magnitudes of reductions as with the passive case.

5.2 POWER ANALYSIS OF STRUCTURE WITH OPTIMISED
ACTUATOR POSITIONS

The total control effort is used as an indication of the electrical power required by an AVC
system, and is an important practical consideration when selecting optimal actuator positions.
This measure is distinct from the net power supplied to, or absorbed from, the structure by the
actuators. For example, if the force and velocity components at both ends of an actuator are in
"phase-quadrature” then there is no net power into or out of the actuator, however a net supply
of energy would still be required for the actuators. This is because even if a reciprocal
transducer were used the typical efficiency would be too small to be useful. The vibrational
power in the structure and the net power contribution of the actuators in achieving the
reduction in the vibrational energy in Beam 40 were investigated to gain a physical insight into

the role of the AVC system.

As discussed in Chapter 4 for a structure optimised solely on geometric redesign, the two
mechanisms that achieve the reductions in Beam 40 are the reduction of the input power and
the redistribution of power within the structure. The use of AVC introduces another power
contribution, that from the actuators, which can either provide a net source of power to the
structure, or additional dissipation by absorbing power. The addition of this effect allows the
reduction in the dissipated power in Beam 40 to be represented as in Chapter 4, but using an
additional third term, called the actuator contribution, which describes the net effect of the
actuators to the power within the structure, as detailed in Section 2.6. It is important to note
that the application of AVC achieves more than simply absorbing power from the structure, it

affects the force and velocity components at the ends of Beam 40 to reduce the power
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dissipation there. To achieve this it may provide a net input or absorption of power. The
actuator contribution only describes the net power contribution, it does not detail the interaction
between actuators, which themselves might have larger contributions than the net contribution.
However, the individual actuator contributions are presented graphically to enable some
understanding of the mode of operation of AVC in each case. It should also be noted that the
power redistribution term used in this case is the passive redistribution attenuation, O'repst,
(see (2.88)), which only considers power in beams without actuators, as opposed to structural

power redistribution.

Tables 5.2, 5.4 and 5.6 show the three component power reductions of the reduction in power
dissipation in Beam 40, for all of the structures with optimal actuators positions using one, two
and three actuators. The results are also shown in Figures 5.6 to 5.8, where the individual
actuator power contributions are shown. In all cases the input power is reduced very little by
AVC and in some cases the input power is actually increased. On average, this increase is from
0.6dB to 1.0dB when using one to three actuators. The net actuator contributions are also
relatively small, and mainly supply energy, though they also absorb energy for a few cases
especially for actuator positions using three actuators. Thus the majority of the total reductions
are achieved from the redistribution of the power in the structure in favour of Beam 40. In
Figures 5.6 to 5.8 the individual power contributions for AVC using the optimal actuator are
shown, and the interactions between the individual power contribution for the two and three
actuator cases are revealed. For the one actuator case the actuator is acting as an energy source
in all except the best actuator position. In most cases the magnitude of the power contribution
is much smaller than the other power components, although for actuator position SG_D it is a
major source of the power in the structure. For the two and three actuator cases the
arrangement between the two actuators is not fixed, being a mixture of energy sources and
energy absorbers. With reference to optimal actuator position TR_D it is clear that a small net
power contribution (of 0.3dB in this case) does not imply small individual contributions. This
provides one reason for the difference between net actuator contribution and control effort,
although in this case the total control effort is relatively small, as for TR_D. The phase relation

between the force and velocity components additionally needs to be considered to explain such

differences.

The power dissipation distribution for the structure using the ‘best’ optimal actuator positions
for one, two and three actuators is shown in Figures 5.9 to 5.11. For the one actuator case
SG_A, the actuator affects the distribution such as to reduce the power dissipation in Beam 40,
but also slightly increase the dissipation in the beams at the base of the structure. However a

variation in the dissipation can still be seen in beams towards the end of the structure,
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particularly Beam 40, indicating a significant level of power transmission beyond the actuator.
From Table 5.2 it is seen that the power input is also slightly increased. For the two actuator
case DB_A, in Figure 5.10, the dissipation in the beams at the base of the structure is
somewhat reduced, and a reduction in power is seen from the second structure bay onwards,
where the actuators are situated. In the last few bays little dissipation is seen indicating that
there is only a small level of power transmission. In the three actuator case TR_A, Figure 5.11,
an increase in the power dissipation in Beam 1 is seen, however from Table 5.6 it is seen that
there is a reduction in input power to the structure. This emphasises that the input power to the
structure (input to Beam 1) is distinct from the power dissipated by Beam 1. In this case there
is little power transmission beyond the rightmost actuator and in general the power dissipation

decreases further towards Beam 40.

Thus using only one actuator it appears, from the cases presented, that the main control
mechanism is simply to redistribute the vibration to reduce the power in Beam 40, and it is
suggested that the power dissipation distribution in the remainder of the structure is a
consequence of this action. The reflected vibration from the structure end is likely to be a
contributory effect. With two and three actuators, however, the AVC system has more degrees
of control freedom and seems to adopt a 'strategy' of blocking the power flow along the

structure, and additionally reducing the input power by a small amount as well.

5.3 EFFECTIVENESS OF DIFFERENT COST FUNCTION
PARAMETERS FOR ACTIVE VIBRATION CONTROL

The success of an Active Control of Vibration system is dependent upon both the cost function
being minimised and the positions of the controlling actuators. The cost function used affects
the best actuator positions since their performance is judged on the attenuation of this
parameter. However, the physical success will be dependent on how well the cost function
represents the actual physical vibration. Sometimes the most meaningful cost function can be
calculated in a theoretical model but is difficult to measure in practice, and a compromise to a
more practical one is often made. Four cost functions are considered in this study with the aim
of reducing the vibration transmitted from the base to the end of the structure studied in this
thesis, and their performances in reducing the total vibrational energy of the end beam, which

is generated as the parameter Ey,,.

In addition to the flexural energy level in Beam 40, Ej,,, which has been used as the parameter
minimised in all the optimisation results presented in Chapter 4 and above in this chapter,

another energy-based cost function is also used which represents the total vibrational energy,
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Erwar. The two other cost functions studied are based on velocity measurements: the sum of the
squares of velocity components, Jyqxs, using solely translational velocity measurements, and one
additionally using rotational velocity measurements, J ;. All the cost functions were formally
defined in Chapter 2. Ejp.. does not give a proper representation of all the vibrational energy of
the beam as it does not represent any rigid body motion. Thus to investigate the potential
consequences of using Eg.. as the cost function instead of Ey a comparison was conducted,

and this was also extended to the two velocity-based cost functions.

Then, for each cost function a ranking of the best actuator positions on the structure achieving
the best reductions in the cost function is determined. For each of these actuator positions the
consequential attenuation in the total vibrational energy is evaluated whilst minimising these
other cost functions. Thus the effectiveness of these cost functions in reducing the total

vibrational energy can be evaluated.

5.3.1 INITIAL STUDY INTO RIGID BODY KINETIC ENERGY OF A BEAM

To demonstrate that the choice of cost function can have important consequences on the
success of an active control system, two single frequency scenarios are presented ahead of the
full analysis. The first case, Case 1, is that using an actuator on Beam 3 of the structure at a
frequency of 170Hz. Figure 5.12 shows the effect on the total vibrational energy () when
using Ep.. and E,wm as the cost functions. Both the constituent rigid and flexural energy
components are also shown. It is seen that in minimising £y, an increase in the value of Egq 1s
seen, which then becomes the dominant component of E,,;, and further reductions in Ep., will
not reduce the total vibrational energy further. However, when E,,,, is used as the cost function

the minimum value of Ey is thus achieved, even though a small increase in £, occurs.

The results of this comparison are summarised in Table 5.7, which also details the reductions
in all of the other parameters considered when each is used as the cost function being
minimised. The table also includes the results for a second case (Case 2); of using two
actuators on Beams 5 and 9 at a frequency of 160Hz it is again seen here that the use of Eyum
as the cost function is superior to Eg.,. In this particular case the use of Ey., increases the rigid
body kinetic energy, whilst the use of £y, reduces it by about 6dB with less than 1.5dB being
sacrificed in the reduction in the value of Ep.. Also, for Case 2, using either Jyqs or J, as the
cost function yields good reductions in £, which are better than those obtained using Epe. as
the cost function. Here J,4,s 1S seen to achieve substantial reductions in the rigid body kinetic
energy, but it is the smaller reduction in E,, in this case which makes the reduction achieved in
Ep second to that for J,; The result of using J,qns and Jn as cost functions in Case 1,

however, is not seen to be as successful. This can be explained by the fact that the actual
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reductions in the cost functions themselves are only 0.05dB and 1.3dB for J,as and Jo
respectively (compared to 41.0dB and 9.2dB for Case 2). From this brief analysis it can be
seen that the success in using each parameter as the cost function appears to be very much
dependent upon the frequency at which the performance is considered. To provide a more
practical comparison the average performance over a frequency band is used in the next

section.

A brief comment is first made on the physical significance of the rigid body kinetic energy. For
the application of active control with Ey,, for Case 1, the kinetic energy in the transverse sense
(x-axis direction) is 6uJ/N* (per Newton primary input force squared). The use of the Epex cost
function increases the peak displacement from about 30nm/N (per Newton primary input force)
to about 0.42umyN for the 1m beam length mass of 2.74kg. Using E,..s as the cost function this
increase is not as large and the peak displacement after control and is about 0.18um/N. The
value of the axial, transverse and rotational rigid body kinetic energy components can be
directly related to the corresponding motions of the beam (which are the same at all positions
on the beam, by definition). It is not generally feasible to relate Eg., directly to motion at any
particular point on the beam. This relationship depends upon the frequency of the vibration and
the particular point on the beam. Generally, therefore, the precise ‘significance’ of the flexural

and rigid body energies of the beam cannot be determined.

In Chapter 2 Ejp., was derived from the net power transmitted into (and therefore dissipated in)
Beam 40. This is the algebraic sum of the power components at both ends of the beam, for all
the three degrees of freedom of movement allowed. Physical insight is gained into the
mechanism by which the minimisation of the cost function can achieve reductions in the
flexural vibration of the beam by studying the individual power components. Figure 5.13 shows
the effect of applying active control on the individual power components at the ends of the
beam, using both Ep,. and E, as the minimised cost function. The same shading scheme is
used as that used previously, the dark and light shaded bars represent the value of individual
component values without active control and with active control respectively. The sum of the
values indicated by the dark shaded bars, when normalised with respect to the beam damping
represents the flexural energy level of the beam at this frequency (see (2.27)). The coordinate
notation corresponds to the global coordinates system shown in Figure 2.1, where the
numbering for the ends of Beam40 is also denoted. A positive value indicates power
transmitted in the direction of the positive sense of the corresponding axis. So, for example in
Figure 5.13, without active control the y-direction component at beam end 1, Pyl, is positive
and indicates power transmitted into the beam, along its axis, at the other beam end, Py0, is

negative and also indicates power transmitted in the beam.
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In Figure 5.12 the reduction in the value of Eg., for Beam 40, when Ej., is used as the cost
function, is evident. For most cases it is normally expected that this is achieved by reducing the
individual power components for each beam end. In Figure 5.13, however, for Case 1 the
application of active control increases the components whilst decreasing the cost function.
Using Ez. as the cost function the reduction in this parameter is seen to be achieved by an
increase i the values of the individual power components, whilst using E,. as the cost
function results in even larger increases. Applying the conservation of energy this apparent
contradiction can be resolved if there exists a net flow of energy through the beam. In other
words, Beam 40, albeit the furthest beam from the input of vibrational energy in a damped
structure, is not the end chain in the flow of energy in the structure, but can also act as an

energy 'source’ to adjoining beams.

The differing levels of success in using each of the four different cost functions is due to the
fact that each cost function is a different representation of the same physical vibration. This
fact is illustrated in Figure 5.14, which shows the value of the four parameters without active
control over the frequency range 50Hz to 350Hz. All of the parameters show similar responses
indicating higher and lower levels of beam vibration, although .J,,.s 1S seen to be the least

consistent.

532 EFFECTONE TOT,;L WHEN MINIMISING OTHER COST FUNCTIONS

The results above show that the success of using each cost function to reduce the value of E,pus
is frequency dependent and this is reinforced for each cost function over a frequency range.
Each cost function parameter was minimised (i.e., used as the cost function) when using
actuators on Beams 5 and 19, as in Case 2 above. The minimum value of the cost function for
each frequency in the range 50Hz to 350Hz (at 5Hz intervals) is plotted against the same
parameter value without active control in Figure 5.15. The average performance of the cost
function over the band of frequencies of interest will provide a measure of the average success
of using each cost function. The frequency averaged cost function is defined, for a generalised
cost function, in (2.76) where each cost function replaces the general parameter, CF.
Figure 5.15 shows the results for each of the four cost functions considered. Reductions, even
though slight in some cases, are achieved at all frequencies within this range for all the
parameters. The success of using the other cost functions was evaluated by determining the
level of E.,.; in the beam at each frequency as a consequence of minimising each cost function.
The results are shown in Figure 5.16, which confirms the variation with frequency suggested in

the previous sub-section. It is seen that the best reductions in Ey are achieved using the two
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energy-based cost functions. Using J,..s as the cost function actually increases the value of

Erorer (by almost two orders of magnitude) at some frequencies.

5.3.2.1 EFFECT OF COST FUNCTION ON OPTIMUM APPLICATION OF ACTIVE
CONTROL

As discussed in Section 5.1, it is possible for the structure studied here to perform an
exhaustive search over all possible actuator configurations, for a small number of actuators, to
determine the best configurations. This has already been achieved for { Eg., ) and was achieved
for the remaining three cost functions and the best ranked actuator positions were selected for
one, two and three actuators. Beam 40 was not used as a candidate position for an actuator.

Hence for each number of actuators there are 39, 741, 9139 possible actuator positions.

For the best sets of actuator positions, determined using each cost function parameter, the
consequential attenuation of £, was then evaluated. E,,s has been shown above to be as the
best representation of the overall vibrational energy and hence is used as the reference by which
the success of using other cost functions is evaluated. If a particular cost function is a good
representation of the total vibrational energy of the beam (E/1s), then the high and low values
of attenuation in the cost function parameter will correspond to high and low values of E .
The cost function can then be said to be a predictable measure of Ejy. This will lead to the
ranking of actuator positions on the basis of the cost function parameter such that the higher
ranked ones will provide the best reduction in Ej, for the cost function. Also, similar values of

attenuation should be achieved when using each cost function as when using .

SINGLE ACTUATOR ACTIVE CONTROL
The success of using each of the four frequency-averaged cost functions in an active control

system using a single actuator was studied. The results are presented in Figure 5.17. Each
graph shows the consequential attenuation achieved in { Ey,a) for each actuator position, which
has been ranked in performance of the cost function parameter attenuation. The attenuation for
each cost function is shown by the plain line, and is thus monotonically decreasing due to the
ranking. It is stressed that each rank number does not necessarily correspond to the same
actuator position for each cost function. The best of the cost functions, apart from the reference
is { Epey) which appears to yield similar reductions to { Epwr). { Egex) thus appears to be a
predictable measure of { E,um), so that the actuator positions which give high values of
attenuation in { Ep., ) also give high values of attenuation in { E ). Next, the use of ( J,;) also
provides good attenuation in { E;), however this parameter is not such a predictable measure
of { Erorat) a8 { Egex ). Some of the better values of attenuation achieved in { £, ) are found at

lower ranked positions and thus would not normally be selected on the basis of the cost
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function performance. Despite this, the use of this cost function is not as disastrous as would
be the case with the use of { Jyas). In this case the ranking obtained on the basis of the cost
function is no use in predicting good values of attenuation in { Ey ). Here all the attenuation
values in { Eym) are below 5dB and in a few cases (including the second ranked position) the
use of this cost function actually increases { Eym). Thus, { Jyas) is neither a good nor a

predictable measure of { Ea).

To aid comparison between the absolute values of consequential attenuation achieved in
{ Etwar) Tor each cost function, all of the values of attenuation in { £, ) achieved with a single
actuator against the individual rankings for each cost function are presented on common axes in
Figure 5.18. It is emphasised that each rank may represent different actuator position
combinations for each cost function. To gain a physical insight into why the performance of
some cost functions are better than others, the values of consequential attenuation in { Epmm)
achieved for each cost function are split into the two constituent parts { Eg.) and { Eyiga), as
studied in Section 5.3.1. These are also presented in Figure 5.18. From the reference values
used for the dB scale shown on the axes for each of these components (the energy level without
AVC) it is seen that the significant energy component is { Eg.. ). Thus to achieve good values of
attenuation in { Ew ) cach cost function needs to produce good values of attenuation in { Ege, ).
This is achieved, to differing degrees of success, for all of the cost functions, except { Joans ),
and its poor performance in representing { En) is thus explained. It is interesting to note,
however, that the use of { Jyums) does provide a good and a predictable measure of the rigid
body kinetic energy of the beam. The actuator positions which give good reductions in { Jyans )
also provide relatively good reductions in ( E,qq) (at best 10dB greater than for other cost

functions) which almost monotonically decrease with the ranking for this cost function.

MULTI-ACTUATOR ACTIVE CONTROL
The investigation was extended to an active control system utilising two and three actuators.

The results are presented in Figures 5.19 and 5.20, directly in the combined format of
Figure 5.18. The ranking of the x-axis refers, again, to the individual ranking for each of the
cost functions, and does not imply common actuator positions at each rank value. It is not
feasible to show all the ranked positions and in these cases only the top 100 are shown. The
order of success between the cost function parameters in minimising { E,,) is similar to that
when using a single actuator. { Ep., ) is found to yield very predictable reductions in { Ejar),
which are also of similar magnitudes for both cases. The second best cost function, again, is
( Jary. In general it achieves in between 5dB and 10dB less reduction in { Ejyy) than either

energy-based cost function. Again, { Jy4) s the worst in this respect. It is seen that this is due
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to the use of this cost function not providing good reductions in { Eg. ), although it still
continues to provide large reductions in { E,gq), generally 15dB and 30dB greater than for
other cost functions, for two and three actuators respectively. The best ranked positions for

( Juans ) yields reductions of over 80dB in ( £, ) for the three actuator case.

5.3.3 DISCUSSION OF RESULTS

It is seen for the optimal application of active control over a band of frequencies, which relies
on determining the best actuator positions for single and multiple actuators, that there is little
difference in using { Eywm) OF { Egex) as the cost function parameter. Ej is in general a more
comprehensive representation of all types of vibration of the beam. It does not require any
additional parameter measurements than those required for Eg.,. Although the application of
active control at single frequencies in Section 5.3.1 was shown to suggest that E,,., is the best
cost function, especially where the lack of reduction or increase of E,s has consequences on
the reduction of Ey.. The frequency-averaged ( E.gqq) 1S seen to be less significant than
( Efex ), and so generally ( Egex ) is found to perform well as a cost function. It is suggested that
this is due to the nature of the beams used in the structure considered here. The beams used are
'thin' beams and therefore relatively flexible, also the natural frequencies for transverse
vibration are much lower than for axial vibration. The first transverse mode occurs at about
240Hz which 1s in the frequency band studied, whereas the first axial mode occurs at about
2.5kHz. Therefore the detection of rigid body motion is thought to be more important for a
structure using beams with a greater cross-section (normally termed rods' or 'bars') which only
support axial vibration. The development and use of the E,,,; cost function has, however,

allowed this to be verified.

Two velocity-based cost functions were also investigated to find their effectiveness at reducing
E. Using only a velocity measurement in the near field of a source has been shown to have
worse performance than outside the near field of a source by Pan and Hansen (1993). This is
equally applicable to a structural discontinuity, where all the velocity measurements are taken
in this case. So, the velocity-based cost functions can only be expected to be approximations of
E.oar. It 1s seen that the incorporation of the rotational velocity components at the ends of each
beam 1is very important to achieve good, predictable reductions in . , and J,; shows a much
better performance over simply using the J,.,s cost function. When using three well-positioned
actuators, the J,; cost function is seen to have average reductions, over the frequency
bandwidth considered, of 5dB to 10dB less than the E,.; cost function. For the J,,,.s cost
function the attenuation is over 25dB less. Juu.s, however, does provide a very good

representation of the value of E,;4¢ of the beam, and consistently achieves predictable and much
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greater reductions than for the other cost functions. Therefore for a structure comprised of rigid
beams (or rods) the use of Egy, which is well approximated by the slightly simpler Jiqs,

parameter may be sufficient. Thus, the rotational velocity component would not be required.

Whilst ., 1s seen to be a better measure of the vibrational energy of the beam it is seen that
there is no serious disadvantage in using £, as a cost function, for the frequency averaged
measure of vibration used for the particular structure considered here. Thus, the use of Epe,
was maintained in the optimisation work that follows to maintain consistency with the

optimisation results reported in Chapter 4.

A final note is included on the weighting between the translational and rotational velocity
components used in the formulation of J,;. The addition of the kinetic energy components due
to the rotation of Beam 40 was modelled by considering the beam to be composed of two rigid
levers, whose lengths were half that of the beam, and each half-beam hinged about one end.
However, this is an approximation, and as only the first flexural modeshape is significant in the
frequency range considered, the shape of this modeshape could be easily determined exactly. As
the velocity is a function of distance along each half-beam, the net kinetic energy due to flexure
of each beam half can therefore be accurately calculated. The approximation used here over-
estimates the actual kinetic energy of the first mode by a factor of about 3. With a smaller
significance of the rigid body kinetic energy component in .J,y, a better estimate of £,,,,; may be

produced.

5.4 STUDY OF ROBUSTNESS OF ACTUATOR POSITIONS

A study of the robustness of the performance of the various actuator positions to geometric
perturbations was performed in order to determine the candidates that are more practical to
implement. The same set of 300 perturbations were applied to the structure as used for the
robustness analysis of the passively optimised structures in Chapter 4. The perturbations are
uniformly distributed between +10mm about each nominal joint coordinate and are applied to

both the x and y coordinates of each of the middle 18 joints of the structure.

As discussed in Chapter 4 regarding the robustness of the passively optimised structures the
effect of the geometric perturbations is to change the mechanical impedance between the
primary force input and the ends of Beam 40. With the application of AVC to the structure this
is also extended to the ends of actuators. In practice, this changes the transfer impedance and
mobility matrices C and Y, which are detailed in Section 2.3. For each set of geometric
perturbations these matrices are re-evaluated and then the maximum theoretical attenuation

calculated from the closed form equation (2.46) and auxiliary equations described in
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Section 2.3. In the same way the control effort is re-evaluated. Thus the optimum secondary
force vectors are recalculated to achieve the best attenuation attainable for each perturbed
plant. Evaluating the perturbed performance for an AVC system in this way corresponds to
applying the AVC system to a real structure where manufacturing tolerances are the
perturbations from the nominal design. It is also assumed that the controller has an accurate
model of the time plant response (Nelson and Elliott, 1992: Chapter 5). If the plant were to
change over periods comparable or less than the update period of the plant model, the AVC
system would be operating with an inaccurate model of the plant. This is could to be due to
geometric changes to the structure caused by significant changes in the static load, or maybe
through thermal expansion and contraction. The perturbation analysis performed here is not
intended to cover robustness under these conditions. These perturbations are likely to be
structured, and the perturbations to each joint position could no longer be treated
independently, as in this analysis. The robustness of the control performance and effort for the

one-, two- and three-actuator systems has been evaluated.

5.4.1 PERTURBATION ANALYSIS OF AVC SYSTEM PERFORMANCE

Figures 5.21, 5,23 and 5.25 show the results of the perturbation analysis for the best 10 ranked
one-, two- and three-actuator actuator positions, detailed earlier in this chapter. These figures
consist of histograms showing the statistical distribution of the minimised average energy level
in Beam 40 and the results for each structure are displayed in order of ranking under nominal
conditions, the value of which is represented by the thin solid line on each histogram. The 95%
probability limit is shown by a solid bold line. This indicates that the value of minimised energy
level which, for the 300 experiments performed, is less than or equal to this limit for 95% of
the perturbations applied. The results are also summarised in Tables 5.1, 5.3 and 5.5. As with
the perturbation analysis performed in Chapter 4, 300 perturbations were found to be sufficient
to find the ‘shape’ of the distribution, and hence the calculated limit will be a reasonable
estimate of the actual 95% limit. The graphs show the reduced vibration energy level with
logarithmic axes as in Figure 4.32 for the perturbation analysis for the passively optimised
structures to facilitate comparison the optimisation results presented in Chapter 4. In the field
of AVC it is more common to deal with value of attenuation expressed in decibels, a second y-

axis on the right is included for this purpose.

Considering first the single actuator AVC actuator positions in Figure 5.21 it is seen that there
is little difference between the robustness of the performance when using the ten best optimised
actuator positions, all candidates showing a performance spread of just under 10dB. Using two

actuators (Figure 5.23) it is seen that DB_D is the most robust candidate, for which the entire
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spread of the statistical distribution is about 3dB, while most of the other actuator positions
appear to have a statistical spread of about 10dB. Using three actuators (Figure 5.25) it is seen
that the majority of the distributions have a range of one order of magnitude with a few,
notably actuator positions TR_G and TR_J, whose distribution spread approaches 20dB. In
general the three actuator positions achieve reductions of 15dB to 20dB better than with two
actuators. If robustness alone was the primary consideration then DB_D is the best two-
actuator position. There is no obvious ‘best choice’ for either the single or the three-actuator

positions in terms of robustness.

Using the 95% probability limits, a selection of the most practical actuator positions may be
made in terms of both robustness and absolute performance. For each number of actuators the
best actuator positions selected on nominal performance also have the best 95% probability
limit. In most applications the minimum reduction is the important factor. For the single
actuator positions there is little difference in the selection of the candidates using either the
nominal performance or the 95% probability limit. For the two-actuator positions the choice of
nominally well ranked positions DB_B and DB_C become less favourable. It is also seen that
there is little difference in performance between positions DB_A and DB_D in terms of this
criterion, but the latter is more robust. Even the worst perturbed performance is better than the
majority of the perturbed performance values for DB_A. This set of actuator positions is also
seen to have a small probability of having much poorer performance than the 95% limit.
Considering the 95% probability limit for the three-actuator positions more diversity in the
95% probability limits is seen that using the single actuator positions. It is also noted that the
average difference between the nominal performance and the 95% probability limits for each
number of actuators is only about 3dB or 4dB, whilst the average nominal attenuation ranges

from about 10dB to 45dB.

5.4.2 PERTURBATION ANALYSIS OF AVC SYSTEM CONTROL EFFORT

Another consideration exists when applying AVC apart from the achieved performance; the
control effort required to achieve this. There will be a limit on the control effort with a practical
system, either to individual actuator effort or total system effort. In general AVC actuator
positions with smaller required control effort is preferable. Robustness analysis should also
consider the control effort. As the structure is perturbed the control effort required is likely to
change, and even if the performance is insensitive to such changes, if the control effort
increases significantly above its nominal value than a practical system may not be able to

maintain the predicted vibration reduction. This is avoidable if the increase is predicted and the

demand remains feasible.
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Figures 5.22, 5.24 and 5.26 show the effect of the robustness analysis on the total control effort
for the best ten single, two- and three-actuator positions, with same format as Figure 5.21. It is
re-iterated that the scale used on the graph is logarithmic, and that a factor of over 5 exists
between the nominal control effort for TR_B and TR_C, for example, which emphasises the
tmportance of the consideration of control effort. It is seen that for both two and three actuator
systems the range of total control effort, both nominal and perturbed, are similar even though
the three-actuator case produces larger reductions of the vibration. In general, there is less
diversity in the robustness of the control effort than with the performance, again in the single
actuator case little diversity is seen in the robustness. However, the cost of increased control
effort is often realised in linear terms, and the absolute value of the control effort is important.
Actuator arrangement DB_D, which is favoured in terms of its performance, is seen to require,
for 95% of the perturbation cases, about four times more total control effort than DB_C. The
compromise of performance and control effort will vary depending on the application.
Considering the three actuator positions results it is seen that TR_C, whilst well ranked in
terms of performance, is particularly costly in terms of control effort. Initially TR_F may seem
to be a ‘bad choice’ due to the large spread of the distribution. However, it is apparent that the
‘rogue’ high value of control effort arises from the results of only one perturbation, and if this
particular perturbation value had not appeared in the set of 300 perturbations then this set of
actuator positions would appear more robust. This justifies the use of a 95% probability limit,
and not simply the worst case. Indeed, using the 95% probability limit, TR_F is ranked third in

terms of minimum expected control effort.

5.4.3 DISCUSSION OF PERTURBATION ANALYSIS RESULTS

It has been shown that for an AVC system it is necessary to consider the robustness of both the
performance and control effort in selecting practical systems. Each set of actuator positions can
be robust in terms of performance, total control effort, or both. When ranked in terms of either
nominal performance the more performance robust a set of actuator positions is, the more
likely its ranking will remain high in terms of the 95% probability limit. However, control
effort robustness is also important if the application is to be realised practically. Thus it may
be advisable not to use a set of actuator positions that, even though is robust in terms of
performance, does not indicate good control effort robustness. It was found, in general, that all
the AVC systems studied here had a similar performance robustness to geometric
perturbations, which is in contrast to the passively optimised structures studied in Chapter 4

where large variation in robustness of the structures was observed.
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5.5 CONCLUSIONS

The optimisation of the average vibration transmission of a two-dimensional lightweight
cantilever structure was performed, over a frequency band of 150Hz to 250Hz. Unlike for the
passive optimisation detailed in the previous chapter, in this case the regular geometry of the
structure remained fixed, and the use of Active Vibration Control (AVC) was applied using
optimal actuator positions to achieve vibration reductions. For simplicity the actuators were
assumed to be mass-less and consideration of control effort was not made part of the
optimisation objective. The optimisation task was thus, to find the optimal actuator positions
on the grounds of vibration transmission. This was achieved for AVC systems using one to
four actuators. For this, the optimisation task was not that combinatorially large, and it was
feasible to perform an exhaustive search of all possible actuator combinations. The number of
possible actuator positions increases rapidly as the number of actuators used increases,
however the use of four actuators yielded values of attenuation which would not be realisable in
practice, and all subsequent study was limited to systems using one to three actuators only.

Using two actuators, similar reductions were obtained as for the passive optimisation reported

in Chapter 4.

Even though the performance of the AVC system was optimised, the control effort, which is the
practical power requirement of a system, needs to be considered in selecting a system. This was
calculated for all optimal actuator positions. The choice of best optimal positions is made upon
consideration of both the performance and the control effort. It is seen that between AVC
systems with similar values of attenuation the control effort can vary significantly. Normally a

system with a lower control effort is preferable.

An analysis was performed of the power dissipation within the structure (which is distinct from
the control effort) for the optimal AVC systems studied. Studying the power contribution of the
actuators enables an insight into the vibrational role of the AVC system to be achieved through
the three power components; input power, structural power dissipation and net actuator power
contribution. In general, it is seen that the reductions in power dissipation in Beam 40 are due
to the redistribution of power within the structure, due to the AVC system. Using one actuator
it is seen that the AVC system acts to reduce vibration in Beam 40. With two or three actuators
it adopts the additional ‘strategy’ of blocking the power transmission along the structure. Thus
the system would be less sensitive to changes in the end impedance of the structure, which may

vary 1f additional masses were attached here.

The effectiveness of an AVC system, in part depends upon how well the parameter (cost

function) minimised actually represents the physical vibration of the beam. A comparison of
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using alternative AVC cost function parameters was performed. The parameter used here was
adopted from earlier work. An investigation was performed to compare the physical success of
using this parameter, the Flexural Energy Level (Ez.,) with three others. An additional energy-
based cost function was studied: the Total Vibrational Energy (£,.w), and two velocity-based
cost functions: the Sum of the Squares of the Translational Velocity components (J;4,s) and the
Weighted Sum of the Squares of all Velocity components (J,;). The latter used the rotational

velocity component in addition to the translational components at each beam end.

A brief single frequency analysis showed that the use of Eg., as the cost function can result in
significant increases in ;¢ and so limit of the reduction attainable in Eyur. Eiorer is confirmed
as being the most comprehensive measure of beam vibration and was used as a reference to
compare the success of using the other three cost functions. An insight into the changes of
energy flow by the application of active control at the ends of Beam 40 showed that it is the
balance between the energy flow between each beam end, and not the absolute magnitude of the
individual components (which can be increased by the AVC), which is important. For single
actuators combinations it was found that whilst the frequency-averaged version of Epm ,
(Erar), 1 the most comprehensive cost function, it is found that there is little disadvantage in
using (Eg.). This is thought to be because the structure is comprised of thin 'flexible' beams
and so bending motion is dominant in the frequency band of interest. Even though single
frequencyé cases studied showed the shortcomings of not controlling g4, this was not borne
out when using cost functions averaged over a frequency band. Generally, reducing (E,gq) is

thought to be more important if less-flexible beams, or rods, were used as the structural

elements.

Using (J.u) as a cost function was found to be the better velocity-based cost function in
reducing {F.;). For three-actuators AVC systems the reductions in (£, were generally
10dB less than those achieved by minimising either (Egex) or (Eiorar). The use of (Jyans) as a cost
function was not found to yield good reductions in (E) at all. However it was found to
provide a very good prediction of the E.,s component alone, which may prove useful in

structures comprised of more rigid beams.

The robustness of the ten best-ranked AVC actuator positions on the structure for one to three
actuators was then studied, in order to find the positions which are more practical in the sense
of having more resilient performance in the face of small changes in the structure geometry. As
with the passively optimised structures in Chapter 4, this was achieved by applying a set of
random perturbations enabling the statistical distribution of a performance to be obtained.

Whilst the average nominal attenuation varied from about 10dB to 45dB using one to three
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actuators, the variation of the average 95% probability limit in each case was similar. Another
consideration in the application of AVC, is the control effort. This may be important when
choosing the best solution under nominal conditions and could be incorporated into the
optimisation search, but was not considered during the optimisation here. However under
structural perturbations the control effort is seen for some AVC actuator arrangements to
increase by factors over ten times. If the control effort is not considered and under structural
perturbations it is seen to rise beyond the capabilities of a practical system then the predicted
performance will not be realised. Hence for AVC systems there are two types of robustness:
performance robustness and control effort robustness. A 95% probability limit was applied to
performance and control effort statistical distributions obtained from the perturbations applied.
This 1s basis for determining the worse value (for performance or control effort) that will only
be breached for an estimated 5% of perturbation instances (assuming the same perturbation

distribution), and thus enables the most practical AVC systems to be identified.
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Actuator Overall 95% 95%
position nominal probability Control probability
Rank Structure (Beam attenuation limit effort limit
number) (dB) attenuation (N9 control effort
(dB) )
1 SG_A 20 10.8 8.3 17200 27200
2 SG B 30 10.2 6.3 1390 2080
3 SG_C 7 9.9 6.4 7730 11900
4 SG_D 1 9.1 53 11100 17900
5 SG_E 12 8.9 5.1 13000 18400
6 SG_F 28 8.9 5.5 2520 3710
7 SG_G 10 8.8 5.5 2860 5000
8 SG_H 38 8.7 4.8 1770 2700
9 SG_1 31 8.5 4.9 1650 3110
10 SG_J 11 8.5 6.2 14700 23300
average - 9.2 5.7 7392 11580

TABLE 5.1. Results summary for AVC using best performance ranked single-actuator

positions over bandwidth 150Hz to 250Hz.

Redistribution of power Net actuator | Net power
Primary force input power within passive beams of | contribution | dissipated
Structure reduction, gppyr (dB) structure, o.‘repist (AB) Oacr (dB) in actuators
(x107 W)
SG_A -0.6 11.1 0.3 0.244
SG_B 0.7 10.3 -0.8 -6.14
SG_C 1.0 9.6 -0.7 -4.86
SG_D 0.8 11.0 2.7 -26.9
SG_E 0.5 9.3 -0.8 -6.55
SG_F 0.6 8.7 -0.4 -3.17
SG_G 1.5 8.4 -1.1 -7.47
SG_H 0.3 9.1 -0.7 -6.37
SG_I 0.1 9.0 -0.6 -5.17
SG_J 0.8 8.9 -1.3 -10.3
average 0.6 9.6 - -

TABLE 5.2. Power levels in structure using single-actuator optimal positions, over a

bandwidth of 150Hz to 250Hz.
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Actuator Overall 95% 95%
positions nominal probability Control probability
Rank Structure (Beam attenuation limit effort limit
number) (dB) attenuation (N?) control effort
(dB) (N)
1 DB_A 2,4 31.1 28.1 43500 70600
2 DB_B 2,16 28.0 252 22800 37300
3 DB_C 16, 28 27.8 25.7 13600 23400
4 DB_D 8,25 27.5 26.8 53900 66200
5 DB_E 14, 16 27.4 24.4 38300 54200
6 DB_F 4, 16 27.4 25.4 49700 68200
7 DB_G 25,28 274 25.2 13400 26500
8 DB_H 10, 16 27.2 24.6 20100 34800
9 DB_I 12,17 27.1 23.6 33200 46600
10 DB_J 14, 28 26.9 22.9 11000 24800
average - 27.7 25.0 29950 45260

TABLE 5.3. Results summary for AVC using best performance ranked two-actuator positions

over bandwidth 150Hz to 250Hz.

Redistribution of power Net actuator | Net power
Primary force input power within passive beams of contribution | dissipated
Structure reduction, ONpUT (dB) structure, a‘REDIST (dB) ClacE (dB) in actuators
(x107 W)
DB_A 3.6 274 0.2 0.650
DB_B 0.4 29.5 -1.9 -18.4
DB_C 0.02 28.3 -0.5 -4.21
DB_D 1.9 26.5 -0.9 -5.67
DB E 0.004 28.5 -1.1 -10.2
DB_F -0.4 28.5 -0.7 -6.74
DB_G 1.5 27.1 -1.3 -9.01
DB_H 0.2 28.7 -1.6 -15.7
DB_I 0.4 26.8 -0.04 -0.312
DB_J -0.4 27.8 -0.5 -4.89
average 0.9 28.0 - -

TABLE 5.4. Power levels in structure using two-actuator optimal positions, over a bandwidth

of 150Hz to 250Hz.
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Actuator Overall 95% 95%
positions nominal probability Control probability
Rank Structure (Beam attenuation limit effort limit
number) (dB) attenuation (N?) control effort
(dB) o)
1 TR_A 2,4, 13 50.8 47.6 46100 63300
2 TR_B 1, 8,10 49.1 43.9 45300 70500
3 TR C 7,8,9 47.3 439 234000 443000
4 TR_D 3,89 46.4 42.9 55600 98200
5 TR_E 2,4,9 46.1 447 54900 61900
6 TR_F 2,3,4 46.0 449 40400 49200
7 TR_G 12, 16, 19 44.8 37.5 24400 33900
8 TR_H 2,7.8 44.6 40.9 52700 83600
9 TR_I 1,4,8 44.4 41.3 33200 53000
10 TR J 10, 16, 19 44.0 37.4 29100 45400
average - 459 41.3 60570 100200

TABLE 5.5. Results summary for AVC using best performance ranked three-actuator

positions over bandwidth 150Hz to 250Hz.

Redistribution of power Net actuator | Net power
Primary force input power within passive beams of contribution | dissipated
Structure reduction, Opyt (dB) structure, O ‘repist (dB) Oacr (dB) in actuators
(x107 W)
TR_A 1.8 453 3.6 13.5
TR_B 1.1 50.5 -2.5 -21.9
TR_C -1.3 49.9 -1.4 -17.9
TR_D -0.1 46.2 0.3 2.55
TR_E 1.8 40.5 38 14.0
TR_F 2.8 39.1 4.1 11.7
TR_G 0.1 44.7 0.01 0.00706
TR _H 0.9 454 -1.8 -14.9
TR_I 1.8 44.9 -2.3 -17.4
TR J -0.4 45.1 -0.6 -6.34
average 1.0 46.4 - -

TABLE 5.6. Power levels in structure using three-actuator optimal positions, over a bandwidth

of 150Hz to 250Hz.
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Attenuation achieved in each parameter by

Case || Actuator | Frequency Acc\;/sf minimising cost function shown (dB)
positions (Hz) function Eom Erer Epigid Ty Jun

Erotar 3.20 5.45 -6.16 -6.01 -3.30

1 3 170 Epex 2.18 7.05 -9.21 -9.01 -5.01
Tirans 0.26 0.27 0.067 0.050 -0.14

Jann -2.07 -1.92 -4.24 -4.01 1.29

Erotar 6.37 6.35 6.46 6.63 8.37

2 5,19 160 Eqey 4.55 7.71 -0.72 -0.50 -0.53
Jirans 5.12 4.25 45.9 41.0 3.52

Jan 6.20 5.89 7.99 8.25 9.15

Table 5.7. Summary of results showing the effect on the values of the four cost function

parameters and E,;,;s, when each parameter is minimised as an AVC cost function for two sets

of actuator positions at two different frequencies.
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SG A Atten = 10.8dB
- Effort = 1.72e+04 N°

8 Atten = 10.2dB
- Effort = 1.39e+03 N°
G c Atten = 9.9dB
- Effort = 7.73e+03 N?
G b Atten = 9.1dB
_ Effort = 1.11e+04 N°
-
G £ Atten = 8.9dB
_ Effort = 1.3e+04 N?
- Atten = 8.9dB
- Effort = 2.52e+03 N2
s & Atten = 8.8dB
- Effort = 2.86e+03 N?
SG_H Atten = 8.7dB
_ Effort = 1.77e+03 N?
| Atten = 8.5dB
SG_ Effort = 1.656+03 N
, S Atten = 8.5dB
SG_, Effort = 1.47e+04 N°

Figure 5.1: The ten best performance ranked single-actuator positions for the frequency band

150Hz to 250Hz.
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Figure 5.2: The ten best performance ranked two—actuator positions for the frequency band

150Hz to 250Hz.

Atten = 31.1dB
Effort = 4.356+04 N?

Atten = 28.0dB
Effort = 2.28¢+04 N?

Atten = 27.8dB
Effort = 1.36e+04 N°

Atten = 27.5dB
Effort = 5.39e+04 N°

Atten = 27.4dB
Effort = 3.83e+04 N?

Atten = 27.4dB
Effort = 4.97e+04 N?

Atten = 27.4dB
Effort = 1.34e+04 N

Atten = 27.2dB
Effort = 2.01e+04 N?

Atten = 27.1dB
Effort = 3.32e+04 N°

Atten = 26.9dB
Effort = 1.1e+04 N?



TR A Atten = 50.8dB
= Effort = 4.61e+04 N?

R B Atten = 49.1dB
- Effort = 4.53e+04 N?

TR C Atten = 47.3dB
- Effort = 2.346+05 N2

TR D Atten = 46.4dB
- Effort = 5.566+04 N>

TR E Atten = 46.1dB
— Effort = 5.49e+04 N?

Atten = 46.0dB

TR_F Effort = 4.04e+04 N?

TR G Atten = 44.8dB
- Effort = 2.446+04 N?

TR H Atten = 44.6dB
- Effort = 5.27e+04 N2

Atten = 44.4dB

TR_I Effort = 3.326+04 N?
-
. S_— Atten = 44.0dB
— Effort = 2.91e+04 N2

Figure 5.3: The ten best performance ranked three—actuator positions for the frequency band

150Hz to 250Hz.
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Figure 5.4: The ten best performance ranked four-actuator positions for the frequency band

150Hz to 250Hz.

Atten = 118.9dB
Effort = 6.55e+04 N°

Atten = 81.5dB
Effort = 3.97e+04 N2

Atten = 81.5dB
Effort = 1.75e+05 N2

Atten = 81.4dB
Effort = 2.05¢+05 N

Atten = 80.8dB
Effort = 1.546+07 N?

Atten = 80.7dB
Effort = 7.92e+04 N?

Atten = 79.7dB
Effort = 7.086+04 N2

Atten = 78.4dB
Effort = 6.53e+06 N?

Atten =78.1dB
Effort = 2.2e+05 N2

Atten =77.2dB
Effort = 6.32e+04 N
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Figure 5.5: Frequency response of the structure without AVC, and the reduced response obtained
with AVC, within the frequency band applied, for the actuator positions DB_A in Figure 5.2.
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Figure 5.6: Power components in each structure using AVC with optimised single-actuator
positions. Negative values of dissipation indicate power supplied to the structure. Light grey:
Power input to structure, Dark grey: Power dissipated in Beams 1 to 39 without actuators,
Black: Power dissipated in Beam 40, White: Power contributions from actuator. (N.B. Power
dissipated in Beam 40 is only distinguishable for structure without AVC. With AVC range is
5.53 x 1077 to0 9.54 x 1077 W.)
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Figure 5.7: Power components in each structure using two—actuator optimised AVC positions.
Key as for Figure 5.6. The values of power for each actuator are shown from left to right for
increasing beam number position. (N.B. Power dissipated in Beam 40 is only distinguishable for
regular structure without AVC. With AVC range is 5.18 x 1079 to 1.36 x 1078 W.)
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Figure 5.8: Power components in each structure using three-actuator optimised AVC positions.
Key as for Figure 5.6. The values of power for each actuator are shown from left to right for
increasing beam number position. (N.B. Power dissipated in Beam 40 is only distinguishable for
regular structure without AVC. With AVC range is 5.62 x 107! to 2.68 x 1077 W.)
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Figure 5.9: Power dissipated in each beam of the structure for optimal single—actuator position
SG_A. Vertical gridline represents vertical beam at end of each bay. - - - no AVC, — with AVC.
Actuator position is denoted .
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Figure 5.10: Power dissipated in each beam of the structure for optimal two-actuator position
DB_A. Vertical gridline represents vertical beam at end of each bay. - - - no AVC, — with
AVC. O denotes position of actuator dissipating power, A denotes position of actuator sourcing
power (with magnitude shown in the same sense as for dissipation).
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Figure 5.11: Power dissipated in each beam of the structure for optimal three—actuator position
TR_A. Vertical gridline represents vertical beam at end of each bay. - - - no AVC, — with
AVC. O denotes position of actuator dissipating power, A denotes position of actuator sourcing
power (with magnitude shown in the same sense as for dissipation).
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Figure 5.12: Effect of applying active control on Efjer, Fyrigia and By, of Beam 40 for Case 1
with a) Efee and b) Eioq used as the cost function. (Shading scheme: Dark: no active control,

Light: active control applied).
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Figure 5.13: Effect of applying active control on power components at the ends of Beam 40,
for z,y and 8 (rotational) components for Case 1 with a) Ef., and b) Ejuq used as the cost
function. e.g., Px0 is power flow in z-direction at end 0. (Shading scheme: Dark: no active

control, Light: active control applied).
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Figure 5.14: The variation of the values of the four different parameters used to quantify the
vibration of Beam 40 with excitation frequency when uncontrolled. Each cost function is scaled

to represent energy (J).
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Figure 5.21: Statistical distribution and 95% probability limits (bold lines) for AVC performance,
for frequency band 150Hz to 250Hz, of the ten best ranked single—actuator positions. Values of
nominal performance are shown by thin lines.
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Figure 5.22: Statistical distribution and 95% probability limits (bold lines) for AVC total control
effort, for frequency band 150Hz to 250Hz, of the ten best ranked single-actuator positions.
Values of nominal control effort are shown by thin lines.
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Figure 5.23: Statistical distribution and 95% probability limits (bold lines) for AVC performance,
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CHAPTER 6

Combined Passive and Active Optimisation
Methods and a Comparison of
Optimisation Strategies

6.0 INTRODUCTION

The previous two chapters have dealt with the reduction of the vibration transmission of the
two-dimensional structure which is the subject of the study in this thesis, using passive and
active optimisation methods; by optimising the geometry of the structure and also by finding
the optimal actuator positions for AVC on the regular unoptimised structure. Both methods
have been successful to varying degrees. A sensible progression is then to combine both these
methods, to generate structures which have optimised geometries and use Active Vibration
Control (AVC) with optimal actuator positions. The first method used is to find optimal
actuator position on the structures whose geometries have been previously optimised using
passive optimisation (in Chapter 4), the second to optimise both the geometry and actuator
positions simultaneously. The first method, termed the passive-then-active method is identical
to the active-only optimisation performed in Chapter 5, except geometrically optimised
structures are used in place of the regular structure. The second method, termed combined
optimisation, is similar to the passive optimisation, being a highly combinatorial problem and
is solved using genetic algorithms. More than one variation of this strategy is presented. As
before, the robustness of the optimised structures is studied, so that the best candidate in terms

of practical application can also be made.
Having presented optimisation results using four different strategies, both here and in the

previous two chapters, a comparison between all of these methods is performed, and the

success and consequences of using each method are assessed. This in done for both nominal

and perturbed performance.

Throughout this chapter reference is made to the design exploration system used for the
majority of the optimisation work presented in this thesis. For brevity this will again be referred

to in this chapter by its proprietary name: OPTIONS. See Chapter 3 for further details.

This chapter is structured as follows: Section 6.1 presents the optimised structures resulting

from using the passive-then-active optimisation strategy and Section 6.2 presents those
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achieved using the combined optimisation methods. Section 6.3 presents a power analysis, to
gain an insight into the mechanisms by which the structures achieve better performance,
including the role that the AVC system plays. Robustness analyses of all the optimised
structures are presented in Section 6.4. Comparisons of the success of, and consequences of
using, each optimisation strategy used in this and the preceding two chapters are made in

Section 6.5. Conclusions are presented in Section 6.6.

6.1 PASSIVE-THEN-ACTIVE OPTIMISATION

Ten passively optimised structure geometries were found on the basis of their average
performance over the frequency band 150Hz to 250Hz, as described in Chapter 4. AVC
actuators were then added to these structures to achieve further reductions in vibration
transmission. The remaining task is, therefore, to find the optimum actuator positions for each

of the ten geometrically optimised structures to realise the maximum vibration reduction.

6.1.1 GENERATION OF OPTIMAL ACTUATOR POSITIONS

The actuator positions were found using an exhaustive search in exactly the same way as the
optimal actuator positions on the traditional structure design, as detailed in Chapter 5. The only
difference here is that irregular structure geometries are used. To calculate the effect of AVC
the structure plant model matrices C and Y (see Section 2.3) were calculated for each structure
geometry-actuator combination considered in the optimisation process. Optimal actuator
positions were found for the application of active control using one, two and three actuators.
As before, the number of potential actuator positions is not a prohibitively large number, and
an exhaustive search is employed. Therefore the optimal actuator positions are guaranteed to be
found in each case. The active-then-passive counterpart is not investigated, as this has less

practical application - to optimise a structure around fixed actuator positions.

6.1.2 OPTIMISATION RESULTS

The optimum actuator positions on the structures which have previously been geometrically
optimised are shown in Figures 6.1, 6.2 and 6.3 using one, two and three actuators respectively
for each of the structures. The structures are shown ranked in order of net overall
performance, with structure label suffices A to _J which correspond to the optimised structure
geometries presented in Chapter 4 as B_A to B_J. With one actuator it is seen that the actuator
positions are all within the first six leftmost structure bays, with two actuators nine optimal
actuator-pairs occur in the first four leftmost bays (the other in the fifth bay), and with three

actuators six sets of optimal actuator positions occur in the first three leftmost bays (with the
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remainder in the fourth bay). Thus the larger the number of actuators used, the more the
optimal actuators positions occur in the structure bays near the base of the structure. This is a
similar finding the that of the optimal actuator positions on the regular structure in Chapter 5.
The optimal actuator positions for each structure are also given in Table 6.12. Further

comparison with other optimisation strategies is left until later on in the chapter.

The best performance using one actuator yields a value of attenuation of 46.0dB, for two
actuators this value is 67.8dB and for three actuators 96.1dB. Here the attenuation achieved by
each structure is split into its two component parts; the attenuation due to the structure
geometry alone and the additional attenuation due to the AVC system. The values of
attenuation achieved for using three actuators were in the region of the practical limit
achievable a realistic noise floor (55dB to 60dB) and would not be realised in practice.
Therefore only the one and two-actuator systems, shown in Figures 6.1 and 6.2, are considered
further and the performance and total control effort are summarised in Tables 6.1 and 6.3. The
contributions of the geometric optimisation to the vibration attenuation are common for
structures with the same label suffix, which is in the range 34.5dB to 31.0dB. The range of
AVC attenuation contributions is 12.7dB to 5.9dB for one actuator and 34.1dB to 31.0dB for
two actuators. These are similar to the range of values of AVC attenuation achieved with the
unoptimised structure, discussed in Chapter 5. The major component of the attenuation is that
due to the structure for one actuator, whilst the contributions of the geometric optimisation and

the AVC system are of similar significance for two actuators.

The effective total control effort of the primary force is 21N” as discussed in Chapter 4. The
total control effort required for each of the structures is also given in Tables 6.1 and 6.3. For
one actuator the smallest total control effort is about 13 times smaller than that for the primary
force, the largest requirement is over 30 times larger. For two actuators the smallest total
control effort is of a similar magnitude to that for the primary force, the largest is over 50 times

larger.

6.2 COMBINED OPTIMISATION OF STRUCTURE GEOMETRY
AND ACTUATOR POSITIONS

The second form of combined optimisation studied was that of combining the structure
geometry and the actuator position at the same time. The ability to perform this type of
optimisation problem is one which sets genetic algorithms (or in general, evolutionary
algorithms) apart from classical methods. The highly combinatorial nature of this problem has

already been discussed Chapter 4, however the addition of optimising the actuator positions
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make the optimisation problem a discrete one. The overall optimisation procedure is referred to

simply as combined optimisation.

To evaluate the average energy level of Beam 40 in practice, using the receptance analysis
model for the structure, the net forces and velocities at the ends of Beam 40 were calculated
separately due to the primary force and the forces at each end of the actuators. The individual
force and velocity contributions from all the force inputs were then summed for each degree of
freedom of Beam 40 (as the system is linear). Then using the net values of the force and

velocity for each degree of freedom the net power dissipation in Beam 40 can be evaluated.

6.2.1. CHROMOSOME REPRESENTATION FOR COMBINED OPTIMISATION

The use of the chromosome and its representation for the structure geometry has been discussed
in Chapter 4. For the 18 joints allowed to move under optimisation, the joint position is
represented as 36, 16-bit numbers, concatenated to form a 576-bit chromosome. The addition
of the actuator positions to the optimisation therefore entails augmenting the chromosome to
allow the representation of actuator positions. In OPTIONS it is possible to represent a discrete
optimisation variable by detailing all the discrete values permitted. This is then represented in
the chromosome by a binary string, whose length is sufficient to represent the total number of
discrete levels. Thus for optimisations using one actuator, the 39 possible actuator positions
could be represented as a 6-bit binary string. The total chromosome length would then be 582
bits, of which only 6 represent the actuator positions (equivalent to about 1% significance). It
was not felt that this strategy was the best one to use because of the small significance of the
actuators position representation in the chromosome, and that there would be a relatively small
probability of the actuator position being affected by the crossover and mutation operators of
the genetic algorithm. This would result in relatively little evolution of the actuator positions
compared to the structure geometry. Therefore another representation was used, allowing the
actuator position to have greater significance in the chromosomes. A 16-bit optimisation
variable between zero and unity was used to represent the actuator positions. For one actuator
this represented the 39 candidate actuator positions using a linear scaling, such that if the
variable were assigned by a uniform random distribution, then each actuator position would
have an equal probability of selection. For two and three actuator positions the optimisation
variable was scaled similarly to form an index representing all possible actuator combinations
(i.e., 1 to 741 for two actuators and 1 to 9139 for three actuators). This number was used to
code an actuator combination in a repeatable and deterministic fashion. Again, each
combination has exactly the same probability of selection if the optimisation variable were

assigned by a uniformly distributed random variable. In this way the proportion of the
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chromosome representing the actuator positions is one-thirty seventh of the total length (36
joint coordinate position parts and one actuator part). Whilst this is greater than using
discretely defined actuator positions as described above, the actuator position still has a
relatively small significance compared with that of the geometry (of about 2.7% of the

chromosomes length).

An additional chromosome construction was also used, so that any effect of the significance of
the length representing the actuator position could be seen. For this chromosome, instead of
using one optimisation variable, eight such variables were used and then combined to form a
single index. This extended chromosome has a representation of the actuator positions which is
about 18% of the chromosomes length. Each of the eight optimisation variables are between the
limits zero and unity. They are combined by summing the variables and converting to a zero to
one range using a modulo one operator. Thus, where each of the optimisation variables is

represented by o; , the final actuator combination index j is given,

8
j= (Z o, }modl) ‘ 6.1)
i=1

Using this combination method j will be within the range 0 to 1 (non-inclusive) and will still be

uniformly distributed if all the individual variables are so distributed.

In earlier work the author used a combination method that was a simple arithmetic average of

the individual variables o; was used,

) 1
.]biased = —é Z 01’ . (62)

If these are uniformly distributed then this leads to a distribution of the combination of
variables which approaches a Gaussian or Normal distribution as the number of variables
combined increases (by the Central Limit Theorem, Hoel 1984). Obviously this gives a biased
representation for actuator positions occurring in the middle of the range of the index. For the
one actuator case this biases towards actuator positions in the middle of the structure. The
resulting structures are still presented below as they allow an observation to be made on the

effect that this has on the optimisation.

6.2.2 OPTIMISATION RESULTS

The parameters used for the optimisation are the same as those used for the broad band
optimisation detailed in Chapter 4. The genetic algorithm was comprised of 4500 objective

function evaluations, arranged as 15 generations of population size 300. Other parameters
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detailing the optimisation are given in Table D.6 in Appendix D. The only additional difference
being the use of a longer chromosome to represent the joint positions of the structure and the

actuator positions, as detailed above.

6.2.2.1 COMBINED OPTIMISATION USING STANDARD CHROMOSOME

The resulting structure geometries and optimal actuator positions for the best ranked of the ten
candidate designs produced with one and two actuators and using the standard length
chromosome are shown in Figures 6.4. and 6.5. Each candidate took about 160 and 220 hours
to produce, for one and two actuators respectively, on hardware platform B detailed in
Appendix E. The unoptimised value of performance is shown on the y-axis with a square, but
the immediate improvement is due to the operation of AVC with the initial actuator position
(which corresponds to j=0 in (6.1)). The performance and total control effort for all the
candidates produced for each case are summarised in Tables 6.5 and 6.7 respectively. The
contribution of the structure geometry is also given with no AVC operating. For the
one-actuator case the contribution of the geometry to the attenuation ranges from 28.4dB to
17.5dB whilst the AVC attenuation range is 29.9dB to 20.6dB, so both components are of
similar significance. For the two actuator case the geometric contribution range is 22.8 dB to
15.5 dB and the AVC attenuation range is 64.9dB to 52.3dB and the AVC attenuation is then
the dominant component in the values of total attenuation achieved. Optimisation using a larger
number of actuators was not considered as the values of attenuation achieved using two
actuators are in the region of the limit of being realisable in practical AVC systems with a
realistic noise floor. The positions of the actuators for all the candidates are given in
Table 6.12. For one actuator, all the actuator positions occur in the three leftmost structure
bays and Beam 4 is an actuator location for two of the candidates. For the two-actuator case,
again, all the actuators positions occur in the three left most bays, however in this case there
are two-actuator position pairs Beams 1,4 and Beams 1,5 which occur in three and four times
respectively in the ten candidates. Thus a similar trend is seen as with the passive-then-active
optimisation, that the higher the number of actuators the more they occur towards the structure
base.

The total control effort required to achieve the stated performance for each structure is given in
Tables 6.5 and 6.7. For one actuator, the smallest total control effort is smaller than the
effective primary force total control effort (21N?), and the structure with the largest value is
CO1_1, the structure with the best performance, and this is over 10 times larger than the

effective primary control effort. For two actuators, the range is from about three to over 80

times.
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The significance of the representation of the actuator position in the geometry was a concern in
the definition of the chromosome, as discussed above. To show the distribution of the actuator
positions considered throughout the optimisation, various parameters representing the actuator
positions at each evaluation of the genetic algorithm and the best position in each generation
are shown in Figure 6.6 for structures CO1_I and CO2_G, the best ranked one and two
actuator structures. The parameter SRC_IND is the source (actuator) position index which is
used to determine the actuator positions and corresponds to j in (6.1). For the single actuator
case the source position is simply a quantised version of this parameter, but a more complex
relation exists for two actuators. In both cases it is seen that the initial diversity of the actuator
position representation in the initial generations (each of 300 chromosomes evaluations) is lost
in the later stages. Here a small number of actuator positions are heavily represented within
each generation (as represented by the large number of evaluations using these positions), even
though evaluations were still performed at other actuator positions. The index and actuator
positions corresponding to the chromosome with the best performance in each generation are
also shown. In the overall optimisation six different actuator positions occur in the best
structure in each generation for one actuator, and only three different actuator positions occur
for the two actuator case. The discrete change of actuator positions can, in effect, cause a
discrete change in the objective function. By comparing the best actuator position in each
generation history with the history of the objective function in Figures 6.4 and 6.5, it is seen

that in most cases the improvement coincides with changes in the actuators positions.

6.2.2.2 COMBINED OPTIMISATION USING THE EXTENDED CHROMOSOME

Ten optimised candidates were produced using the extended chromosome as described in
Section 6.2.1, in which the significance of the representation of the actuator position in the
chromosome is greater. The optimised designs yielding the best performance using one and two
actuators are shown in Figures 6.7 and 6.8. The performance and the total control effort
required for all the optimised structures are given in Tables 6.9 and 6.11. Comparing these
values with their counterparts for the standard chromosome, it is seen that in terms of the
performance of the best structure in each case, that the use of the extended chromosome has not
yielded structures with better performance, but similar levels of attenuation have been achieved.
This is reflected in the values of the average performances. Comparing the average values of
total control effort it is seen that for the one actuator case the average figure is 89.9N? for the
standard, and 110N? for the extended chromosome. However for the two actuator case the
discrepancy has increased to 610N? and 1173N?, the use of the extended chromosome almost
doubling the average value of total control effort required compared to the use of the standard

chromosome, in this example. The contributions of the attenuation due to the geometry and that
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due to the AVC system are also given in Tables 6.9 and 6.10, for both cases. The significance
of the geometric attenuation and that achieved by the AVC system appears to be very similar to
that for use of the standard chromosome. However, on average it appears that the AVC system

appears to have a slightly less significant contribution when using the extended chromosome.

The effect of using the extended chromosome on the diversity of the actuator positions
considered during the optimisation is shown in Figure 6.9. The interpretation of the figure was
explained previously for Figure 6.6 above. Here it is seen that the use of the extended
chromosome has maintained the diversity in the later generations of the optimisation
dramatically and there appears to be little difference between the diversity of the actuator
positions evaluated in the earlier generations and those in the later generations. However, there
still appears to be relatively little change in the best actuator positions in each generation, as
before with the standard chromosome. The optimal actuators positions for each candidate are
given in Table 6.12. When compared with the results for the standard chromosome the increase
in diversity is apparent. Actuator positions further from the structure base are also found in the
ten structures, there is only one set of actuator positions which occurs for more than once in the

ten structures for the one actuator case.

6.2.2.3 USE OF AN EXTENDED CHROMOSOME WITH BIASING FAVOURING
MID-STRUCTURAL ACTUATOR POSITIONS

As detailed in section 6.2.1, the author initially used the extended chromosome with a method
of combining the individual source indices to form a single source index, which was
(unintentionally) biased, for one-actuator positions, in favour of actuator positions occurring in
the middle of the structure. Ten optimised structure using a single actuator were produced

using this method, and are briefly presented here.

The structure with the best combined performance is given in Figure 6.10, and the performance
of all the ten optimised candidates and the total control effort required is given in Table 6.11.
Comparing these two parameters with those for the single-actuator passive-then-active and
combined optimised structures it is seen that the performance of the structures using the biased
chromosome achieves values of attenuation that are comparable to the single-actuator
optimised structures using the combined optimisation scheme, using both the standard and
extended chromosomes. The total control effort is in general smaller, however, for the biased
chromosome case than for all the other cases. The value of the average total control effort is
almost half the value for the combined optimised structures using the standard chromosome

(which is slightly smaller than for the extended chromosome). Compared to the effective
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primary force total control effort the range of values of total control effort for the structures is

about 1.5 to 4.5 times.

Figure 6.11 shows the convergence history of the genetic algorithm optimisation for the
optimised structure shown in Figure 6.10. The format of the figure has been explained above
for the combined optimisation scheme above for Figure 6.6. The biasing of actuator positions
considered towards positions in the middle of the structure is apparent. No actuator positions
occurring in the two leftmost structure bays (i.e., beam numbers 1 to 8) or the two rightmost

structure bays have been considered during optimisation.

The optimised structures produced using this optimisation scheme are not considered further in
this thesis. It was not originally intended to bias actuator positions in this way. However from
the results presented a few interesting comments can be made. Restricting the freedom of the
optimisation, by providing a bias for the actuator positions, has still yielded optimisation
designs which still have comparable performance to structures produced without such a bias.
Thus if a practical constraint exists (so that mid-structural actuator positions are preferred),
this has been shown not to be detrimental the to the performance of the resulting optimised
structures. Also, in this case the total control effort (which is an accidental consequence of the
optimisation: it is not considered by the optimisation) is actually smaller than for the non-

biased cases, which is obviously a practical advantage.

6.3 ANALYSIS OF POWER FLOW IN OPTIMISED STRUCTURES

In order to gain an insight into the mechanisms by which the power dissipation reduction in
Beam 40 has been achieved, and to understand the role of the AVC system in the structures
resulting from the passive and active optimisation strategies, power in the optimised structures
and the contribution of the AVC system was studied. Power analyses are only presented for the
structures resulting from the passive-then-active optimisation strategy, and those from the
combined optimisation strategy using the standard chromosome. An explanation of the power
components used in the analysis of power in a structure using AVC was given in Chapter 5,

and are applicable to the power analyses reported here.

The results for the power analysis of the structures resulting from the passive-then-active
optimisation are given in Tables 6.2 and 6.4, for one and two actuators respectively. The power
components are given with the AVC system operational, and non-operational, so that the
contribution of the geometric optimisation and the AVC system can be determined. For these
structures the geometries are the same as the optimised structures achieved by the passive

optimisation for the broad band case in Chapter 4, and thus the geometric improvements due to
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the geometries are the same. For one actuator it is seen that the AVC control has no effect on
the input power, and only a slight increase is seen for two actuators. The main effect of the
AVC in each case is to provide an additional redistribution of the structural power, which on
average is 10.6dB and 31.6dB greater than that achieved by the structure alone, for one and
two actuators respectively. Figures 6.12 and 6.13 show the power analysis results, and for the
two actuator case the individual actuator power contributions for the actuators can now be
seen. In general the actuator contributions are small compared with the other power

components except for a few structures, for example PTA1_H and PTA2_J.

The results for the power analysis for the structures resulting from the combined optimisation
using the standard chromosome are given in Tables 6.6 and 6.8, for one and two actuators
respectively. Again, the power components are given with the AVC system operational, and
non-operational, so that the contribution of the geometric redesign and the AVC system can be
determined. In this case the structure geometries are those resulting from each individual
optimisation. It is seen that the geometric improvement achieved, on average, is slightly less
reduction in the input power than for the passive-then-active case. The one and two actuator
cases have average reductions of 9.7dB and 10.0dB, compared to 10.7dB for the passive-then-
active optimisation. There is a much greater discrepancy between the reductions achieved for
the power distribution. Here the values are 14.4dB and 8.5dB for one and two actuators

compared with 22.3dB for the passive-then-active case.

The structures achieved using the passive-then-active optimisation strategy, have undergone
optimisation, first, solely concerning the geometry. Whereas using the combined strategy the
optimisation effort is shared between the geometry and the actuator positions. Thus it is not
surprising that the geometric improvements achieved from the combined optimisation are not as
large as those in which the optimisation of the geometry was initially the sole aim. However the
values of attenuation resulting from an AVC system using the optimally placed actuators
resulting from the combined optimisation are greater than those achieved from the passive-then-
active optimisation, by about 6dB and 16dB greater on average for one and two actuators
respectively. Overall the values of total attenuation achieved are slightly greater than for those
achieved from the passive-then-active optimisation. The power analysis results are also shown
in Figures 6.14 and 6.15, for the optimised structures using one and two actuators, showing the
individual actuator contributions. In general, for the one actuator case the power contributions
are relatively very small, as with that for the passive-then-active structures, however for two
actuators the individual actuator contributions are larger than for the passive-then-active

structures.
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The power distributions within the optimised structures PTA1_B and PTA2_C, resulting from
the passive-then-active optimisation are shown in Figures 6.16 and 6.17, and also for structures
CO1_I and CO2_G resulting from the combined optimisation, in Figures 6.18 and 6.19. The
position of the actuator is denoted by a symbol which additionally indicates whether the
actuator is absorbing or sourcing power, as explained in the figure captions. The geometric
optimisation has achieved a small reduction in power transmission along the structure, to which
the use of AVC reduces the transmission even further. For structure PTA2_C (Figure 6.17) the
actuator in Beam 1 is seen to increase the power dissipation in this beam. With reference to
Figure 6.13 it is seen that this actuator is acting as an energy absorber, the other actuator is
acting as an energy source (although its value is not clearly visible in the figure). As well as

achieving a reduction of the power dissipated in Beam 40 the input power is slightly decreased.

For both optimisation cases using one actuator power reductions due to the AVC are seen at
the far end of the structure but these occur a number of structure bays past the final actuator
(actuator nearest Beam 40). The success with one actuator is greater for the combined
optimisation. For two actuators a marked reduction in the power transmission past the final
actuator is seen to occur from the bay containing the final actuator, and the reduction is
greater, again, for the combined optimisation. This is similar to the effect seen in Chapter 5 for
the operation of the AVC in the active-only optimised structures, but the amount of power
reduction using two actuators is greatest for the combined optimisation (comparing
Figures 6.17 and 6.19 with Figure 5.10). Although this effect is not as immediate as for active-
only optimisation using three actuators (see Figure 5.11). This suggests that there is an
advantage in optimising the structure geometry simultaneously with the actuator positions. The
interaction between the two effects in the optimisation process allows AVC with a given
number of actuatdrs to have a much greater effect. The apparent strategy adopted by the
optimised structures shown here is also the same for those for the active-only optimised
structures; a strategy of reducing the power transmission along the structure past the final
actuator. This effect is especially apparent for structure CO2_G in Figure 6.19. As discussed
in Chapter 5, this implies that the performance of the system is less sensitive to the impedance

of the structure and, and thus less sensitive to changes to the mass of Beam 40.

6.4 COMPARISON OF ROBUSTNESS OF OPTIMISED DESIGNS

The robustness of all the structures produced under combined optimisation schemes presented
in this chapter was analysed (with the exception of the use of the biased extended

chromosome). This was achieved in the same way as for the perturbation analyses presented in
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Chapters 4 and 5. Full details are given in Chapter 4. As discussed above, linear superposition
is used to calculate the net average energy level in the face of each applied perturbation. A
perturbation scaling of 0.01 was used, defining a perturbation range of £10mm, and the same
set of 300 random perturbations were used as before. The results of the perturbation analyses
are shown, in terms of both performance and total control effort, in: Figures 6.20 to 6.23 for
the structures produced under the passive-then-active optimisation scheme; Figures 6.24 to
6.27 for the structures produced under the combined optimisation using the standard
chromosome; and Figures 6.28 to 6.31 for the structures produced under the combined
optimisation scheme using the extended chromosome. The 95% probability limits are also
shown on all the graphs, which indicate the values for which 95% of the evaluated
perturbations, the performance is better or the total control effort smaller. Robustness has been

discussed in Chapter 4, and also the 95% probability limit has been defined in more detail in

that chapter.

The results of the perturbation analyses are also sumumnarised in Tables 6.1, 6.3, 6.5, 6.7, 6.9
and 6.10. First, considering the robustness of the performance for the optimised structures
using one actuator, it is seen that, in general, the average robustness is the same for all the
methods: passive-then-active and combined optimisation with the standard and extended
chromosome. The ranges are confined to a range of about one order of magnitude. Whilst the
best optimised one actuator structure is CO1_I, the one with the smallest 95% probability limit
and the best practical performance is seen to be CEX1_B. For optimised actuator positions
with two actuators, the general spread of values of performances is similar and is generally
confined to two orders of magnitude. Structure CO2_D appears to be extremely unrobust in
this respect, but using the 95% probability limit it is seen that, on average, the performance of
this structure is expected to be better than for structures CO2_I and CO2_C. For two
actuators, the performance for the combined optimised structures using the standard

chromosome is the best, the best structure in all respects being CO2_G

As with the active optimised structures a large variation in control effect is seen for all
structures. There appears to be no relation between the optimisation strategy and the control
effort robustness as the range of values is from a little over one order of magnitude for the CO2
structures and about three orders of magnitude for the PTA1 and CEX2 structures. Again, it is
emphasised that control effort is often perceived in linear terms and thus in practice these
differences are significant. The best single-actuator structure on nominal performance CO1_I
has a relatively high control effort requirement, although CEX1_B the most practical single-

actuator structure has a control effort requirement that is almost two orders of magnitude
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smaller and more robust. Similarly for structure CO2_G the best two-actuator structure, the

control effort is relatively small and robust.

6.5 COMPARISON OF OPTIMISED DESIGNS

Four optimisation strategies have been presented in this thesis: passive optimisation, in which
the geometry of the structure is optimised: active optimisation, in which the optimal actuator
positions for an Active Vibration Control system applied to the regular structure were sought;
passive-then-active optimisation, in which the optimal actuator positions on the previously
passively optimised structures were sought; and combined optimisation in which the structure
geometry and the optimal actuator positions for an AVC system are optimised simultaneously.
For the latter strategy, two versions of genetic algorithm chromosome were used, giving
different significance between the geometry and the actuator positions in the optimisation. A

comparison of the success of using all the techniques can now be presented.

6.5.1 NOMINAL PERFORMANCE

Figure 6.32 shows the representation of the attenuation of the all the optimised structures
produced by each of the optimisation strategies, along with their respective values of total
control effort. The values of attenuation for the passively optimised structures are shown on a
separate axis as control effort is not applicable for this case. The average performance against
average total control effort for each of the ten structure resulting from the different optimisation

strategies is also shown in Figure 6.33.

The structures achieved using active optimisation using two actuators, produce similar levels of
attenuation as the passively optimised structures. The structures achieved using optimisation
strategies involving both passive and active optimisation, using one actuator, yield values of
attenuation similar to structures optimised by active optimisation using three actuators. Thus
the application of AVC for the former case is more effective. However, as well as using only
one actuator in place of three, the structures achieved using both passive and active
optimisation use much less control effort. The range from the smallest values for the latter to
the largest for the active optimisation structure is over 100,000. The larger control effort is not
due to the number of actuators, since for active-only optimisation using one, and two actuators
the average total control effort is still a factor of 100 greater. This indicates that the application
of AVC to a structure resulting from passive optimisation (whether combined with active
optimisation, or passive optimisation first) is more efficient than that using the regular

structure. There is little distinction between the passive-then-active or the combined
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optimisation strategies regarding the control effort, but the latter is seen, in general to achieve
about 5dB more attenuation. Making the same comparison for the structures with two
actuators, there is more variation within the values of attenuation achieved with each strategy.
Greater values of attenuation are achieved with the combined optimisation using the standard
chromosome, than those using the extended chromosome and lastly the passive-then-active

optimisation strategy.

The total attenuation achieved by each optimised structure is comprised of two components, the
attenuation due to the geometric redesign and that due to the application of AVC. In
Figures 6.34 and 6.35 these two components are shown separately. The first figure shows the
geometric attenuation component. Obviously the passive-then-active structures have the same
values of attenuation as geometrically they are the same structures. The geometric attenuation
achieved by the other structures is smaller and ranges from about 10dB to 30dB. In general it is
seen that the structures using two actuators appear to have a smaller level of geometric
improvement than for those using one actuator. (The exception is that for using two actuators
optimised using the extended chromosome whose values of attenuation almost cover the full
20dB range.) Figure 6.35 shows the contribution of the AVC system for each structure
produced under all the optimisation strategies. The AVC contribution from the structures
produced using the passive-then-active optimisation strategy achieved similar levels of
attenuation per actuator as for the regular structure with optimal actuator positions (but with
less total control effort as discussed above). For the structures produced under the combined
optimisation strategies the level of attenuation achieved using one actuator is about 15dB more
than with that using one optimally placed actuator on the regular structure. When the same
comparison is made for the combined optimisation using two actuators it is seen that the levels
of AVC attenuation are about 20dB more those attained on the regular structure with two
optimally placed actuators. In both cases the combined optimisation strategy using the standard
chromosome yields better levels of AVC attenuation, despite the fact that the actuator
representation had a smaller significance in the chromosome. Finally, it is noted that some of
the AVC attenuation contributions are greater than 60dB, however for an AVC system with a

realistic noise floor levels of attenuation are unlikely to be realised.

6.5.2 POWER WITHIN OPTIMISED STRUCTURES AND THE ROLES OF
GEOMETRIC REDESIGN AND ACTIVE VIBRATION CONTROL

An analysis of the power within the optimised structures to understand the mechanisms by
which the reductions in the power dissipated in Beam 40 are achieved, has been reported for
those resulting from the main optimisation strategies. There are three main power components

to consider; the input power to the structure, the redistribution of the power dissipation within
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the structure and the power contributions of the AVC actuators (if applicable). The power
contributions of the actuators is distinct from the total control effort which represents the

relative electrical power requirements of a practical system.

The structures achieved by solely optimising the geometry of the structure were seen (in
Table 4.6) to achieve a reduction in power dissipation in Beam 40 by both the reduction of the
input power and the redistribution of the power within the structure. The latter is the greater
effect, and in terms of reductions in decibels accounts, in general, for two-thirds of the
reduction. Using the unoptimised structure with an AVC system using optimally placed
actuator positions, only slight variations in the input power were seen, as shown in Tables 5.2,
5.4 and 5.6. In some cases the power mnput to the structure is increased. Thus the reductions in
the power dissipation in Beam 40 are wholly achieved by the redistribution of the power
dissipation within the structure due to the AVC. In almost all of the cases for optimal actuator
positions using one, two and three actuators, at least one of the actuators acts as an energy
source to the structure. The magnitude of the power contributions from each is small compared
to the power input. When using more than one actuator it is seen that the AVC system adopts a
strategy of controlling the power distribution beyond the actuator nearest Beam 40, than rather

just controlling the power dissipation in Beam 40 itself.

Power analyses were also performed for structures resulting from optimisation strategies
involving both geometric and actuator position optimisation. First the passive-then-active
structures, which use optimal actuator positions on previously optimised geometries (those
resulting from the passive optimisation). It is seen that the AVC éystem does not affect the
power input to the structure beyond those reductions achieved by the geometry optimisation.
The AVC system provides further reduction to the redistribution of the structural power. It
achieves similar improvements per actuator as for the active-only optimisation, however the
addition of the geometric improvement results in better values of total attenuation. With
structures resulting from the simultaneous optimisation of both geometry and actuator
positions, similar results were obtained. Again, the AVC system does not play a role in
reducing the power input to the structure, but provides further reduction to the structural power
redistribution. In this case the reductions in input power are smaller than those using the
passively optimised structures. However, the values of attenuation achieved per actuator are
greater than those for the active-only or passive-then-active optimisation strategies. Overall, in
terms of total attenuation, the combined optimisation structures achieve values of attenuation
which are comparable to those with the other two strategies using AVC above, but when using

one additional actuator. In all cases for optimisation strategies using geometric optimisation the
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control effort required by the AVC system is significantly lower, making the application of

AVC more efficient.

Analyses of the power distribution within the optimised structures revealed that for the active-
only optimisation strategy using two actuators the role of the AVC appears to be to reduce the
power transmission beyond the final actuator, Figure 5.11, whereas using one actuator the role
of the AVC appears to rely on the reflection of the vibration from the structure end, see
Figure 5.9. Reductions in power transmission are also apparent to a lesser extent for the
passive-then-active and combined optimisation strategies. This strategy is thought to make the
reductions in Beam 40 less sensitive to any impedance changes at the end of the structure which
may result from masses being added to Beam 40, for example. Thus the application of AVC is
seen to be more efficient, and in some cases more successful, when some form of geometric
optimisation has been performed on the structure. This reduces the power input to the structure,
which is not achieved using AVC, and also provides a further redistribution of structural power
dissipation. This is readily apparent from comparing the power analyses in Figure 4.20 for the
passive optimisation, Figures 5.6 to 5.8 for the active-only optimisation and Figures 6.12 to
6.15 for methods using both passive and active optimisation. Noting the reduced scale where
applicable, and that this also applies to the individual actuator contributions. This is also
reflected in the total control effort required for structures resulting from each optimisation

strategy, as discussed earlier in this section.

Finally, a summary of the average values of attenuation achieved by the passive-only, active-
only, passive-then-active and combined optimisation (using standard chromosome) strategies is
given in Table 6.13, where two actuators are used for AVC in each case, where applicable.
Also given are the average values of attenuation resulting from the geometric redesign and from
AVC. This emphasises that the application of AVC is more effective using combined
optimisation. The average AVC attenuation achieved resulting from this strategy is
approximately double the level achieved for the active-only and passive-then-active. The
combined optimisation strategy has resulted in the highest average overall vibration reduction,
despite that the geometric redesign has only responsible for half of the attenuation achieved

with the passive-only and passive-then-active strategies.

6.5.3 PERTURBED PERFORMANCE AND ROBUSTNESS

The 95% probability limits for the performance and the total control effort are shown in
Figures 6.35 to 6.38 as vectors emanating from the symbols representing the nominal values.
The westward extent thus indicates the 95% performance probability limit, and indirectly

provides an indication of the robustness. Similarly the northward extent represents the total
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control effort 95% probability limit. The comparison is made using four figures one for each
optimisation strategy, so that the vectors for each can be clearly seen. In general it is seen that
the robustness of many of the structures are very much comparable, although a few of the two-
actuator structures achieved by using the combined optimisation with the standard chromosome
exhibit less robustness. In general the robustness of the passively optimised structures is the

best, followed by those achieved using the active-only optimisation.

All the optimisation processes detailed in this chapter and Chapters 4 and 5, have not
considered robustness within the optimisation process. Hence the robustness of the performance
of the resulting design solutions is a consequence of the optimisation process. In the next
chapter, optimisation incorporating a measure of robustness is performed. Thus the

optimisation aim is to provide optimal and robust design solutions.

6.6 CONCLUSIONS

6.6.1 COMBINED PASSIVE AND ACTIVE OPTIMISATION METHODS

The optimisation of the average vibration transmission of a two-dimensional lightweight
regular structure was performed over a frequency band of 150Hz to 250Hz. This is measured
by evaluating the average energy level in the end beam, Beam 40. Here both passive and active
optimisation strategies were used, whereas in the two previous chapters each of these have been
used alone. Thus both the structure geometry and the optimal positions of actuators for an
Active Vibration Control (AVC) were the subject of optimisation. The first strategy, passive-
then-active optimisation, used structure geometries that were the result of passive-only
optimisations from Chapter 4. Optimal actuator positions were found for these structures for
one to three actuators, although the use of three actuators was not pursued as the attenuation
from the AVC system would not be achievable in a practical system. The second strategy,
combined optimisation, optimised the structure geometry and optimal actuator positions (for
one and two actuators) simultaneously. Different types of genetic algorithm chromosome were
used giving different levels of significance between the geometry and the actuator positions.
However it was found that the chromosome which had an extended actuator position
representation produced solutions with slightly worse performance and required more control
effort. This suggests that it is better to adapt the geometry around actuator positions than vice
versa. The passive-then-active optimisation strategy was slightly more successful for one
actuator, although larger control system efforts were required, and for two actuators the

combined optimisation was more successful, but again, larger control effort were required. A
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comparison of the performance compared with other optimisation strategies used is discussed

below.

Also briefly reported was the use of the combined optimisation with a chromosome which was
(unintentionally) biased towards single actuator positions occurring in the middle of the
structure. Despite this, the resulting structures had comparable performances to those above,

with low control effort. Hence the actuator position bias has not been detrimental to the success

of the optimisation.

A power analysis was performed to investigate the mechanisms by which the reductions in
vibration transmission of the structures have been achieved. This is distinct from the total
control effort, which represents a practical system requirement. It was found that the geometric
optimisation reduces the power input to the structure, and also redistributes the power
dissipation within the structure so as to reduce the vibration in Beam 40. The AVC has little
effect on the input power to the structure, but it provides additional power redistribution within
the structure to further decrease the power dissipation in Beam 40. In most of the cases the net
power supplied by the actuators is much less than the input power to the structure, and in most
cases at least one actuator acts as an energy source. Thus the role of the AVC is not to simply
absorb power. Studies of the distribution of power within the structure show that for one
actuator the aim appears to be to reduce the power dissipation in Beam 40. However, with two

actuators the AVC seems to act to reduce the power transmission along the structure.

Perturbation analyses were performed for structures resulting from the passive-then-active
optimisation and the combined optimisation (with both standard and extended chromosome)
strategies, to see how the performance and the total control effort change in response to small
geometric changes such as might occur through manufacturing tolerances, for example. Some
structures appear to be more robust than others in terms of either, or both, performance
robustness and control effort robustness. Using the average 95% probability limits, for which
the performance or control effort is better for 95% of all perturbations applied, for each case,
the average practical performance and practical control effort can be found. For one actuator
there is little difference in performance between the three optimisation strategies, also the
practical control effort for the passive-then-active is twice as large as for both the combined
optimisation strategies. For two actuators the average practical performances are similar, but
the combined optimisation strategy with the standard chromosome has the best average

practical performance, but the average practical total control effort is eight times greater than

for the strategy with the lowest.
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Another consideration of the robust performance of the optimised structures might be due to
AVC control systems failure. Because both optimisation strategies incorporate geometric
optimisation, both have obvious advantages over the active-only optimisation strategy. The
passive-then-active strategy has produced the better reductions in vibration transmission due to

the geometric redesign, and thus is more robust to AVC system failure.

6.6.2 COMPARISON OF OPTIMISATION STRATEGIES

At this stage in the thesis four different optimisation strategies have been presented in this and
the two preceding chapters. A comparison of the results obtained from all the strategies was
presented in Section 6.5. In terms of nominal performance, the use of two optimally placed
actuators on the regular, unoptimised structure is approximately equivalent to the values of
attenuation achieved by the passive optimisation. When using optimally placed actuator
positions on geometrically optimised structures the use of one actuator achieves similar levels
of attenuation to that using three actuators on the regular, unoptimised structure. Also the total
control effort required is much less, by about two orders of magnitude. In general the structures
resulting from the combined optimisation produce better performance per actuator, than for the
passive-then-active optimisation, especially so for two actuators (although similar levels of

control effort are required as for one actuator).

The values of attenuation achieved were split into their two component parts; the attenuation
achieved from the geometric optimisation, and that achieved by the AVC system. The former is
found to be best with the structures resulting from the passive optimisation, where the structure
geometry was the sole optimisation aim. These structure geometries are also used for the
passive-then-active optimisation. For the combined optimisation it is found that for two
actuators the geometric improvement was smaller than for one actuator. For the passive-then-
active optimisation it is found that the levels of attenuation achieved per actuator by the AVC
are similar to those achieved for active-only optimisation. However, for the combined
optimisation it is seen that the attenuation achieved per actuator is comparable to that for the

active-only optimisation when using one additional actuator.

All the optimised structures that are geometrically optimised have significant reductions in the
power input to the structure and also show a favourable redistribution of power dissipation
within the structure. The application of AVC does not significantly affect the power input, but
does have the effect of providing an additional power redistribution within the structure. The
net power input from the actuators is, in most cases, much smaller than the input power, and in
most cases at least one of the actuators acts as an energy source. Thus the contribution of AVC

is more than simply absorbing structural power. Studying the power distribution within the
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optimised structures it is seen that the interaction between actuators, for actuator
configurations with more than one actuator, act to reduce the power transmitted along the
structure, and not just mainly the power in Beam 40. It is thought this makes the application of

AVC much more robust to changing the mass of Beam 40.

Finally, considering the robustness of the performance and control effort of all the resulting
structures, little distinguishes one optimisation strategy from another in this respect. Although
within a set of structures achieved with each strategy there are structures that are more robust
on grounds of either, or both, performance or control effort. Thus the robustness of the
solutions is important is selecting practical optimal solutions. As before, the 95% probability

limits enable the practical performance achieved or control effort required to be estimated.
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Overall 95% 95%

Geometric AVC nominal | probability { Control probability
Rank | Structure | attenuation | attenuation | attenuation limit effort limit

(dB) (dB) (dB) attenuation N?) control

(dB) effort (N%)
1 PTAL B 33.3 12.7 46.0 43.0 291 467
2 PTALI_G 32.0 12.6 44.6 41.6 12.8 239
3 PTAL_J 32.3 12.2 44.5 41.5 22.8 30.3
4 PTA1_D 31.6 12.6 44.2 42.6 52.5 84.5
5 PTAI_H 33.9 10.1 44.0 39.6 1.52 2.46
6 PTA1_A 323 11.5 43.8 39.1 12.8 31.9
7 PTAL_C 32.8 10.3 43.1 38.2 345 956
8 PTAIL_I 31.0 11.9 42.9 39.3 770 1850
9 PTAI1_F 34.1 8.3 42.4 373 14.7 36.9
10 PTALE 34.5 5.9 40.4 38.4 24.0 46.1
average 32.6 11.2 432! 39.7 155 353

TABLE 6.1. Results summary for single-actuator passive-then-active optimised structures, ranked in

order of performance.

Primary force input power Redistribution of power Net actuator | Net power
reduction, Gppyr (dB) within passive beams of | contribution | dissipated
Structure structure, O gepst (AB) Oxcr (dB) | in actuators
w/o AVC AVC w/o AVC AVC (x107 W)
PTAI_B 10.7 10.9 22.7 35.0 0.08 5.68
PTA1 G 11.6 11.8 20.4 32.8 0.003 0.169
PTA1 J 9.9 9.8 22.4 34.8 -0.02 -1.63
PTA1 D 10.0 9.6 21.6 34.1 0.4 35.8
PTA1_H 11.0 11.1 22.9 29.1 38 168
PTAI_A 11.6 11.6 20.7 32.1 0.006 0.350
PTA1_C 9.0 9.0 23.8 34.1 -0.02 -1.86
PTAL_I 10.1 10.0 20.8 32.6 0.4 28.5
PTA1_F 11.1 11.1 23.0 31.3 -0.03 -2.17
PTAL_E 11.0 11.0 234 29.4 -0.01 -0.966
average 10.7 10.7 22.3 32.9 - -

TABLE 6.2. Power components for single-actuator passive-then-active optimised structures.

" See footnote on page 191.
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Overall 95% 95%
Geometric AVC nominal | probability | Control probability
Rank | Structure | attenuation | attenuation | attenuation limit effort limit
(dB) (dB) (dB) attenuation (N?) control
(dB) effort (N%)
1 PTA2_C 32.8 35.0 67.8 64.4 223 387
2 PTA2_A 32.3 34.7 67.0 60.2 108 387
3 PTA2_F 34.1 32.2 66.3 62.0 262 552
4 PTA2_B 333 324 65.7 62.7 25.6 329
5 PTA2_G 32.0 335 65.5 59.9 83.5 310
6 PTA2_D 31.6 31.8 63.4 58.0 79.6 119
7 PTA2_E 34.5 28.8 63.3 60.1 88.1 178
8 PTA2_H 33.9 29.0 62.9 583 44.5 63.7
9 PTA2_1 31.0 29.7 60.7 54.6 1060 1920
10 PTA2_J 32.3 28.3 60.6 56.7 37.3 106
average 32.6 32.2 63.6' 58.8 201 406

TABLE 6.3. Results summary for two-actuator passive-then-active optimised structures, ranked in

order of performance.

Primary force input power Redistribution of power Net actuator | Net power
reduction, Ogpyr (dB) within passive beams of | contribution | dissipated

Structure structure, O repis7 (AB) Oacr (dB) | in actuators

w/o AVC AVC w/o AVC AVC (x107 W)
PTA2_C 9.0 9.0 23.8 55.5 3.2 2.41
PTA2_A 11.6 11.4 20.7 57.7 -2.0 -1.59
PTA2_F 11.1 10.5 23.0 55.5 0.4 0.268
PTA2_B 10.7 11.2 22.7 51.3 32 1.44
PTA2_G 11.6 11.3 20.4 52.1 2.1 1.05
PTA2_D 10.0 10.0 21.6 53.4 -0.02 -0.0196
PTA2_E 11.0 11.0 234 52.4 -0.2 -0.106
PTA2_H 11.0 11.1 22.9 51.7 0.05 0.0348
PTA2 I 10.1 9.2 20.8 50.6 0.9 0.807
PTA2 ] 9.9 9.8 22.4 533 -2.5 -2.92
average 10.7 10.5 223 539 - -

TABLE 6.4. Power components for two-actuator passive-then-active optimised structures.

! See footnote on page 191.
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Overall 95% 95%

Geometric AVC nominal probability Control probability
Rank | Structure | attenuation | attenuation | attenuation limit effort limit

(dB) (dB) (dB) attenuation (N?) control

(dB) effort (N?)
1 COl1_1 23.0 28.0 51.0 44.2 306 572
2 CO1_E 253 253 50.6 48.1 144 340
3 col1_¢C 28.4 22.2 50.6 473 9.18 15.0
4 CO1_B 20.4 29.0 49.4 47.0 344 39.7
5 COl1_A 19.7 29.6 49.3 45.0 152 378
6 CO1.J 254 23.1 48.5 41.0 56.7 77.4
7 CO1_D 19.6 28.5 48.1 45.0 26.0 70.6
8 CO1_H 17.7 29.9 47.6 45.8 54.3 65.8
9 COl1_F 27.0 20.6 47.6 44.8 65.8 83.1
10 COLl_G 17.5 28.9 46.4 433 50.6 58.2
average 21.0 27.5 48.7' 44.7 89.9 170

TABLE 6.5. Results summary for single-actuator combined optimised structures using the standard

chromosome, ranked in order of performance.

Primary force input power Redistribution of power Net actuator | Net power
reduction, Opnpyr (dB) within passive beams of | contribution | dissipated
Structure structure, O repigt (AB) Oacr (dB) | in actuators
w/o AVC AVC w/o AVC AVC (x107 W)
CO1_1 10.0 9.3 13.0 42.1 -0.4 -44.3
COl1_E 9.2 8.9 16.1 40.8 1.0 93.1
COo1_C 9.4 9.4 19.0 41.1 0.02 1.77
CO1_B 9.7 10.0 10.7 39.3 0.2 14.4
CO1_A 10.8 10.9 8.9 38.5 -0.07 -4.75
COo1_J 9.0 9.2 16.3 39.4 -0.05 -4.93
CO1.D 10.8 10.9 8.8 37.2 0.01 0.646
CO1_H 9.4 9.7 8.3 37.9 -0.02 -1.93
COl1_F 9.9 10.1 17.1 37.4 -0.002 -0.138
CO1 G 8.5 8.5 9.0 37.9 -0.006 -0.762
average 9.7 9.8 14.4 39.5 - -

TABLE 6.6. Power components for single-actuator combined optimised structures using standard

chromosome.

! See footnote on page 191.
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Overall 95% 95%
Geometric AVC nominal | probability | Control probability
Rank | Structure | attenuation | attenuation | attenuation limit effort limit
(dB) (dB) (dB) attenuation (N?) control
(dB) effort (N
1 co2_G 22.8 61.2 84.0 80.5 149 210
2 C0Oo2_D 19.8 62.4 82.2 73.2 286 380
3 CO2_E 17.8 60.2 78.0 75.4 271 333
4 C0O2_B 12.4 64.9 77.3 73.8 460 590
5 CO2_H 19.0 57.6 76.6 72.4 57.4 91.0
6 CO2_A 15.3 60.0 75.3 71.9 1310 2050
7 Cco2_1 15.6 58.1 73.7 67.8 255 454
8 co2_C 16.0 57.6 73.6 68.5 1770 3320
9 o2} 17.0 56.5 73.5 71.6 1410 1860
10 CO2_F 19.9 52.3 72.2 68.6 133 184
average 16.7 60.3 78.4! 71.2 610 947

TABLE 6.7. Results summary for two-actuator combined optimised structures using the standard

chromosome, ranked in order of performance.

Primary force input power Redistribution of power Net actuator | Net power
reduction, Oynpyr (dB) within passive beams of | contribution | dissipated
Structure structure, O repist (dB) Oacr (dB) | 1n actuators
w/o AVC AVC w/o AVC AVC (x107 W)
COo2_G 11.0 11.8 11.8 74.2 -2.0 -1.37
CO2_D 8.9 8.9 10.9 75.3 2.1 -2.92
CO2_E 10.1 10.8 7.7 68.9 -1.8 -1.56
CO2_B 10.2 12.0 2.2 67.0 -1.7 -1.10
CO2_H 9.7 10.1 9.2 66.9 -0.5 -0.405
CO2_A 9.7 9.7 5.7 65.0 0.5 0.460
Cc0o2_1 10.2 10.0 5.4 65.9 2.2 -2.46
C0O2_C 8.2 7.8 7.9 67.9 2.2 -3.88
C02_J 11.2 10.6 5.8 65.0 -2.1 -1.97
CO2_F 9.7 10.4 10.2 63.7 -1.9 -1.85
average 10.0 10.4 8.5 69.9 - -

TABLE 6.8. Power components for two-actuator combined optimised structures using standard

chromosome.

' See footnote on page 191.
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Overall 95% 95%

Geometric AVC nominal | probability | Control probability
Rank | Structure | attenuation | attenuation | attenuation limit effort limit

(dB) (dB) (dB) attenuation N control

(dB) effort (N9)
1 CEX1_ B 31.5 18.8 50.3 46.8 6.83 10.3
2 CEX1_G 23.5 259 49.4 453 21.2 47.0
3 CEX1._1 25.8 23.2 49.0 46.8 532 70.5
4 CEX1_E 24.2 234 47.6 447 17.2 49.1
5 CEX1.J 26.2 20.9 47.1 43.0 140 375
6 CEXI1_A 25.3 21.8 47.1 44.8 21.3 36.5
7 CEXI1_F 22.4 24.4 46.8 435 10.9 35.4
8 CEX1_C 20.0 26.8 46.8 44.2 625 988
9 CEX1_H 22.2 24.2 46.4 43.6 137 169
10 CEX1_D 23.1 22.5 45.6 43.4 64.2 81.6
average 23.6 23.7 47.4! 44.4 110 186

TABLE 6.9. Results summary for single-actuator combined optimised structures using the extended

chromosome, ranked in order of performance.

Overall 95% 95%
Geometric AVC nominal | probability Control probability
Rank | Structure | attenuation | attenuation | attenuation limit effort limit
(dB) (dB) (dB) attenuation (N?) control
(dB) effort (N%)
1 CEX2_B 18.9 54.4 73.3 69.8 1510 1650
2 CEX2_1 22.7 48.7 71.4 66.9 29.8 67.1
3 CEX2_D 10.6 59.9 70.5 65.0 6270 8820
4 CEX2_A 19.9 50.3 70.2 66.5 1610 2030
5 CEX2_H 17.2 53.0 70.2 63.4 791 5400
6 CEX2_C 26.7 42.5 69.2 63.8 27.8 35.7
7 CEX2_G 25.3 43.7 69.0 63.2 48.5 83.2
8 CEX2_F 17.9 51.1 69.0 67.3 1280 2450
9 CEX2_E 21.7 46.7 68.4 60.3 115 182
10 CEX2_J 16.1 51.4 67.5 62.0 43.5 82.8
average 17.3 53.0 69.6' 64.1 1173 2080

TABLE 6.10. Results summary for two-actuator combined optimised structures using the extended

chromosome, ranked in order of performance.

! See footnote on page 191.
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95% 95%
Geometric AVC Nominal | probability Control probability
Rank | Structure | attenuation | attenuation | attenuation limit effort limit
(dB) (dB) (dB) attenuation (N?) control
(dB) effort (N%)
1 E B 19.2 31.8 51.0 (not 35.7 (not
2 E_F 24 4 24.0 48.4 evaluated) 14.5 evaluated)
3 E G 21.0 26.6 47.6 394
4 E_H 18.3 28.9 47.2 55.2
5 EJ 23.9 23.1 47.0 87.2
6 EC 28.6 17.6 46.2 31.3
7 E D 20.3 25.8 46.1 97.9
8 E_I 20.2 253 45.5 13.4
9 E E 22.1 233 454 12.7
10 E_A 25.0 19.4 44 4 65.9
average 21.4 26.3 46.6" 453

TABLE 6.11. Results summary for single-actuator combined optimised structures using the extended

chromosome with bias for mid-structure positions, ranked in order of performance.

Combined extended | Combined extended
Passive-then-active Combined chromosome chromosome
Rank (biased)

PTA1_ | PTA2_ CO1_ Cc0o2_ CEX1_ | CEX2_ El_

1 12 2,11 6 1,9 13 L5 19

2 18 1,4 4 1,4 3 10, 11 21

3 9 4,5 11 1,4 15 4,5 21

4 4 2,10 7 1,5 21 L5 14

5 2 2,13 8 1,2 12 2,6 12

6 24 11, 14 4 4,5 19 8,12 15

7 24 8, 14 7 L5 14 1,10 17

8 6 5,17 14 15 12 2,4 14

9 18 6,12 9 L5 6 11, 14 22

10 21 1, 10 10 1,4 11 2,3 13

TABLE 6.12. Summary of actuator positions for all the optimisation strategies considered in this

chapter.

! See footnote on page 191.
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Optimisation Average attenuation (dB)
strategy Geometric AVC Total
Passive-only 32.6 0 32,6
Active-only 0 27.7 27.2
Passive-then-active 32.6 32.2 63.3'
Combined (CO) 16.7 60.3 75.4!

TABLE 6.13. Summary of the average attenuation achieved by the geometric redesign and

application of AVC with two actuators for the main optimisation strategies considered.

! As a consequence of the logarithmic scaling, the addition of the two average components of the
nominal total attenuation does not result in the average total attenuation, as with the individual cases.
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Figure 6.1: The ten best performance ranked single-actuator positions for the previously
geometrically optimised structures, for the frequency band 150Hz to 250Hz.
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Figure 6.2: The ten best performance ranked two-actuator positions for the previously
geometrically optimised structures, for the frequency band 150Hz to 250Hz.
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Figure 6.3: The ten best performance ranked three-actuator positions for the previously
geometrically optimised structures, for the frequency band 150Hz to 250Hz.
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Figure 6.6: The performance of the genetic algorithm optimisation, with respect to actuator
positions, resulting in structures CO1.I(a) and CO2_G(b), shown in Figures 6.4 and 6.5. The
source position index is given for each evaluation (top left), and the corresponding actuator
positions (top right), the best source position index and corresponding actuator position after
each generation are also shown (bottom left and right).

196



o2
8 1672 E T - 410

response 1
&0 Tesponse J J1075

1676

y co-ordinate(m}

i
|
AN i
% " I PR P S

% co-ordinate(m}

160 150 200 250 300 350
Freguency (Hz}

Combined Optimised Structure CEX1_B 150-250Hz Ave. Energy Level (opt. w/o AVC) 0.2359E-09
1676¢ 103

3

=
d

Objective Function (J}
Control Effort (N*2)

100 k3 ﬂ
-1

1072

=
.

16713

10-14F

Z 4 [ 8 10 12 14 100 150 200 256 360 350
Generation number Frequency {Hz)

Optimisation convergence. Final {opt.) value 0.3090E-11 Total Control Effort 6.833

Figure 6.7: Structure with best optimised average performance over 150Hz to 250Hz using a
single actuator (O), CEX1_B. Both structure geometry and actuator position were optimised
simultaneously using the extended chromosome.
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Figure 6.9: The performance of the genetic algorithm optimisation, with respect to actuator
positions, resulting in structures CEX1_B(a) and CEX2_B(b), shown in Figures 6.7 and 6.8.
The source position index is given for each evaluation (top left), and the corresponding actuator
positions (top right), the best source position index and corresponding actuator position after
each generation are also shown (bottom left and right).
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Figure 6.11: The performance of the genetic algorithm optimisation resulting in structure E1.B,
shown in Figure 6.10. Figure layout is as for Figure 6.9.
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Figure 6.12: Power components in optimised structures PTAI_A to PTA1_J. Negative values
of dissipation indicate power supplied to the structure. Light grey: Power input to structure,
Dark grey: Power dissipated in Beams 1 to 39 without actuators, Black: Power dissipated in
Beam 40, White: Power contributions from actuator. (N.B. Power dissipated in Beam 40 is only
distinguishable for unoptimised structure without AVC. For optimised structures the range is

1.67 x 10710 t0 6.11 x 10719 W)
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Figure 6.13: Power components in optimised structures PTA2_A to PTA2.J. Key as for
Figure 6.12. The values of actuator power for each structure is shown from left to right for
increasing beam number position. (N.B. Power dissipated in Beam 40 is only distinguishable for
unoptimised structure. For optimised structures the range is 1.11 x 1072 to 5.78 x 1072 W.)
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Figure 6.14: Power components in optimised structures CO1_A to CO1_.J. Key as for Figure 6.12.
(N.B. Power dissipated in Beam 40 is only distinguishable for unoptimised structure. For
optimised structures the range is 5.35 x 10711 to 1.55 x 10719 W.)
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Figure 6.15: Power components in optimised structures CO2_A to CO2_J. Key as for Figure 6.12.
The values of actuator power for each structure is shown from left to right for increasing beam
number position. (N.B. Power dissipated in Beam 40 is only distinguishable for unoptimised
structure. For optimised structures the range is 2.64 x 10714 to 4.01 x 10712 W.)
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Figure 6.16: Power dissipated in each beam of structure for optimised structure PTA1_B. Vertical
gridline represents vertical beam at end of each bay. - - - no AVC, — with AVC. Actuator

position is denoted L.
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Figure 6.17: Power dissipated in each beam of structure for optimised structure PTA2_C. Vertical
gridline represents vertical beam at end of each bay. - - - no AVC, — with AVC. O denotes
position of actuator dissipating power, A denotes position of actuator sourcing power (with
magnitude shown in the same sense as for dissipation).
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Power dissipated in beam (dB re input power of unoptimised structure)
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Figure 6.18: Power dissipated in each beam of structure for the combined optimised structure
CO11. Vertical gridline represents vertical beam at end of each bay. - - - no AVC, — with
AVC. Actuator position is denoted A and is sourcing power to the structure. It is shown with
correct magnitude but in the same sense as for dissipation.
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Figure 6.19: Power dissipated in each beam of structure for the combined optimised structure
CO2_G. Vertical gridline represents vertical beam at end of each bay. - - - no AVC, — with
AVC. O denotes position of actuator dissipating power, A denotes position of actuator sourcing
power (with magnitude shown in the same sense as for dissipation).
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Figure 6.20: Statistical distribution and 95% probability limits (bold lines) for the overall
performance of the passive-then-active optimised structures using one actuator, for frequency
band 150Hz to 250Hz. Values of nominal performance are shown by thin lines.
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Figure 6.21: Statistical distribution and 95% probability limits (bold lines) for the AVC total
control effort required by the passive-then-active optimised structures using one actuator, for
frequency band 150Hz to 250Hz. Values of nominal control effort are shown by thin lines.
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Figure 6.22: Statistical distribution and 95% probability limits (bold lines) for the overall
performance of the passive-then-active optimised structures using two actuators, for frequency
band 150Hz to 250Hz. Values of nominal performance are shown by thin lines.
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Figure 6.23: Statistical distribution and 95% probability limits (bold lines) for the AVC total
control effort required by the passive-then-active optimised structures using two actuators, for
frequency band 150Hz to 250Hz. Values of nominal control effort are shown by thin lines.
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Figure 6.24: Statistical distribution and 95% probability limits (bold lines) for the overall
performance of the combined optimised structures using one actuator, for frequency band 150Hz
to 2560Hz. Values of nominal performance are shown by thin lines.
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Figure 6.25: Statistical distribution and 95% probability limits (bold lines) for the AVC total
control effort required by the combined optimised structures using one actuator, for frequency
band 150Hz to 250Hz. Values of nominal control effort are shown by thin lines.
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Figure 6.26: Statistical distribution and 95% probability limits (bold lines) for the overall
performance of the combined optimised structures using two actuators, for frequency band 150Hz
to 250Hz. Values of nominal performance are shown by thin lines.
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Figure 6.27: Statistical distribution and 95% probability limits (bold lines) for the AVC total
control effort required by the combined optimised structures using two actuators, for frequency
band 150Hz to 250Hz. Values of nominal control effort are shown by thin lines.
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Figure 6.28: Statistical distribution and 95% probability limits (bold lines) for the overall
performance of the combined optimised structures using an extended chromosome for one
actuator, for frequency band 150Hz to 250Hz. Values of nominal performance are shown by
thin lines.
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Figure 6.29: Statistical distribution and 95% probability limits (bold lines) for the AVC total
control effort required by the combined optimised structures using an extended chromosome for
one actuator, for frequency band 150Hz to 250Hz. Values of nominal control effort are shown
by thin lines.
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optimised structures considered in Chapters 4, 5 and 6. The graph key from Figure 6.32 applies.
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Figure 6.38: The robustness of the performance of the geometrically optimised structures
and those using combined optimisation of the structure geometry and actuator positions
simultaneously. The graph key to Figure 6.32 applies.
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CHAPTER 7

Optimisation for Structures with Robust
Optimal Performance

7.0 INTRODUCTION

In the preceding three chapters structures were optimised, with respect to wvibration
transmission, using different combinations of optimisation strategies where performance was
evaluated solely on nominal performance. For all of the structures produced, the robustness
was assessed to see how sensitive the performance (the amount of vibration transmission) of
each structure was to the application of small geometric perturbations to the structures. The
structures that are less sensitive (more robust) can then be selected (if robustness is of primary
importance). Alternatively, a 95% probability limit was developed which predicts the probable
worst performance likely to occur in the face of such small geometric perturbations with the

uniform probability distribution used.

For these optimised structures the robustness of the performance is merely an ‘accidental’
consequence of the optimisation. The objective function used in the optimisation represented the
nominal performance and contained no representation of the sensitivity of the performance to
the optimisation variables. Thus the range of values of robustness given by the chosen
structures is fixed and the structure whose performance is best in respect of robustness must be
selected. A remaining question is whether it is possible to improve the 95% probability limits or
the robustness and whether this would compromise the absolute value of performance.
Recalling the optimised structures presented using classical techniques in Chapter 4, the
perturbed performance was found to deviate greatly from the nominal performance. It was
discovered, however, that the optimised structures found using genetic algorithm optimisation
resulted in more robust designs than those found using the gradient search techniques. It may
be possible to improve the robustness further by incorporating a measure of robustness or
perturbed performance into the objective function and thus obtain a strategy to deliberately

design for robust optimal structures.

This chapter describes a preliminary attempt to design for structures that have optimal nominal
performance and that are, in addition, robust. Due to limitations on the time available the only

optimisation case studied is that for passive optimisation (using solely geometric redesign) for
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the average performance over a narrow frequency band. Different measures of robustness or

perturbed performance are employed, with differing levels of additional computational expense.

This chapter is structured as follows: Section 7.1 details the perturbed performance and
robustness measures used. Section 7.2 evaluates the success of using the reduced-expense
perturbed performance estimates against the existing measure. Section 7.3 presents the results
achieved in using the robustness and perturbed performance measures as the objective function
to optimise for robust designs. The results are discussed in Section 7.4 and conclusions drawn

in Section 7.5.

7.1 MEASURES OF PERTURBED PERFORMANCE AND
ROBUSTNESS

In this chapter the distinction is made between robustness and perturbed performance. In
preceding chapters the terms have been used interchangeably. Perturbed performance is
represented by the 95% probability limit given in (3.23). This does not represent the range of
the variability of the performance but the probable worst performance expected for 95% of
perturbations. Robustness is defined as a measure of the variability of the performance of
structure, which is represented by the spread of the histogram used in the robustness analysis
results in Chapters 4, 5 and 6 (see Figures 4.25 and 4.26, for example). This could be
calculated from the 5% and 95% probability limits, but the measure of robustness, r, used here
is that simply defined by the difference between the 95% probability limit and value of the

nominal performance, and is given by,

r={fu-fx,). (7.1)

where f (Xo) is the nominal value of the objective function in an optimal design solution and
f o5 the limit which defined that the perturbed performance of the structure is better for 95% of

applied perturbations. The absolute value operator ensures that » is always positive, as it is

possible that the 95% probability limit could be less than the nominal value.

7.1.1 MEASURES OF PERTURBED PERFORMANCE

The robustness analysis was performed in the preceding three chapters by applying 300
random perturbations with a uniform probability distribution to the structure. The 95%
probability limit was used as a measure of the expected worst performance. This was
calculated from the observed probability distribution of the performance. This number of

perturbations was found to be sufficient to estimate the distribution and little improvement on

215



the shape of the performance distribution histograms were found when 1000 perturbations were
used. The 95% probability limit was calculated for the optimised structures N_A to N_J, which
were obtained using passive optimisation over a narrow band of frequencies (175Hz to 195Hz,

in SHz steps), as reported in Chapter 4. These probability limits are denoted here by f; 5, to

be distinguish between probability limits derived by other methods in this chapter. It would be
possible to use this measure of expected performance directly as the objective function in the
optimisation. However, this would require 300 additional frequency-averaged performance
evaluations for each objective function, and the computational expense would increase severely.
To apply this to the broad band passive optimisation presented in Chapter 4 using hardware
platform B (the fastest, detailed in Appendix E) would require 13 months to produce each
optimal design. For the narrow band optimisation case (with a smaller mumber of total
iterations), as considered in this chapter, this would still require over 20 days. However, it
should also be remembered that due to the stochastic nature of the operation of genetic
algorithms it is recommended that 2 number of optimised structures are normally evaluated,

and one of these selected.

Thus more efficient measures of assessing perturbed performance are sought. Three
alternatives are studied here, all based on computer experiments. In these the average
performance of the structure is re-evaluated under a smaller, defined set of perturbations,
which were scaled accordingly. Firstly a measure of perturbed performance was investigated
which is based on the one-at-a-time (OAT) experimental method, detailed in Chapter 3. In this
method 37 experiments are performed. One with the unperturbed structure, and then one for
each of the optimisation variables perturbed in a positive sense (with relation to the global
coordinates, see Figure 2.1), whilst the other coordinates remain unaltered. The other two
perturbed performance measures use the orthogonal arrays L64 and L81, detailed in Chapter 3,
and given explicitly in Appendix C. In the first, the L64 method, each row of the 164 array is
used to define perturbation sets for the optimisation variables (joint coordinates). Each column
is assigned to a joint coordinate, and the array defines perturbations only in the positive sense
with respect to the global coordinates. The mapping between the table values and the joint
perturbation is given in Table 7.1. The variable v defines the size of the perturbations (defined
by the perturbation scaling). Only the first 36 columns of the array are used, although all the
experiments (as defined by each row in the tables) must still be performed to achieve the
properties of the array. In the same way the 181 method uses the L81 orthogonal array. Both
positive and negative sense perturbations are used in this scheme, the mapping between the
table values and the perturbations are given in Table 7.2. It is noted that for both L64 and L81

arrays with the mappings used, that the first experiment (row 1) is an evaluation of the nominal
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structure (with no joint perturbations). Thus the nominal performance evaluation is included in

each scheme.

7.1.2 MEASURES OF ROBUSTNESS

A measure of robustness can also be incorporated into the optimisations performed here by
using the noisy phenotype genetic algorithm described in Chapter 3. In this method uniformly
distributed noise is applied to the phenotype before the objective function evaluation. However,
the noise is only added for the evaluation and the chromosomes in the population are not
permanently altered by this action. Thus, the noise only effects the objective function
evaluation. This algorithm is given the label NP for identification purposes within this chapter.
Weismann et al (1998) showed that the NP method can provide misleading results, and that the
minimum of the expectation of the noisy phenotype evaluation may not coincide with a
minimum in the function. This was demonstrated in Chapter 3. However with reference to
Figure 4.1, in which the shape of a two-dimensional slice of the search space is given, it is seen
to be relatively smooth. Here the search space represents the variation of the average
performance over a broad band of frequencies and it is expected that the search space would
lose its ‘smoothness’ as the bandwidth was decreased to the narrower frequency band
considered here. This was not found to be so, and the appearance of the search space does not
change dramatically when the narrow frequency band is studied, as shown in Figure 7.1, for the
same joint. In Chapter 3 it is seen that only certain types of ‘spiky’ search spaces can yield
misleading results. This simple investigation (of one joint variation, with all others fixed) gives

some confidence that these special conditions are unlikely to occur.

An alternative noisy phenotype genetic algorithm 1s proposed by the author, and has also been
investigated. In this optimisation algorithm both the noisy phenotype and the nominal
phenotype are evaluated. The value of objective function which is the worse of the two (the
maximum) is taken. As with the NP algorithm, the noise only effects the evaluation. This

algorithm is labelled NP2. Thus, formally the objective function value used for the NP2

algorithm is given,

S ()= max(f(x), £(x+A)) (7.2)
where X and A are the optimisation variable and perturbation vectors respectively, as defined in
(3.1) and (3.7).

When implementing a genetic algorithm with an elitist strategy in OPTIONS, the best
chromosome is passed directly into the subsequent population but the objective function value

itself is not transferred. Instead the objective function is re-evaluated in the next generation.
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When using the ordinary genetic algorithm the same objective function value results. However,
with the NP and NP2 methods when the best chromosome is re-evaluated a different noise
vector is added to the phenotype and a different value of objective function is likely to result.
Due to the nature of the operation of the noisy phenotype genetic algorithm, this effect in the re-

evaluation was not thought to affect the implementation of the algorithm.

7.2 EVALUATING DIFFERENT MEASURES OF PERTURBED
PERFORMANCE

First the accuracy of the three 95% probability limits measures OAT, L64 and L81 were
evaluated for the perturbed performance of existing optimised structures, described above.
These limits are denoted fys o7 » fo5 r6s and fos 11 Tespectively. The 95% probability limit,
Jos.300» Was used as the reference measure, allowing the average performance of the other
methods to be evaluated across the ten structures. However, how the perturbation scaling
compares between each method must be first considered. The probability distributions for the
optimisation variables p,,; , P, and p,q are shown in Figure 7.2. The L81 and L64
methods have an equal number of each state for each column of the arrays and so the
probabilities for each state are one-third and one-half respectively. However this is not the case
for the OAT, in which each joint coordinate is only perturbed once in the 37 experiments. As
the uniformly distributed perturbation measure is a continuous function, p,,, the
perturbations may assume any value between the limits, whereas for the other methods the
probability function is only defined at a discrete number of values. It is clear that if each of the
perturbation functions were used with the same value of maximum amplitude that different
‘strengths’ of perturbations would result. For example, comparing p,,, and p,,, both have
the same average perturbation of zero, but every non-zero perturbation for L81 is at the
extremes of the positive and negative values of the maximum perturbations for p,,, . Thus the
variance of the perturbations would be different. Some method of defining the strength of the
perturbations must be used to ensure similar strengths are used between all the perturbed
performance methods. One such measure is the mean absolute deviation, mad. The mad is

defined for continuous distributions as,

mad = J‘lx!Pomd) (x)dx (7.3)

X0

and for discrete distributions as,
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mad = E‘x,ip(mm) (xi ), (7.4)

both for the independent variable x, where Pouta) is the probability distribution function or

probability function for the continuous and discrete cases respectively. <mtd> defines the

method used to achieve the probability limit and is one of the three methods OAT, 164 or L81.
i is the index for the values in the discrete distribution. The values for the average, mad and the
variance are given in Table 7.3 for all the probability distributions considered here. It is seen
that for the mad all the methods except OAT have the same value. Second order statistics may
also be considered to define the variability of the perturbation strengths. These all have
different values as also shown in Table 7.3. To make the variance for all the methods the same,
a correction to v could be made. The correction factor required (to v?) to equalise all the
variances of the probability functions is shown on the bottom row of the table. Thus it would
be possible to apply perturbation functions with the equal variances, although due to the one-
sided nature of the 164 and OAT methods the average perturbations would not be zero
(although the average value of the OAT method is small). However to normalise the variance of
the OAT method would require increasing the size of the maximum amplitude of the
perturbation, v, by a factor of about 3.5. With reference to Chapter 4, in which the effect of the
size of the perturbations on the results of perturbation analysis was studied, it is possible that
this could mean that the OAT method would no longer be operating in the linear region in this
case (where the performance degradation falls off linearly with perturbation amplitude). This is
an area that requires further investigation, especially with respect to how perturbations with
discrete distributions can represent a uniformly distributed one. With the time available to the
author it was decided to use a common value of v for all the perturbation functions so that,
except for the OAT method, all the functions have the same mad. No further consideration was
given to any higher order measure. The amplitude of the OAT function was not increased in
order to have the same mad as this would require an increase in its amplitude by over 15 times,

on grounds of maintaining operation within the linear region, as discussed above.

The values of the three 95% probability estimates when used to evaluate the perturbed
performance of the 10 optimised structures N_A to N_J, first presented in Chapter 4, using a
perturbation scaling of 0.01 are shown in Figure 7.3. Similar findings resulted from using a
scaling factor of 0.005. The nominal value of the performance is shown by the solid circle, and
the value of f; 34, shown by an intersecting line. It is apparent that the value of fy; 4, is the

most accurate estimator when compared with f.,,, and for some structures the agreement is

very good. A more general measure of the success of using the three methods is achieved by
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comparing the average performance of the estimators. This was achieved by again comparing

the limits achieved using f s 5o, Which uses 300 random perturbations as a reference measure.

An index was used to allow comparison, the average normalised deviation, m, which is

defined,

(7.5)

= l 2 ff;s,soo - j;;,@nd}

n f915,3()0

where fys 5, is the reference 95% probability limit for structure i and f 9'.5‘<m,d> is the 95%

probability estimate determined by the method <mtd > , as above. The average here was
performed over 10 structures (n = 10).

The results of the comparison for two values of perturbation scaling factors are presented in
Figure 7.4. The use of the L64 orthogonal array has yielded the least average error in the 95%
probability limit, equivalent to roughly 10% for values of perturbation scaling of both 0.005
and 0.01 (corresponding to maximum perturbations of 5mm and 10mm). This has been
achieved at about one-fifth of the computational expense of evaluating the performance of 300
perturbed structures. This is to be compared with the average errors of about 30% and 60% for
Smm and 10mm perturbation sizes respectively, for the other two methods. It is not clear why

. should provide the best estimate. In particular, why it is better than which uses
95,164 b P y 95,181
positive and negative perturbations, and not just positive perturbation as for f; ., . Finally, it

should be noted that these comparisons have been made with uniformly distributed
perturbations. The results are likely to depend on the nature of the distribution and, for

example, using normal probability distribution may not yield the same results.

7.3 OPTIMISATION FOR ROBUSTNESS AND PERTURBED
PERFORMANCE

The measures of robustness and perturbed performance described above were then used as the
basis to find design solutions that have good nominal and robust performance. Ten optimised
structures were produced using each of the above methods: NP, NP2, OAT, 164 and L.81. The
noise added to the phenotype in the NP and NP2 methods was uniformly distributed, as that
shown in Figure 7.2 a) with v equal to 0.005. For all of the methods the performance of the
structure was optimised over a narrow band of frequencies; 175Hz to 195Hz in five 5Hz steps,

as in Chapter 4. The genetic algorithm used was also the same; 1000 evaluations consisting of
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5 generations each of population size 200. The remaining genetic algorithm parameters are

detailed in Table D.6 in Appendix D.

Using hardware platform B (detailed in Appendix E) the approximate time taken to evaluate
each candidate is given in Table 7.4. The best structures resulting from each optimisation
method are shown in Figures 7.5 to 7.9. Each is figure shows the optimised structure geometry,
the frequency response of the optimised structure against that of the unoptimised structure, and
the history of the objective function after each generation. For the optimisation methods OAT,
L64 and L81 the objective function is the 95% probability limit, the nominal performance is
also shown at the end of each generation as a dotted line. For the NP and NP2 methods the

value of the objective function shown is that for the evaluation of the phenotype without added

noise.

For the ten optimised structures produced using each of the robust and perturbed performance
optimisation methods, the perturbed performance was accurately evaluated using the more

accurate parameter [os,,, . To show the effect on the perturbed performance of structures

produced using such methods, as compared to those using an objective function consisting of

purely nominal performance, the results are compared against the limit [, 5, for the structures

N_A to N_J generated in Chapter 4. The performance of the best structure (evaluated by the
value of the objective function used) for each robust and nominal optimisation method is shown
in Table 7.4. A negative value of change in the value of the performance parameters given in
this table indicates an improvement in performance. The 95% probability limit was calculated
using a perturbation scaling of 0.005 (corresponding to a maximum joint coordinate

perturbation of 5Smm).

The nominal performance has worsened slightly for the L64 and L81 methods. The maximum
improvement in nominal performance was achieved by the OAT method where the best
structure has had its nominal performance improved by almost 6dB. However, as discussed, the
nominal performance is not necessarily practicably realisable, and the 95% probability limit is
a better parameter by which to assess performance. It is seen that this structure also has the
largest increase in 95% probability limit of 5dB, this improvement is followed closely by that
for the NP2 method. For the best structures for each optimisation case, it is seen that both the
values of nominal and perturbed performance are very similar for the L64 and L81 methods,

compared with those produced from the nominal optimisation.

The average performances for structures produced using these methods (evaluated over ten
structures) are given in Table 7.5 and are also shown in Figure 7.10. These have been assessed

using perturbation scalings of 0.005 and 0.01. Values are shown for the nominal performance,
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the 95% probability limit and the robustness (7.1). It is seen that only for the L81 optimisation
method has the nominal performance been worsened. There is little change for the NP method,
but a reduction of almost 2dB for the OAT method. Although as discussed above, the use of
the nominal performance is not recommended as a measure of practical performance. Similar
relative success is found for the average 95% probability limits, for both the 0.005 and 0.01
perturbation size, although in each case improvements are seen over the average performance
of the nominal performance optimised structures. Since this parameter is the best gauge of
expected practical performance, it is seen that the best average improvement in performance
has been achieved with the OAT method and the NP2 method. The change in average
robustness is also shown, and a similar trend exists between the results for the two perturbation

sizes. The best reductions are found for the OAT and then the NP2 methods, for both

perturbation sizes.

It is not obvious how the irregular geometries of these structures lead to a performance that is
more robust, when compared with the best structure optimised on nominal performance (see
Figure 4.17). It is also interesting to note that in Figure 7.9 the frequency region where the
minimum vibration level occurs is not actually within the narrow frequency band using for the

objective function.

The above results suggest that the OAT method has provided the better average results on
grounds of nominal performance and 95% probability limit. However the computational
expense required to achieve the optimised structures can be important and the results are also
shown normalised by the evaluation time in Figure 7.11. This provides a ‘figure of merit’, and
compensates any gain in performance for the expense required. With this consideration, the
optimisation method NP2 is seen to be the most successful method (better than the OAT

method) providing the best improvement per additional computational expense.

7.4 DISCUSSION OF RESULTS

Two optimisation methods designed to produce structures with robust performance have been
investigated. Their optimisation strategies differ. The robustness measures, used in the noisy
phenotype methods, NP and NP2, bias the search away from areas where the performance is
sensitive to small changes in the optimisation variables. The absolute performance is still
minimised, but only in areas of the search space where performance is robust. The perturbed
performance method evaluates the performance due to perturbations, and provides a measure of
the expected performance. The improvement in the perturbed performance may arise by the

optimisation finding regions in the search space that are very optimal, but relatively unrobust,
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or regions that are (less) optimal but more robust. The perturbed performance measure cannot
distinguish between the two. Thus it is possible to produce a structure with a good perturbed
performance that is still very sensitive to geometric changes. In some cases, a large variation in
the performance, if so extreme, would not be a good design solution, even though the expected
perturbed performance yields an optimal nominal value. Although in the results presented here
no such instances occurred. In general the 164 and L81 methods resulted in the smallest

improvement in robustness, but the OAT method produced the best improvements.

The measures of perturbed performance estimates show that the L.64 method is the best
reduced-expense method for evaluating the 95% probability limits, for both sizes of
perturbations studied. However, this measure was not found to be the best to use for the
objective function when optimising for structures with improved perturbed performance. In this
case the OAT method is better. Therefore, a good measure of evaluating perturbed
performance, when used as a less-expensive estimate in place of a more accurate method, does
not imply it is the best measure to use for the objective function of an optimisation. It is also
surprising that the simple OAT method has performed so well, given its simple construction
compared to the other designed methods, 1.64 and L81. When there is a high level of interaction
between variables, the benefit of the design of orthogonal array is to provide good estimates of
a full factorial experiment, however this does not seem to be borne out here. Although the OAT
method strictly relies on little interactions between the variables, the optimisation task here
obviously has strong interactions between the variables. Only the small perturbation size can
justify the application of such methods. However, the simplest experimental array is seen to be
superior over the L64 and L.81 arrays. One reason may be because is has a small value of mad
and variance. Thus its perturbation strength is actually less, and thus the effect of variable
interactions may be less on these grounds. Thus, the comparison between the OAT method and
the L64 and the L81 methods with the amplitudes used may not be strictly valid. This is also
suggested with reference to the optimisation histories for each of the best structures, in
Figures 7.7 to 7.9. It is seen that for the OAT method the 95% probability limit (estimate) of
the best structure candidate in each generation is virtually indistinguishable from the nominal

performance. Further investigation is required in this area.

The NP2 method in this instance is shown to be a better technique than the NP method. It uses
a noisy evaluation of the phenotype but only uses this result if it is worse than the nominal
evaluation. In the NP2 method only the addition of noise to the phenotype which diminishes the
true chromosome’s objective function value is allowed to affect the natural operation of the
genetic algorithm. This reduces the probability of the chromosome being subsequently selected

from the current population. The other effect of the noise, which would normally augment the
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true objective function value, and grant the chromosome a higher probability of selection from
the current population is ignored, whenever it occurs, in the NP2 method. In this case, if the
increase of the true value is large, then the chromosome does not represent a robust solution,
but it relies on further subsequent noisy evaluations (in subsequent generations), such that the
true objective function is not augmented by the action of the noise. Then the true or diminished
value results and the chromosome is given a low probability of subsequent selection. The NP2
method distinguishes against this scenario immediately. Therefore it reduces the number of
unrobust genotypes which might normally survive with the NP method. Even though these
genotype represent unrobust solutions it is possible that through the crossover and mutation
operators, good, robust genotypes might result. However, the better success of the NP2 method
implies that this is not significant. As with the NP method, if a chromosome represents a
relatively robust solution, the addition of noise to the phenotype will have little affect on the

chromosome survival.

It is also noted that using a scaling of v=0.05 for the noise added to the phenotype, the effective
‘perturbation strength’ applied to each chromosome evaluated during the genetic algorithm had
a mad of only v/4. This is a half of that used for the 1L.81 and .64 methods, and thus better
success achieved with the NP and NP2 methods may also be partly attributed to the

perturbation strength, as with the OAT method as discussed above.

Considering computational expense, the NP2 method is seen to be better than the OAT method.
The relevance of the computational expense is reinforced with reference to Table 7.4, which
shows the time required to produce each optimised structure. Only a small frequency band
average was used here, mainly because the computational time available in the latter stages of
the work presented in this thesis. The author also had access to high performance
computational facilities. In many instances with a more realistic problem (for example the
broad band frequency average, used in Chapters 4, 5 and 6) and more modest computational
facilities, that is might not be feasible to execute the more expensive robust optimal measures.
Thus the additional performance achieved using the OAT method is small with relation to the
extra cost required. Thus the NP2 method is deemed to be the best optimisation method in this
study. It has only required a factor of two increase in the computational expense for a 5dB

improvement in practical performance.

7.5 CONCLUSIONS

At the end of this study of robust, optimised structures a preliminary attempt was made to

produce optimised structures with optimal and robust performance using genetic algorithm
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optimisation. This was achieved by the geometric redesign of the structure to optimise the
performance of the structure over a narrow frequency band. The same optimisation was
reported in Chapter 4, optimised only on the nominal performance of the structure. Two classes
of objective function were used, one that optimises the performance using only regions of
robust performance on the search space (robustness methods) and one that optimised the

expected perturbed performance value.

In the first robustness method noise is added to the phenotype of each chromosome before
evaluation of the objective function (NP). The author proposed a variation to this method in
which the objective function was evaluated with and without noise added to the phenotype. The
worst performance between the two is taken (NP2). These methods require only one and two
evaluations respectively. Three reduced-expense perturbed performance were studied: one
based on a simple perturbation of each optimisation variable at a time (OAT, using 37
evaluations), and two based on fractional factorial experimental design (L64 and L81, using 64
and 81 evaluations). The L64 only uses positive perturbations, while the L81 incorporates both
positive and negative perturbations. The accuracy of these three methods over an existing and
more accurate, but more computationally expensive method (using 300 random evaluations)
was performed. For two sizes of perturbation the 1.64 method was found to be the best estimate

with approximately 10% error in the 95% probability limit.

Ten optimised structures were then achieved using each of the five measures as the value of the
objective function. Their robust performance was evaluated using the existing more accurate,
but more computationally expensive, perturbed performance measure. The optimisation success
was made by a comparison with optimised structure achieved by only using the nominal
performance as the objective function. The performance for the best structure and the average
of the performance of ten optimised structures resulting from each optimisation were studied.
All the methods, except one, were found to have improved the average nominal performance
although, as discussed, this measure is of dubious significance. The best structure produced by
the OAT method had an improvement on the nominal performance by almost 6dB. The same
structure also had an improved 95% probability limit by 5dB. On average, improvements in the
95% probability limit were found for all methods. The OAT method had the best average
improvement in the 95% probability limit by about 3dB and also the best average improvement
in the robustness by about 4dB. The average perturbed performance improvements were

similar for both sizes of perturbation used.

When considering the improvements achieved using the optimisation methods, the range of
additional computational expense was considered. Normalising the improvements with the

computational expense enables the most effective method to be identified. On these grounds the
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NP2 method is the best method outright for all performance considerations. Any small
improvements on this accredited to more expensive methods, including the OAT, are
outweighed by the additional computational expense required. The most efficient, NP2 method

requires an increase in the computational expense of only a factor of 2.
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L64 Value Perturbation

1 0

2 +v

Table 7.1. The mapping between the L64 orthogonal array values and the joint perturbation

sizes.

L81 Value Perturbation
1 0
2 +v
3 -V

Table 7.2. The mapping between the L.81 orthogonal array values and the joint perturbation

sizes.
Statistical Perturbation method
property D300 DLsi PLés poar
Average 0 0 v/2 v/37

mad v/2 v/2 v/2 v/37
o’ V3 2v7/3 V4 0.026v*
correction to v*
to equalise 6> : 12 . P

Table 7.3. The statistical properties of perturbation methods studied.
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Change in objective function value for the best Approximate
Optimisation optimised structure performance, compared with evaluation time per
method that using the nominal objective function (dB). structure
Nominal performance Jos300 V=0.005 (hours)

nominal 0 0 1.6
NP -1.3 -0.2 1.6
NP2 -3.2 -4.4 3.3
OAT -5.7 -5.0 62
Lo64 0.8 0.1 110
L81 0.4 0.1 140

Table 7.4. A comparison of the performance of the best structures using different optimisation

methods and structure evaluation times. A negative change in performance indicates an

' improvement.
Average structural performance compared with those for the
Optimisation structures obtained using nominal objective function (dB).
method Nominal S 95300 r
performance v= 0.005 v=0.01 v=0.005 v=0.01
nominal 0 0 0 0 0
NP -0.1 -0.5 -0.6 -1.0 -0.8
NP2 -0.8 -1.8 -2.1 -3.2 -2.8
OAT -1.9 -2.8 -3.1 -4.2 -3.8
L64 -0.9 -1.5 -1.4 -2.3 -1.7
L8l 2.5 -0.3 -1.0 -1.5 -1.9

Table 7.5. A comparison of the average nominal performance, 95% probability limits and
robustness of optimised structures using different optimisation methods, evaluated using two

maximum perturbation sizes, v. A negative change in performance indicates an improvement.
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GLOSSARY OF SYMBOLS FOR CHAPTER 7

The major notation used in this chapter is listed below. Other symbols are defined locally.

Jos
ﬁ5,<mtd>

f NP2

m
mad

p<mtd>

I

Value of 95% probability limit

Value of 95% probability limit achieved using method <mtd>
Value of NP2 noisy phenotype objective function

Average normalised deviation

Mean absolute deviation

Probability (density) function for method <mizd>

Robustness

Joint perturbation size

Variance
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Figure 7.1: Contour plot of the narrow band objective function against z and y coordinates for
joint 8 within the optimisation limits.
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Figure 7.4: A comparison of the accuracy of the reduced-expense probability limit estimate
methods against using 300 random perturbations, for a perturbation scaling of 0.005 (dark) and
0.01 (light).
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CHAPTER 8

Conclusions and Suggestions
for Further Work

8.0 INTRODUCTION

The work presented in this thesis has reported a study of the optimisation of a two-dimensional
cantilever structure so as to reduce the vibration transmission from the base to the end. This
aim was achieved by two methods: geometric redesign and the application of feedforward
Active Vibration Control (AVC) techniques using optimal actuators positions. These methods
were each employed alone, and then in combination, to produce optimal structure designs. The
robustness of the performance (and the total control effort required by the AVC system, where
applicable) was studied. It was then possible to distinguish between those optimised structures
whose performance is sensitive to small geometric perturbations (which might occur due to
manufacturing tolerances, for example) and those structures which were robust to such effects,
and thus are more practical. Finally, a measure of robustness was incorporated into the
optimisation algorithm so the optimisation process sought structures whose performance was
both nominally optimal and robust. The major conclusions from the work are summarised

below. Then, suggestions for further areas of study resulting from the work presented are

given.

8.1 CONCLUSIONS

The geometric (or passive) optimisation of the structure was performed using both classical
optimisation methods (e.g., those using gradient based search methods) and genetic algorithm
optimisation in order to reduce the vibration transmission. The genetic algorithm has
advantages over the classical optimisation methods due to the multi-modal nature of the search
space for these problems. The vibration was reduced at a single frequency, and the average
vibration was also reduced over narrow and broad frequency bands. Good success in reducing
the vibration was found using all optimisation methods. The best reductions in nominal
performance were seen for some of the classical methods. However, when the performance was
studied in the face of small geometric changes the optimised designs produced by the classical

methods were found to be unrobust, in some cases to such an extent that it is highly unlikely
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that the nominal performance would be realised in practice. When the robustness of the ten
structures produced from the genetic algorithm optimisation was studied, variation in the values
of robustness was found. The best practical structure could then be selected for an application
encountering similar geometric perturbations in practice. This is often different to the ‘best’
structure selected by nominal performance alone. It was also found that, in general, the wider
the frequency band over which the average vibration was evaluated, the more robust the
performance of the structures. A brief study of the transmission response of the optimised
structure using modal analysis showed that the reductions were achieved by a modal
redistribution, such that modal frequency clusters, often relating to peaks in the vibration
response, were dispersed. Although the dispersion of the modal clusters was found to be due
primarily to the irregularity of the structure. In the subsequent optimisation studies reported
below the performance was only that averaged over the broad frequency band, and genetic

algorithm optimisation was used, unless otherwise stated.

The next optimisation strategy investigated was to use AVC techniques (active optimisation) to
reduce the vibration transmission. The first optimisation task considered here is to find the
optimal actuator positions on the unoptimised structure so as to achieve the best value of
reduction. This was achieved for one, two and three actuators using an exhaustive search of all
possible actuator configurations. The robustness of the performance of the ten best actuator
positions for each case was evaluated to find systems with good nominal performances that
were the most practically realisable. The robustness of the control effort required by the AVC
also needs to be considered, to ensure that the highest expected value of control effort can be
met in practice. At this stage the parameter used to represent the vibration transmission, which
1s the energy level in a beam due to its flexural vibration, was briefly compared against other
alternatives; one representing the overall vibrational energy (including rigid body motion) and
two only using velocity measurements. It was found that the parameter used up until this point
in the thesis, even though not the most comprehensive measure, was sufficient. Especially when
used for such a system comprised of thin, flexible beams. It was also found that if only velocity
measurements were to be used (in an experimental system, for example) that the rotational

velocity is important in providing a good estimate of the overall vibrational energy.

The two final optimisation strategies were based on combinations of both passive and active
optimisation. The first was to find the best actuator positions for the structures with geometries
which had first been passively optimised, the second was to perform the optimisation of both
geometry and actuator positions simultaneously. Both strategies achieved designs that produced
better reductions per actuator than those produced by the active optimisation using the

unoptimised, regular structure. Additionally the control effort required was found to be much
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smaller. So, it can be concluded that more effective and efficient use of AVC results from both
geometric and actuator position optimisation, the simultaneous optimisation of both producing
the best results. Robustness analysis, again, was used to identify the most practical optimal
structures, and 1s discussed below. The results for the passive and active optimised structures

with two actuators are summarised in Table 8.1.

For structures designed using the different optimisation schemes, analyses were performed to
gain an insight into the mechanisms by which the reductions in vibration had been achieved,
and also the role of the AVC system, where applicable. It was found that the geometric
optimisation produced a reduction of power input to the structure from the vibration source and
also a redistribution of structural power dissipation around the structure so as to reduce the
vibration of the end beam. The application of AVC was also found to provide a similar
reduction by power redistribution but had no real effect on the power input to the structure by
the unwanted vibration source. Less actuator power was found to be required by an AVC
system to achieve a set level of reduction where geometric optimisation had also been used. For
the application of AVC with two or three actuators, the AVC system was seen to act to block
the power transmission along the structure past the structure bay containing the actuator
furthermost from the vibration source. This means that the vibration reduction would be less

sensitive to changing conditions at the end of the structure, for example, by additional mass

loading.

For all the candidate structures produced using the above optimisation strategies (except
classical optimisation) their variation in robustness was directly compared but no one strategy
was found to be superior in terms of the robustness of the optimised structures produced. For
each structure a 95% probably limit was evaluated (using 300 random geometric perturbations)
to predict the minimum performance which could be expected for 95% of similar perturbations
encountered in practice. In general, no one optimisation technique was seen to be superior with
respect to the overall robustness of the structures produced. Although between individual

structures the use of the robustness analysis enabled the more practical structures to be

selected.

All the optimisations detailed above have sought to optimise the nominal performance of the
structures, and then the most practical structure has been selected using a post-optimisation
robustness analysis. An attempt was then made to incorporate a measure of perturbed
performance into the optimised performance parameter to optimise for both optimal and robust
solutions. This was studied to reduce the vibration transmission over the narrow frequency
band using geometric redesign. More efficient estimators of the 95% probability limit were

required, and firstly these were evaluated against the existing measure. Then the estimators
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were used as the parameter that was optimised in order to produce optimised structures.
Additionally two versions of noisy-phenotype genetic algorithm were also employed, one
previously reported and a variant suggested by the author. The perturbed performance of the
resulting structures was then re-evaluated using the original, more accurate 95% probability
limit. It was found that the best estimator of the more accurate 95% probability limit did not
yield the structures which had the best practical performance when used as the optimised
parameter. After considering the extra computational expense required for the optimisation, the
optimisation method which gave structures with the best improvement in perturbed

performance required only twice the computational expense of the that required for nominal

performance optimisation.

8.2 SUGGESTIONS FOR FURTHER WORK

The structure used as the focus of this thesis is a simplified model of a typical structure. The
most significant simplifications that have been made are that the structure is two-dimensional,
and where active control of vibration has been applied the actuators were considered not to
effect the properties of the beam on which they are placed (e.g., actuators were assumed mass-
less). Whilst these simplifications do not affect the validity of the methods developed and the
overall findings presented, the actual results are not directly applicable in practice. A three-
dimensional structure should be therefore be studied, and additional modelling refinements
applied to improve the models accuracy. Although practical verification has been performed for
an geometrically optimised two-dimensional structure (Keane and Bright, 1995), the
optimisation methods need to be applied to an actual physical structure design. At the time of
completion of this thesis, an industrially funded research project has recently commenced in the
Computational Engineering and Design Centre at the University of Southampton. The objective
is to design, build and test three optimised structures using three optimisation strategies:

geometric optimisation, application of active control and the use of both optimisation

techniques. (Keane et al, 1998).

Feedforward control methods have been assumed in this thesis as a way in which the AVC
system would be implemented. Further work clearly needs to be done on the practical
implementation of such systems for various kinds of disturbance, and in the relative
performance of global feedforward control systems compared to local feedback systems
(Preumont, 1997). Also, it has been assumed that sufficient ‘time-advance’ exists in the
reference signal in order that no causality constraints on a controller exist. If the broadband

vibration source is near the structure base then this may limit the effectiveness of the AVC at
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high frequencies. Thus, in practice, this may also need to be considered when finding the
optimal actuator positions. The consideration of such issues here would have unnecessarily
uncomplicated the optimisation problem, such issues are specific to the application and there is

no merit in including them on an arbitrary basis.

The research presented here has covered much ground, investigating a number of different
optimisation strategies and an analysis of the robustness of the performance in each case, so
that a comparison of the success of using each strategy could be presented. Because of this
schedule, however, little time was available for any in-depth analysis of the mechanisms by
which the optimisation process had achieved better dynamic performance. Power analyses were
performed to show the power changes on a macro level, i.e. changes in input power, actuator
power and power in Beam 40. However, to gain a further understanding a full modal analysis
of the optimised structures needs to be performed, including the evaluation of the modeshapes
of the structure. How these modeshapes change, due to optimisation, at the positions of power
input and output to the structure is probably the key to a full understanding of the mechanism
of the optimal control achieved. In particular, with active control the interaction between the
active control system and the structure geometry could then be investigated. This would help to
explain why, when using active control on a geometrically optimised structure, the active
control is more effective and efficient than when using a geometrically unoptimised structure.
The analysis of the modeshapes might also help explain the reasons why some structures are
more robust than others, even though a clue to this lies in the modal frequency distribution for

the optimised structures presented.

The perturbation analysis performed here is based on a uniform distribution of joint position
perturbations might be appropriate to represent manufacturing tolerances. It is difficult due to
the multi-modal nature of the search space to predict the effect of changing the perturbation
distribution, but the success of the analysis would be improved if the distribution used was
similar to that encountered in practice. The perturbations used here are unstructured, that is,
each joint coordinate perturbation was independent, and therefore provide a reasonable
representation of those that arise from manufacturing tolerances. Other types of geometric
distribution, such as that due to thermal expansion and contraction, are structured
perturbations. This has not been addressed here, although such a study has been reported for
the static case on a truss structure (Farmer er al, 1992). Lastly, the requirements on the
robustness of a system might not only refer to the robustness due to geometric uncertainties.
Another consideration might be to reduce the sensitivity of the performance of a system due to
the failure of any one of the active control actuators or sensors. The results presented here

suggest that a structure, which has first undergone geometric optimisation and then the
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determination of the optimal actuator positions, may perform almost as well as structure whose
geometry and actuator positions were simultaneously optimised. However, the performance if
the active control system failed would be better in the former case, as the significance of the
reductions achieved by the geometric redesign is greater. Further work is required to investigate

this aspect of robustness.

Finally, only an initial study on the design of structures to optimise their robust performance
has been conducted. It has been shown that improvements in both robustness (change in
performance) and absolute performance in the face of small geometric perturbations can be
achieved, with little additional computational expense. This optimisation was only considered
for the performance over a narrow frequency band, due to time available. Further investigation
1s required to optimise the performance over the broad frequency band that was used for the
majority of the optimisations performed in this thesis, in order to see whether improvements
would also found in this case. Also, it is not clear why the simplest measure of perturbed
performance, which was not expected to produce a good estimate of the average perturbed
performance, is better than one based on a full factorial experimental design. One possible
reason is that the magnitude of perturbations used for each method did not represent equal
‘strengths’. The use of a discrete probability distribution to represent a continuous one in this
application needs further consideration. Perhaps a perturbed performance measure requiring

only a few random perturbation experiments could be used with similar success.
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Reduction in average energy AVC control effort (normalised
Optimisation type level of vibration (dB) to primary control effort)
Passive (geometric redesign) 33 0
Active (application of AVC) 28 1,400
Passive-then-active 64 10
Combined (passive and active) 78 29

Table 8.1 Summary of average results of the four main optimisation methods over the
frequency band 150Hz to 250Hz. The results for those methods using active vibration control

are given for using two actuators.
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APPENDIX A

Minimisation of a Hermitian Quadratic Form with
Positive Definite Quadratic Coefficient Matrix

The object of this appendix is to show the derivation of the minimum of the cost function used
in the main text, in the case where the quadratic coefficient matrix is always positive definite.
This assumption avoids the complexities of using differential calculus (as discussed by Nelson
and Elliott, 1992, and Haykin, 1996, for example) which would normally be required to show a
solution for a general case where no such assumptions can be made. All symbols used apply

locally to this appendix.

The cost function J is defined in quadratic form with the complex column vector X containing

{ complex independent variables,
J(x)=x"Ax+x"b+b"x+c, (A1)

where A is a square matrix of dimension / x /, b is a complex vector of length /, and ¢ is a

positive scalar. If A is Hermitian and also positive definite, then (Datta, 1995),
x"Ax=y>0 forall x#0, (A.2)

and y will always be a positive scalar, if X # 0. The positive definiteness of A is ensured in
practice (see Chapter 5) and is verified by testing that all the eigenvalues of A are positive

(Datta, 1995). Assuming that a solution that minimises J exists, (A.1) may be written as,
H
J(x):(x—xo) A(x—x0)+d, (A.3)
where d is a real scalar, and X, is the optimum value of vector X . Expanding (A.3), so
J(x) =x"Ax-x"Ax, —-xj Ax+c, (A.4)
which allows, firstly, the scalar relation between ¢ and d to be defined as,
c=xX§Ax, +d. (A.5)
Secondly, equating the coefficients between (A.1) and (A.4), gives

-x,A=b , —xJA=b", (A.6a,b)
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which are two forms of the same solution. The solution to (A.3), which minimises J, is clearly

given when X = X, and thus,
J(x,)=d =c—x, Ax,. (A7)
The optimum values of X are obtained from (A.6a,b),
x,=—A"b , xi =-b"A7". (A.8a,b)

As A is positive definite it is also of full rank (Datta, 1995), and hence its inverse exists. As in

(A.6), the two forms given in (A.8) are not different solutions but equivalent forms of the same

solution, as for a Hermitian matrix A~ = A™". The minimum value of the cost function (A.7)

can be expressed in terms of the coefficients from the quadratic form (A.1) using (A.8),
J(x,)=c-b"A7D. (A9)

Because the vector-matrix term in (A.9) results in a positive scalar, the solution is a minimum

as the value of J(XO) is less than J(x) when x=10.
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APPENDIX B

Background to Optimisation Techniques

B.0 INTRODUCTION

The purpose of this Appendix is to provide full details of the optimisation techniques used in
Chapter 3 for readers who are unfamiliar with the background to these techniques. Variable
definitions, not explicitly given here, are defined in Chapter 3. All symbols used apply locally

to this appendix, unless otherwise stated.

B.1 DAVIDON-FLETCHER-POWELL & BROYDEN-FLETCHER-
GOLDFARB-SHANNO VARIABLE METRIC METHODS.

If a function f is differentiable it can be represented as a Taylor series expansion about the

position of its minimum value, X,, and the vector offset to the start point of the search, x,,
_ T 1 ¢
f(x0+xe)-f(xo)+g xe+-2—erXe+..., (B.1)

where g is the Jacobian gradient vector of first order partial derivatives defined,

F I o
g =VF=|"X L . |, B.2
4 [ax1 ox, ax,l ®2)

and H is the Hessian matrix of second order partial derivatives, defined:

[ 3%y 9%f 2% f
ox?  oxox,  oxox,
3f %S
o= ox,0x,  Ox2 . . (B.3)
9% f 3% f
| Ox,0x, S Ox’ ]

The minimum value of the function can be written, to a second order approximation, as the
evaluation at a point in search space which is a distance x, away from the optimum vector X;.
An estimate of the Jacobian gradient vector is attainable by evaluating locally over a finite

difference (an estimate of the Hessian matrix is not easily achieved but is assumed for now),
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Fx,+x,)=f(x,)+8"x, +%xzflxe. (B.4)

If x, can thus be evaluated a single step of -x, can be made to reach the optimum position in the

search space. Taking the derivative of (B.4) with respect to X, , the current position,
VF(x, +x,)=8+Hx,. (B.5)
V/f(x, + X, ) is then set to zero to find x,

x, =-H"g. (B.6)

Hence the move to the minimum could be made in one move (assuming the search space has no
non-zero derivatives above second order), however, it is obtaining a good estimate of H which
normally presents the main problem. An estimate of H is formed from an initial starting point
which is usually the identity matrix, and is updated every time an iterative step is made nearer
the minimum. The process of finding the minimum becomes iterative as steps are made nearer
using the current and increasing better estimate of the inverse of the Hessian matrix. So two

successive iterations of (B.6), using index 7, are given explicitly,
x, =-H§, , x,, =-H"g,, (B7)
and the iterative step is thus,
=x,, —x, =-H/Ag,,, (B.8)
where,
Ag =8 — 8, (B9)

Then, the estimate of H is updated. For the Davidon-Fletcher-Powell algorithm, the current

estimate is updated,

H =H'+AH,,,, (B.10)

i+l

where the update term is defined,

AH = Ax,,, ® Ax,,, _ (Hi 'Aéiﬂ)@ (Hf 'Agiﬂ) (B.11)
T Ax T Ag, Ag 'ﬁi Ag

B+l

i+
where ® denotes the outer product of two vectors. The Broyden-Fletcher-Goldfarb-Shanno

algorithm uses an additional update term,
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H! =H]'+AH,,, +AH,,, (B.12)

which is defined,

~

AH s = (Aém ‘H, 'Aéiﬂ)u@u, (B.13)
where, u is given,

Ax,,,  H,-Ag,,
AX,, -Ag., Ag,. -H, -Ag,

u= (B.14)

It can be shown (Press ef a/, 1992) that the Hessian matrix does converge to the actual Hessian

matrix for a quadratic problem.

B.2 FUNDAMENTAL THEOREM OF GENETIC ALGORITHMS
(The main symbols used in this section are listed in the glossary of symbols for Chapter 3).

The most commonly used alphabet with genetic algorithms is a binary alphabet which is used
for the coding of the chromosome strings, as used in this work, the alphabet of the

chromosomes ¥ is thus
V = {O ]} (B.15)

An augmented alphabet V" is required for the schemata, formed by the addition of a wild card

character *,
vt=1{ 1 =} (B.16)

Thus, for example, a schema H (normally denoted thus because it represents a hyperplane in
the search space) may be given as 1011#0+%1. This schema then represents the four
chromosome strings which, explicitly, are 10110001, 10110011, 10111001 and 10111011.
Each of these are termed instances of H. Using schemata the evolution may be studied in a
macro level. The probability, p;, that a chromosome 7 , with fitness f;, will be selected into the

pool of n chromosome strings which will be available to form the next generation is given by,
p, = L . (B.17)
2/
j=1
So np, is the expectation of the number of chromosomes i which survive. The number of

chromosome strings represented by a particular schema / in a population at the evolutionary
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generation time step ¢ is m(H,t). For a non-overlapping population (the entire population is
replaced at the same time) the expected number of chromosomes represented by the schema in

the next generation is given by,

m'(H,t+1)=m(H,t)n f(H), (B.18)

n

2,

J=1

where f(H) is the average fitness value of the schema (average fitness values of all the
chromosomes represented by schema H). The average fitness of the entire population can be

expressed,

n

2/

f=— (B.19)
n

which allows (B.18) to be expressed as,

m'(H,t+1)= m(H,z)f(fq). (B.20)
A

It is re-iterated that this represents the expected number of chromosome strings represented by

schema H in the next generation by selection alone. The effects of the crossover and mutation

operators will be discussed below. However from (B.20) it can be seen that for schemata that

have average fitnesses above the average fitness of the population are expected to represent an

increased number of chromosome strings in the next generation.

The effects of the crossover and mutation operators on the survival rate of each schema are
now studied. Both of these operators serve to change the chromosomes on which they operate.
Therefore the effect on the expected rate of survival of chromosomes represented by a

particular schema is the expectation that schemata remain unaffected by these two operators.

The crossover operator swaps genetic information between two paired chromosomes. This will
result in two altered chromosomes, unless the crossover operation has no effect due to
similarities between the two chromosomes with the elected crossover site. This probability is
not easily defined, especially with on-going evolution. Additional algorithm operations which
prevent ‘crowding’, where the situation of the population converging to only a few ‘good’
positions in the search space, also act to keep this probability small. To analyse the effect of
crossover succinctly, the parameter ‘defining length’ is used. The defining length of a schema is
the length (in gene positions) between the two outer-most fixed values. In the schemata in

Figure 3.5 the defining length of schema A, denoted d(4) is five and for d(B) is zero. The
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probability that a schema will be changed by a crossover point is the ratio of the number of
crossover sites between the extremes of the defined part of the schema, which is the defining
length, and the total number of crossover sites on the chromosomes string. If the chromosome
is of length / then the number of such borders is /-1. The probability that the schema, H will

survive crossover is then,

—p d(H)

. B.21
T (B.21)

p, =21

The inequality defines the minimum probability of survival since, depending on similarities
between the two schemata, the schema may remain unchanged despite the interchange of fixed

allele positions.

The effect of the mutation operator is facilitated by the definition of the order of a schema. This
is the number of positions that are assigned to particular values, and not the ‘wildcard’ value *.
Figure 3.5 show two schemata, the order of schema A, denoted O(4), is 4, whereas O(B) is 1.
If p., is the probability that each allele (unit of information for each chromosome) undergoes
mutation. The probability that each fixed allele survives is therefore (1- p,). The probability
that the schema survives is the probability that all of the fixed allele values within the schema
survive. The survival of each fixed allele is statistically independent, and thus for a schema

with O(H) fixed value the probability of survival is,

p, =0-p, ). (B.22)

mut

Since p,, is usually a small value, such that p,, <<1, the survival of the schema is then for most

cases adequately approximated by,
1-O(H)p,,. (B.23)

The expected number of chromosomes represented by schema A in the next generation is
therefore given by (B.20) multiplied with the probability that the schema survives both
crossover and mutation. This probability is the product of (B.21) and (B.23), of which a first

order approximation is accepted to yield the Schema Theorem or the Fundamental Theorem of

Genetic Algorithms (Goldberg, 1989),

m(H,t+1)=m(H 1) f@t)(l - P, %Hl«) -O(H)p,, ) (B.24)
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APPENDIX C
Standard Orthogonal Arrays

C.1 TAGUCHI'S L64 ORTHOGONAL ARRAY
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Table C.1. (part 1 of 4). Taguchi’s L64 orthogonal array (after Taguchi, 1987 as cited

by Phadke, 1989). Corrected by author (see main text). Each row defines an experiment

of 63 two-level factors.
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Phadke, 1989). Corrected by author (see main text). Each row defines an experiment of 63

Table C.1. (part 2 of 4). Taguchi’s L64 orthogonal array (after Taguchi, 1987 as cited by
two-level factors.
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Phadke, 1989). Corrected by author (see main text). Each row defines an experiment of 63

Table C.1. (part 4 of 4). Taguchi’s L64 orthogonal array (after Taguchi, 1987 as cited by
two-level factors.
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Table C.2. (part 2 of 4). Taguchi’s L81 orthogonal array (after Taguchi, 1987 as cited by

Phadke, 1989). Each row defines an experiment of 40 three-level factors.
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Phadke, 1989). Each row defines an experiment of 40 three-level factors.
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APPENDIX D

Optimisation Algorithm Parameters

"KEY: OPTIONS: Design Exploration System used (Dynamics Modelling Ltd, 1996)

Siddall: Optimisation software suite implemented in OPTIONS (Siddall, 1982)

BFGS: Broyden-Fletcher-Goldfarb-Shanno

DFP: Davidon-Fletcher-Powell

N.B. Where no OPTIONS variable shown, parameter is not variable by user.

OPTIONS Siddall Description Value
variable variable
OPT_TOL TOL Tolerance for penalty function le-10
OPT_STEP F fraction of each variable range used to calculate variable le-5
derivative
function convergence criterion: minimum fractional change le-5 (Broad)
argument G between successive objective function result le-3(Narrow)
le-3(Single)

Table D.1. Optimisation parameters used for the Davidon-Fletcher-Powell method.

OPTIONS Siddall Description Value
variable variable
OPT_TOL TOL Tolerance for penalty function le-10
OPT_STEP F fraction of each variable range used as initial step size 0.1
function G convergence criterion: minimum step size specified as 0.01
argument fraction of initial step size
NSHOT | Number of search/shotgun cycles 2
NTEST Number of points in shotgun search at end of search 100

phase

Table D.2. Optimisation parameters used for the Hooke and Jeeves method.
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OPTIONS Siddall Description Value
variable variable
C_TOL ZERO | Amount constraint functions may be infeasible le-8
_PENAL Violated constraint multiplier 7 in (3.4) 1e20

Table D.3. One Pass penalty function parameters used for the FDP, BFGS and, Hooke and

Jeeves methods.

OPTIONS Siddall Description Value
variable variable
C_TOL ZERO | Amount constraint functions may be infeasible le-8
OPT_TOL TOL Tolerance for penalty function le-10
R Initial penalty function multiplier 7 in (3.A.5) 1
REDUCE | Reduction factor for R 0.04

Table D.4. Fiacco-McCormick penalty function parameters used for the FDP, BFGS and,

Hooke and Jeeves methods.

OPTIONS variable Description Value
DHC_INITZ Initial step size specified as fraction of variable range 0.05
DHC_THRESH Covergence critereon: minimum step size as fractional of variable 1e-9
range
DHC_PENAL Penalty function. (One Pass External) 1e20
DHC_NRANDM | Random number seed (see text)
function argument Maximum number of iterations, after which no new searches are 2000
started

Table D.5. Optimisation parameters used for the Dynamic Hill Climbing method.
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OPTIONS variable /

Common notation

Description

Value

(see main text)

Neen maximum no. of generations allowed

GA_NPOP, Npqp size of each population (see main text)

GA_PBEST, Ppegt proportion of population surviving to next generation 0.8

GA_PCROSS, Peross proportion of surviving population allowed to breed 0.8

GA_PINVRT, Pien proportion of breeding population that have genetic 0.5
material re-ordered

GA_PMUTNT, Pruwion | proportion of generation’s new material randomly changed 0.005

GA_PRPTNL flag which sets whether either new generation's genetic TRUE
material is biased in favour of better members of previous
population (TRUE), or all Py is scaled to prevent
dominance (FALSE)

GA_DMIN, Doy, minimum non-dimensional Euclidean distance between 0.05
clusters (those closer are collapsed)

GA_DMAX, D maximum non-dimensional Euclidean radius of a cluster 0.1
(beyond which clusters sub-divide)

GA_NCLUST, Ngjust the initial number of clusters in which a generation is 25
divided

GA_NBREED, Npreed minimum number of members in a cluster before exclusive 5
breeding within cluster takes place

GA_ALPHA, 0. a penalising index used in the management of clusters (see 0.5
Yin and Germay, 1993)

GA_NBIN number of binary bits used to represent each optimisation 16
variable

GA_RANDM number of samples of random number generation discarded | (see main text)

before first sample is used

Table D.6. Optimisation parameters used for the genetic algorithm optimisation.
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APPENDIX E

Computational System Details

E.0 COMPUTING HARDWARE PLATFORM DETAILS

The specifications of the computing systems used to perform the results presented in the main
text are given below. Only the specifications required to given an indication of the computing
system power are given, the system is a shared resource and the performance is thus dependent
upon the computing load of the machine. The computing times quoted in the main text are
approximate, and relate to the system operating at less than 100% of full capacity (so that no

computing job-sharing occurs).

E.1 DETAILS OF HARDWARE PLATFORM A

Hardware platform A was used for work presented in the earlier part of the thesis, and is
detailed in Table E.1. This system contains two processor types and it can not be assured
which specific processors were used within the system management scheme. It is feasible to
assume that the computing effort was shared equally by all the processors, resulting in an

average processor speed is §0MHz.

System Silicon Graphics Inc. Power Challenge (6 processors)

Processors 0 to 3: S0MHz IP21
Processor CPU: MIPS R8000 Processor Chip Revision: 3.0
details FPU: MIPS R8010 Floating Point Chip Revision: 0.2
Processors 4 and 5:  75MHz IP21

CPU: MIPS R8000 Processor Chip Revision: 2.2

FPU: MIPS R8010 Floating Point Chip Revision: 0.1

Memory Main memory size: 512Mbytes

Table E.1. Brief summary of the specification of computing hardware platform A.
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E.2 DETAILS OF HARDWARE PLATFORM B

Hardware platform B was used for the work presented in the latter part of the thesis, and is

detailed in Table E.2.

System Silicon Graphics Inc. Origin 2000 (14 processors)

Processor Processors 0 to 13:  250MHz IP27
details CPU: MIPS R10010 Processor Chip Revision: 0.0

FPU: MIPS R10000 Floating Point Chip Revision: 3.4

Memory Main memory size: 4068Mbytes

Table E.2. Brief summary of the specification of computing hardware platform B.
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