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Doctor of Philosophy 

ROBUST OPTIMAL DESIGN USING PASSIVE AND 

ACTIVE METHODS OF VIBRATION CONTROL 

by David Keith Anthony 

This thesis is concerned with the design of a lightweight cantilever structure to optimise the 

vibrational energy transmitted from the base to the end. The methods by which this is achieved 

are; i) the use of geometric redesign of the structure (passive optimisation), ii) the application 

of Active Vibration Control (AVC) techniques (active optimisation), iii) combinations of both 

passive and active methods. However, even though the nominal performance of a structure may 

be optimal, the sensitivity of the structure to small geometric perturbations (e.g., those 

representing manufacturing tolerances) also needs to be considered. For some optimal 

structures their performance deteriorates rapidly in the face of such perturbations, and a better 

solution may be a structure with a slightly worse performance but that is robust to such 

perturbations. 

Optimised structures were designed using the methods outlined above. For passively 

optimised structures, good reductions in vibration transmission were achieved using both 

classical optimisation methods and genetic algorithms (GA). The structures attained using the 

classical methods were not at all robust, to the extent that the nominal performance would not 

be realised in practice. Using GA, in general, it was found that the wider the frequency band 

over which the average performance was assessed, the more robust the structures produced. 

For active control, optimal actuator positions were sought to achieve the best reductions 

attainable using feedforward control. The control effort associated with an AVC system also 

needs to be considered when selecting an optimal solution, and as with the performance, the 

robustness in the face of geometric perturbations needs to be assessed. The choice of the 

parameter representing the vibration was also investigated and it was found that the choice of 

parameter can affect the success in reducing the physical vibration. Optimised structures were 

also produced using both passive and active methods, and the robustness of their performance 

and control effort evaluated. It was seen that the application of AVC with a geometrically 

optimised structure is more effective and more efficient than with the unoptimised structure. 

Finally, optimisation was considered so as to produce structures with performance which are 

both optimal and robust to geometric perturbations. Different methods were used and it was 

found that increases in robustness can be obtained whilst maintaining similar levels of nominal 

performance, and with only a doubling of the required computational expense. 
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CHAPTER 1 

Introduction 
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Unwanted vibration in a structure can have many undesirable effects. It can cause damage to 

the structure itself or components to which it is connected. It may prevent the structure being 

used for its intended application if the vibration occurs in critical regions. The example 

motivating the study here is that typical within the aerospace industry: to control the vibration, 

originating from the main body of a satellite, at the far end of a boom arm where typically 

antennae are mounted. Some structures (especially those employed in space) often have 

inherently small amounts of damping and the transmission of vibration through the structure 

can be an important issue. The need is even greater in lightweight structures as the controlling 

inertial effects of the mass are reduced. 

Traditional techniques to reduce vibration are to increase the mass and damping of the 

structure. The former is normally in violation with design goals, and the latter is the most 

regularly applied passive technique, but this can also increase the mass. It is desirable to 

consider the dynamic behaviour of the structure during its design and it may be possible to the 

optimise the inherent performance alleviating the need for any additional vibration control 

measures. A more recent development has been the application of Active Vibration Control 

systems that act to produce counter vibrations in order to reduce vibration. This may be 

employed together with traditional techniques, but since there is an interaction between both 

methods the successful application is often not a straightforward procedure. Alternatively, 

where applicable and practical, vibration transmission can be reduced by dynamically isolating 

the structure, again using the aforementioned techniques. 

Previous work by Keane (1995b) has considered the optimisation of the geometry of a 

lightweight two-dimensional structure comprised of 40 rigidly joined beams to minimise 

vibration transmission. The positions of the joints were used as the optimisation variables. The 

design was optimised in order to produce a structure that inherently had a much greater degree 

of vibration isolation than the original, traditional, regular design (achieving an improvement of 

three orders of magnitude). The study presented in this thesis uses an identical structure model 

to that used by Keane. 



Although the optimised designs show better performance in theory, practical design 

implementations with exactly the required parameters may not be feasible, due to 

manufacturing tolerances, for example. Even if this was not the case, the parameters might 

change during service due to, for example, thermal expansion and contraction. If the effect of 

these changes on the optimised performance is not studied then a design candidate that is 

predicted to be the best (under nominal operating conditions) in service may yield less than 

optimum performance. Another candidate design, although having a slightly lower optimised 

performance under nominal operating conditions may be less sensitive (more robust) to 

changing operating conditions, and is thus would be a more practical choice. 

In aerospace structures the unwanted vibration originates from both acoustic and vibration 

sources. Testing on the grounds of both form key constituent parts of a spacecraft programme. 

Typical bandwidths are 30Hz to lOkHz for acoustic and 20Hz to 2kHz for vibration (Forgrave 

et al, 1999). Often testing for both types of excitation is necessary as the structural response is 

different. For vibration excitation the structure tends to acts as a high pass filter. This effect is 

reported and experimentally demonstrated by Bondaryk (1997). Only structural excitation is 

considered here. 

1.1 T() rBDESIS; 

A brief background of several areas addressed in the thesis is presented here. The intention is to 

give a general overview and not report an exhaustive survey. Where such surveys exist, to the 

author's knowledge, these are included. 

1.1.1 A/[ETH()I)5I C)F STTRUCyii niJES 

The systematic analysis of vibrations is normally first accredited to Rayleigh (1894). The 

mathematical description of beams undergoing transverse or flexural vibration was achieved by 

Euler and Bernoulli, (as detailed in Bishop & Johnson, 1960, for example), although this beam 

model is sufficient for most cases an improved model was reported by Timoshenko (see for 

example, Timoshenko, 1995). 

A composite structure comprising of beams can be modelled as a system in a number of ways. 

The three main approaches used are: Dynamic Stifftiess method (Langley, 1990), Finite 

Element Analysis (Zienkiewicz, 1965) and more recently Statistical Energy Analysis (Lyon, 

1975^ 

The dynamic stiffiiess methods model a composite structure using a dynamic stiffriess matrix 

that describes all the degrees of freedom of the system. It uses a governing equation for each of 



the elements, and thus its application is limited to structures where the components can be 

represented by simple beam or plate models. For complex structures whose components cannot 

be represented by such models, the structure may be divided into small elements (small in 

relation to the smallest wavelength considered) each of which is represented by a model, which 

depends on the element size and model order. Finite element analysis can solve the system by 

equating motion and forces at the interfaces between all adjoining elements. For large models or 

for high frequency analysis the number of elements required grows rapidly and is normally 

limited either by computing storage capacity or solution time. 

However, as with all deterministic modelling methods, as the frequency region of interest 

becomes higher the response is complicated by the high modal density of the structure. The 

response at each frequency is strongly dependent upon many modes (whereas at lower 

frequencies the response at any one frequency is dominated by, at most, a few modes). Due to 

the sensitivity of the relative phase of the modal responses and the exact modal frequencies, the 

overall response becomes uncertain and sensitive to the smallest changes in the structure or its 

parameters. Statistical energy analysis is a probabilistic analysis method in which the structure 

is divided into subsystems, each of which is described by its gross properties. The properties of 

the connections between contiguous sub-systems, since the phase and the magnitude are 

relatively unpredictable, are treated as random. The parameter that is used to describe the 

system behaviour is the total time-averaged energy of the vibrations. Thus the 'power flow' 

between the subsystems, the power inputs and the external forces are used to describe the 

structure's response. Examples of statistical energy analysis used for beam structures are given 

by Shankar and Keane (1997). 

Receptance analysis is closely related to the dynamic stiffriess method, it was reported by 

Bishop and Johnson (1960). The receptance of composite systems may be determined from the 

receptances of individual components. This was used to form the Greens functions that were 

used as the basis of energy flows in a network of beams by Shankar and Keane (1995). The 

method is computationally more costly than for using the dynamic stiffriess method for the 

same structure. The composite receptance matrix is of larger dimension than the dynamic 

stiffness matrix as the solution defines all degrees of freedom for all structural components 

separately. This leads to a longer solution time. One advantage is therefore that intermediate 

information within the structure is readily available. A major advantage with this method is that 

it is based on a modal solution of each element, and their modeshapes, if not readily represented 

by a theoretical model, can be determined experimentally or from finite element analysis. Farag 

and Pan (1997) also use a similar receptance method, additionally considering torsion of 



beams. They state that their model 'fills the gap' between finite element analysis and statistical 

energy analysis, where each method has its own limitations. 

1.1.2 jAJCiriT/i; CXDISTTROIL OffT/TlSItynTDON 

Active Vibration Control (AVC) techniques use secondary control forces applied to the 

structure by a controller wMch uses sensory information to reduce some measure of the 

structural vibration caused by the originating primary vibration source. There has been a 

wealth of research in this area over the last three decades, made possible by advances in digital 

signal processing. The work has been extensively investigated and reported by Fuller et al 

(1996) and Hansen and Snyder (1997). Generally, two types of control strategy are used; 

feedforward and feedback. The former is the simpler control algorithm, but requires a coherent 

measure of the primary vibration source in the fonn of a reference signal. TMs is often 

available in practice, particularly for deterministic disturbances where, for example, a 

tachometer can provide a reference signal for rotating machinery. Figure 1.1 shows the basic 

scheme of a feedforward AVC system. The adaptive controller uses the reference signal and 

error output to continuously adjust the secondary control forces to minimise the output error. 

The parameter used as the output error signal is commonly an acceleration measurement but 

some other parameters are discussed below. The reference signal provides a measure of the 

primary force input, and for correct operation should not be affected the secondary force 

outputs. Feedback control does not require such a reference signal, but there are limitations on 

the performance due to causality and stability constraints. Feedback control is particularly used 

to control individual modes in the low frequency region, whereas feedforward control can 

operate on a frequency-by-frequency basis. Therefore it can be applied at frequencies where 

higher modal densities exist. However, von Flotow (1988) discusses the limit that is imposed as 

the modal density increases; the plant model will be inaccurate due to the uncertainty of such a 

modal based model. Another alternative, for example, is to use a travelling wave based model. 

Initially only feedback control was considered for broad band frequency control, however 

recently this has also been shown to be achievable using a feedforward strategy (Vipperman et 

al 1993). There are also practical causality constraints for feedforward AVC systems, which 

become increasingly more stringent with increasing frequency for flexural waves as discussed 

by Elliott and Billet (1993). 

It is noted incidentally that genetic algorithms (which are discussed below) have also been 

employed in AVC control algorithms to determine the response of the controller, for simple 

broad band control of beam (Hossain et al, 1995), and also to adapt a parametric controller for 

active control of sound (Tang et al, 1996). 



The success of such techniques depends on many factors including: the positioning of the 

sensors and actuators on the structure, the parameter which is controlled and the types of 

sensors and actuators used to measure each parameter. The latter is outside the scope of this 

thesis. The effect of the choice of parameter minimised by the control system is discussed 

below, and the effect of actuator position is discussed in the next sub-section. 

7 .7 .27 OF ZHE OF A47L4ME7E7; 

The success of an AVC system depends, in part, on the particular parameter used to represent 

the vibration which is minimised by the controller. The most suitable parameter is sometimes 

compromised on practical grounds, it is easier to control a readily measurable quantity such as 

velocity, acceleration or force. Originally this parameter simply represented the magnitude of 

the vibration in the region of one or a number of strategic points, however from early on the use 

of a representation of energy flow (or power) was seen as a more effective practice. In general 

structures are lightly damped and therefore the mechanical impedance is strongly dependent 

upon the vibration frequency and also the positions of the sensors and actuators on a structure. 

Therefore, a single measurement of velocity or force is not a sufficient representation of power. 

Earlier use of power (Redman-White et al, 1987) demonstrated the advantage of using a power 

measurement, despite the added complexity of such systems. Howard and Hansen (1997) show 

that if either the force or the acceleration are minimised as a cost function for active vibration 

isolation, this does not necessarily lead to the minimisation of the other. Pan and Hansen (1993) 

demonstrate that the use of acceleration as a measurement to reduce power flow along a beam 

is sufficient if the sensor is placed outside the near field of any power sources. Power is used as 

the cost function parameter for vibration isolation by Bardou et al (1997), who compares 

different types of strategy used (to minimise power supplied by the primary source or maximise 

power absorbed by the secondary sources). Brennan et al (1995) also show that the best power 

measurement strategy can depend upon the nature of the problem. 

1.1.2 STRUCTURAL OPTIMISATION FOR DYNAMIC PERFORMANCE 

There has been much research into the areas of structural optimisation, chiefly based in the 

aerospace industry where lightweight lightly damped structures are abundant. Initially much of 

the early work evolved around the static correction of space structure, which is still a continued 

line of research, for example Furuya and Haftka (1995). 

In terms of structural dynamic optimisation, much work has been reported by Keane. The 

advent of structural optimisation by passive techniques has tended to evolve later than the 

application of active vibration control, as the passive techniques often rely on the application of 



recently developed non-classical optimisation techniques. Earlier work reported a simple 

structural filter between two coupled rods which was optimised using classical and the more 

recent evolutionary techniques (Keane, 1993). This was then extended to a two-dimensional 

structure similar to those employed on satellites (Keane, 1994 and 1995b), culminating in a 

passive design achieving values of vibration isolation comparable to that achievable using 

active techniques. The success was borne out experimentally (Keane and Bright, 1995), and 

extended to a three-dimensional structure (Keane and Brown, 1996). Another method of 

passive structural optimisation is to add masses to the joints of the structure, as studied by 

Bondaryk (1997). 

The position of the sensors and actuators within the fields of both Active Control of Sound 

(Nelson and Elliott, 1992) and AVC is identified as being a key element to the success of such 

techniques; it is still the subject of much research. This area normally presents highly 

combinatorial, multi-modal (and often discrete) optimisation problems. Even if classical 

optimisation techniques can be used they need to be combined with other elements to ensure 

that more global than local solutions result. Benzaria and Martin (1994) used gradient method 

combined with a random sampling of the search space, and also noted that the problem is 

highly sensitive to the data. A recent survey by Padula and Kincaid (1999) summarises much 

of the history in this area, including its use for aerospace applications. Evolutionary algorithms 

are now often used for such optimisation problems. The most commonly applied techniques are 

genetic algorithms (Goldberg, 1989) or simulated annealing (Kirkpatrick et al, 1983). These 

techniques find very good, but not necessarily the optimum solutions. 

In the application of lightweight structures, Chen et al (1991) used simulated annealing to find 

the optimum positions of actuators on 54 and 150 beam structures, whilst additionally the 

position of a number of beam dampers were simultaneously optimised. Furuya and Haftka 

(1996) use genetic algorithms to find optimal actuator positions for 8 actuators on a 1507 beam 

structure. Simpson and Hansen (1996) use a simple model of an aircraft interior, and determine 

optimum actuator positions using genetic algorithms, De Eonseca and Van Brussel (1999) 

perform a comparative study of different optimisation techniques on a similar sensor and 

actuator positioning problem in an aircraft trim panel. Both the latter two references had the 

objective of minimising the sound radiated. De Fonseca and Van Brussel found that some 

classical optimisation algorithms with random-based elements can sometimes perform better 

than genetic algorithms. In general, variations of the genetic algorithm parameters undergo 

trials in order to improve the convergence of the search. Furuya and Haftka (1993) use 

different non-binary representation of actuator positions, and later (Furuya and Haftka, 1996) 

used an initial population of relatively fit chromosomes together with a modified mutation 



operator based on simulated annealing. However, improvement of the algorithms is likely to be 

problem specific. It is also important to ensure that the control energy required by the control 

system is realistic, this can be achieved by optimising the control system parameters as well as 

the actuator positions, as reported by Onoda and Haftka (1987) and Kim et al (1997), for 

example. Zimmerman (1993) showed that the consideration of the actuator mass is important, 

and this can result in different optimal actuator positions on lightweight structures to those if 

the actuators are considered mass-less. 

Optimisation of both geometry or topology and actuator positioning has been reported. Liu et 

al (1997) used simulated annealing, and Liu et al (1998) and Fumya (1995) used both 

simulated annealing and genetic algorithm optimisation, in order to simultaneously optimise 

structure topology and the actuator positions. Here the beam cross-sections are variable and the 

structure geometry fixed. The work reported by Keane, above, differs in that the structure 

geometry is allowed to undergo changes with beams of fixed cross-section. Zhu et al (1999) 

uses sequential quadratic programming optimisation to simultaneously optimise the structure 

and the controller. Both parallel and serial strategies are used, and the former is found to yield 

better and more efficient solutions. 

1.1.3 CONSIDERATION OF ROBUSTNESS TO PARAMETRIC UNCERTAINTY 

Consideration of the robustness of optimal designs to structural changes began in the aerospace 

industry with that for the static shape correction. Adelman and Haftka (1986) provide a review 

of the deterministic methods used to address static and transient behaviour. More recently, and 

for the robust optimisation of the dynamic performance of structures, Rao et al (1990) 

considered robustness as part of a multi-objective optimisation for simple structures, and the 

effects of such structures to thermal distortion has been reported by, for example, Haftka and 

Adelman (1985) and by Farmer et al (1992). Hahn and Ferri (1997) evaluated the radiation 

and scattering properties for a structural-acoustic problem using variations in values of 

material properties to study the effect on the performance. Omoto and Elliott (1996) studied the 

effect on a feedforward Active Control of Sound system by using a set of measurements 

achieved &om system perturbations. Furuya (1995) used the average response gained from the 

random perturbation of beam length in a optimum AVC actuator placement problem. 

Prediction of the response of structures by using probabilistic variations on system parameters 

has been reported by Keane and Manohar (1993) and Manohar and Adhikar (1998). 

Alternatively, computer experiments can by used to measure the robustness of a system. 

Orthogonal arrays were used as a more efficient technique in place of Monte Carlo based 

parameter adjustment for evaluating the trajectory of a satellite on re-entry (Lautenschlager et 



al, 1995) and for the optimisation of design parameters for a satellite (Erikstad et al, 1995). 

Finally, Nair et al (1998) report an efficient method of calculating the first-order response of a 

system subject to parametric perturbations. 

1 .2 vusnc) ( ) ] ; TnH]5s;isi 

The study of the sensitivity of the performance of a structure to parametric uncertainty 

(robustness) is often a highly combinatorial task, and must be performed in addition to the 

existing computational burden of optimisation. A study of structural optimisation using both 

passive and active methods has been undertaken. This has been possible using the multi-

processor high performance computational facilities available within the Computational 

Engineering and Design Centre (CEDC) at the University of Southampton. (As an indication of 

the computational expense required, if all the optimisation work and robustness analysis results 

presented in this thesis, had been run on a single processor with the hardware platforms 

detailed, it would have required over 1.3 years of continuous computing effort.) The robustness 

of the performance was investigated, with the aim of achieving optimal structure designs whose 

performance can be realised in practice. Specifically the scope is defined: 

i) To optimise a typical aerospace structure using passive and active methods, and using both 

methods simultaneously, and to compare the performance and consequences of using each 

method. 

ii) To study the robustness of optimal structures, and provide a measure of expected 

performance in practice. 

iii) To use measures of robustness to design for structures with optimal and robust 

performance. 

The contribution of this thesis has been: in the analysis of both passively optimised and 

optimally actively controlled structures; to show that considering the robustness of the optimal 

performance of structures is important in understanding the practical consequences of their 

application; that the use of classical optimisation techniques can be counter-productive in 

achieving robust solutions; and that it is possible to consider robustness during optimisation to 

produce structures with optimal and improved robustness, and without substantial increases in 

the computational expense required. 

As well as being reported in this thesis, some of the work has also been accepted for 

publication in a refereed journal. For passive optimisation and robustness analysis of the 

structure, see (Anthony et al, 2000); for the application of active control vwth optimally placed 



actuators and robustness analysis, see (Anthony and Elliott, 2000a); for the study of the 

success of using different parametric representations of vibration, see (Anthony and Elliott, 

2000b). (Further submissions are planned reporting the results and robustness analysis of the 

structural optimisation using both passive optimisation and active control, an analysis of the 

mechanisms by which the reductions have been achieved by the optimisation and the role 

played by active control, and also the design of optimal and robust structures.) 

1 ()'VlE%RL\/l]:TVy (DIP ITHJEISIS; 

The subsequent chapters of this thesis are structured as follows: 

CHAPTER 2: The truss structure studied throughout this thesis is described, and details of the 

receptance theory model used to predict the vibration transmission are given. The application of 

Active Vibration Control techniques to the structure is described and four different cost 

function parameters are derived. 

CHAPTER 3: The background and supporting theory to the all the optimisation methods used 

(both classical and evolutionary) are introduced, using supporting appendices. The adaptation 

of genetic algorithm optimisation to incorporate a measure of parametric variation robustness 

is explained. An alternative method of measuring the robustness of a system is that using 

computer experiments with system parameter variations governed by orthogonal arrays. The 

properties of such arrays are explained, and an example array is derived to demonstrate the 

design procedure. 

CHAPTER 4: The vibration transmission of the structure studied is passively optimised using 

both classical and evolutionary algorithm methods, by allowing only the structure geometry to 

vary. This is performed at a single frequency, and for the average over a narrow and a broad 

frequency band. The robustness of all the optimal designs produced is evaluated. 

CHAPTER 5: The average vibration transmission of the structure is reduced to the optimum 

value achievable by applying Active Vibration Control {active optimisation) with optimum 

actuator positions for one, two and three actuators, for the broad band frequency range. The 

use of three other cost function parameters representing vibration is assessed to determine the 

consequences of their use on the success of applying AVC. The robustness of the system 

performance and the control effort required is evaluated for the best ten actuator positions in 

each case. 

CHAPTER 6: The average vibration transmission of the structure is optimised by using both 

passive and active methods: by geometric redesign of the structure and by the application of 



AVC using optimal actuator positions. Two strategies are used for this, the evaluation of 

optimal actuator positions on a previously geometrically optimised structure, and the 

simultaneous optimisation of both geometry and actuator positions. The robustness of all the 

optimised design produced is evaluated. 

A summary is then presented for all the optimised structure designs produced in this and the 

preceding two chapters allowing the performance achieved, and control effort to be evaluated 

against optimisation strategy. Tliis was performed for both nominal performance and 

performance with perturbed structure geometries. 

CHAPTER 7: The incorporation of a measure of robustness into the optimisation parameter is 

studied in order to design for optimal and robust structures. This is achieved by geometric 

redesign for the average structure performance over a narrow frequency band. Two versions of 

the noisy phenotype genetic algorithm and three different measures of robustness are used, each 

with varying levels of additional computational complexity. 

CHAPTER 8: A brief summary of all the work presented and the main findings are given, and 

overall conclusions drawn. Recommendations for further study are also suggested. 

10 
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CHAPTER 2 

Dynamic Model of the Structure and the 
Application of Active Vibration Control 

2.0. INTRODUCTION 

The structure whose dynamic performance is the subject of this thesis, is two-dimensional and 

comprises of thin rigidly joined beams in a repeated bay design. This chapter outlines the 

theoretical background to the mathematical models used to describe the dynamic response of 

such a structure. The response of the overall structure is achieved by incorporating individual 

beam models into a receptance analysis model which enables the coupling forces and the 

velocities at each joint to be resolved. From these parameters the energy level in an individual 

beam can be obtained. These parameters are the subject of the optimisation work which is 

reported in later chapters. 

In this thesis the optimisation is achieved by either the redesign of the structure geometry or the 

application of Active Control of Vibration techniques, or by both methods. Predicting the effect 

of Active Control of Vibration is achieved by solving a set of simultaneous equations involving 

individual structure responses. The procedure for this and its application to an example 

structure is also given. The practical success of Active Control of Vibration depends upon the 

choice of cost function which is being minimised. The solutions for the minimised values of 

alternative three cost fiinctions are developed in preparation for a later comparison and 

appraisal of the use of different cost functions in optimising the structural performance. 

Finally, to enable an understanding of the mechanisms by which the vibration in the structures 

has been reduced by optimisation, a power analysis of the structure is described, and the 

constituent power components defined. 

:2.i is riiiLicniLJiu? spjExznoFixziA/Tric)]^ jAJsri) (]rvTE:R;\/ii;wr ()i? A/[C)i)iii. 

The structure studied is shown in Figure 2.1 (after Keane, 1995b), in which the coordinate 

units are in metres. It is a lightweight cantilever structure comprising of 40 beams of lengths 

Im and 1.414m. The joints at coordinates (0,0) and (0,1) are hinged, all the other joints are 

fixed (as if welded, for example). The structure and its vibration is considered in two 

dimensions; motion is only considered in the x-y plane. A typical application for such a 

12 



structure is that of an antenna boom arm for use on a satellite. In tliis scenario the aim is to 

reduce the vibration transmission from the base of the structure to the rightmost beam, where 

an antenna may be mounted in practice. 

The physical properties of the beams used in the model are: the axial rigidity, EA, is 69.80MN; 

the bending rigidity, EI, is 12.86 kNm^; the mass per unit length is 2.74kg/m. This is found to 

correspond to an aluminium beam of rectangular cross-section with approximate dimensions 50 

mm by 25 mm, with the longer dimension in the x-y plane. A Proportional damping model is 

used for the beams (Tse, Morse and Hinkle, 1978) and all the modes of the uncoupled beams 

have the same bandwidth. The value used is 20 s"' {sic. Shankar and Keane (1995) but may 

also be written as (20/27i) rad-s '). This corresponds to a damping ratio of 5% at 200Hz. This 

choice of damping parameter value is not untypical and was chosen so that a modal response 

was clearly evident in the structure's response, but not so low such that large resonant peaks 

caused noise problems due to a large dynamic range (Keane, 1998). 

The flexural vibration of each beam is modelled using the Euler-Bemoulli model (Bishop and 

Johnson, 1960) and longitudinal vibration using a rod model, with both models using a modal 

series summation. The response of the structure is analysed by studying the coupling between 

all the individual beams. This is performed using a receptance analysis (Bishop and Johnson, 

1960) in which the unknown displacements, forces and moments are solved for each beam end 

when driven by the external force inputs. This is achieved at all the beam ends at each joint by 

equating the displacements and rotations, and summing the net forces and moments to zero. 

From this analysis the power transmitted into or out of each beam end and externally applied 

forces can be calculated. This process is described in detail in the next section. 

The forces and moments at each beam end are solved by incorporating the individual beam 

receptance relationships into a global receptance matrix, and calculating the inverse to this 

matrix, which then enables the displacements and rotations to be evaluated. For the structure 

analysed here the size of this matrix is approximately 170 by 170 elements. The optimisation 

parameter used in the structural design is normally averaged across a frequency band, and 

hence the dynamic response for each design scenario must be evaluated at a number of 

frequencies, which can become computationally expensive. Therefore only the use of efficient 

optimisation techniques is feasible, especially with regard to the size of the optimisation 

problem, discussed in Chapter 4. 
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:2.2 s;TritiLic:T:iJTRLE: 

Initially, consider the general case of a single beam, shown in Figure 2.2. It is inclined by angle 

9n to thex-axis of the global coordinate system, which is shown in Figure 2.1. In order to study 

the interaction between the beams, and therefore the response of the whole structure, the beam 

behaviour at two, and sometimes three points needs to be considered. Firstly the response at 

each end obviously needs to be analysed since this is the interface between beams or 

mechanical ground, which form the end conditions for the beam. If a beam has an external 

force input along its length, or the displacement of a beam along its length is of interest, then a 

third position is also required. In order to distinguish between forces and displacements 

specified in local coordinates (where the x-axis is along the beam length) and those specified in 

the global coordinates (as shown in Figure 2.1), lower and upper case symbols are used to 

indicate local and global coordinates, respectively. The frequency dependence is dropped in the 

following, except where necessary, and it is assumed that the analysis is repeated at each 

frequency of interest. 

Three components of force acting on each point of the beam are considered. Specified in the 

local beam coordinates: forces acting horizontally, vertically and rotary components. The 

complex forces at each point are expressed in vector notation, the forces at end 1 for beam N 

are represented by vector {f ̂  }' where, 

{ f . } ' 

/ I 

/ i 

M l 

(2.1) 

and are the axial and transverse forces acting on beam N at end 1 respectively, and 

Mlf is the applied moment. Following the notation used in (from Shankar and Keane, 1995), 

any external forces applied to the beam are applied at positions Xa, x, and x,„ for axial, 

transverse and rotary components respectively. Similarly the displacement and rotation at end 1 

are represented by the complex vector {x ^ , defined as, 

K } ' 

e l 

(2.2) 

The vectors describing the forces and displacements at beam end 0, and those at the point of 

external force inputs, follow the same format, and are not explicitly defined, in the interest of 
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brevity. The displacement of the beam at end 1 is the summation of the displacement 

components resulting from the forces at end 0, end 1 and, if applicable, an external force 

applied to the beam. For example the displacement component at end 1 due to the external 

forces applied to the beam is given in terms of the beam's Green function by, 

(2.3) 

where is explicitly, 

^ ^NJran (^5 ) ^Njran 0; ^ ^in ) 

0 ^N.tran 1, Xf ) (D 1, D X,„ ) 

(2.4) 

and describes the displacement response at end 1 due to an external force. (Note that the 

superscripts represent the type of Green function, three options are available for each symbol; 

0, 1 and e. The superscripts do not describe the positions explicitly but simply distinguish 

between each end of the beam and any external input. The first superscript defines the location 

of the displacement response, due to an excitation force whose position is defined by the 

second superscript). D denotes the derivative operator at either the point of response or 

excitation, as denoted. The non-zero elements of the matrix are Green functions which describe 

the displacement or rotational response to input forces or moments on the beam. Their notation 

is, 

(< > ,< ezczraA'oM >) . 

The type of input force, is either or fraM (transverse), is the 

position that the displacement (in local beam coordinates) produced by the input force at 

location <excitation>. All distances along the beam are referenced from end 0. Where the 

response or excitation is either a bending moment or rotary component then the derivative of 

either the force or displacement, respectively, with respect to distance along the beam at that 

point is used. 

The individual Green functions can be thought of as complex transfer receptances, each of 

which is evaluated from a summation of a series of n modal contributions, n is sufficiently 

large so that the modal frequency is higher than, and makes an insignificant contribution at, 

the highest frequency studied. So, 

>0 — (0 +ZĈ COj 
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where In is the length and the mass per unit length of beam N. (jj/x) is the value of the mass 

normalised modeshape at position x from the end 0 of the beam, COy the natural frequency of the 

j* mode. The Green function is evaluated at frequency co, but the frequency dependence is 

omitted, as noted above, q is the beam damping, which is the same for all modes and all 

beams. It can be related to the damping ratio ^ such that, q = 2^cq. for mode j. Here 

proportional damping is used and Cd is specified directly, in the units of rad s"\ It can be shown 

that for light damping (as for the value of damping used for the structure considered) that the 

bandwidth of each beam mode is approximately equal to the value of q . The modeshapes for 

the axial and transverse mode must be normalised according to some consistent scheme, and 

also rigid body motion of the beam, where permitted, must be taken into account. 

The type of Green function implemented depends upon the end conditions of the beam. The two 

end conditions that are applicable here are hinged-free and free-free. The hinged-free Green 

functions are for beams that have one end jointed at the base of the structure. Although no 

notation is used to distinguish between the different Green functions this is achieved by a 

reference list for the beams which records their end conditions. On evaluating a Green function 

for a beam this is referenced so the correct function is evaluated by the code. The use of the 

different Green functions is illustrated in the example that follows. 

The net displacement at the end 1 of the beam is the sum of the three displacement/rotation 

components due to forces acting at ends 0 and 1 and any external forces. So, 

== (2.6) 

represents the net displacement at end 1. Hence each component is found from the Green 

function matrix which gives the input force to output displacement response receptance at the 

points on the beam studied multiplied by the force vector detailing the forces at the input point. 

From the Green function matrices, such as that shown in (2.4), it can be seen that purely axial 

forces only generate axial displacements, however there exists a coupling between the 

transverse and rotary components, and both of these are capable of producing both transverse 

and rotary components (both causing beam flexure). When beams are coupled together at 

different incident angles coupling can exist between all vibration components. In order to 

resolve inter-beam coupling correctly a global coordinate system must be used. This is as 

shown in Figure 2.1. A coordinate transformation matrix [ t ^ ] for each beam is defined. 
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[T.] = 
cos8 , • sin 9 N 

sin 9,, cos 9 

0 

N " 

0 1 

(2.7) 

which is used to define the local coordinate system for beam N, such that, 

y: 

0 ^ . 

(2.8) 

where uppercase characters denote global coordinates. Hence in order to convert local to global 

coordinate systems the inverse [t^ ] ' is used. 

2.2.1 APPLICATION TO SMALL STRUCTURE EXAMPLE 

In order to calculate the global receptances, enabling the vibration transmission across the 

structure to be studied, all the displacements at each end of all beams coupled at one joint are 

equated together and net force at each joint are equated to zero. This results in a large number 

of simultaneous equations which are dealt with in matrix format. To illustrate the formation of 

such a matrix a small example structure is used, which consists of one bay cantilever structure 

which is shown in Figure 2.3. The structure consists of four similar rigidly joined beams. The 

two leftmost points are mechanical ground and constrain the beams end by a hinged joint 

(which constrains displacement but allows rotation). The other joint type is that of a 'free' end. 

The beam and joint indexing is shown, as is the beam end notation. An external transverse 

force is applied at a point along the length of Beam 1, similar to that applied to the structure in 

this thesis. The component displacements for the three beam end at joint A are given, in full, by 

[ T . r [ G , ] " { f , r + [ T , r [ G , ] ' " { f . r + [ T . r [ G , ] " { f , } ' = { x , } ' , (^9) 

[ T . r [ G , r { f j ' + [ T , r ' [ G , n f j " + [ T j - ' [ G , r { f j ' = { x , r , <iio) 

[ T , r [ G . r { f j ' H - [ T . n G . ] ' » { f , r + [ T . r [ G . ] " { f j ' = { x , } ' . d , , , 

As Beams 1, 3, 4 each have an end which forms a hinged joint to mechanical ground, the Green 

functions G], G3, and G4 are of the hinged-free type, whilst G^ is of the free-free beam type. 

Tliis determines the modeshape used, as described above. There is only an external force on 

Beam 1 and so the leftmost terms in (2.10) and (2.11) are zero. Similarly there is no 

displacement component contribution from the ends of Beams 1 and 4 that are connected to 
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mechanical ground. The second term on the left hand sides in (2.9) and (2.11) are therefore also 

zero. So in this case, 

[ T , r [ G , i " { f , r + [ T . r [ G , ] " { f , } ' = { x . } ' , (2,12, 

[ T . r [ G , r { f j ° + [ T . r [ G , r { f j ' = { x j " , ,2..3) 

[ T 4 r ' [ G 4 ] " { f , } ' = { X , } ' . (2-14) 

All the beam end displacements are coupled by a rigid joint, and hence must all be equal. Since 

{x,}' ={x,}° then, 

[ T , ] - [ G , r { f J ° + [ T j " ' [ G , ] " ' { f J ' - [ T , ] - ' [ G j " { f . } ' = [ T . r ' [ G , ] - { f . } ' , (2.15) 

and since { X j } ' - { X ^ j ' t l i c n , 

[ T , ] - ' [ G , ] " { f . } ' - [ T , ] - ' [ G . ] " { f . } ' = [ T . ] - [ G , ] - { f . } ' - (2-16) 

Similarly equating the displacements for the two beam ends at joint B yields, 

[ T , r [ G , r { f j % [ T , r [ G , ] " { f , } ' - [ T , n G , ] " { f j ' = o . hm, 

Next, considering the forces at the ends of the beams at each joint (using global coordinates) 

the net force must be zero. Hence for joints A and B, respectively, this yields, 

[T, ]-' { f , } ' + [T, ]-' { f , } ° + [T, ]-' { f , } ' = 0 , (2.18) 

[ T , r ' k } ' + [ T 3 r ' { f j ' = o . (2-19) 

There are five unknowns (the force vectors at each non-constrained beam end) in the five 

equations (2.15) to (2.19), and can, therefore be solved. This can be achieved using matrix 

methods by assembling the [ t ^ ] and [ g ^ ] terms in as global matrix and the force vectors as 

a concatenated force vector, using a consistent scheme. 
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[T,nG,]' 

0 

[TJ' 
0 

- [ T ^ n c j 
0 

[Tznc, ]" 

[T.r 
0 

0 
1 - 1 r 

0 

[Tj" 

0 

[ T j i G . r 
0 

0 

[TJ' 

{f.}' kr 
I t} ' 

ft}' 

{A}' 

- [ T j ' l G j ' 
0 

[T,r 

-[T,r'[G,r{f,y 

iT,r ' [G,r{f ,y 

0 

0 

0 

(2.20) 

and is more succinctly expressed, 

C , F = E , (2.21) 

where C, is the structural coupling matrix, F the individual beam-end force vector and E the 

vector of displacement components from externally applied forces. The forces at each beam end 

are then solved from the inverse of C,, 

F = C , E (2.22) 

In practice the explicit inverse is not determined directly, but instead a system of linear 

equations is solved. Once the force vector F has been resolved, together with the appropriate 

Green functions, the displacement or rotation at the ends of (or any point in between) a beam 

can be found. The resolved forces are the coupling forces at each beam end, and at each joint 

different forces act on each beam (though the net sum at a joint is zero). 

2.2.2 CALCULATING ENERGY LEVEL WITHIN A BEAM 

In order to calculate the energy level within the beam, the power dissipated in the beam must 

first be found. The power at the end of each beam is considered in three components (two due 

to linear motion and one due to rotation). Thus the power vector at end 1 of beam N (in global 

coordinates) is. 

{P.} ' 

PI 

P. 

R 

1 

1 

(2.23) 

The power is derived from the conjugate product of the coupling force and the velocity at each 

beam end. Velocities are derived from the displacements as the system being analysed at 

discrete frequencies. The velocity vector representing the three velocity components at end 1 of 

beam N is derived from the displacement, at frequency CO, 
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}' == (2.24) 

It is re-iterated that the frequency dependence of the variables is omitted for clarity. The global 

joint velocity is common to the beam ends which form a particular joint. It is the different 

coupling forces at the end of each beam that determine the power transmitted between beams. 

For each power component, using the product of the complex force and the conjugate of the 

complex velocity the real part corresponds to the power transmitted. As the analysis is 

performed at discrete frequencies, the time averaged power is given by half the real part of the 

product; 

{ P j ' = ^ R = pi y i 

F' V ' 

(2.25) 

where * denotes complex conjugation. The forces have been transformed in the global 

coordinate system (as performed for the displacement vector in (2.8)). The sign of the real part 

allows the direction of power in each component to be ascertained. 

The sum of all the end beam forces at a joint is zero (see (2.18) and (2.19)) and all the end 

beam velocities are common, so the net transmission of power into (or out of) a joint is zero. 

All the net energy flowing into a beam &om each end, or from an external power input, must be 

dissipated in the beam, so 

{ p j ' +{p,}° +{P,}' +{P„r"" = 0, (2.26) 

r 

where j is the energy lost in the beam due to effect of damping. A positive value of 

power indicates power into the beam, and thus j is negative by definition. Hence as 
the remaining terms in (2.26) are known, then the average power loss in a beam can be 

calculated. The energy level in beam N is the power dissipated in the beam divided by the 

damping. The beam damping specification, % is given above. The energy level is thus 

derived from the sum of the power transmitted in all planes in beam N, 

I K T " ' . (2.27) 

and where , for example, represents the power dissipated (2.26) in the x-axis 

direction. In the optimisations considered in the thesis the objective function is either the energy 

level at a single frequency, and is thus expressed as in (2.27) with the frequency dependence 
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assumed, or the average energy level over a frequency band. The calculation of this average is 

detailed in Section 2.5. 

:z.3 j4jp]>L,K:/iTio]sr c)F .AjCTriT/iE (:()iNr]rRC)i_ iro TTHi; STR1LJ(:TIJT3JE 

To support the work detailed in Chapter 5, a model for the application of Active Vibration 

Control (AVC) to the structure is described. The active control system modelled here uses 

double-acting axial operating actuators. For simplicity, it is assumed that the addition of an 

actuator to a beam does not alter the mechanical properties of that beam. The point of 

application of the forces from the actuators are offset (by 10mm) from the ends of the beams. It 

is noted that the force vector f used in this section is distinct to the force vector used in 

Section 2.2, and that only global coordinates are used in this section. 

The base vibration is modelled as a single transverse force of IN applied at the middle of one 

of the beams adjoined to the base (as shown in Figure 2.1). In AVC terminology this is called 

the primary force. Two vectors defining the effect of the force and velocity components (for all 

degrees of freedom considered) at the joints of the ends of Beam 40 in Figure 2.1, in the 

absence of any other forces (i.e. without active control operative) are denoted fp and Vp. AVC 

applies secondary forces to 'counter' vibrations on the structure. Their effect is determined by a 

vector describing the values of secondary forces of each actuator f,, and either a 'transformed' 

force or mobility transfer matrix (C or Y) wliich represents the resultant force or velocity 

components from these secondary forces at the joints at the ends of the beam. The net force and 

velocity vectors from the combination of both primary and secondary forces are then given by 

the summations of these two components, thus the net force vector, f, is 

f = fp + (:f.. (2.28) 

where the format of the force vector f, which describes the forces at the ends of Beam 40, is 

given by, 

?=[{/;"" i r ] { / r n " i r } 

The net velocity vector, v , is 

(2.29) 

V = Vp + Y f ^ , 

where the format of the velocity vector v is given by. 

40.0 %̂0 40,0 
V, ^ Ve } K ' 

J <0J <», 

(2.30) 

(2.31) 
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Vp is the vector of the six velocity components due to the primary force only, being common 

to the formulation of f and v. All the net and primary force and velocity vectors ( f , f p , v , V p ) 

are of the same format. 

The two 'transformed' force and mobility transfer matrices used, C and Y, are themselves 

comprised of two terms, so (2.28) and (2.30) may be written, 

f = f , + C T f , . 

V = Vp 4 - Y ' T f , , 

(2.32) 

(2.33) 

where C and Y ' are the force transfer and mobility transfer matrices, which define the 

mechanical coupling between the actuators and their effect of the force and velocity 

components at the ends of Beam 40. T is a transformation matrix which maps each axial-only 

secondary force onto six components in each plant matrix. This is required as force and 

velocity components at the end of Beam 40 in all degrees of freedom are not independent, but 

solely defined by the axial forces of the force vector, f,. (2.32) is then explicitly (shown 

extended to the case with two secondary force actuators, denoted/,), 

40,0 

40,0 

.4&0 

40,7 

40,; 

i c r 
- C IB 

-,40,0 
'2A 
i40,l 
2̂A 

_^40,0 
^2B 

i40,l 
2B . 

c 

{l} 
{]} 

4 
f s . 

where, for 

matrices in 

y^^O 
J Py 

J P% 

J p, 
r40J 

J Py 

J Pb ^ 

(2.34) 

example, is the x-axis force component at end 0 of Beam 40. The sub-

the C matrix are of the format. 

- 4%0 
0 0 

c : r = 0 
40,0 

0 (235) 

0 0 v w o 

where c/j ' " is the individual force transfer function for the x-axis force component at end 0 of 

Beam 40 for a unit axial force at end A of the beam where the first secondary actuator is 

employed. This notation is extended to responses in the y-axis, rotational components; from 

end B of the actuator beam position; and for end 1 of Beam 40. The signs of the sub-matrices 

for secondary drive from end B are negative to give the proper representation of a double-
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acting actuator. The reason for the diagonal format of the sub-matrices is to ensure that all the 

net force and net velocity components remain independent and only combined in the final inner 

product between f and V; so that the power flow components &om the six degrees of fi-eedom 

are summed and not the force or velocity components. The {l} sub-matrices in T in (2.34) are 

vectors which are explicitly. 

& } = ( ! 1 1 1 1 l y , (2.36) 

and maps a single value for each secondary actuator value onto the all the six individual 

transfer functions it relates to. For convenience the force transfer matrix and the transformation 

matrix are combined to form a transformed force transfer matrix C, as used in (2.28). In a 

similar way Y, as used in (2.30), is the transformed mobility transfer matrix, where the Y ' 

matrix (2.33) and its sub-matrices are defined. 

Y ' = MB 
/40,1 

(2.37a) 

0 0 
V40,0 _ 
*1A - 0 0 

0 0 

where j / " ' " is the individual transfer mobility, detailing the x-axis force component at end 0 of 

Beam 40 for a unit axial force at end A of the beam where the first secondary actuator is 

employed. 

The flexural energy level in the beam arises as a result of the balance between the average 

energy flowing into the beam at its ends, and the average dissipation of the energy due to its 

damping. The damping is assumed to be proportional (Tse, Morse and Hinkle, 1978). The 

power dissipated is equal to the net input power to Beam 40, which for harmonic vibration is 

defined as half of the real part of the conjugate product of the complex force and velocity 

vectors, at the joints at the ends of the beam. 

f = ^ R e { f " v } . 

which can be more conveniently expressed in the linear form, 

4 

(2.38) 

(2.39) 
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Using (2.28) and (2.30) to express this in terms of f^, the independent variable for the cost 

function minimisation as, 

P = i [ f . " (C" Y + Y"C)f . + f," (C« V, + Y « f , ) + ( f , Y + v , c ) f . + f ,"v, + v,"f J . 

(2.40) 

This is written in a general quadratic form, 

/ = x"Ax + x"b + b"x + c , (2.41) 

where A is a Hermitian matrix, b is a complex vector (which is equivalent to the secondary 

force vector fj) and c is a real scalar. The positive scalar c represents the value of the cost 

function due to the primary excitation only (without active control; x = 0 ). The x" Ax term 

represents the value of the cost function due to the secondary source excitation only (without 

primary source of structural excitation), and tliis is obviously always positive (unless there is 

an external power input into Beam 40). Based on these physical grounds A will always be 

positive definite (see (A. 2)). This was verified in practice by confirming that all the eigenvalues 

of A are positive. Thus, the derivation of the minimum value of the cost function can be 

greatly simplified. Also, as the AVC system is over-determined (there are more degrees of 

freedom for sensors than actuators) A is of full rank (which is also ensured if positive-

definite) and thus a minimum will always exist. The minimisation of the quadratic form in 

(2.41) is detailed in the Appendix A. This yields the optimum secondary control vector, 

x ^ = - A " ' b , (2.42) 

and, therefore, the optimum secondary force vector is, 

= - ( c " Y + Y " C r ( c " V p + Y " f J . (2.43) 

From Appendix A the minimised value of the dissipated power is of the form, 

J „ = c - b " A " ' b . (2.44) 

Hence the minimum net dissipated power is explicitly, 

1 
- ( C Y + V . " C ) ( C " Y + Y " c ) " ( c " v , + Y " f , (2.45) 
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The average energy level was used as the cost function. This is related by a simple scaling 

factor, Cd, the beam damping which is independent of frequency. Hence the minimum energy 

level , at frequency CO, of the beam is, 

^̂ 0=0 (/o)= - (2.46) 

The average energy level over a frequency band is also used as the parameter to be minimised. 

The frequency average used is, 

^ " l)Ao)), (2.47) 
n k=\ 

where n is the number of frequency steps, Aco the angular frequency spacing and % the lower 

angular frequency point. is 5Hz for all cases. This is equivalent to the generic cost 

function average given in Section 2.5. The total control effort required to achieve the AVC 

reductions is taken to be the sum of the squares of the individuals secondary forces. The total 

control efkrt, , is then formally, 

= Z f " + (A: - l)Am). (2.48) 
i-=i 

The control is summed over the same frequency range as for the performance studied. 

2.4 DEVELOPMENT OF ALTERNATIVE COST FUNCTIONS TO 

REPRESENT VIBRATION 

This section supports the work reported in Chapter 5, in which other Active Vibration Control 

(AVC) cost functions are considered and compared. The values of different minimised cost 

functions are derived. It is noted that the force vector f used in this section is that used in 

Section 2.3, and that only global coordinates are used in this section. 

2.4.1 THE RIGID BODY KINETIC ENERGY OF A BEAM 

The minimisation of the flexural energy in the beam, calculated in Section 2.3, only accounts 

for the motion of the beam due to its flexure. If the beam does not undergo flexure, its power 

dissipation and therefore the flexural energy is zero. However the beam may still move as a 

rigid body and this motion would not be detected by Efiex- So, even though Efiex may have been 

reduced to its minimum value, there may exist a significant amount of undetected rigid body 
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motion, which could dominate the motion of the beam, or any object connected to it. Therefore, 

a cost function was sought which represents all the beam energy due to its motion; the flexural 

energy level and the rigid body kinetic energy, Erigid- The minimisation of this total vibrational 

energy cost function would therefore be superior and achieve the best vibration reduction. 

Considering the rigid body kinetic energy of Beam 40 due to movement in the axial direction, 

globally the j-axis direction, the velocity of the centre of mass of the beam, , is given by the 

average of the j-axis velocities at the end of the beam. At beam ends 0 and 1 the velocities are. 

(2.49a,b) 

where F," and F ' are complex amphtudes. The instantaneous rigid body kinetic energy is thus 

described, 

(̂ ) = ̂  (̂ ) = ̂  /» 
2 

(2.50) 

where m is the total mass of the beam. For harmonic excitation the total time averaged kinetic 

energy is given by, 

m 
(2.51) 

The rigid body kinetic energy due to the translation of the centre of mass of the beam in its 

transverse sense, in the x-axis direction, can be expressed in terms of the scaled real part of the 

product of the x-axis velocities. 

^ Ti-c{r;vf + 2 r X ' + r;v;'}. (2.52) 

When the beam rotates as a rigid body about its centre of mass the rotational kinetic energy is 

(2.53) 

where I is the second moment of mass of the beam about its centre and 0 is the angular 

velocity of the beam. For small 0 , the instantaneous kinetic energy can be expressed in terms 

of end velocities, v° and v ' 

KE,., it) 
2 4 

\ 2 

L 
(2.54) 
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where L is the beam length. For harmonic excitation the average kinetic energy can be 

expressed by, 

(2.55) 

The x-axis velocity vectors therefore defines a combined measure of the x-axis translational and 

rotational rigid body kinetic energies as, 

m 
xS 12 

} • (2.56) 

Hence the total rigid body energy of the beam, E,-igid, is obtained from the sum of (2.51) and 

(2.56); 

= — ( 2 . 5 7 ) 
m 

This can be expressed succinctly in the matrix equation, where ii represents the entire 

bracketed term in (2.57), 

E,.. 
7M 

48 
nw - . » = — Reju;" } , (2.58) 

where Ui and U2 are defined as, 

u, =(3r; 6v; iv; 4r,' 4F° 4 F j y . 

= K I"' K K° K' K ' f . 

The change of the complex conjugation operation fi-om Ui to U2 has no effect since the real part 

of u is taken, u, may then be formed using the velocity vector, v, defined in (2.31), 

u , = Q , v 

0 3 0 0 0 0^ 

0 6 0 0 0 0 

0 0 0 0 3 0 

4 0 0 0 0 0 K' 

4 0 0 0 0 0 

0 0 0 4 0 0 . 

(2.60) 

Similarly for U2, 
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u. Q . v 

^0 1 0 0 0 0 

0 0 0 0 1 0 

0 0 0 0 1 0 

1 0 0 0 0 0 

0 0 0 1 0 0 

0 0 0 1 0 0 

\ 

JC 

V,' 

Vl 

K 

y 

(2.61) 

Expressing the cost function (2.58) in linear form, 

(w+w"), •'rigid 
m 

96 
(2.62) 

where * is the conjugate operator. After some manipulation E,igid can be expressed in the simple 

linear matrix formulation using the velocity component scaling matrix N, 

(2.63) 

where v is the velocity vector (2.31), and 

N = 

8 0 0 4 0 0 

0 6 0 0 6 0 

0 0 0 0 0 0 

4 0 0 8 0 0 

0 6 0 0 6 0 

0 0 0 0 0 0 

(2.64) 

Expanding (2.63) using (2.30) the cost function can be expressed in quadratic form, 

= ~ ( f . Y " N Y f . + f « Y " N v , + v » N Y f . + v , " N v . ) . (2.65) 

2.4.2 MINIMISING THE TOTAL VIBRATIONAL ENERGY OF THE BEAM 

A global cost function is defined which is the total vibrational energy of Beam 40 of the 

structure, E,„,ai, combining flexural energy and rigid body kinetic energy. 

E. ^flex ^rigid ' (2.66) 

This is the sum of two quadratic functions (2.46) and (2.65) resulting in another quadratic form 

which when expressed in the general quadratic fonn (2.41) the coefficients are. 

A = — ( C " Y + Y " C ) + — Y ^ N Y , 
4 c , \ / 96 

(2.67a) 
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4c^ 
• ( C " v . + Y " f , ) + ^ Y « N v „ 

j r ( C v , + v ; ' f J + ^ v , " N v , . (2.67c) 

The optimum secondary force vector, and the minimum cost function value are given in (2.42) 

and (2.44) with the values of A, b and c as given in (2.67). 

The minimum value of the cost function is obtained if A is positive definite. The first term is 

positive definite for all secondary actuator positions except on Beam 40 (see Section 2.3). The 

second term is quadratic as N is real symmetric and hence semi-positive definite. The sum of a 

semi-positive definite function and a positive definite function results in positive definite 

fiinction. 

2.4.3 MINIMISATION OF THE SUM OF THE SQUARES OF THE 
TRANSLATIONAL JOINT VELOCITIES 

The first velocity-based cost fiinction studied, J,rans, uses the sum of the squares of the 

translational velocity components at the ends of beam 40. These measurements can be readily 

obtained using standard accelerometers with the relevant orientations. To be consistent with the 

cost function derived in the following section, this cost function is scaled so that it is equal to 

the sum of the rigid body kinetic energies of each half-beam length of beam 40. The time 

averaged values of kinetic energy at end 0, for example, of Beam 40 in the x-axis and j-axis 

directions are therefore. 

0̂ m 
k e : = - v: (2.68a^b) 

for harmonic excitation. The velocity component adhering to previous notation (2.49). A 

reduced velocity vector, containing only translational components, may be achieved by pre-

multiplying the velocity vector defined in (2.31) with the matrix P, 

P = - d i a g ( l 1 0 1 1 0 ) . 
8 

The cost fiinction Jtrans is then. 

Expanding with (2.30) results in a quadratic function of the form (2.41) where, 

A = Y " P Y , 

(2.69) 

(2.70) 

(2.71a) 
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b = Y"PVp , (2.71b) 

c = (2.71c) 

The optimum secondary force vector, and the minimum cost function value are given in (2.42) 

and (2.44) with the values of A, b and c as given in (2.71). 

2.4.4 MINIMISATION OF THE WEIGHTED SUM OF THE SQUARES OF ALL 
VELOCITY COMPONENTS 

In order to provide a more comprehensive velocity-based cost function, the angular velocity at 

each joint could also be measured. Even though devices to measure angular velocity are not as 

commonplace as their translational counterparts, low-cost practical devices are readily 

available. Intuitively, it is a good strategy to reduce all the velocity components at the ends of 

the beam, to ideally zero. A cost function that pursues this aim is the sum of the squares of all 

the velocity components. However the arbitrary combination of the squares of the translational 

and rotary components will produce a cost function in which the relative 'weighting' between 

these two different quantities will depend on the system of units (e.g., CGS, SI etc) in which 

the cost function is defined. Whilst it is not possible to rigorously define this weighting, for 

anything other than solely rigid body motion, an attempt is made to produce a sensible 

weighting. This weighting is achieved by considering the kinetic energy represented by both the 

linear and rotational velocity components. This cost function is easier to implement in practice 

than the total energy cost function, since the measurement of flexural energy requires the inter-

beam coupling forces, wliich are not as easily obtained as a velocity measurement, especially 

more so if the application of active control was an 'add-on' to an existing structure. 

To determine a sensible weighting the beam is considered as two half-lengths. The halves are 

assumed to move as rigid body levers whilst being hinged about the joints at the beam ends. 

Each translational velocity component is then assumed to represent the kinetic energy of a 

lumped mass equal to the mass of half of beam 40. Each rotational velocity component is 

assumed to represent the kinetic energy due to the rotation of the distributed mass of each half-

beam length 'lever'. This may appear to disregard the flexural motion of the beam - however in 

the fi-equency region considered only the first transverse mode is significant. Considering the 

beam as two 'rigid body' halves allows the first transverse mode to be approximated, giving 

some credence to this approximation. 

The kinetic energy of each half-length of beam 40 due to the translation in the x-axis and j-axis 

directions is as given above in the derivation of the cost function (26). Considering the 

average rotational kinetic energy of one-half of beam 40 with distributed mass, this is 
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represented using the rotational velocity component at the beam end. So, at end 0 this is given 

by, 

/M L.n|2 
4 2 ; : = ( 2 72) 

The relative scaling between the translational and rotational components is therefore shown in 

(2.68) and (2.72). A diagonal pre-multiplying matrix L which allows the velocity squared cost 

function Jau to be written using the velocity vector defined in (2.31), 

J ^ = v " L v , (%%% 

where L is 

m , . . 1 , , 1 
L = - d i a g ^ l 1 - 1 1 - J . <z74) 

Expanding (2.73) with (2.30) results in a quadratic function of the form (2.41) where 

A = Y " L Y , (2.75a) 

b = Y"LVp, (2.75b) 

c = (2.75c) 

The optimum secondary force vector, and the minimum cost function value are given in (2.42) 

and (2.44) with the values of A, b and c as given in (2.75). 

In previous sections various parameters representing the vibration of a beam have been derived. 

It is usually more useful to assess vibration over as an average over a frequency band. This is 

defined here for a generic parameter or cost function, CF, and is the same as the specific case 

defined (2.47). The fi-equency average ( C F ) is thus defined, 

(2 76) 
A' = l 
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where n is the number of frequency steps, Aco the angular frequency spacing and the lower 

angular frequency point. Two frequency bands are used in the work presented here, both have a 

common frequency spacing such that ^ ^ 2 j i 

In the study of the reduction of the vibration transmission of the structure, the improvement is 

measured by the reduction in one of the parameters representing the vibration in Beam 40. 

Where the reduction is specified using decibels, this is defined as a , 

= 1 0 log 
^ CF 

(2.77) 

where is the value of the generic cost function, CF, for the unoptimised structure, and 

CF^p, is the optimised (reduced) value. 

:2.() ()]F PCJrwiElPl I N EiTTIll ICrilUTRJB: 

To understand the mechanisms of the vibration reduction in Beam 40 of the structure, the 

power reduction is split into constituent parts, whose definitions are now derived. The 

reductions in the vibrational energy of Beam 40 of the stmcture achieved by geometric redesign 

can be attributed to one of two factors; the reduction in the power input to the structure and the 

redistribution of the power dissipated in the beams such that a smaller proportion in dissipated 

in Beam 40. The total reduction in the power dissipated in Beam 40 due to optimisation is 

defined as, 

punopt 

'̂ TOT ~ Z ' (2.78) 
•^40 

where and are the values of power dissipated in Beam 40 before and after 

optimisation. The input power to the structure is dissipated in all the beams of the structure. 

The ratio of the input power, , to may be expressed as the sum of the power dissipated 

in all the beams of the structure, which is denoted for each beam N as, P^ . This is defined for 

both an optimised structure and the unoptimised structure as, 

40 

p I P -

T = = , (2.79) 
P P 
^ 40 • ' 40 
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40 
^ punopt 

p unopt / ' N 
-C"""" =:^^! ==:%:! , (2.80) 

4̂0 4̂0 

where I"""'" and T represent the power distribution between Beam 40 and the rest of the 

structure for the unoptimised and optimised structures respectively and an increase in the value 

indicates the redistribution of power within the structure as to reduce the power in Beam 40. 

(2.78) can then be expressed as the product of two factors; one describing the reduction of the 

input power and the other the change in the power dissipation distribution within the structure, 

'm ^in ^ 

(2.81) may be expressed using decibels, 

lOlog 
f pimopt ^ 

40 

P 
4̂0 / 

10 log 
f punopt ^ 

P. 
+ 101og 

^ T ^ 
^unopl (2.82) 

Thus the reduction in power dissipation level in Beam 40, , may be expressed as the sum 

of the reduction in the input power level to the structure , and the change in the /power 

level, » 

^TOT INPUT '^^'REDIST ' (2.8j) 

where the terms in (2.83) directly correspond to those in (2.82). 

When Active Vibration Control techniques are applied to the structure, each actuator can 

provide a source or a sink of energy. Assuming the actuators are placed on beams A, B and C, 

the power dissipated (or absorbed) by these beams is represented by and fc- Negative 

values indicate that the actuators are sourcing (or supplying) power to the structure. Separating 

the actuator power terms, (2.80) becomes, 

40 

Y.P, +Pa+P,+PC 
/ V = l 

^ -Flo 

(2.84) assumes an AVC system with three actuators, but is easily adapted to systems with less 

actuators. Similarly as for (2.81), (2.78) can be expressed as the product of three factors, 

pimopt punopt 

= (2.85) 
-Qo -Cvz ^ 
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where is the acfwafor coM(rz6wfzo/i/acfor, and is defined, 

S f „ 
N=l 

Wfyj.a.c 

(2.86) 

Its meaning is explained below, with respect to its logarithmic form, t ' is the passive 

redistribution factor, which is similar to x in (2.79), but it does not include all the beams on the 

structure, only passive beams (those not containing an actuator), and is given by. 

40 

T': jr (2.87) 

Expressing (2.85) in decibels, in the same way as for (2.82), yields, 

CCjQj OCmpur ^ACF ^ redist (2.88) 

where CĈ p̂. is the reduction in level due to the actuator contribution, OC\edist the 

attenuation due to the redistribution of the power between Beam 40 and the rest of the passive 

beams in the structure. is defined. 

^ > 0 

r \ 

40 

W=1 
\ / 

/ \ 
40 

\ 

N=l 
/ 

+ ve 

ve (2.89) 

Thus (X^cF is positive if the net actuator contribution is to absorb power from the structure, 

and negative if the net contribution is to supply power to the structure. However, it is not 

defined is the net power supplied is greater than the power dissipated in all the passive beams. 

In this case the primary force input to the structure would be absorbing power from the 

structure. 
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The major notation used in this chapter is listed below. Other symbols are defined locally. 

A Hermitian matrix 

b Complex vector 

Common beam damping value 

c Complex scalar 

C Transformed transfer impedance matrix 

C Transfer impedance matrix 

Cj Structural coupling matrix 

e'™ Complex time phasor 

E Vector of displacement components from externally applied forces 

Eflex Flexural energy of Beam 40 

g/y Energy level of beam 

Erigid Value of total kinetic energy due to rigid body movement of Beam 40 

Etotai Total vibrational energy of Beam 40 

f Net force vector for Beam 40 

f Force vector for Beam 40 due to primary input 

fg Vector of secondary forces 

{f^ }" Force vector for beam N at end a, defined in local coordinates 

F Individual beam end force vector for structure 

Power vector for beam 40 at end a, defined in global coordinates 

[G f, Green function matrix for beam N with input at a and response at b 

I Second moment of mass of Beam 40 about centre of mass 

J Generalised cost function value 

Jail Value of the scaled sum of the squares of all velocity components (kinetic energy 

due to rigid body motion of Beam 40) 
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Jtrans Value of tlic scalcd sum of the squares of the translational velocity components 

(rigid body kinetic energy only due to translation of Beam 40) 

KE Time-averaged kinetic energy component 

L Length of Beam 40 

m Mass of Beam 40 

P Power dissipated in Beam 40 

Power input to structure after optimisation 

pump) Power input to structure before optimisation 

Pj^ Power dissipated in Beam N after optimisation 

pmopt Power dissipated in Beam Nbefore optimisation 

P^ Minimised dissipated power in Beam 40 

{P\ }" Power vector for beam N at position a, defined in global coordinates 

{P v Y " " ' ' ' Power dissipation vector for beam 

q , AVC total control effort 

t Time variable 

] Global-local coordinate transformation matrix 

T Transformation matrix 

vl Instantaneous velocity at end a of Beam 40 in global direction b 

V Net velocity vector for Beam 40 

V Velocity vector for Beam 40 due to primary input 

F / Complex velocity amplitude at end a of Beam 40 in global direction b 

{Vyy Y Velocity vector for beam N at end a, defined in global coordinates 

Power vector for beam 40 at end a, defined in global coordinates 

X General complex vector 

{x }° Displacement vector for beam N at end a, defined in local coordinates 

{X^ Displacement vector for beam N at end a, defined in global coordinates 

V Transformed transfer mobility matrix 
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a' 

a ror 

x' 

"XCf 

^TOT 

-i/nopf 

£0 

CO, 

Am 

Transfer mobility matrix 

Power level reduction in Beam 40 due to operation of AVC 

Power level reduction in Beam 40 due to reduction in input power 

Power level reduction in Beam 40 due to power redistribution in structure 

Power level reduction in Beam 40 due to power redistribution in structure between 

passive beams 

Total power reduction in Beam 40 

Rotation of Beam 40 

Power redistribution between Beam 40 and the rest of the beams in the structure 

aAer optimisation 

Power redistribution between Beam 40 and the rest of the passive beams in the 

structure after optimisation 

Actuator contribution factor 

Reduction in power dissipated in Beam 40 due to optimisation 

Power redistribution between Beam 40 and the rest of the structure before 

optimisation 

Lower angular frequency 

Angular frequency spacing 

Frequency-averaged value 
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Figure 2.1: Two-dimensional cantilever structure used as the subject of optimising (minimising) 
the vibration transmission from the base to Beam 40. The global coordinate system and the 
beam numbering is shown, and also the position of the primary force input, fp. 
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EndO 

Endl 

Figure 2.2: General notation of forces and moments at points of external application and at 
becim ends, with respect to local beam coordinates. 

Hinged joint ^ 

Figure 2.3: Small structure example used to illustrate the receptance model method. 
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CHAPTER 3 

] i r b x ) d h i c * i G w i 1 k ) ( [ y p t i n o i s a t i c H i ; i r K l 

:s.o 
This chapter provides the background to the optimisation algorithms and methods of robustness 

analysis used in this thesis. Due to the combinatorially large size of some of the optimisation 

tasks addressed the use of traditional optimisation algorithms is either not possible or will not 

yield the best results. However, some initial design optimisations are performed using a small 

sample of traditional techniques for comparison. The traditional techniques used are briefly 

described, with supporting theory where applicable in an appendix. The genetic algorithm is a 

more recent optimisation technique which may be used to efficiently find good solutions to 

combinatorially large or multi-modal search space problems. An introductory qualitative 

background to genetic algorithms is supported by an appendix giving a more theoretical 

analysis to describe the expected performance. A more recent optimisation algorithm called 

Dynamic Hill Climbing, which is a heuristic method which combines elements of stochastic 

methods and traditional techniques, and is also described. 

Whilst optimisation algorithms are generally applied to search for optimal results under 

nominal conditions, if any one of these solutions is very sensitive to small changes in any of the 

optimisation variables then the predicted performance may not be practically realisable. This 

may be either because engineering tolerances are greater than the accuracy of the computer 

model, or due to changes experienced to any of the optimisation variables in the use of the 

design. Solutions that are not sensitive to such changes are called robust. These solutions are 

more desirable in practice, even if this is a compromise with the performance of the system 

under nominal conditions. Robustness analysis is performed on all the optimisation candidates 

produced in the work detailed in Chapters 4, 5 & 6 using a technique of re-evaluating the 

design with an ensemble of random perturbations and this method is formally described. In 

Chapter 7 the use of robustness as an integral part of the performance of the structure in the 

optimisation process is studied. First it is necessary to achieve a more efficient measure of 

robustness, and a technique using computer experiments based on orthogonal arrays is 

assessed, which originates from the field of statistical experimental design and more recently in 

the field of quality control. The properties of such orthogonal arrays are discussed and a small 
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array is derived as an example. The second technique, incorporating robustness into the design 

model is an extension of the standard genetic algorithm in which the interaction between the 

genetic information and its environment is modelled. In the same way that for individuals to 

survive they must be both fit and robust in biological systems, the use of additive random 

perturbations to the phenotype within the genetic algorithm is used to achieve a similar goal: 

design solutions with optimal and robust performance. 

Throughout this chapter reference is made to the Design Exploration System used by the author 

for the majority of the optimisation work presented in this thesis. This is a software application 

containing a wide range of optimisation algorithms, and allows integration with user written 

code. For brevity this will subsequently be referred to in this chapter by its proprietary name: 

OPTIONS (Dynamics Modelling Ltd., 1996). 

3.1 rNnn&()iyu<:Tic)%rTro cxPTTOdisvniofj 

Optimisation is the problem of finding the minimum value of a scalar quantity, E, which is a 

function of other variables, called optimisation variables. The task is therefore to find the 

optimum values of these variables. Hence, if U is the value of a function / (the objective 

/wMcAoM), Wiich is multivariate then, expressed mathematically, optimisation is defined, 

m i n t / - min f(x)= /(x.) 
r 1 ( 3 ^ ) 

X = Xz 

where x is the vector of n optimisation variables. The optimal optimisation variables are 

denoted by the vector Xq. In some cases, the object of optimisation may be to maximise the 

objective function, this however, may still be expressed and dealt with as a minimisation task, 

since, 

max / ( x ) = min ( - / ( x ) ) , (3.2) 

and thus there is no loss of generality in studying the minimisation of an objective function. 

The value of the objective function over all possible values of x forms a multi-dimensional 

surface, which is often termed the search space. Most optimisations have a search space that is 

bounded by extreme limits on the values of each of the optimisation variables. In addition other 

constraints may be enforced which are due to limits on the values of parameters (called 

constraints), which are functions of the optimisation variables. These constraints may be either 

equality constraints or inequality constraints. One final form of constraint is that one or more 

of the optimisation variables may only assume one of a set of discrete values. This is not 
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considered here as, even though such a constraint is required in the combined 

discrete/continuous variable optimisation reported in Chapter 6, it is achieved in a different 

way. The regions of the search space that do not violate any constraints are called feasible, 

similarly regions where any constraint is violated are called infeasible. Thus as well as defining 

an outer boundary to the search space is it also possible to have isolated infeasible regions 

witliin these boundaries. 

Thus to complete the mathematical expression of optimisation, (3.1) it must then be 

additionally subject to the constraints, 

l | / , ( x ) = 0 ; = (3.3a) 

i&y ()[):> 0 jf== . (3.3b) 

The objective function is thus optimised subject to p equality constraints and q inequality 

constraints. By convention the inequality constraints are non-negative, positive-bound 

constraints are achieved by specifying instead. 

To keep the search within feasible regions, penalty functions can be used to penalise the value 

of the objective function, so as to make the value of the objective function in such regions 

extremely undesirable and force the search back to feasibility. In effect this is achieved by 

distorting the search space in or near regions of infeasibility. Two types of penalty function are 

available with the OPTIONS software used, and both are briefly described. 

The first, and simplest penalty function, requires no significant additional computational 

overhead. It simply adds a correction to the objective function on the same pass as its 

evaluation, and only in regions external to feasibility, otherwise it has no effect. For this reason 

it is referred to here, as in the OPTIONS manual, as the One Pass External penalty function. 

The penalised objective function, Up, is 

+ (3.4a) 

where the ( ^ operator defines the operation 

, , [ a , a < 0 

. a > 0 

The value of r used is typically ICP". Whilst being generally successful in its application the 

penalty it provides is very severe, and it can sometimes stall a search prematurely. This can 

occur if the minimum in the feasible region lies on, or close to a constraint boundary. If the 
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search reaches the constraint boundary it will then attempt to crawl along this boundary to find 

the minimum. If the search direction is coincidentally aligned with the constraint boundary the 

steep wall imposed by this penalty function can fool the search to prematurely terminate as it 

would need to pass through regions of increasing value in the search space to find lower regions 

further along the boundary. The action of the One Pass External penalty function is illustrated 

in one degree of freedom in Figure 3.1. 

Another widely used penalty function is that proposed by Fiacco and McCormick (1968, as 

cited by Siddall 1982). This penalty function begins to affect the value of the evaluated search 

space as a boundary constraint is approached from within the feasible region. It does not 

therefore tend to lead to the possible stalling of searches in these regions as with the One Pass 

External penalty function. However the evaluation of the penalised objective function normally 

requires a series of evaluations, with ever increasing severity, and hence it has a higher 

computational overhead. The form implemented in the OPTIONS package used, defines the 

penalised objective function. Up, as 

(3.5) 
k=\ 9 a- ' /=I ^ 7=1 

where the ( ) operator is as described for (3.4). The leftmost penalty term is the summation of 

the reciprocal of the value of the satisfied constraints raised to the power s, the remaining two 

terms are only non-zero for unsatisfied constraints. The penalty is therefore comprised of one 

interior and two exterior terms which operate exclusively for each constraint. The penalised 

objective function is evaluated a number of times with a decreasing value of r, which initially is 

equal to one. The advantage of this recursive technique is that the current search point can 

move along the boundary towards the true constrained minimum instead of being pushed 

directly towards a point on the constraint boundary by the current search direction, as can 

occur with the One Pass penalty function. A search using a One Pass penalty function may 

then not be able to negotiate the 'brick wall' constraint boundary that may be masking a better 

minimum on or near the boundary. 

The value of Up from the previous pass is used as the starting point for the next pass. This 

process is repeated until the decrement in Up falls below a set threshold, which is defined as a 

given fraction of the previous value of Up. The effect of the penalty fiinction depends upon 

whether the point in the current search space is feasible or infeasible. If feasible, as the search 

point approaches a constraint boundary the exterior term (with the initial value of r as unity) 

becomes small and the value of Up increases asymptotically as the search point moves fiirther 

towards the boundary. However as Up is re-evaluated with a decreasing value of r this 
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asymptotic behaviour occurs nearer the actual constraint boundary, and the minimum point on 

the penalised search space tends towards the boundary and the true constrained minimum. This 

is shown for one-dimensional case in Figure 3.2, where the effect of decreasing r is shown. If 

the search point is in the infeasible region, then with r at unity, little effect on the search space 

is seen. As the value of r is successively decreased then the effect of the distortion caused by 

the asymptotic behaviour is also decreased. Hence the unconstrained minimum on the search 

space is distorted so that it is shifted towards the true constrained minimum. 

The additional computational overhead is that required to re-evaluate (3.5) for each pass, which 

typically increases the computational load by a factor of 3. An efficient search strategy (Keane, 

1999) is to commence a search using the One Pass External penalty function and then continue 

from the 'optimum' found using the Fiacco-McCormick penalty function. The use of the latter 

is to check whether the previous search had become stalled due to the reasons discussed above. 

3 . 2 

Most traditional search algorithms rely on the fact that the search space is monotonically 

decreasing across all its dimensions. Therefore a path to the minimum points can be gleaned 

by, at simplest, taking steps in each dimension and determining the 'downhill' direction, or 

using gradient information for this. 

The field of optimisation, even that using traditional techniques, is extremely large and still an 

area of much research. Indeed achieving a background in the state of the art is a daunting 

process, not unlike some optimisation tasks themselves. A relatively small number of basic 

approaches exist, but it is the number of different algorithms spawned from these approaches 

through the development of each one, and also refinements and combinations of approaches, 

which make this field so large. 

The background of each of the algorithms which are used in Chapter 4 are now briefly 

explained, however it is outside the scope of this thesis to give more comprehensive details and 

the reader is referred to the references. Indeed different interpretations of the same algorithms 

cause even more variants, even though they are commonly described using the same name. As 

an example the OPTIONS software (used for the optimisations described in this thesis) 

contains as many as three different variants of some algorithms, commonly named, but 

available from different suites of software programs. 
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3.2.1 HOOKE A N D JEEVES M E T H O D 

The Hooke and Jeeves search method (Hooke and Jeeves, 1961, as cited by Siddall, 1982) is a 

direct search method; it does not require or calculate any gradient infomiation about the search 

space. The optimum is found by taking steps in the directions of each of the axes, and 

maintaining the steps only if an improvement is made. When no further improvement can be 

made the step size is reduced. The minimum step size is one of the search parameters and when 

no further improvement is made at this point the search phase ends. Then the search space 

vicinity local to the current point is 'peppered' with a number of randomly placed points, for 

each of which the value of the objective function is additionally evaluated. If any of these points 

yields a better result, then this is used as the basis for a new search phase. More formally the 

search algorithm is: 

1. Start at initial point in search space. 

2. Make the current point the base point. 

3. Make an exploratory search for each coordinate in turn: make an predetermined step in 

positive sense, if an improvement is seen retain the step, otherwise try for a negative sense, 

if no improvement is still made then maintain original coordinate. 

4. A pattern move is then made for which steps are made in all coordinate directions. Each 

being the difference between the coordinate value for the current and previous base points. 

If an improvement is seen then maintain pattern move, otherwise cancel pattern move. 

5. If the exploratory search has found a better point, then continue irom 2, otherwise reduce 

step size by pre-determined amount and continue from 2. 

6. If no improvement is found with the exploratory search and the step size has reached a 

pre-determined limit, then calculate the objective function at a number of randomly 

determined points in the vicinity of the current optimum. If any of these yields an 

improvement, make this point the initial point and repeat the search from 1. 

In the implementation of this algorithm (SEEK from the Siddall suite of algorithms in 

OPTIONS), only two search phases are permitted. The local random based search at the end of 

the search phase helps to prevent the search stalling if the path is along a boundary constraint 

where the search may stall due to the coincidental alignment of the coordinate system. This will 

help to prevent stalling on a constraint boundary even when using the One Pass External 

constraint. 
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3.2.2 DAVIDON-FLETCHER-POWELL (DFP) & BROYDEN-FLETCHER-
GOLDFARB-SHANNO (BFGS) VARIABLE METRIC METHODS. 

Variable metric methods (also called quasi-Newton methods) compute and update stored 

gradient information about the search space, which is used by the algorithm. Two such methods 

are Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-Shanno (BFGS). In both 

methods the search space is assumed to be quadratic (so that all partial derivatives of order 

three and greater are zero). This, of course, is not always true. However using tMs second order 

approximation to the search space, applied iteratively, the (local) minimum can be attained. 

These methods are very similar and the BFGS method is actually a refinement of the DFP 

method, affecting the update of an estimate of the Hessian matrix. The effect is small, only 

affecting issues such as the convergence tolerance and round-off error. 

Both algorithms are well known and widely used in the field of optimisation. Thus full details 

are given in Appendix B, and also in (Press et al, 1992) for the interested reader. 

3.2.3 DYNAMIC HILL CLIMBING 

Dynamic Hill Climbing is not a traditional technique, in fact the technique first described by 

Yuret and de la Maza (1993) in conference proceedings and then in more detail in Yuret's 

Masters thesis (Yuret, 1994), is approximately 20 years more recent than the introduction of 

genetic algorithms by Holland (1975). In general the use of this technique has not been well 

reported, however El-Beltagy and Keane (1998), for example, have applied the technique to a 

multi-peaked deceptive problem and found that it performs competitively with other popular 

algorithms (including genetic algorithms in some circumstances). The technique is also one of 

those included in the suite of optimisers in the OPTIONS package, and hence was readily 

available to the author. 

It is outside the scope of this thesis to fully describe the operation of the algorithm, which is 

fully described in Yuret (1994). It has, in fact, more operations than a basic genetic algorithm 

(which is described below). A brief resume of the algorithm follows; 

Wliilst genetic algorithms have been used successfully, there are several factors which could be 

improved upon, according to Yuret. Although genetic algorithms are good for finding regions 

containing local optima, they are not particularly efficient or good at finding the actual value of 

each optimal peak, that is, they are not very good hill climbers. Dynamic Hill Climbing 

therefore has two distinct parts, or heuristics. The first is finding the peak of a local region, the 

local optima. For tliis Yuret uses two heuristics: one whose step size changes to adapt to the 

local terrain; the second is one which the directions of each step adapt to the directions of those 

where recent success has been found. The later has a similar effect to changing the coordinate 
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system, so that, the most successful direction is represented by a single step and not a 

combination of others. 

Having found a local optimum, the second part of the algorithin is concerned with restarting the 

search at a point in the search space that is distinct from all previously discovered local optima. 

In this way diversity in the algorithm is ensured and also the possibility of re-visiting local 

optima more than once severely reduced. For high dimensional problems a random point in the 

search space is shown to be very likely to be distant from any other point, whereas for low 

dimensional search spaces a point randomly placed in the largest interval between previous 

optima is used. 

:3.3 CrEiisnET'K:! 

Genetic algorithms assign new sets of optimisation variables from combinations of a current set 

of optimisation variables under some strategy in which, on average, those having better values 

of evaluated objective function are more likely to survive (in rather simplistic terms). 

Traditional methods of design optimisation often rely on gradient-based methods and where the 

search space is continuous and uni-modal (and convex) they can perform very efficiently. In 

designs where the search space is multi-modal and contains many sub-optima these methods 

can result in a sub-optimal design choices as only the local neighbouring search space is 

explored. Additionally if the search space is discontinuous then such methods cannot be used. 

Evolutionary algorithms have emerged in recent years as being an effective and efficient 

optimisation technique. They are a stochastic-based class of optimisers, that are not random 

searches but have random elements in their algorithms that provide diversity to the search 

enabling all areas of the search space to be available for possible search progression, from any 

one point within the space. Evolutionary algorithms are best suited to finding optimal solutions 

to highly combinatorial problems, where an exhaustive search is not practicable or where the 

surface to be evaluated is multi-modal. In such circumstances the multiple local maxima would 

deceive conventional gradient searching algorithms. 

Evolutionary algorithm is a generic term for a number of guided random search methods, of 

which the most popular two are genetic algorithms and simulated annealing. In general, genetic 

algorithms sample the search space more diversely, however simulated annealing has the 

advantage of requiring less computational effort. The choice, implementation and success of 

evolutionary algorithms is dependent upon the application. Keane (1995a) shows how different 

evolutionary algorithms sample a 'difficult' search space. The value of combining algorithms, 

like genetic algorithms and simulated annealing, is also shown. In the optimisation application 
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considered in this thesis, genetic algorithms have been used to enable comparison and 

verification of the work done by Keane (1995b), who had previously found them to be the most 

preferable optimisation method for the particular problem considered in this thesis. 

For the type of problem for which evolutionary algorithms are often applied it can never 

normally be established whether the true global optimal solution has been found. If repeated 

application of the algorithm yields near-optimal solutions and in most cases these out perform 

the existing design, then seeking the true globally optimum design is often not a necessity. In 

many applications there is little difference in performance between the near-optimal and 

globally optimal solutions. 

3.3.1 GENERAL DESCRIPTION 

Genetic algorithms are based on an abstraction of biological evolution. The genetic algorithm 

was first reported by Holland (1975) but has been publicised mainly through the work of 

Goldberg (1989). The optimisation process 'evolves' from one generation of design solutions to 

the next by a process of 'natural selection'. Each generation is formed from a population of a 

set of chromosomes which are themselves strings of numbers (normally binary) representing all 

of the optimisation variables. The total genetic information contained in a string (each of which 

represents a design solution) is termed a genotype. As in biological systems the organism is 

formed from the genotype and its interaction with its environment, the result of which is termed 

a phenotype. This is put more into an engineering context by Back et al (1997a) where they 

suggest that the phenotype space represents the physical parameters to be optimised, while the 

genotype space is the representation of these parameters by the algorithm in, for example, 

binary strings. Thus any quantisation effects occurring in the phenotype representation can 

readily be seen as 'noise'. The fitness of each phenotype is evaluated by an objective function 

(or fitness fiinction). The value of this function is minimised (or maximised dependant on the 

specific problem) in order to achieve the optimised design, and thus the smaller the value of 

each evaluated phenotype the fitter the set of chromosomes (or design solutions) it represents. 

The genetic algorithm is initialised with a pool of chromosome strings. Each subsequent 

generation is then achieved by three key operations: selection, crossover and mutation. A 

number of the previous generation's chromosomes are selected such that those with greater 

fitnesses have a higher probability of selection. Some of these chromosomes are then 'mated' in 

pairs; two mating chromosomes swap information beyond a crossover point which is randomly 

selected, and two offspring thus result. This is illustrated in Figure 3.3. The new generation is 

made up of a proportion of newly formed and existing chromosomes from the previous 

generation. The last operation, mutation, is a random bit change in a chromosome 'bit' with a 
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small probability, as illustrated in Figure 3.4. The value of the bit is inverted for a binary 

alphabet. This provides random diversity in the evolution and helps to prevent premature 

convergence before too little evolutionary experience has been gained. 

Only the basic operations necessary to define a genetic algorithm have been described above. 

There are many additional operations which are applied to improve performance. One such 

improvement is to prevent 'crowding' (normally termed niching or sharing) where too many 

similar individuals exist in the vicinity of a local optimum and dominate a population. This 

discourages diversity in the search. Further details are available in the general references given 

at the end of this sub-section. 

The average fitness of each generation successively increases and the process is halted after a 

number of generations by a suitable convergence criterion. Normally the best solution 

encountered through the entire optimisation is taken as the result. This is achieved using the 

elitist strategy so that the best-so-far solution is guaranteed to survive into the next generation. 

Goldberg (1989) analysed the underlying nature of the algorithm using schemata to represent 

common patterns within the strings (a subset of the search space). Schemata (singular: schema) 

are chromosome templates which represent a set of chromosome strings that have common 

features. He showed that the schemata with higher fitnesses experience on average 

exponentially increasing trials in subsequent generations. The bias towards particular schema, 

representing a number of solutions, implies an implicit parallelism so that the search space is 

sampled diversely and efficiently. This is discussed further in the next section. More recently 

there has been much critical discussion regarding the early work of Goldberg (as for example 

reported in Mitchell, 1996). In particular many caveats in his schema analysis have been 

shown, especially when considering that a finite population is used in practice. However this 

analysis still demonstrates the 'mechanism' by which genetic algorithms achieves better 

solutions, by (after Mitchell, 1996) discovering promising solutions, emphasising their 

significance in each population and recombining them to (possibly) produce even better 

solutions. 

A more complete description of genetic algorithms is available &om Goldberg (1989), a well 

referenced book which provides a good introduction to the early use of genetic algorithms, or 

more recently Mitchell (1996), for example, or more comprehensive texts (Back et al, 1997b) 

on the entire area of evolutionary algorithms. 

3.3.2 THEORETICAL ANALYSIS 

As discussed in the previous section, although recently both more rigorous and critical analysis 

of the schema theorem has been performed (Mitchell, 1996), the theorem still estimates the 
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growth of fitter chromosome strings through evolution, and thus remains of use. The theorem is 

also used as a basis for the analysis in the next section. However, the shortcomings of the 

theorem are also briefly discussed below. 

The analysis of the operation of genetic algorithms was studied by Goldberg using schemata to 

represent sets of chromosomes by defining the values of the chromosomes at some positions 

and allowing others to adopt any possible value. Using these the survival of each schema (and 

all the chromosomes it represents) may be analysed. The result of this analysis is the well 

known Schema Theorem or the Fundamental Theorem of Genetic Algorithms (Goldberg, 

1989X 

+ 1 ) > I (3.6) 
/ W / - I 

which defines the number of schema H im. current population from the number in the previous 

generation. m(H,t) is the number of schema i / a t generation t.f(H,t) is the average fitness of the 

schema H and f i t ) the average fitness of the entire population containing chromosomes of 

length I. d(H) and 0(H) are the defining length and order of schema H respectively. These are 

defined by example in Figure 3.5 and more fully in Appendix B. pc and p,„ are the probability 

of crossover and mutation respectively. For readers unfamiliar with the Schema Theorem, this 

is derived in Appendix B. The existence of the inequality in (3.6) stems partly from the 

probability that during a crossover operation a chromosomes may be spilt within its defining 

length, but this may have no effect due to similarities between the schema pair. Also, only the 

disruptive effects of crossover and mutation on schema H are considered (Mitchell, 1996). It is 

also feasible that these operations on instances of other schemata will generate instances of H. 

Mitchell (1996) also discusses other areas where the Schema analysis is misleading or often 

misinterpreted. The implicit parallelism previously mentioned is the term coined by Holland to 

indicate that by processing the chromosome strings in a population the algorithm is implicitly 

processing all the schemata whose instances fall within the population. However this does not 

imply that the fittest individual of any schema will be found, it will be the schema with the best-

observed fitness, and this is based on the actual instances occurring within the population. In 

general, it is in the realisation of using a finite population where the Schema Theorem starts to 

fail. For example, at a later stage in the evolution there will be a larger proportion of fitter 

strings and less unfit strings. With only a relatively small number of the latter the estimate of 

an unfit schema can be unreliable if the performance is judged on very few individuals. 

However, the basis by which the basic genetic algorithm achieves the net probabilistic effect of 

selecting the fitter individuals in each generation is seen, despite the inaccuracies discussed. 
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This discussion does not extend to other complexities, of which those preventing crowding were 

briefly mentioned in the previous section and would be the most significant effect in the genetic 

algorithm used in this work. 

3.3.3 ROBUST DESIGN USING A NOISY PHENOTYPE FITNESS FUNCTION 

In a biological system, the decoding of the genotype into the phenotype is a function of its 

environment. During the decoding, perturbations in parameters, such as temperature and 

nutritional imbalance, may occur. If a genotype is robust to such changes, then the resulting 

phenotype will be insensitive to these perturbations. However if the decoding of a genotype is 

sensitive to such perturbations then it is unlikely to survive into subsequent generations. First, 

if a perturbation causes a fit genotype to be decoded as an unfit phenotype then by virtue of the 

low fitness it is unlikely to be selected in the next generation. Second, if an unfit genotype is 

decoded as a fit phenotype, it is likely to survive into the next generation. Even if it survives 

crossover and mutation, it is unlikely to encounter the same value of perturbation and thus this 

time may be decoded nearer or lower its true value. Thus those genotypes that are more robust 

to the perturbations in decoding are more likely to survive. This is essentially the noisy 

phenotype method reported and demonstrated on test problems by Tsutsui and Ghosh (1997). 

More formally, the fitness function is evaluated with perturbations (or noise) added to the 

optimisation variable vector x (3.1), 

6.} 

where A is a perturbation vector, defined &om individual, independent perturbations 5j. The 

distinction between this approach and those that add a single perturbation to the evaluated 

objective function, i.e., / ( x ) + 5 is made. The study of such noisy fitness functions has been 

made (see references cited in Tsutsui & Ghosh, 1997), however these essentially provide a 

measure of the terrain around the nominal point on the search space of the objective function. 

This cannot be related to the optimisation variables unless the mapping to the objective 

function is known. This mapping is often complex and usually liighly multivariate. It is far 

more pertinent to have knowledge of the robustness with relation to the optimisation variables 

themselves, where the limits can, for example in production, be measured or enforced by 

tolerances. 

Using the schema theorem from the previous section it can be shown that using the noisy 

phenotype method the same algorithm operation is achieved but using a modified fitness 

function. This is shown for a one-dimensional case, initially, and extended to more dimensions 
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later on. From (B.19) in Appendix B, the average fitness of population f { t ) at evolutionary 

time step t may be expressed, in terms of the fitness function, f(X) and the probability of each 

individual occurring within a population, p{x,t), of size «, and is, 

(3.8) 

where i is each population individual. Thus the expected fitness of each schema, // , is given as 

= (3.9) 

where p{x,H,t) is probability of each individual occurring in schema H at evolutionary time 

step t. If a value of noise 5' is added to each population individual, x , then the average fitness 

of the population becomes. 

(3.10) 

F{x) is the expected value of the fitness function evaluating the noisy phenotypes, if the 

distribution of the additive noise is given by q{d), 

/ ( :^ + 5 ) g ( 6 ) d 6 . (3.11) 

Hence the expected fitness of schema H is then given by, 

= (3.12) 

By comparison with (3.9) it is seen that in the same way (3.12) evaluates the expected fitness 

of the noisy phenotype fitness function, F{x) in place of j{x). Thus a new Schema Function 

adapted from (3.12) may be written which predicts the expected number of instances in each 

schema at evolutionary time step t. So, 

+1) > I O-is) 
/ ' W / - I 

Changing the integration variable allows F{x) to be evaluated, 

(3.i4) 

Tsutsui & Ghosh (1997) consider the application of adding noise to the genotypes which has a 

Gaussian distribution. In this thesis a uniform distribution is used to maintain consistency with 
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the distributions used in assessing the robustness of the optimal design solutions reported in 

Chapters 4, 5 & 6. This method, whilst providing a general idea of the robustness of the 

solutions to perturbation, specifically provides a measure for perturbations with a uniform 

distribution. Thus to minimise the robustness measured in this manner a similar distribution is 

used. A brief discussion about the relevance of the distribution is discussed in Chapter 4, where 

robustness analysis is first applied in the work detailed in this thesis. 

To quantify the effect of adding noise to a schema representing a genotype a reduction factor is 

defined. Tliis follows Tsutsui & Ghosh (1997), except that a uniform noise distribution is used. 

Assume that the objective function consists of a rectangular peak of a one-dimensional 

function, and is defined to be 

, , \h -w < X < w 

[0 ofAerwzae 

The uniform distribution of the noise, over a range s, is defined such that the area underneath 

the distribution is unity. 

Then depending on whether the rectangular peak mf{x) is narrower than the noise distribution 

(z. e., f{x) is considered to be unrobust) or not, a different expected value is obtained for the 

genotype schema when the point in search space being evaluated is aligned with the centre of 

the peak mf{x), and defines a reduction factor; 

h w > 5 

It is emphasised that because the schemata are being analysed that the expected values of the 

objective function evaluations are studied and not the fitness of individual, determinate 

evaluations. Thus, from (3.17) when the peak is too narrow to be considered robust the 

expected value is reduced by a reduction factor of w / j , whereas if the width of the peak is 

robust (w > 5) then the full value of the function is expected to be evaluated. In practice a 

Boolean definition: "robust'V'not robust" is not made, where the function peak is not centrally 

aligned with the noise distribution, but an overlap still exists, then a diminished expected value 

is expected. This is illustrated using a function with four rectangular peaks, all of height h, but 

with different widths, shown in Figure 3.6 this function along with the probability distribution 

for the noise added to the phenotype. £'[F(x)] shows the expected effect of the additive noise on 

53 



the evaluation ofy(x). The four peaks represent all of the possible cases where w > 5, w = 5 and 

M;< J. It is seen therefore that the expectation of the evaluated function height is reduced if the 

peak is narrower than the width of the noise distribution. For all cases the maximum value 

diminishes at a spatial rate of hj 2s . 

As shown by Wiesmann et al (1998), an optimal value of the expected function E[F(x)] does 

not always correspond to an optimal value of the original function. Indeed, where in regions 

where two narrow peaks exist in close proximity, for example, then the maximum expected 

value does not occur within the peaks of the function f(x). This is illustrated in Figure 3.7, an 

example adapted from that shown in Figure 3.6, where the maximum expected value clearly 

falls in non-optimal regions for the two cases of the scenario shown. Wiesmann et al offer no 

solution to this failing in the noisy phenotype method. As discussed in Chapter 7, however, the 

search space for the application studied in this thesis is expected to be smoother than the 

example shown here, and therefore the use of this method is still vahd. 

To consider the multi-dimensional case (3.11) is firstly expanded to represent a two 

dimensional case with independent variables, xy and as 

(3.18) 

The resulting fitness of schema H is thus the product of two integrals as there is no 

interdependence between them. Hence the step to an ^-dimensional case may be easily made, 

where O is the multidimensional fitness and {H,t) the one-dimensional expected fitness, as 

described in (3.12), 

(3.19) 
i=l 

Thus if the example above was extended to a the /j-dimensional case the overall reduction 

factor O is the product of all the individual reduction factors. 

^ ( o ) = n f : ( o ) . (3.20) 
(=1 

where F,(0) is the individual reduction factor for dimension i, as in (3.17). Hence the reduction 

factor can increase significantly as the number of dimensions in which the width of the 

objective function peak is narrower than the rectangular noise distribution window becomes 
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greater. For example, if for all n dimensions the width of the objective function peak was 90% 

of the width of the noise distribution window, then the overall reduction factor is 0.9". In the 

structure considered as the subject for optimisation in this thesis there are 36 optimisation 

variables. For this case the overall reduction factor would be less than 0.02. 

Thus the use of the noisy phenotype objective function allows the genetic algorithm to favour 

more robust solutions, where the solution would be insensitive to perturbation in any of the 

optimisation variables. The penalty in the evaluated fitness becomes increasingly severe the 

greater the number of optimisation variables to which the design's performance is sensitive. 

Robustness is the lack of sensitivity in a system to small, normally unspecified, changes in its 

design parameters, or in the context of optimisation, in the optimisation variables. The simplest 

way to test an optimised design for its robustness is to perform experiments in which the 

optimisation variables undergo realistic changes, or perturbations, and measure the effect on 

the optimised parameters of the design. In the robustness analysis considered in this thesis the 

expected change in value of the objective function in the face of perturbations represents the 

robustness. In such a way an expected measure of robustness may be achieved. The statistical 

accuracy of such an estimate will depend upon the number of perturbations used and how well 

the statistical distribution reflects those encountered in practice. If the robustness to 

manufacturing tolerances is studied, then a statistical model for such perturbations might either 

be available due to some measure of the error in a manufacturing process, or by prediction. In 

many cases a Gaussian (or normal) distribution may be adopted. However in the robustness 

analysis presented in this thesis a uniform distribution is used. This is because no information 

about the perturbation distribution is known, and a uniform distribution is thought to provide 

the most general case. Thus in this preliminary analysis no assumption is specifically made 

about the nature of the perturbations, simply the effect of perturbations on robustness is 

studied. A uniform distribution also simplifies the robustness analysis. 

3.4.1 MULTI-VARIATE MONTE-CARLO EXPERIMENTS 

One of the simplest methods of measuring the expected robustness of a system is to apply a 

large number of randomly generated perturbations of pertinent magnitude to the optimisation 

variables, and measure the change in the system performance by re-evaluating the objective 

function value. If a sufficiently large number of perturbations are used then the statistical 

distribution of the change in performance of the system can be estimated. 
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Thus to investigate the robustness of a design, which has been previously optimised and is 

characterised by an optimal optimisation vector, Xo, the objective funct ion/ is re-evaluated to 

determine the effect of a set of perturbation vectors by forming a set of n perturbed values 

of the objective function to form a vector V , so that, 

/ K + A j where ... [ / ; } . (3.21) 

The values of are then sorted in numerical ascending order, by assigning them to values of 

where 7 ^ = " ^ " 1̂ '' ... } ;^}suchthaty ,^<y ,^ , . (3.22) 

A probability limit is then calculated so that for a percentage, a , of the n experimental results, 

the performance is better than the value defined by the probability limit. In the robustness 

analysis considered here this is the case when the value of the objective function is below the 

value of the probability limit for a percent of experiments. The probability limit is thus defined 

as, 

y;=3"''row 1 . (3.23) 

where the function i-nd rounds the argument to the nearest integer so that it can be used as an 

index for the data The accuracy of tliis probability limit depends upon the number of 

perturbed samples, n, used. First, for small n the md function will cause a 'quantisation' error 

if a does not lie near an integer value, and effectively a slightly different probability limit is 

evaluated. Secondly, the smaller the value of n the worse the estimate of the statistical 

performance, which is actually achieved as n tends to infinity. In all the cases considered in this 

thesis a is 95%. 

3.4.2 PERTURBATION ANALYSIS B Y EXPERIMENTAL DESIGN 

The statistical design of experiments is a process of planning experiments to collect appropriate 

data and subsequently analyse using statistical methods to obtain vahd and objective 

conclusions. The science of statistical experimental design first originated with the work of Sir 

Ronald Fisher (1925) who was motivated by the optimisation of the yield of agricultural crops. 

Rao (1947) first proposed the use of orthogonal arrays for factorial experimental design, and 

the development of this field has been continued by, for example, Kempthome (1952). Taguchi 

(1987) developed the foundations of Robust Design with the main aim, initially, of improving 

Quality in manufacture in Japan in the late 1940's. All of this work had been aimed at 
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statisticians until Phadke (1989) adapted some of these approaches specifically to engineering 

applications, following Taguclii's work. 

Fractional factorial experimental design is an efficient method of evaluating the response of a 

system to each system parameter, and provides good results if the interactions between these 

parameters are small. Fractional factorial experiments were initially use for screening 

experiments, to identify which system parameters are likely to have large effects on the system 

response. These results would then indicate the factors that should be more thoroughly 

investigated. In an engineering context the experiments are conducted to investigate the effect 

of several factors (or parameters) on some phenomenon (or response) of a system. 

Furthermore, in the application considered in this thesis the experiments conducted are 

computer experiments, and thus there is no experimental error (exactly the same results being 

yielded for each identical experiment) and experimental replication to address this is not 

required, allowing the experimental design to be simplified. 

Fractional factorial experiments are used here to define the perturbation vectors in (3.21). Each 

row of the experimental arrays used corresponds to an instance of the perturbation vector Aj 

suitably scaled. Unlike using random uniformly distributed perturbations, where the 

perturbation value can be any value between defined extremes, using orthogonal arrays only 

either two or three different levels are used depending on the experimental design array used. 

The effect of each factor alone on the change in performance of a system is termed the main 

effect. If all the main effects are independent {i.e., are unaffected by the levels of any of the 

other factors) then each main effect can be determined by one-at-a-time experiments where 

each factor is altered separately and its effect registered. The values of the other factors are 

unimportant. Hence, for each factor only one experiment needs to be performed for every factor 

level. 

If the effect produced by each factor is also dependent upon the levels of the other factors, then 

using one-at-a-time experiments will provide inaccurate and ambiguous results due to 

interactions between the factors. However, the average effect of a factor may be measured by 

performing experiments over all the combinations of different levels for all the other factors. 

This approach is known as a fullfactorial experimental design. One of the advantages of this 

is that the estimates of the main effects are formed using experiments over all the levels for 

each factor, and are more representative of the range of conditions encountered in practice. 

This can avoid misleading conclusions due to the presence of interactions, and additionally, 

information is available to study specific interactions if these are of interest. 
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To illustrate the effect of interactions between factors in a system, and how they can lead to 

misleading conclusions unless the effect of interactions is studied, two very simple systems are 

considered, with one containing a strong level of interaction (after Montgomery, 1983). 

Consider two systems X and Y, whose response to two, 2-level factors, A and B, is shown in 

Table 3.1. Closer examination reveals that in system Y there is strong interaction between the 

factors A and B. The sign of the effect of either factor depends on the level of the other. This is 

demonstrated graphically in Figure 3.8. The degree to which the lines are non-parallel indicates 

the degree of interaction. The average main effects of factor A and factor B (denoted by niA and 

/Mg) and the interaction between factors A and B (denoted Ub) are defined (after Montgomery, 

1983X:w 

f(A„B,)+f (A,, B,) f(A„B,)+f(A„B,) 
(3.24) 

_ f(A„B,)+ f(A„B,) f(A„B,)+f(A„B,) 
Z :: , (3 25) 

_ f(A„B,)+ M , B , ) f(A„B,)+ f(A,.B,) 
JUu, ^ (3 26) 

The main effect of a factor is therefore the difference between the average of the response at 

one level and the average response at the other level. The interaction between factors is the 

difference between the average of the response with both factors at the high and low level, and 

the average of the responses with each factor at opposing levels. The numerical values of the 

main effects of each factor and the interaction between them for both systems are given in 

Table 3.2. Without investigating for the interaction h s , it is seen that the main effects niA and 

Mb would provide the misleading result that system Y is relatively insensitive to the effect of 

factors A and B, compared with system X. However I^b reveals that a strong interaction exists 

for system Y, which would only be evident, in this case, using a full factorial experimental 

design. If one-at-a-time experiments had been performed, for example, with the main effect of 

each factor estimated with the other factor at its low value, then the response for the factor 

combination Aj^Bi would not have been explicitly measured. In both cases it would have been 

assumed that ^2,^2 would yield the largest response, which would be seriously in error for 

system Y due to the strong interaction. Indeed the conclusion drawn (potentially in error) about 

the response at factor combinations which are not exclusively tested may depend upon the, 

probably arbitrary, choice of nominal level of the factors, other than the one being tested. 
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1 ^ . 2 2 

In the previous sub-section the advantages of full factorial experiments over one-at-a-time 

experiments were discussed. For a small number of factors and/or with a small number of 

factor levels this presents no practical problem, but the number of experiments required can 

grow exponentially with either the number of factors or levels. In Chapter 7 such experiments 

are performed with 36 factors with both two and three levels. To perform full factorial 

experiments would require 2̂ ® and 3^̂  experiments, respectively. It is not feasible to perform 

such a large numbers of experiments, especially when these experiments themselves are also 

used as part of a optimisation algorithm, which itself requires many thousands of evaluations. 

A fractional factorial experimental design is one that only utilises some of the experiments 

from its full factorial counterpart. In this way the number of experiments required can be 

greatly reduced. Fractional factorial experiments using orthogonal arrays (which are discussed 

below) are used as a potentially more efficient way of generating the probability limit defined in 

(3.23). Fewer experiments are used, but the experiments are designed in order to provide 

certain information, whereas the accuracy using random perturbations simply relies on a large 

number of different samples and increasing the number of samples increases the accuracy only 

in a probabilistic sense. 

The compromise in using fractional factorial experimental designs is that less information is 

gained about the system, and it becomes impossible to distinguish between the true main effects 

of a factor and interactions between factors. It is said that the main effects are aliased with 

certain interactions. However if the value of the interactions is known to be, or can be 

considered to be small then reasonable estimates of the main effects can be achieved. In the 

fractional factorial experiments considered in this thesis the frill factorial experiment is reduced 

to those requiring only one experiment more than the number of factors specified in the 

'standard' orthogonal arrays used, even though the number of factors is sometimes greater than 

required for a certain experiment design. This is the minimum experimental design in order to 

achieve an estimate of the main effects for each factor individually. If the number of 

experiments was reduced further then 'aliasing' would exist between some of the main effects. 

This effect is not desired as the sign of each of the interactions is not determinable and thus 

whether the effect of each aliasing acts constructively or destructively. Thus a composite 

measure of the main effects with less than the minimum number of experiments described 

above is not feasible. The fractional factorial experiments are balanced, each level of each 

factor is used equally in the experimental design. Additionally there is an orthogonal property 

of the arrays that allows other types of analysis such as analysis of means and variance to be 

performed. The orthogonal property is formally defined in the following sub-section. This 
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property means that the estimates of the statistical properties for each factor individually may 

be found. Such analyses are not used in this thesis, but are detailed in Montgomery (1983), 

Taguclii (1987) and Phadke (1989). 

The orthogonal arrays used for the fractional factorial experiments in this thesis are detailed in 

Appendix C (after Taguchi, 1987, as cited by Phadke, 1989). It is too cumbersome to show the 

derivations of such arrays here. In order to show the procedure of generating such an array, a 

fractional factorial experiment is derived from a full factorial experiment for five two-level 

factors. This is not one of the standard arrays catalogued originally by Taguchi. It is chosen as 

it is not so small that the derivation is trivial (as with the L4 (2^) standard array, three two-level 

factors) whilst not being too cumbersome to include here in full (as would the Lg (2^) standard 

array). 

A full factorial experiment for five two level factor requires 32 (=2^) experiments. Denoting the 

two levels as either positive or negative: and '+', the design is shown in Table 3.3, where 

the factors are labelled J to E. All the possible combinations of the factors are thus required. In 

order to generate a fractional factorial experiment rows are selected on the basis of 

relationships between factors. These relationships are called design generators. The first 

design generator used is, 

, (3.27) 

where I is the identity element, and is equivalent to '+ ' by definition (Montgomery, 1983). The 

generator is interpreted by multiplication of the signs of the factors, and thus in (3.27) the 

generator is satisfied if between the factors A, B and D, either one or three of the factors have 

the sign '+' . The value of this generator is shown in Table 3.3, following convention it is 

written D=AB, which is one of the aliases of the generator. This is explained below. A positive 

value in this column indicates the generator identity is satisfied. The second design generator 

used is, 

(3.28) 

and its value appears in Table 3.3 under the heading E=AC. The fractional factorial experiment 

is defined by the defining relation, which is given by the combination of the two generators, 

, (3.29) 

which is given in the rightmost column of Table 3.3, under column heading SEL. Other design 

generators may be used in place of the ones employed here. Other definitions of design 

generators or defining relations, including their complimentary or alternate halves may also be 

used. This is outside the scope of this thesis, but is described by Montgomery (1983). It is 
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noted that with the defining relation used here (as with the standard orthogonal arrays detailed 

by Taguchi and Phadke) that a row exists with all the factors at the lowest level (in all cases 

this is the first row). If this corresponds to a perturbation vector which has no effect on the 

system, then the nominal response is considered witliin the experiments detailed by the 

orthogonal arrays, removing the need for a further measurement to achieve this and improving 

the efficiency of the analysis. The Pactional factorial experimental design is summarised in 

Table 3.4. Only 8 experiments are now required. In this table the factor signs: and '+' , have 

been replaced by: 1 and 2 respectively, to maintain consistency with the orthogonal arrays 

used, as specified in Appendix C. 

By using design generators the main effects are deliberately aliased with interactions between 

the factors, that is, some main effects and some interactions are indistinguishable. Thus unless 

interactions are insignificant, then the estimated value of the main effects will contain errors 

due to these. (3.27) signifies the aliasing of the main effect of D with the interaction between ^ 

and B. Noting that the multiplication of any factor by itself results in /, the alias D=AB can be 

achieved 6om the generator (3.27), 

= vjjg. (3.30) 

Similarly the alias E=AC already used to for the generator (3.28) is given, 

= = (3.31) 

Thus the main effect of E is also aliased with the interaction between A and C. By similar 

manipulation and combination of the design generators all the aliases are found (although in 

this particular case no combinations of generators are required). These are summarised in 

Table 3.5. Thus each entry shows the interactions between each factor. Obviously this table is 

symmetric, and by convention only one half is shown with the diagonal elements shown 

bracketed. 

In this case, although all the main effects are aliased with interactions, not all possible 

combinations of second order interactions are aliased with main effects. In all but one of the 

two-level Pactional factorial orthogonal arrays included in Taguchi (1987), and cited in Phadke 

(1989), the number of columns {i.e., factors) is an integer power of two minus one. In these 

cases the number of experiments performed is integer power of two {i.e., the number of 

columns plus one). This is the maximum reduction attainable from a full factorial experiments 

design while still allowing the individual main effects to be determined from the experimental 

design. Even if the number of factors required is less than those defined in these arrays all the 

experiments are still required, if the balancing property is to be retained. Thus in the fractional 

factorial experiment design in Table 3.4, the number of experiments required is 8, which is the 
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same as if a fractional factorial design for 7 factors had been derived. The only advantage in 

the above design over a 7-factor design is that there are fewer interactions between factors. The 

minimum number of experiments allows sufficient degrees of freedom to calculate the main 

effects of each of the factors and also their mean, and thus the analysis of means (ANOM) and 

analysis of variance (ANOVA). ANOM allows the average effect of each factor on the system 

output and thus allow the optimum value to achieve a desired system response. From this the 

optimum levels for each factor can be determined. ANOVA allows the average effect of 

changes in each factor on the system output. This leads to the Taguchi's and Phadke's Signal 

to Noise (SNR) ratio, which is based on the ratio of the square of the mean response of the 

experiments, to the mean-squared-deviation about the mean, MSD, and is given by, 

SNR = 10 log 
10 

MSO 
(3.32) 

For a system for which the target response is a nominal value a function based on (3.32) is the 

parameter which is minimised. This is not applicable in the use of the fractional factorial arrays 

as used for the robustness analysis in this thesis where the smaller the system response the 

better. 

The generation of full and fractional factorial orthogonal arrays for experiments using three-

level factors is achieved using a similar procedure as described above. It is more complex as 

modulo 3 (as opposed to modulo 2) arithmetic is required. This is outside the scope of this 

thesis, but is detailed in Montgomery (1984). 

The fractional factorial experiment design using orthogonal arrays, including that shown in 

Table 3.4, possess an orthogonal property. This exists between the columns of the experimental 

design array, and is defined as follows. Assume a column of the design to be Z,-, which is 

comprised of n elements, is 

Z, = { w , , (3.33) 

The contrast C, is defined if all the elements add up to zero. This can be assured if the mean of 

the column is subtracted, and thus is independent of numerical level notation used (although the 

levels must be a sequential run of integers). 

w,2 . . . (3.34) 
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Two columns are orthogonal if their inner product is zero. Hence, columns Z, and Ly are 

orthogonal if 

= 0 Z i f ( 3 . 3 5 ) 

For an orthogonal experimental design (3.35) must be satisfied between all columns. 

The robustness analyses conducted in this thesis use two and three level orthogonal arrays both 

requiring a minimum of 36 factors. Two standard orthogonal arrays from Phadke (1989), after 

Taguchi (1987), are used. Maintaining the notation from these references, these are termed L64 

(two-level, 63 factor, 64 experiment array) and LSI (three-level, 40 factor, 81 experiment 

array). These are included in Appendix C, and are included in their entirety even though only 

the first 36 columns are required. An error in the L64 table (as printed in Taguchi (1987) and 

repeated by Phadke(1989)) was detected by the author. The values at (experiment, column) 

positions (32,28) and (32,29) should be 1, otherwise the orthogonal property of the table is lost. 

This correction has been confirmed by the author (Phadke 1989) and corrected version of the 

table is given in Appendix C. 

In a later edition of his book, Montgomery (4th edition, 1996) provides a critique of the 

methods advocated by Taguchi (and thus also Phadke) with respect to experimental design. 

Whilst Montgomery considers Taguchi's basic philosophy 'sound' and recommended for 

product design, he criticises Taguchi's statistical methods as often being unnecessarily 

complicated, inefficient and sometimes ineffective. The main criticisms are directed at the data 

analysis that follow the use of the experiments using Taguchi's orthogonal arrays, and that a 

simplified consideration of abasing can actually be counter-productive in understanding the 

system performance. Only the orthogonal arrays presented by Taguchi are used here, and thus 

the contentious area of the data analysis is avoided. 
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B2 Bi B2 

Ai 20 30 Ai 20 40 

40 52 A2 50 12 

SYSTEM Y 

Table 3.1. Responses of System X and System Y; two 2-level example systems. 

TMg 

SYSTEM X 21 11 1 

SYSTEM Y 1 -9 -58 

Table 3.2. The main effects, niA and mb, and their interactions, hs, of System X and System Y, 
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Expt No, A B C D E D=AB E-AC SEL 

1 - - - - - + + + 

2 + - - - - - - -

3 - + — - - - + -

4 + + - -
_ + - -

5 - - + - - + - -

6 + - + - - - + -

7 - + + - - - - -

8 + + + - — + + + 

9 - - - + - - + -

10 + - — + - + - -

11 - + - + - + + + 

12 + + - + - - - -

13 - -
+ + - - - -

14 + - + + - + + + 

15 - + + + - + - ~ 

16 + + + + - - + -

17 - - - - + + - -

18 + - - — + - + -

19 - + - - + - - -

20 + + - - + + + + 

21 - - + - + + + + 

22 + - + - + - - -

23 - + + - + - + -

24 + + + - + + - -

25 - -
— 4- + - - -

26 + - - + + + + + 

27 - + - + + + - -

28 + + -
+ + - + -

29 - - + + + - + -

30 + - + + + + - -

31 — + + + + + + + 

32 + + + + + - - -

Table 3.3. Full factorial experimental design for a five-factor, two-level experiment. 
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Expt No. A B C D E 

1 1 1 1 1 1 

2 1 1 2 1 2 

3 1 2 1 2 1 

4 1 2 2 2 2 

5 2 1 1 2 2 

6 2 1 2 2 1 

7 2 2 1 1 2 

8 2 2 2 1 1 

Table 3.4. Fractional factorial experimental design for five factor, two-level experiment. 

A B c D E 

A D E B C 

B (s; - A -

C (C) - A 

D -

E 

Table 3.5. Two-factor interactions between the factors in the fractional factorial experiment 

shown in Table 3.4 
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The major notation used in this chapter is listed below. Other symbols are defined locally. 

A Experimental array factor 

A„ Level n of factor A 

B Experimental array factor 

Bn Level n of factor B 

C Experimental array factor 

C, Contrast of array column i 

d Defining length of schema 

D Experimental array factor 

E Experimental array factor 

/ Average fitness of population 

/ ' As for definition o f f , but evaluated using noisy phenotype method 

fa Value of probability limit a of perturbed objective function 

f(H) Average fitness of schema H 

fi Fitness of chromosome i 

F(x) Expected value of fitness function evaluated using noisy phenotype method 

H Schema 

I Identity element 

Iab Interaction between factors A and B 

I Chromosomes length 

Li Column i of array 

m(H,t) Number of schema H occurring in generation t 

niA Main effect of factor A 

n Number of chromosome strings in population 

O Order of schema 

Pc Probability of crossover 
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p,„ Probability of mutation 

p(x,H, t) Probability of each individual x occurring in schema H in generation t 

p(x,t) Probability of each individual x occurring in a population in generation t 

q Noise distribution 

r Penalty value 

t Evolutionary time step 

X Population individual 

Xn Individual vector element of x 

X Generalised vector 

Xg Optimised optimisation vector 

U Search space 

Up Penalised search space 

If Vector of values of perturbed objective function 

F Ordered vector, If 

5 Perturbation value 

5' Value of noise perturbation added to population individual i 

{]) Inequality constraint 

(j)' Satisfied inequality constraint 

A Perturbation vector 

0 Overall reduction factor 

\|/ Equality constraint 
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u 

Constrained U 

I Exterior region 

Original U Constrained minimum 

Interior region 

Figure 3.1: The operation of the One Pass External penalty function illustrated for one degree 
of freedom, using penalty value r. 

u 
Exterior region 

r = 0 .04 

r = 1 

Original U 

r = 0.0016 

r = 0.0016 

True constrained minimum 

Figure 3.2: The operation of the Fiacco-McCormick penalty function illustrated for one degree 
of freedom. (After Siddall, 1982) 

69 



Y 

0 1 0 1 1 0 1 0 X' 0 1 0 1 1 1 0 0 

) 1 
1 
1 
1 
1 

1 1 0 0 0 1 0 0 Y' 1 1 0 0 0 0 1 0 

crossover point 

Figure 3.3: The operat ion of the genetic algorthim operator: Crossover. 

X 

X ' 

0 1 1 0 1 0 1 0 

' 

0 1 1 1 1 0 1 0 

Figure 3.4: The operat ion of the genetic algorthim operator: Muta t ion . 

1 2 3 4 5 

A 

B 

* 0 1 1 * * 1 * 

* 0 * * * * * 

(/(A)=5 

0(A)=4 

Figure 3.5: Two schema, A and B, with the propert ies defining length and order denoted for 
each. 
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1.5h 

h 

0.5h-

0 

1.5h 

I h 

0.5h 

0.2s 0.5s 

x1 x2 

y - > 

3s 

x4 

1 \ 1 \ 
c L \ 1 \ 1 \ 
Xl x2 x3 x4 

Figure 3.6: An example of the operation of the noisy phenotype genetic algorithm, with noise 
distribution on the objective function The expectation of the evaluated objective 
function is 

6 Cr 

-s/2 0 s/2 y-> 

1.5h 

h -

0.5h-

0 

2s 0.2s 0.2s 0.2s 

xl x2 x3 x4 

I 
^ / \ 

x1 x2 x3 x4 

Figure 3.7: Example of features in the objective function f f x j which can result in false optimum, 
for the noisy phenotype genetic algorithm with noise distribution g f y j , as the value of the 
expectation of the evaluated objective function, E[f(x)], shows. 
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SYSTEM X SYSTEM Y 
60 - 60 -

50 - 50 -

40 - 40 -

30 - 30 -

20 - 20 -
^1 

10 - 10 -

1 

A2 
1 

a , 

Figure 3.8: The response of systems X and Y to the two-level factors A and B. System Y has a 

high level of interaction between and B. (After Montgomery, 1983) 
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CHAPTER 4 

IP'zisifsirye; ]\/4[€;t]i()(:ls fine! 

-4.0 ]]srr]RjC)i)ij(::T][C)fj 

This chapter describes the optimisation of a regular two-dimensional cantilever structure to 

reduce the vibration transmission from the base to the end of the structure. The optimisation is 

achieved by means of redesigning the structure geometry; by allowing the positions of the mid-

structural joints to be variable. Unlike the optimisations detailed in Chapters 5 and 6, no 

external energy source is used in the reduction of the vibration, this optimisation strategy is 

thus referred to as passive optimisation. 

The method used here is that of redesigning of the structure geometry, as opposed to 

maintaining the structure geometry and changing the vibration transmission of the structure by 

varying the cross-sectional areas of the individual beams, as used by Liu et al. (1997 and 

1998). In this work the cross-sectional area was allowed to diminish to zero, thus effectively 

removing the beams and changing the structure topology. The author feels that altering the 

geometry; constructing a structure using beams of a regular cross-section cut to different 

lengths, is a more practical solution. It is more complex to machine each beam to a custom 

cross-section, and if a discrete set of cross-sections were used then this would severely limit the 

search space considered during optimisation. Also, the union of thick and very thin beams 

might present practical difficulties, and any additional joint complexities may need to be 

accommodated in the structure model. Although the static strength of the structures is not 

considered in the optimisations used by the above authors or the present author, the removal of 

beams from the structure is likely to result in a weaker static structure, than that by changing 

the geometry. The effect of the optimisation by geometric redesign on static strength of the 

structure is briefly considered in Section 4.3. 

The optimised designs are achieved using a number of methods: three traditional optimisation 

methods, using gradient and hill climbing based strategies; a fairly recent heuristic search 

technique using hill climbing and stochastic-based method of restarting the search; genetic 

algorithms, a type of evolutionary optimisation technique which is stochastically based. All the 

optimisation methods were successful to varying degrees. 
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Although in theory all the optimised designs show better performance than the unoptimised 

structure, the practical design implementations may not be feasible with exactly the required 

optimised parameters due to, for example, manufacturing tolerances. Even if this was not the 

case, the parameters might change during service by, for example, thermal expansion and 

contraction. If the effect of these changes on the optimised performance is not studied then an 

optimised design that is predicted to be the best (under nominal operating conditions) in service 

may yield less than optimum performance. Whereas another optimised structure, although 

having a slightly lower optimised performance under nominal operating conditions, may be less 

sensitive (more robust) to changing operating conditions and be a more practical choice. A 

geometric perturbation analysis was performed for all the optimised structures produced in this 

chapter. It was found that the method by which the optimisation seeks the optimal structure 

designs can have serious consequences on the robustness of the structures produced. 

This chapter is structured as follows: Section 4.1 defines the optimisation problem; Section 4.2 

describes the application of non-evolutionary methods (three traditional methods and Dynamic 

Hill Climbing); Section 4.3 details the application of genetic algorithms, and additionally brief 

analyses of the change in power flow in the structures and the consequential change in static 

performance of the structure, both due to optimisation, is reported; Section 4.4 reports the 

robustness analysis applied to all the optimised structures. The conclusions are drawn in 

Section 4.5. 

Throughout this chapter reference is made to the design exploration system used for the 

majority of the optimisation work presented in this thesis. For brevity this will again be referred 

to in tliis chapter by its proprietary name: OPTIONS. See Chapter 3 for further details. 

I M P L E M E N T A T I O N O F O P T I M I S A T I O N 

4.1.1 DEFINITION OF THE OPTIMISATION PROBLEM 

The optimisation problem considered in this thesis is defined as being: to minimise the vibration 

transmission of the structure shown in Figure 2.1, such that the effect of vibration forces acting 

at the base of the structure have the minimum effect on the far most right beam, labelled 

Beam 40. The excitation is modelled as a force applied to Beam 1 at the base of the structure. 

This is applied in a transverse sense to the beam at 0.5m from the hinged end, and has an 

arbitrary value of IN at all frequencies considered. The vibration of Beam 40 is represented by 

a measure of the energy dissipated in the beam due to the flexure of the beam. In Chapter 5 an 
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analysis is reported of the use of different parameters which can be used to represent the 

vibration in Beam 40. It transpires that the parameter used as the subject of all the 

optimisations reported here is not, in fact, the most comprehensive. However, for this structure 

the use of the flexural energy dissipated in Beam 40 is shown to still be a very good 

representation of the overall vibrational energy, in the frequency range considered. It was also 

the parameter used by Keane in his optimisation scenario (Keane, 1995b). 

In the optimisation studied in this chapter, the optimisation variables are the non-extreme joint 

positions; the relative positions between the fixed joints at coordinates (0,0) and (0,1) and the 

end joints at coordinates (10,0) and (10,1) are to remain unchanged. Thus there are 18 joint 

positions to be determined by the optimisation, each defined by its x and y coordinates, making 

36 optimisation variables in total. So that the number of bays in the structure is maintained, 

and to prevent joints touching or overlapping, limits are imposed on the freedom of each joint 

coordinate. The limits are ±0.25m about each nominal joint coordinate. This gives the joints the 

maximum freedom without and parts of the structure being allowed to overlap. The structure 

parameters were detailed in Chapter 2, as the optimisation details above are those used by 

Keane (1995b), thus the optimisation scenario is identical. 

4.1.2 IMPLEMENTATION OF THE STRUCTURE IN OPTIONS 

All the optimisations reported in this chapter were achieved using the OPTIONS package. This 

is linked to the computational model for the structure, based on the receptance analysis method, 

detailed in Chapter 2. This is the same way in which optimised structures were previously 

produced by Keane (1995b), and experimental verification by Keane and Bright (1995) also 

showed that the optimisation had produced a structure which had a greatly reduced vibration 

transmission in practice. A successful comparison of the receptance model with a finite element 

analysis model was also shown by Shankar and Keane (1995), albeit with a larger value of 

beam damping. 

Each optimisation variable is coded into a 16 bit representation scaled linearly between the 

limits. This gives a precision of about 10 jam, which while practically unrealistic was retained 

for consistency with aforementioned previous work of Keane. This precision is thought to 

unjustifiably strict, and 12 bits may provide a more realistic precision (of 0.12mm) for such a 

structure, however the number of bits does not affect the operation or the speed of the 

algorithm. 

In order to gain an appreciation for the complexity of the optimisation. Figure 4.1 shows the 

contour plot showing the average energy level in Beam 40, over the frequency range 150Hz to 

250Hz, with both thex and j coordinate variations allowed under optimisation limits for joint 8 
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at coordinates (4,1). Here the true multi-modal nature of the problem is evident. This graph is 

obtained, however, with the remaining optimisation variables at their nominal position whilst in 

the optimisation process the surface shown here would also vary as other variables are 

adjusted. 

The size of the optimisation problem can be appreciated from the fact that there are 36 

variables, each represented by a 16-bit number, giving 65536^^ (in the order of lO"^) possible 

combinations. Even if 12-bit representation had been used, as discussed above, this still would 

yield a search space in the order of lO'^" possible combinations. If the objective function took a 

mere 1ms to evaluate (in practice each objective function evaluation at each frequency took 

about four seconds at each frequency value, on the hardware platform detailed later) then of the 

order of lO"® years would be needed to exhaustively explore the search space. Back (1996) 

uses for comparison quantities relating to the universe, stating 10^ as being the number of 

stable elementary particles in the universe. 

In the optimisations that follow in this chapter, the energy level of Beam 40 of the structure 

(shown in Figure 2.1) is minimised over three frequency bandwidths. The objective frinctions 

used represented the energy in Beam 40, i) at a single frequency (185Hz), ii) as an average over 

a 20Hz bandwidth (175Hz to 195Hz comprising five linearly spaced frequency points), and iii) 

as an average over a lOOHz bandwidth (150Hz to 250Hz, using 21 linearly spaced frequency 

points). These optimisations are subsequently referred to as single frequency, narrow band and 

broad band optimisations. 

4.21 ClI'TTIIVflSL/lTrKZXhf IJSllSTCj rvIiiTTHCHDS; 

The structure was optimised using traditional optimisation techniques, and a relatively new 

technique called Dynamic Hill Climbing. The traditional techniques used are (referred to by the 

names of their originators); Hook and Jeeves, Davidon-Fletcher-Powell (DFP) and Broyden-

Fletcher-Goldfarb-Shanno (BFGS). These techniques were described in Chapter 3. These four 

optimisation techniques are taken as a representative sample of non-evolutionary algorithms 

currently used. It is not intended to present an in-depth study comparing different optimisation 

techniques, but a brief study to support the use of genetic algorithms for this type of 

optimisation problem is included here. The use of other Evolutionary Algorithms was not 

investigated, although Keane has already performed a comparison against Simulated Annealing 

for a similar optimisation problem (see Keane, 1994). 

Two penalty functions are available to the author by using OPTIONS: One Pass External and 

Fiacco-McCormick. The first is a simple way of imposing constraints which has no significant 
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further computational expense, the latter is a more sophisticated technique requiring successive 

re-evaluations of the objective function, but can perform better than the One Pass External 

method in some cases. These issues were discussed in detail in Chapter 3, as was the composite 

optimisation strategy adopted here; using a two-phase search for all non-evolutionary 

algorithms except Dynamic Hill Climbing (where the One Pass External is used). The 

optimisation strategy is to initially perform a search using the One Pass External penalty 

function, then restart the current point using the Fiacco-McCormick penalty function. This is 

an efficient strategy as the first, and probably most significant, part of the search is performed 

with no significant additional computational overhead. Then the Fiacco-McCormick penalty 

function is used to enable the search to localise on the minimum. As discussed in Chapter 3, a 

typical problem with the One Pass External penalty function is that it is possible it may 

prematurely terminate its search when the minimum lies on or near a boundary on the search 

space. The use of the Fiacco-McCormick penalty function, although computationally more 

costly, is more adept in these situations. However it is feasible that simply restarting the search, 

which entails resetting search parameters (e.g. the step size, and in the case of DFP and BFGS, 

the Hessian matrix to the identity matrix), may enable further successful exploration. 

The parameters defining the non-evolutionary search techniques used here are given in 

Tables D. 1 to D.5 in Appendix D. Both the fixed parameters and those capable of being 

assigned in OPTIONS are given. As it was not intended to perform an in-depth analysis of 

optimisation methods, then a sapient choice of parameters was made. With the Hook and 

Jeeves algorithm and DFP, slight adjustment of the initial choices of the parameters OPT_TOL 

and G, respectively, were made in order to encourage convergence. 

The implementation of Dynamic Hill Climbing available in OPTIONS, always started the 

search from the same initial point {i.e., the regular structure shown in Figure 2.1). Thus the 

first local search would always be the same, and thus would be redundant if more than one 

optimisation was performed, even using different random number seeds for the search 

algorithms. For a high dimensional problem, such as the one considered here, the next search 

start point is simply a random jump in the search space, as discussed in Chapter 3. Four 

random structures were generated within the optimisation limits which, in addition to the 

regular structure, provides a different start point for each search. In addition a different random 

number seed was also used for each optimisation resulting in structures labelled with suffices 

DHC_A to DHC_E. The regular structure is the start point corresponding to suffix DHC_A, 

the other initial structure topologies are shown in Figure 4.2. 
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4.2.1 SINGLE FREQUENCY OPTIMISATION USING NON-EVOLUTIONARY 
METHODS 

The results of applying the three traditional search techniques (DFP, BFGS and Hook & 

Jeeves) are shown in Figures 4.3, 4.4 and 4.5. Each of these shows the final optimised structure 

and resulting firequency response of the energy in Beam 40 after both phases of the search. The 

firequency response for the unoptimised structure is shown with a dashed line and for the 

optimised structure dotted. The actual fi-equency used for the objective function on the latter is 

denoted by a cross. The frequency response over a wider fi-equency band, 50Hz to 350Hz, is 

shown and is subsequently referred to as the wide band response. The wide band average 

energy level is also shown. The optimisation history is shown separately for the first search 

phase, where the One Pass External penalty function is applied, and also for the second phase, 

in which the Fiacco-McCormick penalty function is used. The optimisation histories show the 

result of each evaluation of the objective function used in the algorithms. However for the Hook 

and Jeeves method, each single optimisation step requires more than one evaluation. Each 

single step involves an exploratory search for each individual coordinate in is made, each 

requiring the objective function to be evaluated, and then a pattern move. The results are also 

included in Table 4.1, which summarises the optimisation results for this chapter. 

In optimising the performance of the structure at a single frequency of 185Hz, the Hook and 

Jeeves search is seen to achieve the best result at the end of both search phases, ultimately 

giving an attenuation of over 73dB. However it takes the largest number of evaluations, due to 

the apparent slow convergence of the second phase. The DFP and BFGS algorithms produce 

similar results, which is not too surprising since they are closely related. The 'spikes' in the 

optimisation history for the BFGS are thought to be due to points in the search where the 

Hessian matrix becomes either singular or non positive-definite. Although the algorithms are 

closely related, the implementation in OPTIONS uses different software suites. The most 

apparent distortion in the optimised structures is seen as a result of applying the DFP algorithm 

even though this is the least successful. The distortion in the bay second bay from the base is 

pronounced (Figure 4.3). 

Five optimised structures were achieved using the Dynamic Hill Climbing algorithm. Each 

structure was obtained starting with one of the five different initial structures, and a different 

random number seed at the beginning of the optimisation. The optimised structure with the best 

performance is shown in Figure 4.6. This is also included in Table 4.1, along with the average 

performance for the five structures. The best structure achieves a better attenuation than for all 

the traditional methods. The average performance, however is not as good as that for the Hook 

and Jeeves search. Another point in the favour of Dynamic Hill Climbing is that the resulting 
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structures have been achieved using about one-third of the number of evaluations required by 

the Hook and Jeeves algorithm in this case. The structure shown, SF„DHC_D, does not result 

from using the regular structure as the start point of the optimisation and also shows the most 

apparent distortion of all the optimised structures presented for this optimisation case. 

4.2.2 NARROW BAND OPTIMISATION USING NON-EVOLUTIONARY 
METHODS 

The optimised structures resulting from applying the three traditional optimisation methods to 

minimise the average vibration transmission over the narrow frequency band are shown in 

Figures 4.7, 4.8 and 4.9, whose format is described above, the range of frequencies used for the 

objective function are denoted by a solid line with crosses showing the component frequencies. 

The results are also summarised in Table 4.1. As for the single frequency case, the Hook and 

Jeeves search is seen to provide the best attenuation out of the three methods, after both search 

phases, ultimately achieving an attenuation of 47dB. However, again this method shows slow 

convergence in the second phase. The next best value of attenuation was achieved by the DFP 

algorithm. In general the second phase is seen to provide little improvement in the performances 

of the algorithms. The amount of apparent distortion in the optimised structures does not 

provide any indication the attenuation achieved. The most apparent distortion is seen in the 

optimised structure resulting from the DFP algorithm, while the least distorted appears to be 

that resulting form the Hook and Jeeves search, which is the most successful. 

Application of the Dynamic Hill Climbing algorithm resulted in five optimised structures, the 

most successful of which, N_DHC_A, is shown in Figure 4.10. This optimised structure 

achieves almost an attenuation of 70dB, and the average performance of all the five structures 

is almost 66dB, which is still better that the attenuation achieved by any of the three traditional 

methods. The best optimised structure results from using the regular structure as a start point, 

but the resulting performance is not achieved from the minimum local to this point. It is also 

seen that the average performance of the Dynamic Hill Climbing algorithm provides the best 

performance for the least number of evaluations. 

4.2.3 BROAD BAND OPTIMISATION USING NON-EVOLUTIONARY 

M E T H O D S 

The result of applying the three traditional optimisation methods to the structure to minimise 

the average performance over a frequency band of 150Hz to 250Hz is shown in Figures 4.11, 

4.12 and 4.13. The format of these figures is as described above and the results are again 

summarised in Table 4.1. As with the results reported for optimisation of the performance over 

the previously reported frequency band and single frequency, the Hook and Jeeves search 
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provides the best performance at the end of each search phase as well, achieving almost 25dB 

attenuation in this case. Although, it is again, the computationally most expensive. The second 

phase provides no improvement for the DFP algorithm and little improvement for the other two 

methods. Again, slow convergence is seen for the Hook and Jeeves search. This method whilst 

providing the best value of attenuation also results in the optimised structure which is the 

apparently least distorted of the three. 

The structure with the best optimised performance resulting from using the Dynamic Hill 

Climbing algorithm, B_DHC_D, is shown in Figure 4.14. Its performance is given in Table 4.1 

along with the average performance of the five optimised structures produced using this 

algorithm. Structure B_DHC_D achieves over lOdB greater attenuation over the best achieved 

with the three traditional methods, and the average performance of the structures is also better. 

The average number of evaluations required using Dynamic Hill Climbing is in the middle of 

the range for the three traditional methods. However, as the second phase of the optimisations 

using traditional methods did not achieve much improvement in values of attenuation, their 

values of optimised performance could be judged to have been achieved after the first phase. 

Dynamic Hill Climbing is thus seen to be more successful but requires a greater computational 

effort. Finally, it is noted that comparing the optimised structure B_DHC_D, with the initial 

structure used for this optimisation (in Figure 4.2), that the optimisation has made the 

originally very distorted structure, become apparently less distorted. 

4.2.4 DISCUSSION OF OPTIMISATION RESULTS USING NON-
EVOLUTIONARY METHODS 

The Hook and Jeeves search achieved the best performance out of all three traditional 

optimisation methods employed, for optimisation of the performance at a single frequency and 

also the average performance over two frequency bands. In all cases the second phase of the 

search achieved very little improvement in the performance but was very computationally 

expensive. However, the results achieved after the first phase are still better than for the other 

two methods after the second phase. The next best method was the DFP algorithm, which was 

except for the single frequency case was also the second best after the first search phase. 

Dynamic Hill Climbing achieved better performance attenuation than the three traditional 

methods. It is the only algorithm so far considered that allows a search that commences from an 

initial point that is not the regular structure. (Unless, for example, with the Hook and Jeeves 

search the initial step was so large that it resulted in a jump to a point in a different 'valley' 

with a lower value). Even where the best attenuation was found from an optimisation which 

commences with the regular structure, it was not the first minimum evaluated in the 
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optimisation run that provided the best minimum. This indicates that any of the minima local to 

the regular structure does not provide the best performance, however well any of the algorithms 

locate the true minima. (It cannot be guaranteed that all algorithms start at the same initial 

point commence searching in the same direction, and therefore descend into the same local 

minimum.) 

Further investigation was not conducted to improve on the success of any of these algorithms, 

or the speed at which convergence has been achieved. It will be seen that even though 

performance improvements may well be achievable, when the robustness of the structures is 

considered (in Section 4.4) attempts to improve the success of the optimisations using the three 

traditional methods and Dynamic Hill Climbing may be academic. 

The effect of the optimisations performed on the wide band response is also given in Table 4.2. 

It is seen that for the DFP algorithm a trend is suggested in which the narrower the frequency 

band over which the objective function is averaged the greater the wide band attenuation. This 

result is surprising as the optimisation only considers the performance over the frequency band 

used to evaluate the objective function, the response outside this band is an uncontrolled 

consequence of optimisation. With the other two traditional methods, there is little difference in 

the wide band response attenuation between the single frequency and narrow band optimisation, 

however in the case of the broad band optimisation the reduction is smaller. The mean wide 

band attenuation for the five optimisations using the Dynamic Hill Climbing algorithm are very 

similar to those for the single frequency and broad band cases. A smaller attenuation in seen for 

the narrow band case, although the range between the maximum to minimum values of 

attenuation is very similar for all frequency bands. 

4 . 3 CHEOsfiTTric: ()]PTriA/[isyv]n()i% 

The use of genetic algorithm optimisation was applied to the structure optimisation problem, 

previously described. As with the optimisations using non-evolutionary techniques, the energy 

in Beam 40 of the structure was minimised at a single frequency, and the average energy was 

also minimised over two frequency bands. 

4.3.1 APPLICATION OF GENETIC ALGORITHM TO STRUCTURE 

The binary strings representing the coordinates for the 18 variable joints of the structure are 

concatenated to form one long 'chromosome' winch is the unit of population for the genetic 

algorithm optimisation. Details of the optimisation parameters used, which define the genetic 

algorithm process in full, are contained in Table D.6 in Appendix D. The parameter names 
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used in OPTIONS and commonly used notation are also included. As with most optimisation 

algorithms, the values of such parameters can affect the performance and therefore the success 

of the optimisation. The values used here were, again, taken from the previous work by Keane 

(1995b). Genetic algorithms were used an optimisation tool, and a study of the success of 

genetic algorithms against various parameter values was not investigated. The parameters were 

taken on the basis of the success reported by Keane. 

4.3.2 GENERATION OF OPTIMAL DESIGNS 

For the single frequency and narrow band optimisations the genetic algorithm was assigned to 

calculate optimised candidate structures by evaluating 1000 structure designs (which were 

realised as 5 generations, each of population size 200), and for the broad band optimisation 

4500 structure designs (15 generations each of 300). The broad band optimisation was that 

studied by Keane (1995b), the other optimisations are included to study the effect of averaging 

the performance over a number of frequencies on, ultimately, the robustness of the performance 

of the structures. 

It is unlikely that the global optimum structure design will result for the optimisation (and even 

if it did it would not be possible to verify this), but genetic algorithm optimisation was applied 

to produce ten different candidate structures. These were uniquely achieved by discarding a 

different number of random number samples, from the random number generator used by the 

algorithm, before commencing the optimisation process. This is specified by the parameter 

value GA_RANDM (see Table D.6). The values used were: 0 and then the first nine prime 

numbers, and the resulting structures are labelled with label suffices "_A" to "_J". As for the 

non-evolutionary optimisation results discussed above, for each optimised candidate the energy 

response for a wider bandwidth, 50Hz to 350Hz in 5Hz steps, was calculated and is 

subsequently referred to as the wide band response. This enables the effect of optimisation in 

the regions outside of frequency band considered by the optimisation to be seen. 

The optimisation was first performed using an objective function equal to the energy level of 

Beam 40 at a single frequency, 185Hz. The single frequency optimisation, evaluated on 

hardware platform A described in Appendix E, took approximately 1 hour to produce each 

optimised candidate. A summary of the results for each case is included in Table 4.1 to enable 

comparison with other optimisation techniques. 

Figure 4.15 shows the best candidate geometry, SF_E, achieved from the ten optimisation 

processes performed. Figure 4.16 shows the third best candidate geometry, SF_A, which as 
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discussed below in Section 4.4, is a more practical structure to implement. The optimised 

structure topology is shown in the top-left hand corner, the frequency response in the top right-

hand comer and the history of the objective function against generation in the bottom left-hand 

corner, which shows the value of the best objective function value achieved after each 

generation. The final linear value of the objective function is also stated. The frequency 

response for the unoptimised structure is shown with a dashed line and for the optimised 

structure as dotted. The frequency value used as the objective function is denoted by a cross. 

The numerical results for all ten candidates are summarised in Table 4.3, and the reductions in 

the objective function and wide band average energy level achieved are shown in decibels 

relative to the unoptimised structure 

As the frequency at which the performance is evaluated is in a dominant resonant peak in the 

nominal response, it is not surprising that substantial reductions can be achieved in minimising 

the objective fiinction. Since the peaks in the frequency response are likely to occur due to the 

cumulative effect of individual system resonances, and such resonances are often sensitive to 

parametric changes. To diminish the resonance response is therefore relatively easily 

achievable, but to reduce the response further requires that the conditions occurring at this 

frequency have an overall destructive effect. Here the reductions achieved in the objective 

function range from 53.0dB (structure SF_I) to 69.2dB (structure SF_E). The reduction of the 

wide band response is more consistent, ranging from 4.7dB (structure SF_J) to l l d B (structure 

SF_D). 

This optimisation was performed with an objective function which was the average of the 

energy level of Beam 40 at five frequencies, 175Hz to 195Hz in 5Hz steps. The candidate 

geometry which gave the best performance produced by ten narrow band optimisations is 

shown in Figure 4.17. The frequency range used by the objective frmction is shown as a solid 

section on the dotted response, with crosses additionally denoting the actual frequency points 

used. For this analysis each optimisation, evaluated on hardware platform A described in 

Appendix E, took approximately 5 hours to produce each optimised candidate. The numerical 

results for all ten candidates are summarised in Table 4.4. 

All of the optimised structures achieved reductions in the objective function with a range of 

38.1dB to 47.5dB. The average wide band response is also reduced from between 5.2dB to 

12.5dB. Even though only a small part of the frequency range was considered during the 

optimisation it is not surprising that tliis still achieves global reductions in the wide band 

response, since the optimisation window covers a dominant resonance peak in the response of 
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the structure, hi the non-optimised case this peak is significant in the wide band frequency 

average energy level. The structure achieving the best objective fiinction reduction is structure 

N_B, followed closely by structure N_G. The best wide band frequency average reductions are 

found in structures N_J and N_I respectively. 

3 . 2 j O f 

This type of optimisation was finally performed with an objective function which was the 

average of the energy level of Beam 40 at 21 frequencies, 150Hz to 250Hz in 5Hz steps. The 

best of the ten optimised candidates produced is shown in Figure 4.18. Even though the 

structural and optimisation algorithm parameters used were also those used by Keane (1995b), 

the starting conditions used in his work could not be assured and therefore it is unlikely that 

any of candidates produced here would be identical to any of those reported by Keane, which is 

the case. However, the performance improvements achieved are of a similar magnitude. For 

this analysis each optimisation, evaluated on hardware platform A described in Appendix E, 

took approximately 105 hours to produce each optimised candidate. The numerical results for 

all ten candidates are summarised in Table 4.5. 

The best reduction achieved in the objective function is 34.5dB, structure B_E, which is shown 

in Figure 4.18, followed closely by 34.1dB (structure B_F). However these structures do not 

appear high in the ranking when ordered in terms of wide band response reduction. In this 

respect the best two structures are structures B_D and B_A. The frequency range of the 

objective function covers a more significant part of the wide band response than for the narrow 

band optimisation, but the results show that this does not imply consistency in the ranking of 

the best structures in both objective function and wide band response. 

The aim of the optimisation is to reduce the power dissipation in Beam 40 (which is 

synonymous with reducing the energy level). With no external source of energy this is achieved 

by two mechanisms; the reduction of the input power to the structure and the redistribution of 

the power dissipated in the structure, so that a smaller proportion is dissipated in Beam 40. As 

detailed ui Chapter 2, these two effects may be represented by the level reductions anwpui and 

K r e d i s t - Both these have been calculated and are presented for the broad band case in 

Table 4.6, in which the actual values of power are also given. The reduction in input power to 

the structure shows little variation for the ten optimised structures and has an average value of 

lO.VdB. The redistribution of the power distribution shows a slightly greater variation, and has 

an average value of 22.3dB. Thus these two effects are both important in the reductions 



achieved, although the power redistribution in the structure provides twice the reduction in level 

than that for the input power. The three power components in the structure (the input power, 

the power in Beam 40 and the power in the remainder of the structure) are depicted graphically 

in Figure 4.19 for all ten optimised structures. The reduction in input power is apparent, 

however due to the relatively small values of the power in Beam 40 for the optimised 

structures, the height of these bars cannot been seen. This emphasises the relative values 

between the components and is included here for comparison with results presented in 

subsequent chapters. The details of the power distributions in all the beams of the structure for 

the unoptimised structure and the optimised structure B_E are shown in Figure 4.20. The 

optimisation has caused large decreases in the power dissipated in the beams near the base of 

the structure, and the power transmitted through the structure is dramatically reduced. 

For the single frequency and narrow band optimised structures only the values of ttiNPux are 

shown in Tables 4.3 and 4.4. The values of c x r e d i s t may be deduced from (2.83). It is seen that 

similar reductions in the input power are found when an average is taken over each set of ten 

candidates, but in general greater reductions are found as optimisation frequency band 

decreases. For the narrow band case there is a wide variation in values for each structure, a 

range of almost lOdB. As greater reductions are found in the attenuation of the power level of 

Beam 40 with decreasing bandwidth, and since the average input reductions are similar, this 

implies that the greater reductions are achieved with a greater redistribution of power within the 

structure. 

j .2. J O f 5 7 

A further investigation was performed in order to gain an insight into the mechanisms by which 

the reductions in vibration transmission of the optimised structures have been achieved. Using 

the finite element analysis (FEA) model package IDEAS-5 (Structural Dynamics Research 

Corporation, 1997) a modal frequency analysis of the unoptiinised and some optimised 

structures were performed. 

The geometry of the structures were imported to the FEA model, the beams where modelled 

using 10 linear beam elements per beam, each with the following parameters; Young's 

Modulus of Elasticity 6.03x10"'° N/m^, Material density 2370 kg/m^, beam cross-sectional 

dimensions 47.02mm {x-y plane) by 24.59mm. These values were used so as to give the same 

values of EA and EI as specified for the beam in Section 2.1. Using FEA, beam inter-coupling 

forces are not easily attainable, thus the modal analysis was conducted using one of the velocity 

components at one end of Beam 40. 
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A comparison for the velocity component, Vj (the x-axis velocity component at end 1 of 

Beam 40), was conducted using the receptance analysis method and the FEA method for the 

unoptimised structure, and the results are shown in Figure 4.21. Also, this comparison was 

performed for the three best optimised structures resulting from the genetic algorithm 

optimisation for the single frequency, narrow band and broad band cases, and the results are 

given: structure SF_E (Figure 4.22), structure N_B (Figure 4.24) and structure B_E 

(Figure 4.26). In general it can be seen that, although there are discrepancies between the 

responses produced by the models, reasonably good agreement is seen, and that the peaks and 

troughs in the responses from both models occur at similar fi-equencies, although the 

amplitudes are not always the same. The worse deviation is seen for the two responses for 

structure B_E between 250Hz and 300Hz. A similar comparison was performed by Shankar 

and Keane (1995) who achieved better apparent agreement between the velocity responses 

obtained from the same two methods. However, there are two main differences between theirs 

and the author's model. First, a regular structure with only four-bays was used, and any 

compounded modelling errors in each bay are thus greater in a structure with ten repeated bays. 

Second, Shankar and Keane used a generous value of 100s"' for the value of beam damping. 

This is a factor of five greater and means that the individual modes will have a half-power 

bandwidth of approximately 1 OOHz. Thus the resulting frequency response is much smoother, 

and much less sensitive to errors in individual modal frequencies. The sensitivity of the 

structural model, and thus the difficulties in obtaining an accurate match between two methods 

of modelling, can be demonstrated by the small effects of rounding the beam dimensions used. 

If the actual beam dimensions (47.02mm by 24.59mm) were to be approximated as 50mm by 

25mm, then the change in the first two natural bending frequencies of a Im length beam 

changes from 244Hz and 672Hz, to 260Hz and 7 MHz, as predicted by an Euler-Bernoulli 

beam model. Thus errors caused by the sensitivity of the model frequencies might explain the 

discrepancies in the amplitude mismatch of peaks in the velocity responses. As a peak in the 

responses is likely to occur from the cumulative effect of a number of modal responses, then 

any small changes in each individual modal frequency will affect the peak maximum, although 

the change in frequency may not, in fact, be at all large. 

The change in the modal frequency distribution of the optimised structures compared to that for 

the unoptimised structure is shown in Figures 4.23, 4.25 and 4.27 for structures SF_E, N_B 

and B_E respectively. First, it can be seen that for the unoptimised structure two modal clusters 

occur, in the frequency range of interest, at 185Hz and 240Hz. With reference to the value of 

energy level in Beam 40 against frequency (see, for example Figure 4.3) and velocity response, 

in Figure 4.21, that there are peaks in both of these responses at these frequencies. It is 
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assumed that these peaks occur due to the modal clusters. The effect of the optimisation 

process for all cases appears to be to 'smooth out' the modal frequency distribution, and thus 

remove the effect of the modal clustering. On each figure the frequency range over which the 

performance is evaluated is shown, and it is seen that the dispersing of the modal clusters 

occurs even for clusters outside this frequency range. Indeed, two further modal clusters can be 

seen at frequencies 95Hz and 310Hz, which although they are well outside the frequency band 

used for all the optimisation cases, have also been dispersed as a result of optimisation. 

To investigate whether the 'modal dispersion' is due to the optimisation process, or simply the 

irregularity of the optimised structures, two intermediate structure designs were randomly taken 

from within the first generation of the genetic algorithm optimisation which resulted in 

structure B_E. One intermediate design has worse performance than the unoptimised structure, 

and the other one has better performance. The modal distributions of each were evaluated, and 

are shown in Figures 4.28 and 4.29. It is seen in both cases that a 'smoothing' of the modal 

frequency distribution has occurred, and thus it is concluded that the modal smoothing is 

mainly due to the irregularity of the structure geometry. However, comparing these modal 

distributions with those for the three optimised structures presented above it is seen that the 

modal distributions for the optimised structures are 'smoother'. Thus the optimisation does 

provide an additional effect, and thus seeks an irregular structure that has an optimal 

performance. Simply providing an irregularity to the structure geometry, even though this may 

'smooth' the modal distribution, does not necessarily imply a reduction in the vibration 

transmission of the structure. 

j . 2 6 O F O f 

The static tip stiffriess of the ten optimised structures obtained by genetic algorithm 

optimisation using a broad band objective function was briefly investigated. The geometry of 

the candidates was imported into a Finite Element Analysis package for this purpose. Each 

beam of the structure was represented as 50 beam section models each having the same 

physical properties as those used for the receptance theory model, as reported in 

Section 4.2.3.5. A force, of arbitrary value lOON, was applied at joint 20 at position (10,1) in 

the j-axis direction and the vertical deflection measured. The magnitude of the force has no 

significance as a analysis used was a linear one and non-linear effects, such as buckling, are 

not considered. From this the "static tip stiffness" of each structure was measured, and is 

included in Table 4.5. 
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Firstly, it is seen that the unoptimised structure has the highest tip stiffiiess. That is not 

surprising since the unoptimised traditional design, historically, is based, no doubt, on static 

strength. Structure B_I is the 'weakest' structure in this respect (and also is incidentally the 

worst in terms of dynamic optimised behaviour). However, in general there in no observed 

relationship between the ranking of the optimised structures and their static strength. The static 

strength of the best optimised candidate shows a reduction to 67% of that of the unoptimised 

structure. The optimised structure with the best static strength is B_J, ranked 6th by dynamic 

performance, which only shows a reduction to 89% of the static strength. 

j . 2 7 OF Of 

All optimisation trials using objective functions based on either an average of the energy levels 

over a band of frequencies, or that using the energy level at a single frequency, have produced 

substantial reductions in the objective function. It is not known whether the global optimum is 

contained within each of the ten candidates. The mean and the maximum-to-minimum (max-to-

min) ratio of the range of objective function values and the wide band response values across 

the ten candidates produced from each of the optimisation cases are shown in Table 4.2. The 

wider the bandwidth of the objective function the smaller the mean reductions achieved across 

the ten candidates, it can also be seen that the variation (max-to-inin ratio) across the 

candidates in each optimisation case decreases with optimisation bandwidth. 

Each optimisation seeks to achieve a reduction in the objective function, and the resulting wide 

band response indicates that this is achieved at the expense of the response outside the 

optimisation 'window'. This is shown by increases in the structural vibration transmission at 

some frequencies outside the objective function frequency range. Considering the reductions in 

the wide band response for the optimised candidates for all three optimisation cases there are 

only small differences in the mean reductions and variations (max-to-min) in the wide band 

reductions across each set of ten candidates. This indicates that in a global {i.e., wide band) 

sense the overall vibrational energy transmission achieved is similar, which is supported by 

modal analysis of the optimised structures. This shows that a modal redistribution, while 

dispersing modal clusters does not alter the general modal density. 

The fact that simply applying random changes to the structure does not necessarily produce a 

better design is evident from Figure 4.30. Tliis shows the value of the objective function for all 

the structure designs evaluated in the entire genetic algorithm which resulted in the best 

structure for the broad band case, B_E, which is shown in Figure 4.18. The value of the 

objective function for the unoptimised structure is 0.33 xlO"® J as marked on the j-axis. Each 

generation contain consists of 300 design evaluations, which are plotted in a sequential fashion. 



It is seen that there many structures in the initial generation which have worse performance 

than the regular structure although most are better. The first generation is made up of the 

original, unoptimised structure design and the remaining initial population is randomly 

composed. As the genetic algorithm proceeds, generation by generation, it is seen that the 

average values of the each generation improves. However, even in the ninth generation a 

structure design exists which has worse performance than the nominal design (at approximately 

evaluation 2700). This may have resulted &om either a crossover or a mutation operation, but 

does not succeed to the following generation. 

4.3.3 OVERALL SUMMARY OF THE SUCCESS OF THE ALL OPTIMISATION 
METHODS 

The results from all the optimisations detailed above are summarised in Table 4.1. In 

optimising the performance of the structure the most successful traditional optimisation 

technique, out of three used, was the Hook and Jeeves search. Even though this exhibited very 

slow convergence in the second search phase (using the Fiacco-McCormick penalty function), 

its performance after the first phase (using the One Pass penalty function) was also found to be 

better than the other two methods after both phases. From the five optimised candidates 

resulting fi-om using the Dynamic Hill Climbing algorithm, the best candidate was better than 

any other candidates, including those using genetic algorithms. The mean energy attenuation 

over the five candidates was better than for the mean for the ten candidates using genetic 

algorithms, except for the broad band optimisation case. Thus it is seen that the two algorithms 

that allow exploration of the search space away fi-om the region local to the initial point which 

represents the regular structure have produced structures with better optimised performance. 

The way in which is this is achieved is different for these two algorithms. The candidates 

produced using genetic algorithms are not necessarily at located at any local minima, as there is 

no local 'liill climbing' (or descending) element to this algorithm. It has been suggested that a 

good strategy is to use genetic algorithm optimisation followed by a gradient search (Ibaraki, 

1997). In this way, the minima local to the solutions produced by the genetic algorithm are 

guaranteed to be found. This strategy was not adopted here and the justification is 

demonstrated by studying the robustness of each of the optimised candidates produced above, 

which is reported in the following section. 

The mechanisms by which the reductions in vibration transmission were achieved by the 

optimise studies were also studied. Firstly a power analysis of the structures showed that the 

reductions in the vibration were achieved by a decrease of power into the structure fi-om the 

primary force, but most significantly by a redistribution of power in the structure so less power 

is dissipated in Beam 40. A modal analysis showed that peaks in the response of the regular 



structure were due to modes with similar modal frequencies. It was seen that irregular 

structures did not contain this 'clustering' of modal frequencies whether their overall response 

was better or worse than the unoptimised structure. The optimised structures had a greater 

smoothing effect on the modal distribution, although as seen this is not the only explanation for 

the reduced vibration transmission. Thus, the success of the optimised design candidates seems, 

in part, therefore to come from the non-repetitive nature of the geometry. Although the non-

repetitive nature alone does not imply better performance, it is a common feature of all the 

optimised candidates. Part of the success of all the optimisation methods can probably therefore 

be attributed to the fact that the traditional periodic design is a particularly bad design in 

respect to the transmission of vibrational energy. The periodicity of the structure, whilst being 

favourable on aesthetic grounds allows similar frequency components, that would propagate 

relatively unimpeded through one bay section, through all the bay sections. Also, the static 

strength of some optimisation structures was evaluated. It was found that the static strength 

was reduced in the range of 50% to 90% of that of the unoptimised structure, and thus there 

was no significant compromise between static and dynamic performance, in this case. 

4 . 4 R O B U S T N E S S A N A L Y S I S 

The robustness of the performance to geometric perturbations was analysed for each of the 

optimised structures obtained using each optimisation method for the single frequency case, for 

the narrow band and broad band objective functions, reported above. 300 sets of joint 

perturbations were generated and applied to the joint positions of each structure and the 

objective function re-evaluated and recorded. Each set contained 18 pairs of random numbers 

distributed uniformly between -1 and 1. Each pair relating to the x a n d j coordinates for each 

joint. The same 300 sets of joint perturbations were used for each analysis. Each of the joint 

perturbations were added to the joint coordinates for each structure in turn, suitably scaled. The 

change in the resulting objective function represents the sensitivity of the performance of the 

structure to small changes in the joint positions. For all cases studied in this and subsequent 

chapters 300 sets of joint perturbation were found to be sufficient to estimate the reported 

probability distribution and probability limits derived. This was validated by comparing some 

of the results with those produced using 1000 sets of joint distributions. Any changes in the 

'shape' of the histograms or the probability limits were insignificant. 

4.4.1 ROBUSTNESS OF UNOPTIMISED STRUCTURE 

A brief study of the performance of the unoptimised structures due to geometric perturbations 

was conducted. The perturbed performance is presented for a perturbation scaling factor of 
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0.01 for the random perturbations. This causes the maximum perturbation to each joint 

coordinate to be ±10mm in bothx and j axes. (The effect of this scaling factor is studied below 

for the narrow band genetic algorithm optimisation case). The results are shown in Figure 4.31 

by displaying the value of perturbed structure performance obtained using a histogram. For this 

and following histograms the range is divided equally into ten bars between the minimum and 

maximum values (when scaled logarithmically). The nominal (unperturbed) value is indicated 

by a thin sohd line superimposed upon each histogram plot and the nominal value is not part of 

the data represented by the histogram. The average energy level over the frequency bandwidth 

used for the optimisation is higher for the single frequency case as there is a strong resonant 

peak in the frequency response at this frequency, similarly the narrow bandwidth has a higher 

average than the broad band optimisation bandwidth. The robustness is determined by the 

spread of the results, the narrower this is, the more robust the structure. It is seen that for all 

the optimisation bandwidths considered the robustness is similar. The bold solid line is the 95% 

performance probability limit probability, which determines the performance value for which 

95% of the applied perturbations result in better performance. This is a measure of both the 

nominal value and robustness and is used as an indicator in selecting the best, but practically 

achievable structure. This is discussed in more detail in the following section. 

4.4.2 ROBUSTNESS OF STRUCTURES OPTIMISED BY NON-
EVOLUTIONARY TECHNIQUES 

The robustness of the optimised structures produced using the non-evolutionary methods was 

studied, using a perturbation scaling factor of 0.01 (corresponding to ±10mm joint coordinate 

freedom). The results are shown in Figures 4.32, 4.34 and 4.36, when optimised at a single 

frequency, and when optimised as the average performance over the narrow and broad 

frequency bands, respectively. The robustness of each the performance of each structure is 

indicated by the width of each histogram, the nominal performance is depicted by a thin solid 

line. The thick bold line show the 95% probability limits. The 95% probability limits are also 

summarised in Table 4.2. 

The optimised candidate produced using the DFP and BFGS algorithms appear to have resulted 

in relatively robust structures in for the single frequency, narrow band and broad band 

optimisation cases. Additionally, the structure B_DHC_D, produced by the Dynamic Hill 

Climbing algorithm is also seen to be robust. Thus if robustness alone was the foremost 

performance criterion then these structures would be selected. However, if the absolute 

performance is also important then the 95% probability limit enables candidate structures to be 

selected on a basis combining both absolute performance and robustness. The best structures 

are then seen to be SF_DHC_A, N_DHC_B and B_DHC_D for the single frequency, narrow 
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and broad band cases respectively. It is noted that only the latter candidate would have been 

chosen on grounds of nominal performance. All the optimised structural designs produced by 

the non-evolutionary methods are less robust than the unoptimised structure, with the exception 

of N_BFGS, B__DFP and B_BFGS. The single frequency optimised structures are very 

unrobust, some of the histograms spreading over a range of four orders of magnitude, in 

general the narrow band optimised structures are seen to be slightly more robust. The 

robustness of the worse broad band optimised structures is a little over one order of magnitude. 

It is apparent that for many of the optimised structures, the nominal performance is unlikely to 

be realised in practice, as the performance deteriorates for all geometric perturbations applied. 

This indicates the importance of robustness analysis in selecting a practical candidate, and the 

inadequacy of using the nominal performance alone. Indeed, for most of the candidates 

produced here there the nominal performance appears to give little indication of each 

structure's performance unless it is realised exactly in practice (with the precision specified by 

the optimised design). It is also seen that, with the exception of B_DHC_D, there is a trade-off 

between robust performance and nominal value. Thus only structures whose nominal 

performance is likely to be realised, are in general, those structures whose nominal performance 

is one of the lower ranked. The relative impracticality of the optimised designs produced using 

non-evolutionary optimisation methods is apparent by comparison with the optimised 

candidates produced in the following section. 

An indication of the lack of robustness of the optimised structures achieved by the Hook and 

Jeeves and Dynamic Hill Climbing methods can be gleaned from studying the optimisation 

histories, as shown in Figures 4.5, 4.9 and 4.13, and Figures 4.6, 4.10 and 4.14, respectively. 

In these techniques the hill climbing is composed of intermediate exploratory searches in each 

joint coordinates in turn and pattern moves. The results of each objective function evaluation 

for these is shown in the optimisation histories. The presence of large spikes in a history 

indicates the 'unrobustness' of the present position in the search space, as the small changes 

can be considered akin to a perturbation. Also, the 'shotgun' search at the end of the first phase 

for the Hook and Jeeves search is similar to a perturbation analysis, giving an idea of the 

robustness of the solution at this point in the optimisation. 

4.4.3 ROBUSTNESS OF GENETIC ALGORITHM OPTIMISED STRUCTURES 

A robustness analysis was performed for all ten optimised candidates resulting from the genetic 

algorithm optimisation. For the narrow band optimised structures, the effect of the size of the 

range of the perturbations used in the robustness analysis is also investigated. For all the results 
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presented, a summary is included in Table 4.2 to enable comparison between the perturbed 

performance with optimised structures resulting from other optimisation methods. 

j . ; 7 (0^ O F a N G l E O f 

The robustness of the optimised structures obtained using genetic algorithm optimisation at a 

single frequency was briefly studied for a perturbation scaling factor of 0.01. This causes the 

maximum perturbation to each joint coordinate to be ±10mm, as previously discussed. The 

perturbed values of the objective function are displayed using a histogram to indicate the 

statistical spread about the nominal value, Figure 4.33. As before, the nominal value is 

indicated by a thin solid line superimposed upon each histogram plot, the 95% probability limit 

by a bold solid line and the results are ranked in order of decreasing nominal performance. The 

results are listed in Table 4.3. It can be seen that, for example, S_E and S_D are less robust 

than structures S_A and S_G to small perturbations in structure geometry. If solely the 

robustness of the structures were the paramount design goal then structure S_A is shown to 

have the best performance in this respect. However even though this structure is more robust its 

nominal (unperturbed) performance is not as good as structure S_E. 

It can be seen that the entire distribution of the performance for structure SF_D is worse than 

for the nominal structure for all perturbation cases (the nominal structure performance is not 

included in the distribution population). The size of the joint perturbations used here represents 

a generous manufacturing tolerance of 10mm. However it is unlikely that the nominal 

performance of this structure would be still be practically realisable. As shown below, where 

the effect of the size of the perturbations is studied, the perturbations used here are still 

representative of the robustness seen for smaller perturbations. Comparing the perturbed 

performance of the single frequency optimised structure with that of the perturbed performance 

of the unoptimised structure in Figure 4.31, it is seen that in general the structures have a lower 

robustness after optimisation. Only structures S_A and S_G have maintained a similar level 

robustness through optimisation. 

Considering the absolute perturbed structure performance the 95% probability limits indicate 

that the best structure is seen to be structure S_A, followed closely by structure S_G and then 

structures S_E, S_J and S_F. Structure S_A is shown in Figure 4.16. It was ranked third in 

terms of nominal performance but is a more practical structure than S_E. This revelation is not 

indicated by any characteristic of the topology of either structure. 
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The robustness of the narrow frequency band optimised structures was first investigated using 

a scaling factor of 0.01 for the random joint coordinate perturbations up to ±10mm. The 

nominal and perturbed performance of each structure is shown in Figure 4.35 with the 95% 

probability limits, shown following the convention of Figure 4.33. The results are also listed in 

Table 4.4. On grounds of robustness alone structure N_I is the most robust structure, however 

its absolute performance is generally worse than most of the other candidates. This optimised 

structure is the only one whose robustness is comparable to the unoptimised structure, shown in 

Figure 4.31. Using the 95% probability limit the best structure is seen to be structure N_B, 

which for this optimisation case also happened to have the best nominal performance. 

The choice of the maximum size of perturbations used above (determined by the perturbation 

scaling factor) was arbitrary to some extent, though it was chosen in order to represent a 

typical maximum manufacturing tolerance. In order to verify that the above results are not 

dependent on this scaling factor, and that there is some degree of 'linearity' in the results 

against small changes in the scaling factor, two additional scaling factors were investigated. 

The results for scaling factors of 0.005 and 0.02 (perturbations of up to ±5mm and ±20mm) 

are shown in Figures 4.38 and 4,39 respectively for the narrow band optimised structures. In 

both cases the absolute values defining the distribution are changed due to the different size of 

the applied perturbations. The ranking of the 95% probability limits for a scaling factor of 

0.005 across the structures are almost identical to those for 0.01, although the differences 

between structures N_C and N_H becoming smaller. The performance limits for a scaling of 

0.02 shows more radical changes in ordering than for those with 0.01 scaling. In particular the 

original 'best choice' performance of structure N_B has deteriorated. These results suggest that 

a scaling factor of 0.02 is too large to be considered a 'small' perturbation for these structures, 

producing results strongly dependent upon the range of perturbation amplitudes. 

The robustness of the broad band optimised structures was also investigated using a 

perturbation scaling factor of 0.01. The nominal and perturbed performance of each structure 

is shown in Figure 4.37 with the 95% probability limits following the convention of 

Figure 4.33. The results are also listed in Table 4.5. The most robust structure is structure 

B_D followed closely by structure B_J, and these are seen to be more robust than the 

unoptimised structure, whose perturbation performance is shown in Figure 4.31. In general it is 

seen that the perturbations have less effect on the broad band optimised structures than the 

other two cases, although the performance of some structures are clearly more sensitive to 
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perturbations than others. This is shown by the reduced (vertical) baseline of the histograms. 

For the least robust structure B_B this covers only one order of magnitude. Using the 95% 

probability limit the best structures are seen to be structures B_E and B_H. 

4.4.4 DISCUSSION OF ROBUSTNESS ANALYSIS RESULTS 

The results of all the robustness analyses for all the optimised structures presented in this 

chapter are summarised in Table 4.2. The promising performance of the non-evolutionary 

methods, which appeared to be very good on the grounds of nominal performance, is not found 

to be realisable as shown by the robustness analysis of the structures. Even though some of 

these structures showed better nominal performance than the optimised structures produced by 

genetic algorithm optimisation they are, in general, seen to be very unrobust. Their nominal 

performance is unlikely ever to be realised in practice as any applied geometric perturbation 

deteriorates their performance. The 'optimality' of such structures is thus seen to be false in a 

practical sense. The differences between the nominal performance and the performance for the 

95% probability limit for structures produced by non-evolutionary methods and genetic 

algorithms is seen by comparing these values shown in Table 4.2. This is also readily apparent 

by comparing Figures 4.36 and 4.37 for the broad band case, for example. The reason the 

structures resulting from the use of non-evolutionary techniques are thought to be so unrobust 

is the nature in which the optimisations produce optimal solutions. Gradient search methods 

seek local minima, features in the search space that are often due to the destructive effects 

between many individual responses of the structure. These minima are special positions in the 

search space where these effects are simultaneously at a minimum, but as many rely on so 

many contributory elements there are also often sensitive to changes in any one of them. These 

may be visualised as very sharp dips or valleys in the search space, and the performance 

indicated in such features are only attainable at this exact point in the search space, and 

therefore sensitive to any changes in the optimisation parameters. The performance of the 

optimised candidates produced by the genetic algorithm optimisation is seen not to be as 

sensitive as those produced by the non-evolutionary methods, even though there is variation 

between the robustness of individual optimised structures. In the selection of a practical 

optimised candidate the analysis of the robustness of the structures is therefore still prudent. 

The use of the optimised candidates produced by the non-evolutionary methods was not studied 

further. 

The optimised structures obtained using genetic algorithm optimisation for the single 

frequency, and both narrow and broad band objective functions demonstrate different levels of 

robustness. By comparing the spread of the distributions for the candidates for each case an 
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indication of the typical robustness inherently achieved with each type of objective function can 

be seen. A perturbation scaling of 0.01 (corresponding to perturbations up to ±10mm) is 

common for each optimisation case in Figures 4.33, 4.35 and 4.37. It is seen that for the same 

perturbations the wider the frequency band considered by the objective function the smaller the 

spread. For the single frequency case the spread of each candidate's distribution varies from 

three orders of magnitude to one order of magnitude, for the narrow band case the spread varies 

from one to two orders of magnitude, for the broad band case all the candidates variations fall 

approximately within one order of magnitude. Hence it is seen that the wider the bandwidth of 

the objective function the more inherently robust the candidates produced by the optimisation. 

However, only some of the candidates of the broad band optimisation are shown to be more 

robust than the unoptimised structure. 

Table 4.2 shows the mean and the maximum-to-minimum (max-to-min) ratio of the range of 

the 95% probability limits across the ten candidates produced from each of the optimisation 

cases. The mean of the 95% probability limits is seen to decrease with increasing objective 

function bandwidth, whereas the max-to-min ratio is seen to decrease. This trend is similar to 

that for the corresponding objective function value results. This is explained by the fact that the 

95% probability limit is a combined measure of the nominal performance and the robustness 

for each candidate. However, for the single frequency case, the max-to-min ratio is noticeably 

greater due to the relative lack of robustness of the candidates produced from single frequency 

optimisation. 

The geometric perturbations used in the robustness analysis, and the results obtained from 

them, are a measure of statistical performance due to an ensemble of uniformly distributed 

perturbations. If the distribution of the perturbations was to differ greatly from being uniform, 

then other optimised structures may be preferable. In the absence of any information about the 

perturbation distribution then the assumption of uniform distribution is thought to be prudent. 

If the distribution of the perturbations was known then this could be applied in the analysis to 

produce more specifically relevant results. 

4 . 5 C O N C L U S I O N S 

Optimisation of an existing traditional design of a lightweight cantilever structure, to reduce the 

vibrational energy transmission from the base to the end beam, was performed. The 

optimisation criterion was based on three types of objective function, one using the energy level 

at a single frequency (185Hz), one using an energy level average over a narrow band of 

frequencies (175-195Hz), and one using an energy level average over a broad band of 
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frequencies (150-250Hz). Optimised structures were achieved using three traditional methods 

(consisting of two gradient based and one hill climbing technique), Dynamic Hill Climbing (a 

hill climber with stochastic search restart) and genetic algorithms. The latter two methods have 

random elements to their operation so five and ten candidates, respectively, were produced for 

each. 

The optimisation process achieves significant reductions in the energy transmission in the 

&equency band over which the objective function was evaluated although, in general the energy 

level over a wider frequency band remained fairly constant. A modal analysis for structures 

produced using genetic algorithms showed that the very nature of irregular geometries 

'smoothes out' modal frequency clusters which are often responsible for peaks in the frequency 

response, but only on a local basis. However, the virtue of an irregular structure does not imply 

better performance and the optimisation process is still required to find the modal conditions 

which result in the large reductions in vibration transmission seen. The amount of apparent 

distortion in the optimised structures was not found to be a good indicator of the minimised 

perfonnance, the most distorted structures not necessarily being the best optimised structures. 

The consequence of the optimisation of the structures (concerned with the dynamic 

performance) on the static strength of the candidates obtained for the broad band genetic 

algorithm optimisation was briefly studied. All these optimised candidates were found to have 

an inferior static tip stiffiiess compared to the original, and there was no relationship found 

between the static strength and the ranking of the optimised candidates. The static tip stiffiiess 

was reduced by about 50% to 90% across all ten candidates, compared to the unoptimised 

structure. 

The robustness (lack of sensitivity) of the optimised performance to small changes in the 

structure geometry of all optimised structures resulting from all optimisation methods was 

analysed by applying small perturbations to the positions of the non-extreme joint positions. By 

applying an common ensemble of random joint perturbations to each candidate the statistical 

distribution of the resulting performance change could be studied. It was found that some 

structures are more robust to such perturbations than others. In particular it was found that the 

optimised structures produced by the optimisation methods that produce optimised structure be 

seeking, exact, local minima are very unrobust. In many cases, to such an extent that it is 

unlikely that the structures would be practically realisable. In general the optimised structures 

resulting from genetic algorithm optimisation are much more robust, although to varying 

degrees. The amount of apparent distortion of the optimised structures, or any form of the 

geometry does not indicate the degree of robustness of a structure. In general it is found that the 

wider the response bandwidth considered by the objective function in the optimisation process. 
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the less the spread in nominal performance across the ten candidates produced in each case, and 

also the more robust the design candidates obtained. This is thought to be because the wider 

bandwidth will result in an objective function which is dependent upon the combined effect of 

many modes and is therefore less sensitive to changes in any one particular mode. 

A smaller and a larger size of random joint perturbations were additionally applied to the 

narrow band genetic algoritlim optimised candidates uniformly distributed between ±5mm and 

+20mm. It was found that a similar ranking of results was obtained for perturbation up to 

±5mm and the original perturbation size (+10mm). The ranking was not preserved 

perturbations up to ±20mm because, it is thought, they were no longer small compared to the 

size of the structure. 

The choice of the best optimised candidate depends upon both the absolute value of the nominal 

(unperturbed) performance, and the robustness of the structures performance to perturbations. 

A criterion is suggested which defines the best candidate to be that whose performance is the 

best for 95% of all perturbations applied. This is used to indicate the statistical expectation of 

the structure performance. This criterion is applied to the candidates enabling the best 

candidate, in terms of both robustness and absolute performance, to be identified. 
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Penalty Function 

Optimisation Optimisation One Pass Fiacco-McCormick / Final 

Bandwidth method Objective 
function 

attenuation 
(dB) 

Number of 

evaluations 

Objective 
function 

attenuation 
(dB) 

Total Number 

of evaluations 

DFP 3&6 2667 4&6 6180 

BFGS 4L6 2038 4&4 4375 

Single HOOK & J 7&9 2576 714 9530 

Frequency mean - - 6&1 3031 

(185Hz) DHC max - - 823 2773' 

mean - - 5&0 1000 

GA max - - 6^2 1000 

DFP 4&6 4646 4L0 5459 

BFGS 2^2 2876 3&4 4939 

Narrow HOOK & J 4&2 2400 472 8123 

Band mean - - 65^ 4161 

(175 - 195Hz) DHC max - - 6&8 6229' 

mean - - 429 1000 

GA max - - 4%5 1000 

DFP 22.6 1808 2Z6 2018 

BFGS 17^ 2037 1&9 4297 

Broad HOOK & J 241 2473 24^ 8075 

Band mean - - 2&4 4188 

( 1 5 0 - 2 5 0 H Z ) DHC max - - 3&8 4091' 

mean - - 326 4500 

GA max - - 34^ 4500 

' number of iterations corresponding to the DHC optimisation achieving the maximum attenuation. 

TABLE 4.1. Summary of optimisation performance for all optimisation methods. Attenuation 

refers to reduction achieved in optimisation bandwidth. 
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Optimisation 

Bandwidth 

Optimisation 

method 

Objective 

function 

(dB) 

Wide band 

response 

(dB) 

95% probability 

limit for objective 

function (dB) 

DFP 4^6 141 391 

BFGS 4&4 9.95 34J 

Single HOOK & J 7^4 7J2 3%0 

Frequency mean 681 7.03 334 

(185Hz) DHC max-to-min 2&5 l&l 2L8 

mean 5&0 7^9 44.0 

GA max-to-min 1&2 6.03 211 

DFP 4L0 gJW 344 

BFGS 3&4 1&8 2&8 

Narrow HOOK & J 4^2 8.61 2&0 

Band mean 65^ 3J0 4&9 

(175- 195Hz) DHC max-to-min 6.04 120 104 

mean 429 813 37J 

GA max-to-min 7^2 1&6 

DFP 226 4.93 1&6 

BFGS 1&9 612 17.5 

Broad HOOK & J 24^ 3.81 11.4 

Band mean 2&4 8.3 2 a o 

(150 - 250Hz) DHC max-to-min 124 1&5 l&O 

mean 326 9.07 29J 

GA max-to-min 8.89 4.96 

TABLE 4.2. Summary of optimisation performance, wide band responses and 95% probability 

limits for all optimisation methods. Attenuation refers to reduction achieved in optimisation 

bandwidth. 
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Rank Structure 

reduction in 
objective 
function 
(185Hz) 

(dB) 

reduction in 
wide band 

average energy 
( 5 0 - 3 5 0 H Z ) 

(dB) 

95% probability 
limit for 
objective 

function (dB) 

Power input 
reduction 
(185Hz) 

(dB) 

- unopt. 0 0 - 0 

1 SF_E 6&2 10.7 5&5 13^ 

2 SF_D 673 11.0 3&6 10.5 

3 SF_A 63^ 9.8 6&2 114 

4 SF_G 624 6.4 5&2 119 

5 SF_J 6&9 4.9 55^ 15^ 

6 SF_F 6&4 7.6 553 114 

7 SF_C 6&3 6.5 3&1 14.4 

8 SF_H 5&8 5.8 50.7 14.0 

9 SF_B 5&5 8.0 39^ 119 

10 SF_I 53.0 7.4 463 11.3 

average 5&0 7.4 44.0 13.5 

TABLE 4.3. Results summary for the Single Frequency objective function optimised 

using genetic algorithms. Input power reduction is also shown. 

Rank Structure 

reduction in 
objective 
function 

(175-195HZ) 
(dB) 

reduction in 
wide band 

average energy 
(50-350HZ) 

(dB) 

95% probability 
limit for 
objective 

function (dB) 

Power input 
reduction 

(175-195HZ) 
(dB) 

- unopt. 0 0 - 0 

1 N_B 47J 8.6 425 9.29 

2 N_G 47.1 9.8 3&6 12.7 

3 N_F 45J 7.8 422 143 

4 N_J 44.9 12.5 4L7 13.4 

5 N_A 44.4 6.7 4L3 5.83 

6 N_C 418 8.5 39.7 112 

7 N_H 412 6.6 4&2 110 

8 N_D 4L8 5.2 363 8.31 

9 N_I 4L5 10.7 3&0 8.87 

10 N_E 38^ 9.6 3L9 11.1 

average 42.9 8.1 377 11.7 

TABLE 4.4. Results summary for the Narrow band objective function optimised using 

genetic algorithms. Input power reduction is also shown. 
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Rank Structure 

reduction in 
objective 
function 

(150-250HZ) 
(dB) 

reduction in 
wide band 

average energy 
( 5 0 - 3 5 0 H Z ) 

(dB) 

95% probability 
limit for 
objective 

function (dB) 

Static tip 
stiffness 
(KN/m) 

- unopt. 0 0 - 9&6 

1 B_E 34^ 9.5 3L9 65^ 

2 B_F 34^ 7.2 31.1 6&0 

3 B_H 33^ 9.0 3L7 75^ 

4 B_B 33J 123 2A8 692 

5 B_C 3 1 8 5.3 292 6&0 

6 B_J 323 1L6 30.9 &A6 

7 B_A 323 12.7 29.8 83J 

8 B_G 3 Z 0 8.4 30.0 71.7 

9 B_D 3L6 14̂ 2 3&2 543 

10 B_I 3L0 8.3 2&9 4&8 

average 326 9.1 29J -

TABLE 4.5. Results summary for the Broad band objective function optimised using 

genetic algorithms. Input power reduction and static tip strength is also shown. 

Structure 
Primary force input power Power dissipated Power 

redistribution Structure 
(xlO-̂  W) Reduction (dB) 

(XiNPUT 

in structure 
(xlO'̂  W) 

in Beam 40 
(xlO-̂  W) 

(dB) 
CREDIST 

unoptimised 3&4 0 35J 6.69xlO-*W 0 

B_E 2.89 ILO 2.89 2jW 214 

B_F 2.82 11.1 2.82 2^# 210 

B_H 2.89 ILO 2^# 2J0 229 

B_B 3J3 1&7 3U3 3U0 227 

B_C 4^9 9.0 4J9 3.55 218 

B_J 3J5 9.9 3J5 3.93 224 

B_A 2^3 1L6 2^3 3.93 2&7 

B_G 2^2 1L6 2J2 4^9 2&4 

B_D 3.64 l&O 3.64 4J9 2L6 

B J 3.55 l&l 3.55 5J7 2&8 

avaage 323 lOJ 323 3^3 223 

TABLE 4.6. Power levels within the optiinised structures, over a bandwidth of 150Hz 

to 250Hz. 
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Figure 4.1: Contour plot of the linearly-scaled broad band objective function against x and y 
coordinates for joint 8 within the optimisation limits. 

_mc_B _nHC_c 

_DHC_D 

Figure 4.2: Four randomly generated structures used as start points for the Dynamic Hill 
Climbing optimisations. 
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ODtimised S t ruc tu re SF DFP 

^ ^ ^ 3M ^ 
FrepMocy fHz| 

50-350HZ average Energy Level (opt.) 0.5038E-07 

OpuimisaLion f i r s t phase. Opt, value 0.2088E-09 Optimisation second phase. Opt, value 0.2121E-10 

Figure 4.3: Structure optimised for performance at 185Hz achieved using the Davidon-Fletcher-
Powell method. 

-orcio#t#|m) 

Optimised Structure SF_BFGS 

Frequency |Hz) 

50-350HZ average Energy Level (opt.) 0.2053E-06 

Optimisation f i r s t phase. Opt, value 0.1324E-09 Optimisation second phase. Opt, value 0.2750E-10 

Figure 4.4: Structure optimised for performance at 185Hz achieved using the Broyden-Fletcher-
Goldfarb-Shanno method. 
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50-350SZ average Energy Level (opt.) 0.2584E-06 

L l L W L L l 
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Figure 4.5: Structure optimised for performance at 185Hz achieved using the Hook and Jeeves 
method. 

MlQ-iU 

A - h v / i 

Optimised Sbrucbure SF_DHC_D 

wo IM ^ ^ 
Froqueocy (Hz) 

50-330Hz average Energy Level (opt.) 0.3183E-07 

Optimisation convergence. Final (opt.) value 0.1123E-13 

Figure 4.6: Structure with best optimised performance at 185Hz achieved using Dynamic Hill 
Climbing. 
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Optimised Structure N„DFP 

Ff#qu*ncy (Hz I 

50-350HZ average Energy Level (opt.) 0.1313E-06 
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Figure 4.7: Structure optimised for average performance over frequency band 175Hz to 195Hz, 
achieved using the Davidon-Fletcher-Powell method. 
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Figure 4.8: Structure optimised for average performance over frequency band 175Hz to 195Hz, 
achieved using the Broyden-Fletcher-Goldfarb-Shamio method. 
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Figure 4.9: Structure optimised for average performance over frequency band 175Hz to 195Hzi, 
achieved using the Hook and Jeeves method. 
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Figure 4.10: Structure with best optimised average performance over frequency band 175Hz to 
195Hz, achieved using Dynamic Hill Climbing. 
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Figure 4.11: Structure optimised for average performance over frequency band 150Hz to 250Hz, 
achieved using the Davidon-Fletcher-Powell method. 
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Figure 4.12: Structure optimised for average performance over frequency band 150Hz to 250Hz, 
achieved using the Broyden-Fletcher-Goldfarb-Shanno method. 
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Figure 4.13: Structure optimised for average performance over frequency band 150Hz to 250Hz, 
achieved using Hook and Jeeves method. 
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Figure 4.14: Structure with best optimised average performance over frequency band 150Hz to 
250Hz, achieved using the Dynamic Hill Climbing. 
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Figure 4.15: Structure with best performance at 185Hz achieved using genetic algorithm 
optimisation, SF_E. 
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Figure 4.16: Structure ranked third for performance at 185Hz, achieved using genetic algorithm 
optimisation, SF_A.. 
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Figure 4.17: Structure with best optimised average performance over frequency band 175Hz to 
195Hz, achieved using genetic algorithm optimisation, N_B. 

Broad band (150-250Hz) Optimised Stnicbure B_ 

ODCimisation convergence. Final (opt.) value 0.1198E-09 

Frequmocy (H%) 

5 0 - 3 5 0 H Z average Energy Level (opt.) 3.3062E-07 

Figure 4.18; Structure with best optimised average performance over frequency band 150Hz to 
250Hz, achieved using genetic algorithm optimisation, B_E. 
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Figure 4.19: Power components in the broad band optimised structures. Light grey: Power 
input to structure, Dark grey; Power dissipated in Beams 1 to 39, Black: Power dissipated in 
Beam 40 (N.B. Power dissipated in Beam 40 is only distinguishable for unoptimised structure. 
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Figure 4.20: Power dissipation in each structure beam for the unoptimised structure (dashed) 
and optimised structure B_E. Each vertical gridline denotes the vertical beam separating adjacent 
bays. 
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Figure 4.21: Comparison of velocity response of Beam 40 obtained by receptance analysis 
model ( ) and FEA model ( ) for the mioptimised structure. 
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Figure 4.22: Comparison of velocity response of Beam 40 obtained by receptance analysis 
model ( ) and PEA model ( ) for the optimised structure SF_E. 
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Figure 4.23: Effect of optimisation on modal frequency distribution for optimised structure 
SFJE. Frequency at which performance is optimised is shown by dotted line. ( + unoptimised 
structure, Q SFJE) 
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Figure 4.24: Comparison of velocity response V.̂  of Beam 40 obtained by receptance analysis 
model ( ) and FEA model ( ) for the optimised structure NJB. 
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Figure 4.25: Effect of optimisation on modal frequency distribution for optimised structure 
N_B. Frequency band over which average performance is optimised is shown by dotted lines. 
( + mioptimised structure, Q NJB) 
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Figure 4.26: Comparison of velocity response of Beam 40 obtained by receptance analysis 
model ( ) and FEA model ( ) for the optimised structure B_E. 
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Figure 4,27: Effect of optimisation on modal frequency distribution for optimised structure 
B_E. Frequency band over which average performance is optimised is shown by dotted lines. 
( + unoptimised structure, Q BJE) 
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Figure 4.28; Effect of optimisation on modal frequency distribution for the 103rd structure 
design in the Srst generation of the GA optimisation resulting in structure BJB. The value 
of the objective function is 0.55 X 10"^ J , which is less than for the unoptimised structure. 
( + unoptimised structure, Q 103rd structure) 
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Figure 4.29: Effect of optimisation on modal frequency distribution for the 51st structure 
design in the first generation of the GA optimisation resulting in structure B_E. The value 
of the objective function is 0.43 x 10~® J, which is greater than for the unoptimised structure. 
( + unoptimised structure, Q 51st structure) 
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Figure 4.30: Results of all objective function evaluations used by the genetic algorithm resulting 
in structure shown in Figure 4.18. Unoptimised value of objective function is equal to 0.33 x 10~® J 
as marked on y-axis. 
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Figure 4.31: Statistical distribution and 95% probability limits (bold line) for the unoptimised 
structure for all optimisation band widths, and for a perturbat ion scaling of 0.01. The nominal 
value is denoted by the thin line. 
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Figure 4.32: Statistical distribution and 95% probability limits for the Single Frequency 
optimised structures achieved using non-evolutionary methods, for a perturbation scaling of 
0.01. 
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Figure 4.33: Statistical distribution and 95% probability limits for the Single Frequency 
optimised structures achieved using genetic algorithm optimisation, for a perturbation scaling 
of 0.01. 

119 



10 

10 

.10 

g 10 
UJ 

< 10-'' 

10 

10" 

N_HOOKJ 

N_DHC_E 

N_DHC_A ^ DHC D 

N_DHC_C 

N_DHC_B 

N_BFGS 

N DFP 

2 3 4 5 6 7 
Rank for decreasing nominal optimised performance 

Figure 4.34: Statistical distribution and 95% probability limits for the Narrow Band optimised 
structures achieved using non-evolutionary methods, for a perturbation scaling of 0.01. 
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Figure 4.35: Statistical distribution and 95% probability limits for the Narrow Band optimised 
structures achieved using genetic algorithm optimisation, for a perturbat ion scaling of 0.01. 
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Figure 4.36: Statistical distribution and 95% probability limits for the Broad Band optimised 
structures achieved using non-evolutionary methods, for a per turbat ion scaling of 0.01. 
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Figure 4.37: Statistical distribution and 95% probability limits for the Broad Band optimised 
structures achieved using genetic algorithm optimisation, for a per turbat ion scaling of 0.01. 
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Figure 4.38: Statistical distribution and 95% probability limits for the Narrow Band optimised 
structures achieved using genetic algorithm optimisation, for a perturbation scaling of 0.005. 
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Figure 4.39: Statistical distribution and 95% probability limits for the Narrow Band optimised 
structures achieved using genetic algorithm optimisation, for a perturbat ion scaling of 0.02. 
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CHAPTER 5 

5X) ii\rrTRjC)i:)iLi(:]ri(:)]sr 

The chapter describes the optimisation of the regular two-dimensional lightweight structure to 

reduce the vibration transmission from the base to the end of the structure, the same 

optimisation aim as defined in Chapter 4. However, the optimisation strategy used here is to 

maintain the regular geometry of the structure and use feedforward Active Vibration Control 

(AVC) methods. These methods were described in Chapter 2, and use secondary source 

vibration actuators to 'counter' the primary vibration emanating from the structure base. As an 

external source of energy is required to drive the actuators, this optimisation strategy is thus 

referred to as active (or active-only) optimisation. The optimisation task is to find optimal 

actuator positions which allow the best value of attenuation to be achieved. 

In selecting the best optimal actuator positions the control effort required to drive the actuators 

in the AVC system also needs to be considered, with the aim of finding positions which give 

good values of attenuation with realisable levels of control effort. The robustness of the 

performance of AVC systems to geometric perturbations is then studied, in the same way as for 

the passively optimised candidates, presented in Chapter 4 to determine the most practical 

systems. The robustness of the level of control effort required also needs to be considered, to 

ensure that the energy demand of the system remains feasible in the face of small changes in the 

geometry. 

The level of success achieved by an AVC system is determined here by the reductions 

achievable in the cost function (the parameter whose value is minimised as the optimisation 

aim). The physical success in reducing the vibration is thus depends upon how well the cost 

frinction represents the physical vibration. Parameters representing vibrational energy are 

generally the best cost functions, but sometimes difficult to measure in practice. The effect of 

using different cost functions as the focus of the optimisation is also studied. This allows the 

parameter used to be critically accessed, especially in the light that it evolves that it is not, in 

general, the most comprehensive measure of all of the vibrational energy. 

In a feedforward AVC system for the control of broadband disturbances there exists causality 

constraints due to delays introduced in the signal processing. Due to the dispersive nature of 
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fiexural waves this constraint becomes more stringent as the control frequency increases, as 

discussed for example by Elliott and Billet (1993). The primary input force used represents a 

vibration disturbance entering the structure by its base but is considered to be modelling the 

effect of a source which is not itself immediately located on the base. Thus, it is assumed here 

that if broadband disturbances are being controlled that there is sufficient advance between the 

reference signal (which is taken directly from the source) and the vibration entering the 

structure base, so that no such causality problem occurs. 

This chapter is structured as follows: Section 5.1 defines the process of selecting the optimal 

actuator positions on the regular structure, based on nominal performance, for differing 

numbers of actuators. Section 5.2 studies the contributions of the AVC actuators to the 

vibrational power in the structure, which is distinct from the control effort, to investigate their 

mechanism of control. Section 5.3 investigates the use of three other AVC cost functions in the 

optimisation process. Section 5.4 studies the robustness of the performance and control effort 

requirements of AVC systems with optimal actuator positions. Conclusions from the chapter 

are summarised in Section 5.5. 

f). 1 S;iiI,ECTIC)}f Off ]P():3ITri()]SIS 

The success of AVC depends strongly on the actuator positions used. The physical reasons for 

this were discussed in Chapter 2, in terms of the dynamic mechanical 'coupling' between the 

primary forces and the secondary actuators and the end beam. The average energy level in 

Beam 40 over the frequency band 150Hz to 250Hz was used as the parameter to be minimised. 

This corresponds to maximising the average attenuation of this parameter. The frequency band 

was comprised of 21 equally spaced frequency points, 5Hz apart, from 150Hz to 250Hz. This 

is the same as used for broad band optimisation for the passive structure which was studied in 

Chapter 4. It is assumed that the vibrational disturbance can be accurately represented by 21 

tones at the stated frequencies and that a reference signal of sufficient quality exist so that the 

optimum secondary force, and hence the attenuation, can be achieved independently at each 

frequency. The total control effort was also calculated for each case. The control effort, wMch 

has the units of N^, is evaluated for the IN transverse primary force used. If the primary force 

was increased the control effort required would increase in proportion to the square of the 

primary force. 

Using the receptance analysis model, described in Chapter 2, transfer force and mobility 

measurements between the primary force input location and both ends of all the possible 

actuator locations, and both ends of Beam 40 were evaluated, for all frequencies considered. 
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This then allows the matrices C and Y to be constructed for each actuator combination 

evaluated during the optimisation. The resulting values of AVC attenuation are calculated 

using equations (2.45), (2.46), (2.76) and (2.77), and total control effort is calculated using 

(2.43) and (2.48). These equations were implemented using MATLAB script (MathWorks, 

lac , 1997^ 

The optimum actuator positions were sought for the application of AVC using one, two and 

three actuators. This was achieved by exhaustively evaluating the attenuation resulting for each 

of the possible combinations of actuators positions, with each number of actuators. Beam 40 

was not considered as a candidate position (as explained in section 2.3). Hence for one, two 

and three actuators there are 39, 741 and 9139 possible combinations respectively. Using 

hardware platform A (detailed in Appendix E) it took approximately 20 and 100 minutes to 

find the best actuator positions for the two and three actuator cases respectively. Because 

combinations and not permutations are sought it is important that the algorithm generating the 

candidate actuator positions does not produce and then discard repeated combinations. This 

would be very wasteful and would effect the run-time of such algorithms by a factor of 36! for 

the three actuator case, for example. Even if the cost function was not evaluated for the 

repeated combinations the formulation of all the permutations is still very expensive, and can 

dominate the optimisation evaluation time. 

The presence of an actuator on a beam was not considered to change its mechanical properties 

so as not to unnecessarily complicate the study, although as discussed by Zimmerman (1993) 

this can be an important consideration in a practical system. Zimmerman showed that the 

inclusion of the actuator mass could change the optimum actuator positions for a specific 

application. The purpose of the optimisations performed in this thesis is to investigate 

optimisation methods and not to design a specific structure. 

Figure 5.1 shows the ten best positions to minimise the average energy level in Beam 40 using 

AVC with one actuator, the results are summarised in Table 5.1. The positions are ranked in 

decreasing energy attenuation, which is also shown. The attenuation range is lO.SdB to 8.5dB. 

The actuator positions do not appear to follow any particular rule, positions at the extreme 

ends of the structure are included in the best ten. A general rule of thumb in active control is to 

treat the unwanted vibration nearest its place of origin (Fuller et al, 1996). This does not seem 

to be borne out in the best ranked ten candidates. One of the actuators is, however, on the same 

beam as the external vibration is introduced. The secondary actuator produces axial force 

whilst the external primary force is, however, in the transverse direction, and a large value of 

control effort is required in tliis case. 
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The total control effort required to achieve each level of attenuation (for the primary force 

used) is also shown alongside each actuator position. There is a large range of control effort 

values ranging from 1,390 to 17,200 N^. This illustrates the fact that the choice of candidate 

must be made on the basis of both achievable attenuation and total control effort required. The 

second best ranked candidate is likely to be the position chosen in practice since it has good 

control performance and a low control effort. It is emphasised that the total control effort does 

not represent the vibrational power applied by the actuators, this is studied in the following 

section. 

Figures 5.2 and 5.3 shows the ten best sets of actuator positions for two and three actuators 

respectively and the results are summarised in Tables 5.3 and 5.5. For two actuators the 

achievable values of attenuation range from 31.1dB to 26.9dB, with total control effort range 

from 11,000 to 53,900 N^. Here the 3rd ranking set of actuator locations appears to be a good 

practical choice since it has good control performance and a low control effort. For three 

actuators the range of achievable values of attenuation is 50.8dB to 44.0dB, and the total 

control effort range is 24,400 to 234,000 N^. This range is large due to one 'rogue' set of 

actuator locations with a particularly high value of control effort. With two actuators, there 

again appears to be no particular rule in the placement of the actuators for the best ten AVC set 

of actuator positions. However the actuator positions chosen are all found to be only on the 

first 7 leftmost structure bays. This trend in seen to continue for the three actuator case, the 

actuators now only appearing in the 5 leftmost structure bays; the left half of the structure. The 

values of attenuation achieved using two actuators are similar to those achieved by the 

optimised structures resulting from the passive optimisation, detailed in the previous chapter. 

Figure 5.4 shows the best ten actuator positions for four actuators. Tins case is not considered 

any ftirther since the values of attenuation shown (up to 119dB) would not be achievable in 

practice using a control system with a realistic noise floor. However, the inclusion of these 

results does demonstrate the trend noted above; that the larger the number of actuators the more 

the actuator position found are closer to the primary excitation at the base of the structure. 

Here the actuators are restricted to the 4 leftmost bays. Furthermore it was found that the best 

5 sets of actuator positions only use actuator positions in the 3 leftmost structure bays. 

The effective total control effort of the primary force is 21N^, since the primary force at each 

frequency is IN. The control effort required by the AVC system is much larger is all cases. The 

smallest control effort of all the optimal positions presented is for the single actuator position 

SG_B, and is greater by a factor of over 60. 

It is possible to augment the cost function used here in the ranking of each AVC actuator 

position, with a term to penalise positions with higher control efforts and produce a bias 
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towards lower control effort solutions. This has been previously implemented (Baek and Elliott, 

1995), but was not considered here, since it would unnecessarily complicate the study. 

The frequency band average attenuation is shown in Figures 5.1 to 5.4. Within the frequency 

band different levels of attenuation are achieved at individual frequencies. Figure 5.5 shows 

that the attenuation response at the 21 individual frequencies considered, for the application of 

AVC with actuator positions DB_A (shown in Figure 5.2). Since a feedforward control 

strategy is used, the AVC system has no effect to the performance of the vibrational energy to 

Beam 40 outside the band of frequencies controlled. Comparing the vibrational energy 

reduction achieved by both the passive optimisation (detailed in Chapter 4) and active 

optimisation, it is found that the application of AVC with two actuators produces similar 

magnitudes of reductions as with the passive case. 

P():s]:ri(:KNs: 

The total control effort is used as an indication of the electrical power required by an AVC 

system, and is an important practical consideration when selecting optimal actuator positions. 

This measure is distinct from the net power supplied to, or absorbed fr om, the structure by the 

actuators. For example, if the force and velocity components at both ends of an actuator are in 

"phase-quadrature" then there is no net power into or out of the actuator, however a net supply 

of energy would still be required for the actuators. This is because even if a reciprocal 

transducer were used the typical efficiency would be too small to be useful. The vibrational 

power in the structure and the net power contribution of the actuators in achieving the 

reduction in the vibrational energy in Beam 40 were investigated to gain a physical insight into 

the role of the AVC system. 

As discussed in Chapter 4 for a structure optimised solely on geometric redesign, the two 

mechanisms that achieve the reductions in Beam 40 are the reduction of the input power and 

the redistribution of power within the structure. The use of AVC introduces another power 

contribution, that from the actuators, which can either provide a net source of power to the 

structure, or additional dissipation by absorbing power. The addition of this effect allows the 

reduction in the dissipated power in Beam 40 to be represented as in Chapter 4, but using an 

additional third term, called the actuator contribution, which describes the net effect of the 

actuators to the power within the structure, as detailed in Section 2.6. It is important to note 

that the application of AVC achieves more than simply absorbing power from the structure, it 

affects the force and velocity components at the ends of Beam 40 to reduce the power 
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dissipation there. To achieve this it may provide a net input or absorption of power. The 

actuator contribution only describes the net power contribution, it does not detail the interaction 

between actuators, which themselves might have larger contributions than the net contribution. 

However, the individual actuator contributions are presented graphically to enable some 

understanding of the mode of operation of AVC in each case. It should also be noted that the 

power redistribution term used in this case is the passive redistribution attenuation, oc'REoisr, 

(see (2.88)), which only considers power in beams without actuators, as opposed to structural 

power redistribution. 

Tables 5.2, 5.4 and 5.6 show the three component power reductions of the reduction in power 

dissipation in Beam 40, for all of the structures with optimal actuators positions using one, two 

and three actuators. The results are also shown in Figures 5.6 to 5.8, where the individual 

actuator power contributions are shown. In all cases the input power is reduced very little by 

AVC and in some cases the input power is actually increased. On average, this increase is from 

0.6dB to l.OdB when using one to three actuators. The net actuator contributions are also 

relatively small, and mainly supply energy, though they also absorb energy for a few cases 

especially for actuator positions using three actuators. Thus the majority of the total reductions 

are achieved from the redistribution of the power in the structure in favour of Beam 40. In 

Figures 5.6 to 5.8 the individual power contributions for AVC using the optimal actuator are 

shown, and the interactions between the individual power contribution for the two and three 

actuator cases are revealed. For the one actuator case the actuator is acting as an energy source 

in all except the best actuator position. In most cases the magnitude of the power contribution 

is much smaller than the other power components, although for actuator position SG_D it is a 

major source of the power in the structure. For the two and three actuator cases the 

arrangement between the two actuators is not fixed, being a mixture of energy sources and 

energy absorbers. With reference to optimal actuator position TR_D it is clear that a small net 

power contribution (of 0.3dB in this case) does not imply small individual contributions. This 

provides one reason for the difference between net actuator contribution and control effort, 

although in this case the total control effort is relatively small, as for TR_D. The phase relation 

between the force and velocity components additionally needs to be considered to explain such 

differences. 

The power dissipation distribution for the structure using the 'best' optimal actuator positions 

for one, two and three actuators is shown in Figures 5.9 to 5.11. For the one actuator case 

SG_A, the actuator affects the distribution such as to reduce the power dissipation in Beam 40, 

but also slightly increase the dissipation in the beams at the base of the structure. However a 

variation in the dissipation can still be seen in beams towards the end of the structure, 
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particularly Beam 40, indicating a significant level of power transmission beyond the actuator. 

From Table 5.2 it is seen that the power input is also slightly increased. For the two actuator 

case DB_A, in Figure 5.10, the dissipation in the beams at the base of the structure is 

somewhat reduced, and a reduction in power is seen from the second structure bay onwards, 

where the actuators are situated. In the last few bays little dissipation is seen indicating that 

there is only a small level of power transmission. In the three actuator case TR_A, Figure 5.11, 

an increase in the power dissipation in Beam 1 is seen, however from Table 5.6 it is seen that 

there is a reduction in input power to the structure. This emphasises that the input power to the 

structure (input to Beam 1) is distinct from the power dissipated by Beam 1. In this case there 

is little power transmission beyond the rightmost actuator and in general the power dissipation 

decreases further towards Beam 40. 

Thus using only one actuator it appears, from the cases presented, that the main control 

mechanism is simply to redistribute the vibration to reduce the power in Beam 40, and it is 

suggested that the power dissipation distribution in the remainder of the structure is a 

consequence of this action. The reflected vibration from the structure end is likely to be a 

contributory effect. With two and three actuators, however, the AVC system has more degrees 

of control freedom and seems to adopt a 'strategy' of blocking the power flow along the 

structure, and additionally reducing the input power by a small amount as well. 

5.3 EFFECTIVENESS OF DIFFERENT COST FUNCTION 

I^/tJRL/LlVlIiTriilllS I^CDRLjAJCTiryi; \/]l3]RL/VTri(:M\f (ZXZINTIK:)!, 

The success of an Active Control of Vibration system is dependent upon both the cost function 

being minimised and the positions of the controlling actuators. The cost function used affects 

the best actuator positions since their performance is judged on the attenuation of this 

parameter. However, the physical success will be dependent on how well the cost function 

represents the actual physical vibration. Sometimes the most meaningful cost function can be 

calculated in a theoretical model but is difficult to measure in practice, and a compromise to a 

more practical one is often made. Four cost functions are considered in this study with the aim 

of reducing the vibration transmitted from the base to the end of the structure studied in this 

thesis, and their performances in reducing the total vibrational energy of the end beam, which 

is generated as the parameter E,o,ai. 

In addition to the flexural energy level in Beam 40, Ejjex, which has been used as the parameter 

minimised in all the optimisation results presented in Chapter 4 and above in this chapter, 

another energy-based cost function is also used which represents the total vibrational energy, 
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etotal- The two other cost functions studied are based on velocity measurements: the sum of the 

squares of velocity components, J,rans, using solely translational velocity measurements, and one 

additionally using rotational velocity measurements, jan. All the cost functions were formally 

defined in Chapter 2. Ejiex does not give a proper representation of all the vibrational energy of 

the beam as it does not represent any rigid body motion. Thus to investigate the potential 

consequences of using Ejiex as the cost function instead of Etotai a comparison was conducted, 

and this was also extended to the two velocity-based cost functions. 

Then, for each cost function a ranking of the best actuator positions on the structure achieving 

the best reductions in the cost function is determined. For each of these actuator positions the 

consequential attenuation in the total vibrational energy is evaluated whilst minimising these 

other cost functions. Thus the effectiveness of these cost functions in reducing the total 

vibrational energy can be evaluated. 

5.3.1 INITIAL S T U D Y INTO RIGID B O D Y KINETIC ENERGY OF A BEAM 

To demonstrate that the choice of cost function can have important consequences on the 

success of an active control system, two single frequency scenarios are presented ahead of the 

full analysis. The first case. Case 1, is that using an actuator on Beam 3 of the structure at a 

frequency of 170Hz. Figure 5.12 shows the effect on the total vibrational energy {e,otai) when 

using eflex and e,otai as the cost functions. Both the constituent rigid and flexural energy 

components are also shown. It is seen that in minimising Efî x an increase in the value of Erigid is 

seen, which then becomes the dominant component of E,o,ah and further reductions in Ejiex will 

not reduce the total vibrational energy further. However, when e^otai is used as the cost function 

the minimum value of etotai is thus achieved, even though a small increase in erig,d occurs. 

The results of this comparison are summarised in Table 5.7, which also details the reductions 

in all of the other parameters considered when each is used as the cost function being 

minimised. The table also includes the results for a second case (Case 2); of using two 

actuators on Beams 5 and 9 at a frequency of 160Hz it is again seen here that the use of Etotai 

as the cost function is superior to Ejiex- In this particular case the use of Ejiex increases the rigid 

body kinetic energy, whilst the use of e,oiai reduces it by about 6dB with less than 1.5dB being 

sacrificed in the reduction in the value of ejiex. Also, for Case 2, using either jtrans or jaii as the 

cost function yields good reductions in e,otai, which are better than those obtained using ejiex as 

the cost function. Here j,rans is seen to achieve substantial reductions in the rigid body kinetic 

energy, but it is the smaller reduction in ejjex in this case which makes the reduction achieved in 

etotai second to that for jau- The result of using and jaii as cost functions in Case 1, 

however, is not seen to be as successful. This can be explained by the fact that the actual 
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reductions in the cost functions themselves are only O.OSdB and 1.3dB for J,rans and Jau 

respectively (compared to 41.0dB and 9.2dB for Case 2). From this brief analysis it can be 

seen that the success in using each parameter as the cost function appears to be very much 

dependent upon the frequency at which the performance is considered. To provide a more 

practical comparison the average performance over a frequency band is used in the next 

section. 

A brief comment is first made on the physical significance of the rigid body kinetic energy. For 

the application of active control with Ejiex for Case 1, the kinetic energy in the transverse sense 

( X - a x i s direction) is 6|LJ/N^ (per Newton primary input force squared). The use of the Ejiex cost 

function increases the peak displacement from about 30nm/N (per Newton primary input force) 

to about 0.42|lm/N for the Im beam length mass of 2.74kg. Using e,otai as the cost function this 

increase is not as large and the peak displacement after control and is about 0.18)am/N. The 

value of the axial, transverse and rotational rigid body kinetic energy components can be 

directly related to the corresponding motions of the beam (which are the same at all positions 

on the beam, by definition). It is not generally feasible to relate Ejiex directly to motion at any 

particular point on the beam. This relationship depends upon the frequency of the vibration and 

the particular point on the beam. Generally, therefore, the precise 'significance' of the flexural 

and rigid body energies of the beam cannot be determined. 

In Chapter 2 Efie^ was derived from the net power transmitted into (and therefore dissipated in) 

Beam 40. This is the algebraic sum of the power components at both ends of the beam, for all 

the three degrees of freedom of movement allowed. Physical insight is gained into the 

mechanism by which the minimisation of the cost function can achieve reductions in the 

flexural vibration of the beam by studying the individual power components. Figure 5.13 shows 

the effect of applying active control on the individual power components at the ends of the 

beam, using both Efl̂ x and E,oiai as the minimised cost function. The same shading scheme is 

used as that used previously, the dark and light shaded bars represent the value of individual 

component values without active control and with active control respectively. The sum of the 

values indicated by the dark shaded bars, when normalised with respect to the beam damping 

represents the flexural energy level of the beam at this frequency (see (2.27)). The coordinate 

notation corresponds to the global coordinates system shown in Figure 2.1, where the 

numbering for the ends of Beam 40 is also denoted. A positive value indicates power 

transmitted in the direction of the positive sense of the corresponding axis. So, for example in 

Figure 5.13, without active control the j-direction component at beam end 1, Pyl , is positive 

and indicates power transmitted into the beam, along its axis, at the other beam end, PyO, is 

negative and also indicates power transmitted in the beam. 
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In Figure 5.12 the reduction in the value of Ejiex for Beam 40, when Ejjex is used as the cost 

function, is evident. For most cases it is normally expected that this is achieved by reducing the 

individual power components for each beam end. In Figure 5.13, however, for Case 1 the 

application of active control increases the components whilst decreasing the cost function. 

Using Eflex as the cost function the reduction in this parameter is seen to be achieved by an 

increase in the values of the individual power components, whilst using E,otai as the cost 

function results in even larger increases. Applying the conservation of energy this apparent 

contradiction can be resolved if there exists a net flow of energy through the beam. In other 

words. Beam 40, albeit the furthest beam from the input of vibrational energy in a damped 

structure, is not the end chain in the flow of energy in the structure, but can also act as an 

energy 'source' to adjoining beams. 

The differing levels of success in using each of the four different cost functions is due to the 

fact that each cost function is a different representation of the same physical vibration. This 

fact is illustrated in Figure 5.14, which shows the value of the four parameters without active 

control over the frequency range 50Hz to 350Hz. All of the parameters show similar responses 

indicating higher and lower levels of beam vibration, although J,rans is seen to be the least 

consistent. 

5.3.2 EFFECT O N EroTMi WHEN MINIMISING OTHER COST FUNCTIONS 

The results above show that the success of using each cost function to reduce the value of E,otai 

is frequency dependent and this is reinforced for each cost function over a frequency range. 

Each cost function parameter was minimised {i.e., used as the cost function) when using 

actuators on Beams 5 and 19, as in Case 2 above. The minimum value of the cost function for 

each frequency in the range 50Hz to 350Hz (at 5Hz intervals) is plotted against the same 

parameter value without active control in Figure 5.15. The average performance of the cost 

function over the band of frequencies of interest will provide a measure of the average success 

of using each cost function. The frequency averaged cost function is defined, for a generalised 

cost function, in (2.76) where each cost function replaces the general parameter, CF. 

Figure 5.15 shows the results for each of the four cost functions considered. Reductions, even 

though slight in some cases, are achieved at all frequencies within this range for all the 

parameters. The success of using the other cost functions was evaluated by determining the 

level of E,otai in the beam at each frequency as a consequence of minimising each cost function. 

The results are shown in Figure 5.16, which confirms the variation with frequency suggested in 

the previous sub-section. It is seen that the best reductions in E,otai are achieved using the two 
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energy-based cost functions. Using J trans as the cost function actually increases the value of 

Etotal (by almost two orders of magnitude) at some frequencies. 

J . j . 2 7 O F O f 

C O N Z R O l 

As discussed in Section 5.1, it is possible for the structure studied here to perform an 

exhaustive search over all possible actuator configurations, for a small number of actuators, to 

determine the best configurations. This has already been achieved for (Ejh,^) and was achieved 

for the remaining three cost functions and the best ranked actuator positions were selected for 

one, two and three actuators. Beam 40 was not used as a candidate position for an actuator. 

Hence for each number of actuators there are 39, 741, 9139 possible actuator positions. 

For the best sets of actuator positions, determined using each cost function parameter, the 

consequential attenuation of E,otai was then evaluated. E,oiai has been shown above to be as the 

best representation of the overall vibrational energy and hence is used as the reference by which 

the success of using other cost functions is evaluated. If a particular cost function is a good 

representation of the total vibrational energy of the beam (E,otai), then the high and low values 

of attenuation in the cost function parameter will correspond to high and low values of E,otai-

The cost function can then be said to be a predictable measure of Etotai- This will lead to the 

ranking of actuator positions on the basis of the cost function parameter such that the higher 

ranked ones will provide the best reduction in Etotai for the cost function. Also, similar values of 

attenuation should be achieved when using each cost function as when using Etotai-

The success of using each of the four frequency-averaged cost functions in an active control 

system using a single actuator was studied. The results are presented in Figure 5.17. Each 

graph shows the consequential attenuation achieved in ( Etotai) for each actuator position, which 

has been ranked in performance of the cost function parameter attenuation. The attenuation for 

each cost function is shown by the plain line, and is thus monotonically decreasing due to the 

ranking. It is stressed that each rank number does not necessarily correspond to the same 

actuator position for each cost function. The best of the cost functions, apart from the reference 

is (Efiex) which appears to yield similar reductions to {Etotai)- (Ejiex) thus appears to be a 

predictable measure of {Etotai), so that the actuator positions which give high values of 

attenuation in {Efl^x) also give high values of attenuation in (Etotai). Next, the use of (Jan) also 

provides good attenuation in (Etotai), however this parameter is not such a predictable measure 

of (Etotal) as (Eflex). Somc of the better values of attenuation achieved in (Etotai) are found at 

lower ranked positions and thus would not normally be selected on the basis of the cost 
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function performance. Despite this, the use of this cost function is not as disastrous as would 

be the case with the use of (Ju-ans)- In this case the ranking obtained on the basis of the cost 

function is no use in predicting good values of attenuation in ( E,otai)- Here all the attenuation 

values in (E,o,ai) are below 5dB and in a few cases (including the second ranked position) the 

use of this cost function actually increases {E,otai)- Thus, (Jn-ans) is neither a good nor a 

predictable measure of ( E , o , a i ) -

To aid comparison between the absolute values of consequential attenuation achieved in 

(Etoiai) for each cost function, all of the values of attenuation in (E,otai) achieved with a single 

actuator against the individual rankings for each cost function are presented on common axes in 

Figure 5.18. It is emphasised that each rank may represent different actuator position 

combinations for each cost function. To gain a physical insight into why the performance of 

some cost functions are better than others, the values of consequential attenuation in (Etomi) 

achieved for each cost function are split into the two constituent parts { Ejiex) and ( Engid), as 

studied in Section 5.3.1. These are also presented in Figure 5.18. From the reference values 

used for the dB scale shown on the axes for each of these components (the energy level without 

AVC) it is seen that the significant energy component is (Ejiex)- Thus to achieve good values of 

attenuation in ( E,oiai) each cost function needs to produce good values of attenuation in {Efiex). 

This is achieved, to differing degrees of success, for all of the cost functions, except (Jtmns), 

and its poor performance in representing {E,otai) is thus explained. It is interesting to note, 

however, that the use of {J,ram ) does provide a good and a predictable measure of the rigid 

body kinetic energy of the beam. The actuator positions which give good reductions in (Jt,-ans) 

also provide relatively good reductions in {Erigid) (at best lOdB greater than for other cost 

functions) which almost monotonically decrease with the ranking for this cost function. 

The investigation was extended to an active control system utilising two and three actuators. 

The results are presented in Figures 5.19 and 5.20, directly in the combined format of 

Figure 5.18. The ranking of the x-axis refers, again, to the individual ranking for each of the 

cost functions, and does not imply common actuator positions at each rank value. It is not 

feasible to show all the ranked positions and in these cases only the top 100 are shown. The 

order of success between the cost function parameters in minimising (E,oiai) is similar to that 

when using a single actuator. (Ejiex) is found to yield very predictable reductions in (Eioiai), 

which are also of similar magnitudes for both cases. The second best cost function, again, is 

(Jail). In general it achieves in between 5dB and lOdB less reduction in {E,otai) than either 

energy-based cost function. Again, (Jtrans) is the worst in this respect. It is seen that this is due 
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to the use of this cost function not providing good reductions in (Ejjex), although it still 

continues to provide large reductions in (Erigid), generally 15dB and 30dB greater than for 

other cost functions, for two and three actuators respectively. The best ranked positions for 

{ y i e l d s reductions of over 80dB in (E,.igid) for the three actuator case. 

5.3.3 DISCUSSION OF RESULTS 

It is seen for the optimal application of active control over a band of frequencies, which relies 

on determining the best actuator positions for single and multiple actuators, that there is little 

difference in using ( E,otat) or ( Efh-^) as the cost function parameter. Efomi is in general a more 

comprehensive representation of all types of vibration of the beam. It does not require any 

additional parameter measurements than those required for Although the application of 

active control at single frequencies in Section 5.3.1 was shown to suggest that Etomi is the best 

cost function, especially where the lack of reduction or increase of Erigtd has consequences on 

the reduction of Emai- The frequency-averaged (Engid) is seen to be less significant than 

(Ejie„), and so generally (Ejjex) is found to perform well as a cost function. It is suggested that 

this is due to the nature of the beams used in the structure considered here. The beams used are 

'thin' beams and therefore relatively flexible, also the natural frequencies for transverse 

vibration are much lower than for axial vibration. The first transverse mode occurs at about 

240Hz which is in the firequency band studied, whereas the first axial mode occurs at about 

2.5kHz. Therefore the detection of rigid body motion is thought to be more important for a 

structure using beams with a greater cross-section (normally termed 'rods' or 'bars') which only 

support axial vibration. The development and use of the E,o,ai cost function has, however, 

allowed this to be verified. 

Two velocity-based cost functions were also investigated to find their effectiveness at reducing 

Etotai- Using only a velocity measurement in the near field of a source has been shown to have 

worse performance than outside the near field of a source by Pan and Hansen (1993). This is 

equally applicable to a structural discontinuity, where all the velocity measurements are taken 

in this case. So, the velocity-based cost functions can only be expected to be approximations of 

E,otah It is seen that the incorporation of the rotational velocity components at the ends of each 

beam is very important to achieve good, predictable reductions in E,otai, and Jaii shows a much 

better performance over simply using the cost function. When using three well-positioned 

actuators, the Jaii cost function is seen to have average reductions, over the frequency 

bandwidth considered, of 5dB to lOdB less than the E,oiai cost function. For the Jiram cost 

function the attenuation is over 25dB less. J,ram, however, does provide a very good 

representation of the value of Erigid of the beam, and consistently achieves predictable and much 
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greater reductions than for the other cost functions. Therefore for a structure comprised of rigid 

beams (or rods) the use of Erigid, which is well approximated by the slightly simpler Jtrans-, 

parameter may be sufficient. Thus, the rotational velocity component would not be required. 

Whilst Etotai is seen to be a better measure of the vibrational energy of the beam it is seen that 

there is no serious disadvantage in using Epex as a cost function, for the frequency averaged 

measure of vibration used for the particular structure considered here. Thus, the use of Efiex 

was maintained in the optimisation work that follows to maintain consistency with the 

optimisation results reported in Chapter 4. 

A final note is included on the weighting between the translational and rotational velocity 

components used in the formulation of Jan. The addition of the kinetic energy components due 

to the rotation of Beam 40 was modelled by considering the beam to be composed of two rigid 

levers, whose lengths were half that of the beam, and each half-beam hinged about one end. 

However, this is an approximation, and as only the first flexural modeshape is significant in the 

frequency range considered, the shape of this modeshape could be easily determined exactly. As 

the velocity is a function of distance along each half-beam, the net kinetic energy due to flexure 

of each beam half can therefore be accurately calculated. The approximation used here over-

estimates the actual kinetic energy of the first mode by a factor of about 3. With a smaller 

significance of the rigid body kinetic energy component in /„//, a better estimate of E,otai may be 

produced. 

5 . 4 S T U D Y O F R O B U S T N E S S O F A C T U A T O R P O S I T I O N S 

A study of the robustness of the performance of the various actuator positions to geometric 

perturbations was performed in order to determine the candidates that are more practical to 

implement. The same set of 300 perturbations were applied to the structure as used for the 

robustness analysis of the passively optimised structures in Chapter 4. The perturbations are 

uniformly distributed between ±10mm about each nominal joint coordinate and are applied to 

both the X and y coordinates of each of the middle 18 joints of the structure. 

As discussed in Chapter 4 regarding the robustness of the passively optimised structures the 

effect of the geometric perturbations is to change the mechanical impedance between the 

primary force input and the ends of Beam 40. With the application of AVC to the structure this 

is also extended to the ends of actuators. In practice, this changes the transfer impedance and 

mobility matrices C and Y, which are detailed in Section 2.3. For each set of geometric 

perturbations these matrices are re-evaluated and then the maximum theoretical attenuation 

calculated from the closed form equation (2.46) and auxiliary equations described in 
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Section 2.3. In the same way the control effort is re-evaluated. Thus the optimum secondary 

force vectors are recalculated to achieve the best attenuation attainable for each perturbed 

plant. Evaluating the perturbed performance for an AVC system in this way corresponds to 

applying the AVC system to a real structure where manufacturing tolerances are the 

perturbations from the nominal design. It is also assumed that the controller has an accurate 

model of the time plant response (Nelson and Elliott, 1992: Chapter 5). If the plant were to 

change over periods comparable or less than the update period of the plant model, the AVC 

system would be operating with an inaccurate model of the plant. This is could to be due to 

geometric changes to the structure caused by significant changes in the static load, or maybe 

through thermal expansion and contraction. The perturbation analysis performed here is not 

intended to cover robustness under these conditions. These perturbations are likely to be 

structured, and the perturbations to each joint position could no longer be treated 

independently, as in this analysis. The robustness of the control performance and effort for the 

one-, two- and three-actuator systems has been evaluated. 

5.4.1 PERTURBATION A N A L Y S I S OF A V C S Y S T E M PERFORMANCE 

Figures 5.21, 5,23 and 5.25 show the results of the perturbation analysis for the best 10 ranked 

one-, two- and three-actuator actuator positions, detailed earlier in this chapter. These figures 

consist of histograms showing the statistical distribution of the minimised average energy level 

in Beam 40 and the results for each structure are displayed in order of ranking under nominal 

conditions, the value of which is represented by the thin solid line on each histogram. The 95% 

probability limit is shown by a solid bold line. This indicates that the value of minimised energy 

level which, for the 300 experiments performed, is less than or equal to this limit for 95% of 

the perturbations applied. The results are also summarised in Tables 5.1, 5.3 and 5.5. As with 

the perturbation analysis performed in Chapter 4, 300 perturbations were found to be sufficient 

to find the 'shape' of the distribution, and hence the calculated limit will be a reasonable 

estimate of the actual 95% limit. The graphs show the reduced vibration energy level with 

logarithmic axes as in Figure 4.32 for the perturbation analysis for the passively optimised 

structures to facilitate comparison the optimisation results presented in Chapter 4. In the field 

of AVC it is more common to deal with value of attenuation expressed in decibels, a second y-

axis on the right is included for this purpose. 

Considering first the single actuator AVC actuator positions in Figure 5.21 it is seen that there 

is little difference between the robustness of the performance when using the ten best optimised 

actuator positions, all candidates showing a performance spread of just under lOdB. Using two 

actuators (Figure 5.23) it is seen that DB_D is the most robust candidate, for wliich the entire 
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spread of the statistical distribution is about 3dB, while most of the other actuator positions 

appear to have a statistical spread of about lOdB. Using three actuators (Figure 5.25) it is seen 

that the majority of the distributions have a range of one order of magnitude with a few, 

notably actuator positions TR_G and TR_J, whose distribution spread approaches 20dB. In 

general the three actuator positions achieve reductions of 15dB to 20dB better than with two 

actuators. If robustness alone was the primary consideration then DB_D is the best two-

actuator position. There is no obvious 'best choice' for either the single or the three-actuator 

positions in terms of robustness. 

Using the 95% probability limits, a selection of the most practical actuator positions may be 

made in terms of both robustness and absolute performance. For each number of actuators the 

best actuator positions selected on nominal performance also have the best 95% probability 

limit. In most applications the minimum reduction is the important factor. For the single 

actuator positions there is little difference in the selection of the candidates using either the 

nominal performance or the 95% probability limit. For the two-actuator positions the choice of 

nominally well ranked positions DB_B and DB_C become less favourable. It is also seen that 

there is little difference in performance between positions DB_A and DB_D in terms of this 

criterion, but the latter is more robust. Even the worst perturbed performance is better than the 

majority of the perturbed performance values for DB_A. This set of actuator positions is also 

seen to have a small probability of having much poorer performance than the 95% limit. 

Considering the 95% probability limit for the three-actuator positions more diversity in the 

95% probability limits is seen that using the single actuator positions. It is also noted that the 

average difference between the nominal performance and the 95% probability limits for each 

number of actuators is only about 3dB or 4dB, whilst the average nominal attenuation ranges 

from about lOdB to 45dB. 

5.4.2 PERTURBATION ANALYSIS OF A V C S Y S T E M CONTROL EFFORT 

Another consideration exists when applying AVC apart from the achieved performance; the 

control effort required to achieve this. There will be a limit on the control effort with a practical 

system, either to individual actuator effort or total system effort. In general AVC actuator 

positions with smaller required control effort is preferable. Robustness analysis should also 

consider the control effort. As the structure is perturbed the control effort required is likely to 

change, and even if the performance is insensitive to such changes, if the control effort 

increases significantly above its nominal value than a practical system may not be able to 

maintain the predicted vibration reduction. This is avoidable if the increase is predicted and the 

demand remains feasible. 
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Figures 5.22, 5.24 and 5.26 show the effect of the robustness analysis on the total control effort 

for the best ten single, two- and three-actuator positions, with same format as Figure 5.21. It is 

re-iterated that the scale used on the graph is logarithmic, and that a factor of over 5 exists 

between the nominal control effort for TR_B and TR_C, for example, which emphasises the 

importance of the consideration of control effort. It is seen that for both two and three actuator 

systems the range of total control effort, both nominal and perturbed, are similar even though 

the three-actuator case produces larger reductions of the vibration. In general, there is less 

diversity in the robustness of the control effort than with the performance, again in the single 

actuator case little diversity is seen in the robustness. However, the cost of increased control 

effort is often realised in linear terms, and the absolute value of the control effort is important. 

Actuator arrangement DB_D, which is favoured in terms of its performance, is seen to require, 

for 95% of the perturbation cases, about four times more total control effort than DB_C. The 

compromise of performance and control effort will vary depending on the application. 

Considering the three actuator positions results it is seen that TR_C, whilst well ranked in 

terms of performance, is particularly costly in terms of control effort. Initially TR_F may seem 

to be a 'bad choice' due to the large spread of the distribution. However, it is apparent that the 

'rogue' high value of control effort arises from the results of only one perturbation, and if this 

particular perturbation value had not appeared in the set of 300 perturbations then this set of 

actuator positions would appear more robust. This justifies the use of a 95% probability limit, 

and not simply the worst case. Indeed, using the 95% probability limit, TR_F is ranked third in 

terms of minimum expected control effort. 

5.4.3 D I S C U S S I O N OF PERTURBATION ANALYSIS RESULTS 

It has been shown that for an AVC system it is necessary to consider the robustness of both the 

performance and control effort in selecting practical systems. Each set of actuator positions can 

be robust in terms of performance, total control effort, or both. When ranked in terms of either 

nominal performance the more performance robust a set of actuator positions is, the more 

likely its ranking will remain high in terms of the 95% probability limit. However, control 

effort robustness is also important if the application is to be realised practically. Thus it may 

be advisable not to use a set of actuator positions that, even though is robust in terms of 

performance, does not indicate good control effort robustness. It was found, in general, that all 

the AVC systems studied here had a similar performance robustness to geometric 

perturbations, which is in contrast to the passively optimised structures studied in Chapter 4 

where large variation in robustness of the structures was observed. 
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:5.5 

The optimisation of the average vibration transmission of a two-dimensional lightweight 

cantilever structure was performed, over a frequency band of 150Hz to 250Hz. Unlike for the 

passive optimisation detailed in the previous chapter, in this case the regular geometry of the 

structure remained fixed, and the use of Active Vibration Control (AVC) was applied using 

optimal actuator positions to achieve vibration reductions. For simplicity the actuators were 

assumed to be mass-less and consideration of control effort was not made part of the 

optimisation objective. The optimisation task was thus, to find the optimal actuator positions 

on the grounds of vibration transmission. This was achieved for AVC systems using one to 

four actuators. For this, the optimisation task was not that combinatorially large, and it was 

feasible to perform an exhaustive search of all possible actuator combinations. The number of 

possible actuator positions increases rapidly as the number of actuators used increases, 

however the use of four actuators yielded values of attenuation which would not be realisable in 

practice, and all subsequent study was limited to systems using one to three actuators only. 

Using two actuators, similar reductions were obtained as for the passive optimisation reported 

in Chapter 4. 

Even though the performance of the AVC system was optimised, the control effort, which is the 

practical power requirement of a system, needs to be considered in selecting a system. This was 

calculated for all optimal actuator positions. The choice of best optimal positions is made upon 

consideration of both the performance and the control effort. It is seen that between AVC 

systems with similar values of attenuation the control effort can vary significantly. Normally a 

system with a lower control effort is preferable. 

An analysis was performed of the power dissipation within the structure (which is distinct from 

the control effort) for the optimal AVC systems studied. Studying the power contribution of the 

actuators enables an insight into the vibrational role of the AVC system to be achieved through 

the three power components; input power, structural power dissipation and net actuator power 

contribution. In general, it is seen that the reductions in power dissipation in Beam 40 are due 

to the redistribution of power within the structure, due to the AVC system. Using one actuator 

it is seen that the AVC system acts to reduce vibration in Beam 40. With two or three actuators 

it adopts the additional 'strategy' of blocking the power transmission along the structure. Thus 

the system would be less sensitive to changes in the end impedance of the structure, which may 

vary if additional masses were attached here. 

The effectiveness of an AVC system, in part depends upon how well the parameter (cost 

function) minimised actually represents the physical vibration of the beam. A comparison of 
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using alternative AVC cost function parameters was performed. The parameter used here was 

adopted from earlier work. An investigation was performed to compare the physical success of 

using this parameter, the Flexural Energy Level (Efiex) with three others. An additional energy-

based cost function was studied: the Total Vibrational Energy (E,otai), and two velocity-based 

cost functions: the Sum of the Squares of the Translational Velocity components (/„•„„) and the 

Weighted Sum of the Squares of all Velocity components (/„//). The latter used the rotational 

velocity component in addition to the translational components at each beam end. 

A brief single frequency analysis showed that the use of Efl̂ x as the cost function can result in 

significant increases in E^gid and so limit of the reduction attainable in E,otai. E,otai is confirmed 

as being the most comprehensive measure of beam vibration and was used as a reference to 

compare the success of using the other three cost functions. An insight into the changes of 

energy flow by the application of active control at the ends of Beam 40 showed that it is the 

balance between the energy flow between each beam end, and not the absolute magnitude of the 

individual components (which can be increased by the AVC), which is important. For single 

actuators combinations it was found that whilst the frequency-averaged version of E,otai , 

(Etoiai), is the most comprehensive cost function, it is found that there is little disadvantage in 

using (Eflex). This is thought to be because the structure is comprised of thin 'flexible' beams 

and so bending motion is dominant in the frequency band of interest. Even though single 

frequency cases studied showed the shortcomings of not controlling this was not borne 

out when using cost functions averaged over a frequency band. Generally, reducing (£•„»«) is 

thought to be more important if less-flexible beams, or rods, were used as the structural 

elements. 

Using (Jail) as a cost function was found to be the better velocity-based cost function in 

reducing {E,otai)- For three-actuators AVC systems the reductions in {E,oiai) were generally 

lOdB less than those achieved by minimising either (Ejiex) or {E,otai)- The use of {J„-ans) as a cost 

function was not found to yield good reductions in (Etotai) at all. However it was found to 

provide a very good prediction of the E,igid component alone, which may prove useful in 

structures comprised of more rigid beams. 

The robustness of the ten best-ranked AVC actuator positions on the structure for one to three 

actuators was then studied, in order to find the positions which are more practical in the sense 

of having more resilient performance in the face of small changes in the structure geometry. As 

with the passively optimised structures in Chapter 4, this was achieved by applying a set of 

random perturbations enabling the statistical distribution of a performance to be obtained. 

Whilst the average nominal attenuation varied from about lOdB to 45dB using one to three 
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actuators, the variation of the average 95% probability limit in each case was similar. Another 

consideration in the application of AVC, is the control effort. This may be important when 

choosing the best solution under nominal conditions and could be incorporated into the 

optimisation search, but was not considered during the optimisation here. However under 

structural perturbations the control effort is seen for some AVC actuator arrangements to 

increase by factors over ten times. If the control effort is not considered and under structural 

perturbations it is seen to rise beyond the capabilities of a practical system then the predicted 

performance will not be realised. Hence for AVC systems there are two types of robustness: 

performance robustness and control effort robustness. A 95% probability limit was applied to 

performance and control effort statistical distributions obtained from the perturbations applied. 

This is basis for determining the worse value (for performance or control effort) that will only 

be breached for an estimated 5% of perturbation instances (assuming the same perturbation 

distribution), and thus enables the most practical AVC systems to be identified. 
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Rank Structure 

Actuator 
position 
(Beam 

number) 

Overall 
nominal 

attenuation 
(dB) 

95% 
probability 

limit 
attenuation 

(dB) 

Control 
effort 
(N?) 

95% 
probability 

limit 
control effort 

(N?) 

1 SG_A 20 1CL8 8.3 17200 27200 

2 SG_B 30 10.2 6.3 1390 2W80 

3 SG_C 7 9.9 6.4 7730 11900 

4 SG_D 1 9.1 5.3 11100 17900 

5 SG_E 12 8.9 5.1 13000 18400 

6 SG_F 28 8.9 5.5 2520 3710 

7 SG_G 10 8.8 5.5 2860 5000 

8 SG_H 38 8.7 4.8 1770 2700 

9 SG_I 31 8.5 4.9 1650 3110 

10 SG_J 11 8.5 6.2 14700 23800 

average - 9.2 5.7 7392 11580 

TABLE 5.1. Results summary for AVC using best performance ranked single-actuator 

positions over bandwidth 150Hz to 250Hz. 

Structure 
Primary force input power 

reduction, anwur (dB) 

Redistribution of power 
within passive beams of 
structure, a'aEoisT (dB) 

Net actuator 
contribution 
ôACF (dB) 

Net power 
dissipated 

in actuators 
(xlO'̂  W) 

SG__A -0.6 11.1 0.3 O J ^ 

SG_B 0.7 103 -&8 -&14 

SG__C 1.0 9.6 -0.7 ^[.86 

SG_D 0.8 ILO -27 -26.9 

SG_E 0.5 9.3 -&8 -6.55 

SG__F 0.6 8.7 -&4 -117 

SG_G 1.5 8.4 -1.1 -7.47 

SG_H 0.3 9.1 -0.7 -637 

SGJ 0.1 9.0 -0.6 -5.17 

SG_J 0.8 8.9 -1.3 -1(X3 

average 0.6 9.6 - -

TABLE 5.2. Power levels in structure using single-actuator optimal positions, over a 

bandwidth of 150Hz to 250Hz. 
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Rank Structure 

Actuator 
positions 

(Beam 
number) 

Overall 
nominal 

attenuation 
(dB) 

95% 
probability 

limit 
attenuation 

(dB) 

Control 
effort 
(N )̂ 

95% 
probability 

limit 
control effort 

(N^) 

1 DB_A 2 ,4 31.1 2&1 43500 70600 

2 DB_B 2 J 6 2&0 25^ 22800 37300 

3 DB_C 1^28 278 25J 13600 23400 

4 DB_D %25 27J 2&8 53900 6&W0 

5 DB_E 1 4 J 6 274 244 38300 54200 

6 DB_F 4 1 6 274 254 49700 68200 

7 DB_G 2 ^ 2 8 274 2 5 2 13400 26500 

8 DB_H i a j 6 272 24^ 2omo 34M0 

9 DB_I 12^7 271 23^ 33200 46600 

10 DB_J 1^28 2&9 229 11000 24800 

average - 277 25^ 29950 45260 

TABLE 5.3. Results summary for AVC using best performance ranked two-actuator positions 

over bandwidth 150Hz to 250Hz. 

Structure 
Primary force input power 

reduction, aiNPUj (dB) 

Redistribution of power 
within passive beams of 
structure, oc'REoisT (dB) 

Net actuator 
contribution 
<̂ACF (dB) 

Net power 
dissipated 

in actuators 
(xlO-̂  W) 

DB_A 3.6 274 0.2 0.690 

DB_B 0.4 2&5 -L9 -184 

DB_C 0.02 2&3 -&5 -421 

DB_D 1.9 2&5 -&9 -5.67 

DB_E O.OM 2&5 -1.1 -10.2 

DB_F -04 2&5 -0.7 -6.74 

DB_G 1.5 271 -1.3 -9.01 

DB_H 0.2 2&7 -1.6 -15.7 

DB_I 0.4 2&8 -OXM -&312 

DB_J - 0 4 278 -&5 ^ .̂89 

average 0.9 2&0 - -

TABLE 5.4. Power levels in structure using two-actuator optimal positions, over a bandwidth 

o f l 5 0 H z t o 250Hz. 
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Rank Structure 

Actuator 
positions 

(Beam 
number) 

Overall 
nominal 

attenuation 
(dB) 

95% 
probability 

limit 
attenuation 

(dB) 

Control 
effort 
(N2) 

95% 
probability 

limit 
control effort 

(N?) 

1 TR_A 2,/!, 13 5&8 47^ 46mO 63300 

2 TR_B l.i;. 10 49J 419 45300 70500 

3 TR_C 7 ,8 ,9 473 43^ 234000 443000 

4 TR_D 3 , ^ 9 4&4 419 55600 98200 

5 TR_E 2, 4 ,9 4&1 44.7 54900 61900 

6 TR_F 2^3,4 4&0 44.9 4M00 49200 

7 TR_G 12, 1(5, 19 44.8 3 7 j 2M00 33900 

8 TR_H 2 , 7 . 8 44.6 4&9 52700 83600 

9 TR_I 1 ,4 ,8 44.4 4L3 33200 53000 

10 TR_J 10,1(5, 19 44.0 374 29100 45400 

average - 45.9 41.3 60570 100200 

TABLE 5.5. Results summary for AVC using best performance ranked three-actuator 

positions over bandwidth 150Hz to 250Hz. 

Structure 
Primary force input power 

reduction, ajNPUT (dB) 

Redistribution of power 
within passive beams of 
structure, a'REoisT (dB) 

Net actuator 
contribution 
ĉACF (dB) 

Net power 
dissipated 

in actuators 
(xlO'^ W) 

TR_A 1.8 45J 3.6 13.5 

TR_B 1.1 5&5 -15 -2L9 

TR_C -L3 49^ -1.4 -174 

TILD -0.1 4&2 0.3 255 

TR_E 1.8 4 0 j 3.8 144 

TR_F 2.8 39^ 4.1 11.7 

TR_G 0.1 44.7 0.01 0.00706 

TR_H 0.9 454 -1.8 -14.9 

TR_I 1.8 44.9 -23 -17.4 

TR_J -&4 45^ -0.6 -6.34 

average 1.0 464 - -

TABLE 5.6. Power levels in structure using three-actuator optimal positions, over a bandwidth 

of 150Hz to 250Hz. 
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(Zase Actuator 

positions 

Frequency 

(Hz) 

AVC 
cost 

function 

Attenuation achieved in each parameter by 

minimising cost function shown (dB) (Zase Actuator 

positions 

Frequency 

(Hz) 

AVC 
cost 

function 
Etotal Efla: Erigid J trans J all 

1 3 170 

^total 3.20 5^5 -6.16 -6.01 -3.30 

1 3 170 Eflex 2^8 7.05 -9.21 -9.01 -5.01 1 3 170 

J tram Oj# &27 0.067 &050 -0.14 

1 3 170 

J all -2.07 -1.92 ^ .̂01 L29 

2 5,19 160 

^ total 637 6J5 646 837 

2 5,19 160 Eflex 4^5 7J1 -0.72 -0.50 -0.53 2 5,19 160 

Jlrans 5U2 425 4^9 4L0 3^2 

2 5,19 160 

•^all 6JW 5.89 7.99 8J^ 9U5 

Table 5.7. Summary of results showing the effect on the values of the four cost function 

parameters and Erigid, when each parameter is minimised as an AVC cost function for two sets 

of actuator positions at two different frequencies. 
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SG A 
Atten = 10.SdB 

Effort = 1.72e+04 

SGI3 
Atten = 10.2dB 

Effort = 1.398+03 

SG C 
Atten = 9 .9dB 

Effort = 7.73e+03 

S G _ D 
Atten = 9.1 dB 

Effort = 1.11 e+04 

SGIE 
Atten = 8 .9dB 

Effort = 1.3e+04 

SGJF 
Atten = 8 .9dB 

Effort = 2.52e+03 

SG G 
Atten - 8 .8dB 

Effort = 2.86e+03 

SGLH 
Atten = 8.7dB 

Effort = 1.77e+03 i f 

SGJ 
Atten = 8 .5dB 

Effort = 1.658+03 

SG_J 
Atten = 8.5dB 

Effort = 1.478+04 

F i g u r e 5 . 1 : T h e t e n b e s t p e r f o r m a n c e r a n k e d s i n g l e - a c t u a t o r p o s i t i o n s f o r t h e f r e q u e n c y b a n d 

150Hz to 250Hz. 
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DB A 
Atten = 31.1dB 

Effort = 4.35e+04 

DB B 
Atten = 28.0dB 

Effort = 2.28e+04 

DB C 
Atten - 27.8dB 

Effort = 1.368+04 i f 

DB D 
Atten = 27.5dB 

Effort = 5.39e+04 

DB E 
Atten = 27.4dB 

Effort = 3.83e+04 

DB F 
Atten = 27.4dB 

Effort = 4.97e+04 

DB G 
Atten = 27.4dB 

Effort = 1.34e+04 

DB H 
Atten = 27.2dB 

Efforts 2.01 e+04 

D B I 
Atten = 27.1dB 

Effort = 3.32e+04 

DB J 
Atten = 26.9dB 

Effort = 1.1 e+04 

Figure 5.2; T h e t e n b e s t p e r f o r m a n c e r a n k e d t w o - a c t u a t o r pos i t ions for t h e f r e q u e n c y b a n d 

150Hz t o 250Hz. 
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TR A 
Atten = 50.8dB 

Effort = 4.61 e+04 

TR B 
Atten = 49.1dB 

Effort = 4.53e+04 

TR C 
Atten = 47.3d B 

Effort = 2.346+05 

TR D 
Atten = 46.4dB 

Effort = 5,56e+04 

TRIE 
Atten = 46.1dB 

Effort = 5.49e+04 

TR F 
Atten = 46.0dB 

Effort = 4.04e+04 

TRI3 
Atten = 44.8dB 

Effort = 2.44e+04 

TR H 
Atten = 44.6dB 

Effort = 5.27e+04 

TRJ 
Atten = 44.4dB 

Effort = 3.32e+04 

TR J 
Atten = 44.0dB 

Effort = 2.91 e+04 

F i g u r e 5.3: T h e t e n b e s t p e r f o r m a n c e r a n k e d t h r e e - a c t u a t o r p o s i t i o n s for t h e f r e q u e n c y b a n d 

150Hz t o 250Hz. 
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Q D A 
Atten = 118.9dB 

Effort = 6.55e+04 

Q D B 
At ten = 81.5dB 

Effort = 3.978+04 

Q D C 
Atten = 81.5dB 

Effort = 1.75e+05 

Q D D 
Atten = 81.4dB 

Effort = 2.05e+05 

Q D E 
At ten = BO.SdB 

Effort = 1.54e+07 i f 

Q D _ F 
Atten = 80.7dB 

Effort = 7.92e+04 r f 

Q D _ G 
Atten = 79.7dB 

Effort = 7.08e+04 

Q D _ H 
Atten = 7 8 . 4 d B 

Effort = 6.53e+06 

QD_ S 
Atten = 78 .1dB 

Effort = 2.2e+05 

Q D J 
Atten = 77 .2dB 

Effort = 6,32e+04 

F i g u r e 5 .4 : T h e t e n b e s t p e r f o r m a n c e r a n k e d f o u r - a c t u a t o r p o s i t i o n s f o r t h e f r e q u e n c y b a n d 

1 5 0 H z t o 2 5 0 H z . 
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C 10 

200 
Frequency (Hz) 

3 5 0 

Figure 5.5: Frequency response of the structure without AVC, and the reduced response obtained 
with AVC, within the frequency band applied, for the actuator positions DB_A in Figure 5.2. 
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Rank for decreasing nominal performance 

Figure 5.6: Power components in each structure using AVC with optimised single-actuator 
positions. Negative values of dissipation indicate power supplied to the structure. Light grey: 
Power input to structure. Dark grey: Power dissipated in Beams 1 to 39 without actuators. 
Black: Power dissipated in Beam 40, White; Power contributions from actuator. (N.B. Power 
dissipated in Beam 40 is only distinguishable for structure without AVC. With AVC range is 
5.53 X 10-'̂  to 9.54 x 10'^ W.) 
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Figure 5.7: Power components in each structure using two-actuator optimised AVC positions. 
Key as for Figure 5.6. The values of power for each actuator are shown from left to right for 
increasing beam number position. (N.B. Power dissipated in Beam 40 is only distinguishable for 
regular s tructure without AVC. With AVC range is 5.18 x 10~® to 1.36 x 10"^ W.) 
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Figure 5.8: Power components in each structure using three-actuator optimised AVC positions. 
Key as for Figure 5.6. The values of power for each actuator are shown from left to right for 
increasing beam number position. (N.B. Power dissipated in Beam 40 is only distinguishable for 
regular s tructure without AVC. With AVC range is 5.62 X 10"^^ to 2.68 x 10"'^ W.) 
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0) - 4 0 
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i 
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Beam number 
28 3 2 3 6 4 0 

Figure 5.9; Power dissipated in each beam of the structure for optimal single-actuator position 
SG-A. Vertical gridline represents vertical beam at end of each bay. no AVC, with AVC. 
Actuator position is denoted O. 

0) - 4 0 

2 0 2 4 

Beam number 

Figure 5.10: Power dissipated in each beam of the structure for optimal two-actuator position 
DB_A. Vertical gridline represents vertical beam at end of each bay. no AVC, with 
AVC. • denotes position of actuator dissipating power, A denotes position of actuator sourcing 
power (with magnitude shown in the same sense as for dissipation). 
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0 - 4 0 

1 6 2 0 2 4 

Beam number 

Figure 5.11: Power dissipated in each beam of the structure for optimal three-actuator position 
TR_A. Vertical gridline represents vertical beam at end of each bay. no AVC, with 
A v e . • denotes position of actuator dissipating power, A denotes position of actuator sourcing 
power (with magnitude shown in the same sense as for dissipation). 

minimised 
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111 
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0.04 
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E flex 

^toiai minimised 

E rigid E TOTAL 

Figure 5.12: Effect of applying active control on Efu.x-> Erigid and Etotal of Beam 40 for Case 1 
with a) Efiex and b) Efofai used as the cost function. (Shading scheme: Dark: no active control, 
Light: active control applied). 
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I 

E,, minimised 

ProtO 

b) 

£ 

t̂otai minimised 

Figure 5.13: Effect of applying active control on power components at the ends of Beam 40, 
for z,?/ and ^ (rotational) components for Case 1 with a) and b) used as the cost 
function, e.g., PxO is power flow in z-direction at end 0. (Shading scheme; Dark: no active 
control, Light: active control applied). 

1 5 0 2 0 0 2 5 0 

Frequency (Hz) 
3 5 0 

Figure 5.14: The variation of the values of the four different parameters used to quantify the 
vibration of Beam 40 with excitation frequency when uncontrolled. Each cost function is scaled 
to represent energy (J). 
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Figure 5.15; Variation of the values of the four parameters, Efotah Jtrans and Jaih with 
frequency, and their corresponding minimised values when used as a cost function over the 
frequency band for which active control is applied with two actuators on Beams 5 and 19 (Case 
2). Each cost function is scaled to represent energy (J). 
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^ 10 

200 
Frequency (Hz) 

350 

Figure 5.16: The values of total vibrational energy (Efotal) produced as a consequence of applying 
active control with each parameter as the cost function, with minimised cost function values as 
shown in Figure 5.8. A, O, O, uncontrolled: . 
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Figure 5.17: Attenuation achieved in each cost function and Efotal for all single-actuator 
positions using each cost function. The actuator positions are ranked in order of decreasing 
at tenuation achieved for each cost function parameter (shown as plain line). The attenuation 
in Etotal for each instance is shown when using as the cost function: a) EtotaV- A, b) Eficx-

Jtrans' ^ and d) Jail ' ^ 
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Figure 5.18: a) Summary of results in Figure 5.17: performance achieved in Etotal by minimising 

each cost funct ion parameter with results p lot ted on common axes, and each cost function 

denoted by the same symbols as in Figure 5.17. Values of a t tenuat ion in b) Efi^x and c) E^igid are 

also shown for corresponding ac tua tor position combinations as in a). (Cost funct ion Etotal'• A , 

Eflex' JtratiS' ^ ; Jail - ^ ) ' 
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Figure 5.19: At t enua t ion achieved in a) Etotah b) E f i e x and c) E^igid for all two-ac tua to r 

posit ions using each cost func t ion . T h e ac tua to r posi t ions are ranked in order of decreasing 

a t t enua t ion for for each cost func t ion : Et„tal- A , Efip,,.: Jtran^' O, Jaii: O . 
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Figure 5.20: At tenuat ion achieved in a) Efotah b) -B//ex and c) Erig-ui for all three-actuator 
positions using each cost funct ion. The ac tua tor positions are ranked in order of decreasing 

attenuation for for each cost function: -Byzcz: 
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Figure 5.21: Statistical distribution and 95% probability limits (bold lines) for AVC performance, 
for frequency band 150Hz to 250Hz, of the ten best ranked single-actuator positions. Values of 
nominal performance are shown by th in lines. 
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Figure 5.22; Statist ical dis t r ibut ion and 95% probabili ty limits (bold lines) for AVC tota l control 

effort, for frequency band 150Hz to 250Hz, of the ten best ranked s ingle-actuator positions. 

Values of nominal control effort are shown by th in lines. 
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CHAPTER 6 
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The previous two chapters have dealt with the reduction of the vibration transmission of the 

two-dimensional structure which is the subject of the study in this thesis, using passive and 

active optimisation methods; by optimising the geometry of the structure and also by finding 

the optimal actuator positions for AVC on the regular unoptimised structure. Both methods 

have been successful to varying degrees. A sensible progression is then to combine both these 

methods, to generate structures which have optimised geometries and use Active Vibration 

Control (AVC) with optimal actuator positions. The first method used is to find optimal 

actuator position on the structures whose geometries have been previously optimised using 

passive optimisation (in Chapter 4), the second to optimise both the geometry and actuator 

positions simultaneously. The first method, termed the passive-then-active method is identical 

to the active-only optimisation performed in Chapter 5, except geometrically optimised 

structures are used in place of the regular structure. The second method, termed combined 

optimisation, is similar to the passive optimisation, being a highly combinatorial problem and 

is solved using genetic algorithms. More than one variation of this strategy is presented. As 

before, the robustness of the optimised structures is studied, so that the best candidate in terms 

of practical application can also be made. 

Having presented optimisation results using four different strategies, both here and in the 

previous two chapters, a comparison between all of these methods is performed, and the 

success and consequences of using each method are assessed. This in done for both nominal 

and perturbed performance. 

Throughout this chapter reference is made to the design exploration system used for the 

majority of the optimisation work presented in this thesis. For brevity this will again be referred 

to in this chapter by its proprietary name: OPTIONS. See Chapter 3 for further details. 

This chapter is structured as follows: Section 6.1 presents the optimised structures resulting 

from using the passive-then-active optimisation strategy and Section 6.2 presents those 
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achieved using the combined optimisation methods. Section 6.3 presents a power analysis, to 

gain an insight into the mechanisms by which the structures achieve better performance, 

including the role that the AVC system plays. Robustness analyses of all the optimised 

structures are presented in Section 6.4. Comparisons of the success of, and consequences of 

using, each optimisation strategy used in this and the preceding two chapters are made in 

Section 6.5. Conclusions are presented in Section 6.6. 

(5.1 

Ten passively optimised structure geometries were found on the basis of their average 

performance over the frequency band 150Hz to 250Hz, as described in Chapter 4. AVC 

actuators were then added to these structures to achieve further reductions in vibration 

transmission. The remaining task is, therefore, to find the optimum actuator positions for each 

of the ten geometrically optimised structures to realise the maximum vibration reduction. 

6.1.1 GENERATION OF OPTIMAL ACTUATOR POSITIONS 

The actuator positions were found using an exhaustive search in exactly the same way as the 

optimal actuator positions on the traditional structure design, as detailed in Chapter 5. The only 

difference here is that irregular structure geometries are used. To calculate the effect of AVC 

the structure plant model matrices C and Y (see Section 2.3) were calculated for each structure 

geometry-actuator combination considered in the optimisation process. Optimal actuator 

positions were found for the application of active control using one, two and three actuators. 

As before, the number of potential actuator positions is not a prohibitively large number, and 

an exhaustive search is employed. Therefore the optimal actuator positions are guaranteed to be 

found in each case. The active-then-passive counterpart is not investigated, as this has less 

practical application - to optimise a structure around fixed actuator positions. 

6.1.2 OPTIMISATION RESULTS 

The optimum actuator positions on the structures which have previously been geometrically 

optimised are shown in Figures 6.1, 6.2 and 6.3 using one, two and three actuators respectively 

for each of the structures. The structures are shown ranked in order of net overall 

performance, with structure label suffices _A to _J which correspond to the optimised structure 

geometries presented in Chapter 4 as B_A to B_J. With one actuator it is seen that the actuator 

positions are all within the first six leftmost structure bays, with two actuators nine optimal 

actuator-pairs occur in the first four leftmost bays (the other in the fifth bay), and with three 

actuators six sets of optimal actuator positions occur in the first three leftmost bays (with the 
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remainder in the fourth bay). Thus the larger the number of actuators used, the more the 

optimal actuators positions occur in the structure bays near the base of the structure. This is a 

similar finding the that of the optimal actuator positions on the regular structure in Chapter 5, 

The optimal actuator positions for each structure are also given in Table 6.12. Further 

comparison with other optimisation strategies is left until later on in the chapter. 

The best performance using one actuator yields a value of attenuation of 46.0dB, for two 

actuators this value is 67.8dB and for three actuators 96.1dB. Here the attenuation achieved by 

each structure is split into its two component parts; the attenuation due to the structure 

geometry alone and the additional attenuation due to the AVC system. The values of 

attenuation achieved for using three actuators were in the region of the practical limit 

achievable a realistic noise floor (55dB to 60dB) and would not be realised in practice. 

Therefore only the one and two-actuator systems, shown in Figures 6.1 and 6.2, are considered 

further and the performance and total control effort are summarised in Tables 6.1 and 6.3. The 

contributions of the geometric optimisation to the vibration attenuation are common for 

structures with the same label suffix, which is in the range 34.5dB to Sl.OdB. The range of 

AVC attenuation contributions is 12.7dB to 5,9dB for one actuator and 34.1dB to Sl.OdB for 

two actuators. These are similar to the range of values of AVC attenuation achieved with the 

unoptimised structure, discussed in Chapter 5. The major component of the attenuation is that 

due to the structure for one actuator, whilst the contributions of the geometric optimisation and 

the AVC system are of similar significance for two actuators. 

The effective total control effort of the primary force is 21N^ as discussed in Chapter 4. The 

total control effort required for each of the structures is also given in Tables 6.1 and 6.3. For 

one actuator the smallest total control effort is about 13 times smaller than that for the primary 

force, the largest requirement is over 30 times larger. For two actuators the smallest total 

control effort is of a similar magnitude to that for the primary force, the largest is over 50 times 

larger. 

(5.2 (ZXZMS/CBJOSriil) CXp: ISTTlllLrCynjRE 

vAjsfi) yuzrriLL/iTroR fvoEsiTTicjwsrs 

The second form of combined optimisation studied was that of combining the structure 

geometry and the actuator position at the same time. The ability to perform this type of 

optimisation problem is one which sets genetic algorithms (or in general, evolutionary 

algorithms) apart from classical methods. The highly combinatorial nature of this problem has 

already been discussed Chapter 4, however the addition of optimising the actuator positions 
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make the optimisation problem a discrete one. The overall optimisation procedure is referred to 

simply as combined optimisation. 

To evaluate the average energy level of Beam 40 in practice, using the receptance analysis 

model for the structure, the net forces and velocities at the ends of Beam 40 were calculated 

separately due to the primary force and the forces at each end of the actuators. The individual 

force and velocity contributions from all the force inputs were then summed for each degree of 

freedom of Beam 40 (as the system is linear). Then using the net values of the force and 

velocity for each degree of freedom the net power dissipation in Beam 40 can be evaluated. 

6.2.1. CHROMOSOME REPRESENTATION FOR COMBINED OPTIMISATION 

The use of the chromosome and its representation for the structure geometry has been discussed 

in Chapter 4. For the 18 joints allowed to move under optimisation, the joint position is 

represented as 36, 16-bit numbers, concatenated to form a 576-bit chromosome. The addition 

of the actuator positions to the optimisation therefore entails augmenting the chromosome to 

allow the representation of actuator positions. In OPTIONS it is possible to represent a discrete 

optimisation variable by detailing all the discrete values permitted. This is then represented in 

the chromosome by a binary string, whose length is sufficient to represent the total number of 

discrete levels. Thus for optimisations using one actuator, the 39 possible actuator positions 

could be represented as a 6-bit binary string. The total chromosome length would then be 582 

bits, of which only 6 represent the actuator positions (equivalent to about 1% significance). It 

was not felt that this strategy was the best one to use because of the small significance of the 

actuators position representation in the chromosome, and that there would be a relatively small 

probability of the actuator position being affected by the crossover and mutation operators of 

the genetic algorithm. This would result in relatively little evolution of the actuator positions 

compared to the structure geometry. Therefore another representation was used, allowing the 

actuator position to have greater significance in the chromosomes. A 16-bit optimisation 

variable between zero and unity was used to represent the actuator positions. For one actuator 

this represented the 39 candidate actuator positions using a linear scaling, such that if the 

variable were assigned by a uniform random distribution, then each actuator position would 

have an equal probability of selection. For two and three actuator positions the optimisation 

variable was scaled similarly to form an index representing all possible actuator combinations 

{i.e., 1 to 741 for two actuators and 1 to 9139 for three actuators). This number was used to 

code an actuator combination in a repeatable and deterministic fashion. Again, each 

combination has exactly the same probability of selection if the optimisation variable were 

assigned by a uniformly distributed random variable. In this way the proportion of the 
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chromosome representing the actuator positions is one-thirty seventh of the total length (36 

joint coordinate position parts and one actuator part). Whilst this is greater than using 

discretely defined actuator positions as described above, the actuator position still has a 

relatively small significance compared with that of the geometry (of about 2.7% of the 

chromosomes length). 

An additional chromosome construction was also used, so that any effect of the significance of 

the length representing the actuator position could be seen. For this chromosome, instead of 

using one optimisation variable, eight such variables were used and then combined to form a 

single index. This extended chromosome has a representation of the actuator positions which is 

about 18% of the chromosomes length. Each of the eight optimisation variables are between the 

limits zero and unity. They are combined by summing the variables and converting to a zero to 

one range using a modulo one operator. Thus, where each of the optimisation variables is 

represented by o , , the final actuator combination index j is given, 

J 

^ 8 
m o d i ) . (6.1) 

Using this combination method j will be within the range 0 to 1 (non-inclusive) and will still be 

uniformly distributed if all the individual variables are so distributed. 

In earlier work the author used a combination method that was a simple arithmetic average of 

the individual variables o, was used, 

j biased ~ g , 2 ^ ' ( 6 - 2 ) 
O , = i 

If these are uniformly distributed then this leads to a distribution of the combination of 

variables which approaches a Gaussian or Normal distribution as the number of variables 

combined increases (by the Central Limit Theorem, Hoel 1984). Obviously this gives a biased 

representation for actuator positions occurring in the middle of the range of the index. For the 

one actuator case this biases towards actuator positions in the middle of the structure. The 

resulting structures are still presented below as they allow an observation to be made on the 

effect that this has on the optimisation. 

6.2.2 OPTIMISATION RESULTS 

The parameters used for the optimisation are the same as those used for the broad band 

optimisation detailed in Chapter 4. The genetic algorithm was comprised of 4500 objective 

function evaluations, arranged as 15 generations of population size 300. Other parameters 
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detailing the optimisation are given in Table D.6 in Appendix D. The only additional difference 

being the use of a longer chromosome to represent the joint positions of the structure and the 

actuator positions, as detailed above. 

[/STTVf? 

The resulting structure geometries and optimal actuator positions for the best ranked of the ten 

candidate designs produced with one and two actuators and using the standard length 

chromosome are shown in Figures 6.4. and 6.5. Each candidate took about 160 and 220 hours 

to produce, for one and two actuators respectively, on hardware platform B detailed in 

Appendix E. The unoptimised value of performance is shown on the j-axis with a square, but 

the immediate improvement is due to the operation of AVC with the initial actuator position 

(which corresponds to j=0 in (6.1)). The performance and total control effort for all the 

candidates produced for each case are summarised in Tables 6.5 and 6.7 respectively. The 

contribution of the structure geometry is also given with no AVC operating. For the 

one-actuator case the contribution of the geometry to the attenuation ranges from 28.4dB to 

17.5dB whilst the AVC attenuation range is 29.9dB to 20.6dB, so both components are of 

similar significance. For the two actuator case the geometric contribution range is 22.8 dB to 

15.5 dB and the AVC attenuation range is 64.9dB to 52.3dB and the AVC attenuation is then 

the dominant component in the values of total attenuation achieved. Optimisation using a larger 

number of actuators was not considered as the values of attenuation achieved using two 

actuators are in the region of the limit of being realisable in practical AVC systems with a 

realistic noise floor. The positions of the actuators for all the candidates are given in 

Table 6.12. For one actuator, all the actuator positions occur in the three leftmost structure 

bays and Beam 4 is an actuator location for two of the candidates. For the two-actuator case, 

again, all the actuators positions occur in the three left most bays, however in this case there 

are two-actuator position pairs Beams 1,4 and Beams 1,5 which occur in three and four times 

respectively in the ten candidates. Thus a similar trend is seen as with the passive-then-active 

optimisation, that the higher the number of actuators the more they occur towards the structure 

base. 

The total control effort required to achieve the stated performance for each structure is given in 

Tables 6.5 and 6.7. For one actuator, the smallest total control effort is smaller than the 

effective primary force total control effort (21N^), and the structure with the largest value is 

C01_I, the structure with the best performance, and this is over 10 times larger than the 

effective primary control effort. For two actuators, the range is from about three to over 80 

times. 
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The significance of the representation of the actuator position in the geometry was a concern in 

the definition of the chromosome, as discussed above. To show the distribution of the actuator 

positions considered throughout the optimisation, various parameters representing the actuator 

positions at each evaluation of the genetic algorithm and the best position in each generation 

are shown in Figure 6.6 for structures C01_I and C02_G, the best ranked one and two 

actuator structures. The parameter SRC_IND is the source (actuator) position index which is 

used to determine the actuator positions and corresponds toy" in (6.1). For the single actuator 

case the source position is simply a quantised version of this parameter, but a more complex 

relation exists for two actuators. In both cases it is seen that the initial diversity of the actuator 

position representation in the initial generations (each of 300 chromosomes evaluations) is lost 

in the later stages. Here a small number of actuator positions are heavily represented within 

each generation (as represented by the large number of evaluations using these positions), even 

though evaluations were still performed at other actuator positions. The index and actuator 

positions corresponding to the chromosome with the best performance in each generation are 

also shown. In the overall optimisation six different actuator positions occur in the best 

structure in each generation for one actuator, and only three different actuator positions occur 

for the two actuator case. The discrete change of actuator positions can, in effect, cause a 

discrete change in the objective function. By comparing the best actuator position in each 

generation history with the history of the objective function in Figures 6.4 and 6.5, it is seen 

that in most cases the improvement coincides with changes in the actuators positions. 

Ten optimised candidates were produced using the extended chromosome as described in 

Section 6.2.1, in which the significance of the representation of the actuator position in the 

chromosome is greater. The optimised designs yielding the best performance using one and two 

actuators are shown in Figures 6.7 and 6.8. The performance and the total control effort 

required for all the optimised structures are given in Tables 6.9 and 6.11. Comparing these 

values with their counterparts for the standard chromosome, it is seen that in terms of the 

performance of the best structure in each case, that the use of the extended chromosome has not 

yielded structures with better performance, but similar levels of attenuation have been achieved. 

This is reflected in the values of the average performances. Comparing the average values of 

total control effort it is seen that for the one actuator case the average figure is 89.9N^ for the 

standard, and llON^ for the extended chromosome. However for the two actuator case the 

discrepancy has increased to 61ON^ and 1173N^, the use of the extended chromosome almost 

doubling the average value of total control effort required compared to the use of the standard 

chromosome, in this example. The contributions of the attenuation due to the geometry and that 
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due to the AVC system are also given in Tables 6.9 and 6.10, for both cases. The significance 

of the geometric attenuation and that achieved by the AVC system appears to be very similar to 

that for use of the standard chromosome. However, on average it appears that the AVC system 

appears to have a slightly less significant contribution when using the extended chromosome. 

The effect of using the extended chromosome on the diversity of the actuator positions 

considered during the optimisation is shown in Figure 6.9. The interpretation of the figure was 

explained previously for Figure 6.6 above. Here it is seen that the use of the extended 

chromosome has maintained the diversity in the later generations of the optimisation 

dramatically and there appears to be little difference between the diversity of the actuator 

positions evaluated in the earlier generations and those in the later generations. However, there 

still appears to be relatively little change in the best actuator positions in each generation, as 

before with the standard chromosome. The optimal actuators positions for each candidate are 

given in Table 6.12. When compared with the results for the standard chromosome the increase 

in diversity is apparent. Actuator positions further from the structure base are also found in the 

ten structures, there is only one set of actuator positions which occurs for more than once in the 

ten structures for the one actuator case. 

6 . 2 2 3 CASE CHROMOSOME 

As detailed in section 6.2.1, the author initially used the extended chromosome with a method 

of combining the individual source indices to form a single source index, which was 

(unintentionally) biased, for one-actuator positions, in favour of actuator positions occurring in 

the middle of the structure. Ten optimised structure using a single actuator were produced 

using this method, and are briefly presented here. 

The structure with the best combined performance is given in Figure 6.10, and the performance 

of all the ten optimised candidates and the total control effort required is given in Table 6.11. 

Comparing these two parameters with those for the single-actuator passive-then-active and 

combined optimised structures it is seen that the performance of the structures using the biased 

chromosome achieves values of attenuation that are comparable to the single-actuator 

optimised structures using the combined optimisation scheme, using both the standard and 

extended chromosomes. The total control effort is in general smaller, however, for the biased 

chromosome case than for all the other cases. The value of the average total control effort is 

almost half the value for the combined optimised structures using the standard chromosome 

(which is slightly smaller than for the extended chromosome). Compared to the effective 
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primary force total control effort the range of values of total control effort for the structures is 

about 1.5 to 4.5 times. 

Figure 6.11 shows the convergence liistory of the genetic algorithm optimisation for the 

optimised structure shown in Figure 6.10. The format of the figure has been explained above 

for the combined optimisation scheme above for Figure 6.6. The biasing of actuator positions 

considered towards positions in the middle of the structure is apparent. No actuator positions 

occurring in the two leftmost structure bays {i.e., beam numbers 1 to 8) or the two rightmost 

structure bays have been considered during optimisation. 

The optimised structures produced using this optimisation scheme are not considered further in 

this thesis. It was not originally intended to bias actuator positions in this way. However from 

the results presented a few interesting comments can be made. Restricting the freedom of the 

optimisation, by providing a bias for the actuator positions, has still yielded optimisation 

designs which still have comparable performance to structures produced without such a bias. 

Thus if a practical constraint exists (so that mid-structural actuator positions are preferred), 

this has been shown not to be detrimental the to the performance of the resulting optimised 

structures. Also, in this case the total control effort (which is an accidental consequence of the 

optimisation: it is not considered by the optimisation) is actually smaller than for the non-

biased cases, which is obviously a practical advantage. 

6.3 ANALYSIS OF POWER FLOW IN OPTIMISED STRUCTURES 

In order to gain an insight into the mechanisms by which the power dissipation reduction in 

Beam 40 has been achieved, and to understand the role of the AVC system in the structures 

resulting from the passive and active optimisation strategies, power in the optimised structures 

and the contribution of the AVC system was studied. Power analyses are only presented for the 

structures resulting from the passive-then-active optimisation strategy, and those from the 

combined optimisation strategy using the standard chromosome. An explanation of the power 

components used in the analysis of power in a structure using AVC was given in Chapter 5, 

and are applicable to the power analyses reported here. 

The results for the power analysis of the structures resulting from the passive-then-active 

optimisation are given in Tables 6.2 and 6.4, for one and two actuators respectively. The power 

components are given with the AVC system operational, and non-operational, so that the 

contribution of the geometric optimisation and the AVC system can be determined. For these 

structures the geometries are the same as the optimised structures achieved by the passive 

optimisation for the broad band case in Chapter 4, and thus the geometric improvements due to 
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the geometries are the same. For one actuator it is seen that the AVC control has no effect on 

the input power, and only a slight increase is seen for two actuators. The main effect of the 

AVC in each case is to provide an additional redistribution of the structural power, which on 

average is 10.6dB and 31.6dB greater than that achieved by the structure alone, for one and 

two actuators respectively. Figures 6.12 and 6.13 show the power analysis results, and for the 

two actuator case the individual actuator power contributions for the actuators can now be 

seen. In general the actuator contributions are small compared with the other power 

components except for a few structures, for example PTA1_H and PTA2_J. 

The results for the power analysis for the structures resulting from the combined optimisation 

using the standard chromosome are given in Tables 6.6 and 6.8, for one and two actuators 

respectively. Again, the power components are given with the AVC system operational, and 

non-operational, so that the contribution of the geometric redesign and the AVC system can be 

determined. In this case the structure geometries are those resulting from each individual 

optimisation. It is seen that the geometric improvement achieved, on average, is slightly less 

reduction in the input power than for the passive-then-active case. The one and two actuator 

cases have average reductions of 9.7dB and lO.OdB, compared to 10.7dB for the passive-then-

active optimisation. There is a much greater discrepancy between the reductions achieved for 

the power distribution. Here the values are 14.4dB and 8.5dB for one and two actuators 

compared with 22.3dB for the passive-then-active case. 

The structures achieved using the passive-then-active optimisation strategy, have undergone 

optimisation, first, solely concerning the geometry. Whereas using the combined strategy the 

optimisation effort is shared between the geometry and the actuator positions. Thus it is not 

surprising that the geometric improvements achieved from the combined optimisation are not as 

large as those in which the optimisation of the geometry was initially the sole aim. However the 

values of attenuation resulting from an AVC system using the optimally placed actuators 

resulting from the combined optimisation are greater than those achieved from the passive-then-

active optimisation, by about 6dB and 16dB greater on average for one and two actuators 

respectively. Overall the values of total attenuation achieved are slightly greater than for those 

achieved from the passive-then-active optimisation. The power analysis results are also shown 

in Figures 6.14 and 6.15, for the optimised structures using one and two actuators, showing the 

individual actuator contributions. In general, for the one actuator case the power contributions 

are relatively very small, as with that for the passive-then-active structures, however for two 

actuators the individual actuator contributions are larger than for the passive-then-active 

structures. 
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The power distributions within the optimised structures PTA1_B and PTA2_C, resulting from 

the passive-then-active optimisation are shown in Figures 6.16 and 6.17, and also for structures 

C01_I and C 0 2 _ G resulting from the combined optimisation, in Figures 6.18 and 6.19. The 

position of the actuator is denoted by a symbol which additionally indicates whether the 

actuator is absorbing or sourcing power, as explained in the figure captions. The geometric 

optimisation has achieved a small reduction in power transmission along the structure, to which 

the use of AVC reduces the transmission even further. For structure PTA2_C (Figure 6.17) the 

actuator in Beam 1 is seen to increase the power dissipation in this beam. With reference to 

Figure 6.13 it is seen that this actuator is acting as an energy absorber, the other actuator is 

acting as an energy source (although its value is not clearly visible in the figure). As well as 

achieving a reduction of the power dissipated in Beam 40 the input power is slightly decreased. 

For both optimisation cases using one actuator power reductions due to the AVC are seen at 

the far end of the structure but these occur a number of structure bays past the final actuator 

(actuator nearest Beam 40). The success with one actuator is greater for the combined 

optimisation. For two actuators a marked reduction in the power transmission past the final 

actuator is seen to occur from the bay containing the final actuator, and the reduction is 

greater, again, for the combined optimisation. Tins is similar to the effect seen in Chapter 5 for 

the operation of the AVC in the active-only optimised structures, but the amount of power 

reduction using two actuators is greatest for the combined optimisation (comparing 

Figures 6.17 and 6.19 with Figure 5.10). Although this effect is not as immediate as for active-

only optimisation using three actuators (see Figure 5.11). This suggests that there is an 

advantage in optimising the structure geometry simultaneously with the actuator positions. The 

interaction between the two effects in the optimisation process allows AVC with a given 

number of actuators to have a much greater effect. The apparent strategy adopted by the 

optimised structures shown here is also the same for those for the active-only optimised 

structures; a strategy of reducing the power transmission along the structure past the final 

actuator. Tliis effect is especially apparent for structure C 0 2 _ G in Figure 6.19. As discussed 

in Chapter 5, this implies that the performance of the system is less sensitive to the impedance 

of the structure and, and thus less sensitive to changes to the mass of Beam 40. 

6.4 COMPARISON OF ROBUSTNESS OF OPTIMISED DESIGNS 

The robustness of all the structures produced under combined optimisation schemes presented 

in this chapter was analysed (with the exception of the use of the biased extended 

chromosome). This was achieved in the same way as for the perturbation analyses presented in 
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Chapters 4 and 5. Full details are given in Chapter 4. As discussed above, linear superposition 

is used to calculate the net average energy level in the face of each applied perturbation. A 

perturbation scaling of 0.01 was used, defining a perturbation range of ±10mm, and the same 

set of 300 random perturbations were used as before. The results of the perturbation analyses 

are shown, in terms of both performance and total control effort, in: Figures 6.20 to 6.23 for 

the structures produced under the passive-then-active optimisation scheme; Figures 6.24 to 

6.27 for the structures produced under the combined optimisation using the standard 

chromosome; and Figures 6.28 to 6.31 for the structures produced under the combined 

optimisation scheme using the extended chromosome. The 95% probability limits are also 

shown on all the graphs, which indicate the values for which 95% of the evaluated 

perturbations, the performance is better or the total control effort smaller. Robustness has been 

discussed in Chapter 4, and also the 95% probability limit has been defined in more detail in 

that chapter. 

The results of the perturbation analyses are also summarised in Tables 6.1, 6.3, 6.5, 6.7, 6.9 

and 6.10. First, considering the robustness of the performance for the optimised structures 

using one actuator, it is seen that, in general, the average robustness is the same for all the 

methods: passive-then-active and combined optimisation with the standard and extended 

chromosome. The ranges are confined to a range of about one order of magnitude. Whilst the 

best optimised one actuator structure is C01_I , the one with the smallest 95% probability limit 

and the best practical performance is seen to be CEX1__B. For optimised actuator positions 

with two actuators, the general spread of values of performances is similar and is generally 

confined to two orders of magnitude. Structure C 0 2 _ D appears to be extremely unrobust in 

this respect, but using the 95% probability limit it is seen that, on average, the performance of 

this structure is expected to be better than for structures C02_I and C02_C. For two 

actuators, the performance for the combined optimised structures using the standard 

chromosome is the best, the best structure in all respects being C02_G 

As with the active optimised structures a large variation in control effect is seen for all 

structures. There appears to be no relation between the optimisation strategy and the control 

effort robustness as the range of values is from a little over one order of magnitude for the C 0 2 

structures and about three orders of magnitude for the PTAl and CEX2 structures. Again, it is 

emphasised that control effort is often perceived in linear terms and thus in practice these 

differences are significant. The best single-actuator structure on nominal performance C01_I 

has a relatively liigh control effort requirement, although CEX1_B the most practical single-

actuator structure has a control effort requirement that is almost two orders of magnitude 
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smaller and more robust. Similarly for structure C02_G the best two-actuator structure, the 

control effort is relatively small and robust. 

6.:5 ()]; (DiPiriiviisjE]:) 

Four optimisation strategies have been presented in this thesis; passive optimisation, in which 

the geometry of the structure is optimised: active optimisation, in which the optimal actuator 

positions for an Active Vibration Control system applied to the regular structure were sought; 

passive-then-active optimisation, in which the optimal actuator positions on the previously 

passively optimised structures were sought; and combined optimisation in which the structure 

geometry and the optimal actuator positions for an AVC system are optimised simultaneously. 

For the latter strategy, two versions of genetic algorithm chromosome were used, giving 

different significance between the geometry and the actuator positions in the optimisation. A 

comparison of the success of using all the techniques can now be presented. 

(5.5.1 

Figure 6.32 shows the representation of the attenuation of the all the optimised structures 

produced by each of the optimisation strategies, along with their respective values of total 

control effort. The values of attenuation for the passively optimised structures are shown on a 

separate axis as control effort is not applicable for this case. The average performance against 

average total control effort for each of the ten structure resulting from the different optimisation 

strategies is also shown in Figure 6.33. 

The structures achieved using active optimisation using two actuators, produce similar levels of 

attenuation as the passively optimised structures. The structures achieved using optimisation 

strategies involving both passive and active optimisation, using one actuator, yield values of 

attenuation similar to structures optimised by active optimisation using three actuators. Thus 

the application of AVC for the foimer case is more effective. However, as well as using only 

one actuator in place of three, the structures achieved using both passive and active 

optimisation use much less control effort. The range from the smallest values for the latter to 

the largest for the active optimisation structure is over 100,000. The larger control effort is not 

due to the number of actuators, since for active-only optimisation using one, and two actuators 

the average total control effort is still a factor of 100 greater. This indicates that the application 

of AVC to a structure resulting from passive optimisation (whether combined with active 

optimisation, or passive optimisation first) is more efficient than that using the regular 

structure. There is little distinction between the passive-then-active or the combined 

177 



optimisation strategies regarding the control effort, but the latter is seen, in general to achieve 

about 5dB more attenuation. Making the same comparison for the structures with two 

actuators, there is more variation within the values of attenuation achieved with each strategy. 

Greater values of attenuation are achieved with the combined optimisation using the standard 

chromosome, than those using the extended chromosome and lastly the passive-then-active 

optimisation strategy. 

The total attenuation achieved by each optimised structure is comprised of two components, the 

attenuation due to the geometric redesign and that due to the application of AVC. hi 

Figures 6.34 and 6.35 these two components are shown separately. The first figure shows the 

geometric attenuation component. Obviously the passive-then-active structures have the same 

values of attenuation as geometrically they are the same structures. The geometric attenuation 

achieved by the other structures is smaller and ranges fi-om about lOdB to 30dB. In general it is 

seen that the structures using two actuators appear to have a smaller level of geometric 

improvement than for those using one actuator. (The exception is that for using two actuators 

optimised using the extended chromosome whose values of attenuation almost cover the full 

20dB range.) Figure 6.35 shows the contribution of the AVC system for each structure 

produced under all the optimisation strategies. The AVC contribution from the structures 

produced using the passive-then-active optimisation strategy achieved similar levels of 

attenuation per actuator as for the regular structure with optimal actuator positions (but with 

less total control effort as discussed above). For the structures produced under the combined 

optimisation strategies the level of attenuation achieved using one actuator is about 15dB more 

than with that using one optimally placed actuator on the regular structure. When the same 

comparison is made for the combined optimisation using two actuators it is seen that the levels 

of AVC attenuation are about 20dB more those attained on the regular structure with two 

optimally placed actuators. In both cases the combined optimisation strategy using the standard 

chromosome yields better levels of AVC attenuation, despite the fact that the actuator 

representation had a smaller significance in the chromosome. Finally, it is noted that some of 

the AVC attenuation contributions are greater than 60dB, however for an AVC system with a 

realistic noise floor levels of attenuation are unlikely to be realised. 

6.5.2 POWER WITHIN OPTIMISED STRUCTURES AND THE ROLES OF 
G%%%WETBUC^U^DESKlNyU^DyUZTr^E\TBR^aiONCCOfniOL 

An analysis of the power within the optimised structures to understand the mechanisms by 

which the reductions in the power dissipated in Beam 40 are achieved, has been reported for 

those resulting from the main optimisation strategies. There are three main power components 

to consider; the input power to the structure, the redistribution of the power dissipation within 
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the structure and the power contributions of the AVC actuators (if applicable). The power 

contributions of the actuators is distinct from the total control effort which represents the 

relative electrical power requirements of a practical system. 

The structures achieved by solely optimising the geometry of the structure were seen (in 

Table 4.6) to achieve a reduction in power dissipation in Beam 40 by both the reduction of the 

input power and the redistribution of the power within the structure. The latter is the greater 

effect, and in terms of reductions in decibels accounts, in general, for two-thirds of the 

reduction. Using the unoptimised structure with an AVC system using optimally placed 

actuator positions, only slight variations in the input power were seen, as shown in Tables 5.2, 

5.4 and 5.6. In some cases the power input to the structure is increased. Thus the reductions in 

the power dissipation in Beam 40 are wholly achieved by the redistribution of the power 

dissipation within the structure due to the AVC. In almost all of the cases for optimal actuator 

positions using one, two and three actuators, at least one of the actuators acts as an energy 

source to the structure. The magnitude of the power contributions from each is small compared 

to the power input. When using more than one actuator it is seen that the AVC system adopts a 

strategy of controlling the power distribution beyond the actuator nearest Beam 40, than rather 

just controlling the power dissipation in Beam 40 itself 

Power analyses were also performed for structures resulting from optimisation strategies 

involving both geometric and actuator position optimisation. First the passive-then-active 

structures, which use optimal actuator positions on previously optimised geometries (those 

resulting from the passive optimisation). It is seen that the AVC system does not affect the 

power input to the structure beyond those reductions achieved by the geometry optimisation. 

The AVC system provides further reduction to the redistribution of the structural power. It 

achieves similar improvements per actuator as for the active-only optimisation, however the 

addition of the geometric improvement results in better values of total attenuation. With 

structures resulting from the simultaneous optimisation of both geometry and actuator 

positions, similar results were obtained. Again, the AVC system does not play a role in 

reducing the power input to the structure, but provides further reduction to the structural power 

redistribution. In this case the reductions in input power are smaller than those using the 

passively optimised structures. However, the values of attenuation achieved per actuator are 

greater than those for the active-only or passive-then-active optimisation strategies. Overall, in 

terms of total attenuation, the combined optimisation structures achieve values of attenuation 

which are comparable to those with the other two strategies using AVC above, but when using 

one additional actuator. In all cases for optimisation strategies using geometric optimisation the 
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control effort required by the AVC system is significantly lower, making the application of 

AVC more efficient. 

Analyses of the power distribution within the optimised structures revealed that for the active-

only optimisation strategy using two actuators the role of the AVC appears to be to reduce the 

power transmission beyond the final actuator, Figure 5.11, whereas using one actuator the role 

of the AVC appears to rely on the reflection of the vibration 6om the structure end, see 

Figure 5.9. Reductions in power transmission are also apparent to a lesser extent for the 

passive-then-active and combined optimisation strategies. This strategy is thought to make the 

reductions in Beam 40 less sensitive to any impedance changes at the end of the structure which 

may result from masses being added to Beam 40, for example. Thus the application of AVC is 

seen to be more efficient, and in some cases more successful, when some form of geometric 

optimisation has been performed on the structure. This reduces the power input to the structure, 

which is not achieved using AVC, and also provides a further redistribution of structural power 

dissipation. This is readily apparent from comparing the power analyses in Figure 4.20 for the 

passive optimisation, Figures 5.6 to 5.8 for the active-only optimisation and Figures 6.12 to 

6.15 for methods using both passive and active optimisation. Noting the reduced scale where 

applicable, and that this also applies to the individual actuator contributions. This is also 

reflected in the total control effort required for structures resulting fi-om each optimisation 

strategy, as discussed earlier in this section. 

Finally, a summary of the average values of attenuation achieved by the passive-only, active-

only, passive-then-active and combined optimisation (using standard chromosome) strategies is 

given in Table 6.13, where two actuators are used for AVC in each case, where applicable. 

Also given are the average values of attenuation resulting fi-om the geometric redesign and 6om 

AVC. This emphasises that the application of AVC is more effective using combined 

optimisation. The average AVC attenuation achieved resulting from this strategy is 

approximately double the level achieved for the active-only and passive-then-active. The 

combined optimisation strategy has resulted in the highest average overall vibration reduction, 

despite that the geometric redesign has only responsible for half of the attenuation achieved 

with the passive-only and passive-then-active strategies. 

6.5.3 PERTURBED PERFORMANCE AND ROBUSTNESS 

The 95% probability limits for the performance and the total control effort are shown in 

Figures 6.35 to 6.38 as vectors emanating from the symbols representing the nominal values. 

The westward extent thus indicates the 95% performance probability limit, and indirectly 

provides an indication of the robustness. Similarly the northward extent represents the total 
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control effort 95% probability liinit. The comparison is made using four figures one for each 

optimisation strategy, so that the vectors for each can be clearly seen. In general it is seen that 

the robustness of many of the structures are very much comparable, although a few of the two-

actuator structures achieved by using the combined optimisation with the standard chromosome 

exhibit less robustness. In general the robustness of the passively optimised structures is the 

best, followed by those achieved using the active-only optimisation. 

All the optimisation processes detailed in this chapter and Chapters 4 and 5, have not 

considered robustness within the optimisation process. Hence the robustness of the performance 

of the resulting design solutions is a consequence of the optimisation process. In the next 

chapter, optimisation incorporating a measure of robustness is performed. Thus the 

optimisation aim is to provide optimal and robust design solutions. 

6.6 CONCLUSIONS 

6.6.1 COMBINED PASSIVE AND ACTIVE OPTIMISATION METHODS 

The optimisation of the average vibration transmission of a two-dimensional lightweight 

regular structure was performed over a frequency band of 150Hz to 250Hz. This is measured 

by evaluating the average energy level in the end beam. Beam 40. Here both passive and active 

optimisation strategies were used, whereas in the two previous chapters each of these have been 

used alone. Thus both the structure geometry and the optimal positions of actuators for an 

Active Vibration Control (AVC) were the subject of optimisation. The first strategy, passive-

then-active optimisation, used structure geometries that were the result of passive-only 

optimisations from Chapter 4. Optimal actuator positions were found for these structures for 

one to three actuators, although the use of three actuators was not pursued as the attenuation 

from the AVC system would not be achievable in a practical system. The second strategy, 

combined optimisation, optimised the structure geometry and optimal actuator positions (for 

one and two actuators) simultaneously. Different types of genetic algorithm chromosome were 

used giving different levels of significance between the geometry and the actuator positions. 

However it was found that the chromosome which had an extended actuator position 

representation produced solutions with slightly worse performance and required more control 

effort. This suggests that it is better to adapt the geometry around actuator positions than vice 

versa. The passive-then-active optimisation strategy was slightly more successful for one 

actuator, although larger control system efforts were required, and for two actuators the 

combined optimisation was more successful, but again, larger control effort were required. A 
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comparison of the performance compared with other optimisation strategies used is discussed 

below. 

Also briefly reported was the use of the combined optimisation with a chromosome which was 

(unintentionally) biased towards single actuator positions occurring in the middle of the 

structure. Despite this, the resulting structures had comparable performances to those above, 

with low control effort. Hence the actuator position bias has not been detrimental to the success 

of the optimisation. 

A power analysis was performed to investigate the mechanisms by which the reductions in 

vibration transmission of the structures have been achieved. This is distinct from the total 

control effort, which represents a practical system requirement. It was found that the geometric 

optimisation reduces the power input to the structure, and also redistributes the power 

dissipation within the structure so as to reduce the vibration in Beam 40. The AVC has little 

effect on the input power to the structure, but it provides additional power redistribution within 

the structure to further decrease the power dissipation in Beam 40. In most of the cases the net 

power supplied by the actuators is much less than the input power to the structure, and in most 

cases at least one actuator acts as an energy source. Thus the role of the AVC is not to simply 

absorb power. Studies of the distribution of power within the structure show that for one 

actuator the aim appears to be to reduce the power dissipation in Beam 40. However, with two 

actuators the AVC seems to act to reduce the power transmission along the structure. 

Perturbation analyses were performed for structures resulting from the passive-then-active 

optimisation and the combined optimisation (with both standard and extended chromosome) 

strategies, to see how the performance and the total control effort change in response to small 

geometric changes such as might occur through manufacturing tolerances, for example. Some 

structures appear to be more robust than others in terms of either, or both, performance 

robustness and control effort robustness. Using the average 95% probability limits, for which 

the performance or control effort is better for 95% of all perturbations applied, for each case, 

the average practical performance and practical control effort can be found. For one actuator 

there is little difference in performance between the three optimisation strategies, also the 

practical control effort for the passive-then-active is twice as large as for both the combined 

optimisation strategies. For two actuators the average practical performances are similar, but 

the combined optimisation strategy with the standard chromosome has the best average 

practical performance, but the average practical total control effort is eight times greater than 

for the strategy with the lowest. 
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Another consideration of the robust performance of the optimised structures might be due to 

AVC control systems failure. Because both optimisation strategies incorporate geometric 

optimisation, both have obvious advantages over the active-only optimisation strategy. The 

passive-then-active strategy has produced the better reductions in vibration transmission due to 

the geometric redesign, and thus is more robust to AVC system failure. 

6.6.2 COMPARISON OF OPTIMISATION STRATEGIES 

At this stage in the thesis four different optimisation strategies have been presented in this and 

the two preceding chapters. A comparison of the results obtained from all the strategies was 

presented in Section 6.5. In terms of nominal performance, the use of two optimally placed 

actuators on the regular, unoptimised structure is approximately equivalent to the values of 

attenuation achieved by the passive optimisation. When using optimally placed actuator 

positions on geometrically optimised structures the use of one actuator achieves similar levels 

of attenuation to that using three actuators on the regular, unoptimised structure. Also the total 

control effort required is much less, by about two orders of magnitude. In general the structures 

resulting from the combined optimisation produce better performance per actuator, than for the 

passive-then-active optimisation, especially so for two actuators (although similar levels of 

control effort are required as for one actuator). 

The values of attenuation achieved were split into their two component parts; the attenuation 

achieved from the geometric optimisation, and that achieved by the AVC system. The former is 

found to be best with the structures resulting from the passive optimisation, where the structure 

geometry was the sole optimisation aim. These structure geometries are also used for the 

passive-then-active optimisation. For the combined optimisation it is found that for two 

actuators the geometric improvement was smaller than for one actuator. For the passive-then-

active optimisation it is found that the levels of attenuation achieved per actuator by the AVC 

are similar to those achieved for active-only optimisation. However, for the combined 

optimisation it is seen that the attenuation achieved per actuator is comparable to that for the 

active-only optimisation when using one additional actuator. 

All the optimised structures that are geometrically optimised have significant reductions in the 

power input to the structure and also show a favourable redistribution of power dissipation 

within the structure. The application of AVC does not significantly affect the power input, but 

does have the effect of providing an additional power redistribution within the structure. The 

net power input from the actuators is, in most cases, much smaller than the input power, and in 

most cases at least one of the actuators acts as an energy source. Thus the contribution of AVC 

is more than simply absorbing structural power. Studying the power distribution within the 
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optimised structures it is seen that the interaction between actuators, for actuator 

configurations with more than one actuator, act to reduce the power transmitted along the 

structure, and not just mainly the power in Beam 40. It is thought this makes the application of 

A v e much more robust to changing the mass of Beam 40. 

Finally, considering the robustness of the performance and control effort of all the resulting 

structures, little distinguishes one optimisation strategy from another in this respect. Although 

within a set of structures achieved with each strategy there are structures that are more robust 

on grounds of either, or both, performance or control effort. Thus the robustness of the 

solutions is important is selecting practical optimal solutions. As before, the 95% probability 

limits enable the practical performance achieved or control effort required to be estimated. 
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Rank Structure 
Geometric 
attenuation 

(dB) 

AVC 
attenuation 

(dB) 

Overall 
nominal 

attenuation 
(dB) 

95% 
probability 

limit 
attenuation 

(dB) 

Control 
effort 
(N") 

95% 
probability 

limit 
control 

effort (N^) 

1 PTA1_B 33.3 12.7 46.0 43.0 291 467 

2 PTA1_G 32.0 12.6 44.6 41.6 12.8 23.9 

3 PTA1_J 32.3 12.2 44.5 41.5 22.8 30.3 

4 PTA1_D 31.6 12.6 44.2 42.6 52.5 84.5 

5 PTA1_H 33.9 10.1 44.0 39.6 1.52 2.46 

6 PTA1_A 32.3 11.5 43.8 39.1 12.8 31.9 

7 PTA1_C 32.8 10.3 43.1 38.2 345 956 

8 P T A I J 31.0 11.9 42.9 39.3 770 1850 

9 PTA1_F 34.1 8.3 42.4 37.3 14.7 36.9 

10 PTA1_E 34.5 5.9 40.4 38.4 24.0 46.1 

average 32.6 11.2 43.2^ 39.7 155 353 

TABLE 6.1. Results summary for single-actuator passive-then-active optimised structures, ranked in 

order of performance. 

Structure 

Primary force input power 
reduction, (dB) 

Redistribution of power 
within passive beams of 
structure, a'REDisT(dB) 

Net actuator 
contribution 

(%ACF (dB) 

Net power 
dissipated 

in actuators 
(xlO-̂  W) 

Structure 
w/o AVC AVC w/o AVC AVC 

Net actuator 
contribution 

(%ACF (dB) 

Net power 
dissipated 

in actuators 
(xlO-̂  W) 

PTA1_B 10.7 10.9 22.7 35.0 0.08 5.68 

PTA1_G 11.6 11.8 20.4 32.8 0.003 0.169 

PTA1_J 9.9 9.8 22.4 34.8 -0.02 -1.63 

PTA1_D 10.0 9.6 21.6 34.1 0.4 35.8 

PTA1_H 11.0 11.1 22.9 29.1 3.8 168 

PTA1_A 11.6 11.6 20.7 32.1 0.006 0.350 

PTA1_C 9.0 9.0 23.8 34.1 -0.02 -1.86 

PTA1_I 10.1 10.0 20.8 32.6 0.4 28.5 

PTA1_F 11.1 11.1 23.0 31.3 -0.03 -2.17 

PTA1_E 11.0 11.0 23.4 29.4 -0.01 -0.966 

average 10.7 10.7 22.3 32.9 - -

TABLE 6.2. Power components for single-actuator passive-then-active optimised structures. 

See footnote on page 191. 
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Rank Structure 
Geometric 
attenuation 

(dB) 

AVC 
attenuation 

(dB) 

Overall 
nominal 

attenuation 
(dB) 

95% 
probability 

limit 
attenuation 

(dB) 

Control 
effort 
(N") 

95% 
probability 

limit 
control 

eHbrt (N^) 

1 PTA2_C 328 35^ 6%8 64.4 223 387 

2 PTA2_A 3Z3 34^ 6^0 6&2 108 387 

3 PTA2_F 34^ 322 6&3 620 262 552 

4 PTA2_B 333 324 65J 627 25^ 3 2 9 

5 PTA2_G 3 2 0 33J 6^5 5^9 815 310 

6 PTA2_D 3L6 3L8 63^ 5&0 7^6 119 

7 PTA2__E 34J 2&8 63J 6&1 8&1 178 

8 PTA2_H 319 2&0 629 58J 44.5 617 

9 PTA2_I 3L0 2&7 6&7 54^ 1060 1920 

10 PTA2_J 323 2&3 60.6 5&7 37J 106 

average 326 322 616' 5&8 201 406 

TABLE 6.3. Results summary for two-actuator passive-then-active optimised structures, ranked in 

order of performance. 

Structure 

Primary force input power 
reduction, aĵ pur (dB) 

Redistribution of power 
within passive beams of 
structure, a'RED,sT(dB) 

Net actuator 
contribution 
ôACF (dB) 

Net power 
dissipated 

in actuators 
(xlO-^ W) 

Structure 
w/o AVC AVC w/o AVC AVC 

Net actuator 
contribution 
ôACF (dB) 

Net power 
dissipated 

in actuators 
(xlO-^ W) 

PTA2_C 9.0 9.0 218 5 5 j 3.2 241 

PTA2_A 1L6 11.4 20J 57^ -20 -L59 

PTA2_F 11.1 lOJ 2 1 0 55J 0.4 0268 

PTA2_B 10.7 11.2 22.7 5L3 3.2 1.44 

PTA2_G 1L6 1L3 2&4 521 2.1 L05 

PTA2_D l&O l&O 2L6 514 -0.02 -&0196 

PTA2_E ILO ILO 2 1 4 52.4 -&2 -&106 

PTA2_H ILO 11.1 2 2 9 5L7 O^G 0X%48 

PTA2_I 10.1 9.2 2&8 50.6 0.9 0.807 

PTA2_J 9.9 9.8 2 2 4 513 -2.5 -2.92 

average lOJ 1&5 2 2 3 519 - -

TABLE 6.4. Power components for two-actuator passive-then-active optimised structures. 

See footnote on page 191. 
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Rank Structure 
Geometric 
attenuation 

(dB) 

AVC 
attenuation 

(dB) 

Overall 
nominal 

attenuation 
(dB) 

95% 
probability 

limit 
attenuation 

(dB) 

Control 
effort 
(N") 

95% 
probability 

limit 
control 

effort (N )̂ 

1 COI_I 23^ 2&0 5L0 44.2 306 572 

2 C01_E 253 253 5&6 4&1 144 340 

3 COljC 2&4 222 5&6 473 SU8 LIO 

4 C01_B 2&4 2&0 494 470 344 39J 

5 C01_A 1&7 296 493 4^0 152 378 

6 C01_J 2 5 4 231 4&5 4L0 5&7 774 

7 C01_D 19^ 2&5 4&1 4^0 2&0 7&6 

8 C01_H 17J 29^ 476 4&8 543 65^ 

9 COLF 2%0 2&6 476 44.8 65^ 831 

10 C01_G 17.5 2&9 464 433 5&6 5&2 

average 2L0 275 4&7' 44.7 89^ 170 

TABLE 6.5. Results summary for single-actuator combined optimised structures using the standard 

chromosome, ranked in order of performance. 

Structure 

Primary force input power 
reduction, aiNPui (dB) 

Redistribution of power 
within passive beams of 
structure, a'̂ EoisrCdB) 

Net actuator 
contribution 

O'ACF (dB) 

Net power 
dissipated 

in actuators 
( x l O W ) 

Structure 
w/o AVC AVC w/o AVC AVC 

Net actuator 
contribution 

O'ACF (dB) 

Net power 
dissipated 

in actuators 
( x l O W ) 

COIJ l&O 9.3 13.0 421 -04 -44.3 

C01_E 9.2 8.9 l&l 4&8 1.0 931 

C01_C 9.4 9 4 l&O 41.1 &02 L77 

C01_B 9.7 l&O 1&7 393 0.2 14.4 

C01_A 1&8 1&9 8.9 3&5 -0.07 -4J^ 

COLJ 9.0 9.2 163 394 -0.05 -4^3 

C01_D 1&8 1&9 8.8 372 0^46 

C01_H 9.4 9.7 8.3 379 -0.02 -L93 

COLF 9.9 10.1 171 374 -0.002 -0138 

C01_G 8.5 8.5 9.0 379 -0.006 -&762 

average 9.7 9.8 144 39^ - -

TABLE 6.6. Power components for single-actuator combined optimised structures using standard 

chromosome. 

See footnote on page 19L 
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Rank Structure 
Geometric 
attenuation 

(dB) 

AVC 
attenuation 

(dB) 

Overall 
nominal 

attenuation 
(dB) 

95% 
probability 

limit 
attenuation 

(dB) 

Control 
effort 
(N") 

95% 
probability 

limit 
control 

effort (N^) 

1 C02_G 22.8 61.2 84.0 80.5 149 210 

2 C02_D 19.8 62.4 82.2 73.2 286 380 

3 C02_E 17\8 60.2 78.0 75.4 271 333 

4 C02_B 12.4 64.9 77.3 73.8 460 590 

5 C02_H 19.0 57.6 76.6 72.4 57.4 91.0 

6 C02_A 15.3 60.0 75.3 71.9 1310 2050 

7 C02_I 15.6 58.1 73.7 67.8 255 454 

8 C02_C 16.0 57.6 73.6 68.5 1770 3320 

9 C02_J 17.0 56.5 73.5 71.6 1410 1860 

10 C02_F 19.9 52.3 72.2 68.6 133 184 

average l(x7 60.3 78.4^ 71.2 610 947 

TABLE 6.7. Results summary for two-actuator combined optimised structures using the standard 

chromosome, ranked in order of performance. 

Structure 

Primary force input power 
reduction, ai^puT (dB) 

Redistribution of power 
within passive beams of 
structure, oc'REoisr (dB) 

Net actuator 
contribution 
ôACF (dB) 

Net power 
dissipated 

in actuators 
(xlO-7\V) 

Structure 
iWoAVC AVC w/o AVC AVC 

Net actuator 
contribution 
ôACF (dB) 

Net power 
dissipated 

in actuators 
(xlO-7\V) 

C02_G 11.0 11.8 11.8 74.2 -2.0 -1.37 

C02_D 8.9 8.9 1CL9 75.3 -2.1 -2.92 

C02_E 10.1 10.8 7.7 68.9 -1.8 -1.56 

C02_B 10.2 12.0 2.2 67.0 -1.7 -1.10 

C02_H 9.7 10.1 9.2 66.9 -0.5 -0.405 

C02_A 9.7 9.7 5.7 65.0 0.5 0.460 

C02_I 10.2 10.0 5.4 65.9 -22 -2.46 

C02_C 8.2 7.8 7.9 67.9 -22 -3.88 

C 0 2 J 11.2 10.6 5.8 65.0 -2.1 -1.97 

C02_F 9.7 10.4 1&2 63.7 -1.9 -1.85 

average 10.0 10.4 8.5 69.9 - -

TABLE 6.8. Power components for two-actuator combined optimised structures using standard 

chromosome. 

' See footnote on page 191. 
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Rank Structure 
Geometric 
attenuation 

(dB) 

AVC 
attenuation 

(dB) 

Overall 
nominal 

attenuation 
(dB) 

95% 
probability 

limit 
attenuation 

(dB) 

Control 
effort 
(N^) 

95% 
probability 

limit 
control 

eSbrt (N )̂ 

1 CEX1_B 3L5 1&8 503 4&8 6.83 1&3 

2 CEX1_G 2 3 j 25^ 4&4 453 2L2 4A0 

3 CEXIJ 2^8 23^ 4&0 4&8 532 7&5 

4 CEX1_E 24^ 2^4 476 44.7 172 49J 

5 CEXLJ 2&2 2&9 47.1 43^ 140 375 

6 CEX1_A 25J 2L8 47.1 44.8 2L3 3&5 

7 CEXIJF 2Z4 244 4&8 43J 1&9 354 

8 CEX1_C 2&0 2&8 4&8 44.2 625 988 

9 CEX1_H 222 242 4&4 43^ 137 169 

10 CEX1_D 23^ 225 45^ 434 642 8L6 

average 23^ 23^ 474' 44.4 110 186 

TABLE 6.9. Results summary for single-actuator combined optimised structures using the extended 

chromosome, ranked in order of performance. 

Rank Structure 
Geometric 
attenuation 

(dB) 

AVC 
attenuation 

(dB) 

Overall 
nominal 

attenuation 
(dB) 

95% 
probability 

limit 
attenuation 

(dB) 

Control 
effort 

95% 
probability 

limit 
control 

eGbrt (N )̂ 

1 CEX2_B 1&9 544 733 6&8 1510 1650 

2 CEX2_I 227 4&7 714 6&9 29^ 671 

3 CEX2_D 1&6 5&9 70.5 65^ 6270 8820 

4 CEX2_A 1&9 503 702 6&5 1610 2030 

5 CEX2_H 17.2 53^ 702 634 791 5400 

6 CEX2_C 2&7 425 692 63^ 278 35J 

7 CEX2_G 25J 43J 6&0 632 4&5 832 

8 CEX2_F 17^ 5L1 6&0 673 1280 2450 

9 CEX2_E 2L7 4&7 684 603 115 182 

10 CEX2_J l&l 514 67J 620 43J 828 

average 173 53^ 6&6' 64.1 n 7 3 2080 

TABLE 6.10. Results summary for two-actuator combined optimised structures using the extended 

chromosome, ranked in order of performance. 

See footnote on page 191. 
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Rank Structure 
Geometric 
attenuation 

(dB) 

AVC 
attenuation 

(dB) 

Nominal 
attenuation 

(dB) 

95% 
probability 

limit 
attenuation 

(dB) 

Control 
effort 
(N )̂ 

95% 
probability 

limit 
control 

effort (N^) 

1 E_B 1&2 3L8 5L0 35J 

2 E_F 244 244 4&4 1 4 j 

3 E_G 2L0 2&6 4%6 3&4 

4 E_H 1&3 2&9 4%2 55^ 

5 E_J 214 211 4^0 872 

6 E_C 2&6 1%6 4&2 3L3 

7 E_D 2&3 25^ 4&1 974 

8 E_I 2&2 25^ 4^5 114 

9 E_E 221 213 4^4 1Z7 

10 E_A 2^0 1&4 44.4 654 

average 2L4 2&3 4&6' 453 

TABLE 6.11. Results summary for single-actuator combined optimised structures using the extended 

chromosome with bias for mid-structure positions, ranked in order of performance. 

Rank 
Passive-then-active Combined 

Combined extended 
chromosome 

Combined extended 
chromosome 

(biased) Rank 
PTA1_ PTA2_ C O ^ C02_ CEX1_ CEX2_ El_ 

1 12 %11 6 1,9 13 1,5 19 

2 18 1,4 4 1,4 3 lOJ^ 21 

3 9 4 ,5 11 1,4 15 4 ,5 21 

4 4 2 ^ 0 7 1,5 21 1,5 14 

5 2 2 J 3 8 1,2 12 2,6 12 

6 24 11^4 4 4 ,5 19 &J2 15 

7 24 8 ^ 4 7 1,5 14 1, 10 17 

8 6 5, 17 14 1,5 12 2 ,4 14 

9 18 t l 2 9 1,5 6 11JI4 22 

10 21 1 J 4 10 1,4 11 2 ,3 13 

TABLE 6.12. Summary of actuator positions for all the optimisation strategies considered in this 

chapter. 

See footnote on page 191. 
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Optimisation 

strategy 

Average attenuation (dB) Optimisation 

strategy Geometric AVC Total 

Passive-only 3 2 6 0 3 2 6 

Active-only 0 2 7 ^ 2 7 2 

Passive-then-active 3 2 6 3 2 2 63.3' 

Combined (CO) 1&7 6 0 J 75.4' 

TABLE 6.13. Summary of the average attenuation achieved by the geometric redesign and 

application of AVC with two actuators for the main optimisation strategies considered. 

' As a consequence of the logarithmic scaling, the addition of the two average components of the 
nominal total attenuation does not result in the average total attenuation, as with the individual cases. 
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PTA1 B 
Atten = 46.0dB 

Effort = 292 

PTA1 G 
Atten = 44.6dB 

Effort = 12.8 

PTA1 J 
Atten = 44.5dB 

Effort = 22.8 

PTA1 D 
Atten = 44.2dB 

Effort = 52.5 

PTA1 H 
Atten = 44.0dB 

Effort: 1.52 

PTA1 A 
Atten = 43.8dB 

Effort = 12.8 N" 

PTA1 C 
Atten = 43.1dB 

Effort: 345 

PTA1 
Atten = 42.9dB 

Effort = 770 

PTA1 F 
Atten = 42.4dB 

Effort: 14.7 

PTA1 E 
Atten = 40.4dB 

Effort = 24 

F i g u r e 6.1: T h e t e n b e s t p e r f o r m a n c e r a n k e d s i n g l e - a c t u a t o r p o s i t i o n s for t h e p r e v i o u s l y 

geometr i ca l ly o p t i m i s e d s t r u c t u r e s , f o r t h e f r e q u e n c y b a n d 150Hz t o 250Hz. 
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PTA2_C 
Atten = 67.8dB 
Effort = 223 N' 

PTA2 A 
Atten = 67.0dB 
Effort = 108 NM 

PTA2 F 
Atten = 66.3dB 
EHort= 262 Nf 

PTA2 B Atten = 65.7dB 
Effort = 25.6 

PTA2 G Atten = 65.5dB 
Effort = 83.5 

PTA2 D 
Atten = 63.4dB 
Effort = 79.6 

PTA2 E 
Atten = 63.3dB 
Effort = 88.1 

PTA2 H 
Atten = 62.9dB 
Effort = 44.4 

PTA2 
Atten = 60.7dB 
Effort = 1.068+03 

PTA2 J 
Atten = 60.6dB 
Effort = 37.3 

Figure 6.2: T h e t e n be s t p e r f o r m a n c e r a n k e d t w o - a c t u a t o r pos i t ions for t h e previously 

geometrically optimised structures, for the frequency band 150Hz to 250Hz. 
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PTA3 H 
Atten = 96.1dB 

Effort = 48.7 N'̂  

PTA3_E 
Atten = 92.4dB 

Effort = 302 

PTA3 J 
Atten = 90.3dB 

Effort = 256 N' 

PTA3 B 
Atten - QO.OdB 

Effort = 240 N'' 

PTA3 C 
Atten = 89.9dB 

Effort = 439 

PTA3 D 
Atten = 88.8dB 

Effort = 262 N' 

PTA3 G 
Atten = 86.2dB 

Effort - 395 

PTA3 
Atten = 86.0dB 

Effort = 544 

PTA3 F 
Atten = 85.1dB 

Effort = 270 

PTA3 A 
Atten - 82.7dB 

Effort = 150 N' 

F i g u r e 6.3: T h e t e n b e s t p e r f o r m a n c e r a n k e d t h r e e - a c t u a t o r p o s i t i o n s fo r t h e p r ev ious ly 

g e o m e t r i c a l l y o p t i m i s e d s t r u c t u r e s , fo r t h e f r e q u e n c y b a n d 150Hz t o 250Hz. 
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ff«pi#acy |gz| 

Combined Ootimised SLnicLure COl I 150-250HZ Ave. Energy Level (opt. w/o AVC) 0.1683E-

FfoquMicy (Hz) 

OPuimisationconverqeDce. Final (opt.) value 0.2674E-: ToLal Control Effort 305.6 

Figure 6.4: S t ruc ture with best optimised average performance over 150Hz to 250Hz using 

a single actuator (O), C O U . Both structure geometry and actuator position were optimised 
simultaneously. 

A-'/"' / A : 

Fr«cn*ncy (Hz 

Combined Oatimised Structure C02 G 150-250HZ Ave. Energy Level (opt. w/o AVC) 0.1768E-

Cenention nombw 

Opcimisation convergence. Final (opt.) value 0.1320E-14 Total Control Effort 149.1 

Figure 6.5: S t ruc ture with best optimised average performance over 150Hz to 250Hz using 
two actuators ( • ) , C02_G. Both s t ruc ture geometry and ac tua tor position were optimised 
simultaneously. 
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Figure 6.6; The performance of the genetic algorithm optimisation, with respect to actuator 
positions, resulting in structures C01_I(a) and C02_G(b), shown in Figures 6.4 and 6.5. The 
source position index is given for each evaluation (top left), and the corresponding actuator 
positions (top right), the best source position index and corresponding actuator position after 
each generation are also shown (bottom left and right). 
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Combined ODtimised SkrucLure CEX1_B 150-250HZ Ave. aiergy Level (opt. w/o AVC) 0.2359E-09 

Generatioo noab#r 

Optimisation convergence. Final (opt.) value 0.3090E-11 

Ff»qo*ncy (Hz) 

Total Control Effort 6.833 

Figure 6.7: Structure with best optimised average performance over 150Hz to 250Hz using a 
single actuator ( • ) , CEX1_B. Both structure geometry and actuator position were optimised 
simultaneously using the extended chromosome. 

Combined OoCimised SLrucLure CEX2_B 150-250HZ Ave. Energy Level (opt. w/o AVC) 0.4356E-0 

J 

Optimisation convergence. Final (opt.) value 0.1560E-13 Total Control Effort 1507. 

Figure 6.8: Structure with best optimised average performance over 150Hz to 250Hz using 
two actuators ( • ) , CEX2_B. Both structure geometry and actuator position were optimised 
simultaneously using the extended chromosome. 
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Figure 6.9: The performance of the genetic algorithm optimisation, with respect to actuator 
positions, resulting in structures CEXl_B(a) and CEX2JB(b), shown in Figures 6.7 and 6.8. 
The source position index is given for each evaluation (top left), and the corresponding actuator 
positions (top right), the best source position index and corresponding actuator position after 
each generation are also shown (bot tom left and right). 
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z co-ordinmte(m) 

Combined Optimised SLrucbure E1_B 150-250HZ Ave. Energy Level (opt. w/o AVC) 0.4007E-08 

/ 

Q#n«rmLion mmb*r Froquency (Hz) 

OptimisaLion convergence. Final (opt.) value 0.2675E-11 Total Control Effort 35.72 

Figure 6.10: Structure with best optimised average performance over 150Hz to 250Hz using 
a single actuator ( • ) , E1J3. Both structure geometry and actuator position were optimised 
simultaneously, using an extended chromosome, but biased towards mid-structure positions. 
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Figure 6.11: The performance of the genetic algorithm optimisation resulting in structure El -B, 
shown in Figure 6.10. Figure layout is as for Figure 6.9. 
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Figure 6.12: Power components in optimised structures PTA1_A to PTA1_J. Negative values 
of dissipation indicate power supplied to the structure. Light grey: Power input to structure, 
Dark grey: Power dissipated in Beams 1 to 39 without actuators. Black: Power dissipated in 
Beam 40, White: Power contributions from actuator. (N.B. Power dissipated in Beam 40 is only 
distinguishable for unoptimised structure without AVC. For optimised structures the range is 
1.67 X 10-:^° to 6.11 x 10-^° W.) 
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Figure 6.13: Power components in optimised structures PTA2_A to PTA2_J. Key as for 
Figure 6.12. The values of actuator power for each structure is shown from left to right for 
increasing beam number position. (N.B. Power dissipated in Beam 40 is only distinguishable for 
unoptimised structure. For optimised structures the range is 1.11 x 10"^^ to 5.78 x 10"^^ W.) 
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Figure 6.14: Power components in optimised structures COl-A to C01_J. Key as for Figure 6.12. 
(N.B. Power dissipated in Beam 40 is only distinguishable for unoptimised structure. For 
optimised structures the range is 5.35 x 10"^^ to 1.55 x ICT^O 
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Figure 6.15: Power components in optimised structures C02_A. to C02_J. Key as for Figure 6.12. 
The values of actuator power for each structure is shown from left to right for increasing beam 
number position. (N.B. Power dissipated in Beam 40 is only distinguishable for unoptimised 
structure. For optimised structures the range is 2.64 x 10"^^ to 4.01 x 10"^^ W.) 
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Figure 6.16: Power dissipated in each beam of structure for optimised structure PTA1_B. Vertical 
gridline represents vertical beam at end of each bay. -
position is denoted • . 

no AVC, with AVC. Actuator 

0) - 2 0 
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Figure 6.17: Power dissipated in each beam of s tructure for optimised structure PTA2_C. Vertical 
gridline represents vertical beam at end of each bay. no AVC, with AVC. • denotes 
position of actuator dissipating power, A denotes position of actuator sourcing power (with 
magnitude shown in the same sense as for dissipation). 
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Figure 6.18: Power dissipated in each beam of s t ructure for the combined optimised s t ructure 

C O l J . Vertical gridline represents vertical beam at end of each bay. no AVC, with 

AVC. Actua tor position is denoted A and is sourcing power to the s t ructure . It is shown with 

correct magnitude but in the same sense as for dissipation. 
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Figure 6.19: Power dissipated in each beam of s t ruc ture for the combined optimised s t ructure 

C02_G. Vertical gridline represents vertical beam at end of each bay. no AVC, with 

AVC. • denotes position of ac tua tor dissipating power, A denotes position of ac tua tor sourcing 

power (with magni tude shown in the same sense as for dissipation). 
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Figure 6.20: Statistical distr ibution and 95% probabili ty limits (bold lines) for the overall 

performance of the passive-then-active optimised structures using one actuator, for frequency 
band 150Hz to 250Hz. Values of nominal performance are shown by th in lines. 
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Figure 6.21: Statist ical dis tr ibut ion and 95% probabil i ty limits (bold lines) for the AVC total 

control effort required by the passive-then-active optimised s t ructures using one actuator , for 

frequency band 150Hz to 250Hz. Values of nominal control effort are shown by thin lines. 
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Figure 6.22; Statistical distribution and 95% probability limits (bold lines) for the overall 
performance of the passive-then-active optimised structures using two actuators, for frequency 
band 150Hz to 250Hz. Values of nominal performance are shown by thin lines. 
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Figure 6.23: Statistical distribution and 95% probability limits (bold lines) for the AVC total 
control effort required by the passive-then-active optimised structures using two actuators, for 
frequency band 150Hz to 250Hz. Values of nominal control effort are shown by thin lines. 
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Figure 6.24: Statistical dis tr ibut ion and 95% probabil i ty limits (bold lines) for the overall 

per formance of the combined optimised s t ructures using one ac tuator , for frequency band 150Hz 
to 250Hz. Values of nominal performance are shown by thin lines. 
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Figure 6.25: Statistical dis tr ibut ion and 95% probabil i ty limits (bold lines) for the AVC total 
control effort required by the combined optimised s t ructures using one actuator , for frequency 
band 150Hz to 250Hz. Values of nominal control effort are shown by thin lines. 
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Figure 6.26: Statistical dis t r ibut ion and 95% probabili ty limits (bold lines) for the overall 

performance of the combined optimised s t ructures using two actuators , for frequency band 150Hz 
to 250Hz. Values of nominal performance are shown by thin lines. 
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Figure 6.27: Statistical dis t r ibut ion and 95% probabil i ty limits (bold lines) for the AVC total 
control effort required by the combined optimised s t ructures using two actuators , for frequency 
band 150Hz to 250Hz. Values of nominal control effort are shown by th in lines. 
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Figure 6.28: Statistical distribution and 95% probability limits (bold lines) for the overall 
performance of the combined optimised structures using an extended chromosome for one 
actuator, for frequency band 150Hz to 250Hz. Values of nominal performance are shown by 
thin lines. 
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Figure 6.29: Statistical distribution and 95% probability limits (bold lines) for the AVC total 
control effort required by the combined optimised structures using an extended chromosome for 
one actuator, for frequency band 150Hz to 250Hz. Values of nominal control effort are shown 
by thin lines. 
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Figure 6.30: Statistical dis tr ibut ion and 95% probabili ty limits (bold lines) for the overall 
performance of the combined optimised s t ructures using an extended chromosome for two 
actuators , for frequency band 150Hz to 250Hz. Values of nominal performance are shown by 
thin lines. 
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Figure 6.32: Comparison of nominal optimised overall performance and total control effort for 

all optimised structures considered in Chapters 4, 5 and 6. Key: passive only optimisation O; 
active only optimisation A , > , < (1,2,3 actuators); passive-tben-active optimisation + , x 
(1,2 actuators); combined optimisation O, O (1,2 actuators); combined optimisation with 
extended chromosome * (1,2 actuators). 

Attenuation (dB) 

40 50 

.g io r 

40 50 
Attenuation (dB) 

Figure 6.33: Comparison of average nominal optimised overall performance and average total 

control effort for all optimised structures considered in Chapters 4, 5 and 6. Key as Figure 6.32 
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Figure 6.34: Comparison of nominal optimised structure performance for all optimised structures 
considered in Chapters 4, 5 and 6, with no AVC system operating, such that the contribution 
of any geometric optimisation can be seen. The total control effort values in Figure 6.32 are 
maintained to aid reference to this figure, for which the graph key also applies. 
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optimised structures considered in Chapters 4, 5 and 6. The graph key from Figure 6.32 applies. 
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Figure 6.36: The robustness of the performance of the geometrically optimised s t ructures and 
those using the optimal ac tua tor positions on the regular s t ructure . Vectors denoting both the 
95% limits for performance and total control effort are shown, the nominal operational values 
are denoted by the symbol at the base of each vector. Other nominal results are shown faint. 
The graph key to Figure 6.32 applies. 
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Figure 6.37: The robustness of the performance of the geometrically optimised s t ructures and 

those using the optimal actuator positions on these geometries. The graph key to Figure 6.32 
applies. 
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Figure 6.38: The robustness of the performance of the geometrically optimised structures 
and those using combined optimisation of the structure geometry and actuator positions 
simultaneously. The graph key to Figure 6.32 applies. 
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Figure 6.39: As Figure 6.38, but using the extended chromosome detailed in the text . The graph 
key to Figure 6.32 applies. 
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CHAPTER 7 

Optimisation for Structures with Robust 
Optimal Performance 

7X) 

In the preceding three chapters structures were optimised, with respect to vibration 

transmission, using different combinations of optimisation strategies where performance was 

evaluated solely on nominal performance. For all of the structures produced, the robustness 

was assessed to see how sensitive the performance (the amount of vibration transmission) of 

each structure was to the application of small geometric perturbations to the structures. The 

structures that are less sensitive (more robust) can then be selected (if robustness is of primary 

importance). Alternatively, a 95% probability limit was developed which predicts the probable 

worst performance likely to occur in the face of such small geometric perturbations with the 

uniform probability distribution used. 

For these optimised structures the robustness of the performance is merely an 'accidental' 

consequence of the optimisation. The objective function used in the optimisation represented the 

nominal performance and contained no representation of the sensitivity of the performance to 

the optimisation variables. Thus the range of values of robustness given by the chosen 

structures is fixed and the structure whose performance is best in respect of robustness must be 

selected. A remaining question is whether it is possible to improve the 95% probability limits or 

the robustness and whether this would compromise the absolute value of performance. 

Recalling the optimised structures presented using classical techniques in Chapter 4, the 

perturbed performance was found to deviate greatly from the nominal performance. It was 

discovered, however, that the optimised structures found using genetic algorithm optimisation 

resulted in more robust designs than those found using the gradient search techniques. It may 

be possible to improve the robustness further by incorporating a measure of robustness or 

perturbed performance into the objective function and thus obtain a strategy to deliberately 

design for robust optimal structures. 

This chapter describes a preliminary attempt to design for structures that have optimal nominal 

performance and that are, in addition, robust. Due to limitations on the time available the only 

optimisation case studied is that for passive optimisation (using solely geometric redesign) for 
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the average performance over a narrow frequency band. Different measures of robustness or 

perturbed performance are employed, with differing levels of additional computational expense. 

This chapter is structured as follows: Section 7.1 details the perturbed performance and 

robustness measures used. Section 7.2 evaluates the success of using the reduced-expense 

perturbed performance estimates against the existing measure. Section 7.3 presents the results 

achieved in using the robustness and perturbed performance measures as the objective function 

to optimise for robust designs. The results are discussed in Section 7.4 and conclusions drawn 

in Section 7.5. 

7 . 1 ] V [ E / I S U R J E S 0 F ] % E R T I I R J 3 E I ) PEItfC)RJVLA}JC%i.A}{[) 

l & C K H J S T f f E S S 

In this chapter the distinction is made between robustness and perturbed performance. In 

preceding chapters the terms have been used interchangeably. Perturbed performance is 

represented by the 95% probability limit given in (3.23). This does not represent the range of 

the variability of the performance but the probable worst performance expected for 95% of 

perturbations. Robustness is defined as a measure of the variability of the performance of 

structure, which is represented by the spread of the histogram used in the robustness analysis 

results in Chapters 4, 5 and 6 (see Figures 4.25 and 4.26, for example). This could be 

calculated from the 5% and 95% probability limits, but the measure of robustness, r, used here 

is that simply defined by the difference between the 95% probability limit and value of the 

nominal performance, and is given by, 

(7.1) 

where / ( x ^ ) is the nominal value of the objective function in an optimal design solution and 

/ g j the limit which defined that the perturbed performance of the structure is better for 95% of 

applied perturbations. The absolute value operator ensures that r is always positive, as it is 

possible that the 95% probability limit could be less than the nominal value. 

7.1.1 iVCELALSIJTtES: CNF PIEJRJFCDIlA/LAJSrCIE 

The robustness analysis was performed in the preceding three chapters by applying 300 

random perturbations with a uniform probability distribution to the structure. The 95% 

probability limit was used as a measure of the expected worst performance. This was 

calculated from the observed probability distribution of the performance. This number of 

perturbations was found to be sufficient to estimate the distribution and little improvement on 
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the shape of the performance distribution histograms were found when 1000 perturbations were 

used. The 95% probability limit was calculated for the optimised structures N_A to N_J, which 

were obtained using passive optimisation over a narrow band of frequencies (175Hz to 195Hz, 

in 5Hz steps), as reported in Chapter 4. These probability limits are denoted here b y t o 

be distinguish between probability limits derived by other methods in this chapter. It would be 

possible to use this measure of expected performance directly as the objective function in the 

optimisation. However, this would require 300 additional frequency-averaged performance 

evaluations for each objective function, and the computational expense would increase severely. 

To apply this to the broad band passive optimisation presented in Chapter 4 using hardware 

platform B (the fastest, detailed in Appendix E) would require 13 months to produce each 

optimal design. For the narrow band optimisation case (with a smaller number of total 

iterations), as considered in this chapter, this would still require over 20 days. However, it 

should also be remembered that due to the stochastic nature of the operation of genetic 

algorithms it is recommended that a number of optimised structures are normally evaluated, 

and one of these selected. 

Thus more efficient measures of assessing perturbed performance are sought. Three 

alternatives are studied here, all based on computer experiments. In these the average 

performance of the structure is re-evaluated under a smaller, defined set of perturbations, 

which were scaled accordingly. Firstly a measure of perturbed performance was investigated 

which is based on the one-at-a-time (OAT) experimental method, detailed in Chapter 3. In this 

method 37 experiments are performed. One with the unperturbed structure, and then one for 

each of the optimisation variables perturbed in a positive sense (with relation to the global 

coordinates, see Figure 2.1), whilst the other coordinates remain unaltered. The other two 

perturbed performance measures use the orthogonal arrays L64 and LSI, detailed in Chapter 3, 

and given explicitly in Appendix C. In the first, the L64 method, each row of the L64 array is 

used to define perturbation sets for the optimisation variables (joint coordinates). Each column 

is assigned to a joint coordinate, and the array defines perturbations only in the positive sense 

with respect to the global coordinates. The mapping between the table values and the joint 

perturbation is given in Table 7.1. The variable V defines the size of the perturbations (defined 

by the perturbation scaling). Only the first 36 columns of the array are used, although all the 

experiments (as defined by each row in the tables) must still be performed to achieve the 

properties of the array. In the same way the L81 method uses the L81 orthogonal array. Both 

positive and negative sense perturbations are used in this scheme, the mapping between the 

table values and the perturbations are given in Table 7.2. It is noted that for both L64 and LSI 

arrays with the mappings used, that the first experiment (row 1) is an evaluation of the nominal 

216 



structure (with no joint perturbations). Thus the nominal performance evaluation is included in 

each scheme. 

7.1.2 M E A S U R E S OF R O B U S T N E S S 

A measure of robustness can also be incorporated into the optimisations performed here by 

using the noisy phenotype genetic algorithm described in Chapter 3. In this method uniformly 

distributed noise is applied to the phenotype before the objective function evaluation. However, 

the noise is only added for the evaluation and the chromosomes in the population are not 

permanently altered by this action. Thus, the noise only effects the objective function 

evaluation. This algorithm is given the label NP for identification purposes within this chapter, 

Weismann et al (1998) showed that the NP method can provide misleading results, and that the 

minimum of the expectation of the noisy phenotype evaluation may not coincide with a 

minimum in the function. This was demonstrated in Chapter 3. However with reference to 

Figure 4.1, in which the shape of a two-dimensional slice of the search space is given, it is seen 

to be relatively smooth. Here the search space represents the variation of the average 

performance over a broad band of frequencies and it is expected that the search space would 

lose its 'smoothness' as the bandwidth was decreased to the narrower frequency band 

considered here. This was not found to be so, and the appearance of the search space does not 

change dramatically when the narrow frequency band is studied, as shown in Figure 7.1, for the 

same joint. In Chapter 3 it is seen that only certain types of 'spiky' search spaces can yield 

misleading results. This simple investigation (of one joint variation, with all others fixed) gives 

some confidence that these special conditions are unlikely to occur. 

An alternative noisy phenotype genetic algorithm is proposed by the author, and has also been 

investigated. In this optimisation algorithm both the noisy phenotype and the nominal 

phenotype are evaluated. The value of objective function which is the worse of the two (the 

maximum) is taken. As with the NP algorithm, the noise only effects the evaluation. This 

algorithm is labelled NP2. Thus, formally the objective function value used for the NP2 

algorithm is given, 

A f z ( x ) = max(y(x) , / ( x + A ) ) (7.2) 

where x and A are the optimisation variable and perturbation vectors respectively, as defined in 

(3.1) and (3.7). 

When implementing a genetic algorithm with an elitist strategy in OPTIONS, the best 

chromosome is passed directly into the subsequent population but the objective function value 

itself is not transferred. Instead the objective function is re-evaluated in the next generation. 
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When using the ordinary genetic algorithm the same objective function value results. However, 

with the NP and NP2 methods when the best chromosome is re-evaluated a different noise 

vector is added to the phenotype and a different value of objective function is likely to result. 

Due to the nature of the operation of the noisy phenotype genetic algorithm, this effect in the re-

evaluation was not thought to affect the implementation of the algorithm. 

P E R F O R M A N C E 

First the accuracy of the three 95% probability limits measures OAT, L64 and LSI were 

evaluated for the perturbed performance of existing optimised structures, described above. 

These limits are denoted ' /95,l64 ^nd respectively. The 95% probability limit, 

/95,300 ' was used as the reference measure, allowing the average performance of the other 

methods to be evaluated across the ten structures. However, how the perturbation scaling 

compares between each method must be first considered. The probability distributions for the 

optimisation variables and are shown in Figure 7.2. The L81 and L64 

methods have an equal number of each state for each column of the arrays and so the 

probabilities for each state are one-third and one-half respectively. However this is not the case 

for the OAT, in which each joint coordinate is only perturbed once in the 37 experiments. As 

the uniformly distributed perturbation measure is a continuous function, , the 

perturbations may assume any value between the limits, whereas for the other methods the 

probability function is only defined at a discrete number of values. It is clear that if each of the 

perturbation functions were used with the same value of maximum amplitude that different 

'strengths' of perturbations would result. For example, comparing p^^^ and , both have 

the same average perturbation of zero, but every non-zero perturbation for LSI is at the 

extremes of the positive and negative values of the maximum perturbations for p ^ ^ . Thus the 

variance of the perturbations would be different. Some method of defining the strength of the 

perturbations must be used to ensure similar strengths are used between all the perturbed 

performance methods. One such measure is the mean absolute deviation, mad. The mad is 

defined for continuous distributions as, 

0[)cb(. (7.3) 

and for discrete distributions as. 
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= (7.4) 

both for the independent variable x, where is the probability distribution function or 

probability function for the continuous and discrete cases respectively, (rntd) defines the 

method used to achieve the probability limit and is one of the three methods OAT, L64 or LSI. 

i is the index for the values in the discrete distribution. The values for the average, mad and the 

variance are given in Table 7.3 for all the probability distributions considered here. It is seen 

that for the mad all the methods except OAT have the same value. Second order statistics may 

also be considered to define the variability of the perturbation strengths. These all have 

different values as also shown in Table 7.3. To make the variance for all the methods the same, 

a correction to v could be made. The correction factor required (to v") to equalise all the 

variances of the probability functions is shown on the bottom row of the table. Thus it would 

be possible to apply perturbation functions with the equal variances, although due to the one-

sided nature of the L64 and OAT methods the average perturbations would not be zero 

(although the average value of the OAT method is small). However to normalise the variance of 

the OAT method would require increasing the size of the maximum amplitude of the 

perturbation, v, by a factor of about 3.5. With reference to Chapter 4, in which the effect of the 

size of the perturbations on the results of perturbation analysis was studied, it is possible that 

this could mean that the OAT method would no longer be operating in the linear region in this 

case (where the performance degradation falls off linearly with perturbation amplitude). This is 

an area that requires further investigation, especially with respect to how perturbations with 

discrete distributions can represent a uniformly distributed one. With the time available to the 

author it was decided to use a common value of v for all the perturbation functions so that, 

except for the OAT method, all the functions have the same mad. No further consideration was 

given to any higher order measure. The amplitude of the OAT function was not increased in 

order to have the same mad as this would require an increase in its amplitude by over 15 times, 

on grounds of maintaining operation within the linear region, as discussed above. 

The values of the three 95% probability estimates when used to evaluate the perturbed 

performance of the 10 optimised structures N_A to N_J, first presented in Chapter 4, using a 

perturbation scaling of 0.01 are shown in Figure 7.3. Similar findings resulted fi-om using a 

scaling factor of 0.005. The nominal value of the performance is shown by the solid circle, and 

the value of / g j 300 shown by an intersecting line. It is apparent that the value of is the 

most accurate estimator when compared with / g j and for some structures the agreement is 

very good. A more general measure of the success of using the three methods is achieved by 

219 



comparing the average performance of the estimators. This was achieved by again comparing 

the limits achieved using jqq which uses 300 random perturbations as a reference measure. 

An index was used to allow comparison, the average normalised deviation, m, which is 

defined. 

m = 
n : Z 

95,{mid) 

\ 

(7.5) 

where is the reference 95% probability limit for structure i and is the 95% 

probability estimate determined by the method (mtd), as above. The average here was 

performed over 10 structures (« = 10). 

The results of the comparison for two values of perturbation scaling factors are presented in 

Figure 7.4. The use of the L64 orthogonal array has yielded the least average error in the 95% 

probability limit, equivalent to roughly 10% for values of perturbation scaling of both 0.005 

and 0.01 (corresponding to maximum perturbations of 5mm and 10mm). This has been 

achieved at about one-fifth of the computational expense of evaluating the performance of 300 

perturbed structures. This is to be compared with the average errors of about 30% and 60% for 

5mm and 10mm perturbation sizes respectively, for the other two methods. It is not clear why 

fg^ LM should provide the best estimate. In particular, why it is better than which uses 

positive and negative perturbations, and not just positive perturbation as for . Finally, it 

should be noted that these comparisons have been made with uniformly distributed 

perturbations. The results are likely to depend on the nature of the distribution and, for 

example, using normal probability distribution may not yield the same results. 

7 . 3 O P T I M I S A T I O N F O R R O B U S T N E S S A N D P E R T U R B E D 

P E R F O R M A N C E 

The measures of robustness and perturbed performance described above were then used as the 

basis to find design solutions that have good nominal and robust performance. Ten optimised 

structures were produced using each of the above methods: NP, NP2, OAT, L64 and L81. The 

noise added to the phenotype in the NP and NP2 methods was uniformly distributed, as that 

shown in Figure 7.2 a) with v equal to 0.005. For all of the methods the performance of the 

structure was optimised over a narrow band of Irequencies; 175Hz to 195Hz in five 5Hz steps, 

as in Chapter 4. The genetic algorithm used was also the same; 1000 evaluations consisting of 
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5 generations each of population size 200. The remaining genetic algorithm parameters are 

detailed in Table D.6 in Appendix D. 

Using hardware platform B (detailed in Appendix E) the approximate time taken to evaluate 

each candidate is given in Table 7.4. The best structures resulting from each optimisation 

method are shown in Figures 7.5 to 7.9. Each is figure shows the optimised structure geometry, 

the frequency response of the optimised structure against that of the unoptimised structure, and 

the history of the objective function after each generation. For the optimisation methods OAT, 

L64 and L81 the objective function is the 95% probability limit, the nominal performance is 

also shown at the end of each generation as a dotted line. For the NP and NP2 methods the 

value of the objective function shown is that for the evaluation of the phenotype without added 

noise. 

For the ten optimised structures produced using each of the robust and perturbed performance 

optimisation methods, the perturbed performance was accurately evaluated using the more 

accurate parameter . To show the effect on the perturbed performance of structures 

produced using such methods, as compared to those using an objective function consisting of 

purely nominal performance, the results are compared against the limit 3̂ ^ for the structures 

N_A to N_J generated in Chapter 4. The performance of the best structure (evaluated by the 

value of the objective function used) for each robust and nominal optimisation method is shown 

in Table 7.4. A negative value of change in the value of the performance parameters given in 

this table indicates an improvement in performance. The 95% probability limit was calculated 

using a perturbation scaling of 0.005 (corresponding to a maximum joint coordinate 

perturbation of 5mm). 

The nominal performance has worsened slightly for the L64 and LSI methods. The maximum 

improvement in nominal performance was achieved by the OAT method where the best 

structure has had its nominal performance improved by almost 6dB. However, as discussed, the 

nominal performance is not necessarily practicably realisable, and the 95% probability limit is 

a better parameter by which to assess performance. It is seen that this structure also has the 

largest increase in 95% probability limit of 5dB, this improvement is followed closely by that 

for the NP2 method. For the best structures for each optimisation case, it is seen that both the 

values of nominal and perturbed performance are very similar for the L64 and L81 methods, 

compared with those produced from the nominal optimisation. 

The average performances for structures produced using these methods (evaluated over ten 

structures) are given in Table 7.5 and are also shown in Figure 7.10. These have been assessed 

using perturbation scalings of 0.005 and 0.01. Values are shown for the nominal performance, 
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the 95% probability limit and the robustness (7.1). It is seen that only for the LSI optimisation 

method has the nominal performance been worsened. There is little change for the NP method, 

but a reduction of almost 2dB for the OAT method. Although as discussed above, the use of 

the nominal performance is not recommended as a measure of practical performance. Similar 

relative success is found for the average 95% probability limits, for both the 0.005 and 0.01 

perturbation size, although in each case improvements are seen over the average performance 

of the nominal performance optimised structures. Since this parameter is the best gauge of 

expected practical performance, it is seen that the best average improvement in performance 

has been achieved with the OAT method and the NP2 method. The change in average 

robustness is also shown, and a similar trend exists between the results for the two perturbation 

sizes. The best reductions are found for the OAT and then the NP2 methods, for both 

perturbation sizes. 

It is not obvious how the irregular geometries of these structures lead to a performance that is 

more robust, when compared with the best structure optimised on nominal performance (see 

Figure 4.17). It is also interesting to note that in Figure 7.9 the frequency region where the 

minimum vibration level occurs is not actually within the narrow frequency band using for the 

objective function. 

The above results suggest that the OAT method has provided the better average results on 

grounds of nominal performance and 95% probability limit. However the computational 

expense required to achieve the optimised structures can be important and the results are also 

shown normalised by the evaluation time in Figure 7.11. This provides a 'figure of merit', and 

compensates any gain in performance for the expense required. With this consideration, the 

optimisation method NP2 is seen to be the most successful method (better than the OAT 

method) providing the best improvement per additional computational expense. 

7 . 4 D I S C U S S I O N O F R E S U L T S 

Two optimisation methods designed to produce structures with robust performance have been 

investigated. Their optimisation strategies differ. The robustness measures, used in the noisy 

phenotype methods, NP and NP2, bias the search away from areas where the performance is 

sensitive to small changes in the optimisation variables. The absolute performance is still 

minimised, but only in areas of the search space where performance is robust. The perturbed 

performance method evaluates the performance due to perturbations, and provides a measure of 

the expected performance. The improvement in the perturbed performance may arise by the 

optimisation finding regions in the search space that are very optimal, but relatively unrobust, 
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or regions that are (less) optimal but more robust. The perturbed performance measure cannot 

distinguish between the two. Thus it is possible to produce a structure with a good perturbed 

performance that is still very sensitive to geometric changes. In some cases, a large variation in 

the performance, if so extreme, would not be a good design solution, even though the expected 

perturbed performance yields an optimal nominal value. Although in the results presented here 

no such instances occurred. In general the L64 and L81 methods resulted in the smallest 

improvement in robustness, but the OAT method produced the best improvements. 

The measures of perturbed performance estimates show that the L64 method is the best 

reduced-expense method for evaluating the 95% probability limits, for both sizes of 

perturbations studied. However, this measure was not found to be the best to use for the 

objective function when optimising for structures with improved perturbed performance. In this 

case the OAT method is better. Therefore, a good measure of evaluating perturbed 

performance, when used as a less-expensive estimate in place of a more accurate method, does 

not imply it is the best measure to use for the objective function of an optimisation. It is also 

surprising that the simple OAT method has performed so well, given its simple construction 

compared to the other designed methods, L64 and LSI. When there is a high level of interaction 

between variables, the benefit of the design of orthogonal array is to provide good estimates of 

a full factorial experiment, however this does not seem to be borne out here. Although the OAT 

method strictly relies on little interactions between the variables, the optimisation task here 

obviously has strong interactions between the variables. Only the small perturbation size can 

justify the application of such methods. However, the simplest experimental array is seen to be 

superior over the L64 and LSI arrays. One reason may be because is has a small value of mad 

and variance. Thus its perturbation strength is actually less, and thus the effect of variable 

interactions may be less on these grounds. Thus, the comparison between the OAT method and 

the L64 and the L81 methods with the amplitudes used may not be strictly valid. This is also 

suggested with reference to the optimisation histories for each of the best structures, in 

Figures 7.7 to 7.9. It is seen that for the OAT method the 95% probability limit (estimate) of 

the best structure candidate in each generation is virtually indistinguishable from the nominal 

performance. Further investigation is required in this area. 

The NP2 method in this instance is shown to be a better technique than the NP method. It uses 

a noisy evaluation of the phenotype but only uses this result if it is worse than the nominal 

evaluation. In the NP2 method only the addition of noise to the phenotype which diminishes the 

true chromosome's objective function value is allowed to affect the natural operation of the 

genetic algorithm. This reduces the probability of the chromosome being subsequently selected 

from the current population. The other effect of the noise, which would normally augment the 
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true objective function value, and grant the chromosome a higher probability of selection from 

the current population is ignored, whenever it occurs, in the NP2 method. In this case, if the 

increase of the true value is large, then the chromosome does not represent a robust solution, 

but it relies on further subsequent noisy evaluations (in subsequent generations), such that the 

true objective function is not augmented by the action of the noise. Then the true or diminished 

value results and the chromosome is given a low probability of subsequent selection. The NP2 

method distinguishes against this scenario immediately. Therefore it reduces the number of 

unrobust genotypes which might normally survive with the NP method. Even though these 

genotype represent unrobust solutions it is possible that through the crossover and mutation 

operators, good, robust genotypes might result. However, the better success of the NP2 method 

implies that this is not significant. As with the NP method, if a chromosome represents a 

relatively robust solution, the addition of noise to the phenotype will have little affect on the 

chromosome survival. 

It is also noted that using a scaling of v=0.05 for the noise added to the phenotype, the effective 

'perturbation strength' applied to each chromosome evaluated during the genetic algorithm had 

a mad of only v/4. This is a half of that used for the LSI and L64 methods, and thus better 

success achieved with the NP and NP2 methods may also be partly attributed to the 

perturbation strength, as with the OAT method as discussed above. 

Considering computational expense, the NP2 method is seen to be better than the OAT method. 

The relevance of the computational expense is reinforced with reference to Table 7.4, which 

shows the time required to produce each optimised structure. Only a small frequency band 

average was used here, mainly because the computational time available in the latter stages of 

the work presented in this thesis. The author also had access to high performance 

computational facilities. In many instances with a more realistic problem (for example the 

broad band frequency average, used in Chapters 4, 5 and 6) and more modest computational 

facilities, that is might not be feasible to execute the more expensive robust optimal measures. 

Thus the additional performance achieved using the OAT method is small with relation to the 

extra cost required. Thus the NP2 method is deemed to be the best optimisation method in this 

study. It has only required a factor of two increase in the computational expense for a 5dB 

improvement in practical performance. 

7 . 5 C O N C L U S I O N S 

At the end of this study of robust, optimised structures a preliminary attempt was made to 

produce optimised structures with optimal and robust performance using genetic algorithm 
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optimisation. This was achieved by the geometric redesign of the structure to optimise the 

performance of the structure over a narrow frequency band. The same optimisation was 

reported in Chapter 4, optimised only on the nominal performance of the structure. Two classes 

of objective function were used, one that optimises the performance using only regions of 

robust performance on the search space (robustness methods) and one that optimised the 

expected perturbed performance value. 

In the first robustness method noise is added to the phenotype of each chromosome before 

evaluation of the objective function (NP). The author proposed a variation to this method in 

which the objective function was evaluated with and without noise added to the phenotype. The 

worst performance between the two is taken (NP2). These methods require only one and two 

evaluations respectively. Three reduced-expense perturbed performance were studied: one 

based on a simple perturbation of each optimisation variable at a time (OAT, using 37 

evaluations), and two based on fractional factorial experimental design (L64 and LSI, using 64 

and 81 evaluations). The L64 only uses positive perturbations, while the L81 incorporates both 

positive and negative perturbations. The accuracy of these three methods over an existing and 

more accurate, but more computationally expensive method (using 300 random evaluations) 

was performed. For two sizes of perturbation the L64 method was found to be the best estimate 

with approximately 10% error in the 95% probability limit. 

Ten optimised structures were then achieved using each of the five measures as the value of the 

objective function. Their robust performance was evaluated using the existing more accurate, 

but more computationally expensive, perturbed performance measure. The optimisation success 

was made by a comparison with optimised structure achieved by only using the nominal 

performance as the objective function. The performance for the best structure and the average 

of the performance of ten optimised structures resulting from each optimisation were studied. 

All the methods, except one, were found to have improved the average nominal performance 

although, as discussed, this measure is of dubious significance. The best structure produced by 

the OAT method had an improvement on the nominal performance by almost 6dB. The same 

structure also had an improved 95% probability limit by 5dB. On average, improvements in the 

95% probability limit were found for all methods. The OAT method had the best average 

improvement in the 95% probability limit by about 3dB and also the best average improvement 

in the robustness by about 4dB. The average perturbed performance improvements were 

similar for both sizes of perturbation used. 

When considering the improvements achieved using the optimisation methods, the range of 

additional computational expense was considered. Normalising the improvements with the 

computational expense enables the most effective method to be identified. On these grounds the 
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NP2 method is the best method outright for all performance considerations. Any small 

improvements on this accredited to more expensive methods, including the OAT, are 

outweighed by the additional computational expense required. The most efficient, NP2 method 

requires an increase in the computational expense of only a factor of 2. 
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L64 Value Perturbation 

1 0 

2 +v 

Table 7.1. The mapping between the L64 orthogonal array values and the joint perturbation 

sizes. 

L81 Value Perturbation 

1 0 

2 +v 

3 -V 

Table 7.2. The mapping between the LSI orthogonal array values and the joint perturbation 

sizes. 

Statistical 

property 

Perturbation method Statistical 

property PZxW 

Average 0 0 v/2 v/37 

v/2 v/2 v/2 \V37 

( f v^/3 2vV3 v W 0.026v^ 

correction to 

to equalise 
1 1/2 4/3 13 

Table 7.3. The statistical properties of perturbation methods studied. 
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Optimisation 

method 

Change in objective function value for the best 

optimised structure performance, compared with 

that using the nominal objective fiinction (dB). 

Approximate 

evaluation time per 

structure 

(hours) 

Optimisation 

method 

Nominal performance /̂ 95,300 ^ 0.005 

Approximate 

evaluation time per 

structure 

(hours) 

nominal 0 0 1.6 

NP -1.3 - 0 2 1.6 

NP2 - 3 2 - 4 . 4 3.3 

OAT -5.7 -5.0 62 

L64 0.8 0.1 110 

LSI 0.4 0.1 140 

Table 7.4. A comparison of the performance of the best structures using different optimisation 

methods and structure evaluation times. A negative change in performance indicates an 

improvement. 

Optimisation 

method 

Average structural performance compared with those for the 

structures obtained using nominal objective function (dB). Optimisation 

method Nominal 

performance 

r 

Optimisation 

method Nominal 

performance v=(1005 v=&01 v=(X005 v=0 .01 

nominal 0 0 0 0 0 

NP -0.1 -&5 -0.6 -1.0 -as 
NP2 -&8 -1.8 -2.1 - 3 2 - 2 8 

OAT -1.9 - 2 8 -3.1 ^ . 2 - 3 ^ 

L64 -&9 -1.5 -1.4 - 2 3 -1.7 

LSI 2.5 -OJ -1.0 -1.5 -L9 

Table 7.5. A comparison of the average nominal performance, 95% probability limits and 

robustness of optimised structures using different optimisation methods, evaluated using two 

maximum perturbation sizes, v. A negative change in performance indicates an improvement. 
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(I)!; I^CDR (ZJHvAJP'TZER 7 

The major notation used in this chapter is listed below. Other symbols are defined locally. 

fgs Value of 95% probability limit 

f95.<mtd> Value of 95% probability limit achieved using method <mtd> 

fNP2 Value of NP2 noisy phenotype objective function 

m Average normalised deviation 

mad Mean absolute deviation 

P<mtd> Probability (density) function for method <mtd> 

r Robustness 

V Joint perturbation size 

cf Variance 
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X=JNT^08 ( 1) (m) Y=JNT<-08 ( 2) (m) Z=ELEV ( 40. 6) () 

Figure 7.1: Contour plot of the narrow band objective function against z and y coordinates for 

jo in t 8 wi th in t h e op t imisa t ion limits. 

a) 

c) 

+ v ' ( X ) 

+ v ' ( X ) 

b) 

-V + V • (X) 

D ) 

3 6 

37 

] 
37 " + 

+ V (x) 

Figure 7.2: a) T h e probability dens i ty f unc t i on , a n d t he p robab i l i t y func t i ons b) c) 

d) 
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N_A N_B N_C N_D N_E N_F N_G 
Optimised structure 

N H N I N_J 

Figure 7.3: A comparision of the 95% probability limits evaluated by diEerent methods, using 

a pe r tu rba t ion scaling of 0.01, for the ten optimised s t ructures N_A to N_J. The nominal 

performance is shown by # and the existing 95% probability limit by the horizontal 

intersecting line. Other methods shown are: Pcnj, *; O; A . 

Perturbed performance function 

Figure 7.4: A comparison of the accuracy of the reduced-expense probabili ty limit est imate 

methods against using 300 random per turba t ions , for a pe r tu rba t ion scaling of 0.005 (dark) and 

0.01 (light). 
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Narrow band Robust: Optimised Structure NEN_D 

Fr#qn«acy (Bz| 

175-195HZ average Energy Level 0.1152E- 10 

- Ihejoa] av*. 

Optimisation convergence. 

Figure 7.5: The best optimised s t ructure produced using the noisy phenotype genetic algorithm, 

NP, showing the s t ruc ture geometry, frequency response, optimisation history and robustness of 

each evaluation. See text for details. 

Narrow band Robust Optimised Structure NP2N_I 

Pregumncy % | 

175-195HZ average Energy Level 0.V487E-11 

Optimisation convergence. 

Figure 7.6: The best optimised s t ruc ture produced using the au thor ' s variation on the 
noisy phenotype genetic algorithm, NP2, showing the s t ruc ture geometry, frequency response, 
optimisation history and robustness of each evaluation. See text for details. 
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ormoacmlm) 

v \ V ^ / n ' ' V \ 

Narrow band Robust: Optimised S true Lure OATN_G 

Fr#qu#acy (Hz) 

175-195HZ average Energy Level 0.4237E -11 

G«a#raU.oa nmter 

OpCimsaLion convergence. Final value 0.4833E-11 

Figure 7.7: The best optimised structure produced using the OAT estimate of the 95% 
probability limit as the objective function., showing the structure geometry, frequency response, 
optimisation history and robustness of each evaluation. See text for details. 

Narrow band Robust Optimised Structure L64N_D 175-195HZ average Energy Level 0.1872E-10 

(*)]. tunc. Ob 

Opcimisation convergence. Final value 0.2595E-10 

Figure 7.8: The best optimised s t ruc ture produced using the 95% probabili ty limit, est imated by 

the L64 method , as the objective funct ion, showing the s t ruc ture geometry, frequency response, 

optimisation history and robustness of each evaluation. See text for details. 
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Nairow band Robust Ootimised Structure L81N_D 

Generatim mmber 

QpLimisation converqepce. Final value 0.3129E-

Frequmcy fBz) 

nS-lSSHz average Energy Level O.nOSE-lO 

Figure 7.9: The best optimised structure produced using the 95% probability limit, estimated by 
the L81 method, as the objective function, showing the structure geometry, frequency response, 
optimisation history and robustness of each evaluation. See text for details. 
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o 
NPfl ) NP2(2) OAT(37) L64 L81 

NP(1) NP2(2) OAT(37) L64 L81 

NP(1) NP2(2) 
Method(Number of evaluations) 

OAT(37) L64 L81 

Figure 7.10: The average change in nominal performance, 95% probabili ty limit and the 
robustness for the optimised structures achieved using robust or perturbed measures of 
performance as the objective function, against structures produced using a nominal performance 
objective funct ion. For pe r tu rba t ion scaling 0.005 + , and 0.01 Q . 

ii 
0.2 

0 

- 0 . 2 

-0,4 

- 0 . 6 
NP(1) NP2(2) 0AT(37) L64 LSI 

05 -.3 
.E g 

U o-
-1.5 

NP(1) NP2(2) OAT(37) L64 L81 

m—e 

NP(1) NP2(2) 
Method(Number of evaluations) 

OAT(37) L64 L81 

Figure 7.11: The results given in Figure 7.10, when normalised against the computat ional 

expense required. 
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C H A P T E R S 

Conclusions and Suggestions 
for Further Work 

8X) 

The work presented in this thesis has reported a study of the optimisation of a two-dimensional 

cantilever structure so as to reduce the vibration transmission from the base to the end. This 

aim was achieved by two methods; geometric redesign and the application of feedforward 

Active Vibration Control (AVC) techniques using optimal actuators positions. These methods 

were each employed alone, and then in combination, to produce optimal structure designs. The 

robustness of the performance (and the total control effort required by the AVC system, where 

applicable) was studied. It was then possible to distinguish between those optimised structures 

whose performance is sensitive to small geometric perturbations (which might occur due to 

manufacturing tolerances, for example) and those structures which were robust to such effects, 

and thus are more practical. Finally, a measure of robustness was incorporated into the 

optimisation algorithm so the optimisation process sought structures whose performance was 

both nominally optimal and robust. The major conclusions from the work are summarised 

below. Then, suggestions for further areas of study resulting from the work presented are 

given. 

is . i 

The geometric (or passive) optimisation of the structure was performed using both classical 

optimisation methods (e.g., those using gradient based search methods) and genetic algorithm 

optimisation in order to reduce the vibration transmission. The genetic algorithm has 

advantages over the classical optimisation methods due to the multi-modal nature of the search 

space for these problems. The vibration was reduced at a single frequency, and the average 

vibration was also reduced over narrow and broad frequency bands. Good success in reducing 

the vibration was found using all optimisation methods. The best reductions in nominal 

performance were seen for some of the classical methods. However, when the performance was 

studied in the face of small geometric changes the optimised designs produced by the classical 

methods were found to be unrobust, in some cases to such an extent that it is higlily unlikely 
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that the nominal performance would be realised in practice. When the robustness of the ten 

structures produced from the genetic algorithm optimisation was studied, variation in the values 

of robustness was found. The best practical structure could then be selected for an application 

encountering similar geometric perturbations in practice. This is often different to the 'best' 

structure selected by nominal performance alone. It was also found that, in general, the wider 

the frequency band over which the average vibration was evaluated, the more robust the 

performance of the structures. A brief study of the transmission response of the optimised 

structure using modal analysis showed that the reductions were achieved by a modal 

redistribution, such that modal frequency clusters, often relating to peaks in the vibration 

response, were dispersed. Although the dispersion of the modal clusters was found to be due 

primarily to the irregularity of the structure. In the subsequent optimisation studies reported 

below the performance was only that averaged over the broad frequency band, and genetic 

algorithm optimisation was used, unless otherwise stated. 

The next optimisation strategy investigated was to use AVC techniques (active optimisation) to 

reduce the vibration transmission. The first optimisation task considered here is to find the 

optimal actuator positions on the unoptimised structure so as to achieve the best value of 

reduction. This was achieved for one, two and three actuators using an exhaustive search of all 

possible actuator configurations. The robustness of the performance of the ten best actuator 

positions for each case was evaluated to find systems with good nominal performances that 

were the most practically realisable. The robustness of the control effort required by the AVC 

also needs to be considered, to ensure that the highest expected value of control effort can be 

met in practice. At this stage the parameter used to represent the vibration transmission, which 

is the energy level in a beam due to its flexural vibration, was briefly compared against other 

alternatives; one representing the overall vibrational energy (including rigid body motion) and 

two only using velocity measurements. It was found that the parameter used up until this point 

in the thesis, even though not the most comprehensive measure, was sufficient. Especially when 

used for such a system comprised of thin, flexible beams. It was also found that if only velocity 

measurements were to be used (in an experimental system, for example) that the rotational 

velocity is important in providing a good estimate of the overall vibrational energy. 

The two final optimisation strategies were based on combinations of both passive and active 

optimisation. The first was to find the best actuator positions for the structures with geometries 

which had first been passively optimised, the second was to perform the optimisation of both 

geometry and actuator positions simultaneously. Both strategies achieved designs that produced 

better reductions per actuator than those produced by the active optimisation using the 

unoptimised, regular structure. Additionally the control effort required was found to be much 
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smaller. So, it can be concluded that more effective and efficient use of AVC results from both 

geometric and actuator position optimisation, the simultaneous optimisation of both producing 

the best results. Robustness analysis, again, was used to identify the most practical optimal 

structures, and is discussed below. The results for the passive and active optimised structures 

with two actuators are summarised in Table 8.1. 

For structures designed using the different optimisation schemes, analyses were performed to 

gain an insight into the mechanisms by which the reductions in vibration had been achieved, 

and also the role of the AVC system, where applicable. It was found that the geometric 

optimisation produced a reduction of power input to the structure from the vibration source and 

also a redistribution of structural power dissipation around the structure so as to reduce the 

vibration of the end beam. The application of AVC was also found to provide a similar 

reduction by power redistribution but had no real effect on the power input to the structure by 

the unwanted vibration source. Less actuator power was found to be required by an AVC 

system to achieve a set level of reduction where geometric optimisation had also been used. For 

the application of AVC with two or tliree actuators, the AVC system was seen to act to block 

the power transmission along the structure past the structure bay containing the actuator 

furthermost from the vibration source. This means that the vibration reduction would be less 

sensitive to changing conditions at the end of the structure, for example, by additional mass 

loading. 

For all the candidate structures produced using the above optimisation strategies (except 

classical optimisation) their variation in robustness was directly compared but no one strategy 

was found to be superior in terms of the robustness of the optimised structures produced. For 

each structure a 95% probably limit was evaluated (using 300 random geometric perturbations) 

to predict the minimum performance which could be expected for 95% of similar perturbations 

encountered in practice. In general, no one optimisation technique was seen to be superior with 

respect to the overall robustness of the structures produced. Although between individual 

structures the use of the robustness analysis enabled the more practical structures to be 

selected. 

All the optimisations detailed above have sought to optimise the nominal performance of the 

structures, and then the most practical structure has been selected using a post-optimisation 

robustness analysis. An attempt was then made to incorporate a measure of perturbed 

performance into the optimised performance parameter to optimise for both optimal and robust 

solutions. This was studied to reduce the vibration transmission over the narrow frequency 

band using geometric redesign. More efficient estimators of the 95% probability limit were 

required, and firstly these were evaluated against the existing measure. Then the estimators 
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were used as the parameter that was optimised in order to produce optimised structures. 

Additionally two versions of noisy-phenotype genetic algorithm were also employed, one 

previously reported and a variant suggested by the author. The perturbed performance of the 

resulting structures was then re-evaluated using the original, more accurate 95% probability 

limit. It was found that the best estimator of the more accurate 95% probability limit did not 

yield the structures which had the best practical performance when used as the optimised 

parameter. After considering the extra computational expense required for the optimisation, the 

optimisation method which gave structures with the best improvement in perturbed 

performance required only twice the computational expense of the that required for nominal 

performance optimisation. 

8 / 2 ]?()& IFljrBLTrtlliR WfCZWRJK: 

The structure used as the focus of this thesis is a simplified model of a typical structure. The 

most significant simplifications that have been made are that the structure is two-dimensional, 

and where active control of vibration has been applied the actuators were considered not to 

effect the properties of the beam on which they are placed (e.g., actuators were assumed mass-

less). Whilst these simplifications do not affect the validity of the methods developed and the 

overall findings presented, the actual results are not directly applicable in practice. A three-

dimensional structure should be therefore be studied, and additional modelling refinements 

applied to improve the models accuracy. Although practical verification has been performed for 

an geometrically optimised two-dimensional structure (Keane and Bright, 1995), the 

optimisation methods need to be applied to an actual physical structure design. At the time of 

completion of this thesis, an industrially funded research project has recently commenced in the 

Computational Engineering and Design Centre at the University of Southampton. The objective 

is to design, build and test three optimised structures using three optimisation strategies; 

geometric optimisation, application of active control and the use of both optimisation 

techniques. (Keane et al, 1998). 

Feedforward control methods have been assumed in tliis thesis as a way in which the AVC 

system would be implemented. Further work clearly needs to be done on the practical 

implementation of such systems for various kinds of disturbance, and in the relative 

performance of global feedforward control systems compared to local feedback systems 

(Preumont, 1997). Also, it has been assumed that sufficient 'time-advance' exists in the 

reference signal in order that no causality constraints on a controller exist. If the broadband 

vibration source is near the structure base then this may limit the effectiveness of the AVC at 
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high frequencies. Thus, in practice, this may also need to be considered when finding the 

optimal actuator positions. The consideration of such issues here would have unnecessarily 

uncomplicated the optimisation problem, such issues are specific to the application and there is 

no merit in including them on an arbitrary basis. 

The research presented here has covered much ground, investigating a number of different 

optimisation strategies and an analysis of the robustness of the performance in each case, so 

that a comparison of the success of using each strategy could be presented. Because of this 

schedule, however, little time was available for any in-depth analysis of the mechanisms by 

which the optimisation process had achieved better dynamic performance. Power analyses were 

performed to show the power changes on a macro level, i.e. changes in input power, actuator 

power and power in Beam 40. However, to gain a further understanding a full modal analysis 

of the optimised structures needs to be performed, including the evaluation of the modeshapes 

of the structure. How these modeshapes change, due to optimisation, at the positions of power 

input and output to the structure is probably the key to a full understanding of the mechanism 

of the optimal control achieved. In particular, with active control the interaction between the 

active control system and the structure geometry could then be investigated. This would help to 

explain why, when using active control on a geometrically optimised structure, the active 

control is more effective and efficient than when using a geometrically unoptimised structure. 

The analysis of the modeshapes might also help explain the reasons why some structures are 

more robust than others, even though a clue to this lies in the modal frequency distribution for 

the optimised structures presented. 

The perturbation analysis performed here is based on a uniform distribution of joint position 

perturbations might be appropriate to represent manufacturing tolerances. It is difficult due to 

the multi-modal nature of the search space to predict the effect of changing the perturbation 

distribution, but the success of the analysis would be improved if the distribution used was 

similar to that encountered in practice. The perturbations used here are unstructured, that is, 

each joint coordinate perturbation was independent, and therefore provide a reasonable 

representation of those that arise from manufacturing tolerances. Other types of geometric 

distribution, such as that due to thermal expansion and contraction, are structured 

perturbations. This has not been addressed here, although such a study has been reported for 

the static case on a truss structure (Farmer et al, 1992). Lastly, the requirements on the 

robustness of a system might not only refer to the robustness due to geometric uncertainties. 

Another consideration might be to reduce the sensitivity of the performance of a system due to 

the failure of any one of the active control actuators or sensors. The results presented here 

suggest that a structure, which has first undergone geometric optimisation and then the 
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determination of the optimal actuator positions, may perform almost as well as structure whose 

geometry and actuator positions were simultaneously optimised. However, the performance if 

the active control system failed would be better in the former case, as the significance of the 

reductions achieved by the geometric redesign is greater. Further work is required to investigate 

this aspect of robustness. 

Finally, only an initial study on the design of structures to optimise their robust performance 

has been conducted. It has been shown that improvements in both robustness (change in 

performance) and absolute performance in the face of small geometric perturbations can be 

achieved, with little additional computational expense. This optimisation was only considered 

for the performance over a narrow frequency band, due to time available. Further investigation 

is required to optimise the performance over the broad frequency band that was used for the 

majority of the optimisations performed in this thesis, in order to see whether improvements 

would also found in this case. Also, it is not clear why the simplest measure of perturbed 

performance, which was not expected to produce a good estimate of the average perturbed 

performance, is better than one based on a full factorial experimental design. One possible 

reason is that the magnitude of perturbations used for each method did not represent equal 

'strengths'. The use of a discrete probability distribution to represent a continuous one in this 

application needs further consideration. Perhaps a perturbed performance measure requiring 

only a few random perturbation experiments could be used with similar success. 
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Optimisation type 
Reduction in average energy 

level of vibration (dB) 

AVC control effort (normalised 

to primary control effort) 

Passive (geometric redesign) 33 0 

Active (application of AVC) 28 1,400 

Passive-then-active 64 10 

Combined (passive and active) 78 29 

Table 8.1 Summary of average results of the four main optimisation methods over the 

frequency band 150Hz to 250Hz. The results for those methods using active vibration control 

are given for using two actuators. 
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A P P E N D I X A 

Minimisation of a Hermitian Quadratic Form with 
Positive Definite Quadratic Coefficient Matrix 

The object of this appendix is to show the derivation of the minimum of the cost function used 

in the main text, in the case where the quadratic coefficient matrix is always positive definite. 

This assumption avoids the complexities of using differential calculus (as discussed by Nelson 

and Elliott, 1992, and Haykin, 1996, for example) which would normally be required to show a 

solution for a general case where no such assumptions can be made. All symbols used apply 

locally to this appendix. 

The cost f unc t ion / i s defined in quadratic form with the complex column vector x containing 

/ complex independent variables, 

J ( x ) = x " A x + x " b + b " x + c , (A.l) 

where A is a square matrix of dimension / x /, b is a complex vector of length I, and c is a 

positive scalar. If A is Hermitian and also positive definite, then (Datta, 1995), 

x " A x = ) / > 0 ibrall (A.2) 

and y will always be a positive scalar, if x # 0 . The positive definiteness of A is ensured in 

practice (see Chapter 5) and is verified by testing that all the eigenvalues of A are positive 

(Datta, 1995). Assuming that a solution that minimises / ex i s t s , (A. 1) may be written as, 

/ W = ( x - X o ) " A ( x - X g ) + (f , (A.3) 

where d is. a real scalar, and Xg is the optimum value of vector x . Expanding (A.3), so 

/ ( x ) = x " A x - x " A % Q - i Q A i + c , (A. 4) 

which allows, firstly, the scalar relation between c and d to be defined as, 

(A.5) 

Secondly, equating the coefficients between (A. 1) and (A.4), gives 

- X p A = b , — x ? A = b " , (A.6a,b) 
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which are two forms of the same solution. The solution to (A.3), which minimises J , is clearly 

given when x = Xq , and thus, 

= = (A. 7) 

The optimum values of x are obtained from (A.6a,b), 

I g = - A " ' b , I g = . (A.8a,b) 

As A is positive definite it is also of full rank (Datta, 1995), and hence its inverse exists. As in 

(A. 6), the two forms given in (A. 8) are not different solutions but equivalent forms of the same 

solution, as for a Hermitian matrix A " ' = A ~ " . The minimum value of the cost function (A. 7) 

can be expressed in terms of the coefficients from the quadratic form (A. 1) using (A. 8), 

j ( x o ) = c - b " A " ' b . (A.9) 

Because the vector-matrix term in (A.9) results in a positive scalar, the solution is a minimum 

as the value of / ( x g ) is less than j{x) when X = 0 
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A P P E N D I X B 

Background to Optimisation Techniques 

13.0 ]]\riTR.C)I)i;CTlC)}J 

The purpose of this Appendix is to provide full details of the optimisation techniques used in 

Chapter 3 for readers who are unfamiliar with the background to these techniques. Variable 

definitions, not explicitly given here, are defined in Chapter 3. All symbols used apply locally 

to this appendix, unless otherwise stated. 

13.1 dk 

If a function / is differentiable it can be represented as a Taylor series expansion about the 

position of its minimum value, Xq, and the vector offset to the start point of the search, Xe, 

/ K + : K j = / ( x J + g % + ^ x j H % ^ + . . . . 

where g is the Jacobian gradient vector of first order partial derivatives defined. 

C&I) 

= = 

9x, 9%. 
03 2) 

and H is the Hessian matrix of second order partial derivatives, defined: 

H = 

9%; 9%̂  

9%:̂ 9%̂  9xf 

08 3) 

The minimum value of the function can be written, to a second order approximation, as the 

evaluation at a point in search space which is a distance Xe away from the optimum vector Xg. 

An estimate of the Jacobian gradient vector is attainable by evaluating locally over a finite 

difference (an estimate of the Hessian matrix is not easily achieved but is assumed for now). 
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/ ( ^ o + : K j = / ( x J + g ^ x ^ + ^ x j H x , . (B.4) 

If Xe can thus be evaluated a single step of -x^ can be made to reach the optimum position in the 

search space. Taking the derivative of (B.4) with respect to , the current position, 

y / ( 3 : o + ^ J = g + H x , . (B.5) 

V / (xq + ) is then set to zero to find x^ _ 

X, = - H " ' g . (B.6) 

Hence the move to the minimum could be made in one move (assuming the search space has no 

non-zero derivatives above second order), however, it is obtaining a good estimate of H which 

normally presents the main problem. An estimate of H is formed from an initial starting point 

which is usually the identity matrix, and is updated every time an iterative step is made nearer 

the minimum. The process of finding the minimum becomes iterative as steps are made nearer 

using the current and increasing better estimate of the inverse of the Hessian matrix. So two 

successive iterations of (B.6), using index z, are given explicitly, 

x , = - H - ' g , , (B.7) 

and the iterative step is thus, 

Ax.+, = - X, = - H - ' A g , (B.8) 

where, 

Ag,+, = g . + , - g , . (B.9) 

Then, the estimate of H is updated. For the Davidon-Fletcher-Powell algorithm, the current 

estimate is updated, 

= H . ' + , (B. 10) 

where the update term is defined. 

where 0 denotes the outer product of two vectors. The Broyden-Fletcher-Goldfarb-Shanno 

algorithm uses an additional update term. 
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H m = H - ' (B.12) 

which is defined, 

= (Ag,.+, -H, - A g , + i } i ® u . (B. 13) 

where, u is given, 

11= . CB.14) 
Ax,+,.Ag,+, Ag,+, .H , -Ag ,+ , 

It can be shown (Press et al, 1992) that the Hessian matrix does converge to the actual Hessian 

matrix for a quadratic problem. 

13.2 Tr]%]E(:)itEh/[ CM? CriiNiiTic:! ^iiLXjcyiiiTrtiivis; 

(The main symbols used in this section are listed in the glossary of symbols for Chapter 3). 

The most commonly used alphabet with genetic algorithms is a binary alphabet which is used 

for the coding of the chromosome strings, as used in this work, the alphabet of the 

chromosomes Fis thus 

= {0 l } . CB.15) 

An augmented alphabet is required for the schemata, formed by the addition of a wild card 

character *, 

P"* =={0 1 *}. (8.16) 

Thus, for example, a schema H (normally denoted thus because it represents a hyperplane in 

the search space) may be given as 1011*0*1. This schema then represents the four 

chromosome strings which, explicitly, are 10110001, 10110011, 10111001 and 10111011. 

Each of these are termed instances of H. Using schemata the evolution may be studied in a 

macro level. The probability, that a chromosome i , with fitness f , will be selected into the 

pool of n chromosome strings which will be available to form the next generation is given by, 

(B. 17) 

S / ; 
M 

So np- is the expectation of the number of chromosomes i which survive. The number of 

chromosome strings represented by a particular schema H ina population at the evolutionary 
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generation time step t is m(H,t). For a non-overlapping population (the entire population is 

replaced at the same time) the expected number of chromosomes represented by the schema in 

the next generation is given by, 

I / . 
i=l 

where f(H) is the average fitness value of the schema (average fitness values of all the 

chromosomes represented by schema H). The average fitness of the entire population can be 

expressed, 

f = — . (B.19) 
n 

which allows (B. 18) to be expressed as, 

+ (B.20) 

It is re-iterated that tliis represents the expected number of chromosome strings represented by 

schema H in the next generation by selection alone. The effects of the crossover and mutation 

operators will be discussed below. However &om (B.20) it can be seen that for schemata that 

have average fitnesses above the average fitness of the population are expected to represent an 

increased number of chromosome strings in the next generation. 

The effects of the crossover and mutation operators on the survival rate of each schema are 

now studied. Both of these operators serve to change the chromosomes on which they operate. 

Therefore the effect on the expected rate of survival of chromosomes represented by a 

particular schema is the expectation that schemata remain unaffected by these two operators. 

The crossover operator swaps genetic information between two paired chromosomes. This will 

result in two altered chromosomes, unless the crossover operation has no effect due to 

similarities between the two chromosomes with the elected crossover site. This probability is 

not easily defined, especially with on-going evolution. Additional algorithm operations which 

prevent 'crowding', where the situation of the population converging to only a few 'good' 

positions in the search space, also act to keep this probability small. To analyse the effect of 

crossover succinctly, the parameter 'defining length' is used. The defining length of a schema is 

the length (in gene positions) between the two outer-most fixed values. In the schemata in 

Figure 3.5 the defining length of schema A, denoted d(A) is five and for d(B) is zero. The 
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probability that a schema will be changed by a crossover point is the ratio of the number of 

crossover sites between the extremes of the defined part of the schema, which is the defining 

length, and the total number of crossover sites on the chromosomes string. If the chromosome 

is of length / then the number of such borders is /-1. The probability that the schema, H will 

survive crossover is then, 

jO, . CB.21) 
/-I 

The inequality defines the minimum probability of survival since, depending on similarities 

between the two schemata, the schema may remain unchanged despite the interchange of fixed 

allele positions. 

The effect of the mutation operator is facilitated by the definition of the order of a schema. This 

is the number of positions that are assigned to particular values, and not the 'wildcard' value *. 

Figure 3.5 show two schemata, the order of schema A, denoted 0(A), is 4, whereas 0(B) is 1. 

If p,„ is the probability that each allele (unit of information for each chromosome) undergoes 

mutation. The probability that each fixed allele survives is therefore (1- p,n)- The probability 

that the schema survives is the probability that all of the fixed allele values within the schema 

survive. The survival of each fixed allele is statistically independent, and thus for a schema 

with 0(H) fixed value the probability of survival is. 

Ps (B.22) 

Since p„, is usually a small value, such that p,„ « 1 , the survival of the schema is then for most 

cases adequately approximated by, 

(B.23) 

The expected number of chromosomes represented by schema H in the next generation is 

therefore given by (B.20) multiplied with the probability that the schema survives both 

crossover and mutation. This probability is the product of (B.21) and (B.23), of which a first 

order approximation is accepted to yield the Schema Theorem or the Fundamental Theorem of 

Genetic Algorithms (Goldberg, 1989), 

f + l ) > /M(^, f 
V V/ 

\ - p , ^ - 0 ( H ) p \ (B.24) 
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APPENDIX C 

fStiiiiiclajrci . / l i -r i iT/s 

( : . ! /LRJRj\.Y 

10 11 12 13 14 15 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 

2 2 
2 2 
2 2 
2 2 

2 2 
2 2 
2 2 
2 2 

2 2 
2 2 
2 2 
2 2 

Table C.l . (parf 7 Taguchi's L64 orthogonal array (aAer Taguchi, 1987 as cited 
by Phadke, 1989). Corrected by author (see main text). Each row defines an experiment 

of 63 two-level factors. 

250 



1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
51 
62 
63 
64 

16 

1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 

17 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 

J 
2 
2 
1 
1 
2 
2 
1 
1 

18 

1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 

19 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 

20 

1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 

21 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 

22 

1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 

23 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 

24 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 

25 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 

26 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 

27 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 

28 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 

29 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 

30 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 

31 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
2 
2 
2 
1 
1 
1 
1 
2 
2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
1 
2 
2 

Table C.l. (pofY 2 Taguchi's L64 orthogonal array (aAer Taguchi, 1987 as cited by 
Phadke , 1989). Cor rec t ed b y au thor (see m a i n text). E a c h r o w def ines an exper iment of 63 

two-level f ac to r s . 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 

32 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

33 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 

34 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 

J 
2 
1 
2 
1 
2 
1 
2 
1 

35 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

J 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 

36 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 

37 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 

J 
1 
2 
1 
2 
1 
2 
1 
2 

38 

1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
1 
2 
1 
2 
1 
2 
1 
2 

39 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 

40 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 

41 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 

42 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 

43 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
1 
2 
1 
2 
2 
1 
2 
1 

44 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 
1 
2 
1 
2 
1 
2 
1 
2 
2 
1 
2 
1 
2 
1 
2 
1 
1 
2 
1 
2 

45 
1 
2 
1 
2 
2 
1 
2 
1 
2 
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Phadke , 1989) . Cor rec t ed b y au tho r (see m a i n text) . E a c h r o w deGnes a n exper iment of 63 

two-level factors. 
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c . 2 T A G U C H r S L S I O R T H O G O N A L A R R A Y 

10 11 12 13 14 15 16 17 18 19 20 21 22 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

Table C.2. (part 7 Taguchi's LSI orthogonal array (aAer Taguchi, 1987 as cited by 
Phadke, 1989). Each row defines an experiment of 40 three-level factors. 
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23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

4 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 

5 3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 

6 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 

7 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 

8 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 

9 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 

10 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 

11 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 

12 3 3 3 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 

13 2 2 2 3 3 3 1 1 1 3 3 3 1 1 1 2 2 2 

14 3 3 3 1 1 1 2 2 2 1 1 1 2 2 2 3 3 3 

15 1 1 1 2 2 2 3 3 3 2 2 2 3 3 3 1 1 1 

16 3 3 3 1 1 1 2 2 2 2 2 2 3 3 3 1 1 1 

17 1 1 1 2 2 2 3 3 3 3 3 3 1 1 1 2 2 2 

18 2 2 2 3 3 3 1 1 1 1 1 1 2 2 2 3 3 3 

19 1 1 1 3 3 3 2 2 2 1 1 1 3 3 3 2 2 2 

20 2 2 2 1 1 1 3 3 3 2 2 2 1 1 1 3 3 3 

21 3 3 3 2 2 2 1 1 1 3 3 3 2 2 2 1 1 1 

22 2 2 2 1 1 1 3 3 3 3 3 3 2 2 2 1 1 1 

23 3 3 3 2 2 2 1 1 1 1 1 1 3 3 3 2 2 2 

24 1 1 1 3 3 3 2 2 2 2 2 2 1 1 1 3 3 3 

25 3 3 3 2 2 2 1 1 1 2 2 2 1 1 1 3 3 3 

26 1 1 1 3 3 3 2 2 2 3 3 3 2 2 2 1 1 1 

27 2 2 2 1 1 1 3 3 3 1 1 1 3 3 3 2 2 2 

28 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

29 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 

30 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 

31 2 3 1 2 3 1 2 3 1 3 1 2 3 1 2 3 1 2 

32 3 1 2 3 1 2 3 1 2 1 2 3 1 2 3 1 2 3 

33 1 2 3 1 2 3 1 2 3 2 3 1 2 3 1 2 3 1 

34 3 1 2 3 1 2 3 1 2 2 3 1 2 3 1 2 3 1 

35 1 2 3 1 2 3 1 2 3 3 1 2 3 1 2 3 1 2 

36 2 3 1 2 3 1 2 3 1 1 2 3 1 2 3 1 2 3 

37 1 2 3 2 3 1 3 1 2 1 2 3 2 3 1 3 1 2 

38 2 3 1 3 1 2 1 2 3 2 3 1 3 1 2 1 2 3 

39 3 1 2 1 2 3 2 3 1 3 1 2 1 2 3 2 3 1 

40 2 3 1 3 1 2 1 2 3 3 1 2 1 2 3 2 3 1 

41 3 1 2 1 2 3 2 3 1 1 2 3 2 3 1 3 1 2 

42 1 2 3 2 3 1 3 1 2 2 3 1 3 1 2 1 2 3 

43 3 1 2 1 2 3 2 3 1 2 3 1 3 1 2 1 2 3 

44 1 2 3 2 3 1 3 1 2 3 1 2 1 2 3 2 3 1 

45 2 3 1 3 1 2 1 2 3 1 2 3 2 3 1 3 1 2 

46 1 2 3 3 1 2 2 3 1 1 2 3 3 1 2 2 3 1 

47 2 3 1 1 2 3 3 1 2 2 3 1 1 2 3 3 1 2 

48 3 1 2 2 3 1 1 2 3 3 1 2 2 3 1 1 2 3 

49 2 3 1 1 2 3 3 1 2 3 1 2 2 3 1 1 2 3 

50 3 1 2 2 3 1 1 2 3 1 2 3 3 1 2 2 3 1 

51 1 2 3 3 1 2 2 3 1 2 3 1 1 2 3 3 1 2 

52 3 1 2 2 3 1 1 2 3 2 3 1 1 2 3 3 1 2 

53 1 2 3 3 1 2 2 3 1 3 1 2 2 3 1 1 2 3 

54 2 3 1 1 2 3 3 1 2 1 2 3 3 1 2 2 3 1 

55 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 

56 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 

57 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 

58 2 1 3 2 1 3 2 1 3 3 2 1 3 2 1 3 2 1 

59 3 2 1 3 2 1 3 2 1 1 3 2 1 3 2 1 3 2 

60 1 3 2 1 3 2 1 3 2 2 1 3 2 1 3 2 1 3 

61 3 2 1 3 2 1 3 2 1 2 1 3 2 1 3 2 1 3 

62 1 3 2 1 3 2 1 3 2 3 2 1 3 2 1 3 2 1 

63 2 1 3 2 1 3 2 1 3 1 3 2 1 3 2 1 3 2 

Table C.2. (par( 2 Taguchi's L81 orthogonal array (after Taguchi, 1987 as cited by 
Phadke, 1989). Each row defines an experiment of 40 three-level factors. 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 
64 3 2 1 3 1 3 2 2 1 3 3 2 1 1 3 2 2 1 3 3 2 1 
65 3 2 1 3 1 3 2 2 1 3 3 2 1 2 1 3 3 2 1 1 3 2 
66 3 2 1 3 1 3 2 2 1 3 3 2 1 3 2 1 1 3 2 2 1 3 
67 3 2 1 3 2 1 3 3 2 1 1 3 2 1 3 2 2 1 3 3 2 1 
68 3 2 1 3 2 1 3 3 2 1 1 3 2 2 1 3 3 2 1 1 3 2 
69 3 2 1 3 2 1 3 3 2 1 1 3 2 3 2 1 1 3 2 2 1 3 
70 3 2 1 3 3 2 1 1 3 2 2 1 3 1 3 2 2 1 3 3 2 1 
71 3 2 1 3 3 2 1 1 3 2 2 1 3 2 1 3 3 2 1 1 3 2 
72 3 2 1 3 3 2 1 1 3 2 2 1 3 3 2 1 1 3 2 2 1 3 
73 3 3 2 1 1 3 2 3 2 1 2 1 3 1 3 2 3 2 1 2 1 3 
74 3 3 2 1 1 3 2 3 2 1 2 1 3 2 1 3 1 3 2 3 2 1 
75 3 3 2 1 1 3 2 3 2 1 2 1 3 3 2 1 2 1 3 1 3 2 
76 3 3 2 1 2 1 3 1 3 2 3 2 1 1 3 2 3 2 1 2 1 3 
77 3 3 2 1 2 1 3 1 3 2 3 2 1 2 1 3 1 3 2 3 2 1 
78 3 3 2 1 2 1 3 1 3 2 3 2 1 3 2 1 2 1 3 1 3 2 
79 3 3 2 1 3 2 1 2 1 3 1 3 2 1 3 2 3 2 1 2 1 3 
80 3 3 2 1 3 2 1 2 1 3 1 3 2 2 1 3 1 3 2 3 2 1 
81 3 3 2 1 3 2 1 2 1 3 1 3 2 3 2 1 2 1 3 1 3 2 

Table C.2. (part 3 of 4). Taguchi's LSI orthogonal array (after Taguchi, 1987 as cited by 
Phadke, 1989). Each row defines an experiment of 40 three-level factors. 

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 
64 1 3 2 2 1 3 3 2 1 1 3 2 2 1 3 3 2 1 
65 2 1 3 3 2 1 1 3 2 2 1 3 3 2 1 1 3 2 
66 3 2 1 1 3 2 2 1 3 3 2 1 1 3 2 2 1 3 
67 2 1 3 3 2 1 1 3 2 3 2 1 1 3 2 2 1 3 
68 3 2 1 1 3 2 2 1 3 1 3 2 2 1 3 3 2 1 
69 1 3 2 2 1 3 3 2 1 2 1 3 3 2 1 1 3 2 
70 3 2 1 1 3 2 2 1 3 2 1 3 3 2 1 1 3 2 
71 1 3 2 2 1 3 3 2 1 3 2 1 1 3 2 2 1 3 
72 2 1 3 3 2 1 1 3 2 1 3 2 2 1 3 3 2 1 
73 1 3 2 3 2 1 2 1 3 1 3 2 3 2 1 2 1 3 
74 2 1 3 1 3 2 3 2 1 2 1 3 1 3 2 3 2 1 
75 3 2 1 2 1 3 1 3 2 3 2 1 2 1 3 1 3 2 
76 2 1 3 1 3 2 3 2 1 3 2 1 2 1 3 1 3 2 
77 3 2 1 2 1 3 1 3 2 1 3 2 3 2 1 2 1 3 
78 1 3 2 3 2 1 2 1 3 2 1 3 1 3 2 3 2 1 
79 3 2 1 2 1 3 1 3 2 2 1 3 1 3 2 3 2 1 
80 1 3 2 3 2 1 2 1 3 3 2 1 2 1 3 1 3 2 
81 2 1 3 1 3 2 3 2 1 1 3 2 3 2 1 2 1 3 

Table C.2. (part 4 of 4). Taguchi's L81 orthogonal array (after Taguchi, 1987 as cited by 
Phadke, 1989). Each row defines an experiment of 40 three-level factors. 
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A P P E N D I X D 

Optimisation Algorithm Parameters 

KEY: OPTIONS: Design Exploration System used (Dynamics Modelling Ltd, 1996) 

Siddall: Optimisation software suite implemented in OPTIONS (Siddall, 1982) 

BFGS: Broyden-Fletcher-Goldfarb-Shanno 

DFP: Davidon-Fletclier-Powell 

N.B. Where no OPTIONS variable shown, parameter is not variable by user. 

OPTIONS 

variable 

Siddall 

variable 
Description Value 

OPT_TOL TOL Tolerance for penalty flmction le-10 

OPT_STEP F 
fraction of each variable range used to calculate variable 

derivative 
le-5 

function 

argument 
G 

convergence criterion: minimum fractional change 

between successive objective flmction result 

le-5 (Broad) 

le-3(Narrow) 

le-3(Single) 

Table D. 1. Optimisation parameters used for the Davidon-Fletcher-Powell method. 

OPTIONS 

variable 

Siddall 

variable 
Description Value 

OPT_TOL TOL Tolerance for penalty function le-10 

OPT_STEP F fraction of each variable range used as initial step size 0.1 

function 

argument 
G 

convergence criterion: minimum step size specified as 

fraction of initial step size 
0.01 

NSHOT Number of search/shotgun cycles 2 

NTEST 
Number of points in shotgun search at end of search 

phase 
100 

Table D.2. Optimisation parameters used for the Hooke and Jeeves method. 
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OPTIONS 

variable 

Siddall 

variable 
Description Value 

C_TOL ZERO Amount constraint functions may be infeasible le-8 

_PENAL Violated constraint multiplier r in (3.4) Ie20 

Table D.3, One Pass penalty function parameters used for the FDP, BFGS and, Hooke and 

Jeeves methods. 

OPTIONS 

variable 

Siddall 

variable 
Description Value 

C_TOL ZERO Amount constraint functions may be infeasible 1^8 

OPT_TOL TOL Tolerance for penalty function le-10 

R Initial penalty function multiplier r in (3.A.5) 1 

REDUCE Reduction factor for R 0.04 

Table D.4. Fiacco-McCormick penalty function parameters used for the FDP, BFGS and, 

Hooke and Jeeves methods. 

OPTIONS variable Description Value 

DHC_INITZ Initial step size specified as fraction of variable range 0.05 

DHC_THRESH 
Covergence critereon: minimum step size as fractional of variable 

DHC_PENAL Penalty function. (One Pass External) le20 

DHC_NRANDM Random number seed (see text) 

function argument 
Maximum number of iterations, after which no new searches are 

started 
2000 

Table D.5. Optimisation parameters used for the Dynamic Hill Climbing method. 

258 



OPTIONS variable / 

Common notation 
Description Value 

Ngen maximum no. of generations allowed (see main text) 

GA_NPOP, Npop size of each population (see main text) 

GA_PBEST, PbMt proportion of population surviving to next generation 0.8 

GA_PCROSS, Pcmss proportion of surviving population allowed to breed 0.8 

GA_PINVRT, Pmvnt proportion of breeding population that have genetic 

material re-ordered 

0.5 

GA_PMUTNT, Pmutation proportion of generation's new material randomly changed 0.005 

GA_PRPTNL 
flag which sets whether either new generation's genetic 

material is biased in favour of better members of previous 

population (TRUE), or all Pbest is scaled to prevent 

dominance (FALSE) 

TRUE 

GA__DMrN, Djî n minimum non-dimensional Euclidean distance between 

clusters (those closer are collapsed) 

0.05 

GA_DMAX, maximum non-dimensional Euclidean radius of a cluster 

(beyond which clusters sub-divide) 

0.1 

GA_NCLUST, Nctus, the initial number of clusters in which a generation is 

divided 

25 

GA_NBREED, Nbreed minimum number of members in a cluster before exclusive 

breeding within cluster takes place 

5 

GA_ALPHA, (% a penalising index used in the management of clusters (see 

Yin and Gerniay, 1993) 

0.5 

GA_NBIN number of binary bits used to represent each optimisation 

variable 

16 

GA_RANDM number of samples of random number generation discarded 

before first sample is used 

(see main text) 

Table D.6. Optimisation parameters used for the genetic algorithm optimisation. 
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A P P E N D I X E 

Computational System Details 

The specifications of the computing systems used to perform the results presented in the main 

text are given below. Only the specifications required to given an indication of the computing 

system power are given, the system is a shared resource and the performance is thus dependent 

upon the computing load of the machine. The computing times quoted in the main text are 

approximate, and relate to the system operating at less than 100% of full capacity (so that no 

computing job-sharing occurs). 

I i . l IDETvAJCLvS ()]F 

Hardware platform A was used for work presented in the earlier part of the thesis, and is 

detailed in Table E. l . This system contains two processor types and it can not be assured 

which specific processors were used within the system management scheme. It is feasible to 

assume that the computing effort was shared equally by all the processors, resulting in an 

average processor speed is 80MHz. 

System Silicon Graphics Inc. Power Challenge (6 processors) 

Proces so r 

d d a U s 

Processors 0 to 3; 90MHzIP21 

CPU: MIPS R8000 Processor Chip Revision; 3.0 

FPU: MIPS R8010 Floating Point Chip Revision: 0.2 

Processors 4 and 5: 75MHzIP21 

CPU: MIPS R8000 Processor Chip Revision: 2.2 

FPU: MIPS R8010 Floating Point Chip Revision: 0.1 

Memory Main memory size: 512Mbytes 

Table E. 1. Brief summary of the specification of computing hardware platform A. 
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i3.2]:) i iT/i i]L:3 ()jF ijjAJRLrjrvyjAJBLi; P'L./inri^ORjvi B 

Hardware platform B was used for the work presented in the latter part of the thesis, and is 

detailed in Table E.2. 

System Silicon Graphics Inc. Origin 2000 (14 processors) 

Processor 

details 

Processors 0 to 13: 250MHz IP27 

CPU: MIPS R10010 Processor Chip Revision: 0.0 

FPU: MIPS RIOOOO Floating Point Chip Revision: 3.4 

Memory Main memory size: 4068Mbytes 

Table E.2. Brief summary of the specification of computing hardware platform B. 
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