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Nonresponse is an increasingly common problem in surveys. It is a problem because it
causes missing data and, more importantly, because such missing data are a potential source
of bias for estimates. Most of the methods dealing with nonresponse assume either explicitly
or implicitly that the missing values are missing at random (MAR). We consider the situations
where the probability to respond may depend on the outcome value even after conditioning
on the covariates. For this kind of response mechanism, the missing outcomes are not missing
at random (NMAR). The problem of missing data is handled either using fully parametric or
semi-parametric approaches. These approaches have some potential issues, for example, strict
distributional assumptions, heavy computations, etc.

We propose a fully non-parametric approach; first we postulate informative individual re-
sponse probabilities i.e. the response probability may depend on the values of interest, and it
may be specific to each individual. We treat the outcome variable as a fixed constant just like
in the design based approach to survey sampling. Then we use an estimating equations ap-
proach to define the finite population parameters. Hence the approach is fully non-parametric
provided the individual specific response probabilities can be estimated non-parametrically. For
longitudinal data it is possible that one can have individual historic response rate and those can
be used as an empirical estimator for the individual specific response probability. We utilize
this individual historic response rate as an estimator for the unknown response probability. If
the unknown response probability is consistently estimated then the proof for consistency of
estimators is much easier and much more common. But in our case the historic response rate
is unbiased but not consistent because practically we cannot have infinitely many historic time
points but we can have many units. We try to prove the asymptotic unbiasedness of estimating
equations and further the consistency of estimates but we could not prove it and the reason
is discussed in Section It provides an interesting investigation of pursing consistency. We
develop the associated variance estimator. Being a fully non-parametric and computationally

simple method, it can be used as a widely applicable exploratory data analysis technique for



NMAR mechanisms, as long as there exit a response history, in advance of more sophisticated
and possibly more efficient modelling methods.

The approach is extended for a longitudinal setting and two types of EEs are defined to
estimate parameters that are defined over time, such as the change between two successive time
points or the regression coefficients involving outcomes over time. The associated variances
estimators using both EEs are also developed.

The non-parametric estimating equations (NEE) approach for cross-sectional and longitu-
dinal setting is not unbiased. We therefore develop bias-adjusting NEE approach to adjust the
bias in cross-sectional and longitudinal parameter estimates. Another advantage of the bias-
adjusting EE approach is that the variance estimator based on bias-adjusting NEE is expected
to be less biased as compared to the unadjusted approach. Moreover, Taylor expansion is used
to adjust the bias in variance estimate obtained from simple and bias-adjusted NEE approaches.

A comprehensive simulation study is conducted using real and simulated data to assess
the performance of NEE and bias-adjusted NEE approaches under various settings for cross-

sectional as well as for longitudinal data.
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Chapter 1

Introduction

Nonresponse is an increasingly common problem in surveys. It is a problem because it causes
missing data and, more importantly, because such missing data are a potential source of bias
for estimates. In the presence of unit nonresponse, it is often assumed that each unit in the
population has an associated probability to respond. Such a response probability is unknown
and several methods are proposed to estimate it either explicitly, using response propensity
modelling like logistic regression models or implicitly, using response homogeneity groups or
more generally calibration (see|Sarndal and Lundstrom (2005)), for an overview). Once estimates
are computed, a commonly used method to deal with unit nonresponse is reweighting: sampling
weights of the respondents are adjusted by the inverse of the estimated response probability
providing new weights. Estimation of response probabilities typically requires the availability
of auxiliary information, either in the form of the value of some auxiliary variables for all units
in the originally selected sample or of their population mean or total.

Next, missing data mechanisms concern the relationship between the response indicators
and the values of the variables in the corresponding data matrix. Missing data mechanisms
are usually categorized into three classes: missing completely at random (MCAR), missing at
random (MAR), and missing not at random (MNAR). If the response indicators are unrelated
to both the missing outcomes and the set of observed outcomes, the observed outcomes are a
random subset of the entire sample. This is referred to as MCAR. If the response indicators
depend on the observed outcomes (and other auxiliary variables) but are otherwise unrelated
to the missing values, the missing data are said to be MAR. MAR mechanisms are most com-
monly assumed in statistical analysis including longitudinal data analysis. However, in many
situations, the response indicators are related to the missing values, even after controlling for
all the observed values, referred to as MNAR. Ignoring the impact of the MNAR mechanism
can result in serious bias of inference. Over the years, a variety of models and methods have
been developed to account for MNAR mechanisms in longitudinal data analysis.

When covariates are known for every sample unit, a common way to deal with the nonre-
sponse is to postulate a parametric model for the joint distribution of the outcome variable and
response indicator given the covariates. Little and Rubin (2002)) distinguish between selection
models and pattern-mixture models, depending on how the joint distribution is factorized. For
fully parametric selection models, the likelihood based on all the units, respondents or not, can

be used to estimate the parameters of the model for the outcome variable as well as the model



for the response probability given the outcome variable (and covariates). |Qin et al.| (2002

propose a semi-parametric estimation method for the case where the covariates are only known
for the respondents. They assume a parametric model on the response mechanism but a non-

parametric model on the distribution of the outcome variable and the covariates.

land Sikov| (2011) propose a fully parametric estimation approach for NMAR nonresponse, which

does not require knowledge of the covariates for the nonrespondents.

Longitudinal data analysis is of great interest in a wide array of disciplines across the medical,
economic and social sciences. Cross-sectional data can only provide a snapshot at a single point
of time and does not possess the capacity to reflect change, growth, or development. Aware of the
limitations in cross-sectional studies, many researchers have advanced the analytic perspective
by examining data with repeated measurements. By measuring the same variable of interest
repeatedly over time, the change is displayed, and constructive findings can be derived with
regard to the significance of pattern revealed. Data with repeated measurements are referred to
as longitudinal data. In many longitudinal data designs, subjects are assigned specified levels of
a treatment or subjected to other risk factors over a number of time points that are separated
by specified intervals. Analysing longitudinal data poses many challenges due to several unique
features inherent in such data. The most troublesome feature of longitudinal analysis is missing
data in repeated measurements. There is an enormous literature on literature missing data
methods in longitudinal studies. We refer the reader to the excellent books by
(2002)), Fitzmaurice et al| (2004), [Verbeke and Molenberghs| (2000), Verbeke and Molenberghs|
(2005)), Molenberghs and Kenward| (2007)), Daniels and Hogan| (2008)), [Fitzmaurice et al.| (2008]),

and the many references therein. Ibrahim and Molenberghs (2009) provide a review on missing

data approaches in longitudinal studies. Most of the literature focuses on maximum likelihood
methods of estimation with nonignorable missing longitudinal data, predominantly focusing on
mixed-effects models and normally distributed outcomes. A substantial part of the literature
also assumes monotone patterns of missingness, where sequences of measurements on some
subjects simply terminate prematurely. Approaches using selection models include
Kenward (1994), Little| (1995)), and Ibrahim et al.| (2001). Approaches based on pattern-mixture
models include Little] (1994} [1995), Little and Wang] (1996), Hogan and Laird| (1997)), and Thijs|
et al| (2002). Troxel et al. (1998a)) and Troxel et al.| (1998b) propose a selection model which is

valid for nonmonotone missing data but is intractable for more than three time points.

While discussing the semi-parametric approaches, Kim and Yu (2011) proposed the expo-

nential tilting model and developed a semiparametric estimation procedure for nonignorable
missing data. Tang et al. (2014]) further extended the idea of Kim and Yu (2011)). |Zhao and|
(2015)) proposed a pseudo likelihood approach to generalized linear models in the presence

of nonignorable missing data, and presented a two-step iteration algorithm to implement the

numerical maximization of the pseudo likelihood. Matei and Ranalli (2015) proposed a latent

modeling approach to deal with non-ignorable nonresponse in survey sampling. [Feder and Pfef-|
(2016)) discussed the use of empirical likelihood while dealing with NMAR nonresponse

along with informative sampling and indicated that the empirical likelihood approach has the

computational advantages over fully parametric approaches.

There is a large literature on the use of estimating equations (EE); see, for example,




dambe (1991a), Liang and Zeger| (1995), [Hardin and Hilbe (2003) and Zhou et al. (2008).
Robins et al.| (1994]) suggested a semi-parametric approach based on inverse response-probability
weighted EE. It is based on the assumption that the probability of nonresponse is either known
or can be modelled parametrically. |[FitzGerald (2002) introduced a weighting method for han-
dling missing data in generalized estimating equations (GEE) analysis. The method relies also
on the specification of a parametric nonresponse model.

All the aforementioned NMAR techniques require a parametric model for the response prob-
ability, regardless how the outcome variable is modelled. In this thesis we present a non-
parametric EE (NEE) estimation approach for cross-sectional as well as longitudinal data anal-
ysis, where we neither specify a parametric model for the response probability nor the outcome
variable. This can provide a useful, flexible alternative to the existing methods. The basic idea
can be outlined below in Section

1.1 Motivation of the Study

As we discussed above that the problem of NMAR nonresponse is handled either using fully
parametric or semi-parametric approaches and these approaches have some potential issues, for
example, strict distributional assumptions, heavy computations, etc.

We propose a fully non-parametric approach in the sense that; first we postulate informative
individual response probabilities i.e. the response probability may depend on the values of
interest, and it may be specific to each individual. For example, the actual response at a
business could depend on the accounting system, the person responsible for the response, etc.
all of which can potentially be related to the size of the business and hence possibly the response
variable y of interest, beyond whatever covariates x that are available. Meanwhile, there is
bound to be some stability over a limited time period. For such a scenario, one assumes the
response probability to be individual (hence, informative) but stable over a given period of time.
Each individual response probability is an unknown parameter and the number of parameters
increases by increasing the population size. Second we treat the outcome variable as a fixed
constant just like in the design based approach to survey sampling. Then we use an estimating
equations approach to define the finite population parameters. Hence the approach is fully
non-parametric provided the individual specific response probabilities can be estimated non-
parametrically.

For longitudinal data it is possible that one can have an individual historic response and
this can be used as an empirical estimator for the individual specific response probability. We
utilise this individual historic response rate as an estimator for the unknown response proba-
bility and develop NEE approach to estimate population parameters for both cross-sectional
and longitudinal data under informative nonresponse. We cannot claim that this is the only
alternative to the above discussed parametric and semi-parametric approaches while dealing
with informative missing data. This is totally a new idea of dealing with informative missing
data using a fully non-parametric approach. In this thesis our aim is to develop the basic theory

of the NEE approach and to explore it as potential alternative to the many existing approaches.



We extended this approach for the estimation of longitudinal parameters with some additional
treatment. The associated variance estimators are given for both settings. The approach is
as such applicable to the longitudinal missing data to estimate cross-sectional and longitudinal

parameters. The general outline of approach is given below.

1.2 An outline of NEE approach

In this section we outline a new NEE approach to cross-sectional and longitudinal data with
MNAR nonresponse, the details of which will be developed in the subsequent Sections. Under
the NEE approach to MNAR nonresponse, we do not assume a parametric model of the response
probabilities that pertain to all the population units. To accommodate potentially informative
missing data, we postulate an individual response probability which may depend on the longi-
tudinal outcomes of interest and covariates specific to each observational unit. The individual
response probability can be considered as a propensity of observation that accounts for the ini-
tial sample selection mechanism in addition, which may be probability sampling or nonrandom
or informative itself. That is, the response indicator is the product of sample inclusion indicator
and survey response indicator. The outcome values are also treated non-parametrically as un-
known constants, just like in the design-based approach to survey sampling. Under this set-up,
the observation propensity is estimated using individual-specific observation history, without
involving the others in the population. The approach is applicable whenever there exist histor-
ical response/observation indicators. In other words, any unit who never responds will not be
included in the estimation

To enable inference regarding the population mean and regression coefficients about the
never respondents based on the sometime respondents, we make the following assumption.
For cross sectional setting, while considering the population mean, we can assume that the
population mean of never-respondents is the same as that of the sometime-respondents, or so
conditional on some appropriate auxiliary variables. For regression coefficients, we can assume
that the regression model that holds for never-respondents is the same as for the sometime-
respondents. For the longitudinal setting, while considering the population mean change pa-
rameter, we can assume that the population mean change of never-respondents is the same as
that of the population of sometime-respondents, or so conditional on some appropriate aux-
iliary variables that need to be same for both time points. For change in population regres-
sion coefficients, we can assume the same regression model holds for never-respondents and
sometime-respondents for each time point.

Let the target of estimation be given as a finite population parameter defined in terms of a
population EE. For its estimation we use the observed (respondent) NEE, where the unknown
individual response propensity is replaced by an estimate based on the response history of the
same individual. For instance, one may use the observed historic response rate for a unit to
estimate its individual response probability, under the assumption that the unknown response
probability is “stable” over the given period of time. There can be different assumptions of the
exact nature of such stability over time, e.g. stable before the dropout for a unit with monotone

missing data pattern, but over the entire history for someone with a nonmonotone pattern. Or,



for example, unknown response probability have a trend then still we can make this assumption
and assume the model congenial to this assumption. We can fit model like that and put time in
to it. The key point is that we are estimating every body individually. We can allow different
assumptions for each individuals even. For someone we can allow to fit a linear trend and for
some we use the stable assumption if we want. Of course if our assumption is wrong then their
is some limitation that the results will not be okay and that can be checked by simulations. We
don’t have to be stable, its just an easy illustration of NEE to start. Our approach is not like
that, if one have stable response then only one can apply this, if one doesn’t have stableness
one can’t apply. No, rather to the contrary, because this approach is completely individual it
allows to use different models, different assumption for different individuals. One doesn’t need
to have a single model to cover every one. This is actually the strength of the flexibility of our
approach compared to the existing parametric approaches.

To focus the idea, NEE-based estimators for mean at current wave and two different NEE-
based estimators for the change between any two waves will be discussed in forthcoming relevant
chapters, although the NEE formulation accommodates many other types of analysis, such as
estimation of regression coeflicients or analysis of variance.

While the estimator of the individual response probability can be unbiased according to the
given assumption, it can never be consistent due to the fact that the response history cannot
be infinitely long for anyone. Moreover, the plug-in observed NEEs will be somewhat biased if
the ‘score-term’ in the population EE is correlated with the response propensity, as in the case
of informative nonresponse. The matter will be considered in forthcoming chapters concerning
cross-sectional setting as well as longitudinal settings. There we consider bias in estimates,
possible venues for bias adjustment, the associated variance estimation. We illustrate and
investigate the performance of the NEE approach under both settings using simulation study.

Finally, a summary of the conclusions are given for each chapter.

1.3 Study Achievements

We developed a fully non-parametric estimating equation approach to accommodate potentially
informative missing data and we postulate an individual response probability which may depend
on the longitudinal outcomes of interest and covariates specific to each observational unit. The
individual response probability is estimated using individual historic response. The key point
is that we are estimating every body individually. We can allow different assumptions for each
individuals even. This is actually the strength of the flexibility of our approach compared
to the existing parametric approaches. Currently we assume the stable response assumption
and the response probability is estimated using historic response rate. This simple empirical
estimator is used to estimate the parameters under informative nonresponse. We also develop
the associated variance estimator. Compared to alternative fully or semi-parametric approaches,
our approach is simple in construction and easy in computation and does not depend on strict
distributional assumptions about the outcome variable, and the explicit/parametric form of the
response probability model.

The approach is extended for a longitudinal setting and two types of EEs are defined to



estimate parameters that are defined over time, such as the change between two successive time
points or the regression coefficients involving outcomes over time. Theoretical properties of
both EEs are established.

In our case we have biased estimating equations. We therefore develop bias-adjusted EE
approach to reduce the bias in estimates of cross-sectional and longitudinal parameters. Another
advantage of bias-adjusted EE approach is that the variance estimator based on bias-adjusting
NEE is expected to be less biased as compared to the naive NEE, because we used bias-adjusted
EE to obtain variance and its plug-in estimator and then Taylor expansion is used on this bias-
corrected estimator to further correct the bias.

A comprehensive simulation study is conducted to assess the performance of the NEE and
bias-adjusted NEE approaches for various simulation settings using real as well as simulated

data under both cross-sectional and longitudinal settings.

1.4 Outline of the remaining chapters

The aim of the thesis is to develop a fully non-parametric estimating equations approach for
cross-sectional and longitudinal missing data. The theoretical development of the approach and
its application is explained in the following chapters.

Chapter 2 cover the NEE approach that is based on the cross-sectional setting. In this Chap-
ter, we postulate the individual specific response probability model for the response indicator
and then propose a response probability estimator based on the individual historic response
rate. The finite population EEs are developed to define the finite population parameters and
then EEs based on unknown response probabilities are provided. The observed EEs based on
estimated response probabilities are also defined and this EEs are used to estimate the param-
eters. The NEE is not unbiased because we are using estimated response probabilities, and
hence the bias is also derived for the EEs. We try for the consistency of the estimators, however
that can not be proved but an interesting effort is given. The corresponding variances of the
estimators are derived and its plug-in estimators are also given. A comprehensive simulation
study for the cross-sectional setting is also given using real data as well as simulated data.

In Chapter 3, we extend the NEE approach from the cross-sectional setting to the longi-
tudinal setting and define two NEEs; first, the NEE that uses the individuals who respond at
both time points and second, NEE that uses also the individuals who respond at only one of the
two time points. We also defined the unknown response probability models for the respective
NEEs. To capture different dropout patterns underlying the assumed models, different response
probability estimators are suggested. The corresponding variance of estimators are derived and
their plug-in estimators are given for both types of NEEs. A simulation study using real data
as well as simulated data is also given.

The observed NEEs for cross-sectional and longitudinal settings are not unbiased and the
bias is discussed in their respective Chapters. In Chapter 4, we provide the bias-adjusting NEE
approach for both cross-sectional and longitudinal settings. Here we define only the observed
bias-adjusted NEEs for both settings. The aim of defining the bias-adjusted EE is to reduce

the bias in estimates and possibly the bias in variance estimates using different venues for bias



adjustment. The other settings for bias-adjusted EEs remain the same as for their corresponding
simple NEEs discussed in previous chapters. The variance of estimators are derived and their
plug-in estimators are given for bias-adjusted NEEs. The bias in plug-in estimators is further
corrected using Taylor expansion of the variance estimator using the simple NEE and the bias-
adjusted NEE. The simulation study using real data as well as simulated data is also given for
the bias-adjusted NEE approach.

We conclude the main outcomes of the study in Chapter 5. The main findings of simple NEE
for cross-sectional and longitudinal settings are discussed and then discussion on comparison of
simple and bias-adjusted NEEs for both settings is also covered in this Chapter. The strengths

and limitations of the works are also discussed along with some future research directions.






Chapter 2

Non-parametric Estimating
Equations Approach for

Cross-sectional Data

In the previous chapter we provide a general outline of our approach to handle informative
missing data for the cross-sectional and longitudinal setting in Section In this chapter we
provide the theoretical detail on the approach under the cross-sectional setting. After providing
the general outline of NEE approach above in Section the set-up given below in Section
2.6.3] explains the model for response probabilities, their estimator and the way forward to
use NEE approach for estimation of the finite population mean and regression coefficients. In
Section we discuss the asymptotic properties of the theoretical estimator and an effort on
the consistency of actual estimator is discussed in Section The hypothetical estimator is
based on the known response probability that actually cannot exist in reality but having the
population data we used it to know the reasons for bad performances of the actual estimator
that is based on estimated response probabilities. The variance and its plug-in estimator of the
actual estimator is given in Section followed by a simulation study using real and simulated
data.

2.1 NEE approach

Let U = {1, ..., N} be the target finite population, and let y; be the variable of interest, for i € U.
Let §; = 1 indicate response, in which case one observes y;, and §; = 0 if y; is missing. Under
the NEE approach, y; is treated as a fixed constant. Informative missing is the case provided
Pr(6; = 1ly; = y) # Pr(6; = 1|y; = ¢/) for y # y/. For a flexible model that accommodates

informative missingness, put
PI"((;Z = 1|yl,xz) = Ty (21)

i.e. each unit is allowed its own individual response probability. Clearly, the model as such
is unidentifiable. Now, suppose that there exists data of response on T' occasions, denoted by

(i1 .- .,0;7) for i. Then, under the assumption 7; is the same on all these T occasions, an



unbiased estimator is given by

T
#i=> 0u/T, (2.2)
t=1

To show that 7; is an unbiased estimator of m;, note that d; ~ Bernoulli (m;) where ;s
are assumed to be independent of each other for different ¢’s and m; is unknown response
probability that is same for each time point under stable response assumption. Now we have
E (#%i|T, 60 = 1) = .1 B (84|mi, 60 = 1) /T = Ty )T = m;.

The d;7 is the current time point at which the parameters will be estimated but for simplicity
below we denote the current time point with 9;.

The EE-approach is developed based on these estimates of response probabilities for all
1 € U to estimate the finite population parameters such as the mean and regression coefficients.

Let 09 be a finite population parameter defined as the solution to the following estimating

equations

N

Hy (0)=N"'>"5:(0); Hy (60) =0, (2.3)
i=1

where S;() is a scalar or vector function with the y-values considered fixed. It is the contribution
to the EE from the i-th unit. The (unobserved) estimating equations based on the responding

units are given by,

N
Hy (0) :N_lz%&- (0) and Hy(0) =0, (2.4)
i=1 "

where m; denote the unknown response probability at each time point under stable response
assumption and 6 is the theoretical estimator of §. Now replacing the conditional unbiased
estimator 7; of m; given §; = 1 in (2.4)), we have the respondents plug-in NEE,

A 0; A A
Hy(0)=N"'> =S (6) and Hy(6) =0. (2.5)
i=1 "
In particular, if only historical responses are used, i.e. excluding the current §; = 1 while

computing the 7;, one can define 7, L=o0if ZtT;ll 0it = 0.

The population parameters are defined by the estimating equations and the basis of
inference is the model for the response indicator given in (2.1). When the census estimating
equations are the likelihood equations, the estimators obtained by solving these EE with
known inclusion probabilities are known in the sampling literature as ‘pseudo mle’ (pmle). See
Binder| (1983), [Skinner et al.| (1989), Pfeffermann| (1993)), Pfeffermann| (1996) and |Godambe
and Thompson| (2009)) for discussion with many examples. One might draw an analogy between
the observed EE and the pseudo-MLE approach; but the .S; is not necessarily derived from
likelihood, and the 7; is estimated instead of known.

Notice that our approach is fully non-parametric and basis of inference is the model for re-

sponse and only the ¢; is treated as random variable. The Rubin| (1976) theory of nonresponse
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mechanism may not be completely applied here because we are estimating the response proba-
bility using the response rate rather fitting a model. Although we assume an informative model
for response given in , the estimate of the response probability is based on the response
rate and if only past responses are used, then 7; looks no different to MAR-weighting class
adjustment. When the current response indicator is used, 7; still looks like a weighting-class
adjustment, but nonresponse can be NMAR by virtue of .

Below we illustrate the EE approach for estimation of the finite population mean, variance

and regression coefficient in following examples.

Example-1 (Estimation of Population Mean): To illustrate the estimating equations ap-
proach for estimation of a finite population mean 6, by finite population EE ({2.3)), the 6 can be
defined as

N | XN
Z(yz‘—e) =0 = Opp = Nzyz‘
i=1 i=1

where the function y; — 6 is not necessarily derived from the likelihood. To estimate 6 using

(2.5)), the observed estimating equations along with expression of estimator can be written as

S iy —0)=0 = 0= />
=1 =1 i=1

where 1; = 7; L.

Example-2 (Estimation of Population Mean and Variance): To illustrate the estimat-
ing equations approach for estimation of the finite population mean and variance, suppose
y; follow normal distribution with mean 6 and variance o. Then the density f,(y;) for the

population can be written as

The log-likelihood function is

N
tog(L) = S og o) = Slog(2m) = 2 3~ (5~ 0"

The census parameters 6 and o2 are defined by the finite population EE given in (2.3)), as

N LN
=1 i=1
N
1
{wi=02/0' —1/0*} =0 = ofp = 5 > (i —0)",
=1 i=1

where the functions (y; — 0) /o? and (y; — 6)* /o* — 1/0? are not necessarily derived from the

likelihood. To estimate # and o2 using (2.5), the response estimating equations along with

11



expression of estimators can be written as
T T T
Zﬂ% (yi—0)=0 = 0= szyz/zﬁh
i=1 i=1 i=1
T T

S {mi -0 -0} =0 = &2 =iy — 0/ Dy
j i=1 i=1
Example-3 (Estimation of Regression Coefficients): To illustrate the estimating equa-

tions approach for estimation of regression coefficients, suppose the density of the population

is

oy 1 1 (yi — Po — Pr
fp(yz|mz)— \/mexp _5 0\/{?1‘ .

The log-likelihood function can be written as

1 & Bo — Bz \
log(L) = ——log )+ Zlog 1/y/xi) — 7[09 (27) ~ 53 Z <>

The census parameters 3o, 81 and o? are defined by the finite population estimating equations

E3) as

Yo
Z 5— (yi — Bo — Brxi) =0,

=1 7 i
N
> = (i — o — Brzi) =0,
=1

SN} yi—Bo— Bz \® 1
;{&<\@>_ﬂ =0

Now, solving the above equations, the finite population parameters are

Brp = (X]T[XN> XnYn

D (Brp) = diag (\/02 (X]—\;XN>_1>

1 1 exWnen
ofp = N > [3% (i — Bo — 51961‘)2} = NT,
U

Where eEN = (yz — xzﬂpp) and WN = diag [1/33@] s XN = [1 (L'Z']NXQ, XN = WNXN, YN = WNYN

12



and Srp = (S, ﬁl)T. From (2.5)), the observed estimating equations can be written as

r N
Wy
Z 5 — (Yi — Bo — Brxi) =0
— o2z,
=1
oo
W;T;
1 - 1) —
) Yi BO ﬁlx’ 0
im1 g°x;

1 Wi el W, e
~2 E : - S N2 | - S PPt
Zr w’b |:x’5 (yz BO 61$Z) :| Zr wl ’

where €. = (y; — sz) and W, = diag [W; /x4] X, =W, X, Y, =W, Y,, X, = [1 x;]rx2 and
B = (Bo,B1)".

2.2 Consistency and CLT of 0

Below we consider first the theoretical properties of the hypothetical estimator 6 that is the
solution of EE Hx (6) given in . The 6 is the solution of hypothetical EE in which response
probability m; is known and y is assumed fixed like designed based approach in survey sampling.
Our estimator is like an HT estimator and in literature the CLT and consistency of HT estimator
is much more common where inclusion probability is known. And similarly if the response
probability is obtained using logistic model, then the response probability can be estimated
consistently and the CLT and consistency of estimators is also straightforward. We can prove
the consistency of 6 using common procedure but we use an approach given by |[Foutz| (1977)
because we investigate the consistency of 0 using the same approach below in Section that
is not straightforward. The detail is given in Section [2.4

The consistency and CLT of 6 is proved below in subsequent two sections.

2.2.1 Consistency of 0

Using the approach of Foutz (1977), the following Lemma ([2.2.1) states that there exists a

unique consistent solution of Hy (6).
Lemma 2.2.1 With probability going to one as N — 0o, an estimator 0 which satisfies
(A) The elements of the matriz Hy(0) = N1 Z?Ll(di/m)@Si(O)/aé? exist and are contin-

uous on ©;
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(B) H(0) — Gn(0) converges to 0 in probability, where G (0) = E[H)(0)];

(C) The matriz HY(0) evaluated at the true parameter 0y is negative definite with proba-

bility converging to one as N — oco;

(D) The estimating equations Hy(6) are unbiased, i.e. at the true parameter 6y, E[Hy (0p)] =
HN(90> =0y

exists and is unique. Moreover, 0 is consistent for the true parameter 6.

We investigate consistency for 6 below in section in detail by following the general idea of
Foutz| (1977) approach. The first three conditions (A)—(C]) for Hy(6) can be discussed on the
same lines as given below in section For condition (D), we can write,

N
1 1
E[Hy(60)] NE:E<7Q) N§ Si(60) = Hy(6o) =0

=1

which implies that Hy (6) are unbiased.

2.2.2 CLT of 6

In the literature, a CLT of estimators based on estimating equations is given when y is random.
We consider the finite population estimating equations in which y/s are considered fixed. Below
we prove the CLT of theoretical estimator 6 that is solution of the estimation equation given in
. Suppose W; = %Si(Q) then W; are non-IID random variable. Below we will prove CLT

for scalar 0.

Lemma 2.2.2 (CLT of Hx(0)): Let W; = 6;S;(0)/m; be independently dis