UNIVERSITY OF SOUTHAMPTON

FACULTY OF SOCIAL, HUMAN & MATHEMATICAL SCIENCES

DIVISION OF SOCIAL STATISTICS AND DEMOGRAPHY

Nonignorable Nonresponse Adjustment using Fully Nonparametric Approach

by

Zahoor Ahmad ORCID ID 0000-0001-6976-1703

Thesis for the Degree of Doctor of Philosophy

February 2019

UNIVERSITY OF SOUTHAMPTON

Abstract

FACULTY OF SOCIAL, HUMAN & MATHEMATICAL SCIENCES

DIVISION OF SOCIAL STATISTICS AND DEMOGRAPHY

Thesis for the Degree of Doctor of Philosophy

NONIGNORABLE NONRESPONSE ADJUSTMENT USING FULLY NONPARAMETRIC APPROACH

by

Zahoor Ahmad

Nonresponse is an increasingly common problem in surveys. It is a problem because it causes missing data and, more importantly, because such missing data are a potential source of bias for estimates. Most of the methods dealing with nonresponse assume either explicitly or implicitly that the missing values are missing at random (MAR). We consider the situations where the probability to respond may depend on the outcome value even after conditioning on the covariates. For this kind of response mechanism, the missing outcomes are not missing at random (NMAR). The problem of missing data is handled either using fully parametric or semi-parametric approaches. These approaches have some potential issues, for example, strict distributional assumptions, heavy computations, etc.

We propose a fully non-parametric approach; first we postulate informative individual response probabilities i.e. the response probability may depend on the values of interest, and it may be specific to each individual. We treat the outcome variable as a fixed constant just like in the design based approach to survey sampling. Then we use an estimating equations approach to define the finite population parameters. Hence the approach is fully non-parametric provided the individual specific response probabilities can be estimated non-parametrically. For longitudinal data it is possible that one can have individual historic response rate and those can be used as an empirical estimator for the individual specific response probability. We utilize this individual historic response rate as an estimator for the unknown response probability. If the unknown response probability is consistently estimated then the proof for consistency of estimators is much easier and much more common. But in our case the historic response rate is unbiased but not consistent because practically we cannot have infinitely many historic time points but we can have many units. We try to prove the asymptotic unbiasedness of estimating equations and further the consistency of estimates but we could not prove it and the reason is discussed in Section 2.4. It provides an interesting investigation of pursing consistency. We develop the associated variance estimator. Being a fully non-parametric and computationally simple method, it can be used as a widely applicable exploratory data analysis technique for

NMAR mechanisms, as long as there exit a response history, in advance of more sophisticated and possibly more efficient modelling methods.

The approach is extended for a longitudinal setting and two types of EEs are defined to estimate parameters that are defined over time, such as the change between two successive time points or the regression coefficients involving outcomes over time. The associated variances estimators using both EEs are also developed.

The non-parametric estimating equations (NEE) approach for cross-sectional and longitudinal setting is not unbiased. We therefore develop bias-adjusting NEE approach to adjust the bias in cross-sectional and longitudinal parameter estimates. Another advantage of the bias-adjusting EE approach is that the variance estimator based on bias-adjusting NEE is expected to be less biased as compared to the unadjusted approach. Moreover, Taylor expansion is used to adjust the bias in variance estimate obtained from simple and bias-adjusted NEE approaches.

A comprehensive simulation study is conducted using real and simulated data to assess the performance of NEE and bias-adjusted NEE approaches under various settings for crosssectional as well as for longitudinal data.

Contents

Li	st of	Figures	V
\mathbf{Li}	st of	Tabes	ix
1	Intr	oduction	1
	1.1	Motivation of the Study	3
	1.2	An outline of NEE approach	4
	1.3	Study Achievements	5
	1.4	Outline of the remaining chapters	6
2	Nor	n-parametric Estimating Equations Approach for Cross-sectional Data	9
	2.1	NEE approach	9
	2.2	Consistency and CLT of $\tilde{\theta}$	13
		2.2.1 Consistency of $\tilde{\theta}$	13
		2.2.2 CLT of $\tilde{\theta}$	14
	2.3	On the Bias of NEE	16
	2.4	Consistency of $\hat{\theta}$	17
		2.4.1 Discussion of the Conditions	23
	2.5	Variance of $\hat{\theta}$	26
	2.6	Simulation Study	27
		2.6.1 Real Data	28
		2.6.2 Simulated Data	29
		2.6.3 Response Probability Models	29
		2.6.4 Simulation set-up	30
		2.6.5 Results	31
	2.7	Conclusions	36
3	Nor	-parametric Estimating Equations Approach for Longitudinal Data	38
	3.1	Introduction	38
	3.2	Two NEE estimators of change	40
	3.3	On the bias of NEE	42
	3.4	Simulation Study	44
		3.4.1 Data and Response Probability Models	44
		2.4.9 Cimulation set up	45

		3.4.3 Results	45
	3.5	Conclusions	48
4	Bias	s-adjusted Non-parametric Estimating Equations Approach	49
	4.1	Introduction	49
	4.2	Bias-Adjusted NEE approach for Cross-sectional Setting	50
		4.2.1 Bias-adjusted NEE	50
		4.2.2 Variance of $\hat{\theta}^{\star}$	50
	4.3	Bias-adjusted NEE approach for Longitudinal Setting	51
		4.3.1 Bias-adjusted NEE	51
		4.3.2 Variance of $\hat{\Delta}_t^*$ using Bias-adjusting EEs	53
	4.4	Simulation Study	55
		4.4.1 Results for cross-sectional setting	56
		4.4.2 Results for longitudinal parameters	59
	4.5	Conclusions	61
_	a		
5		nmary and Future Research	63
	5.1	·	63
	5.2	Technical Strengths	64
	5.3		65
	5.4	Limitations	66
Αl	PPE	NDICES	70
\mathbf{A}	Vari	iance of Change Estimator under Longitudinal Setting	71
		Variance of $\hat{\Delta}_t$	71
		A.1.1 Variance of $\hat{\Delta}_t$ using EE $\hat{H}(\Delta_t)$	
		A.1.2 Variance of $\hat{\Delta}_t$ using EE $\hat{H}(\theta_t, \theta_{t-1})$	
В		s-correction of variance estimator using Taylor expansion under cross-	
		ional setting	77
	B.1		77
	В.2	Bias-correction for vector $\hat{\theta}$ using Taylor expansion	78
\mathbf{C}	Bias	s-correction of variance estimator using Taylor expansion under longitu-	
		al setting	85
	C.1	Bias-correction for scalar $\widehat{Var}(\hat{\Delta}_t)$	85
		C.1.1 Bias-correction using $\hat{H}(\Delta_t)$	
		C.1.2 Bias-correction using $\hat{H}(\theta_{t,t-1})$	
	C.2	Bias-correction for vector $\widehat{Var}(\hat{\Delta}_t)$	
		C.2.1 Bias-correction using $\hat{H}(\Delta_t)$	
		C.2.2 Bias-correction using $\hat{H}(\theta_{t,t-1})$	89

\mathbf{D}	Results for Cross-sectional Setting		109
	D.1 Estimation of Mean		109
	D.2 Estimation of Regression Coefficients		116
\mathbf{E}	Results for Longitudinal Setting		125
	E.1 Estimation of Change in Mean		125
	E.2 Estimation of Change in Regression Coefficients		137

List of Figures

2.1	The function	\hat{H}_N and	$\operatorname{nd} \hat{H}_N^{-1}$																													2	C
-----	--------------	-----------------	------------------------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---

List of Tables

2.1	Summary of turnover values over three waves	28
2.2	Population mean and regression coefficients for all y's	29
2.3	Results under model (2.41), high response and high correlation. Population:	
	stable(Left),volatile(Middle)andsimulated(Right).......	32
2.4	Results under model (2.43), high response and high correlation. Population:	
	stable(Left),volatile(Middle)andsimulated(Right)......	32
2.5	Results under model (2.45), high response and high correlation. Population:	
	stable(Left),volatile(Middle)andsimulated(Right)......	33
2.6	Results under model (2.41), by response and correlation. Population: stable	
	(Left), volatile (Right). T=7, { Stable and Volatile: $\theta_7 = 11000.5$, Simulated:	
	$\theta_7 = 1619.253$ }	33
2.7	Results under model (2.41), high response and high correlation. Population:	
	stable(Left),volatile(Middle)andsimulated(Right)........	35
2.8	Results under model (2.43), high response and high correlation. Population:	
	stable(Left),volatile(Middle)andsimulated(Right)........	35
2.9	Results under model (2.45), high response and high correlation. Population:	
	stable(Left),volatile(Middle)andsimulated(Right)........	36
2.10	Results under model (2.41), by response and correlation. Population: stable	
	(Left), volatile (Right). T=7, { Stable and Volatile: $\beta_0 = 11023.06, \beta_1 =$	
	-0.4041232 , Simulated: $\beta_0 = 1176.529$, $\beta_1 = 36.56497$ }	36
3.1	Results under model (2.41), high response and high correlation. Population:	
0.1	stable(Left), volatile(Middle), simulated(right)	46
3.2	Results under model (2.43), high response and high correlation. Population:	
	stable(Left), volatile(Middle), simulated(right)	47
3.3	Results under model (2.41), by response and correlation. Population: stable(Left),	
	volatile(Middle), simulated(right)	47
3.4	Results under model (2.41) , by response and correlation. Population: stable \dots	48
4.1	Results under model (2.41), high response and high correlation. Population:	
	stable(Left),volatile(Middle)andsimulated(Right)......	57
4.2	Results under model (2.43), high response and high correlation. Population:	
	stable(Left), volatile(Middle) and simulated(Right)	57

4.3	Results under model (2.45), high response. Population: stable(Left), volatile(Middle)
	and simulated(Right)
4.4	Results under model (2.41), by response and correlation. Population: stable
	(Left), volatile (Right). T=7, { Stable and Volatile: $\theta_7 = 11000.5$, Simulated:
	$\theta_7 = 1619.253 \} \dots $
4.5	Results under model (2.41), high response and high correlation. Population:
	stable(Left), volatile(Middle), simulated(right)
4.6	Results under model (2.43), high response and high correlation. Population:
	stable(Left), volatile(Middle), simulated(right)
4.7	Results under model (2.45), high response. Population: stable(Left), volatile(Middle),
	$simulated(right) \dots \dots$
4.8	Results under model (2.41), by response and correlation. Population: stable(Left),
	volatile(Middle), simulated(right)
4.9	Results under model (2.41) , by response and correlation. Population: simulated . 61
D.1	Results under model (2.41) , by response and correlation. Population: stable $$ 109
D.2	Results under model (2.43), by response and correlation. Population: stable $$ 110
D.3	Results under model (2.45), by response and correlation. Population: stable $$ 110
D.4	Results under model (2.42), by response and correlation. Population: stable $$ 111
D.5	Results under model (2.44), by response and correlation. Population: stable $$ 111
D.6	Results under model (2.46), by response and correlation. Population: stable $$ 112
D.7	Results under model (2.41), by response and correlation. Population: volatile $$. $$. $$ 112
D.8	Results under model (2.43) , by response and correlation. Population: volatile 113
D.9	Results under model (2.45) , by response and correlation. Population: volatile 113
D.10	Results under model (2.41) , by response and correlation. Population: simulated 114
D.11	Results under model (2.43) , by response and correlation. Population: simulated 114
D.12	Results under model (2.45) , by response and correlation. Population: simulated $ 115$
D.13	Results under model (2.41) , by response and correlation. Population: stable $$ 116
D.14	Results under model (2.43), by response and correlation. Population: stable $$ 117
D.15	Results under model (2.45), by response and correlation. Population: stable $$ 118
D.16	Results under model (2.41), by response and correlation. Population: volatile $$ 119
D.17	Results under model (2.43), by response and correlation. Population: volatile $$. $$. 120
D.18	Results under model (2.45), by response and correlation. Population: volatile $$. $$. $$ 121
D.19	Results under model (2.41) , by response and correlation. Population: simulated 122
D.20	Results under model (2.43) , by response and correlation. Population: simulated 123
D.21	Results under model (2.45) , by response and correlation. Population: simulated 124
E.1	Results under model (2.41), by response and correlation. Population: stable(Left),
	volatile(Middle), simulated(right). T=t=4, {Stable and Volatile: $\Delta_4 = -746.55$ },
	{Simulated: $\Delta_4 = -699.5961$ }
E.2	Results under model (2.41), by response and correlation. Population: stable(Left),
	volatile(Middle), simulated(right). T=t=7, {Stable and Volatile: $\Delta_7 = -746.55$ },
	{Simulated: $\Delta_7 = 1448.408$ }

E.3	Results under model (2.41), by response and correlation. Population: stable(Left), volatile(Middle), simulated(right). T=t=10, {Stable and Volatile: $\Delta_{10} = -746.55$ },	196
E.4	{Simulated: $\Delta_{10} = 190.6555$ }	
E.5	{Simulated: $\Delta_4 = -699.5961$ },	
E.6	{Simulated: $\Delta_7 = 1448.408$ }	
E.7	{Simulated: $\Delta_{10} = 190.6555$ }	
E.8	Results under model (2.41), by response and correlation. Population: stable 1	
E.9	Results under model (2.41), by response and correlation. Population: volatile 1	
	Results under model (2.41), by response and correlation. Population: simulated	
	Results under model (2.43), by response and correlation. Population: stable 1	
	Results under model (2.43), by response and correlation. Population: volatile 1	
	Results under model (2.43), by response and correlation. Population: simulated	
	Results under model (2.45), by response and correlation	
	Results under model (2.45), by response and correlation	
	Results under model (2.41), by response and correlation. Population: stable(Left),	
2.10	volatile (Middle), simulated (right). $T=t=4$, {Stable and Volatile: $\Delta_4(\beta_0)=$	
	11023.06, $\Delta_4(\beta_1) = -0.4041$ }, {Simulated: $\Delta_4(\beta_0) = 114.9522$, $\Delta_4(\beta_1) = -0.5296$	
	$\Delta_4(\beta_1) = 0.0011$, (Simulated: $\Delta_4(\beta_0) = 111.0022$, $\Delta_4(\beta_1) = 0.0220$	137
E.17	Results under model (2.41), by response and correlation. Population: stable(Left), volatile(Middle), simulated(right). T=t=7, {Stable and Volatile: $\Delta_7(\beta_0) = 11023.06$, $\Delta_7(\beta_1) = -0.4041$ }, {Simulated: $\Delta_7(\beta_0) = 1176.529$, $\Delta_7(\beta_1) = 36.56497$	
	}	138
E.18	Results under model (2.41), by response and correlation. Population: stable(Left), volatile(Middle), simulated(right). T=t=10, {Stable and Volatile: $\Delta_{10}(\beta_0) = 11023.06$, $\Delta_{10}(\beta_1) = -0.4041$ }, {Simulated: $\Delta_{10}(\beta_0) = 2222.861$, $\Delta_{10}(\beta_1) = 14.4251$ }	
E.19	Results under model (2.43), by response and correlation. Population: stable(Left), volatile(Middle), simulated(right). T=t=4, {Stable and Volatile: $\Delta_4(\beta_0) = 11023.06$, $\Delta_4(\beta_1) = -0.4041$ }, {Simulated: $\Delta_4(\beta_0) = 114.9522$, $\Delta_4(\beta_1) = -0.5296$	
	}	140
E.20	Results under model (2.43), by response and correlation. Population: stable(Left), volatile(Middle), simulated(right). T=t=7, {Stable and Volatile: $\Delta_7(\beta_0) = 11023.06$, $\Delta_7(\beta_1) = -0.4041$ }, {Simulated: $\Delta_7(\beta_0) = 1176.529$, $\Delta_7(\beta_1) = 36.56497$	
	}	141

E.21	Results under model (2.43), by response and correlation. Population: stable(Left),
	volatile (Middle), simulated(right). T=t=10, {Stable and Volatile: $\Delta_{10}(\beta_0)$ =
	$11023.06, \Delta_{10}(\beta_1) = -0.4041$, {Simulated: $\Delta_{10}(\beta_0) = 2222.861, \Delta_{10}(\beta_1) =$
	14.4251 }
E.22	Results under model (2.45) , by response and correlation. Population: stable (Left),
	$volatile(Middle), simulated(right) \\ \ \dots \\ \ \ \dots \\ \$
E.23	Results under model (2.41) , by response and correlation. Population: stable $$ 144
E.24	Results under model (2.41) , by response and correlation. Population: volatile 145
E.25	Results under model (2.41) , by response and correlation. Population: simulated 146
E.26	Results under model (2.43) , by response and correlation. Population: stable $$ 147
E.27	Results under model (2.43) , by response and correlation. Population: volatile 148
E.28	Results under model (2.43), by response and correlation. Population: simulated 149
E.29	Results under model (2.45), by response and correlation
E.30	Results under model (2.45), by response and correlation

Declaration of Authorship

I, Zahoor Ahmad

declare that this thesis and the work presented in it are my own and has been generated by me as the result of my own original research.

Title of thesis: Nonignorable Nonresponse Adjustment using Fully Nonparametric Approach

I confirm that:

- 1. this work was done wholly or mainly while in candidature for a research degree at this University;
- 2. where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated;
- 3. where I have consulted the published work of others, this is always clearly attributed;
- 4. where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work;
- 5. I have acknowledged all main sources of help;
- 6. where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself;
- 7. Part of this work have been published as:
 - Ahmad, Z. and Zhang, L-C. (2016). *Modelling Progressive Data*. Proceedings of the JSM-2016, Government Statistics Section, Chicago, Illinois: American Statistical Association, USA.
 - Ahmad, Z. and Zhang, L-C. "Nonparametric Estimation for Longitudinal Data with Informative Missingness" in Peter Lynn Advances in Longitudinal Survey Methodology, John Wiley & Sons, Inc. (to be appeared).

Signature:	Date: 15/06/2020
------------	------------------

Acknowledgments

Firstly, I would like to express my sincere gratitude to my supervisors Professor Li-Chun Zhang and Professor Danny Pfeffermann for their continuous support during my Ph.D study, for their patience, motivation, and immense knowledge. Their guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better supervisors and mentors for my Ph.D study.

Besides my advisors, I would like to thank Dr Yves Berger and Dr Dave Holmes for their insightful comments and encouragement during my upgrade and annual reviews.

A very special gratitude goes to ESRC for providing me the funding for this research work. Last but not the least, I would like to thank my family, my parents and to my brothers and sisters for supporting me morally throughout writing this thesis and my life in general.

Chapter 1

Introduction

Nonresponse is an increasingly common problem in surveys. It is a problem because it causes missing data and, more importantly, because such missing data are a potential source of bias for estimates. In the presence of unit nonresponse, it is often assumed that each unit in the population has an associated probability to respond. Such a response probability is unknown and several methods are proposed to estimate it either explicitly, using response propensity modelling like logistic regression models or implicitly, using response homogeneity groups or more generally calibration (see Sarndal and Lundstrom (2005), for an overview). Once estimates are computed, a commonly used method to deal with unit nonresponse is reweighting: sampling weights of the respondents are adjusted by the inverse of the estimated response probability providing new weights. Estimation of response probabilities typically requires the availability of auxiliary information, either in the form of the value of some auxiliary variables for all units in the originally selected sample or of their population mean or total.

Next, missing data mechanisms concern the relationship between the response indicators and the values of the variables in the corresponding data matrix. Missing data mechanisms are usually categorized into three classes: missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). If the response indicators are unrelated to both the missing outcomes and the set of observed outcomes, the observed outcomes are a random subset of the entire sample. This is referred to as MCAR. If the response indicators depend on the observed outcomes (and other auxiliary variables) but are otherwise unrelated to the missing values, the missing data are said to be MAR. MAR mechanisms are most commonly assumed in statistical analysis including longitudinal data analysis. However, in many situations, the response indicators are related to the missing values, even after controlling for all the observed values, referred to as MNAR. Ignoring the impact of the MNAR mechanism can result in serious bias of inference. Over the years, a variety of models and methods have been developed to account for MNAR mechanisms in longitudinal data analysis.

When covariates are known for every sample unit, a common way to deal with the nonresponse is to postulate a parametric model for the joint distribution of the outcome variable and response indicator given the covariates. Little and Rubin (2002) distinguish between selection models and pattern-mixture models, depending on how the joint distribution is factorized. For fully *parametric* selection models, the likelihood based on all the units, respondents or not, can be used to estimate the parameters of the model for the outcome variable as well as the model

for the response probability given the outcome variable (and covariates). Qin et al. (2002) propose a semi-parametric estimation method for the case where the covariates are only known for the respondents. They assume a parametric model on the response mechanism but a non-parametric model on the distribution of the outcome variable and the covariates. Pfeffermann and Sikov (2011) propose a fully parametric estimation approach for NMAR nonresponse, which does not require knowledge of the covariates for the nonrespondents.

Longitudinal data analysis is of great interest in a wide array of disciplines across the medical, economic and social sciences. Cross-sectional data can only provide a snapshot at a single point of time and does not possess the capacity to reflect change, growth, or development. Aware of the limitations in cross-sectional studies, many researchers have advanced the analytic perspective by examining data with repeated measurements. By measuring the same variable of interest repeatedly over time, the change is displayed, and constructive findings can be derived with regard to the significance of pattern revealed. Data with repeated measurements are referred to as longitudinal data. In many longitudinal data designs, subjects are assigned specified levels of a treatment or subjected to other risk factors over a number of time points that are separated by specified intervals. Analysing longitudinal data poses many challenges due to several unique features inherent in such data. The most troublesome feature of longitudinal analysis is missing data in repeated measurements. There is an enormous literature on literature missing data methods in longitudinal studies. We refer the reader to the excellent books by Diggle et al. (2002), Fitzmaurice et al. (2004), Verbeke and Molenberghs (2000), Verbeke and Molenberghs (2005), Molenberghs and Kenward (2007), Daniels and Hogan (2008), Fitzmaurice et al. (2008), and the many references therein. Ibrahim and Molenberghs (2009) provide a review on missing data approaches in longitudinal studies. Most of the literature focuses on maximum likelihood methods of estimation with nonignorable missing longitudinal data, predominantly focusing on mixed-effects models and normally distributed outcomes. A substantial part of the literature also assumes monotone patterns of missingness, where sequences of measurements on some subjects simply terminate prematurely. Approaches using selection models include Diggle and Kenward (1994), Little (1995), and Ibrahim et al. (2001). Approaches based on pattern-mixture models include Little (1994, 1995), Little and Wang (1996), Hogan and Laird (1997), and Thijs et al. (2002). Troxel et al. (1998a) and Troxel et al. (1998b) propose a selection model which is valid for nonmonotone missing data but is intractable for more than three time points.

While discussing the semi-parametric approaches, Kim and Yu (2011) proposed the exponential tilting model and developed a semiparametric estimation procedure for nonignorable missing data. Tang et al. (2014) further extended the idea of Kim and Yu (2011). Zhao and Shao (2015) proposed a pseudo likelihood approach to generalized linear models in the presence of nonignorable missing data, and presented a two-step iteration algorithm to implement the numerical maximization of the pseudo likelihood. Matei and Ranalli (2015) proposed a latent modeling approach to deal with non-ignorable nonresponse in survey sampling. Feder and Pfeffermann (2016) discussed the use of empirical likelihood while dealing with NMAR nonresponse along with informative sampling and indicated that the empirical likelihood approach has the computational advantages over fully parametric approaches.

There is a large literature on the use of estimating equations (EE); see, for example, Go-

dambe (1991a), Liang and Zeger (1995), Hardin and Hilbe (2003) and Zhou et al. (2008). Robins et al. (1994) suggested a semi-parametric approach based on inverse response-probability weighted EE. It is based on the assumption that the probability of nonresponse is either known or can be modelled parametrically. FitzGerald (2002) introduced a weighting method for handling missing data in generalized estimating equations (GEE) analysis. The method relies also on the specification of a parametric nonresponse model.

All the aforementioned NMAR techniques require a parametric model for the response probability, regardless how the outcome variable is modelled. In this thesis we present a *non-parametric EE (NEE)* estimation approach for cross-sectional as well as longitudinal data analysis, where we neither specify a parametric model for the response probability nor the outcome variable. This can provide a useful, flexible alternative to the existing methods. The basic idea can be outlined below in Section 1.2.

1.1 Motivation of the Study

As we discussed above that the problem of NMAR nonresponse is handled either using fully parametric or semi-parametric approaches and these approaches have some potential issues, for example, strict distributional assumptions, heavy computations, etc.

We propose a fully non-parametric approach in the sense that; first we postulate informative individual response probabilities i.e. the response probability may depend on the values of interest, and it may be specific to each individual. For example, the actual response at a business could depend on the accounting system, the person responsible for the response, etc. all of which can potentially be related to the size of the business and hence possibly the response variable y of interest, beyond whatever covariates x that are available. Meanwhile, there is bound to be some stability over a limited time period. For such a scenario, one assumes the response probability to be individual (hence, informative) but stable over a given period of time. Each individual response probability is an unknown parameter and the number of parameters increases by increasing the population size. Second we treat the outcome variable as a fixed constant just like in the design based approach to survey sampling. Then we use an estimating equations approach to define the finite population parameters. Hence the approach is fully non-parametric provided the individual specific response probabilities can be estimated non-parametrically.

For longitudinal data it is possible that one can have an individual historic response and this can be used as an empirical estimator for the individual specific response probability. We utilise this individual historic response rate as an estimator for the unknown response probability and develop NEE approach to estimate population parameters for both cross-sectional and longitudinal data under informative nonresponse. We cannot claim that this is the only alternative to the above discussed parametric and semi-parametric approaches while dealing with informative missing data. This is totally a new idea of dealing with informative missing data using a fully non-parametric approach. In this thesis our aim is to develop the basic theory of the NEE approach and to explore it as potential alternative to the many existing approaches.

We extended this approach for the estimation of longitudinal parameters with some additional treatment. The associated variance estimators are given for both settings. The approach is as such applicable to the longitudinal missing data to estimate cross-sectional and longitudinal parameters. The general outline of approach is given below.

1.2 An outline of NEE approach

In this section we outline a new NEE approach to cross-sectional and longitudinal data with MNAR nonresponse, the details of which will be developed in the subsequent Sections. Under the NEE approach to MNAR nonresponse, we do not assume a parametric model of the response probabilities that pertain to all the population units. To accommodate potentially informative missing data, we postulate an individual response probability which may depend on the longitudinal outcomes of interest and covariates specific to each observational unit. The individual response probability can be considered as a propensity of observation that accounts for the initial sample selection mechanism in addition, which may be probability sampling or nonrandom or informative itself. That is, the response indicator is the product of sample inclusion indicator and survey response indicator. The outcome values are also treated non-parametrically as unknown constants, just like in the design-based approach to survey sampling. Under this set-up, the observation propensity is estimated using individual-specific observation history, without involving the others in the population. The approach is applicable whenever there exist historical response/observation indicators. In other words, any unit who never responds will not be included in the estimation

To enable inference regarding the population mean and regression coefficients about the never respondents based on the sometime respondents, we make the following assumption. For cross sectional setting, while considering the population mean, we can assume that the population mean of never-respondents is the same as that of the sometime-respondents, or so conditional on some appropriate auxiliary variables. For regression coefficients, we can assume that the regression model that holds for never-respondents is the same as for the sometime-respondents. For the longitudinal setting, while considering the population mean change parameter, we can assume that the population mean change of never-respondents is the same as that of the population of sometime-respondents, or so conditional on some appropriate auxiliary variables that need to be same for both time points. For change in population regression coefficients, we can assume the same regression model holds for never-respondents and sometime-respondents for each time point.

Let the target of estimation be given as a finite population parameter defined in terms of a population EE. For its estimation we use the observed (respondent) NEE, where the unknown individual response propensity is replaced by an estimate based on the response history of the same individual. For instance, one may use the observed historic response rate for a unit to estimate its individual response probability, under the assumption that the unknown response probability is "stable" over the given period of time. There can be different assumptions of the exact nature of such stability over time, e.g. stable before the dropout for a unit with monotone missing data pattern, but over the entire history for someone with a nonmonotone pattern. Or,

for example, unknown response probability have a trend then still we can make this assumption and assume the model congenial to this assumption. We can fit model like that and put time in to it. The key point is that we are estimating every body individually. We can allow different assumptions for each individuals even. For someone we can allow to fit a linear trend and for some we use the stable assumption if we want. Of course if our assumption is wrong then their is some limitation that the results will not be okay and that can be checked by simulations. We don't have to be stable, its just an easy illustration of NEE to start. Our approach is not like that, if one have stable response then only one can apply this, if one doesn't have stableness one can't apply. No, rather to the contrary, because this approach is completely individual it allows to use different models, different assumption for different individuals. One doesn't need to have a single model to cover every one. This is actually the strength of the flexibility of our approach compared to the existing parametric approaches.

To focus the idea, NEE-based estimators for mean at current wave and two different NEE-based estimators for the *change* between any two waves will be discussed in forthcoming relevant chapters, although the NEE formulation accommodates many other types of analysis, such as estimation of regression coefficients or analysis of variance.

While the estimator of the individual response probability can be unbiased according to the given assumption, it can never be consistent due to the fact that the response history cannot be infinitely long for anyone. Moreover, the plug-in observed NEEs will be somewhat biased if the 'score-term' in the population EE is correlated with the response propensity, as in the case of informative nonresponse. The matter will be considered in forthcoming chapters concerning cross-sectional setting as well as longitudinal settings. There we consider bias in estimates, possible venues for bias adjustment, the associated variance estimation. We illustrate and investigate the performance of the NEE approach under both settings using simulation study. Finally, a summary of the conclusions are given for each chapter.

1.3 Study Achievements

We developed a fully non-parametric estimating equation approach to accommodate potentially informative missing data and we postulate an individual response probability which may depend on the longitudinal outcomes of interest and covariates specific to each observational unit. The individual response probability is estimated using individual historic response. The key point is that we are estimating every body individually. We can allow different assumptions for each individuals even. This is actually the strength of the flexibility of our approach compared to the existing parametric approaches. Currently we assume the stable response assumption and the response probability is estimated using historic response rate. This simple empirical estimator is used to estimate the parameters under informative nonresponse. We also develop the associated variance estimator. Compared to alternative fully or semi-parametric approaches, our approach is simple in construction and easy in computation and does not depend on strict distributional assumptions about the outcome variable, and the explicit/parametric form of the response probability model.

The approach is extended for a longitudinal setting and two types of EEs are defined to

estimate parameters that are defined over time, such as the change between two successive time points or the regression coefficients involving outcomes over time. Theoretical properties of both EEs are established.

In our case we have biased estimating equations. We therefore develop bias-adjusted EE approach to reduce the bias in estimates of cross-sectional and longitudinal parameters. Another advantage of bias-adjusted EE approach is that the variance estimator based on bias-adjusting NEE is expected to be less biased as compared to the naïve NEE, because we used bias-adjusted EE to obtain variance and its plug-in estimator and then Taylor expansion is used on this bias-corrected estimator to further correct the bias.

A comprehensive simulation study is conducted to assess the performance of the NEE and bias-adjusted NEE approaches for various simulation settings using real as well as simulated data under both cross-sectional and longitudinal settings.

1.4 Outline of the remaining chapters

The aim of the thesis is to develop a fully non-parametric estimating equations approach for cross-sectional and longitudinal missing data. The theoretical development of the approach and its application is explained in the following chapters.

Chapter 2 cover the NEE approach that is based on the cross-sectional setting. In this Chapter, we postulate the individual specific response probability model for the response indicator and then propose a response probability estimator based on the individual historic response rate. The finite population EEs are developed to define the finite population parameters and then EEs based on unknown response probabilities are provided. The observed EEs based on estimated response probabilities are also defined and this EEs are used to estimate the parameters. The NEE is not unbiased because we are using estimated response probabilities, and hence the bias is also derived for the EEs. We try for the consistency of the estimators, however that can not be proved but an interesting effort is given. The corresponding variances of the estimators are derived and its plug-in estimators are also given. A comprehensive simulation study for the cross-sectional setting is also given using real data as well as simulated data.

In Chapter 3, we extend the NEE approach from the cross-sectional setting to the longitudinal setting and define two NEEs; first, the NEE that uses the individuals who respond at both time points and second, NEE that uses also the individuals who respond at only one of the two time points. We also defined the unknown response probability models for the respective NEEs. To capture different dropout patterns underlying the assumed models, different response probability estimators are suggested. The corresponding variance of estimators are derived and their plug-in estimators are given for both types of NEEs. A simulation study using real data as well as simulated data is also given.

The observed NEEs for cross-sectional and longitudinal settings are not unbiased and the bias is discussed in their respective Chapters. In Chapter 4, we provide the bias-adjusting NEE approach for both cross-sectional and longitudinal settings. Here we define only the observed bias-adjusted NEEs for both settings. The aim of defining the bias-adjusted EE is to reduce the bias in estimates and possibly the bias in variance estimates using different venues for bias

adjustment. The other settings for bias-adjusted EEs remain the same as for their corresponding simple NEEs discussed in previous chapters. The variance of estimators are derived and their plug-in estimators are given for bias-adjusted NEEs. The bias in plug-in estimators is further corrected using Taylor expansion of the variance estimator using the simple NEE and the bias-adjusted NEE. The simulation study using real data as well as simulated data is also given for the bias-adjusted NEE approach.

We conclude the main outcomes of the study in Chapter 5. The main findings of simple NEE for cross-sectional and longitudinal settings are discussed and then discussion on comparison of simple and bias-adjusted NEEs for both settings is also covered in this Chapter. The strengths and limitations of the works are also discussed along with some future research directions.

Chapter 2

Non-parametric Estimating Equations Approach for Cross-sectional Data

In the previous chapter we provide a general outline of our approach to handle informative missing data for the cross-sectional and longitudinal setting in Section 1.2. In this chapter we provide the theoretical detail on the approach under the cross-sectional setting. After providing the general outline of NEE approach above in Section 1.2, the set-up given below in Section 2.6.3 explains the model for response probabilities, their estimator and the way forward to use NEE approach for estimation of the finite population mean and regression coefficients. In Section 2.2 we discuss the asymptotic properties of the theoretical estimator and an effort on the consistency of actual estimator is discussed in Section 2.4. The hypothetical estimator is based on the known response probability that actually cannot exist in reality but having the population data we used it to know the reasons for bad performances of the actual estimator that is based on estimated response probabilities. The variance and its plug-in estimator of the actual estimator is given in Section 2.5 followed by a simulation study using real and simulated data.

2.1 NEE approach

Let $U = \{1, ..., N\}$ be the target finite population, and let y_i be the variable of interest, for $i \in U$. Let $\delta_i = 1$ indicate response, in which case one observes y_i , and $\delta_i = 0$ if y_i is missing. Under the NEE approach, y_i is treated as a fixed constant. *Informative missing* is the case provided $\Pr(\delta_i = 1 | y_i = y) \neq \Pr(\delta_i = 1 | y_i = y')$ for $y \neq y'$. For a *flexible* model that accommodates informative missingness, put

$$\Pr(\delta_i = 1 | y_i, x_i) = \pi_i \tag{2.1}$$

i.e. each unit is allowed its own individual response probability. Clearly, the model as such is unidentifiable. Now, suppose that there exists data of response on T occasions, denoted by $(\delta_{i1}, \ldots, \delta_{iT})$ for i. Then, under the assumption π_i is the same on all these T occasions, an

unbiased estimator is given by

$$\hat{\pi}_i = \sum_{t=1}^T \delta_{it} / T, \tag{2.2}$$

To show that $\hat{\pi}_i$ is an unbiased estimator of π_i , note that $\delta_{it} \sim Bernoulli(\pi_i)$ where δ_{it} 's are assumed to be independent of each other for different t's and π_i is unknown response probability that is same for each time point under stable response assumption. Now we have $E(\hat{\pi}_i|T,\delta_{iT}=1)=\sum_{t=1}^T E(\delta_{it}|\pi_i,\delta_{iT}=1)/T=T\pi_i/T=\pi_i$.

The δ_{iT} is the current time point at which the parameters will be estimated but for simplicity below we denote the current time point with δ_i .

The EE-approach is developed based on these estimates of response probabilities for all $i \in U$ to estimate the finite population parameters such as the mean and regression coefficients.

Let θ_0 be a finite population parameter defined as the solution to the following estimating equations

$$H_N(\theta) = N^{-1} \sum_{i=1}^{N} S_i(\theta); \quad H_N(\theta_0) = 0,$$
 (2.3)

where $S_i()$ is a scalar or vector function with the y-values considered fixed. It is the contribution to the EE from the *i-th* unit. The (unobserved) estimating equations based on the responding units are given by,

$$\tilde{H}_N(\theta) = N^{-1} \sum_{i=1}^N \frac{\delta_i}{\pi_i} S_i(\theta) \quad and \quad \tilde{H}_N(\tilde{\theta}) = 0, \tag{2.4}$$

where π_i denote the unknown response probability at each time point under stable response assumption and $\tilde{\theta}$ is the theoretical estimator of θ . Now replacing the conditional unbiased estimator $\hat{\pi}_i$ of π_i given $\delta_i = 1$ in (2.4), we have the respondents plug-in NEE,

$$\hat{H}_N(\theta) = N^{-1} \sum_{i=1}^N \frac{\delta_i}{\hat{\pi}_i} S_i(\theta) \quad and \quad \hat{H}_N(\hat{\theta}) = 0.$$
(2.5)

In particular, if only historical responses are used, i.e. excluding the current $\delta_i = 1$ while computing the $\hat{\pi}_i$, one can define $\hat{\pi}_i^{-1} = 0$ if $\sum_{t=1}^{T-1} \delta_{it} = 0$.

The population parameters are defined by the estimating equations (2.3) and the basis of inference is the model for the response indicator given in (2.1). When the census estimating equations (2.3) are the likelihood equations, the estimators obtained by solving these EE with known inclusion probabilities are known in the sampling literature as 'pseudo mle' (pmle). See Binder (1983), Skinner et al. (1989), Pfeffermann (1993), Pfeffermann (1996) and Godambe and Thompson (2009) for discussion with many examples. One might draw an analogy between the observed EE and the pseudo-MLE approach; but the S_i is not necessarily derived from likelihood, and the $\hat{\pi}_i$ is estimated instead of known.

Notice that our approach is fully non-parametric and basis of inference is the model for response and only the δ_i is treated as random variable. The Rubin (1976) theory of nonresponse

mechanism may not be completely applied here because we are estimating the response probability using the response rate rather fitting a model. Although we assume an informative model for response given in (2.1), the estimate of the response probability is based on the response rate and if only past responses are used, then $\hat{\pi}_i$ looks no different to MAR-weighting class adjustment. When the current response indicator is used, $\hat{\pi}_i$ still looks like a weighting-class adjustment, but nonresponse can be NMAR by virtue of (2.1).

Below we illustrate the EE approach for estimation of the finite population mean, variance and regression coefficient in following examples.

Example-1 (Estimation of Population Mean): To illustrate the estimating equations approach for estimation of a finite population mean θ , by finite population EE (2.3), the θ can be defined as

$$\sum_{i=1}^{N} (y_i - \theta) = 0 \implies \theta_{FP} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

where the function $y_i - \theta$ is not necessarily derived from the likelihood. To estimate θ using (2.5), the observed estimating equations along with expression of estimator can be written as

$$\sum_{i=1}^{r} \hat{w}_{i} (y_{i} - \theta) = 0 \implies \hat{\theta} = \sum_{i=1}^{r} \hat{w}_{i} y_{i} / \sum_{i=1}^{r} \hat{w}_{i}$$

where $\hat{w}_i = \hat{\pi}_i^{-1}$.

Example-2 (Estimation of Population Mean and Variance): To illustrate the estimating equations approach for estimation of the finite population mean and variance, suppose y_i follow normal distribution with mean θ and variance σ^2 . Then the density $f_p(y_i)$ for the population can be written as

$$f_p(y_i) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left\{-\frac{1}{2}\left(\frac{y_i - \theta}{\sigma}\right)^2\right\}.$$

The log-likelihood function is

$$log(L) = -\frac{N}{2}log(\sigma^2) - \frac{N}{2}log(2\pi) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - \theta)^2.$$

The census parameters θ and σ^2 are defined by the finite population EE given in (2.3), as

$$\sum_{i=1}^{N} (y_i - \theta) / \sigma^2 = 0 \implies \theta_{\text{FP}} = \frac{1}{N} \sum_{i=1}^{N} y_i$$
$$\sum_{i=1}^{N} \left\{ (y_i - \theta)^2 / \sigma^4 - 1/\sigma^2 \right\} = 0 \implies \sigma_{\text{FP}}^2 = \frac{1}{N} \sum_{i=1}^{N} (y_i - \theta)^2,$$

where the functions $(y_i - \theta)/\sigma^2$ and $(y_i - \theta)^2/\sigma^4 - 1/\sigma^2$ are not necessarily derived from the likelihood. To estimate θ and σ^2 using (2.5), the response estimating equations along with

expression of estimators can be written as

$$\sum_{i=1}^{r} \hat{w}_{i} (y_{i} - \theta) = 0 \implies \hat{\theta} = \sum_{i=1}^{r} \hat{w}_{i} y_{i} / \sum_{i=1}^{r} \hat{w}_{i}$$
$$\sum_{i=1}^{r} \hat{w}_{i} \left\{ (y_{i} - \theta)^{2} - \sigma^{2} \right\} = 0 \implies \hat{\sigma}^{2} = \sum_{i=1}^{r} \hat{w}_{i} (y_{i} - \theta)^{2} / \sum_{i=1}^{r} \hat{w}_{i}.$$

Example-3 (Estimation of Regression Coefficients): To illustrate the estimating equations approach for estimation of regression coefficients, suppose the density of the population is

$$f_p(y_i|x_i) = \frac{1}{\sqrt{2\pi\sigma^2 x_i}} exp\left\{-\frac{1}{2} \left(\frac{y_i - \beta_0 - \beta_1 x_i}{\sigma\sqrt{x_i}}\right)^2\right\}.$$

The log-likelihood function can be written as

$$log(L) = -\frac{N}{2}log(\sigma^{2}) + \sum_{i=1}^{N} log(1/\sqrt{x_{i}}) - \frac{N}{2}log(2\pi) - \frac{1}{2\sigma^{2}} \sum_{i=1}^{N} \left(\frac{y_{i} - \beta_{0} - \beta_{1}x_{i}}{\sqrt{x_{i}}}\right)^{2}.$$

The census parameters β_0 , β_1 and σ^2 are defined by the finite population estimating equations (2.3) as

$$\sum_{i=1}^{N} \frac{1}{\sigma^2 x_i} (y_i - \beta_0 - \beta_1 x_i) = 0,$$
$$\sum_{i=1}^{N} \frac{1}{\sigma^2} (y_i - \beta_0 - \beta_1 x_i) = 0,$$

$$\sum_{i=1}^{N} \left\{ \frac{1}{\sigma^4} \left(\frac{y_i - \beta_0 - \beta_1 x_i}{\sqrt{x_i}} \right)^2 - \frac{1}{\sigma^2} \right\} = 0.$$

Now, solving the above equations, the finite population parameters are

$$\beta_{\text{FP}} = \left(\dot{X}_N^\top \dot{X}_N\right)^{-1} \dot{X}_N \dot{Y}_N$$

$$SD\left(\beta_{\text{FP}}\right) = diag\left(\sqrt{\sigma^2 \left(\dot{X}_N^\top \dot{X}_N\right)^{-1}}\right)$$

$$\sigma_{\text{FP}}^2 = \frac{1}{N} \sum_{U} \left[\frac{1}{x_i} \left(y_i - \beta_0 - \beta_1 x_i\right)^2\right] = \frac{\epsilon_N^\top W_N \epsilon_N}{N},$$

where $\epsilon_N=(y_i-x_i\beta_{FP})$ and $W_N=diag\,[1/x_i]$, $X_N=[1~x_i]_{N\times 2},\,\dot{X}_N=W_NX_N,\,\dot{Y}_N=W_NY_N$

and $\beta_{\text{FP}} = (\beta_0, \beta_1)^{\top}$. From (2.5), the observed estimating equations can be written as

$$\sum_{i=1}^{r} \frac{\hat{w}_i}{\sigma^2 x_i} (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\sum_{i=1}^{r} \frac{\hat{w}_i x_i}{\sigma^2 x_i} (y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\sum_{i=1}^{r} \hat{w}_i \left\{ \frac{1}{\sigma^4} \left(\frac{y_i - \beta_0 - \beta_1 x_i}{\sqrt{x_i}} \right)^2 - \frac{1}{\sigma^2} \right\} = 0.$$

Solving above estimating equations, the resulting estimators are

$$\hat{\beta} = \left(\dot{X}_r^{\top} \dot{X}_r\right)^{-1} \dot{X}_r \dot{Y}_r$$

$$SE\left(\hat{\beta}\right) = diag\left(\sqrt{\sigma^2 \left(\dot{X}_r^{\top} \dot{X}_r\right)^{-1}}\right)$$

$$\hat{\sigma}^2 = \frac{1}{\sum_r \hat{w}_i} \sum_r \left[\frac{\hat{w}_i}{x_i} \left(y_i - \beta_0 - \beta_1 x_i\right)^2\right] = \frac{\hat{\epsilon}_r^{\top} \hat{W}_r \hat{\epsilon}_r}{\sum_r \hat{w}_i}.$$

where $\hat{\epsilon}_r = (y_i - x_i \hat{\beta})$ and $\hat{W}_r = diag[\hat{w}_i/x_i]$, $\dot{X}_r = \hat{W}_r X_r$, $\dot{Y}_r = \hat{W}_r Y_r$, $X_r = [1 \ x_i]_{r \times 2}$ and $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1)^{\top}$.

2.2 Consistency and CLT of $\tilde{\theta}$

Below we consider first the theoretical properties of the hypothetical estimator $\tilde{\theta}$ that is the solution of EE $\tilde{H}_N(\theta)$ given in (2.4). The $\tilde{\theta}$ is the solution of hypothetical EE in which response probability π_i is known and y is assumed fixed like designed based approach in survey sampling. Our estimator is like an HT estimator and in literature the CLT and consistency of HT estimator is much more common where inclusion probability is known. And similarly if the response probability is obtained using logistic model, then the response probability can be estimated consistently and the CLT and consistency of estimators is also straightforward. We can prove the consistency of $\tilde{\theta}$ using common procedure but we use an approach given by Foutz (1977) because we investigate the consistency of $\hat{\theta}$ using the same approach below in Section 2.4 that is not straightforward. The detail is given in Section 2.4.

The consistency and CLT of θ is proved below in subsequent two sections.

2.2.1 Consistency of $\tilde{\theta}$

Using the approach of Foutz (1977), the following Lemma (2.2.1) states that there exists a unique consistent solution of $\tilde{H}_N(\theta)$.

Lemma 2.2.1 With probability going to one as $N \to \infty$, an estimator $\tilde{\theta}$ which satisfies

(A) The elements of the matrix $\tilde{H}'_N(\theta) = N^{-1} \sum_{i=1}^N (\delta_i/\pi_i) \partial S_i(\theta) / \partial \theta$ exist and are continuous on Θ ;

- (B) $\tilde{H}'_N(\theta) \tilde{G}_N(\theta)$ converges to 0 in probability, where $\tilde{G}_N(\theta) = E[\tilde{H}'_N(\theta)]$;
- (C) The matrix $\tilde{H}'_N(\theta)$ evaluated at the true parameter θ_0 is negative definite with probability converging to one as $N \to \infty$;
- (D) The estimating equations $\tilde{H}_N(\theta)$ are unbiased, i.e. at the true parameter θ_0 , $E[\tilde{H}_N(\theta_0)] = H_N(\theta_0) = 0$;

exists and is unique. Moreover, $\tilde{\theta}$ is consistent for the true parameter θ_0 .

We investigate consistency for $\hat{\theta}$ below in section 2.4 in detail by following the general idea of Foutz (1977) approach. The first three conditions (A)–(C) for $\tilde{H}_N(\theta)$ can be discussed on the same lines as given below in section 2.4.1. For condition (D), we can write,

$$E[\tilde{H}_N(\theta_0)] = \frac{1}{N} \sum_{i=1}^{N} E\left(\frac{\delta_i}{\pi_i}\right) S_i(\theta_0) = \frac{1}{N} \sum_{i=1}^{N} S_i(\theta_0) = H_N(\theta_0) = 0$$

which implies that $\tilde{H}_N(\theta)$ are unbiased.

2.2.2 CLT of $\tilde{\theta}$

In the literature, a CLT of estimators based on estimating equations is given when y is random. We consider the finite population estimating equations in which $y_i's$ are considered fixed. Below we prove the CLT of theoretical estimator $\tilde{\theta}$ that is solution of the estimation equation given in (2.4). Suppose $W_i = \frac{\delta_i}{\pi_i} S_i(\theta)$ then W_i are non-IID random variable. Below we will prove CLT for scalar $\tilde{\theta}$.

Lemma 2.2.2 (CLT of $\tilde{H}_N(\theta)$): Let $W_i = \delta_i S_i(\theta)/\pi_i$ be independently distributed with means $E(W_i) = \xi_i$ and variances σ_i^2 and with finite third moments. Asymptotically, as $N \to \infty$,

$$Z_N(\theta) = \frac{\tilde{H}_N(\theta) - H_N(\theta)}{\sqrt{Var(\tilde{H}_N(\theta))}} = \frac{\sqrt{N}(\tilde{H}_N(\theta) - H_N(\theta))}{\sqrt{\sum_{i=1}^N \sigma_i^2/N}} \xrightarrow{D} N(0, 1).$$

Proof: We can write

$$E(W_i) = S_i(\theta)E\{(\delta_i/\pi_i)|\pi_i\} = S_i(\theta) = \xi_i$$

and

$$Var(W_i) = \left\{ \frac{1 - \pi_i}{\pi_i} + \frac{V(\pi_i)}{\pi_i^3} \right\} S_i^2(\theta)$$

and let

$$s_N^2 = \sum_{i=1}^N Var(W_i) = \sum_{i=1}^N \sigma_i^2.$$
 (2.6)

Using Lyapounov theorem,

$$Z_N(\theta) = \frac{\sqrt{N}(\tilde{H}_N(\theta) - H_N(\theta))}{\sqrt{s_N^2/N}} \xrightarrow{D} N(0, 1), \tag{2.7}$$

provided,

$$\left(\sum_{i=1}^{N} E|W_i - \xi_i|^3\right)^2 = o\left[(s_N^2)^3\right]. \quad (Lehmann \ 2004, \ pp - 97)$$
 (2.8)

To prove condition (2.8), from corollary 2.7.1 (Lehmann 2004, pp-98), suppose W_i are uniformly bounded, i.e. there exists a constant A such that, $|W_i| \leq A$ for all i. Then we can write

$$\sum_{i=1}^{N} |W_i - \xi_i|^3 \le 2A \sum_{i=1}^{N} E(W_i - \xi_i)^2.$$

and hence

$$E\left[\sum_{i=1}^{N} |W_i - \xi_i|^3\right] \le (2As_N^2) \tag{2.9}$$

and therefore left hand side of (2.8) is $\leq 4A^2s_N^4$.

Assume $Var(W_i) = O(1)$ as $N \to \infty$, then $s_N^2 = O(N)$. Then for any finite constant C, we have $s_N^2 > C$ for large enough N; hence $s_N^2 \to \infty$.

Now from right hand side of (2.9), for $s_N^2 \to \infty$, $4A^2s_N^4$ is $o[(s_N^2)^3]$ because $4A^2s_N^4/(s_N^2)^3 \to 0$ as $s_N^2 \to \infty$. This proves (2.8) and hence (2.7).

Lemma 2.2.3 (CLT of $\tilde{\theta}$): Suppose $W_i' = \partial W_i/\partial \theta$ is uniformly bounded. Let $s_N^2 = \sum_{i=1}^N Var(W_i)$. Provided $\tilde{H}_N'(\theta_0) \stackrel{p}{\to} G$, where $G = E\left[\tilde{H}_N'(\theta)\right] = E\left[\frac{1}{N}\sum_{i=1}^N \frac{\delta_i}{\pi_i} \frac{\partial}{\partial \theta} S_i(\theta)\right]$, then asymptotically, as $N \to \infty$,

$$\frac{\sqrt{N}G(\tilde{\theta}-\theta)}{\sqrt{s_N^2/N}} \stackrel{D}{\to} N(0,1).$$

Proof: Provided $S_i(\theta)$ is a smooth function of θ , thus $\tilde{H}_N(\theta)$, is analytic, we have by Taylor expansion:

$$0 = \tilde{H}_{N}(\tilde{\theta}) = \tilde{H}_{N}(\theta_{0}) + \tilde{H}'_{N}(\theta_{0})(\tilde{\theta} - \theta_{0}) + \frac{1}{2}\tilde{H}''_{N}(\theta_{0})(\theta^{*} - \theta_{0})^{2}$$

$$= \left[\tilde{H}_{N}(\theta_{0}) - H_{N}(\theta_{0})\right] + \tilde{H}'_{N}(\theta_{0})(\tilde{\theta} - \theta_{0}) + \frac{1}{2}\tilde{H}''_{N}(\theta_{0})(\theta^{*} - \theta_{0})^{2}$$

$$= Z_{N}(\theta_{0}) + \frac{\sqrt{N}\tilde{H}'_{N}(\theta_{0})(\tilde{\theta} - \theta_{0})}{\sqrt{s_{N}^{2}/N}} + \frac{\sqrt{N}\tilde{H}''_{N}(\theta_{0})(\theta^{*} - \theta_{0})^{2}}{2\sqrt{s_{N}^{2}/N}},$$

where θ^* lies between $\tilde{\theta}$ and θ_0 . It follows from CLT of $\tilde{H}_N(\theta)$ that, asymptotically,

$$\frac{\sqrt{N}\tilde{H}_N'(\theta_0)(\tilde{\theta}-\theta_0)}{\sqrt{s_N^2/N}} + \frac{\sqrt{N}\tilde{H}_N''(\theta_0)(\theta^*-\theta_0)^2}{2\sqrt{s_N^2/N}} \stackrel{D}{\to} N(0,1).$$

Provided $\frac{\sqrt{N}\tilde{H}_N''(\theta_0)(\theta^*-\theta_0)^2}{2\sqrt{s_N^2/N}}$ is bounded in probability, we have $\frac{\sqrt{N}\tilde{H}_N''(\theta_0)(\theta^*-\theta_0)^2}{2\sqrt{s_N^2/N}} \stackrel{p}{\to} 0$ because s_N diverges asymptotically. Provided $\tilde{H}_N'(\theta_0) \stackrel{p}{\to} G$, it follows from Slutsky's Theorem that

$$\frac{\sqrt{NG(\theta-\theta)}}{\sqrt{s_N^2/N}} \xrightarrow{D} N(0,1) \qquad \Box$$

2.3 On the Bias of NEE

The theoretical estimating equations $\tilde{H}_N(\theta)$ is unbiased i.e. $E[\tilde{H}_N(\theta)] = H_N(\theta)$ whereas the observed EE $\hat{H}_N(\theta)$ is biased. Here we examine the bias, given which one can derive biasadjusted EEs those are discussed in next Chapter 4. The bias can be written as

$$B = E[\hat{H}_N(\theta)] - H_N(\theta) = N^{-1} \sum_{i=1}^{N} S_i(\theta) E\left(\frac{\delta_i}{\hat{\pi}_i} - 1\right).$$
 (2.10)

To make the notations clear in this section we will denote the current response indicator δ_i by δ_{iT} . The $\hat{\pi}_i = 0 \implies \delta_{iT} = 0$, hence $\hat{\pi}_i$ will not be 0 at current time point for respondents. Now using Taylor expansion around π_i yields

$$B = N^{-1} \sum_{i=1}^{N} S_{i}(\theta) \left[E\left(\frac{\delta_{iT}}{\pi_{i}} - \frac{\delta_{iT}(\hat{\pi}_{i} - \pi_{i})}{\pi_{i}^{2}} + \frac{\delta_{iT}(\hat{\pi}_{i} - \pi_{i})^{2}}{\pi_{i}^{*3}} \right) - 1 \right]$$

$$= N^{-1} \sum_{i=1}^{N} S_{i}(\theta) \left\{ -\frac{E[\delta_{iT}(\hat{\pi}_{i} - \pi_{i})]}{\pi_{i}^{2}} + \frac{E[\delta_{iT}(\hat{\pi}_{i} - \pi_{i})^{2}]}{\pi_{i}^{*3}} \right\},$$

$$B = N^{-1} \sum_{i=1}^{N} S_{i}(\theta) \left\{ 1 - \frac{E(\delta_{iT}\hat{\pi}_{i})}{\pi_{i}^{2}} + \frac{E(\delta_{iT}\hat{\pi}_{i}^{2}) - 2\pi_{i}E(\delta_{iT}\hat{\pi}_{i}) + \pi_{i}^{3}}{\pi_{i}^{*3}} \right\}$$
(2.11)

for some π_i^* between π_i and $\hat{\pi}_i$. Moreover, we have

$$E(\delta_{iT}\hat{\pi}_{i}) = E(\frac{\delta_{iT}}{T} \sum_{t'=1}^{T} \delta_{it'}) = \frac{1}{T} \sum_{t'=1}^{T-1} E(\delta_{iT}\delta_{it'}) + \frac{1}{T} E(\delta_{iT}^{2})$$

$$= \frac{T-1}{T} E[E(\delta_{iT}|\pi_{iT}) E(\delta_{it'}|\pi_{it'})|\pi_{i}] + \frac{1}{T} E[E(\delta_{iT}^{2}|\pi_{it})|\pi_{i}]$$

$$= \frac{T-1}{T} \pi_{i}^{2} + \frac{\pi_{i}}{T} = \pi_{i}^{2} + \frac{\pi_{i}(1-\pi_{i})}{T}$$

$$= \pi_{i}^{2} + V(\hat{\pi}_{i})$$

and, after some algebra,

$$E(\delta_{iT}\hat{\pi}_{i}^{2}) = E\left[\frac{\delta_{iT}}{T^{2}}\left(\sum_{t'=1}^{T}\delta_{it'}\right)^{2}\right]$$

$$= E\left[\frac{\delta_{iT}}{T^{2}}\left(\sum_{t'=1}^{T}\delta_{it'}^{2} + 2\sum_{t'=t''=1,t'\neq t''}^{T}\delta_{it'}\delta_{it''}\right)\right]$$

$$= \frac{1}{T^{2}}E\left\{\sum_{t'=1}^{T-1}\delta_{iT}\delta_{it'}^{2} + \delta_{iT}^{3} + 2\sum_{t'=1}^{T-1}\delta_{iT}\delta_{it'}^{2} + 2\sum_{t'=t''=1,t'\neq t''}^{T-1}\delta_{iT}\delta_{it'}\delta_{it''}\right\}$$

$$= \frac{1}{T^{2}}\left\{(T-1)E\left[\delta_{iT}\delta_{it'}^{2}\right] + E\left[\delta_{iT}^{3}\right] + 2(T-1)E\left[\delta_{iT}^{2}\delta_{it'}\right] + 2(T-1)(T-2)E\left[\delta_{iT}\delta_{it'}\delta_{it''}\right]\right\}$$

$$= \frac{1}{T^{2}}\left\{(T-1)\pi_{i}^{2} + \pi_{i} + 2(T-1)\pi_{i}^{2} + 2(T-1)(T-2)\pi_{i}^{3}\right\}$$

$$= \frac{1}{T^{2}}\pi_{i}\left[1 + 3(T-1)\pi_{i} + 2(T-1)(T-2)\pi_{i}^{2}\right]$$

$$= \frac{1}{T^{2}}\pi_{i}\kappa_{i},$$

where $\kappa_i = 1 + 3(T - 1)\pi_i + (T - 1)(T - 2)\pi_i^2$. Now from (2.11), we obtain

$$B = N^{-1} \sum_{i=1}^{N} S_{i}(\theta) \left\{ -\frac{V(\hat{\pi}_{i})}{\pi_{i}^{2}} + \frac{\frac{1}{T^{2}} \pi_{i} \kappa_{i} - 2\pi_{i} (\pi_{i}^{2} + V(\hat{\pi}_{i})) + \pi_{i}^{3}}{\pi_{i}^{*3}} \right\}$$

$$= N^{-1} \sum_{i=1}^{N} S_{i}(\theta) \left\{ \frac{\pi_{i} \kappa_{i}}{T^{2} \pi_{i}^{*3}} - \frac{\pi_{i} (\pi_{i}^{2} + 2V(\hat{\pi}_{i}))}{\pi_{i}^{*3}} - \frac{V(\hat{\pi}_{i})}{\pi_{i}^{2}} \right\}$$

$$B = N^{-1} \sum_{i=1}^{N} w_{i} S_{i}(\theta), \qquad (2.12)$$

where

$$w_i = \frac{\pi_i \kappa_i}{T^2 \pi_i^{*3}} - \frac{\pi_i (\pi_i^2 + 2V(\hat{\pi}_i))}{\pi_i^{*3}} - \frac{V(\hat{\pi}_i)}{\pi_i^2}.$$
 (2.13)

The coefficients w_i 's above are functions of π_i , such that it may depend on \mathbf{y}_i , even though the functional form of the dependence is unspecified under the NEE approach. In other words, the term B is not zero as long as the population covariance of w_i and $S_i(\theta)$ is not zero, which is given by $N^{-1} \sum_{i=1}^{N} w_i S_i$ since $N^{-1} \sum_{i=1}^{N} S_i(\theta) = 0$ by definition.

2.4 Consistency of $\hat{\theta}$

We investigate the consistency of $\hat{\theta}$ using the same approach of Foutz (1977). This approach dealt directly with the vector parameter case. Foutz's approach is based on the Inverse Function Theorem given by Rudin (1976). This approach is used for unique consistent solution to the unbiased estimating equations by Pepe et al. (1994) and with similar arguments by Yuan and Jennrich (1998). Wang et al. (1997) referred to Foutz's approach while dealing with asymp-

totically unbiased estimating equations but they did not supply a proof of the consistency of $\hat{\theta}$.

Before proceeding further, we state the Inverse Function Theorem used by Foutz in Theorem 2.4.1 below for ease of reference. Let the norm ||M|| of a $p \times p$ dimensional matrix to be the least upper bound of all numbers |Mx| (e.g. the eigenvalues or singular values of M, the trace and determinant, etc.), where x ranges over all vectors in \mathbb{R}^p with $|x| \leq 1$, where E is Euclidean space.

Theorem 2.4.1 (Inverse Function Theorem): Suppose h is a mapping from an open set Θ in E^r to E^r , the partial derivatives of h exist and are continuous on Θ , and the matrix of derivatives $h'(\theta^*)$ has inverse $h'(\theta^*)^{-1}$ for some $\theta^* \in \Theta$. Write

$$\lambda = 1/(4 \|h'(\theta^*)^{-1}\|).$$

Use the continuity of the elements of $h'(\theta^*)^{-1}$ to fix a neighbourhood U_{ω} of θ^* of sufficiently small radius $\omega > 0$ to ensure

$$||h'(\theta) - h'(\theta^*)|| < 2\lambda, \tag{2.14}$$

whenever $\theta \in U_{\omega}$. Then

(i). for every θ_1 , θ_2 in U_{ω} ,

$$|h(\theta_1) - h(\theta_2)| \ge 2\lambda |\theta_1 - \theta_2|, \qquad (2.15)$$

(ii). the image set $h(U_{\omega})$ contains the open neighbourhood with radius $\lambda \omega$ about $h(\theta^{\star})$.

The conclusion (i) given in (2.15) ensures that h is one-to-one on U_{ω} and that h^{-1} is well defined on the image set $h(U_{\omega})$. This Inverse Function Theorem is proved in this form by Huzurbazar (1948) at page 193. In our setting, the estimator $\hat{\theta}$ of θ is the solution of estimating equations $\hat{H}_N(\theta) = 0$ for function $\hat{H}_N : \Theta \to \mathbb{R}^p$. From another point of view, the estimator $\hat{\theta}$ is the value of the inverse function $\hat{H}_N^{-1} : \mathbb{R}^p \to \Theta$, evaluated at 0, i.e. $\hat{H}_N^{-1}(0) = \hat{\theta}$. Using the Inverse Function Theorem, it is shown below in Theorem 2.4.2 that \hat{H}_N^{-1} is well defined in an open neighbourhood about 0 with probability going to one, and $\hat{\theta} = \hat{H}_N^{-1}(0)$ is shown to be a consistent estimator of θ .

Foutz (1977) required four conditions to prove the existence of a unique consistent solution to the likelihood equations using the above Inverse Function Theorem, the last condition is unbiasedness of the likelihood equations. In Foutz's proof, this condition is further used to prove that the likelihood equations converge to 0 with probability one. However, this convergence can be proved for asymptotically unbiased estimating equations. In our setting, to prove the existence of a unique consistent solution of $\hat{H}_N(\theta)$, the following five conditions are required from which first three conditions are the same as in Foutz (1977) and last two condition are used instead of the fourth condition of Foutz.

(A). The elements of the matrix $\hat{H}'_N(\theta) = N^{-1} \sum_{i=1}^N (\delta_i/\hat{\pi}_i) \partial S_i(\theta) / \partial \theta$ exist and are continuous on Θ ;

- (B). $\hat{H}'_N(\theta) G_N(\theta)$ converges to 0 in probability, where $G_N(\theta) = E[\hat{H}'_N(\theta)]$;
- (C). The matrix $\hat{H}'_N(\theta)$ evaluated at the true parameter θ_0 is negative definite with probability converging to one as $N \to \infty$;
- (D). The estimating equations $\hat{H}_N(\theta)$ are asymptotically unbiased, i.e. at the true parameter θ_0 , $\lim_{N\to\infty} E[\hat{H}_N(\theta_0)] = H_N(\theta_0) = 0$;
- (E). The difference $\hat{H}_N(\theta) E[\hat{H}_N(\theta)]$ converges to 0 with probability one.

The existence of a consistent solution to the asymptotically unbiased estimating equations $\hat{H}_N(\theta)$ and its uniqueness are now given by the following theorem.

Theorem 2.4.2 There exists $\hat{\theta}_N$ such that

$$\hat{H}_N(\hat{\theta}_N) = 0 \tag{2.16}$$

with probability going to one as $N \to \infty$, and

$$\hat{\theta}_N \to \theta_0 \tag{2.17}$$

in probability. If $\bar{\theta}_N$ also satisfies (2.16) and (2.17) then $\bar{\theta}_N = \hat{\theta}_N$ with probability going to one as $N \to \infty$.

Remark: The first three conditions (A)-(C) are used in first part of the proof given below of above Theorem 2.4.2 that is modelled on the proof given by Foutz. Then conditions (D) and (E) are used as an alternative to the last condition of Foutz to prove the convergence of asymptotically unbiased estimating equations to 0 and then we rejoin Foutz's proof to conclude the existence of unique consistent solution to asymptotically unbiased estimating equations. In a nutshell we can say that the first three conditions (A)-(C) are used for the Inverse Function Theorem to show that function \hat{H}_N is one-to-one and this one-to-oneness implies that the inverse function \hat{H}_N^{-1} is well defined. Then the conditions (D) and (E) imply $\hat{H}_N(\theta_0) \to 0$ with probability one and it ensures that 0 can be an image of \hat{H}_N that lies in the image set of \hat{H}_N within a very small radius $\lambda'_N \omega/2$ centered at $\hat{H}_N(\theta_0)$. This determines the existence of a solution to the estimating equations $\hat{H}_N(\theta) = 0$. Further the solution $\hat{\theta}_N$ that is the image of $\hat{H}_N^{-1}(0)$ can be found in the image set of \hat{H}_N^{-1} with sufficiently small radius ω centered at θ_0 which gives us the consistency i.e. convergence of $\hat{\theta} = \hat{H}_N^{-1}(0)$ to θ_0 in probability. By the one-to-oneness of \hat{H}_N on U_{ω} , any other estimator $\bar{\theta}_N$ of $\hat{H}_N(\theta) = 0$ necessarily lies outside of U_{ω} with probability going to one and estimator $\bar{\theta}_N$ does not converge to θ_0 and it ensures the uniqueness of $\hat{\theta}_N$. The situation is illustrated in the following figure, which is borrowed from Foutz (1977) but with different notations.

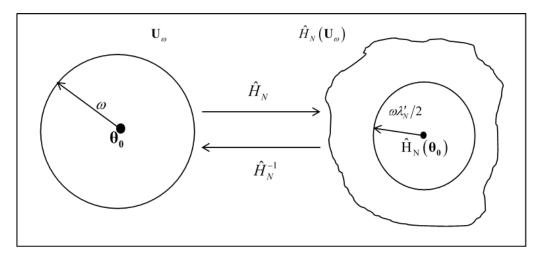


Figure 2.1: The function \hat{H}_N and \hat{H}_N^{-1}

Proof (Theorem 2.4.2): By condition (C), the matrix $\hat{H}'_N(\theta)$ evaluated at the true parameter θ_0 is negative definite with probability converging to 1 as $N \to \infty$ and by condition (B) the convergence of $\hat{H}'_N(\theta) - G_N(\theta) \to 0$ in probability ensures that $G_N(\theta_0)$ is negative definite; thus, we may define $\lambda'_N = 1/(4||G_N(\theta_0)^{-1}||)$. Select ω sufficiently small so that

$$||G_N(\theta) - G_N(\theta_0)|| < \lambda_N'/2$$
 (2.18)

whenever $|\theta - \theta_0| < \omega$, then uniform convergence of $\hat{H}'_N(\theta) - G_N(\theta) \to 0$ holds i.e.

$$||\hat{H}_N'(\theta) - G_N(\theta)|| < \lambda_N'/2 \tag{2.19}$$

for $|\theta - \theta_0| < \omega$ for θ in an open neighbourhood about θ_0 .

Write $\lambda_N = 1/(4||\hat{H}_N'(\theta_0)^{-1}||)$. Whenever $\hat{H}_N'(\theta_0)$ is negative definite and we already have $\lambda_N' = 1/(4||G_N(\theta_0)^{-1}||)$ then using the Continuous Mapping Theorem, the uniform convergence of $\hat{H}_N'(\theta) - G_N(\theta) \to 0$ implies $\lambda_N - \lambda_N' \to 0$ in probability and if $|\theta - \theta_0| < \omega$, then by the triangular inequality,

$$||\hat{H}'_N(\theta) - \hat{H}'_N(\theta_0)|| \le ||\hat{H}'_N(\theta) - G_N(\theta)|| + ||G_N(\theta_0) - \hat{H}'_N(\theta_0)|| + ||G_N(\theta) - G_N(\theta_0)||$$

Using (2.18) and (2.19), we have

$$||\hat{H}_{N}'(\theta) - \hat{H}_{N}'(\theta_{0})|| < \lambda_{N}'/2 + \lambda_{N}'/2 + \lambda_{N}'/2 < 2\lambda_{N}$$
(2.20)

with probability going to one as $N \to \infty$. The (2.20) is the main condition similar to (2.14) given in the Inverse Function Theorem to prove that \hat{H}_N is one-to-one. Then similar to (2.15), for every θ_1 , θ_2 in U_{ω} ,

$$\left|\hat{H}_N(\theta_1) - \hat{H}_N(\theta_2)\right| \ge 2\lambda_N \left|\theta_1 - \theta_2\right|.$$

This ensures that \hat{H}_N is one-to-one for $U_{\omega} \to \hat{H}_N(U_{\omega}) = V_{\omega}(say)$ with probability approaching one. We can write $\hat{H}_N^{-1}(V_{\omega}) = U_{\omega}$ if and only if $\hat{H}_N(U_{\omega}) = V_{\omega}$.

Now it can be seen that conditions (A), (B) and (C) are those required by the Inverse Function Theorem to ensures with probability approaching one that \hat{H}_N is a one-to-one function from U_{ω} onto $\hat{H}_N(U_{\omega})$ and that the image set $\hat{H}_N(U_{\omega})$ contains the open neighbourhood of radius $\omega \lambda_N$ about $\hat{H}_N(\theta_0)$. Since $\omega \lambda_N - \omega \lambda_N' \to 0$ in probability, $\hat{H}_N(U_{\omega})$ also contains the neighbourhood of radius $\omega \lambda_N'/2$ about $\hat{H}_N(\theta_0)$ with probability going to one. The situation is illustrated in Figure 2.1 above.

Foutz (1977) proved that the likelihood equations converges to 0 almost surely when the the likelihood equations are unbiased but we need to prove this for asymptotically unbiased estimating equations. We may see that $0 \in \hat{H}_N(U_\omega)$ with probability going to one by observing that from condition (D), $E[\hat{H}_N(\theta_0)] \to 0$ and from condition (E), $\hat{H}_N(\theta) - E[\hat{H}_N(\theta)] \to 0$ with probability one as $N \to \infty$, then by Slutsky's theorem $\hat{H}_N(\theta_0) \to 0$ with probability going to one as $N \to \infty$ or $|\hat{H}_N(\theta_0) - 0| < \omega \lambda'_N/2$.

Consider the inverse function $\hat{H}_N^{-1}: \hat{H}_N(U_\omega) \to U_\omega$ and \hat{H}_N^{-1} is well defined whenever \hat{H}_N is one-to-one, i.e. with probability going to one. Since $0 \in \hat{H}_N(U_\omega)$ with probability going to one as $N \to \infty$, we may conclude:

- (1). the root, $\hat{H}_N^{-1}(0)$, of the estimating equations $\hat{H}_N(\theta)$ exists in U_ω with probability going to one as $N \to \infty$;
- (2). since ω may be taken arbitrarily small, $\hat{H}_N^{-1}(0)$ converges in probability to θ_0 ;
- (3). by the one-to-oneness of \hat{H}_N on U_{ω} , any other vector of estimators $\bar{\theta}_N$ of roots to $\hat{H}_N(\theta) = 0$, necessarily lies out side of U_{ω} with probability going to one which means that $\bar{\theta}_N$ does not converge to θ_0 and it ensures the uniqueness of $\hat{\theta}_N$.

The proof is now complete with $\hat{\theta}_N = \hat{H}_N^{-1}(0)$.

The condition (A)-(C) and (E) are discussed later in Section 2.4.1 but the discussion on condition (D) is lengthy and is given in the form of following Lemma 2.4.3.

Lemma 2.4.3 For estimating equations $\hat{H}_N(\theta) = N^{-1} \sum_{i=1}^N (\delta_i/\hat{\pi}_i) S_i(\theta)$, let $w_i = E[\delta_i/\hat{\pi}_i - 1]$ and a lower triangular matrix of infinite dimensions with elements $a_{ij} = w_j/\sum_{k=1}^i w_k$. Put

- (i). the function $S_i(\theta)$ is a null sequence, i.e. $\lim_{N\to\infty} S_N = 0$.
- (ii). for given j, $\lim_{i\to\infty} a_{ij}\to 0$,
- (iii). The $\sum_{i=1}^{i} |a_{ij}| = O(1)$,

then the estimating equations $\hat{H}_N(\theta)$ are asymptotically unbiased, i.e. $\lim_{N\to\infty} E[\hat{H}_N(\theta_0)] = H_N(\theta_0) = 0$ at the true parameter θ_0 .

To prove the above Lemma 2.4.3, we need the following Theorem that is given by Knopp (1954) with proof at page 74.

Theorem 2.4.4 (Knopp (1954)) Let $(x_0, x_1, ...)$ be a null sequence and suppose the coefficients a_{np} of the system

satisfy the two conditions:

(a'). Every column contains a null sequence, i.e. for fixed $p \geq 0$

$$a_{np} \to 0 \text{ when } n \to \infty$$
 (2.21)

(b'). There exists a constant K, such that the sum of the absolute values of the term in any one row is bounded by K, i.e., for every n,

$$|a_{n0}| + |a_{n1}| + \dots + |a_{nn}| < K (2.22)$$

Then the sequence formed by the numbers

$$x'_{n} = a_{n0}x_{0} + a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n}$$
(2.23)

is also a null sequence.

Regarding Lemma 2.4.3, the bias of estimating equations $H_N(\theta)$ from (2.11) is

$$B_N = N^{-1} \sum_{i=1}^N w_i S_i(\theta), \text{ where } w_i = \frac{\pi_i \kappa_i}{(T-1)^2 \pi_i^{*3}} - \frac{\pi_i (\pi_i^2 + 2V(\hat{\pi}_i))}{\pi_i^{*3}} - \frac{V(\hat{\pi}_i)}{\pi_i^2}$$
(2.24)

where w_i is a function of π_i , and π_i is allowed to be unit-specific hence a function of y_i . Since $N^{-1} \sum_{i=1}^{N} S_i(\theta) = 0$ by definition, one would expect $B_N \neq 0$, as long as the population covariance of w_i and S_i is not zero, which is essentially $N^{-1} \sum_{i=1}^{N} w_i S_i$.

Knopp's theorem states that, provided a_i 's satisfy certain regularity conditions, $\sum_{i=1}^{N} a_i x_i$ converges to 0 mathematically, given any null sequence x_i , as $N \to \infty$.

Applying Knopp's theorem to NEE one can let $a_i = w_i / \sum_{i=1}^N w_i$. As long as $w_i \geq 0$ and $w_i = O(1)$, as $N \to \infty$, we have $\sum_{i=1}^N w_i / N = O(1)$, and the conditions on a_i 's for the convergence of $\sum_{i=1}^N a_i x_i$ are satisfied. For condition (ii), assuming $w_i = O(1)$, augments to assume that $Var(\hat{\pi}_i)$ is bounded and π_i^* is bounded away from 0. In other words π_i cannot be arbitrarily close to zero, and there must exist response history for each unit. The condition (iii) also holds because $\sum_{j=1}^i (w_j / \sum_{k=1}^i w_k) = 1 \implies \sum_{j=1}^i a_{ij} = O(1)$.

To apply Knopp's theorem to the plug-in NEE, one needs to turn S_i into a null sequence x_i that is the first condition of Knopp's theorem. Obviously, letting $S_i = x_i$ does not yield a null sequence. However, the sum of a_iS_i remains the same under any permutation of $\{1, ..., N\}$, say

$$\{1^*, 2^*, ..., N^*\}$$
, i.e.
$$\sum_{i=1}^N a_i S_i = \sum_{i^*=1}^{N^*} a_{i^*} S_{i^*}$$

For any random variable that has a continuous density function, it is almost surely that some realised value can be arbitrarily close to the mean of the distribution, as $N \to \infty$. Thus, it is a mild requirement that $\{y_1, ..., y_N\}$ can be rearranged as $\{y_{1^*}, ..., y_{N^*}\}$, such that S_{i^*} is a null sequence, as $N \to \infty$. But this argument could not work and we explain the reason below.

While the permutation does not affect the conditions on $\{a_1,...,a_N\}$ for any given N, it affects the transition from $\{a_{1^*},...,a_{N^*}\}$ to $\{a_{1^{**}},...,a_{N^{**}},a_{(N+1)^{**}}\}$, where $\{1^*,...,N^*\}$ is a permutation based on $\{y_1,...,y_N\}$ and $\{a_{1^{**}},...,a_{N^{**}},a_{N+1^{**}}\}$ that based on $\{y_1,...,y_N,y_{N+1}\}$. There is no way to ensure that we have $(N+1)^{**}=N+1$ and $i^{**}=i^*$ for $i^*=1^*,...,N^*$. However, the a_i 's in Knopp's theorem need to be arranged in a triangular form in correspondence to the x_i 's, i.e.

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix} \leftrightarrow \begin{bmatrix} a_{11} & & & & \\ a_{21} & a_{22} & & & \\ \vdots & \dots & \ddots & & \\ a_{N1} & a_{N2} & \cdots & a_{NN} \end{bmatrix} \sim \begin{bmatrix} S_{1^*} \\ S_{2^*} \\ \vdots \\ S_{N^*} \end{bmatrix} \leftrightarrow \begin{bmatrix} a_{1^*1^*} & & & & \\ a_{2^*1^*} & a_{2^*2^*} & & \\ \vdots & \dots & \ddots & & \\ a_{N^*1^*} & a_{N^*2^*} & \cdots & a_{N^*N^*} \end{bmatrix}.$$

This can be achieved given any N. However, moving from N to N+1, it becomes impossible to simply add another row corresponding to y_{N+1} and S_{N+1} at the bottom of the triangle built on $\{y_1, ..., y_N\}$, as long as S_{N+1} does not happen to be $S_{(N+1)^{**}}$ that is determined on the basis of $\{y_1, ..., y_{N+1}\}$.

As discussed above we could not prove the asymptotic unbiasedness of NEE and hence the consistency. However, this investigation together with below discussed conditions show in a detailed manner that a bias-adjusted NEE discussed in Chapter 4 would have worked.

2.4.1 Discussion of the Conditions

In this section, we discuss the conditions (A)-(E) used to prove above Theorem 2.4.2 in our setting. For all conditions to be satisfied, initially we need to assume that estimated response probability $\hat{\pi}_i \neq 0$. The $\hat{\pi}_i$ is the response rate of a unit including the current response and it cannot be zero for observed units.

Condition-(A)

For condition (A) to be satisfied, we need to assume that $S_i(\theta)$ is a smooth function; meaning that it is infinitely differentiable on Θ and these partial derivatives exist at every point in Θ and are continuous on Θ . In our case of estimation of the population mean, $S_i(\theta) = (y_i - \theta)$. Clearly it is a smooth function for $\theta \in \mathbb{R}$ because it is infinitely differentiable on θ and these partial derivatives exist at every point in θ and are continuous on θ . Similarly for estimation of the variance along with the mean the S function for variance can be $[(y_i - \theta)^2 - \sigma^2]$ and it also a smooth function for $\sigma^2 \geq 0$. Similarly in the case of estimation of regression coefficients with one independent variable, the score functions are $(y_i - \beta_0 - \beta_1 x_i)$, $(y_i x_i - \beta_0 x_i - \beta_1 x_i^2)$

and $\{(y_i - \beta_0 - \beta_1 x_i)^2 - \sigma^2\}$. These score functions are also smooth for $\beta_0, \beta_1 \in \mathbb{R}$ and $\sigma^2 \geq 0$. Hence, the condition (A) can easily be satisfied for our purposes.

Condition-(B)

Let a matrix $W_i' = (\delta_i/\hat{\pi}_i)S_i'(\theta)$ then we can write

$$\hat{H}'_N(\theta) - G_N(\theta) = N^{-1} \sum_{i=1}^N W'_i - N^{-1} \sum_{i=1}^N E(W'_i).$$

Suppose $w'_{i(jk)} = (\delta_i/\hat{\pi}_i)S'_{i(jk)}(\theta)$ is an element of W'_i , then

$$E\left(w_{i(jk)}'\right) = S_{i(jk)}'(\theta)E\left(\frac{\delta_i}{\hat{\pi}_i}\right) < \infty \text{ and } Var\left(w_{i(jk)}'\right) = S_{i(jk)}'^2(\theta)Var\left(\frac{\delta_i}{\hat{\pi}_i}\right) < \infty.$$

Then by Chebyshev's inequality, for each element of W_i' , $N^{-1} \sum_{i=1}^N [w_{i(jk)}' - E(w_{i(jk)}')]$ converges to 0 in probability. It implies $N^{-1} \sum_{i=1}^N [W_i' - E(W_i')] \to 0$ in probability. Hence, $\hat{H}_N'(\theta) - G_N(\theta) \to 0$ in probability and it concludes (B).

Condition-(C)

To satisfy this condition in our setting, we assumed that the matrix $[-G_N(\theta)]$ is positive definite. This assumption can hold for the general case. For estimation of the population mean we have the following estimating equations,

$$\hat{H}_N(\theta) = N^{-1} \sum_{i=1}^N \frac{\delta_i}{\hat{\pi}_i} (y_i - \theta) \implies -G_N(\theta) = E\left[-\frac{\partial}{\partial \theta} \hat{H}_N(\theta) \right] = N^{-1} \sum_{i=1}^N w_i, \tag{2.25}$$

where w_i is given above in (2.24). From (2.25), $-G_N(\theta)$ is positive. Now for simultaneous estimation of population mean and variance, we can write the estimating equations as

$$\hat{H}_{N}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \frac{\delta_{i}}{\hat{\pi}_{i}} \begin{bmatrix} (y_{i} - \theta) \\ \{(y_{i} - \theta)^{2} - \sigma^{2}\} \end{bmatrix} \implies [-G_{N}(\theta)] = \frac{1}{N} \sum_{i=1}^{N} w_{i} \begin{bmatrix} 1 & 0 \\ 2(y_{i} - \theta) & 1 \end{bmatrix}$$

The leading principal minors of $-G_N(\theta)$ are $N^{-1}\sum_{i=1}^N w_i$ and $\left(N^{-1}\sum_{i=1}^N w_i\right)^2$ and both are positive, hence, the matrix $-G_N(\theta)$ is positive definite.

For estimation of regression parameters with one covariate, we can write the estimating equations as

$$\hat{H}_N(\theta) = \frac{1}{N} \sum_{i=1}^N \frac{\delta_i}{\hat{\pi}_i} \begin{bmatrix} \epsilon_i \\ \epsilon_i x_i \\ \epsilon_i^2 - \sigma^2 \end{bmatrix} \implies -G_N(\theta) = \frac{1}{N} \sum_{i=1}^N w_i \begin{bmatrix} 1 & x_i & 0 \\ x_i & x_i^2 & 0 \\ 2\epsilon_i & 2x_i \epsilon_i & 1 \end{bmatrix},$$

where $\epsilon_i = y_i - \beta_0 - \beta_1 x_i$. The first leading principal minor of $-G_N(\theta)$ is,

$$\frac{1}{N} \sum_{i=1}^{N} w_i, \tag{2.26}$$

the second leading principal minor is

$$\left(\frac{1}{N}\sum_{i=1}^{N}w_{i}\right)\left(\frac{1}{N}\sum_{i=1}^{N}w_{i}x_{i}^{2}\right)-\left(\frac{1}{N}\sum_{i=1}^{N}w_{i}x_{i}\right)^{2}
=\left(\frac{1}{N^{2}}\sum_{i=1}^{N}w_{i}\right)\left\{\sum_{i=1}^{N}w_{i}x_{i}^{2}-\left(\sum_{i=1}^{N}w_{i}x_{i}\right)^{2}/\sum_{i=1}^{N}w_{i}\right\}
=\left(\frac{1}{N^{2}}\sum_{i=1}^{N}w_{i}\right)\left\{\sum_{i=1}^{N}w_{i}\left(x_{i}-\frac{\sum_{i=1}^{N}w_{i}x_{i}}{\sum_{i=1}^{N}w_{i}}\right)^{2}\right\}$$
(2.27)

and the third leading principal minor is

$$\left(\frac{1}{N}\sum_{i=1}^{N}w_{i}\right)\left\{\left(\frac{1}{N}\sum_{i=1}^{N}w_{i}\right)\left(\frac{1}{N}\sum_{i=1}^{N}w_{i}x_{i}^{2}\right)-\left(\frac{1}{N}\sum_{i=1}^{N}w_{i}x_{i}\right)^{2}\right\}$$

$$=\frac{1}{N^{3}}\left(\sum_{i=1}^{N}w_{i}\right)^{2}\left\{\sum_{i=1}^{N}w_{i}\left(x_{i}-\frac{\sum_{i=1}^{N}w_{i}x_{i}}{\sum_{i=1}^{N}w_{i}}\right)^{2}\right\}.$$
(2.28)

From (2.26), (2.27) and (2.28), it is clear that all three principal minors are positive. Hence, $[-G_N(\theta)]$ is positive definite. Now pointwise convergence given in condition (B) and positive definiteness of $[-G_N(\theta)]$ implies that the matrix $\hat{H}'_N(\theta)$ evaluated at the true parameter θ_0 is negative definite with probability converging to 1 as $N \to \infty$ and it concludes condition (C).

Condition-(E)

For this condition we need to show that $\hat{H}_N(\theta) - E[\hat{H}_N(\theta)]$ converges to 0 with probability one. Let $w_i' = (\delta_i/\hat{\pi}_i)S_i(\theta)$ then we can write

$$\hat{H}_N(\theta) - E[\hat{H}_N(\theta)] = N^{-1} \sum_{i=1}^{N} \left[w_i' - E(w_i') \right]. \tag{2.29}$$

To show that (2.29) converges to 0 with probability one, we need to show this for each element of w'_i . Suppose $w_{i(j)}$ is an element of vector w'_i then we can have

$$E|w_{i(j)}|^2 = E[(\delta_i/\hat{\pi}_i)S_{i(j)}(\theta)]^2 = S_{i(j)}^2(\theta)E[(\delta_i/\hat{\pi}_i)]^2 < \infty \text{ and}$$

$$Var(w_{i(j)}) = S_{i(j)}'^2(\theta)Var(\delta_i/\hat{\pi}_i) = O(1) \implies \sum_{i=1}^{\infty} \frac{Var(w_{i(j)})}{i^2} < \infty.$$

Then by Kolmogorov's Strong Law of Large Numbers, $N^{-1} \sum_{i=1}^{N} [w_{i(j)} - E(w_{i(j)})]$ converge to 0 with probability one. It implies $N^{-1} \sum_{i=1}^{N} [w'_i - E(w'_i)] \to 0$ with probability one. Hence,

 $\hat{H}_N(\theta) - G_N(\theta) \to 0$ with probability one and it concludes (E).

In summary we made the following assumptions while discussing the conditions required for consistency.

- (a) The estimated response probability should not be 0, i.e. $\hat{\pi}_i \neq 0$;
- (b) The score function, $S_i(\theta)$ is smooth function for $\theta \in \Theta$;
- (c) The weights w_i are bounded, where π_i^* lies between $\hat{\pi}_i$ and π_i ,
- (d) The score function $S_i(\theta)$ is a null sequence.
- (e) For given j, $\lim_{i\to\infty} a_{ij}\to 0$, where $a_{ij}=w_j/\sum_{k=1}^i w_k$

From the discussion of conditions (A)-(E) given above which are required for the consistency, the assumption (a) is necessary for all (A)-(E) conditions. The assumptions (a) and (b) imply the condition (A). All the assumptions imply the conditions (B) and (E). The assumptions (a) and (c)-(e) are used to prove the condition (D) stated in Lemma 2.4.3. But we could not prove the condition (D), the reason is discussed above after Theorem 2.4.4.

2.5 Variance of $\hat{\theta}$

We could not prove the consistency of the point estimator $\hat{\theta}$ for the estimating equations $\hat{H}_N(\theta)$. The variance of the point estimator can be obtained using the standard sandwich form based on Taylor expansion of the estimating equations around $E(\hat{\theta})$. Let $\theta' = E(\hat{\theta})$ and $\hat{H}_N(\theta)$ have first derivative at θ' . In addition the second derivative of $\hat{H}_N(\theta)$ exists in a neighbourhood of θ' . By Taylor expansion (Lehmann (2004)), we have

$$0 = \hat{H}_N(\hat{\theta}_N) = \hat{H}_N(\theta') + \hat{H}'_N(\theta')(\hat{\theta}_N - \theta') + \frac{1}{2}(\hat{\theta}_N - \theta')^T \hat{H}''_N(\theta^*)(\hat{\theta}_N - \theta'),$$

where θ^* lies between $\hat{\theta}_N$ and θ' and we write $\hat{\theta}_N$ and $\hat{H}_N(\theta')$ to emphasize that they depend on N but for simple notation below we use $\hat{\theta}$ as the estimator. Provided

$$0 = \hat{H}_N(\theta') + \hat{H}'_N(\theta')(\hat{\theta} - \theta') + o_p(||\hat{\theta} - \theta'||)$$
(2.30)

Now, from condition (B) i.e. $\hat{H}'_N(\theta) - G_N(\theta') \stackrel{p}{\to} 0$, we can write

$$0 = \hat{H}_N(\theta') + G_N(\theta')(\hat{\theta} - \theta') + o_p(||\hat{\theta} - \theta'||)$$
(2.31)

Now ignoring the remainder, from (2.31), we have

$$G_N(\theta')(\hat{\theta} - \theta') \approx -\hat{H}_N(\theta')$$

$$\implies (\hat{\theta} - \theta') \approx -G_N^{-1}(\theta_0)\hat{H}_N(\theta')$$
(2.32)

From (2.32), the approximate variance of $\hat{\theta}_N$ can be written as

$$Var(\hat{\theta}) = G_N^{-1}(\theta')Var[\hat{H}_N(\theta')]G_N^{-T}(\theta') = G^{-1}(\theta')Var[\hat{H}(\theta')]G^{-T}(\theta')$$
(2.33)

where $G(\theta) = E[\hat{H}'_N(\theta)]$. Then

$$G(\theta) = \frac{1}{N} \sum_{i=1}^{N} E\left(\delta_i/\hat{\pi}_i\right) \left\{ \frac{\partial}{\partial \theta} S_i(\theta) \right\}$$

and

$$Var[\hat{H}(\theta)] = \frac{1}{N} \sum_{i=1}^{N} Var(\delta_i/\hat{\pi}_i) S_i(\theta) S_i^T(\theta)$$

with

$$E(\delta_i/\hat{\pi}_i) \approx 1 - \frac{E(\delta_i\hat{\pi}_i) - \pi_i^2}{\pi_i^2} + \frac{E(\delta_i\hat{\pi}_i^2) - 2\pi_i E(\delta_i\hat{\pi}_i) + \pi_i^3}{\pi_i^3} \stackrel{def}{=} \mu_{1i}, \tag{2.34}$$

$$E(\delta_i/\hat{\pi}_i)^2 \approx \frac{1}{\pi_i} - \frac{2\left(E(\delta_i\hat{\pi}_i) - \pi_i^2\right)}{\pi_i^3} + \frac{6\left(E(\delta_i\hat{\pi}_i^2) - 2\pi_iE(\delta_i\hat{\pi}_i) + \pi_i^3\right)}{2\pi_i^4} \stackrel{def}{=} \mu_{2i}, \tag{2.35}$$

where $E(\delta_i \hat{\pi}_i) = \pi_i^2 + Var(\hat{\pi}_i)$ and $E(\delta_i \hat{\pi}_i^2) = \pi_i \kappa_i / (T-1)^2$.

The plug-in estimator of variance of $\hat{\theta}_N$ given in (2.33) can be written as

$$\widehat{Var}(\hat{\theta}) = G^{-1}(\hat{\theta})\widehat{Var}[\hat{H}(\hat{\theta})]G^{-T}(\hat{\theta}), \tag{2.36}$$

where

$$G(\hat{\theta}) = \frac{1}{N} \sum_{i=1}^{r} \hat{g}_i S_i'(\hat{\theta})$$
 (2.37)

$$\widehat{Var}[\hat{H}(\hat{\theta})] = \frac{1}{N^2} \sum_{i=1}^{r} \hat{v}_i S_i(\hat{\theta}) S_i^T(\hat{\theta}),$$
 (2.38)

and

$$\hat{g}_i = \frac{1}{\hat{\pi}_i} \hat{\mu}_{1i} \tag{2.39}$$

$$\hat{v}_i = \frac{1}{\hat{\pi}_i} \left\{ (\hat{\mu}_{2i} - (\hat{\mu}_{1i})^2) \right\}. \tag{2.40}$$

2.6 Simulation Study

The NEE approach provides a method for exploring informative nonresponse in the longitudinal setting, which is computationally easy and flexible in specification. From the outset there are several factors that can be expected to affect its performance in a given situation.

First, provided the suitable nonresponse assumptions for all the responding individuals, the NEE estimator should perform better given a longer history of response. For instance, in the case of two waves data and we want to estimate the parameter at T = 2, where there are two observations of δ_{it} for each individual, there are only two possible histories for each respondent with $\delta_{i2} = 1$, where δ_{i1} is either 1 or 0. The estimate $\hat{\pi}_{it}$ that enters the NEE (2.5) either takes

value 1 or 0.5, such that the estimator of θ_T is only based on two weighting classes. Whereas the näive estimator under the MCAR assumption is based on a single weighting class. Clearly, the ability to adjust for potentially informative nonresponse by the NEE approach is rather limited in this case. Thus, a factor that matters in the simulation study will be the length of response history. We estimated the mean and regression coefficients at T = 3, 4, 7 and 10.

Next, a relevant factor is the variation of y_{it} 's over time, for each given individual. Take again the estimator $\hat{\pi}_{it}$ that is averaged over all the δ_{it} 's. On the one hand, it is unbiased if the informative response propensity depends only on a scalar summary of the y_{it} 's, in which case it does not matter how volatile the y_{it} 's are over time. On the other hand, intuitively the risk of bias is heightened, when the y_{it} 's are volatile, as compared to the extreme case where $y_{it} \equiv y_i$ is completely static. Moreover, as the variance of the resulting estimator of θ_T increases with more volatile y_{it} 's, it would be interesting to explore if this has any compounding effect together with the heightened risk of bias.

Last but not least, the nonresponse mechanism itself will be a critical factor to the performance of the NEE. That is, if the assumption for unbiased estimation of π_{it} 's is clearly violated, then the NEE estimator may suffer extra bias beyond the inherent bias of the NEE as explained in Section 2.3.

Below we describe first the data used for the simulation, the models that can be used for simulating response history, and then the chosen simulation set-up, including the specific response probability models, the sample size corresponding to overall response rate, and the estimators to be evaluated, before we present and discuss the simulation results.

2.6.1 Real Data

We have available a dataset of real turnover from 16788 firms over three successive years. There are some (about 13%) partially missing turnovers. We impute these values using the R-package *mice*. A summary of the completed population turnover values for each of the three waves are given below. It can be seen that the population distributions are skewed but reasonably stable over time.

Wave	Mean	Min	Q_3	Max	eta_0	β_1
First	11000	1	10211	2008585	11023.06	-0.4041
Second	10749	1	11010	2012973	10770	-0.3758
Third	11747	1	12295	2026659	11764.93	-0.3202

Table 2.1: Summary of turnover values over three waves

We then increase the number of waves from 3 to 10 for simulations by recycling wave 1 to be wave 4, and wave 2 to be wave 5, wave 3 to be wave 6, and so on. Below we refer to this 10-wave dataset as the *stable* population. In addition, we create a 10-wave *volatile* population where, for a given wave, we permute the turnover values among all the firms within each industrial group. In this way, the population distribution at each wave remains the same, but the values y_{it} 's associated with each individual firm are perturbed quite a lot, and the individual variation of turnover over time is greatly increased.

2.6.2 Simulated Data

As we are dealing with informative missing and in which case the response probability for each time point should depend on the y_{it} . We expect that the EE performs better than the naïve if the response probability varies more across the individuals than for each individual over time. For such data, the natural choice is to generate the data for each time point by creating strata with different stratum y-averages. Furthermore, the data is generated with some increasing/decreasing trend overtime that naturally exist in longitudinal data. The longitudinal data on y_{it} are generated for 10 time points by creating three strata. The multivariate log-normal distribution is used with following mean vectors,

$$(1.20, 0.40, 1.60, 0.80, 2.0, 1.20, 3.40, 1.60, 3.80, 4.0)$$

 $(2.20, 1.40, 2.60, 1.80, 3.0, 2.20, 3.40, 2.60, 4.80, 5.0)$
 $(4.20, 3.40, 6.60, 4.80, 6.0, 5.20, 7.40, 5.60, 7.80, 8.0)$

and the variance covariance matrix is obtained using AR(1) covariance structure with $\rho = 0.75$ and $\sigma = 2$. The AR(1) covariance structure allow observations that are further apart to be less strongly correlated.

Below table shows the finite population mean and regression coefficients for all time points. For regression model the covariate x_i is assumed to be same for all time points and $x \sim log - normal(2, 2)$.

	Mean	Min	Q_3	Max	β_0	β_1
y_{i1}	87.20	0.006	39.80	29045.81	86.86	0.0279
y_{i2}	38.91	0.001	16.61	9528.61	39.49	-0.0486
y_{i3}	808.10	0.000	76.10	556228.50	873.43	-5.39
y_{i4}	108.54	0.003	29.98	18922.10	114.95	-0.5296
y_{i5}	297.92	0.010	98.87	69079.59	328.40	-2.5173
y_{i6}	170.85	0.010	42.60	44158.04	192.37	-1.7778
y_{i7}	1619.30	0.000	179.30	1332815.00	1176.5290	36.56
y_{i8}	275.25	0.010	63.26	180442.27	311.11	-2.9615
y_{i9}	2206.90	0.000	591.20	814161.30	2271.9340	-5.37
y_{i10}	2397.50	0.000	731.90	415204.90	2222.86	14.4251

Table 2.2: Population mean and regression coefficients for all y's

2.6.3 Response Probability Models

One can consider a range of models: some of which are compatible with the assumptions of the NEEs, while others represent different nonresponse mechanisms which are used to explore the sensitivity of the NEE approach. For $t \ge 2$, let

$$\pi_{it} = \Pr(\delta_{it} = 1 | \delta_{i,t-1}, y_{i1}, ..., y_{iT}, \mathbf{x}_i).$$

One can simulate monotone dropout patterns by increasing the coefficient of $\delta_{i,t-1}$ relatively, to make it the dominating predictor; one can accommodate informative nonresponse as long as

the coefficients of $(y_{i1}, ..., y_{iT})$ are not all zero; one can achieve informative but stable response probability if $(y_{i1}, ..., y_{iT})$ is replaced by $\eta_i = \eta(y_{i1}, ..., y_{iT})$ that is a scalar function of them.

More specifically, for the simulation study, we consider the following response probability models,

$$logit(\pi_{it}) = \gamma_0 + \gamma_1 \eta_i + \gamma_2 x_i \tag{2.41}$$

$$logit(\pi_{it}) = \gamma_0 + \gamma_1 \delta_{i,t-1} + \gamma_2 \eta_i + \gamma_3 x_i \tag{2.42}$$

$$logit(\pi_{it}) = \gamma_0 + \gamma_1 y_{it} + \gamma_2 x_i \tag{2.43}$$

$$logit(\pi_{it}) = \gamma_0 + \gamma_1 \delta_{i,t-1} + \gamma_2 y_{it} + \gamma_3 x_i$$
(2.44)

$$logit(\pi_{it}) = \gamma_0 + \gamma_1 x_i \tag{2.45}$$

$$logit(\pi_{it}) = \gamma_0 + \gamma_1 \delta_{i,t-1} + \gamma_2 x_i. \tag{2.46}$$

The model (2.41) is congenial to the estimator (2.2) and the model (2.42) possibly so, the models (2.43) and (2.44) are informative mechanisms that do not necessarily have stable response probabilities for the given population y-values, and the models (2.45) and (2.46) are MAR mechanisms. The values of $\gamma's$ can be chosen to achieve any desired overall response rate, where relatively large coefficients for y_{it} and η_i can add more informativeness to the response mechanism. After simulating the $\pi'_{it}s$, the $\delta'_{it}s$ are generated independently for each t.

2.6.4 Simulation set-up

We carry out simulations separately for the stable, volatile and simulated populations, as described below. The number of simulations are determined on the basis of about 1% CV of the Monte Carlo errors.

We experiment the different response probability models (2.41) - (2.46). The results using different estimator $\hat{\pi}_i$ in (2.2) are largely similar under models (2.42), (2.44) and (2.46) (see Tables D.4 to D.6), compared to those under models (2.41), (2.43) and (2.45), respectively, as long as the coefficient of $\delta_{i,t-1}$ under the former group is not large enough to induce monotone response patterns. Moreover, the model (2.45) yields stable MAR response probability, so that the NEE estimators are nearly unbiased. Below we focus on simulation under the models (2.41), (2.43) and (2.45), where η_i is set to the mean of $y_{i1}, ..., y_{iT}$, and the additional covariate x_i is a random variable from Log N(2, 2).

For each response probability model, we set the γ -coefficients such that the overall response rate is either about 60% or 80%, to be referred to as the low or high response setting, respectively. As explained in Section (2.12), the bias of the NEE estimators depends on the correlation between w_i and $S_i(\theta_t)$. We can vary the correlation by changing the coefficient γ_1 in (2.41) and (2.43), relative to the other γ -terms, while holding the overall response rate at the required setting. We simulate a low correlation scenario, where the population correlation between w_i and $S_i(\theta_t)$ is e.g. -0.01819 at wave 7, and a high correlation scenario, where the correlation between w_i and $S_i(\theta_t)$ is -0.05805 at the same wave. The high correlation induces non-negligible bias of the NEE estimators.

Given each response probability model, the response indicators δ_{it} 's are generated indepen-

dently for all the 10 waves, based on which the NEE estimator $\hat{\theta}_t$ from (2.5) is calculated using $\hat{\pi}_i$ in (2.2), for various T. Given that we have full knowledge of the simulated data, we can calculate the hypothetical estimator using the NEE based on the individual mean of the true response probabilities over time. Including this hypothetical estimator, denoted by \mathbf{EE}_h , allows us to understand when a result is due to the empirical property of the observed NEE, and when it is caused by the misspecified nonresponse assumption, i.e. when the data are simulated under the model (2.43) but the estimator is ideal under the model (2.41). Finally, the naïve estimator under the MCAR assumption is included as the baseline estimator for comparison.

2.6.5 Results

The results related to the estimation of mean and regression coefficients under above discussed simulation set-up are obtained and given in sections D.1 and D.2 of Appendix D respectively. These tables also include the results related to the bias adjustment that are discussed in Chapter 4. We discussed below some selective results and we report for each estimator its absolute percent relative bias (APRB), its standard error (SE), and the expected square root of variance estimator (ERSE).

Results for Mean: Table 2.3 shows the results under the model (2.41), in the high response setting and high correlation scenario, for T=3, 4, 7 and 10. The results are obtained using stable, volatile and simulated data. The stable and volatile data follow the cyclic pattern and due to the cyclic pattern of the population data, the target parameter is the same for T=4, 7 and 10, where $\theta_4=\theta_7=\theta_{10}=11000.5$, so that the differences in the results are mainly caused by the length of response history. Notice that one may e.g. consider the NEE estimator by (2.5) to be based on 3, 6 and 9 weighting classes (of possible values of $\hat{\pi}_i$), respectively, for T=4, 7 and 10. Moreover, we also obtained the results for T=3 to know that how much NEE is effective for short history. For T=3, the target parameter $\theta_3=11747.05$. For simulated data the target parameters for T=3, 4, 7 and 10 are $\theta_3=808.1355$, $\theta_4=108.5394$, $\theta_7=1619.253$, $\theta_{10}=2397.519$,respectively. We observe the followings.

- The hypothetical estimator \mathbf{EE}_h is unbiased for NEE under the model (2.41). The NEE estimators are biased in this high correlation scenario. The bias is nevertheless greatly reduced compared to the naïve estimator, and it decreases as T increases in general. The reason for the latter is that the bias has two causes: the informative nonresponse and the non-linear term $1/\hat{\pi}_i$. With large T and smaller variance of $\hat{\pi}_i$, the contribution of non-linearity to the bias decreases. As explained before, increased volatility of the individual y_{it} 's does not affect the bias of the NEE estimators here.
- Due to differential weighting, the SE of the hypothetical estimator can still be higher than the naïve estimator. The NEE estimators have even higher SEs, as can be expected. The bias-variance trade-off compared to the naïve estimator is clearly affected by the volatility of the individual y_{it} 's, although in these simulations it is still in favour of the NEE estimators for the volatile population.

- The variance of NEE is overestimated especially for small T, for example, when T=3 and 4 whereas this overestimation decreases as T increases. This overestimation problem is address later in Chapter 4.
- Here the SEs are not much larger in volatile population than stable population because when the response is high then even with high correlation the volatility is not much affecting the variance of probability estimator under the congenial model.

Table 2.3: Results under model (2.41), high response and high correlation. Population: stable(Left), volatile(Middle) and simulated(Right)

	T=3, {	Stable	and Vo	latile: θ_3	= 11747	7.05, Sin	nulated:	$\theta_3 = 808$	8.1355 }
	naïve		EE	naïve		EE	naïve	$\overline{\mathbf{EE}_h}$	
APRB	20.56	0.00	2.92	11.15	0.01	3.10	23.53	0.02	2.62
SE	43.44	44.44	54.26	27.85	29.97	38.62	5.82	6.05	7.77
ERSE	409.00	43.33	84.53	378.08	31.21	65.43	190.75	6.32	12.33
	T=4,	{ Stable	and Vo	olatile: θ_4	= 1100	0.5, Sim	$\frac{1}{1}$	$\theta_4 = 108$	3.5394 }
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
APRB	20.06	0.01	5.42	15.92	0.00	4.31	21.49	0.01	5.58
SE	39.43	40.33	50.34	40.93	39.60	50.12	0.74	0.79	1.04
ERSE	331.84	39.89	82.45	344.21	39.22	78.17	11.87	0.80	1.65
	T=7,	{ Stable	and Vo	olatile: θ_7	= 1100	$0.5, \mathrm{Sim}$	nulated: θ	$\theta_7 = 161$	9.253 }
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	\mathbf{EE}
APRB	20.05	0.00	4.82	12.16	0.00	2.86	24.51	0.01	5.80
SE	38.59	40.09	49.92	41.39	40.53	48.30	12.86	12.91	15.79
ERSE	331.98	39.86	75.34	334.88	40.30	64.47	433.32	12.63	23.35
	T=10, ·	{ Stable	and Vo	latile: θ_1	$_{0} = 1100$	00.5, Sin	nulated:	$\theta_{10} = 23$	397.519 }
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	${f EE}$	naïve	\mathbf{EE}_h	${f EE}$
APRB	20.05	0.00	3.25	10.26	0.01	1.56	23.72	0.01	3.84
SE	39.19	40.14	47.02	42.99	41.78	46.87	18.22	18.18	21.10
ERSE	332.06	39.85	60.40	329.53	42.13	54.01	234.88	18.19	27.35

Table 2.4: Results under model (2.43), high response and high correlation. Population: stable(Left), volatile(Middle) and simulated(Right)

	T=7,	{ Stable	and Vo	olatile: θ_7	= 11000	.5, Simul	ated: θ_7	= 1619.3	253 }
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
APRB	20.43	0.16	4.62	20.45	16.41	15.36	23.41	4.48	10.10
SE	39.39	40.12	49.82	38.96	39.26	74.83	11.78	10.18	25.64
ERSE	332.33	40.54	75.38	332.39	140.31	180.12	428.23	72.65	79.84

Table 2.4 shows the results under the model (2.43), also in the high response setting and high correlation scenario, for T=7 only, as the message is the same for the other choices of T. The results show clearly that the underlying nonresponse assumption needs to be fairly close to the truth, in order for the NEE estimators to perform well. The risk of using the individual average of response probabilities over time is heightened with increasing volatility of the individual y_{it} 's, as can be seen from the bias of \mathbf{EE}_h for the volatile population and from the simulated population that is also volatile to some extent; in contrast, \mathbf{EE}_h remains nearly unbiased for the stable population. Since lack of mean heterogeneity is a potential shortcoming for any parametric

estimation approach in the presence of NMAR mechanisms, more empirical research is worthwhile regarding how to sensibly tailor the individual specification of $\hat{\pi}_i$ under the NEE approach.

Table 2.5: Results under model (2.45), high response and high correlation. Population: stable(Left), volatile(Middle) and simulated(Right)

	T=7	, { Stabl	e and Vo	latile: θ_7	= 11000.	5, Simula	ated: θ_7 =	= 1619.2	253 }					
	naïve	naïve \mathbf{EE}_h \mathbf{EE} naïve \mathbf{EE}_h \mathbf{EE} naïve \mathbf{EE}_h \mathbf{EE}												
APRB	0.56	0.00	0.08	0.41	0.05	0.17	4.32	0.03	0.93					
SE	104.42	139.62	189.08	109.96	141.35	187.60	80.55	87.35	107.82					
ERSE	311.18	141.20	299.91	310.47	140.68	286.32	419.75	88.58	150.85					

Table 2.5 shows the results under the model (2.45), also in the high response setting and high correlation scenario, for T=7 only. Moreover, the model (2.45) yields stable MAR response probability, so that the NEE estimators are nearly unbiased and the results are not affected by volatility too.

Table 2.6: Results under model (2.41), by response and correlation. Population: stable (Left), volatile (Right). T=7, { Stable and Volatile: $\theta_7 = 11000.5$, Simulated: $\theta_7 = 1619.253$ }

			low	response	and low	correlati	on		
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
APRB	18.87	0.03	4.09	5.50	0.04	1.40	57.70	0.03	10.94
SE	107.97	89.74	104.57	175.88	158.29	189.45	28.71	19.33	21.77
ERSE	436.21	89.70	143.57	396.66	159.09	265.87	579.48	18.97	31.91
			low	response	and high	correlat	ion		
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
APRB	35.88	0.01	7.33	15.02	0.07	3.08	59.28	0.02	11.48
SE	76.21	59.32	69.53	139.18	113.64	125.52	26.92	18.58	21.18
ERSE	445.35	58.32	102.19	445.93	106.71	154.08	565.99	18.35	32.19
			high	response	e and low	correlat	ion		
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
APRB	14.86	0.01	3.75	8.60	0.02	2.22	19.69	0.00	4.41
SE	33.98	36.17	46.70	53.40	52.66	61.39	11.15	10.89	13.11
ERSE	334.18	37.05	69.48	333.18	52.68	81.68	417.95	10.89	18.66
			high	response	and high	n correlat	ion		
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
APRB	20.05	0.00	4.82	12.16	0.00	2.86	24.51	0.01	5.80
SE	38.59	40.09	49.92	41.39	40.53	48.30	12.86	12.91	15.79
ERSE	331.98	39.86	75.34	334.88	40.30	64.47	433.32	12.63	23.35

In Table 2.6 the different response rate settings and correlation scenarios are contrasted with each other, for T = t = 7. We notice the followings.

- The effects of low response setting on the variance is clear and as expected, where all the SEs are increased, which is more striking for the volatile population when holding the correlation scenario fixed.
- The NEE estimators yield useful bias reduction compared to the naïve estimator in all

the cases, even in the low response setting.

• It is interesting to observe how the bias of the NEE estimator varies. The bias is increased in the high correlation scenario, but more so under the low response setting. Moreover, the bias is higher absolutely in the low response setting, where SE is larger and the contribution of non-linear $1/\hat{\pi}_i$ is relatively greater.

Results for Regression Coefficients: Table 2.7 shows the results concerning the regression parameter estimation under the model (2.41) for same settings as above for the case of mean estimation given in Table 2.3. Due to the cyclic pattern of stable and volatile population data, the target regression parameters are also same for T=4,7 and 10, which are given below in the tables and also for T=3. Similar to the case of mean estimation, the results under model 2.43 and 2.45 are given below in Table 2.8 and 2.9 respectively. Similar to the case of mean estimation above in Table 2.6, the different response rate settings and correlation scenarios are contrasted with each other, for T=7 in Table 2.10 for the estimation of regression parameters. Observing the results concerning estimation of regression coefficients corresponding to the results of mean estimation given above, the discussions remain almost the same except the bias is very high for β_1 for low correlation setting using stable and volatile population.

Table 2.7: Results under model (2.41), high response and high correlation. Population: stable(Left), volatile(Middle) and simulated(Right)

T=3, (s	stable/vola	atile, sim	ulated):	$\beta_0 = (117)$	764.93, 87	$73.43), \beta$	$r_1 = (-0.3)$	20, -5.39	9)
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
$APRB(\beta_0)$	20.52	0.01	2.95	19.82	0.00	2.25	23.17	0.07	2.46
SE	44.40	45.57	56.65	48.25	45.64	57.10	7.53	8.02	10.23
ERSE	409.91	43.82	85.48	438.51	44.20	85.88	211.62	7.93	15.33
$APRB(\beta_1)$	0.76	1.35	3.60	6.81	3.72	4.04	18.85	0.27	1.50
SE	0.11	0.11	0.14	0.12	0.11	0.14	0.30	0.34	0.40
ERSE	0.81	0.11	0.21	0.97	0.11	0.20	5.04	0.32	0.59
T=4, (s	stable/vola			$\beta_0 = (110$,	=(-0.40	4, -0.529	
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
$APRB(\beta_0)$	20.03	0.00	5.41	15.90	0.02	4.29	21.04	0.01	5.45
SE	40.60	41.58	51.08	40.25	38.99	48.24	0.92	0.98	1.26
ERSE	333.80	40.32	83.32	351.34	39.69	79.07	13.77	0.98	2.01
$APRB(\beta_1)$	6.05	1.52	4.42	3.61	0.32	3.17	14.51	0.17	4.15
SE	0.10	0.10	0.13	0.10	0.09	0.12	0.04	0.04	0.05
ERSE	0.55	0.10	0.19	0.99	0.10	0.19	0.52	0.04	0.08
T=7, (s	stable/vola	atile, sim	ulated):	$\beta_0 = (110$			=(-0.40	4, -0.529	
	naïve		EE	naïve		EE	naïve	\mathbf{EE}_h	EE
$APRB(\beta_0)$		0.02		12.15	0.01	2.87	22.75	0.07	5.46
SE	38.95	40.21	50.80	41.06		46.37	37.03	41.90	50.10
ERSE	333.90	40.29	76.06	332.81	40.77	65.28	414.98	37.84	60.84
$APRB(\beta_1)$	7.12	0.38	3.45	13.14	0.45	3.04	30.68	0.49	6.66
SE	0.09	0.09	0.12	0.10	0.10	0.12	3.39		4.47
ERSE	0.55	0.09	0.17	0.47	0.10	0.15	53.43	3.38	5.44
T=10, (stable/vol								
	naïve		EE	naïve	10	EE	naïve	\mathbf{EE}_h	EE
$APRB(\beta_0)$	20.01	0.01	3.26	10.31	0.02	1.55	23.31	0.02	3.76
SE	41.07	42.43	47.63	43.81	42.48	45.85	29.15	30.28	34.93
ERSE	333.96	40.27	60.91	336.79	42.94	54.96	284.58	28.23	40.46
$APRB(\beta_1)$	6.92	0.69	2.73	86.21	13.57	1.72	30.03	0.73	4.29
SE	0.09	0.10	0.11	0.17	0.16	0.17	2.10	2.22	2.55
ERSE	0.55	0.10	0.14	0.61	0.15	0.18	17.55	2.04	2.85

Table 2.8: Results under model (2.43), high response and high correlation. Population: stable(Left), volatile(Middle) and simulated(Right)

T=7,	(stable/vo	latile, sii	nulated)	$\beta_0 = (11)$	1023.06, 11	$(4.95) \beta_1 =$	=(-0.404)	,-0.529))
	naïve	\mathbf{EE}_h	\mathbf{EE}	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	\mathbf{EE}
$APRB(\beta_0)$	20.40	0.15	4.62	20.48	16.41	15.37	23.02	3.24	8.64
SE	39.35	40.12	49.96	39.12	39.33	72.27	34.39	33.57	44.91
ERSE	334.23	40.98	76.13	330.62	138.46	177.04	402.72	77.50	90.94
$APRB(\beta_1)$	8.59	1.07	3.32	34.67	20.46	18.50	25.01	7.82	14.28
SE	0.09	0.09	0.12	0.08	0.08	0.13	3.03	2.94	4.47
ERSE	0.54	0.10	0.17	0.44	0.19	0.25	51.61	10.09	11.07

Table 2.9: Results under model (2.45), high response and high correlation. Population: stable(Left), volatile(Middle) and simulated(Right)

T='	7, (stable/	volatile, s	imulated)	$\beta_0 = (11)$	1023.06, 11	$(4.95) \beta_1 =$	= (-0.404	,-0.529)	
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
$APRB(\beta_0)$	0.63	0.00	0.06	0.52	0.01	0.18	0.11	0.18	0.14
SE	106.41	141.22	192.89	114.54	145.20	187.33	104.59	113.25	143.68
ERSE	314.14	145.71	308.94	309.08	144.46	286.65	370.02	115.09	204.38
$APRB(\beta_1)$	8.80	0.07	0.78	6.28	0.12	2.21	0.39	0.23	0.19
SE	0.06	0.08	0.11	0.06	0.08	0.10	2.18	2.62	3.48
ERSE	0.46	0.08	0.17	0.33	0.08	0.16	41.98	2.66	5.05

Table 2.10: Results under model (2.41), by response and correlation. Population: stable (Left), volatile (Right). T=7, { Stable and Volatile: $\beta_0=11023.06,\ \beta_1=-0.4041232,$ Simulated: $\beta_0=1176.529,\ \beta_1=36.56497$ }

			low	response	and low	correlati	on		
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
$APRB(\beta_0)$	19.58	0.02	4.18	5.81	0.03	1.48	75.87	0.06	13.89
SE	112.74	92.45	106.95	188.18	167.45	193.64	33.13	22.56	24.51
ERSE	444.61	91.90	146.47	397.40	162.97	267.54	448.57	21.65	34.75
$APRB(\beta_1)$	218.13	0.19	48.81	53.88	0.30	14.00	1.94	0.07	0.42
SE	0.05	0.05	0.05	0.08	0.08	0.10	1.56	1.30	1.44
ERSE	0.55	0.05	0.08	0.34	0.08	0.14	49.32	1.22	1.77
			low	response	and high	orrelat			
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
$APRB(\beta_0)$	35.93	0.03	7.30	14.60	0.00	3.36	55.34	0.76	12.03
SE	76.90	59.70	69.38	129.11	106.78	122.34	101.85	61.43	63.38
ERSE	448.46	59.14	103.49	421.20	104.32	160.98	553.79	56.13	75.46
$APRB(\beta_1)$	42.87	3.75	6.50	7.05	0.29	3.69	70.96	2.17	10.20
SE	0.20	0.17	0.19	0.24	0.21	0.25	9.17	5.51	5.72
ERSE	0.83	0.15	0.25	0.61	0.20	0.33	70.57	4.98	6.71
				response					
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
$APRB(\beta_0)$	15.42	0.00	3.87	8.98	0.02	2.24	30.46	0.02	6.57
SE	35.82	38.24	48.10	55.34	54.20	65.71	12.82	11.81	13.95
ERSE	339.17	38.25	71.55	333.78	54.29	84.02	369.42	11.94	20.25
$APRB(\beta_1)$	220.46	0.06	56.18	100.96	0.21	25.84	17.81	0.00	4.13
SE	0.02	0.02	0.03	0.03	0.03	0.03	0.29	0.29	0.34
ERSE	0.55	0.02	0.04	0.36	0.03	0.04	41.83	0.29	0.50
				response		h correlat	ion		
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	${f EE}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
$APRB(\beta_0)$	20.01	0.02	4.83	12.15	0.01	2.87	22.75	0.07	5.46
SE	38.95	40.21	50.80	41.06	39.90	46.37	37.03	41.90	50.10
ERSE	333.90	40.29	76.06	332.81	40.77	65.28	414.98	37.84	60.84
$APRB(\beta_1)$	7.12	0.38	3.45	13.14	0.45	3.04	30.68	0.49	6.66
SE	0.09	0.09	0.12	0.10	0.10	0.12	3.39	3.78	4.47
ERSE	0.55	0.09	0.17	0.47	0.10	0.15	53.43	3.38	5.44

2.7 Conclusions

In this chapter we propose a new NEE approach for the estimation of parameters based on cross-sectional data subjected to informative missing mechanisms. The following conclusions emerge from the theoretical investigation and the simulation study.

The NEE approach is easy to compute and flexible in specification of the estimators of individual response probabilities. This makes it a widely applicable technique for exploratory data

analysis of cross-sectional missing data mechanisms, based on the observed response history. The results can provide a basis for deciding whether more sophisticated modelling is needed in a given situation.

The NEE estimators are clearly better than naïve estimator, provided sensible choices of the response probability estimator, which can easily accommodate NMAR mechanisms. This is especially the case given low volatility of the individual outcome variables over time, despite considerable variation of the same outcome variable may exist across the population. The ability to vary the nonresponse assumption for different individuals makes it potentially a flexible alternative to standard parametric modelling approach, where the same model parameters are assumed to apply across the population.

The NEE estimator is not exactly unbiased, even when the response probability estimator is unbiased. The bias has two sources: the correlation between e.g. π_i and y_i , and the non-linearity of $1/\hat{\pi}_i$, or the variance of $\hat{\pi}_i$. The variance of $\hat{\pi}_i$ is naturally reduced given longer response history. We identify that the variance is overestimated using NEE approach, we will return to this later on in Chapter 4.

Chapter 3

Non-parametric Estimating Equations Approach for Longitudinal Data

3.1 Introduction

Longitudinal data analysis is of great interest in a wide array of disciplines across the medical, economic and social sciences. Cross-sectional data can only provide a snapshot at a single point of time and does not possess the capacity to reflect change, growth, or development. Aware of the limitations in cross-sectional studies, many researchers have advanced the analytic perspective by examining data with repeated measurements. By measuring the same variable of interest repeatedly over time, the change is displayed, and constructive findings can be derived with regard to the significance of patterns revealed. Data with repeated measurements are referred to as longitudinal data. In many longitudinal data designs, subjects are assigned specified levels of a treatment or subjected to other risk factors over a number of time points that are separated by specified intervals.

Analysing longitudinal data poses many challenges due to several unique features inherent in such data. First, the most troublesome feature of longitudinal analysis is missing data in repeated measurements. In a longitudinal survey, missing observations of the variable of interest frequently occurs. For example, in a clinical trial on the effectiveness of a new medical treatment for disease, patients may be unavailable to a follow-up investigation due to migration or health problems, or some baseline respondents may lose interest in participating at subsequent times. The missing cases may possess specific characteristics and attributes, resulting in the observed sample at later time points to have a different structure to the sample initially gathered. Second, repeated measurements for the same observational unit are usually correlated, due to the fact that they are clustered within each unit. At the same time, an individual's repeated measurements may be subjected to a time-varying systematic process, resulting in serial correlation. Third, longitudinal data may be ordered either in equal or unequal time intervals, where each scenario may call for a different analytic approach. Sometimes, despite an equal-spacing design, some respondents may enter a follow-up investigation after the specified survey date,

which creates unequal time intervals for different individuals by chance.

To fix the scope it is helpful to make a distinction between repeated measures in general and the type of longitudinal data considered in this chapter. Repeated measures data represent a wider concept as they sometimes involve a large number of time points and permit changing experimental or observational conditions (West et al. (2007)). The longitudinal data which we consider here can be regarded as a special case of repeated measures data. They are composed of observations for the same subject ordered by a limited number of time points (i.e. waves) with predetermined time scale, interval and other related conditions. This is typical of data arising from longitudinal social surveys (Lynn (2009)). In statistics and econometrics, such longitudinal data are often referred to as panel data.

As indicated above, missing data is one of the primary problems to contend with in longitudinal data analysis. Missing data can be due to units that have dropped out (unit or wave nonresponse) or unanswered items(item nonresponse). At each wave longitudinal data are collected in a particular period of time in which the outcome and other relevant variables are recorded sequentially. Therefore, the researcher can only observe responses for those who are available within the duration of follow-up. There arise different situations of missing data. Sometimes the missing data represent a random sample of all cases. Or, missing data do not occur randomly, but the missing-ness can be controlled for with respect to observed variables such as age, gender, and health status. In these situations, missing data can cause loss of efficiency of the analysis but not necessarily bias. In many circumstances, however, the probability of data being missing is related to the missing values of the outcome variable, and failure to account for such missing data can be detrimental to the analysis of the pattern of change over time in the corresponding outcome variable. It is thus essential for the researcher to investigate and understand the nature of the missing data mechanism at hand The missing data mechanisms have already been discussed in Chapter 1.

Below we extend the NEE approach from the cross-sectional setting to the longitudinal setting. Here we want to estimate the change parameters for two successive time points. For this purpose we define two types of estimating equations; first, the EE that uses the individuals who respond at both time points and second, that uses also the individuals who respond at only one of the two time points. The set-up given below in Section 3.2 explains the models for response probabilities, and different response probability estimators for both types of estimating equations and way forward to use both types of EEs for estimation of change parameters. For both types of EEs, different response probability estimators are defined so that different dropout patterns can be captured underlying the assumed models for the unknown response probability. In Section 3.3 we discuss the bias of both types of estimating equations. The variance of change estimators and their plug-in estimators are derived both types of estimating equations and given in Appendix A.The variance of change estimators based on the second type of estimating equations require tedious algebra especially for its covariance term. Finally a simulation study is conducted to estimate the change parameters using both types of estimating equations using real and simulated data. The performance of NEE approach is explored using various simulation settings while comparing both types of EEs along with different response probability estimators.

3.2 Two NEE estimators of change

Under the NEE approach to MNAR nonresponse, we do not assume a parametric model of the response probabilities that pertain to all the population units. To accommodate potentially informative missing data, we postulate an individual response probability which may depend on the longitudinal outcomes of interest and covariates specific to each observational unit. The outcome values are also treated non-parametrically as unknown constants, just like in the design-based approach to survey sampling. Under this set-up, the observation propensity is estimated using individual-specific observation history, without involving the others in the population. The approach is applicable whenever there exist historical response/observation indicators. In other words, any unit who never responds will not be included in the estimation. To maintain the focus, we shall assume in this chapter that these never-respondents are a completely random sample from the population, without getting into the details of exploring different modelling options for them otherwise.

Let the population $U = \{1, ..., N\}$ be fixed over time points t = 1, ..., T, from the most distant (t = 1) to the most recent wave (t = T). Let y_{it} be a value associated with individual i at time t, for $i \in U$, and $\mathbf{y}_i = (y_{i1}, ..., y_{iT})^T$. Let δ_{it} be the response/observation indicator for y_{it} at time t. For the finite-population change, without losing generality, let us consider

$$\Delta_t = \bar{Y}_t - \bar{Y}_{t-1} = \sum_{i \in U} y_{it}/N - \sum_{i \in U} y_{i,t-1}/N = \sum_{i \in U} (y_{it} - y_{i,t-1})/N$$

for $t \geq 2$. Let $d_{it} = y_{it} - y_{i,t-1}$. The population EE that defines Δ_t is given by

$$H(\Delta_t) = N^{-1} \sum_{i=1}^{N} S_i(\Delta_t); \qquad H(\Delta_t) = 0,$$
 (3.1)

i.e. $S_i(\Delta_t) = S(\Delta_t; \mathbf{y}_i) = d_{it} - \Delta_t$ is the 'score', so specified that Δ_t is the solution to $H(\Delta_t) = 0$. Let $r_{it} = \delta_{i,t-1}\delta_{it}$. Let r_{it} and $r_{it'}$ be independent, where $t \neq t'$, given \mathbf{y}_i and relevant covariates \mathbf{x}_i . An informative nonresponse probability assumption of r_{it} can be given as

$$p_{it} = \Pr(r_{it} = 1 | \mathbf{y}_i, \mathbf{x}_i) = \Pr(\delta_{i,t-1} \delta_{it} = 1 | \mathbf{y}_i, \mathbf{x}_i), \tag{3.2}$$

An unbiased respondent EE for Δ_t is then given by

$$\tilde{H}(\Delta_t) = N^{-1} \sum_{i=1}^{N} \frac{r_{it}}{p_{it}} S_i(\Delta_t); \qquad \tilde{H}(\tilde{\Delta}_t) = 0,$$

based on the respondents at both waves. However, $\tilde{H}(\Delta_t)$ is not operational because p_{it} is unknown. The observed (respondent) NEE is given by

$$\hat{H}(\Delta_t) = N^{-1} \sum_{i=1}^{N} \frac{r_{it}}{\hat{p}_{it}} S_i(\Delta_t); \qquad \hat{H}(\hat{\Delta}_t) = 0,$$
 (3.3)

on replacing p_{it} with a suitable estimator \hat{p}_{it} for each respondent with $r_{it} = 1$. The corresponding

NEE-based estimator of Δ_t is simply given by

$$\hat{\Delta}_t = \sum_{i=1}^{N} \frac{r_{it}}{\hat{p}_{it}} d_{it} / \sum_{i=1}^{N} \frac{r_{it}}{\hat{p}_{it}}.$$

In its basic form the estimator \hat{p}_{it} is constructed individually for each observational unit on its own, based on the relevant historic values r_{i2}, \ldots, r_{iT} . For example, consider the following three estimators

$$\hat{p}_i = \sum_{t=2}^{T} \frac{r_{it}}{T - 1}, \quad \hat{p}_{1i} = \sum_{t=2}^{T_{1i}} \frac{r_{it}}{T_{1i} - 1} \quad \text{and} \quad \hat{p}_{2i} = \sum_{t=2}^{T_{2i}} \frac{r_{it}}{T_{2i} - 1}, \tag{3.4}$$

where $T_{1i} = \max_{t=2,...,T} \delta_{it}t$ is the most recent time point of response, and $T_{2i} = \max_{t=2,...,T} r_{it}t$ is that of the most recent successive responses. The three estimators are the same if t=T, in which case $T_{1i} = T_{2i} = T$, but they may differ if t < T. For instance, suppose T=6 and t=3. The estimator \hat{p}_i uses all the five r_{it} 's, which may not be appropriate for the units observed with a monotone missing data pattern, where nonresponse after the dropout point can be irrelevant to the estimation of response propensity before the dropout point. The dropout is dealt with somewhat differently by \hat{p}_{1i} and \hat{p}_{2i} . Consider a unit with $r_{i3} = 1$, $\delta_{i4} = \delta_{i6} = 1$ and $\delta_{i5} = 0$, such that $T_{1i} = 6$ and $T_{2i} = 4$, by which \hat{p}_{1i} and \hat{p}_{2i} will differ to each other, even though $\sum_{t=2}^{T_{1i}} r_{it} = \sum_{t=2}^{T_{2i}} r_{it}$ in this case.

Notice that given the form of an estimator \hat{p}_{it} , whether it is unbiased depends on the nature of (3.2), which generally varies from one individual to another. For instance, for someone with a nonmonotone missing data pattern, \hat{p}_i is unbiased if the response probability is constant over time, regardless how it depends on \mathbf{y}_i and \mathbf{x}_i . Whereas the estimators \hat{p}_{1i} and \hat{p}_{2i} are biased in such a case, unless T = t, because the 'stopping' times T_{1i} and T_{2i} are informative otherwise. Of course, there are other situations where \hat{p}_{1i} or \hat{p}_{2i} may be unbiased instead of \hat{p}_i , and so on.

Finally, there will be individuals for which all these three estimators are biased, and some other estimator of p_{it} is more appropriate. For instance, one may allow \hat{p}_{it} to depend on t, provided one detects a 'trend' in the r_{it} 's over time for the given individual. The flexibility of the approach here is that it allows one to vary the specification of \hat{p}_{it} for each individual and the assumption that is considered most appropriate given the response history of that particular individual, instead of imposing a single parametric form across the population, as under the parametric modelling approach to (3.2).

Now, the NEE (3.3) uses only the completely observed units at both t and t-1. This could potentially entail a loss of efficiency. For an alternative that uses the individuals who respond at either one of the two time points, consider the MNAR response probability assumption for each t:

$$\pi_{it} = \Pr(\delta_{it} = 1 | \mathbf{y}_i, \mathbf{x}_i). \tag{3.5}$$

The observed (respondent) NEE can then be given as

$$\begin{cases} \hat{H}(\theta_t) = N^{-1} \sum_{i=1}^{N} \frac{\delta_{it}}{\hat{\pi}_{it}} S_i(\theta_t) \\ \hat{H}(\theta_{t-1}) = N^{-1} \sum_{i=1}^{N} \frac{\delta_{i,t-1}}{\hat{\pi}_{i,t-1}} S_i(\theta_{t-1}) \end{cases}$$
(3.6)

where $\theta_t = \bar{Y}_t$ and $\theta_{t-1} = \bar{Y}_{t-1}$, such that $\Delta_t = \theta_t - \theta_{t-1}$, and $S_i(\theta_t) = y_{it} - \theta_t$ is such that that θ_t is the solution to the population EE, $H(\theta_t) = 0$, and similarly for $S_i(\theta_{t-1})$. The $\hat{\pi}_{it}$ is response probability estimator for time t and $\hat{\pi}_{i,t-1}$ that for time t-1. Below we refer to (3.6) as $\hat{H}(\theta_t, \theta_{t-1})$.

Having estimated the cross-sectional parameters θ_t and θ_{t-1} , one can derive the corresponding NEE-based estimate of Δ_t as the difference between the two, which is given by

$$\hat{\Delta}_t = \sum_{i=1}^N \frac{\delta_{it}}{\hat{\pi}_{it}} y_{it} / \sum_{i=1}^N \frac{\delta_{it}}{\hat{\pi}_{it}} \quad - \quad \sum_{i=1}^N \frac{\delta_{i,t-1}}{\hat{\pi}_{i,t-1}} y_{i,t-1} / \sum_{i=1}^N \frac{\delta_{i,t-1}}{\hat{\pi}_{i,t-1}}.$$

The variance of this estimator is given as

$$V(\hat{\Delta}_t) = V(\hat{\theta}_t) - 2Cov(\hat{\theta}_t, \hat{\theta}_{t-1}) + V(\hat{\theta}_{t-1}). \tag{3.7}$$

Similarly to p_{it} , one may postulate different non-parametric estimators of π_{it} . We consider the following two estimators in the simulation study later on:

$$\hat{\pi}_i = \sum_{i=1}^T \frac{\delta_{it}}{T}$$
 and $\hat{\pi}_{1i} = \sum_{i=1}^{T_{1i}} \frac{\delta_{it}}{T_{1i}}$, (3.8)

As with the estimator \hat{p}_{it} above, one can subject the estimator $\hat{\pi}_{it}$ to appropriate modifications, to suit different assumptions of (3.5) across the observational units.

3.3 On the bias of NEE

The NEE $\hat{H}(\Delta_t)$ given by (3.3) or $\hat{H}(\theta_t, \theta_{t-1})$ given by (3.6) is not exactly unbiased, even when \hat{p}_{it} is unbiased for p_{it} or $\hat{\pi}_{it}$ unbiased for π_{it} . Here we examine the bias and explore possible adjustments.

Let $\tau_{it} = E(\hat{p}_{it})$ be the expectation of \hat{p}_{it} , where $\tau_{it} = p_{it}$ in case \hat{p}_{it} is unbiased. Via Taylor expansion of \hat{p}_{it} around τ_{it} , provided $\hat{p}_{it} \neq 0$, the bias of NEE (3.3) can be written as

$$B_{1} = E[\hat{H}(\Delta_{t})] - H(\Delta_{t}) = N^{-1} \sum_{i=1}^{N} S_{i}(\Delta_{t}) E\left(\frac{r_{it}}{\hat{p}_{it}} - 1\right)$$

$$= N^{-1} \sum_{i=1}^{N} S_{i}(\Delta_{t}) \left\{ \left(\frac{2p_{it}}{\tau_{it}} - 1\right) - \frac{E(r_{it}\hat{p}_{it})}{\tau_{it}^{2}} + \frac{E(r_{it}\hat{p}_{it}^{2}) - 2\tau_{it}E(r_{it}\hat{p}_{it}) + \tau_{it}^{2}p_{it}}{p_{i}^{*3}} \right\}$$
(3.9)

for some p_i^* between τ_{it} and \hat{p}_{it} . Further derivation of the expression (3.9) depends on the choice of \hat{p}_{it} . The case of $\hat{p}_{it} = \hat{p}_i$ in (3.4) is given below; the other cases are similar and omitted here. We have

$$E(r_{it}\hat{p}_i) = E(\frac{r_{it}}{T-1} \sum_{t'=2}^{T} r_{it'}) = \frac{1}{T-1} \sum_{t'=2}^{T} p_{it}p_{it'} + \frac{1}{T-1} Var(r_{it}) = p_i^2 + V(\hat{p}_i)$$

where the last expression follows if $p_{it} \equiv p_i$, i.e. when \hat{p}_i is unbiased for p_{it} . Next, after some

algebra,

$$E(r_{it}\hat{p}_i^2) = E\left[\frac{r_{it}}{(T-1)^2}(\sum_{t'=2}^T r_{it'})^2\right] = \frac{p_i \kappa_i}{(T-1)^2},$$

where $\kappa_i = 1 + 3(T-2)p_i + 2(T-2)(T-3)p_i^2$. Thus, given $\tau_{it} = p_{it}$, the bias (3.9) becomes

$$B_1 = N^{-1} \sum_{i=1}^{N} w_i S_i(\Delta_t),$$

where

$$w_i = \frac{p_i \kappa_i}{(T-1)^2 p_i^{*3}} - \frac{p_i^3}{p_i^{*3}} + \left(\frac{2p_i}{p_i^{*3}} - \frac{1}{p_i^2}\right) V(\hat{p}_i).$$

The coefficients w_i 's above are functions of p_i , such that it may depend on \mathbf{y}_i , even though the functional form of the dependence is unspecified under the NEE approach. In other words, the term B_1 is not zero as long as the population covariance of w_i and $S_i(\Delta_t)$ is not zero, which is given by $N^{-1} \sum_{i=1}^{N} w_i S_i$ since $N^{-1} \sum_{i=1}^{N} S_i(\Delta_t) = 0$ by definition.

Consider the two cross-sectional NEEs in (3.6) separately. Let $\tau_{it} = E(\hat{\pi}_{it})$ be the expectation of $\hat{\pi}_{it}$ for wave t. By Taylor expansion, provided $\hat{\pi}_{it} \neq 0$, we obtain

$$B_{2}(t) = E[\hat{H}(\theta_{t})] - H(\theta_{t}) = N^{-1} \sum_{i=1}^{N} S_{i}(\theta_{t}) E\left(\frac{\delta_{it}}{\hat{\pi}_{it}} - 1\right)$$

$$= N^{-1} \sum_{i=1}^{N} S_{i}(\theta_{t}) \left\{ \left(\frac{2\pi_{it}}{\tau_{it}} - 1\right) - \frac{E(\delta_{it}\hat{\pi}_{it})}{\tau_{it}^{2}} + \frac{E(\delta_{it}\hat{\pi}_{it}^{2}) - 2\tau_{it}E(\delta_{it}\hat{\pi}_{it}) + \tau_{it}^{2}\pi_{it}}{\pi_{i}^{*3}} \right\}$$
(3.10)

for some π_i^* between τ_{it} and $\hat{\pi}_{it}$. Similarly as above, in the case of unbiased $\hat{\pi}_i$ in (3.8), we have

$$E(\delta_{it}\hat{\pi}_i) = \pi_i^2 + V(\hat{\pi}_i)$$
 and $E(\delta_{it}\hat{\pi}_i^2) = \pi_i \kappa_i'/T^2$,

where $\kappa_i' = 1 + 3(T-1)\pi_i + 2(T-1)(T-2)\pi_i^2$. The corresponding bias (3.10) becomes

$$B_2(t) = N^{-1} \sum_{i=1}^{N} u_i S_i(\theta_t),$$

where

$$u_i = \frac{\pi_i \kappa_i'}{T^2 \pi_i^{*3}} - \frac{\pi_i^3}{\pi_i^{*3}} + \left(\frac{2\pi_i}{\pi_i^{*3}} - \frac{1}{\pi_i^2}\right) V(\hat{\pi}_i)$$

One can obtain $B_2(t-1)$ as the bias of $\hat{H}(\theta_{t-1})$ similarly. Again, B_2 may not be zero if the population covariance of u_i and $S_i(\theta_t)$ is not zero.

The variances of respective change estimators are given in Appendix A

3.4 Simulation Study

The NEE approach provides a method for exploring informative nonresponse in the longitudinal setting, which is computationally easy and flexible in specification. From the outset there are

several factors that can be expected to affect its performance in a given situation.

First, provided the suitable nonresponse assumptions for all the responding individuals, the NEE estimator should perform better given a longer history of response. For instance, in the case of T = t = 3, where there are two observations of r_{it} for each individual, there are only two possible histories for each respondent with $r_{i3} = 1$, where r_{i2} is either 1 or 0. The estimate \hat{p}_{it} that enters the NEE (3.3) either takes value 1 or 0.5, such that the estimator of Δ_t is only based on two weighting classes. Whereas the näive estimator under the MCAR assumption is based on a single weighting class. Clearly, the ability to adjust for potentially informative nonresponse by the NEE approach is rather limited in this case. Thus, a factor that matters in the simulation study will be the length of response history. Therefore, we estimated the change in mean and change in regression coefficients using T = t = 3, 4, 7 and 10, and using t = 4, 7 when t = 10.

Next, a relevant factor is the variation of y_{it} 's over time, for each given individual. Take again the estimator \hat{p}_t that is averaged over all the r_{it} 's. On the one hand, it is unbiased if the informative response propensity depends only on a scalar summary of the y_{it} 's, in which case it does not matter how volatile the y_{it} 's are over time. On the other hand, intuitively the risk of bias is heightened, when the y_{it} 's are volatile, as compared to the extreme case where $y_{it} \equiv y_i$ is completely static. Moreover, as the variance of the resulting estimator of Δ_t increases with more volatile y_{it} 's, it would be interesting to explore if this has any compounding effect together with the heightened risk of bias.

Last but not least, the nonresponse mechanism itself will be a critical factor to the performance of the NEE. That is, if the assumption for unbiased estimation of p_{it} 's is clearly violated, then the NEE estimator may suffer extra bias beyond the inherent bias of the NEE as explained in Section 3.3.

Below we describe first the data used for the simulation, the models that can be used for simulating response history, and then the chosen simulation set-up, including the specific response probability models, the sample size corresponding to overall response rate, and the estimators to be evaluated, before we present and discuss the simulation results.

3.4.1 Data and Response Probability Models

We use stable, volatile and simulated data for estimation of cross-sectional parameters in the previous chapter and the same data sets are used here for the estimation of longitudinal parameters. We estimate the change parameter such as change in mean and change in the regression coefficients. We use the same set of response probability models given in Section 2.6.3 of previous Chapter.

3.4.2 Simulation set-up

We carry out simulations separately for the stable, volatile and simulated population, as described below. The number of simulations are determined on the basis of about 1% CV of the Monte Carlo errors.

We experiment the different response probability models (2.41) - (2.46). The results using different estimators \hat{p}_{it} in (3.4) and $\hat{\pi}_{it}$ in (3.8) are largely similar under models (2.42), (2.44)

and (2.46), compared to those under models (2.41), (2.43) and (2.45), respectively, as long as the coefficient of $\delta_{i,t-1}$ under the former group is not large enough to induce monotone response patterns. Alternatively, when clear monotone response patterns are simulated, the estimators \hat{p}_{1i} and \hat{p}_{2i} would outperform \hat{p}_{it} , as can be expected; similarly for $\hat{\pi}_{1i}$ compared to $\hat{\pi}_i$. Moreover, the model (2.45) yields stable MAR response probability, so that the NEE estimators are nearly unbiased as seen in the case of cross-sectional setting in the previous chapter. Below we focus on simulation under the models (2.41) and (2.43), where η_i is set to the mean of $y_{i1}, ..., y_{iT}$, and the additional covariate x_i is a random variable from Log N(2, 2).

For each response probability model, we set the γ -coefficients such that the overall response rate is either about 60% or 80%, to be referred to as the low or high response setting, respectively. As explained in Section (3.3), the bias of the NEE estimators depends on the correlation between w_i and $S_i(\Delta_t)$ or, similarly, that between u_i and $S_i(\theta_t)$. We can vary the correlation by changing the coefficient γ_1 in (2.41) and (2.43), relative to the other γ -terms, while holding the overall response rate at the required setting. We simulate a low correlation scenario, where the population correlation between w_i and $S_i(\Delta_t)$ is e.g. -0.0536 at wave 6, and a high correlation scenario, where the correlation between w_i and $S_i(\Delta_t)$ is -0.1363 at the same wave. The high correlation induces non-negligible bias of the NEE estimators.

Given each response probability model, the response indicators δ_{it} 's are generated independently for all the 10 waves, based on which the NEE estimator $\hat{\Delta}_t$ from (3.3) is calculated using \hat{p}_i in (3.4), denoted by $\mathbf{EE}(\hat{p}_i)$, for various combinations of (T,t). Given that we have full knowledge of the simulated data, we can calculate the hypothetical estimator using the NEE based on the individual mean of the true response probabilities over time. Including this hypothetical estimator, denoted by \mathbf{EE} h, allows us to understand when a result is due to the empirical property of the observed NEE, and when it is caused by the misspecified nonresponse assumption, i.e. when the data are simulated under the model (2.43) but the estimator is ideal under the model (2.41). Finally, the naïve estimator under the MCAR assumption is included as the baseline estimator for comparison. Similarly for the NEE estimator $\hat{\Delta}_t$ from (3.6), calculated using $\hat{\pi}_i$ in (3.8) and denoted by $\mathbf{EE}(\hat{\pi}_i)$, together the corresponding hypothetical estimator \mathbf{EE}_h and naïve estimator under the MCAR assumption.

3.4.3 Results

The results related to the estimation of change in mean and change in regression coefficients under above simulation set-up are obtained and given in section E.1 and E.2 of Appendix E, respectively. These tables also include the results related to the bias adjustment that is discussed in next chapter. We discussed below some selective results. In the results below we report for each estimator its absolute percent relative bias (APRB), its standard error (SE), and the expected square root of variance estimator (ERSE).

Estimation of Change in Mean: Table 3.1 shows the results under the model (2.41), in the high response setting and high correlation scenario, for T=t=4,7 and 10. Due to the cyclic pattern of the stable and volatile population data, the target parameter is the same on all these three occasions, where $\Delta_4 = \Delta_7 = \Delta_{10} = -746.55$, so that the differences in the

results are chiefly caused by the length of response history. Notice that one may e.g. consider the NEE estimator by (3.3) to be based on 3, 6 and 9 weighting classes (of possible values of \hat{p}_i), respectively, for T=4, 7 and 10. Moreover, for simulated data the target parameters are $\Delta_4=-699.5961$, $\Delta_7=1448.408$ and $\Delta_{10}=190.6555$. From results of Table 3.1, we observe the followings.

- The hypothetical estimator \mathbf{EE}_h is unbiased for both NEEs under the model (2.41). Both the NEE estimators are biased in this high correlation scenario. The bias is nevertheless greatly reduced compared to the naïve estimator, and it decreases as T increases. The reason for the latter is that the bias has two causes: the informative nonresponse and the non-linear term $1/\hat{p}_i$. With large T and smaller variance of \hat{p}_i , the contribution of non-linearity to the bias decreases. As explained before, increased volatility of the individual y_{it} 's does not affect the bias of the NEE estimators here.
- Due to differential weighting, the SE of the hypothetical estimator can still be higher than the naïve estimator. The NEE estimators have even higher SEs, as can be expected. The bias-variance trade-off compared to the naïve estimator is clearly affected by the volatility of the individual y_{it} 's, although in these simulations it is still in favour of the NEE estimators for the volatile population.
- While the variance of the NEE estimator by (3.3) is increased dramatically from the stable to the volatile population, that from the NEE (3.6) is about the same for both. As the δ_{it} 's are independent over time, the covariance term in (3.7) is close to zero, so that the NEE (3.6) actually loses efficiency compared to (3.3) for the stable population, despite it ostensibly uses more observations. Moreover, its variance remains about the same for the volatile population and for the simulated population, because the population distribution is about the same over time according to how these population are generated.

 $Table \ 3.1: \ Results \ under \ model \ (2.41), \ high \ response \ and \ high \ correlation. \ Population: \ stable (Left), \ volatile (Middle), \ simulated (right) \ and \ response \ and \ high \ correlation.$

					T=	t=4, {Sta	ble and	Volatile:	$\Delta_4 = -7$	46.55}, {	Simulat	ted: $\Delta_4 =$	-699.59	61 }				
	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	48.98	0.10	12.70	24.24	0.19	22.13	67.29	0.04	15.51	32.61	0.00	16.24	46.79	0.07	14.48	24.15	0.01	3.09
SE	10.58	10.75	14.86	59.45	61.21	77.01	53.28	47.68	75.34	52.97	52.71	66.78	7.82	9.01	10.00	6.36	6.55	8.02
ERSE	258.14	10.62	22.04	517.54	59.02	102.42	641.63	48.17	110.73	528.60	53.78	91.82	224.39	8.98	14.49	191.23	6.40	11.01
					T:	=t=7, {St	able and	Volatile	e: $\Delta_7 = -$	746.55},	{Simula	ated: Δ_7 =	= 1448.40	8 }				
	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	51.83	0.02	1.35	25.46	0.44	0.85	61.64	0.27	0.04	29.51	0.40	0.06	48.70	0.01	2.22	24.65	0.04	0.03
SE	10.84	10.93	14.14	56.65	58.61	69.09	62.78	57.42	75.23	53.07	52.75	59.37	16.90	18.00	22.25	12.65	12.73	14.64
ERSE	258.25	10.73	20.15	517.70	58.86	90.18	610.92	58.27	104.88	513.67	53.06	72.75	512.24	18.40	34.50	432.83	12.70	18.72
			T=t:	=10, {Sta	able and	Volatile:	$\Delta_{10} = -$	746.55 }	, {Simulat	ed: Δ_{10}	= 190.6	555 }, hig	h respons	se and h	igh correl	ation		
	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	53.04	0.02	1.46	26.45	0.02	0.14	53.97	0.08	2.48	26.56	0.11	0.17	45.02	0.01	0.75	22.95	0.08	0.07
SE	10.40	10.60	13.51	56.48	58.34	65.25	71.00	65.57	78.79	54.05	53.66	58.06	3.79	3.71	4.62	24.83	24.81	27.33
ERSE	258.41	10.81	18.71	518.04	58.85	75.99	596.17	65.10	98.66	505.98	54.42	64.34	341.29	3.65	6.21	367.54	24.78	31.84

 $Table \ 3.2: \ Results \ under \ model \ (2.43), \ high \ response \ and \ high \ correlation. \ Population: \ stable (Left), \ volatile (Middle), \ simulated (right)$

					1	$\Gamma = t = 7, \{S\}$	table and	l Volatile	$\Delta_7 = -$	746.55},	{Simulat	ed: $\Delta_7 =$	1448.408	}				
	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	61.43	0.85	5.88	41.36	10.23	13.41	42.28	27.69	32.83	40.81	21.77	33.89	32.71	4.81	5.20	8.33	8.34	9.87
SE	22.50	21.71	27.84	57.54	58.27	67.66	247.73	249.15	370.33	59.49	60.00	124.60	14.07	12.73	54.26	7.00	6.71	20.02
ERSE	260.94	21.56	39.15	521.26	60.31	91.60	586.62	324.86	659.95	526.75	216.54	300.99	462.09	85.96	116.66	382.06	54.49	62.46

Table 3.2 shows the results under the model (2.43), also in the high response setting and high correlation scenario, for T = t = 7 only, as the message is the same for the other choices of (T,t). The results show clearly that the underlying nonresponse assumption needs to be fairly close to the truth, in order for the NEE estimators to perform well. The risk of using the individual average of response probabilities over time is heightened with increasing volatility of

the individual y_{it} 's, as can be seen from the bias of \mathbf{EE}_h for the volatile population; in contrast, \mathbf{EE}_h remains nearly unbiased for the stable population. Since lack of mean heterogeneity is a potential shortcoming for any parametric estimation approach in the presence of NMAR mechanisms, more empirical research is worthwhile regarding how to sensibly tailor the individual specification of \hat{p}_{it} (or $\hat{\pi}_{it}$) under the NEE approach.

Table 3.3: Results under model (2.41), by response and correlation. Population: stable(Left), volatile(Middle), simulated(right)

		T=t=7, {Stable and Volatile: $\Delta_7 = -746.55$ }, {Simulated: $\Delta_7 = 1448.408$ }, low response and low correlation																
	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	112.36	0.53	12.08	47.76	1.26	4.95	96.80	1.36	15.52	44.19	2.30	3.83	156.22	0.05	12.73	62.97	0.03	0.28
SE	103.40	79.53	110.59	151.28	127.65	147.96	447.53	354.59	497.54	254.91	226.17	272.63	57.61	27.15	36.69	27.61	18.43	21.32
ERSE	438.89	77.85	145.58	675.40	131.27	188.97	909.33	368.02	682.58	628.27	233.79	337.46	916.51	28.64	54.06	578.91	18.71	29.44
	T=t=7, {Stable and Volatile: $\Delta_7 = -746.55$ }, {Simulated: $\Delta_7 = 1448.408$ }, low response and high correlation																	
	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	156.16	0.08	12.80	63.57	0.20	5.33	156.41	1.56	15.16	63.56	0.34	3.29	144.69	0.06	12.43	60.34	0.04	0.38
SE	55.76	36.77	50.58	105.40	82.91	97.92	308.21	205.82	288.36	172.01	142.27	158.61	55.30	28.53	36.90	26.85	18.42	21.13
ERSE	448.59	37.08	68.58	681.29	83.33	133.26	1038.50	210.15	390.31	667.36	140.55	195.84	865.02	28.22	53.07	565.64	18.48	29.19
				Γ=t=7, {	Stable ar	nd Volatile	e: $\Delta_7 = -$	746.55},	{Simulate	ed: $\Delta_7 =$	1448.408	}, high re	esponse a	and low	correlatio	n		
	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	50.28	0.08	1.79	25.33	0.12	1.40	56.65	0.36	1.39	27.78	0.54	0.21	49.07	0.01	1.23	24.35	0.02	0.05
SE	18.95	19.14	25.31	51.46	54.96	65.86	109.84	110.36	146.68	76.58	77.47	86.58	18.27	17.72	21.51	13.09	12.65	14.30
ERSE	257.57	19.05	35.79	518.37	53.92	82.26	610.77	108.48	203.36	515.95	77.01	103.01	513.97	17.68	33.57	432.02	12.35	17.63
			Γ	T=t=7, {	Stable an		$\Delta_7 = -1$	746.55 },	{Simulate	d: $\Delta_7 =$	1448.408	}, high re	sponse a	nd high	correlatio	n		
	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	51.83	0.02	1.35	25.46	0.44	0.85	61.64	0.27	0.04	29.51	0.40	0.06	48.70	0.01	2.22	24.65	0.04	0.03
SE	10.84	10.93	14.14	56.65	58.61	69.09	62.78	57.42	75.23	53.07	52.75	59.37	16.90	18.00	22.25	12.65	12.73	14.64
ERSE	258.25	10.73	20.15	517.70	58.86	90.18	610.92	58.27	104.88	513.67	53.06	72.75	512.24	18.40	34.50	432.83	12.70	18.72

In Table 3.3 the different response rate settings and correlation scenarios are contrasted with each other, for T = t = 7. Using all three populations data, we observe the followings.

- The effects of low response setting on the variance is clear and as expected, where all the SEs are increased, which is more dramatic for the volatile population when holding the correlation scenario fixed.
- The NEE estimators yield useful bias reduction compared to the naïve estimator in all the cases, even in the low response setting where the NEE estimator $\mathbf{EE}(\hat{p}_i)$ from (3.3) has large bias itself.
- It is intriguing to observe how the bias of the NEE estimator $\mathbf{EE}(\hat{p}_i)$ from (3.3) varies. The bias is increased in the high correlation scenario, but more so under the low response setting. Moreover, the bias is much higher absolutely in the low response setting, where $\mathrm{SE}(\hat{p}_i)$ is larger and the contribution of non-linear $1/\hat{p}_i$ is relatively greater.

The results for t < T are given in Tables from E.8 to E.15 of Appendix E, which lead to few new understandings in these simulations, since estimation for t < T is based on the same \hat{p}_i and $\hat{\pi}_i$ as t = T. One can remove the arbitrary difference in Δ_t and Δ_T by e.g. letting t = T - 3, given the cyclic data here. The differences in the results would be entirely due to Monte Carlo variation in the simulated δ_{it} 's and δ_{iT} 's. Furthermore for t < T, all three estimators (3.4) are different and similarly the two estimators (3.8). The simulated data is not cyclic. To know the performance of different response probability estimators, below we present the results in Table 3.4 for simulated population when T = 10 and t = 7.

Table 3.4: Results under model (2.41), by response and correlation. Population: stable

		T=10, t=7, $\Delta_7 = -746.55$, low response and low correlation.										
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	$\mathbf{EE}(\hat{p}_{i1})$	$\mathbf{EE}(\hat{p}_{i2})$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	$\mathbf{EE}(\hat{\pi}_{i1})$			
APRB	144.62	0.03	9.24	18.08	31.64	58.74	0.04	0.05	7.46			
SE	57.80	28.97	38.63	40.78	42.48	28.69	19.64	22.38	23.07			
ERSE	896.79	29.25	55.08	57.01	55.60	571.84	19.23	25.19	24.11			
	T=10, t=7, $\Delta_7 = -746.55$, low response and high correlation.											
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	$\mathbf{EE}(\hat{p}_{i1})$	$\mathbf{EE}(\hat{p}_{i2})$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	$\mathbf{EE}(\hat{\pi}_{i1})$			
APRB	137.74	0.10	9.74	18.57	31.85	57.98	0.11	0.14	7.60			
SE	53.79	29.02	39.50	41.41	42.42	26.17	18.45	21.12	21.68			
ERSE	852.12	28.22	53.88	55.55	53.86	561.83	18.46	24.65	23.41			
		$T=10$, $t=7$, $\Delta_7=-746.55$, high response and low correlation.										
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	$\mathbf{EE}(\hat{p}_{i1})$	$\mathbf{EE}(\hat{p}_{i2})$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	$\mathbf{EE}(\hat{\pi}_{i1})$			
APRB	43.99	0.00	2.14	5.44	11.24	21.60	0.01	0.01	2.95			
SE	18.77	18.03	22.18	22.17	21.25	12.80	12.28	13.74	13.54			
ERSE	509.64	17.40	29.71	28.60	25.16	428.54	12.08	14.59	13.49			
		T=10	$t=7, \Delta_7$	= -746.55	, high resp	onse and	l high c	orrelation.				
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	$\mathbf{EE}(\hat{p}_{i1})$	$\mathbf{EE}(\hat{p}_{i2})$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	$\mathbf{EE}(\hat{\pi}_{i1})$			
APRB	48.36	0.01	3.04	6.90	13.26	24.51	0.04	0.05	3.52			
SE	16.99	17.70	21.78	21.52	20.35	12.55	12.51	14.37	13.88			
ERSE	513.02	18.22	32.88	31.53	27.47	433.33	12.55	15.86	14.41			

The results using different estimators \hat{p}_{it} in (3.4) and $\hat{\pi}_{it}$ in (3.8) varies. The estimators \hat{p}_i and $\hat{\pi}_i$ are outperforming than their counterparts, that means the clear monotone response patterns are not emerging in these simulations. Alternatively, when clear monotone response patterns are simulated, the estimators \hat{p}_{1i} and \hat{p}_{2i} would outperform \hat{p}_{it} , as can be expected; similarly for $\hat{\pi}_{1i}$ compared to $\hat{\pi}_i$.

The results concerning the estimation of change in regression coefficients are given in Tables E.16 to E.30 of Appendix E for T = t = 4, 7, and 10. Observing these tables, the discussions remain almost same as above in the case of change in mean estimation. Therefore, the results for change in regression coefficients are also omitted here.

3.5 Conclusions

In this chapter we propose we extended the NEE approach to estimation based on longitudinal data subjected to informative missing mechanisms. The following conclusions can be made.

The NEE approach is easy to compute and flexible in specification of the estimators of individual response probabilities. This makes it a widely applicable technique for exploratory data analysis of longitudinal missing data mechanisms, based on the observed response history. The results can provide a basis for deciding whether more sophisticated modelling is needed in a given situation.

The NEE estimators are clearly better than naïve estimator, provided sensible choices of the response probability estimator, which can easily accommodate NMAR mechanisms. This is especially the case given low volatility of the individual outcome variables over time, despite considerable variation of the same outcome variable may exist across the population. The ability to vary the nonresponse assumption for different individuals makes it potentially a flexible alternative to standard parametric modelling approach, where the same model parameters are assumed to apply across the population.

Chapter 4

Bias-adjusted Non-parametric Estimating Equations Approach

4.1 Introduction

In Chapter 2, we discussed the NEE approach for the cross-sectional setting; the observed NEE is not unbiased and their bias is also discussed there. Similarly in Chapter 3, we extended the NEE approach to the longitudinal setting and defined two NEEs. The bias in both NEEs is also discussed in this chapter. From the expressions for the biases, a bias-adjusted NEE approach can be developed for cross-sectional as well as for longitudinal settings. We noted from the simulation results of previous chapters that there is need to adjust the bias in estimates and especially the bias in variance estimates that are overestimated in most of cross-sectional and longitudinal cases. As we could not prove the consistency of estimates, therefore, the bias-adjusted NEE becomes more important.

In this Chapter, we define the bias-adjusted NEE approach for both settings to estimate the respective parameters. The bias-adjusted NEE is also not unbiased rather this approach may reduce the bias as compared to the simple NEE approach. It is expected that the bias-adjusted NEEs reduce the bias possibly in parameter estimates and bias in their variance estimates. The variance of estimators along with their plug-in estimators are also derived using the bias-adjusted EEs. Furthermore, we also adjust the bias in plug-in variance estimate using Taylor expansion for simple NEE approach as well as for bias-adjusted NEE approaches under cross-sectional and longitudinal settings.

For simulation results using bias-adjusted NEE approach, every thing remains the same as given in simulation study sections of Chapter 2 and 3 for cross-sectional setting and longitudinal settings, respectively. We compare the results based on bias-adjusted NEE with corresponding results of simple NEEs to asses the effectiveness of bias adjustment in terms of bias and variance.

Based on simulation results, the adjustment of variance estimates using Taylor expansion could not turn out to be more effective. Therefore, we will only make the comparison of variance estimates using NEE with bias-adjusted NEE.

4.2 Bias-Adjusted NEE approach for Cross-sectional Setting

In previous Chapter 2, we discussed the NEE approach to estimate the cross-sectional parameters. The observed NEE is not unbiased and bias in NEEs is already discussed in Section 2.3. Below in section 4.2.1, we define the bias-adjusted NEE approach for cross-sectional setting. The corresponding plug-in variance estimators based on NEE and bias-adjusted NEE are given in Section 4.2.2. The bias correction of these variance estimators using Taylor expansions is discussed in Appendix B.

4.2.1 Bias-adjusted NEE

The bias in estimating equations $H_N(\theta)$ has already been discussed in Section 2.12 of Chapter 2, and rewriting the expression for the bias,

$$B = E[\hat{H}_N(\theta)] - H_N(\theta) = N^{-1} \sum_{i=1}^N S_i(\theta) E\left(\frac{\delta_i}{\hat{\pi}_i} - 1\right)$$
$$= N^{-1} \sum_{i=1}^N S_i(\theta) \left\{ -\frac{E[\delta_i(\hat{\pi}_i - \pi_i)]}{\pi_i^2} + \frac{E[\delta_i(\hat{\pi}_i - \pi_i)^2]}{\pi_i^{*3}} \right\},$$

then the bias-adjusted version of $\hat{H}_N(\theta)$ can be written as,

$$\hat{H}_{ba}(\theta) = N^{-1} \sum_{i=1}^{N} \delta_i \left(\frac{1}{\hat{\pi}_i} + \frac{E[\delta_i(\hat{\pi}_i - \pi_i)]}{\pi_i^3} - \frac{E[\delta_i(\hat{\pi}_i - \pi_i)^2]}{\pi_i \pi_i^{*3}} \right) S_i(\theta)$$

Then

$$\hat{H}_{ba}(\theta) = N^{-1} \sum_{i=1}^{N} \frac{\delta_i}{\hat{\pi}_{i_{ba}}} S_i(\theta) \text{ with } \hat{\pi}_{i_{ba}} = \left(\frac{1}{\hat{\pi}_i} + \frac{\hat{e}_{i1}}{\hat{\pi}_i^3} - \frac{\hat{e}_{i2}}{\hat{\pi}_i \pi_i^{*3}}\right), \tag{4.1}$$

where $e_{i1} = E[\delta_i(\hat{\pi}_i - \pi_i)] = \pi_i^2 + V(\pi_{i,t})$ and $e_{i2} = E[\delta_i(\hat{\pi}_i - \pi_i)^2] = \pi_i \kappa_i'/T^2 - 2\pi_i e_{i1} + \pi_i^3$, then $\hat{e}_{i1} = \hat{\pi}_i^2 + \hat{V}(\hat{\pi}_{i,t})$ and $\hat{e}_{i2} = \hat{\pi}_i \kappa_i'/T^2 - 2\hat{\pi}_i \hat{e}_{i1} + \hat{\pi}_i^3$ with $\kappa_i' = 1 + 3(T - 2)\hat{\pi}_i + 2(T - 2)(T - 3)\hat{\pi}_i^2$. Let θ^* be the solution to the bias-adjusted EE $\hat{H}_{ba}(\theta)$ such that $\hat{H}_{ba}(\theta^*) = 0$. Further let For bias adjustment, one can drop the last term or one can obtain an approximation to B from replacing π_i^* by $\hat{\pi}_i$. Now that π_i^* lies between $\hat{\pi}_i$ and its expectation π_i , its likely values can be given via the standard error (SE) of $\hat{\pi}_i$, as $\pi_i^* = \hat{\pi}_i \pm \alpha \widehat{SE}(\hat{\pi}_i)$, for chosen α -values and subjected to the range $\pi_i^* \in (0,1)$. One can then estimate θ based on the NEE that is adjusted by the resulting $B(\alpha)$. A grid of α -values will generate accordingly a set of alternative estimates of θ , which provide an indication of the likely range of an unbiased estimator of θ under MNAR nonresponse.

4.2.2 Variance of $\hat{\theta}^{\star}$

The variance of estimator $\hat{\theta}^*$ can be obtained using the standard sandwich form based on Taylor expansion of the estimating equations as we already did for $\hat{\theta}$ in Chapter 2. The sandwich

variance of $\hat{\theta}^*$ can be written as

$$Var(\hat{\theta}^*) = G_{ba}^{-1}(\theta_0) Var[\hat{H}_{ba}(\theta_0)] G_{ba}^{-T}(\theta_0), \tag{4.2}$$

where $G_{ba}(\theta) = E[\hat{H}'_{ba}(\theta)]$. Then

$$G_{ba}(\theta) = \frac{1}{N} \sum_{i=1}^{N} E\left(\delta_{i}/\hat{\pi}_{i_{ba}}\right) \left\{\frac{\partial}{\partial \theta} S_{i}(\theta)\right\}$$
$$Var[\hat{H}_{ba}(\theta)] = \frac{1}{N^{2}} \sum_{i=1}^{N} Var\left(\delta_{i}/\hat{\pi}_{i_{ba}}\right) \left\{S_{i}(\theta)S_{i}^{T}(\theta)\right\},$$

with $E(\delta_i/\hat{\pi}_{i_{ba}}) \approx 1$ and $E(\delta_i/\hat{\pi}_{i_{ba}})^2 \approx 1/\pi_i$. Now the plug-in estimator of variance of $\hat{\theta}^*$ given in (4.2) can be written as

$$\widehat{Var}(\hat{\theta}^*) = G_{ba}^{-1}(\hat{\theta}^*)\widehat{Var}[\hat{H}_{ba}(\hat{\theta}^*)]G^{-T}(\hat{\theta}^*), \tag{4.3}$$

where

$$G_{ba}(\hat{\theta}^*) = \frac{1}{N} \sum_{i=1}^r \hat{g}_{i_{ba}} S_i'(\hat{\theta}^*)$$

$$\widehat{Var}[\hat{H}_{ba}(\hat{\theta}^*)] = \frac{1}{N} \sum_{i=1}^r \hat{v}_{i_{ba}} S_i(\hat{\theta}^*) S_i^T(\hat{\theta}^*)$$

with $\hat{g}_{i_{ba}} = 1/\hat{\pi}_{i_{ba}}$ and $\hat{v}_{i_{ba}} = 1/\hat{\pi}_{i_{ba}} (1/\hat{\pi}_i - 1)$.

4.3 Bias-adjusted NEE approach for Longitudinal Setting

In the previous chapter, we discussed NEE approach to estimate the longitudinal parameters. The observed NEEs are not unbiased and the bias in NEEs has already been discussed in Section 3.3. We develop the bias-adjusted NEE approach for both types of NEEs. The corresponding plug-in variance of estimators based on both bias-adjusted EEs are given in Section 4.3.2. The bias correction of these variance estimators using Taylor expansions is discussed in Appendix C.

4.3.1 Bias-adjusted NEE

Given the finite samples, EEs $\hat{H}(\Delta_t)$ and $\hat{H}(\theta_{t,t-1})$ given in (3.3) and (3.6) respectively are not unbiased and the bias of both EEs is examined in Chapter 3. Below we discuss the bias-adjusted NEE approach using both EEs under longitudinal setting.

Bias-adjusted $\hat{H}(\Delta_t)$

Rewriting the bias in estimating equations $\hat{H}(\Delta_t)$ from Section 3.3 we have,

$$B_{1} = E[\hat{H}(\Delta_{t})] - H(\Delta_{t}) = N^{-1} \sum_{i=1}^{N} S_{i}(\Delta_{t}) E\left(\frac{r_{it}}{\hat{p}_{it}} - 1\right)$$

$$= N^{-1} \sum_{i=1}^{N} S_{i}(\Delta_{t}) \left\{ -\frac{E[r_{it}(\hat{p}_{it} - \tau_{it})]}{\tau_{it}^{2}} + \frac{E[r_{it}(\hat{p}_{it} - \tau_{it})^{2}]}{p_{i}^{*3}} \right\},$$

Then the bias-adjusted version of $\hat{H}(\Delta_t)$ for the case of $\hat{p}_{it} = \hat{p}_i$ in (3.4) is given below; the other cases are similar.

$$\hat{H}_{ba}(\Delta_t) = N^{-1} \sum_{i=1}^{N} r_{it} \left(\frac{1}{\hat{p}_i} + \frac{E[r_{it}(\hat{p}_i - p_i)]}{p_i^3} - \frac{E[r_{it}(\hat{p}_i - p_i)^2]}{p_i^4} \right) S_i(\Delta_t)$$

$$\hat{H}_{ba}(\Delta_t) = N^{-1} \sum_{i=1}^{N} r_{it} \left(\frac{1}{\hat{p}_i} + \frac{\hat{h}_{i1}}{\hat{p}_i^3} - \frac{\hat{h}_{i2}}{\hat{p}_i p_i^{*3}} \right) S_i(\Delta_t)$$
(4.4)

where

$$\hat{h}_{i1} = \hat{p}_i^2 + \hat{V}(\hat{p}_i), \ \hat{h}_{i2} = \frac{\hat{p}_i \hat{\kappa}_i'}{T^2} - 2\hat{p}_i \hat{h}_{i1} + \hat{p}_i^3$$

and $\hat{\kappa}_i' = 1 + 3(T - 2)\hat{p}_i + 2(T - 2)(T - 3)\hat{p}_i^2$.

Bias-adjusted $\hat{H}(\theta_{t,t-1})$

The $\hat{H}(\theta_{t,t-1})$ is a set of two cross-sectional EEs given in (3.6), the two cross-sectional EEs are for time t and t-1. We will first find the bias-adjusted EE for time t. The same can be done for time t-1.

The expression of the bias from Section 3.3 can be written as,

$$B(t) = E[\hat{H}(\theta_t)] - H(\theta_t) = N^{-1} \sum_{i=1}^{N} S_i(\theta_t) E\left(\frac{\delta_{it}}{\hat{\pi}_i} - 1\right)$$

$$= N^{-1} \sum_{i=1}^{N} S_i(\theta_t) \left\{ -\frac{E[\delta_{it}(\hat{\pi}_{it} - \tau_{it})]}{\tau_{it}^2} + \frac{E[\delta_{it}(\hat{\pi}_{it} - \tau_{it})^2]}{\pi_i^{*3}} \right\}$$

Then the bias-adjusted version of $\hat{H}(\Delta_t)$ for the case of $\hat{\pi}_{it} = \hat{\pi}_i$ in (3.8) is given below; the other cases are similar.

$$\hat{H}_{ba}(\theta_t) = N^{-1} \sum_{i=1}^{N} \delta_{it} \left(\frac{1}{\hat{\pi}_i} + \frac{E[\delta_{it}(\hat{\pi}_i - \pi_i)]}{\pi_i^3} - \frac{E[\delta_{it}(\hat{\pi}_i - \pi_i)^2]}{\pi_i^4} \right) S_i(\theta_t)$$

$$\hat{H}_{ba}(\theta_t) = N^{-1} \sum_{i=1}^{N} \delta_{it} \left(\frac{1}{\hat{\pi}_i} + \frac{\hat{q}_{i1}}{\hat{\pi}_i^3} - \frac{\hat{q}_{i2}}{\hat{\pi}_i \pi_i^{*3}} \right) S_i(\theta_t), \tag{4.5}$$

where

$$\hat{q}_{i1} = \hat{\pi}_i^2 + \hat{V}(\hat{\pi}_i), \ \hat{q}_{i2} = \frac{\hat{\pi}_i \hat{\kappa}_i'}{T^2} - 2\hat{\pi}_i \hat{q}_{i1} + \hat{\pi}_i^3$$

and
$$\hat{\kappa}'_i = 1 + 3(T-1)\hat{\pi}_i + 2(T-1)(T-2)\hat{\pi}_i^2$$
.

Similarly the bias-adjusted EE at time t-1 can be obtained by just replacing t with t-1 in this section.

For bias adjustment of (3.3), one can obtain an approximation to B_1 by dropping the last term or from replacing p_i^* by \hat{p}_{it} . Now that p_i^* lies between \hat{p}_{it} and its expectation τ_{it} , its likely values can be given via the standard error (SE) of \hat{p}_{it} , as $p_i^* = \hat{p}_{it} \pm \alpha \widehat{SE}(\hat{p}_{it})$, for chosen α -values and subjected to the range $p_i^* \in (0,1)$. One can then estimate Δ_t based on the NEE that is adjusted by the resulting $B_1(\alpha)$. A grid of α -values will generate accordingly a set of alternative estimates of Δ_t , which provide an indication of the likely range of an unbiased estimator of Δ_t under MNAR nonresponse. Similarly for the NEE (3.6). The adjustment will be illustrated in the simulation study later.

4.3.2 Variance of $\hat{\Delta}_t^*$ using Bias-adjusting EEs

For the longitudinal setting, the variance of the estimator $\hat{\Delta}_t$ is obtained using the standard sandwich form based on Taylor expansion of the simple EEs in Chapter 3. Below we derive the variance of $\hat{\Delta}_t^*$ using both bias-adjusted EEs.

Variance of $\hat{\Delta}_t^*$ using $\hat{H}_{ba}(\Delta_t)$

Here we use the bias-adjusted EE $\hat{H}_{ba}(\Delta_t)$ to derive the variance of $\hat{\Delta}_t^*$. We can write the expression of variance of $\hat{\Delta}_t^*$ from (A.2) as

$$Var_{ba}(\hat{\Delta}_{t}^{*}) = G_{ba}^{-1}(\Delta_{0t})Var[\hat{H}_{ba}(\Delta_{0t})]G_{ba}^{-T}(\Delta_{0t})$$
(4.6)

where $G_{ba}(\Delta_{0t}) = E[\hat{H}'_{ba}(\Delta_{0t})]$ and

$$G_{ba}(\Delta_{0t}) = \frac{1}{N} \sum_{i=1}^{N} \mu_{1i} \left\{ \frac{\partial}{\partial \Delta_{0t}} S_i(\Delta_{0t}) \right\}$$
(4.7)

and

$$Var[\hat{H}_{ba}(\Delta_{0t})] = \frac{1}{N} \sum_{i=1}^{N} \mu_{2i} \ S_i(\Delta_{0t}) S_i^T(\Delta_{0t})$$
(4.8)

where for $p_i^{\star} = p_i$, we have

$$\mu_{1i} = E\left[r_{it}\left(\frac{1}{\hat{p}_i} + \frac{h_{1i}}{p_i^3} - \frac{h_{2i}}{p_i^4}\right)\right] \approx 1 \text{ and } \mu_{2i} = E\left[r_{it}\left(\frac{1}{\hat{p}_i} + \frac{h_{1i}}{p_i^3} - \frac{h_{2i}}{p_i^4}\right)\right]^2 \approx 1/p_i.$$

The plug-in estimator of the variance of $\hat{\Delta}_t^*$ given in (4.6) can be written as

$$\widehat{Var}_{ba}(\hat{\Delta}_t^*) = G_{ba}^{-1}(\hat{\Delta}_t^*)\widehat{Var}[\hat{H}_{ba}(\hat{\Delta}_t^*)]G_{ba}^{-T}(\hat{\Delta}_t^*)$$

$$\tag{4.9}$$

where

$$G_{ba}(\hat{\Delta}_t^*) = \frac{1}{N} \sum_{i=1}^r \hat{g}_{i_{ba}} S_i'(\hat{\Delta}_t^*)$$
(4.10)

$$\widehat{Var}[\hat{H}_{ba}(\hat{\Delta}_t^*)] = \frac{1}{N} \sum_{i=1}^r \hat{v}_{i_{ba}} S_i(\hat{\Delta}_t^*) S_i^T(\hat{\Delta}_t^*), \tag{4.11}$$

with

$$\hat{g}_{i_{ba}} = \hat{\mu}_{1i} \left(\frac{1}{\hat{p}_i} + \frac{\hat{h}_{i1}}{\hat{p}_i^3} - \frac{\hat{h}_{i2}}{\hat{p}_i p_i^{\star 3}} \right), \ \hat{v}_{i_{ba}} = \left\{ (\hat{\mu}_{2i} - (\hat{\mu}_{1i})^2) \left\{ \frac{1}{\hat{p}_i} + \frac{\hat{h}_{i1}}{\hat{p}_i^3} - \frac{\hat{h}_{i1}}{\hat{p}_i p_i^{\star 3}} \right\} \right\}$$
(4.12)

where the p_i^{\star} can be replaced according to the chosen adjustment of the NEE.

Variance of $\hat{\Delta}_t^* = \hat{\theta}_t^* - \hat{\theta}_{t-1}^*$ using $\hat{H}_{ba}(\theta_{t,t-1})$

Here the variance of $\hat{\Delta}_t^* = \hat{\theta}_t^* - \hat{\theta}_{t-1}^*$ is derived using the second bias-adjusting EE $\hat{H}_{ba}(\theta_{t,t-1})$ that is a set of two cross-sectional bias-adjusted EEs for each time t and t-1. We will discuss for time t and for time t-1 it is straightforward. Using $\hat{H}_{ba}(\theta_t)$, for time t, we can write the expression of the variance as

$$Var_{ba}(\hat{\theta}_t^*) = G_{ba}^{-1}(\theta_{0t}) Var[\hat{H}_{ba}(\theta_{0t})] G_{ba}^{-T}(\theta_{0t}).$$

The corresponding plug-in estimator can be written as

$$\widehat{Var}_{ba}(\hat{\theta}_t^*) = G_{ba}^{-1}(\hat{\theta}_t^*) \widehat{Var}[\hat{H}_{ba}(\hat{\theta}_t^*)] G_{ba}^{-T}(\hat{\theta}_t^*), \tag{4.13}$$

where $G_{ba}^{-1}(\theta_{0t})$, $Var[\hat{H}_{ba}(\theta_{0t})]$, $G_{ba}^{-1}(\hat{\theta}_t^*)$ and $\widehat{Var}[\hat{H}_{ba}(\hat{\theta}_t^*)]$ can be written respectively from (4.7), (4.8), (4.10) and (4.11) by replacing r_{it} with δ_{it} , p_i with π_i , Δ_t with θ_t and h_i with q_i . Similarly the variance of θ_{t-1}^* and its plug-in estimator can be written by replacing t with t-1 in (4.13) as.

$$\widehat{Var}_{ba}(\hat{\theta}_{t-1}^*) = G_{ba}^{-1}(\hat{\theta}_{t-1}^*)\widehat{Var}[\hat{H}_{ba}(\hat{\theta}_{t-1}^*)]G_{ba}^{-T}(\hat{\theta}_{t-1}^*). \tag{4.14}$$

As we used the approximation in (A.13) for finding the $Cov(\delta_{it}/\hat{\pi}_{i,t}, \delta_{i,t-1}/\hat{\pi}_{i,t-1})$ and in this approximation the $\hat{\pi}_{i,t}$ and $\hat{\pi}_{i,t-1}$ are not in the denominator, we are not correcting the bias of $Cov(\hat{H}(\hat{\theta}_t^*), \hat{H}^T(\hat{\theta}_{t-1}^*))$ using bias-adjusted EEs. Then we have,

$$Cov_{ba}(\hat{\theta}_t^*, \hat{\theta}_{t-1}^*) = G_{ba}^{-1}(\theta_{0t})Cov[\hat{H}(\theta_{0t}), \hat{H}(\theta_{0t-1})]G_{ba}^{-T}(\theta_{0t-1}).$$

and its plug-in estimator is

$$\widehat{Cov}_{ba}(\hat{\theta}_t^*, \hat{\theta}_{t-1}^*) = G_{ba}^{-1}(\hat{\theta}_t^*)\widehat{Cov}[\hat{H}(\hat{\theta}_t^*), \hat{H}(\hat{\theta}_{t-1}^*)]G_{ba}^{-T}(\hat{\theta}_{t-1}^*). \tag{4.15}$$

where the plug-in estimator $\widehat{Cov}[\hat{H}(\hat{\theta}_t^*), \hat{H}(\hat{\theta}_{t-1}^*)]$ is given in (A.19).

Finally we can write

$$\widehat{Var}_{ba}(\hat{\Delta}_{t}^{*}) = \widehat{Var}_{ba}(\hat{\theta}_{t}^{*} - \hat{\theta}_{t-1}^{*}) = Var_{ba}(\hat{\theta}_{t}^{*}) + Var_{ba}(\hat{\theta}_{t-1}^{*}) - 2\widehat{Cov}_{ba}(\hat{\theta}_{t}^{*}, \hat{\theta}_{t-1}^{*}). \tag{4.16}$$

where

$$G_{ba}(\hat{\theta}_t^*) = \frac{1}{N} \sum_{i=1}^r \hat{g}_{i_{ba}} S_i'(\hat{\theta}_t^*)$$
(4.17)

$$\widehat{Var}[\hat{H}_{ba}(\hat{\delta}_t^*)] = \frac{1}{N} \sum_{i=1}^r \hat{v}_{i_{ba}} S_i(\hat{\theta}_t^*) S_i^T(\hat{\theta}_t^*), \tag{4.18}$$

$$\widehat{Cov}\left(\hat{H}(\hat{\theta}_t^*), \hat{H}^T(\hat{\theta}_{t-1}^*)\right) = \frac{1}{N^2} \sum_{i=1}^N \hat{c}_i \ S_i(\hat{\theta}_t^*) S_i^T(\hat{\theta}_{t-1}^*), \tag{4.19}$$

where $\hat{c}_i = \widehat{Cov}\left(\delta_{it}/\hat{\pi}_{i,t}, \delta_{i,t-1}/\hat{\pi}_{i,t-1}\right)$ is estimator of (A.17) and

$$\hat{g}_{i_{ba}} = \hat{\mu}_{1i} \left(\frac{1}{\hat{\pi}_i} + \frac{\hat{q}_{i1}}{\hat{\pi}_i^3} - \frac{\hat{q}_{i2}}{\hat{\pi}_i \pi_i^{*3}} \right), \ \hat{v}_{i_{ba}} = \left\{ (\hat{\mu}_{2i} - (\hat{\mu}_{1i})^2) \left\{ \frac{1}{\hat{\pi}_{i,t}} + \frac{\hat{q}_{i1}}{\hat{\pi}_i^3} - \frac{\hat{q}_{i1}}{\hat{\pi}_i \pi_i^{*3}} \right\} \right\}$$
(4.20)

where the π_i^{\star} can be replaced according to the chosen adjustment of the NEE, and $\hat{\mu}_{1i} \approx 1$ and $\hat{\mu}_{2i} \approx 1/\hat{\pi}_i$

Similarly the (4.17) and (4.18) can be written for $\hat{\theta}_{t-1}^*$.

4.4 Simulation Study

In simulation study sections of previous two chapters, we use the simple NEE on stable, volatile and simulated population data to estimate the cross-sectional and longitudinal parameters. Here we use the above discussed bias-adjusted NEE approach for the estimation of both cross-sectional and longitudinal parameters.

To assess the performance of the bias-adjusted NEE under cross-sectional setting, keeping the matter same as given in Section 2.6, further we explore bias adjustment of the NEE (2.5), discussed at the end of Section 4.2.1, we consider the following options: \mathbf{EE}_i , simply dropping the term of B in (4.1) involving π_i^* ; \mathbf{EE}_{ii} , replacing π_i^* by $\hat{\pi}_i$; $\mathbf{EE}(\alpha)$, let $\pi_i^* = \hat{\pi}_i \pm \alpha \hat{\mathbf{SE}}(\hat{\pi}_i)$, for various α -values, and $\pi_i^* \in (0, 1]$.

To assess the performance of bias-adjusted NEE under longitudinal setting, keeping the matter remain same as given in Section 3.4, further we explore bias adjustment of the NEE (3.3), discussed at the end of Section 4.3.1, we consider the following options: \mathbf{EE}_i , simply dropping the term of B_1 in (4.4) involving p_i^* ; \mathbf{EE}_{ii} , replacing p_i^* by \hat{p}_i ; $\mathbf{EE}(\alpha)$, let $p_i^* = \hat{p}_i \pm \alpha \hat{SE}(\hat{p}_i)$, for various α -values, and $p_i^* \in (0, 1]$. Similarly for the NEE (3.6).

Here our purpose is to know whether the bias-adjusted NEE approach is improving the results in terms of bias and variance or not. We discuss the performance of NEE for cross-sectional setting in the following Section and then for longitudinal setting in Section 4.4.2.

4.4.1 Results for cross-sectional setting

The results related to the estimation of mean and regression coefficients using stable, volatile and simulated populations data are given in Section D.1 and Section D.2 respectively of Appendix D. The results based on NEE are already discussed in Chapter 2 and here our focus is to compare NEE results with bias-adjusted NEE. The tables given below contain results for NEE and its various adjustments discussed above for cross-sectional setting.

Results for mean: Table 4.1 shows the results under the model (2.41), in the high response setting and high correlation scenario, for T = 3, 4, 7 and 10. The values of the population mean for respective T are given in table. In table below, comparing the results based on simple **EE** with bias-adjustments \mathbf{EE}_i , \mathbf{EE}_{ii} and $\mathbf{EE}(0.5)$, we notice the following.

- Using the bias-adjustment \mathbf{EE}_{ii} , i.e. replacing π_i^* by $\hat{\pi}_i$ improves the results in terms of bias as compared to \mathbf{EE}_i and $\mathbf{EE}(0.5)$. However, in terms of variance $\mathbf{EE}(0.5)$ is similar to the \mathbf{EE}_{ii} . But we prefer \mathbf{EE}_{ii} because its improves the results in terms of bias and variance. The adjustment \mathbf{EE}_{ii} works well for all three types of populations.
- The adjustment is more effective for small T, e.g. T=3 and 4 because the response probability estimator is more variable for small T and it is adjusted by the bias-adjustment.
- The notable thing here is that the bias-adjusted NEE approach adjusted the bias in variance estimates quite nicely whereas the Taylor expansion approach is not effective, see Table D.1.

Table 4.2 shows the results under the model (2.43), also in the high response setting and high correlation scenario, for T=7 only, as the message is the same for the other choices of T. The results show clearly that the underlying nonresponse assumption needs to be fairly close to the truth, in order for the NEE and bias-adjusted NEE estimators to perform well. However, under the model (2.43) the bias-adjustments for stable population is still improving the results sufficiently good in terms of bias and variance irrespective of the miss-specified model. The reason is that even modeling the response under strong informative mechanism, i.e. under the model 2.43, the stable population can still indirectly helps to provide stable response assumption and therefore results are improved here.

Table 4.1: Results under model (2.41), high response and high correlation. Population: stable(Left), volatile(Middle) and simulated(Right)

	T=	3, { Sta	ble and Vo		$\theta_3 = 11747.05$, Simulated: $\theta_3 = 808.1355$						
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE		
APRB	20.56	0.00	2.92	11.15	0.01	3.10	23.53	0.02	2.62		
SE	43.44	44.44	54.26	27.85	29.97	38.62	5.82		7.77		
ERSE	409.00	43.33	84.53	378.08	31.21	65.43		6.32	12.33		
	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)			EE(0.5)			EE(0.5)		
APRB	16.22	0.90		11.68	1.12	8.88	17.98	1.76	13.18		
SE	61.51	49.68	59.92	49.90	34.18	46.64	8.98	7.05	8.70		
ERSE	49.23	55.75	51.80	42.57	42.06	43.28	7.24	8.16	7.60		
	T=		able and Vo	olatile: θ_{i}	$_{4} = 1100$	00.5, Simul	ated: θ_4	= 108.53			
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE		
APRB	20.06	0.01	5.42		0.00	4.31	21.49	0.01	5.58		
SE	39.43	40.33	50.34		39.60	50.12		0.79	1.04		
ERSE	331.84		82.45			78.17					
	\mathbf{EE}_i		EE(0.5)			EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)		
APRB	16.79		12.85			10.02			13.76		
SE	60.26		57.73			56.98			1.20		
ERSE	49.48	51.87	51.60	50.24	52.10	51.79			1.04		
	T=7, { Stable and Volatile: $\theta_7 = 11000.5$, Simulated: $\theta_7 = 1619.253$ }										
	naïve		$\mathbf{E}\mathbf{E}$			EE			EE		
APRB	20.05		4.82			2.86					
SE	38.59	40.09				48.30		12.91	15.79		
ERSE	331.98	39.86	75.34		40.30	64.47		12.63	23.35		
	\mathbf{EE}_i		EE(0.5)			EE(0.5)			, ,		
APRB	11.30	3.16	8.45			4.92		3.77	10.18		
SE	61.67	44.16	57.75	56.32		53.30	19.02	14.22	17.97		
ERSE	52.84	49.54	53.58		49.02	51.03	16.25		16.58		
	T=1	.0, { Sta	able and Vo	platile: θ_1	$_{0} = 110$	00.5, Simul	lated: θ_{10}	= 2397	7.519 }		
	naïve	\mathbf{EE}_h	EE 3.25	naïve	\mathbf{EE}_h	EE 1.56	naïve	\mathbf{EE}_h	EE		
APRB	20.05	0.00	3.25	10.26				0.01			
SE	39.19	40.14	47.02	42.99	41.78	46.87	18.22	18.18	21.10		
ERSE	332.06	39.85	60.40	329.53	42.13	54.01	234.88	18.19	27.35		
	\mathbf{EE}_i		EE(0.5)			EE(0.5)			EE(0.5)		
APRB	7.09	2.82	5.09	3.37	1.45	2.39	8.37		6.01		
SE	53.51	44.76	50.99	49.62	46.21	48.39	23.76	20.11	22.75		
ERSE	48.81	47.16	49.20	48.21	48.08	48.50	21.96	21.40	22.21		

 $\label{eq:constable} \begin{tabular}{ll} Table 4.2: Results under model (2.43), high response and high correlation. Population: stable(Left), volatile(Middle) and simulated(Right) \\ \end{tabular}$

	T=	T=7, { Stable and Volatile: $\theta_7 = 11000.5$, Simulated: $\theta_7 = 1619.253$ }											
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$				
APRB	20.43	0.16	4.62	20.45	16.41	15.36	23.41	4.48	10.10				
SE	39.39	40.12	49.82	38.96	39.26	74.83	11.78	10.18	25.64				
ERSE	332.33	40.54	75.38	332.39	140.31	180.12	428.23	72.65	79.84				
	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)				
APRB	11.09	2.99	8.24	14.01	15.58	14.61	17.63	8.31	14.40				
SE	61.05	44.67	57.28	89.34	73.38	82.71	28.11	25.67	26.71				
ERSE	53.10	50.08	53.89	160.03	161.59	161.15	68.36	76.28	71.20				

 $\label{eq:condition} \begin{tabular}{ll} Table 4.3: Results under model (2.45), high response. Population: stable(Left), volatile(Middle) and simulated(Right) \\ \end{tabular}$

	Γ	T=7, { Stable and Volatile: $\theta_7 = 11000.5$, Simulated: $\theta_7 = 1619.253$ }										
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$			
APRB	0.56	0.00	0.08	0.41	0.05	0.17	4.32	0.03	0.93			
SE	104.42	139.62	189.08	109.96	141.35	187.60	80.55	87.35	107.82			
ERSE	311.18	141.20	299.91	310.47	140.68	286.32	419.75	88.58	150.85			
	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)			
APRB	0.15	0.12	0.11	0.29	0.16	0.23	2.21	0.67	1.63			
SE	258.13	159.54	232.47	254.04	159.02	229.27	132.65	100.14	122.65			
ERSE	220.68	182.84	215.92	212.59	179.84	208.53	120.54	110.40	119.23			

Table 4.3 shows the results under the model (2.45) in the high response setting for T=7

only. The model (2.45) yields stable MAR response probability, so that the NEE estimators are nearly unbiased and bias-adjustment is not effective as expected, however, bias-adjustment is improving the variance estimates still very nicely.

Table 4.4: Results under model (2.41), by response and correlation. Population: stable (Left), volatile (Right). T=7, { Stable and Volatile: $\theta_7 = 11000.5$, Simulated: $\theta_7 = 1619.253$ }

	low response and low correlation										
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE		
APRB	18.87	0.03	4.09	5.50	0.04	1.40	57.70	0.03	10.94		
SE	107.97	89.74	104.57	175.88	158.29	189.45	28.71	19.33	21.77		
ERSE	436.21	89.70	143.57	396.66	159.09	265.87	579.48	18.97	31.91		
	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)		
APRB	10.06	0.63	7.93	3.61	0.06	2.86	24.63	5.15	19.33		
SE	116.49	99.82	112.39	218.38	179.61	208.00	22.94	20.28	22.91		
ERSE	102.37	110.68	106.07	192.35	199.51	197.39	19.10	22.63	20.67		
					e and hig	h correlation					
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$		
APRB	35.88	0.01	7.33	15.02	0.07	3.08	59.28	0.02	11.48		
SE	76.21	59.32	69.53	139.18	113.64	125.52	26.92	18.58	21.18		
ERSE	445.35	58.32	102.19	445.93	106.71	154.08	565.99	18.35	32.19		
	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)		
APRB	17.19	2.30	13.55	7.25	1.20	5.64	26.18	5.02	20.51		
SE	75.99	63.66	74.60	131.78	122.33	129.47	22.35	19.43	22.40		
ERSE	63.54	71.08	67.37	118.93	126.41	122.58	18.37	22.06	20.05		
						w correlation					
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$		
APRB	14.86	0.01	3.75	8.60	0.02	2.22	19.69	0.00	4.41		
SE	33.98	36.17	46.70	53.40	52.66	61.39	11.15	10.89	13.11		
ERSE	334.18	37.05	69.48	333.18	52.68	81.68	417.95	10.89	18.66		
	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)		
APRB	8.97	2.20	6.74	5.22	1.41	3.93	10.07	3.51	7.41		
SE	58.29	41.10	54.30	70.69	58.51	66.95	15.54	12.16	14.67		
ERSE	49.71	46.18	50.09	66.03	64.25	66.26	14.01	13.35	14.16		
					,	gh correlati					
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$		
APRB	20.05	0.00	4.82	12.16	0.00	2.86	24.51	0.01	5.80		
SE	38.59	40.09	49.92	41.39	40.53	48.30	12.86	12.91	15.79		
ERSE	331.98	39.86	75.34	334.88	40.30	64.47	433.32	12.63	23.35		
	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)		
APRB	11.30	3.16	8.45	6.59	2.08	4.92	13.61	3.77	10.18		
SE	61.67	44.16	57.75	56.32	45.18	53.30	19.02	14.22	17.97		
ERSE	52.84	49.54	53.58	50.67	49.02	51.03	16.25	15.59	16.58		

In Table 4.4 the different response rate settings and correlation scenarios are contrasted with each other, for T = 7. Comparing the results of simple EE with its adjustments, we notice the followings.

- Bias adjustment is also affected by contrasting the response rate setting and low and high correlation scenarios, especially in the low response and low correlation combination, where the bias is almost entirely caused by the non-linearity, and replacing the p_i^* with \hat{p}_i is more beneficial than other two adjustments.
- Bias adjustment of the NEEs greatly improves the variance estimation again.

The results concerning the estimation of regression coefficients are given in Tables D.13 to D.19 of Appendix D.2. From these results, similar statements can be made as above for the case of mean estimation, hence these results are omitted here.

4.4.2 Results for longitudinal parameters

The results related to the estimation change in mean and change in regression coefficients using the bias-adjusted NEE are given in Section E.1 and Section E.2 respectively of Appendix E. Below we discuss the results using bias-adjusted NEE in comparison with the results based on unadjusted NEE that are already discussed in previous chapter. Here our purpose is to know the effectiveness of bias-adjustments in terms of bias and variance.

Estimating the change in Mean: Table 4.5 shows the results under the model (2.41), in the high response setting and high correlation scenario, for T = t = 4,7 and 10. We notice the followings.

- Considering the bias adjustment, dropping the indeterminable term (involving p_i^* or π_i^*) is not appealing a priori. Replacing p_i^* by \hat{p}_i (or π_i^* by $\hat{\pi}_i$) can be problematic due to the variance of \hat{p}_i . For instance, in the case of T = t = 10, the bias is actually increased with \mathbf{EE}_h compared to $\mathbf{EE}(\hat{p}_i)$ because of this. Similarly with ad hoc choices of $\mathbf{EE}(\alpha)$, illustrated for $\alpha = 0.5$ here.
- The bias for NEE is high when T is small, e.g. T = 4 and the bias-adjustment especially $\mathbf{EE}(0.5)$ is reducing the bias considerably good whereas for large T the bias is already small and bias-adjustments are not much effective.
- An interesting effect of these bias adjustments is that they clearly improve the variance estimation, e.g. when p_i^* is replaced by \hat{p}_i . The sandwich variance estimator based on the direct plug-in observed NEE tends to overestimate the variance, sometimes considerably, in these simulations. The sandwich variance estimator derived from the various biasadjusted observed NEEs performs much better, and the improvement seems not related to the effect on point estimation.

Table 4.5: Results under model (2.41), high response and high correlation. Population: stable(Left), volatile(Middle), simulated(right)

					Г	=t=4, {St	able and	Volatile	e: $\Delta_4 = -7$	$746.55\},$	(Simulat	ed: $\Delta_4 = 0$	-699.596	1 }				
	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{\pi}_i)$
APRB	48.98	0.10	12.70	24.24	0.19	22.13	67.29	0.04	15.51	32.61	0.00	16.24	46.79	0.07	14.48	24.15	0.01	3.09
SE	10.58	10.75	14.86	59.45	61.21	77.01	53.28	47.68	75.34	52.97	52.71	66.78	7.82	9.01	10.00	6.36	6.55	8.02
ERSE	258.14	10.62	22.04	517.54	59.02	102.42	641.63	48.17	110.73	528.60	53.78	91.82	224.39	8.98	14.49	191.23	6.40	11.01
	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)
APRB	8.16	20.67	0.76	14.01	26.26	3.44	12.42	26.54	0.62	17.95	21.58	6.79	4.87	21.78	3.48	8.95	5.42	3.63
SE	19.70	13.09	17.55	91.65	69.67	84.97	101.55	65.39	89.93	81.05	61.46	74.30	11.25	9.24	10.81	9.62	7.33	8.93
ERSE	14.69	14.02	14.71	67.68	66.34	68.94	74.59	71.02	74.63	63.82	61.90	64.35	8.31	9.56	8.89	7.13	7.19	7.32
	T=t=7, {Stable and Volatile: $\Delta_7 = -746.55$ }, {Simulated: $\Delta_7 = 1448.408$ }																	
	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	51.83	0.02	1.35	25.46	0.44	0.85	61.64	0.27	0.04	29.51	0.40	0.06	48.70	0.01	2.22	24.65	0.04	0.03
SE	10.84	10.93	14.14	56.65	58.61	69.09	62.78	57.42	75.23	53.07	52.75	59.37	16.90	18.00	22.25	12.65	12.73	14.64
ERSE	258.25	10.73	20.15	517.70	58.86	90.18	610.92	58.27	104.88	513.67	53.06	72.75	512.24	18.40	34.50	432.83	12.70	18.72
	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)
APRB	15.45	10.08	6.91	19.02	6.24	9.62	19.49	8.73	9.47	14.67	2.36	7.29	13.82	10.99	5.70	5.44	0.60	2.23
SE	17.16	12.85	15.59	79.38	65.02	73.86	91.61	69.68	82.71	65.11	58.27	61.82	25.78	19.02	24.28	16.65	13.92	15.55
ERSE	13.92	13.67	14.13	68.82	65.97	69.14	78.18	76.78	78.67	60.72	59.18	60.70	19.85	21.42	21.30	14.57	14.20	14.71
			T=	t=10, {S	stable ar	nd Volatile:	$\Delta_{10} = -$	-746.55	}, {Simula	ted: Δ_{10}	= 190.6	555 }, high	response	e and hi	gh correlat	ion		
	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	53.04	0.02	1.46	26.45	0.02	0.14	53.97	0.08	2.48	26.56	0.11	0.17	45.02	0.01	0.75	22.95	0.08	0.07
SE	10.40	10.60	13.51	56.48	58.34	65.25	71.00	65.57	78.79	54.05	53.66	58.06	3.79	3.71	4.62	24.83	24.81	27.33
ERSE	258.41	10.81	18.71	518.04	58.85	75.99	596.17	65.10	98.66	505.98	54.42	64.34	341.29	3.65	6.21	367.54	24.78	31.84
	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)
APRB	14.53	4.58	7.32	9.95	1.30	4.37	15.36	2.06	8.05	6.81	0.02	2.86	12.50	5.21	6.08	2.16	0.86	1.64
SE	16.24	12.36	14.75	69.69	63.82	67.19	89.46	75.68	83.16	59.98	57.88	58.80	5.29	4.33	4.93	28.78	26.94	27.96
ERSE	13.58	13.22	13.74	64.99	64.52	65.50	80.43	79.43	80.77	58.72	58.69	58.92	4.39	4.45	4.51	27.18	27.15	27.47

Table 4.6: Results under model (2.43), high response and high correlation. Population: stable(Left), volatile(Middle), simulated(right)

	T=t=7, {Stable and Volatile: $\Delta_7 = -746.55$ }, {Simulated: $\Delta_7 = 1448.408$ }																	
	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	61.43	0.85	5.88	41.36	10.23	13.41	42.28	27.69	32.83	40.81	21.77	33.89	32.71	4.81	5.20	8.33	8.34	9.87
SE	22.50	21.71	27.84	57.54	58.27	67.66	247.73	249.15	370.33	59.49	60.00	124.60	14.07	12.73	54.26	7.00	6.71	20.02
ERSE	260.94	21.56	39.15	521.26	60.31	91.60	586.62	324.86	659.95	526.75	216.54	300.99	462.09	85.96	116.66	382.06	54.49	62.46
	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)
APRB	12.54	15.94	3.23	7.36	18.97	2.51	31.05	32.39	31.95	31.45	34.18	32.73	16.83	0.02	10.90	13.41	9.78	11.27
SE	33.49	26.09	30.46	77.41	64.28	72.14	501.89	311.26	433.77	159.70	119.69	140.13	58.31	58.02	55.58	22.33	20.20	20.72
ERSE	28.08	27.84	28.42	70.07	67.49	70.50	469.48	436.11	469.41	264.79	261.26	264.36	97.61	116.41	103.82	56.19	58.31	57.39

Table 4.7 shows the results under the model (2.43), also in the high response setting and high correlation scenario, for T = t = 7 only, as the message is the same for the other choices of (T,t). From the results of various adjustments, we can notice that $\mathbf{EE}(0.5)$ is more effective here in reducing the bias in estimate and reducing the overestimation of variance as compared to the other two adjustments only under stable data. For volatile data, all adjustments are not improving the results. Whereas for simulated data, the results are only improved in terms of bias for \hat{p}_i using the adjustment \mathbf{EE}_{ii} . Hence, the results show clearly that the underlying nonresponse assumption needs to be fairly close to the truth, in order for the NEE and its bias-adjustments to perform well.

Table 4.7: Results under model (2.45), high response. Population: stable(Left), volatile(Middle), simulated(right)

					T=t=	7, {Stable a	and Volat	tile: Δ_7 =	= -746.55	, {Simula	ated: Δ_7	= 1448.408	}, high	response				
	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	6.52	0.21	2.38	3.94	0.18	0.45	23.50	0.61	3.40	13.07	0.28	0.75	10.05	0.49	0.03	4.83	0.42	0.24
SE	83.59	164.16	185.59	170.25	237.36	277.13	187.31	322.77	372.89	155.28	203.25	240.22	116.81	136.20	172.44	81.00	87.76	101.29
ERSE	208.65	163.62	291.79	470.12	233.26	379.70	541.48	322.87	571.16	486.92	198.49	313.99	489.17	133.11	252.27	418.77	88.85	124.22
	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)
APRB	0.40	4.70	0.97	2.23	0.31	1.28	4.42	7.92	0.46	3.25	1.48	1.08	3.17	1.58	1.54	1.34	0.16	0.69
SE	262.83	138.99	223.41	349.25	256.67	309.07	514.48	294.63	441.73	303.51	219.79	268.26	224.32	148.36	197.14	115.46	98.80	107.16
ERSE	198.27	156.55	192.12	298.38	256.99	287.04	393.56	324.64	383.60	249.91	219.83	241.62	177.68	159.16	175.94	106.13	100.92	104.66

Table 4.7 shows the results under the model (2.45), also in the high response setting and high correlation scenario, for T=7 only. The model (2.45) yields stable MAR response probability, so that the NEE estimators are nearly unbiased and bias-adjustment is not effective as expected except for volatile population data, however, bias-adjustment is adjusting the overestimation of variance estimates still very nicely.

Table~4.8:~Results~under~model~(2.41),~by~response~and~correlation.~Population:~stable (Left),~volatile (Middle),~simulated (right)

	T=t=7, {Stable and Volatile: $\Delta_7 = -746.55$ }, {Simulated: $\Delta_7 = 1448.408$ }, low response and low correlation														rrelation			
	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	112.36	0.53	12.08	47.76	1.26	4.95	96.80	1.36	15.52	44.19	2.30	3.83	156.22	0.05	12.73	62.97	0.03	0.28
SE	103.40	79.53	110.59	151.28	127.65	147.96	447.53	354.59	497.54	254.91	226.17	272.63	57.61	27.15	36.69	27.61	18.43	21.32
ERSE	438.89	77.85	145.58	675.40	131.27	188.97	909.33	368.02	682.58	628.27	233.79	337.46	916.51	28.64	54.06	578.91	18.71	29.44
	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)
APRB	11.01	33.60	0.44	15.73	16.14	6.44	6.64	38.37	3.40	10.66	10.97	3.70	17.98	40.06	3.88	11.43	2.72	4.98
SE	124.07	105.66	117.31	157.92	144.53	152.30	572.02	461.39	535.34	304.32	262.40	286.72	32.06	37.88	34.62	22.18	20.48	21.82
ERSE	94.94	112.00	101.25	144.38	150.84	148.79	444.94	519.30	473.59	261.85	268.33	267.60	24.78	44.97	30.51	19.53	21.62	21.02
				T=t=7		and Volatil			mulated: $\Delta_7 = 1448.408$ }, low response and high correlation									
	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	156.16	0.08	12.80	63.57	0.20	5.33	156.41	1.56	15.16	63.56	0.34	3.29	144.69	0.06	12.43	60.34	0.04	0.38
SE	55.76	36.77	50.58	105.40	82.91	97.92	308.21	205.82	288.36	172.01	142.27	158.61	55.30	28.53	36.90	26.85	18.42	21.13
ERSE	448.59	37.08	68.58	681.29	83.33	133.26	1038.50	210.15	390.31	667.36	140.55	195.84	865.02	28.22	53.07	565.64	18.48	29.19
	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)
APRB	18.79	40.49	4.25	27.05	21.22	12.77	16.81	44.26	2.16	19.72	13.40	8.89	17.60	38.25	3.70	11.12	2.77	4.77
SE	54.77	50.82	52.51	105.88	92.18	101.99	323.27	282.02	305.15	167.79	157.03	162.30	32.54	38.19	35.00	22.39	19.97	21.82
ERSE	45.03	55.80	48.47	90.48	95.76	95.15	258.32	312.67	276.79	153.60	160.55	158.13	24.47	42.81	29.95	19.43	21.30	20.83
				T=t=7		and Volatil			{Simulated				-		orrelation			
	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	50.28	0.08	1.79	25.33	0.12	1.40	56.65	0.36	1.39	27.78	0.54	0.21	49.07	0.01	1.23	24.35	0.02	0.05
SE	18.95	19.14	25.31	51.46	54.96	65.86	109.84	110.36	146.68	76.58	77.47	86.58	18.27	17.72	21.51	13.09	12.65	14.30
ERSE	257.57	19.05	35.79	518.37	53.92	82.26	610.77	108.48	203.36	515.95	77.01	103.01	513.97	17.68	33.57	432.02	12.35	17.63
ADDD	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)	\mathbf{EE}_i	\mathbf{EE}_{ii}	EE(0.5)
APRB	14.70	10.55	6.33	15.89	6.25	7.62	17.78	11.50	8.04	13.06	2.75	6.53	14.55	9.45	6.54	5.08	0.42	2.03
SE	31.52	22.63	28.26	76.50	61.66	70.79	182.53	133.29	163.41	94.15	85.73	89.69	24.60	18.91	23.28	15.69	13.90	14.93
ERSE	25.49	24.46	25.61	63.48	60.31	63.43	147.90	141.35	148.06	87.83	86.01	87.60	19.40	21.08	20.86	14.00	13.80	14.16
		TOTO			(nd Volatile			{Simulated			}, high resp		. 0 .			T)D	DD(^)
ADDD	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE _h	$\mathbf{EE}(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB SE	51.83	0.02	1.35	25.46	0.44	0.85	61.64	0.27	0.04	29.51	0.40	0.06	48.70	0.01	2.22	24.65	0.04	0.03
	10.84	10.93	14.14	56.65	58.61	69.09	62.78	57.42 58.27	75.23	53.07	52.75	59.37	16.90	18.00	22.25	12.65	12.73	14.64
ERSE	258.25 EE:	10.73	20.15 EE(0.5)	517.70	58.86	90.18	610.92 EE:		104.88	513.67	53.06	72.75	512.24 EE:	18.40	34.50	432.83 EE:	12.70	18.72 EE (0.5)
APRB	15.45	EE_{ii} 10.08	6.91	EE_i 19.02	EE_{ii} 6.24	EE (0.5) 9.62	19.49	EE_{ii} 8.73	EE (0.5) 9.47	\mathbf{EE}_i 14.67	\mathbf{EE}_{ii} 2.36	EE (0.5) 7.29	13.82	EE_{ii} 10.99	EE (0.5) 5.70	5.44	$\frac{EE_{ii}}{0.60}$	2.23
SE SE	17.16	12.85	15.59	79.38	65.02	73.86	91.61	69.68	9.47 82.71	65.11	58.27	61.82	25.78	19.02	24.28	16.65	13.92	15.55
ERSE					65.97					60.72	59.18	60.70						
ERSE	13.92	13.67	14.13	68.82	05.97	69.14	78.18	76.78	78.67	00.72	59.18	60.70	19.85	21.42	21.30	14.57	14.20	14.71

In Table 4.8 the different response rate settings and correlation scenarios are contrasted with

each other, for T = t = 7. we observe the followings.

- The effects of low response setting on the variance is clear and as expected, where all the SEs are increased, which is more dramatic for the volatile population when holding the correlation scenario fixed. Bias adjustment of the NEEs greatly improves the variance estimation again.
- The bias is much higher absolutely in the low response setting, where $SE(\hat{p}_i)$ is larger and the contribution of non-linear $1/\hat{p}_i$ is relatively greater. Bias adjustment is affected, especially in the low response and low correlation combination, where the bias is almost entirely caused by the non-linearity, and using $\mathbf{EE}(0.5)$ is more beneficial than replacing p_i^* with \hat{p}_i .

Furthermore for t < T, all three estimators (3.4) are different and similarly the two estimators (3.8). Below we present the results in Table 4.9 for simulated population when T = 10 and t = 7 to know the affect of bias-adjustment for these additional response probability estimators when t < T. The results show that for \hat{p}_i and $\hat{\pi}_i$, the bias-adjustment $\mathbf{EE}(0.5)$ is adjusting the bias nicely where needed. For \hat{p}_{i1} & \hat{p}_{i2} and $\hat{\pi}_{i1}$, bias-adjustment by dropping the interminable term i.e. \mathbf{EE}_i is adjusting the bias nicely. Therefore, we can say that all three adjustments can be useful depending upon the response probability estimators we are using especially when t < T.

| Part |

Table 4.9: Results under model (2.41), by response and correlation. Population: simulated

The results concerning the estimation of change in regression coefficients are given in Tables E.16 to E.30 of Appendix E.2. From these results, similar statements can be made as above for the case of change in mean estimation.

4.5 Conclusions

In this chapter we propose bias-adjusted NEE approach to estimation based on cross-sectional and longitudinal data subjected to informative missing mechanisms. The following conclusions emerge.

The variance is overestimated using NEE for cross-sectional as well as for longitudinal that can be seen from the results discussed in previous two chapters. The sandwich variance estimator derived from the various bias-adjusted observed NEEs performs much better, and the improvement seems not related to the effect on point estimation.

The different bias-adjustments also improves the results in terms of bias in estimates for both cross-sectional and longitudinal settings especially for small T and in low response setting. For

large T, the bias-adjustment is more effective for variance estimator. Different bias-adjustments works well for different settings, for example, \mathbf{EE}_{ii} performs better for cross-sectional estimates, $\mathbf{EE}(0.5)$ works well for longitudinal setting using \hat{p}_i and $\hat{\pi}_i$, and \mathbf{EE}_i performs better when \hat{p}_{i1} , \hat{p}_{i2} and $\hat{\pi}_{i1}$ are used for t < T under longitudinal setting.

Chapter 5

Summary and Future Research

5.1 Summary of Research Contributions

So far the problem of NMAR nonresponse is handled either using fully parametric or semiparametric approaches and these approaches have some potential issues, for example, strict distributional assumptions, heavy computations, etc. We developed a fully non-parametric estimating equation approach to deal with informative missing cross-sectional and longitudinal data.

The main contribution of this thesis starts from Chapter 3 where we developed a fully non-parametric estimating equation approach, where the unknown individual response propensity is replaced by an estimate based the response history of the same individual. As reviewed earlier in the literature, the response probability is usually estimated under some parametric model of response probability. But here we use the observed historic response rate for each unit to estimate its individual response probability, under the assumption that the unknown response probability is individual but "stable" over a given period of time. There can be different assumptions of the exact nature of such stability over time, e.g. stable before the the dropout for a unit with monotone missing data pattern, but over the entire history for someone with a nonmonotone pattern.

While the estimator of the individual response probability can be unbiased according to the given assumption, it can never be consistent due to the fact that the response history cannot be infinitely long for anyone. Moreover, the plug-in observed NEE will be somewhat biased if the 'score-term' in the population EE is correlated with the response propensity, as in the case of informative nonresponse. The observed NEE is used to estimate cross-sectional parameters and longitudinal parameters. We explore the bias in NEE that is further used for bias-adjustment. We also develop the associated variance estimator. Compared to alternative fully or semi-parametric approaches, our approach is simple in construction and easy in computation and does not depend on strict distributional assumptions of the outcome variable, and explicit/parametric form of response probability model.

The NEE approach is extended for longitudinal setting and two types of EEs are defined in Chapter 4 to estimate the longitudinal parameters The bias is also explored for the both EEs and the associated variance estimators are also provided. The NEEs under both cross-sectional and longitudinal setting are not unbiased. We therefore developed bias-adjusting EE approach

to adjust the bias in parameter estimates and bias in their variance estimates. See Chapter 5 for more detail.

The performance of proposed approach is assessed while estimating the cross-sectional and longitudinal parameters such as mean, regression coefficients, change in mean and change in regression coefficients using simulations based on real and simulated data. The performance is assessed for different lengths of response history with different response rates and correlations between response propensity and score-term. The performance is also assessed under different response mechanisms, some of which are compatible with the assumptions of our approach, while others represent different nonresponse mechanisms which are used to explore the sensitivity of the NEE approach. For detail see the simulation study sections of Chapters 3, 4 and 5 and their respective conclusions.

Being a computationally simple and flexible method, the NEE approach can be a widely used as exploratory data analysis technique to deal with cross-sectional and longitudinal informative missing data, provided the response history is available for given time window. Moreover, this technique can provide the basis for deciding whether more sophisticated methods of analysis may be necessary.

5.2 Technical Strengths

The present work is advantageous in some aspects when compared to the methods given in literature related to handling informative missing data. The NEE approach is simple in construction and easy in computation and does not depend on strict distributional assumptions of the outcome variable, and explicit/parametric form of response probability model. The strengths can be listed as follows:

- 1. We developed a fully non-parametric estimating equation approach to accommodate potentially informative missing data and we postulate an individual response probability which may depend on the longitudinal outcomes of interest and covariates specific to each observational unit. The individual response probability is estimated using individual historic response. The key point is that we are estimating every body individually. We can allow different assumptions for each individuals even. This is actually the strength of the flexibility of our approach compared to the existing parametric approaches. Currently we assume the stable response assumption and the response probability is estimated using historic response rate. This simple empirical estimator is used to estimate the parameters under informative nonresponse. We also develop the associated variance estimator. Compared to alternative fully or semi-parametric approaches, our approach is simple in construction and easy in computation and does not depend on strict distributional assumptions about the outcome variable, and the explicit/parametric form of the response probability model.
- 2. Our NEE approach is general in nature, it accommodates the estimation of cross-sectional and longitudinal parameters. Depending on the situations, any suitable assumptions can be made for individual response probability to apply the NEE. It accommodate almost all types of non-response mechanisms and patterns.

- 3. The NEE estimators are clearly better that naïve estimator, provided sensible choices of the response probability estimator, which can easily accommodate NMAR mechanisms. The ability to vary the nonresponse assumption for different individuals makes it potentially a flexible alternative to standard parametric modelling approach, where the same model parameters are assumed to apply across the population.
- 4. An interesting effect of bias adjusted NEE is that it clearly improve the variance estimation. The sandwich variance estimator based on the direct plug-in observed NEE tends to overestimate the variance, sometimes considerably, in these simulations. The sandwich variance estimator derived from the various bias-adjusted observed NEEs performs much better, and the improvement seems not related to the effect on point estimation.
- 5. The NEE approach is widely applicable technique for exploratory data analysis of longitudinal missing data mechanisms, based on the observed response history. The results can provide a basis for deciding whether more sophisticated modelling is needed in a given situation.

5.3 Future work

We developed NEE approach for cross-sectional and extended it for longitudinal setting. The response probability is estimated using historic response rate assuming that the unknown response probability remains stable over given time window. The following can be considered future work.

- 1. Using response rate to estimate the unknown response probability, for same number of responses no matter what is the pattern of response over time, same response probability estimate is being used but in future research we will introduce "response patterns weighting" approach in which case each individual unknown response probability will have different individual response probability estimate.
- 2. The NEE estimator is not exactly unbiased, even when the response probability estimator is unbiased. The bias has two sources: the correlation between e.g. p_{it} and y_{it} , and the non-linearity of $1/\hat{p}_{it}$, or the variance of \hat{p}_{it} . The variance of \hat{p}_{it} is naturally reduced given longer response history. To reduce the bias caused by the non-linearity in situations of short history, one could possibly improve the efficiency of \hat{p}_{it} by grouping the units with a similar response pattern as well as similar observed y_{it} 's. Therefore, a topic for future is to study empirically how to vary \hat{p}_{it} according to the different historic response patterns, while improving its efficiency based on similar individuals in both senses. The same consideration applies to the choice between the different NEEs, such as (3.3) vs. (3.6).
- 3. Another more difficult topic that requires further theoretical development is how to adjust the bias caused by the correlation e.g. between p_{it} and y_{it} . The simulation study shows that this is desirable, despite the large reduction of bias compared to the naïve estimator

even without such adjustment, also because it can improve the associated variance estimation. But it is not an easy task, because simply plugging in \hat{p}_{it} (or $\hat{\pi}_{it}$) is problematic due to its variance.

5.4 Limitations

Our technique is at least limited to the extents that can be summarized as follows:

- 1. The historic response for each individual should be known for given time window.
- 2. The proposed NEE may not perform better when T=2 for cross-sectional setting and T=3 for longitudinal setting. Some extra treatment is required for short history scenario as discussed above.
- 3. A longitudinal survey data with missing observations is required to assess the performance of NEE that would be a real data application of the approach.

Bibliography

- Binder, D. (1983). On the variances of asymptotically normal estimators from complex surveys, *International Statistical Review* **51**: 279–292.
- Daniels, M. J. and Hogan, J. W. (2008). *Missing data in longitudinal studies*, Chapman and Hall, London.
- Diggle, P. J., Heagerty, P., Liang, K. Y. and Zeger, S. L. (2002). *Analysis of Longitudinal Data*, Oxford University Press, Oxford.
- Diggle, P. and Kenward, M. G. (1994). Informative dropout in longitudinal data analysis (with discussion), *Appl. Stat.* **43**: 49–94.
- Feder, M. and Pfeffermann, D. (2016). Statistical inference under non-ignorable sampling and nonresponse-anempirical likelihood approach, Southampton Statistical Sciences Research Institute, University of Southampton, Southampton, Highfield, UK. Available from http://eprints.soton.ac.uk/id/eprint/378245.
- FitzGerald, E. B. (2002). Extended generalized estimating equations for binary familial data with incomplete families, *Biometrics* **58**: 718–726.
- Fitzmaurice, G., Davidian, M., Verbeke, G. and Molenberghs, G. (2008). *Longitudinal Data Analysis*, Chapman and Hall/CRC, Boca Raton, Florida, USA.
- Fitzmaurice, G., Davidian, N. M. and Ware, J. H. (2004). *Applied longitudinal analysis*, Wiley, New York.
- Foutz, R. V. (1977). On the unique consistent solution to the likelihood equations, *Journal of the American Statistical Association* **72**: 147–148.
- Godambe, V. P. (1991a). Estimating Functions, Oxford Science Publications, New York.
- Godambe, V. P. and Thompson, M. E. (2009). Estimating functions and survey sampling. In Handbook of Statistics 29B; Sample Surveys: Inference and Analysis, (Eds., D. Pfeffermann and C.R. Rao), Amsterdam, North Holland.
- Hardin, J. and Hilbe, J. M. (2003). Generalized Estimating Equations, Chapman and Hall, Boca Raton.
- Hogan, J. W. and Laird, N. M. (1997). Mixture models for the joint distribution of repeated measures and event times, *Stat Med.* **16**: 239–257.

- Huzurbazar, V. S. (1948). The likelihood equation, consistency and the maxima of the likelihood function, *Annals of Eugenics* **14**: 185–200.
- Ibrahim, J. G., Chen, M. H. and Lipsitz, S. R. (2001). Missing responses in generalized linear mixed models when the missing data mechanism is nonignorable, *Biometrika* 88: 551–564.
- Ibrahim, J. G. and Molenberghs, G. (2009). Missing data methods in longitudinal studies: a review., *Test* 18: 1–43.
- Kim, J. K. and Yu, C. L. (2011). A semiparametric estimation of mean functionals with nonignorable missing data, *Journal of the American Statistical Association* **106**: 157–165.
- Knopp, K. (1954). Theory and Application of Infinite Series, Blackie & Son Limited, London and Glasgow.
- Liang, K. Y. and Zeger, S. L. (1995). Inference based on estimating functions in the presence of nuisance parameters (with discussion), *Statistical Science* **10**: 158–172.
- Little, R. J. A. (1994). A class of pattern-mixture models for normal incomplete data, Biometrika 81: 471–483.
- Little, R. J. A. (1995). Modeling the drop-out mechanism in longitudinal studies, *Journal of the American Statistical Association* **90**: 1112–1121.
- Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data, John Wiley & Sons, Inc., New York.
- Little, R. J. A. and Wang, Y. (1996). Pattern-mixture models for multivariate incomplete data with covariates, *Biometrics* **52**: 98–111.
- Lynn, P. (2009). Methodology for Longitudinal Surveys, John Wiley & Sons, Inc., New York.
- Matei, A. and Ranalli, M. G. (2015). Dealing with non-ignorable nonresponse in survey sampling: A latent modeling approach., *Survey Methodology* **41**: 145–164.
- Molenberghs, G. and Kenward, M. G. (2007). *Missing Data in Clinical Studies*, New York Wiley, New York.
- Pepe, M. S., Reilly, M. and Fleming, T. R. (1994). Auxiliary outcome data and the mean score method, *Journal of Statistical Planning and Inference* **42**: 137–160.
- Pfeffermann, D. (1993). The role of sampling weights when modelling survey data, *International Statistical Review* **61**: 317–337.
- Pfeffermann, D. (1996). The use of sampling weights for survey data analysis, *Statistical Methods* in Medical Research 5: 239–261.
- Pfeffermann, D. and Sikov, A. (2011). Imputation and estimation under nonignorable nonresponse in household surveys with missing covariate information, *Journal of Official Statistics* **27**: 181–209.

- Qin, J., Leung, D. and Shao, J. (2002). Estimation with survey data under nonignorable nonresponse or informative sampling, *Journal of the American Statistical Association* **97**: 193–200.
- Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1994). Estimation of regression coefficients when some regressors are not always observed, *Journal of the American Statistical Association* **89**: 846–866.
- Rubin, D. B. (1976). Inference and missing data, Biometrika 63: 581–592.
- Rudin, W. (1976). *Principles of Mathematical Analysis*, McGraw-Hill Book Company, New York.
- Sarndal, C.-E. and Lundstrom, S. (2005). *Estimation in Surveys with Nonresponse*, John Wiley & Sons, Inc., England.
- Skinner, C. J., Holt, D. and Smith, T. M. F. (1989). *Analysis of complex surveys*, John Wiley and Sons, Inc., New York.
- Tang, N. S., Zhao, P. Y. and Zhu, H. T. (2014). Empirical likelihood for estimating equations with nonignorably missing data, *Statistica Sinica* **24**: 723–748.
- Thijs, H., Molenberghs, G., Michiels, B., Verbeke, G. and Curran, D. (2002). Strategies to fit pattern-mixture models., *Biostatistics* 3: 245–265.
- Troxel, A. B., Harrington, D. P. and Lipsitz, S. R. (1998a). Analysis of longitudinal data with nonignorable non-monotone missing values, *Applied Statistics* 47: 425–438.
- Troxel, A. B., Lipsitz, S. R. and Harrington, D. P. (1998b). Marginal models for the analysis of longitudinal measurements with nonignorable non-monotone missing data, *Biometrika* 85: 661–672.
- Verbeke, G. and Molenberghs, G. (2000). Linear mixed models for longitudinal data, Springer, New York.
- Verbeke, G. and Molenberghs, G. (2005). Longitudinal and incomplete clinical studies, *Metron* **63**: 143–170.
- Wang, C. Y., Wang, S., Zhao, L. P. and Ou, S. T. (1997). Weighted semiparametric estimation in regression analysis with missing covariate data, *Journal of the American Statistical Association* 92: 512–525.
- West, P., Sweeting, H. and Young, R. (2007). Smoking in scottish youths: Personal income, parental social class and the cost of smoking, *Tobacco Control* **16**: 329–333.
- Yuan, K. and Jennrich, R. I. (1998). Asymptotics of estimating equations under natural conditions, *Journal of Multivariate Analysis* 65 **65**: 245–260.

- Zhao, J. and Shao, J. (2015). Semiparametric pseudo-likelihoods in generalized linear models with nonignorable missing data, *Journal of the American Statistical Association* **110**: 1577–1590.
- Zhou, Y., Wan, A. T. K. and Wang, X. (2008). Estimating equations inference with missing data., *Journal of the American Statistical Association* **103**: 1187–1199.

Appendix A

Variance of Change Estimator under Longitudinal Setting

A.1 Variance of $\hat{\Delta}_t$

As the both NEEs are not unbiased and therefore not consistent. The variance of $\hat{\Delta}_t$ can be obtained using the standard sandwich form based on Taylor expansion of the estimating equations around $\Delta'_t = E(\hat{\Delta}_t)$ for (3.3) and around $\theta'_t = E(\hat{\theta}_t)$ and $\theta'_{t-1} = E(\hat{\theta}_{t-1})$ for (3.6). The detail is given in the following sections.

A.1.1 Variance of $\hat{\Delta}_t$ using EE $\hat{H}(\Delta_t)$

By Taylor expansion of (3.3) and after simplification, we have

$$\hat{\Delta}_t - \Delta_t' \approx -G^{-1}(\Delta_t')\hat{H}(\Delta_t') \tag{A.1}$$

From (A.1), the variance of $\hat{\Delta}_t$ can be approximately given as

$$Var(\hat{\Delta}_t) = G^{-1}(\Delta_t') Var[\hat{H}(\Delta_t')] G^{-T}(\Delta_t'), \tag{A.2}$$

where

$$G(\Delta_t') = E[\hat{H}'(\Delta_t')] = \frac{1}{N} \sum_{i=1}^{N} E\left(\frac{r_{it}}{\hat{p}_i}\right) \left\{\frac{\partial}{\partial \Delta_t'} S_i(\Delta_t')\right\}$$

and

$$Var[\hat{H}(\Delta_t')] = \frac{1}{N} \sum_{i=1}^{N} Var\left(\frac{r_{it}}{\hat{p}_i}\right) S_i(\Delta_t') S_i^T(\Delta_t'),$$

where

$$E\left(\frac{r_{it}}{\hat{p}_i}\right) \approx 1 - \frac{E(r_{it}\hat{p}_i) - p_i^2}{p_i^2} + \frac{E(r_{it}\hat{p}_i^2) - 2p_iE(r_{it}\hat{p}_i) + p_i^3}{p_i^3} \stackrel{def}{=} \mu_{1i},\tag{A.3}$$

$$E\left(\frac{r_{it}}{\hat{p}_i}\right)^2 \approx \frac{1}{p_i} - \frac{2\left(E(r_{it}\hat{p}_i) - p_i^2\right)}{p_i^3} + \frac{6\left(E(r_{it}\hat{p}_i^2) - 2p_iE(r_{it}\hat{p}_i) + p_i^3\right)}{2p_i^4} \stackrel{def}{=} \mu_{2i},\tag{A.4}$$

where $E(r_{it}\hat{p}_i) = p_i^2 + Var(\hat{p}_i)$ and $E(r_{it}\hat{p}_i^2) = p_i\kappa_i/(T-1)^2$. Notice that we used the generic denotations μ_{1i} and μ_{2i} to cover both cases, which will be convenient later on. The plug-in estimator of $Var(\hat{\Delta}_t)$ given in (A.2) can be written as

$$\widehat{Var}(\hat{\Delta}_t) = N^{-1}G^{-1}(\hat{\Delta}_t)\widehat{Var}[\hat{H}(\hat{\Delta}_t)]G^{-T}(\hat{\Delta}_t), \tag{A.5}$$

where

$$G(\hat{\Delta}_t) = \frac{1}{N} \sum_{i=1}^r \hat{g}_i S_i'(\hat{\Delta}_t), \text{ where } \hat{g}_i = \frac{1}{\hat{p}_i} \hat{\mu}_{1i}$$
 (A.6)

$$\widehat{Var}[\hat{H}(\hat{\Delta}_t)] = \frac{1}{N} \sum_{i=1}^r \hat{w}_i S_i(\hat{\Delta}_t) S_i^T(\hat{\Delta}_t), \text{ where } \hat{w}_i = \frac{1}{\hat{p}_i} \left\{ (\hat{\mu}_{2i} - (\hat{\mu}_{1i})^2) \right\}$$
(A.7)

A.1.2 Variance of $\hat{\Delta}_t$ using EE $\hat{H}(\theta_t, \theta_{t-1})$

The variance of $\hat{\Delta}_t = \hat{\theta}_t - \hat{\theta}_{t-1}$ using the observed EE (3.6) can be given as

$$Var(\hat{\Delta}_t) = Var(\hat{\theta}_t) - 2Cov(\hat{\theta}_t, \hat{\theta}_{t-1}) + Var(\hat{\theta}_{t-1})$$
(A.8)

where

$$Var(\hat{\theta}_t) = G^{-1}(\theta_{0t})Var[\hat{H}(\theta_{0t})]G^{-T}(\theta_{0t}), \tag{A.9}$$

and

$$Var(\hat{\theta}_{t-1}) = G^{-1}(\theta_{0t-1})Var[\hat{H}(\theta_{0t-1})]G^{-T}(\theta_{0t-1}), \tag{A.10}$$

where θ_{0t} is the true value of parameter at time t.

The expressions for $Var(\hat{\theta}_t)$ can be obtained similarly as above for $Var(\hat{\Delta}_t)$ given in (A.2) after replacing $\hat{\Delta}_t$ with $\hat{\theta}_t$, Δ_{0t} with θ_{0t} , r_{it} with δ_{it} , p_i with π_i and \hat{p}_i with $\hat{\pi}_{i,t}$. Similarly for $Var(\hat{\theta}_{t-1})$. To obtain $Cov(\hat{\theta}_t, \hat{\theta}_{t-1})$, we proceed as follows. By Taylor expansion of $\hat{H}(\theta_t)$ and after simplification, we have

$$\hat{\theta}_t = \theta_{0t} - G^{-1}(\theta_{0t})\hat{H}(\theta_{0t}),$$

$$\hat{\theta}_{t-1} = \theta_{0t-1} - G^{-1}(\theta_{0t-1})\hat{H}(\theta_{0t-1}).$$

Then, after simplification, we obtain

$$Cov(\hat{\theta}_{t}, \hat{\theta}_{t-1}) = E\left[(\hat{\theta}_{t} - E(\hat{\theta}_{t}))(\hat{\theta}_{t-1} - E(\hat{\theta}_{t-1}))^{T}\right]$$

$$= E\left[\left(\left\{\theta_{0t} - G^{-1}(\theta_{0t})\hat{H}(\theta_{0t})\right\} - E\left\{\theta_{0t} - G^{-1}(\theta_{0t})\hat{H}(\theta_{0t})\right\}\right)$$

$$\left(\left\{\theta_{0t-1} - G^{-1}(\theta_{0t-1})\hat{H}(\theta_{0t-1})\right\} - E\left\{\theta_{0t-1} - G^{-1}(\theta_{0t-1})\hat{H}(\theta_{0t-1})\right\}\right)^{T}\right]$$

$$= E\left[\left(-G^{-1}(\theta_{0t})\hat{H}(\theta_{0t}) + G^{-1}(\theta_{0t})E[\hat{H}(\theta_{0t})]\right)$$

$$\left(-\hat{H}^{T}(\theta_{0t-1})G^{-T}(\theta_{0t-1}) + E[\hat{H}^{T}(\theta_{0t-1})]G^{-T}(\theta_{0t-1})\right)\right]$$

$$= G^{-1}(\theta_{0t})\left(E[\hat{H}(\theta_{0t})\hat{H}^{T}(\theta_{0t-1})] - E[\hat{H}(\theta_{0t})]E[\hat{H}^{T}(\theta_{0t-1})]\right)G^{-T}(\theta_{0t-1})$$

$$= G^{-1}(\theta_{0t})Cov\left(\hat{H}(\theta_{0t}), \hat{H}^{T}(\theta_{0t-1})\right)G^{-T}(\theta_{0t-1}), \tag{A.11}$$

where e.g.

$$G(\theta_{0t}) = \frac{1}{N} \sum_{i=1}^{N} E\left(\delta_{it}/\hat{\pi}_{i,t}\right) \left\{ \frac{\partial}{\partial \theta_{0t}} S_i(\theta_{0t}) \right\}.$$

Now, we have

$$E(\delta_{it}/\hat{\pi}_{i,t}) \approx 1 + \frac{Var(\hat{\pi}_{i,t})}{\pi_i^2} - \frac{m_3}{\pi_i^3},$$
 (A.12)

where

$$E(\delta_{it}\hat{\pi}_{i,t}) = \pi_i^2 + Var(\hat{\pi}_{i,t}) \text{ and } E(\delta_{it}\hat{\pi}_{i,t}^2) = \pi_i \kappa_i'/T^2.$$

Meanwhile

$$Cov\left(\hat{H}(\theta_{0t}), \hat{H}^{T}(\theta_{0t-1})\right) = \frac{1}{N^2} \sum_{i=1}^{N} Cov\left(\frac{\delta_{it}}{\hat{\pi}_{i,t}}, \frac{\delta_{i,t-1}}{\hat{\pi}_{i,t-1}}\right) S_i(\theta_{0t}) S_i^{T}(\theta_{0t-1})$$

Considering

$$Cov\left(\frac{\delta_{it}}{\hat{\pi}_{i,t}}, \frac{\delta_{i,t-1}}{\hat{\pi}_{i,t-1}}\right) \approx Cov\left(\frac{\delta_{it}}{\pi_{it}}(\hat{\pi}_{it} - \pi_{it}), \frac{\delta_{i,t-1}}{\pi_{i,t-1}}(\hat{\pi}_{i,t-1} - \pi_{i,t-1})\right)$$

$$= Cov\left(\frac{\delta_{it}}{\pi_{it}}\hat{\pi}_{it}, \frac{\delta_{i,t-1}}{\pi_{i,t-1}}\hat{\pi}_{i,t-1}\right) - Cov\left(\delta_{it}, \frac{\delta_{i,t-1}}{\pi_{i,t-1}}\hat{\pi}_{i,t-1}\right)$$

$$- Cov\left(\frac{\delta_{it}}{\pi_{it}}\hat{\pi}_{it}, \delta_{i,t-1}\right) + Cov\left(\delta_{it}, \delta_{i,t-1}\right)$$

$$(A.13)$$

where $Cov(\delta_{it}, \delta_{i,t-1}) = 0$. We have

$$Cov\left(\frac{\delta_{it}}{\pi_{it}}\hat{\pi}_{i,t}, \frac{\delta_{i,t-1}}{\pi_{i,t-1}}\hat{\pi}_{i,t-1}\right) = E\left(\frac{\delta_{it}\delta_{i,t-1}}{\pi_{it}\pi_{i,t-1}}\hat{\pi}_{i,t}\hat{\pi}_{i,t-1}\right) - E\left(\frac{\delta_{it}}{\pi_{it}}\hat{\pi}_{i,t}\right)E\left(\frac{\delta_{i,t-1}}{\pi_{i,t-1}}\hat{\pi}_{i,t-1}\right), \quad (A.14)$$

$$Cov\left(\delta_{it}, \frac{\delta_{i,t-1}}{\pi_{i,t-1}}\hat{\pi}_{i,t-1}\right) = E\left(\frac{\delta_{it}\delta_{i,t-1}}{\pi_{i,t-1}}\hat{\pi}_{i,t-1}\right) - E\left(\delta_{it}\right)E\left(\frac{\delta_{i,t-1}}{\pi_{i,t-1}}\hat{\pi}_{i,t-1}\right)$$

$$Cov\left(\frac{\delta_{it}}{\pi_{it}}\hat{\pi}_{i,t}, \delta_{i,t-1}\right) = E\left(\frac{\delta_{it}\delta_{i,t-1}}{\pi_{it}}\hat{\pi}_{i,t}\right) - E\left(\frac{\delta_{it}}{\pi_{it}}\hat{\pi}_{i,t}\right)E\left(\delta_{i,t-1}\right). \quad (A.16)$$

We can write

$$\begin{split} E\left(\frac{\delta_{it}\delta_{i,t-1}}{\pi_{it}\pi_{i,t-1}}\hat{\pi}_{i,t}\hat{\pi}_{i,t-1}\right) &= E(\frac{\hat{\pi}_{i,t}\hat{\pi}_{i,t-1}}{\pi_{it}\pi_{i,t-1}}|\delta_{it}\delta_{i,t-1} = 1)\pi_{it}\pi_{i,t-1} \\ &= E(\hat{\pi}_{i,t}\hat{\pi}_{i,t-1}|\delta_{it}\delta_{i,t-1} = 1) \\ E\left(\frac{\delta_{it}}{\pi_{it}}\hat{\pi}_{i,t}\right) &= E(\hat{\pi}_{i,t}|\delta_{it} = 1) \\ E\left(\frac{\delta_{i,t-1}}{\pi_{i,t-1}}\hat{\pi}_{i,t-1}\right) &= E(\hat{\pi}_{i,t-1}|\delta_{i,t-1} = 1) \\ E\left(\frac{\delta_{it}\delta_{i,t-1}}{\pi_{i,t-1}}\hat{\pi}_{i,t-1}\right) &= E(\frac{\delta_{it}\hat{\pi}_{i,t-1}}{\pi_{i,t-1}}|\delta_{i,t-1} = 1)\pi_{i,t-1} \\ &= E(\delta_{it}\hat{\pi}_{i,t-1}|\delta_{i,t-1} = 1) \\ &= E(\hat{\pi}_{i,t-1}|\delta_{it} = 1,\delta_{i,t-1} = 1)E(\delta_{it}) \\ &= \pi_{it}E(\hat{\pi}_{i,t-1}|\delta_{it}\delta_{i,t-1} = 1) \\ E\left(\frac{\delta_{it}\delta_{i,t-1}}{\pi_{it}}\hat{\pi}_{i,t}\right) &= E(\frac{\delta_{i,t-1}\hat{\pi}_{i,t}}{\pi_{it}}|\delta_{it} = 1)\pi_{it} \\ &= E(\delta_{i,t-1}\hat{\pi}_{i,t}|\delta_{it} = 1) \\ &= E(\hat{\pi}_{i,t}|\delta_{i,t-1} = 1,\delta_{it} = 1)E(\delta_{i,t-1}) \\ &= \pi_{i,t-1}E(\hat{\pi}_{i,t}|\delta_{it}\delta_{i,t-1} = 1). \end{split}$$

Then

$$Cov\left(\frac{\delta_{it}}{\hat{\pi}_{i,t}}, \frac{\delta_{i,t-1}}{\hat{\pi}_{i,t-1}}\right) \approx \left(E[\hat{\pi}_{i,t}\hat{\pi}_{i,t-1}|\delta_{it}\delta_{i,t-1} = 1] - E[\hat{\pi}_{i,t}|\delta_{it} = 1]E[\hat{\pi}_{i,t-1}|\delta_{i,t-1} = 1]\right) - \pi_{it}\left(E[\hat{\pi}_{i,t-1}|\delta_{it}\delta_{i,t-1} = 1] - E[\hat{\pi}_{i,t-1}|\delta_{i,t-1} = 1]\right) - \pi_{i,t-1}\left(E[\hat{\pi}_{i,t}|\delta_{it}\delta_{i,t-1} = 1] - E[\hat{\pi}_{i,t}|\delta_{i,t} = 1]\right),$$

The expectations used in above covariance can be calculated according to the definition of $\hat{\pi}_{i,t}$ and $\hat{\pi}_{i,t-1}$,

$$E[\hat{\pi}_{i,t}|\delta_{i,t}=1] = E[(\delta_{i,t} + \sum_{t=1}^{T-1} \delta_{i,t})/T|\delta_{it}=1] = (1 + (T-1)\pi_{i,t})/T$$

$$E[\hat{\pi}_{i,t-1}|\delta_{i,t-1}=1] = E[(\delta_{i,t-1} + \sum_{t=2}^{T-1} \delta_{i,t-1})/(T-1)|\delta_{i,t-1}=1]$$

$$= (1 + (T-2)\pi_{i,t-1})/(T-1)$$

$$E[\hat{\pi}_{i,t}|\delta_{i,t}\delta_{i,t-1}=1] = E[(\sum_{t=1}^{T} \delta_{i,t})/T|\delta_{i,t}\delta_{i,t-1}=1] = \pi_{i,t}$$

$$\begin{split} E[\hat{\pi}_{i,t-1}|\delta_{i,t}\delta_{i,t-1} &= 1] = E[(\sum_{t=2}^{T}\delta_{i,t-1})/(T-1)|\delta_{i,t}\delta_{i,t-1} &= 1] = \pi_{i,t-1} \\ E[\hat{\pi}_{it}\hat{\pi}_{i,t-1}|\delta_{it}\delta_{i,t-1} &= 1] &= E[[\hat{\pi}_{i,t}|\delta_{it}\delta_{i,t-1} &= 1]|\hat{\pi}_{i,t-1}]E[\hat{\pi}_{i,t-1}|\delta_{it}\delta_{i,t-1} &= 1] = \pi_{it}\pi_{i,t-1} \end{split}$$

Then

$$Cov\left(\frac{\delta_{it}}{\hat{\pi}_{i,t}}, \frac{\delta_{i,t-1}}{\hat{\pi}_{i,t-1}}\right) \approx \left[\pi_{it}\pi_{i,t-1} - (1 + (T-1)\pi_{i,t})(1 + (T-2)\pi_{i,t-1})/[T(T-1)]\right] - \pi_{it}\left[\pi_{i,t-1} - (1 + (T-2)\pi_{i,t-1})/(T-1)\right] - \pi_{i,t-1}\left[\pi_{it} - (1 + (T-1)\pi_{i,t})/T\right]$$
(A.17)

The plug-in estimator of $Var(\hat{\theta}_t - \hat{\theta}_{t-1})$ can thus be written as

$$\widehat{Var}(\hat{\Delta}_t) = \widehat{Var}(\hat{\theta}_t - \hat{\theta}_{t-1}) = \widehat{Var}(\hat{\theta}_t) + \widehat{Var}(\hat{\theta}_{t-1}) - 2\widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1})$$
(A.18)

where

$$\begin{split} \widehat{Var}(\hat{\theta}_t) &= G^{-1}(\hat{\theta}_t) \widehat{Var}[\hat{H}(\hat{\theta}_t)] G^{-T}(\hat{\theta}_t), \\ \widehat{Var}(\hat{\theta}_{t-1}) &= G^{-1}(\hat{\theta}_{t-1}) \widehat{Var}[\hat{H}(\hat{\theta}_{t-1})] G^{-T}(\hat{\theta}_{t-1}), \\ \widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1}) &= G^{-1}(\hat{\theta}_t) \widehat{Cov}\left(\hat{H}(\hat{\theta}_t), \hat{H}^T(\hat{\theta}_{t-1})\right) G^{-T}(\hat{\theta}_{t-1}). \end{split}$$

Moreover,

$$G(\hat{\theta}_t) = \frac{1}{N} \sum_{i=1}^r \hat{q}_i S_i'(\hat{\theta}_t), \text{ with } \hat{q}_i = \hat{\pi}_i^{-1} \hat{\mu}_{1i}$$

$$\widehat{Var}[\hat{H}(\hat{\theta}_t)] = \frac{1}{N^2} \sum_{i=1}^r \hat{v}_i S_i(\hat{\theta}_t) S_i^T(\hat{\theta}_t), \text{ with } \hat{v}_i = \hat{\pi}_i^{-1} (\hat{\mu}_{2i} - (\hat{\mu}_{1i})^2)$$

where $\hat{\mu}_{1i}$ and $\hat{\mu}_{2i}$ are given by (A.3) and (A.4), after replacing r_{it} with δ_{it} and p_i with π_i .

Similarly for $G(\hat{\theta}_{t-1})$ and $\widehat{Var}[\hat{H}(\hat{\theta}_{t-1})]$. Finally,

$$\widehat{Cov}\left(\widehat{H}(\widehat{\theta}_t), \widehat{H}^T(\widehat{\theta}_{t-1})\right) = \frac{1}{N} \sum_{i=1}^N \widehat{Cov}\left(\frac{\delta_{it}}{\widehat{\pi}_{i,t}}, \frac{\delta_{i,t-1}}{\widehat{\pi}_{i,t-1}}\right) S_i(\widehat{\theta}_t) S_i^T(\widehat{\theta}_{t-1})$$
(A.19)

where $\widehat{Cov}\left(\delta_{it}/\hat{\pi}_{i,t}, \delta_{i,t-1}/\hat{\pi}_{i,t-1}\right)$ is estimator of (A.17).

Appendix B

Bias-correction of variance estimator using Taylor expansion under cross-sectional setting

The variance estimator of $\hat{\theta}$ has already been discussed in Chapter 2, based on simple EE. We can also correct the bias of variance estimator of $\hat{\theta}$ directly using Taylor expansion and similarly bias-correction for variance estimator of $\hat{\theta}^*$. We discussed below the bias-correction of variance estimator using Taylor expansion for both scalar and vector $\hat{\theta}$ and then explain that the bias-adjusted variance estimator for $\hat{\theta}^*$ will be obtained with necessary replacements.

B.1 Bias-correction for scalar $\hat{\theta}$ using Taylor expansion

From (2.36), the variance estimator of scalar $\hat{\theta}$ can be written as

$$\widehat{Var}(\hat{\theta}) = G^{-2}(\hat{\theta})\widehat{Var}[\hat{H}(\hat{\theta})],$$

The three terms Taylor expansion for $\hat{\theta}$ around θ_0 is

$$\widehat{Var}(\hat{\theta}) = \widehat{Var}(\theta_0) + \frac{\partial}{\partial \hat{\theta}} \widehat{Var}(\hat{\theta})|_{\hat{\theta} = \theta_0} (\hat{\theta} - \theta_0) + \frac{1}{2} \frac{\partial^2}{\partial \hat{\theta}^2} \widehat{Var}(\hat{\theta})|_{\hat{\theta} = \theta_0} (\hat{\theta} - \theta_0)^2$$

Then

$$Bias\left(\widehat{Var}(\hat{\theta})\right) = E\left[\widehat{Var}(\hat{\theta}) - \widehat{Var}(\theta_0)\right] = \frac{1}{2}D(\theta_0)E(\hat{\theta} - \theta_0)^2 = \frac{1}{2}D(\theta_0)\widehat{Var}(\hat{\theta}),$$

where

$$D(\theta_0) = \frac{\partial^2}{\partial \hat{\theta}^2} \widehat{Var}(\hat{\theta})|_{\hat{\theta} = \theta_0}.$$

The bias-adjusted $\widehat{Var}(\hat{\theta})$ can be written as

$$\widehat{Var}_{bc}(\hat{\theta}) = \widehat{Var}(\hat{\theta}) - \frac{1}{2}D(\hat{\theta})\widehat{Var}(\hat{\theta}) = \widehat{Var}(\hat{\theta})\left[1 - D(\hat{\theta})/2\right], \tag{B.1}$$

where

$$D(\hat{\theta}) = \frac{\partial^2}{\partial \hat{\theta}^2} \widehat{Var}(\hat{\theta}) = \frac{\partial^2}{\partial \hat{\theta}^2} \left\{ G^{-2}(\hat{\theta}) \widehat{Var}[\hat{H}(\hat{\theta})] \right\}.$$

Below we illustrate the bias correction of the variance estimator using the Taylor expansion for scalar $\hat{\theta}$.

Example-1: In the case of estimation of the population mean θ , the estimating equation for responding units can be written as

$$\hat{H}_N(\theta) = \frac{1}{N} \sum_{i=1}^N \frac{\delta_i}{\hat{\pi}_i} (y_i - \theta)$$

and from equations (2.37) and (2.38), we have

$$G(\hat{\theta}) = -\frac{1}{N} \sum_{i=1}^{r} \hat{g}_i$$
 and $V(\hat{\theta}) = \frac{1}{N^2} \sum_{i=1}^{r} \hat{v}_i (y_i - \theta)^2$,

where \hat{g}_i and \hat{v}_i are given in equations (2.39) and (2.40). From (B.1), the bias-adjusted variance of $\hat{\theta}$ is

$$\widehat{Var}_{bc}(\hat{\theta}) = \widehat{Var}(\hat{\theta}) \left[1 - D(\hat{\theta})/2 \right], \tag{B.2}$$

where

$$\widehat{Var}(\hat{\theta}) = N^{-1}G^{-2}(\hat{\theta})V(\hat{\theta}) = \frac{\sum_{i=1}^{r} \hat{v}_i(y_i - \theta)^2}{\left(\sum_{i=1}^{r} \hat{g}_i\right)^2}$$

and

$$\frac{\partial}{\partial \theta} \widehat{Var}(\hat{\theta}) = \frac{-2\sum_{i=1}^r \hat{v}_i(y_i - \theta)}{\left(\sum_{i=1}^r \hat{g}_i\right)^2} \implies D(\hat{\theta}) = \frac{\partial^2}{\partial \theta^2} \big|_{\theta = \hat{\theta}} \widehat{Var}(\hat{\theta}) = \frac{2\sum_{i=1}^r \hat{v}_i}{\left(\sum_{i=1}^r \hat{g}_i\right)^2}.$$

Finally from (C.5),

$$\widehat{Var}_{bc}(\hat{\theta}) = \frac{\sum_{i=1}^{r} \hat{v}_i (y_i - \hat{\theta})^2}{\left(\sum_{i=1}^{r} \hat{g}_i\right)^2} \left[1 - \frac{\sum_{i=1}^{r} \hat{v}_i}{\left(\sum_{i=1}^{r} \hat{g}_i\right)^2} \right], \tag{B.3}$$

where \hat{g}_i and \hat{v}_i are given in (2.39) and (2.40), respectively. The bias-adjusted variance for bias-adjusted EE can be obtained from (B.3) by replacing $(\hat{\theta}, \hat{g}_i, \hat{v}_i)$ with $(\hat{\theta}^*, \hat{g}_{i_{bc}}, \hat{v}_{i_{bc}})$.

B.2 Bias-correction for vector $\hat{\theta}$ using Taylor expansion

For the estimated variance covariance matrix of a p-dimensional vector $\hat{\theta}$, the three terms of the Taylor expansion of $\widehat{Var}(\hat{\theta})$ for $\hat{\theta}$ around θ_0 can be written as

$$\widehat{Var}(\hat{\theta}) = \widehat{Var}(\theta_0) + \frac{\partial}{\partial \hat{\theta}^T}|_{\hat{\theta} = \theta_0} \widehat{Var}(\hat{\theta}) \{ (\hat{\theta} - \theta_0) \otimes I_p \} + \frac{1}{2} \frac{\partial^2}{\partial \hat{\theta} \partial \hat{\theta}^T}|_{\hat{\theta} = \theta_0} \widehat{Var}(\hat{\theta}) \{ (\hat{\theta} - \theta_0)^{\otimes 2} \otimes I_p \},$$

where \otimes denotes the Kronecker product. The bias of $\widehat{Var}(\hat{\theta})$ can be written as

$$E\left[\widehat{Var}(\hat{\theta}) - \widehat{Var}(\theta_0)\right] = \frac{1}{2} \frac{\partial^2}{\partial \hat{\theta} \partial \hat{\theta}^T} |_{\hat{\theta} = \theta_0} \widehat{Var}(\hat{\theta}) E\{(\hat{\theta} - \theta_0)^{\otimes 2} \otimes I_p\}$$

Then the bias-adjusted $\widehat{Var}(\hat{\theta})$ is

$$\widehat{Var}_{bc}(\hat{\theta}) = G^{-1}(\hat{\theta})V(\hat{\theta})G^{-T}(\hat{\theta}) - \frac{1}{2}\mathbf{H}(\hat{\theta})E\{(\hat{\theta} - \theta_0)^{\otimes 2} \otimes I_p\},\tag{B.4}$$

where $\mathbf{H}(\hat{\theta}) = \frac{\partial^2}{\partial \hat{\theta} \partial \hat{\theta}^T} \widehat{Var}(\hat{\theta}).$

To find $\mathbf{H}(\hat{\theta})$, the first order partial derivative structure of $\widehat{Var}(\hat{\theta})$ with respect to $\hat{\theta}$ of dimension p can be written as

$$\frac{\partial}{\partial \hat{\theta}^T} \widehat{Var}(\hat{\theta}) = \begin{bmatrix} \frac{\partial}{\partial \hat{\theta}_1} \widehat{Var}(\hat{\theta}) & \vdots & \frac{\partial}{\partial \hat{\theta}_2} \widehat{Var}(\hat{\theta}) & \vdots & \cdots & \vdots & \frac{\partial}{\partial \hat{\theta}_p} \widehat{Var}(\hat{\theta}) \end{bmatrix}.$$

Second order partial derivative of $\widehat{Var}(\hat{\theta})$ with respect to 2-dimensional vector $\hat{\theta}$ can be written as

$$\mathbf{H}(\hat{\theta}) = \frac{\partial^2}{\partial \hat{\theta} \partial \hat{\theta}^T} \widehat{Var}(\hat{\theta}) = \begin{bmatrix} \frac{\partial^2}{\partial \hat{\theta}_1^2} \widehat{Var}(\hat{\theta}) & \vdots & \frac{\partial^2}{\partial \hat{\theta}_1 \partial \hat{\theta}_2} \widehat{Var}(\hat{\theta}) & \vdots & \frac{\partial^2}{\partial \hat{\theta}_2 \partial \hat{\theta}_1} \widehat{Var}(\hat{\theta}) & \vdots & \frac{\partial^2}{\partial \hat{\theta}_2^2} \widehat{Var}(\hat{\theta}) \end{bmatrix}.$$

Similarly, it can be extended for p-dimensions. Below we illustrate the bias correction of variance estimators using Taylor expansion for vector $\hat{\theta}$ with two dimensions.

Example-2: To illustrate the bias-correction of the variance estimator for a vector of parameters. Suppose we want to estimate the finite population mean and variance, then the estimating equations can be written as

$$\hat{H}_N(\theta) = \frac{1}{N} \sum_{i=1}^N \frac{\delta_{i0}}{\hat{\pi}_i} \begin{bmatrix} (y_i - \theta) \\ (y_i - \theta)^2 - \sigma^2 \end{bmatrix}.$$

From (B.4), the bias-adjusted $\widehat{Var}(\hat{\theta})$ can be written as

$$\widehat{Var}_{bc}(\hat{\theta}) = \widehat{Var}(\hat{\theta}) - \frac{1}{2}\mathbf{H}(\hat{\theta})E\{(\hat{\theta} - \theta_0)^{\otimes 2} \otimes I_2\},\tag{B.5}$$

First, to find the estimated variance covariance matrix $\widehat{Var}(\hat{\theta})$, we have

$$G(\hat{\theta}) = -\frac{1}{N} \sum_{i=1}^{r} \hat{g}_i \begin{bmatrix} 1 & 0 \\ 2(y_i - \hat{\theta}) & 1 \end{bmatrix} \approx -\frac{1}{N} \sum_{i=1}^{r} \hat{g}_i \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

since $\frac{1}{N} \sum_{i=1}^{r} \hat{g}_i(y_i - \hat{\theta})$ is almost 0. Then

$$G^{-1}(\hat{\theta}) \approx -\frac{1}{N} \begin{bmatrix} 1/\sum_{i=1}^{r} \hat{g}_{i} & 0\\ 0 & 1/\sum_{i=1}^{r} \hat{g}_{i} \end{bmatrix}$$

and

$$\widehat{Var}[\hat{H}(\hat{\theta})] = \frac{1}{N^2} \begin{bmatrix} \sum_{i=1}^r \hat{v}_i (y_i - \hat{\theta})^2 & \sum_{i=1}^r \hat{v}_i (y_i - \hat{\theta}) \left((y_i - \hat{\theta})^2 - \hat{\sigma}^2 \right) \\ \sum_{i=1}^r \hat{v}_i (y_i - \hat{\theta}) \left((y_i - \hat{\theta})^2 - \hat{\sigma}^2 \right) & \sum_{i=1}^r \hat{v}_i \left((y_i - \hat{\theta})^2 - \hat{\sigma}^2 \right)^2 \end{bmatrix}.$$

where \hat{v}_i and \hat{v}_i is given (2.39) and (2.40).

Now we can write

$$\widehat{Var}(\hat{\theta}) = G^{-1}(\hat{\theta})\widehat{Var}[\hat{H}(\hat{\theta})]G^{-T}(\hat{\theta}) = \left[v_{ij}\right]_{2\times 2} = \hat{V}$$
(B.6)

with

$$v_{11} = \frac{\sum_{i=1}^{N} \hat{v}_i (y_i - \hat{\theta})^2}{\left(\sum_{i=1}^{N} \hat{g}_i\right)^2}$$

$$v_{12} = v_{21} = \frac{\sum_{i=1}^{N} \hat{v}_i (y_i - \hat{\theta}) \left((y_i - \hat{\theta})^2 - \hat{\sigma}^2\right)}{\left(\sum_{i=1}^{N} \hat{g}_i\right)^2}$$

$$v_{22} = \frac{\sum_{i=1}^{N} \hat{v}_i \left((y_i - \hat{\theta})^2 - \hat{\sigma}^2\right)^2}{\left(\sum_{i=1}^{N} \hat{g}_i\right)^2}.$$

Then we can write

$$E\{(\hat{\theta} - \theta_0)^{\otimes 2} \otimes I_2\} = \begin{bmatrix} v_{11}I_2 & \vdots & v_{12}I_2 & \vdots & v_{21}I_2 & \vdots & v_{22}I_2 \end{bmatrix}^T.$$
 (B.7)

And

$$\mathbf{H}(\hat{\theta}) = \begin{bmatrix} \frac{\partial^2}{\partial \theta^2} \hat{V} & \vdots & \frac{\partial}{\partial \theta \partial \sigma^2} \hat{V} & \vdots & \frac{\partial}{\partial \sigma^2 \partial \theta} \hat{V} & \vdots & \frac{\partial^2}{\partial (\sigma^2)^2} \hat{V} \end{bmatrix}, \tag{B.8}$$

where

$$\frac{\partial^{2}}{(\partial\theta)^{2}}(v_{11}) = 2 \frac{\sum_{i=1}^{N} \hat{v}_{i}}{\left(\sum_{i=1}^{N} \hat{g}_{i}\right)^{2}}, \quad \frac{\partial^{2}}{(\partial\theta)^{2}}(v_{12}) = 6 \frac{\sum_{i=1}^{N} \hat{v}_{i}(y_{i} - \hat{\theta})}{\left(\sum_{i=1}^{N} \hat{g}_{i}\right)^{2}},$$

$$\frac{\partial^{2}}{(\partial\theta)^{2}}(v_{22}) = 4 \frac{\sum_{i=1}^{N} \left(\hat{v}_{i}\left((y_{i} - \hat{\theta})^{2} - \hat{\sigma}^{2}\right) + 2\hat{v}_{i}(y_{i} - \hat{\theta})^{2}\right)}{\left(\sum_{i=1}^{N} \hat{g}_{i}\right)^{2}},$$

$$\frac{\partial^{2}}{\partial\sigma^{2}\partial\theta}(v_{11}) = 0, \quad \frac{\partial^{2}}{\partial\sigma^{2}\partial\theta}(v_{12}) = \frac{\sum_{i=1}^{N} \hat{v}_{i}}{\left(\sum_{i=1}^{N} \hat{g}_{i}\right)^{2}}, \quad \frac{\partial^{2}}{\partial\sigma^{2}\partial\theta}(v_{22}) = 4 \frac{\sum_{i=1}^{N} \hat{v}_{i}(y_{i} - \hat{\theta})}{\left(\sum_{i=1}^{N} \hat{g}_{i}\right)^{2}}$$

$$\frac{\partial^{2}}{(\partial\sigma^{2})^{2}}(v_{11}) = 0, \quad \frac{\partial^{2}}{(\partial\sigma^{2})^{2}}(v_{12}) = 0 \text{ and } \frac{\partial^{2}}{(\partial\sigma^{2})^{2}}(v_{22}) = 2 \frac{\sum_{i=1}^{N} \hat{v}_{i}}{\left(\sum_{i=1}^{N} \hat{g}_{i}\right)^{2}}.$$

Using (B.6), (B.7) and (B.8) in (B.5), the bias-adjusted variance estimate can be obtained. The bias-adjusted variance covariance matrix $\widehat{Var}_{bc}(\hat{\theta})$ for the bias-adjusted estimating equations can be obtained from (C.13) by replacing $(\hat{\theta}, \hat{\sigma}^2, \hat{g}_i, \hat{v}_i)$ with $(\hat{\theta}^*, \hat{\sigma}^{2*}, \hat{g}_{i_{bc}}, \hat{v}_{i_{bc}})$.

Example-3: To illustrate the bias-correction of variance estimator for vector of regression coefficients. Suppose we want to estimate the finite population regression coefficients for simple linear regression model with $\epsilon_i \sim N(0, \sigma^2 x_i^{\alpha})$, then the estimating equations can be written as

$$\hat{H}_{N}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \frac{\delta_{i0}}{\hat{\pi}_{i}} \begin{bmatrix} (y_{i} - \beta_{0} - \beta_{1}x_{i})/x_{i}^{\alpha} \\ x_{i}(y_{i} - \beta_{0} - \beta_{1}x_{i})/x_{i}^{\alpha} \\ (y_{i} - \beta_{0} - \beta_{1}x_{i})^{2}/x_{i}^{\alpha} - \sigma^{2} \end{bmatrix}$$

From (B.4), the bias-corrected $\widehat{Var}(\hat{\theta})$ can be written as

$$\widehat{Var}_{bc}(\hat{\theta}) = \Sigma_{\hat{\theta}}(\hat{\theta}) - \frac{1}{2}\mathbf{H}(\hat{\theta})\widehat{E}\{(\hat{\theta} - \theta_0)^{\otimes 2} \otimes I_3\},\tag{B.9}$$

First to find the estimated variance covariance matrix $\Sigma_{\hat{\theta}}(\hat{\theta})$, we can have

$$G(\hat{\theta}) = -\frac{1}{N} \sum_{i=1}^{r} \tilde{g}_{i} \begin{bmatrix} 1 & x_{i} & 0 \\ x_{i} & x_{i}^{2} & 0 \\ 2(y_{i} - \beta_{0} - \beta_{1}x_{i}) & 2x_{i}(y_{i} - \beta_{0} - \beta_{1}x_{i}) & x_{i}^{\alpha} \end{bmatrix} \approx -\frac{1}{N} \sum_{i=1}^{r} \tilde{g}_{i} \begin{bmatrix} 1 & x_{i} & 0 \\ x_{i} & x_{i}^{2} & 0 \\ 0 & 0 & x_{i}^{\alpha} \end{bmatrix},$$

where $\frac{1}{N}\sum_{i=1}^r \tilde{g}_i(y_i - \beta_0 - \beta_1 x_i)$ and $\frac{1}{N}\sum_{i=1}^r \tilde{g}_i x_i(y_i - \beta_0 - \beta_1 x_i)$ are almost 0 and $\tilde{g}_i = \hat{g}_i/x_i^{\alpha}$.

$$G^{-1}(\hat{\theta})$$

$$\begin{split} &\approx -\frac{1}{dN} \begin{bmatrix} \sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{\alpha} \sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{2} & -\sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{\alpha} \sum_{i=1}^{r} \tilde{g}_{i} x_{i} & 0 \\ -\sum_{i=1}^{r} \tilde{g}_{i} x_{i} \sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{\alpha} & \sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{\alpha} \sum_{i=1}^{r} \tilde{g}_{i} & 0 \\ 0 & 0 & \sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{2} \sum_{i=1}^{r} \tilde{g}_{i} - \left(\sum_{i=1}^{r} \tilde{g}_{i} x_{i}\right)^{2} \end{bmatrix} \\ &= -\frac{1}{N} \begin{bmatrix} g_{11} & g_{12} & 0 \\ g_{21} & g_{22} & 0 \\ 0 & 0 & g_{33} \end{bmatrix}, \end{split}$$

where $d = \sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{\alpha} \sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{2} \sum_{i=1}^{r} \tilde{g}_{i} - \sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{\alpha} (\sum_{i=1}^{r} \tilde{g}_{i} x_{i})^{2}$.

$$\widehat{Var}[\hat{H}(\hat{\theta})] = \frac{1}{N^2} \begin{bmatrix} \sum_{i=1}^r \tilde{v}_i \hat{e}_i^2 & \sum_{i=1}^r \tilde{v}_i x_i \hat{e}_i^2 & \sum_{i=1}^r \tilde{v}_i \hat{e}_i (\hat{e}_i^2 - \hat{\sigma}^2 x_i^{\alpha}) \\ \sum_{i=1}^r \tilde{v}_i x_i \hat{e}_i^2 & \sum_{i=1}^r \tilde{v}_i x_i^2 \hat{e}_i^2 & \sum_{i=1}^r \tilde{v}_i x_i \hat{e}_i (\hat{e}_i^2 - \hat{\sigma}^2 x_i^{\alpha}) \\ \sum_{i=1}^r \tilde{v}_i \hat{e}_i (\hat{e}_i^2 - \hat{\sigma}^2 x_i^{\alpha}) & \sum_{i=1}^r \tilde{v}_i x_i \hat{e}_i (\hat{e}_i^2 - \hat{\sigma}^2 x_i^{\alpha}) & \sum_{i=1}^r \tilde{v}_i (\hat{e}_i^2 - \hat{\sigma}^2 x_i^{\alpha})^2 \end{bmatrix},$$

where $\hat{e}_i = (y_i - \hat{\beta}_0 - \hat{\beta}_{1t}x_i)$ and $\tilde{v}_i = \hat{v}_i/x_i^{2\alpha}$. Now we can wrie

$$\widehat{Var}(\hat{\theta}) = G^{-1}(\hat{\theta})\widehat{Var}[\hat{H}(\hat{\theta})]G^{-T}(\hat{\theta}) = \left[v_{ij}\right]_{3\times 3} = \hat{V}$$

wih

$$\begin{aligned} v_{11} &= g_{12} \left(g_{11} \sum_{i=1}^{r} \tilde{v}_{i} x_{i} (\hat{e}_{i})^{2} + g_{12} \sum_{i=1}^{r} \tilde{v}_{i} x_{i}^{2} (\hat{e}_{i})^{2} \right) + g_{11} \left(g_{11} \sum_{i=1}^{r} \tilde{v}_{i} (\hat{e}_{i})^{2} + g_{12} \sum_{i=1}^{r} \tilde{v}_{i} x_{i} (\hat{e}_{i})^{2} \right) \\ v_{12} &= g_{21} \left(g_{11} \sum_{i=1}^{r} \tilde{v}_{i} (\hat{e}_{i})^{2} + g_{12} \sum_{i=1}^{r} \tilde{v}_{i} x_{i} (\hat{e}_{i})^{2} \right) + g_{22} \left(g_{11} \sum_{i=1}^{r} \tilde{v}_{i} x_{i} (\hat{e}_{i})^{2} + g_{12} \sum_{i=1}^{r} \tilde{v}_{i} x_{i}^{2} (\hat{e}_{i})^{2} \right) \\ v_{13} &= g_{33} \left(g_{11} \sum_{i=1}^{r} \tilde{v}_{i} (\hat{e}_{i}) \left((\hat{e}_{i})^{2} - \hat{\sigma}^{2} x_{i}^{\alpha} \right) + g_{12} \sum_{i=1}^{r} \tilde{v}_{i} x_{i} (\hat{e}_{i}) \left((\hat{e}_{i})^{2} - \hat{\sigma}^{2} x_{i}^{\alpha} \right) \right) \end{aligned}$$

$$v_{22} = g_{22} \left(g_{21} \sum_{i=1}^{r} \tilde{v}_{i} x_{i} (\hat{e}_{i})^{2} + g_{22} \sum_{i=1}^{r} \tilde{v}_{i} x_{i}^{2} (\hat{e}_{i})^{2} \right) + g_{21} \left(g_{21} \sum_{i=1}^{r} \tilde{v}_{i} (\hat{e}_{i})^{2} + g_{22} \sum_{i=1}^{r} \tilde{v}_{i} x_{i} (\hat{e}_{i})^{2} \right)$$

$$v_{23} = g_{33} \left(g_{21} \sum_{i=1}^{r} \tilde{v}_{i} (\hat{e}_{i}) \left((\hat{e}_{i})^{2} - \hat{\sigma}^{2} x_{i}^{\alpha} \right) + g_{22} \sum_{i=1}^{r} \tilde{v}_{i} x_{i} (\hat{e}_{i}) \left((\hat{e}_{i})^{2} - \hat{\sigma}^{2} x_{i}^{\alpha} \right) \right)$$

$$v_{33} = g_{33}^{2} \sum_{i=1}^{r} \tilde{v}_{i} \left((\hat{e}_{i})^{2} - \hat{\sigma}^{2} x_{i}^{\alpha} \right)^{2}.$$

Further,

Now

$$\mathbf{H}(\hat{\theta}) = \begin{bmatrix} \frac{\partial^2}{\partial \hat{\beta}_0^2} \hat{V} & \vdots & \frac{\partial^2}{\partial \hat{\beta}_1 \partial \hat{\beta}_0} \hat{V} & \vdots & \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_0} \hat{V} & \vdots & \frac{\partial^2}{\partial \hat{\beta}_1^2} \hat{V} & \vdots & \frac{\partial^2}{\partial \hat{\beta}_0 \partial \hat{\beta}_1} \hat{V} & \vdots \\ \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_1} \hat{V} & \vdots & \frac{\partial^2}{\partial (\hat{\sigma}_t^2)^2} \hat{V} & \vdots & \frac{\partial^2}{\partial \hat{\beta}_0 \partial \hat{\sigma}_t^2} \hat{V} & \vdots & \frac{\partial^2}{\partial \hat{\beta}_1 \partial \hat{\sigma}_t^2} \hat{V} \end{bmatrix}.$$

Each element can be obtained as

$$\frac{\partial^2}{(\partial \hat{\beta}_0)^2}(v_{11}) = 2g_{12} \left(g_{11} \sum_{i=1}^N \tilde{v}_i x_i + g_{12} \sum_{i=1}^N \tilde{v}_i x_i^2 \right) + 2g_{11} \left(g_{11} \sum_{i=1}^N \tilde{v}_i + g_{12} \sum_{i=1}^N \tilde{v}_i x_i \right)$$

$$\frac{\partial^2}{(\partial \hat{\beta}_0)^2}(v_{12}) = 2g_{21} \left(g_{11} \sum_{i=1}^N \tilde{v}_i + g_{12} \sum_{i=1}^N \tilde{v}_i x_i \right) + 2g_{22} \left(g_{11} \sum_{i=1}^N \tilde{v}_i x_i + g_{12} \sum_{i=1}^N \tilde{v}_i x_i^2 \right)$$

$$\frac{\partial^2}{(\partial \hat{\beta}_0)^2}(v_{13}) = 6g_{33} \left(g_{11} \sum_{i=1}^N \tilde{v}_i(\hat{e}_i) + g_{12} \sum_{i=1}^N \tilde{v}_i x_i(\hat{e}_i) \right)$$

$$\begin{split} &\frac{\partial^2}{(\partial\hat{\beta}_0)^2}(v_{22}) = 2g_{22}\left(g_{21}\sum_{i=1}^N \tilde{v}_i x_i + g_{22}\sum_{i=1}^N \tilde{v}_i x_i^2\right) + 2g_{21}\left(g_{21}\sum_{i=1}^N \tilde{v}_i + g_{22}\sum_{i=1}^N \tilde{v}_i x_i\right) \\ &\frac{\partial^2}{(\partial\hat{\beta}_0)^2}(v_{23}) = 6g_{33}\left(g_{21}\sum_{i=1}^N \tilde{v}_i(\hat{e}_i) + g_{22}\sum_{i=1}^N \tilde{v}_i x_i(\hat{e}_i)\right) \\ &\frac{\partial^2}{(\partial\hat{\beta}_0)^2}(v_{33}) = 4g_{33}^2\sum_{i=1}^N \left(\tilde{v}_i\left((\hat{e}_i)^2 - \hat{\sigma}^2 x_i^\alpha\right) + 2\tilde{v}_i(\hat{e}_i)^2\right) \end{split}$$

$$\frac{\partial^{2}}{\partial\hat{\beta}_{1}\partial\hat{\beta}_{0}}(v_{11}) = 2g_{11}\left(g_{11}\sum_{i=1}^{N}\tilde{v}_{i}x_{i} + g_{12}\sum_{i=1}^{N}\tilde{v}_{i}x_{i}^{2}\right) + 2g_{12}\left(g_{11}\sum_{i=1}^{N}\tilde{v}_{i}x_{i}^{2} + g_{12}\sum_{i=1}^{N}\tilde{v}_{i}x_{i}^{3}\right)$$

$$\frac{\partial^{2}}{\partial\hat{\beta}_{1}\partial\hat{\beta}_{0}}(v_{12}) = 2g_{21}\left(g_{11}\sum_{i=1}^{N}\tilde{v}_{i}x_{i} + g_{12}\sum_{i=1}^{N}\tilde{v}_{i}x_{i}^{2}\right) + 2g_{22}\left(g_{11}\sum_{i=1}^{N}\tilde{v}_{i}x_{i}^{2} + g_{12}\sum_{i=1}^{N}\tilde{v}_{i}x_{i}^{3}\right)$$

$$\frac{\partial^{2}}{\partial\hat{\beta}_{1}\partial\hat{\beta}_{0}}(v_{13}) = 6g_{33}\left(g_{11}\sum_{i=1}^{N}\tilde{v}_{i}x_{i}(\hat{e}_{i}) + g_{12}\sum_{i=1}^{N}\tilde{v}_{i}x_{i}^{2}(\hat{e}_{i})\right)$$

$$\frac{\partial^{2}}{\partial\hat{\beta}_{1}\partial\hat{\beta}_{0}}(v_{22}) = 2g_{21}\left(g_{21}\sum_{i=1}^{N}\tilde{v}_{i}x_{i} + g_{22}\sum_{i=1}^{N}\tilde{v}_{i}x_{i}^{2}\right) + 2g_{22}\left(g_{21}\sum_{i=1}^{N}\tilde{v}_{i}x_{i}^{2} + g_{22}\sum_{i=1}^{N}\tilde{v}_{i}x_{i}^{3}\right)$$

$$\frac{\partial^{2}}{\partial\hat{\beta}_{1}\partial\hat{\beta}_{0}}(v_{23}) = 6g_{33}\left(g_{21}\sum_{i=1}^{N}\tilde{v}_{i}x_{i}(\hat{e}_{i}) + g_{22}\sum_{i=1}^{N}\tilde{v}_{i}x_{i}^{2}(\hat{e}_{i})\right)$$

$$\frac{\partial^{2}}{\partial\hat{\beta}_{1}\partial\hat{\beta}_{0}}(v_{33}) = 4g_{33}^{2}\sum_{i=1}^{N}\left(\tilde{v}_{i}x_{i}\left((\hat{e}_{i})^{2} - \hat{\sigma}^{2}x_{i}^{\alpha}\right) + 2\tilde{v}_{i}x_{i}(\hat{e}_{i})^{2}\right)$$

$$\frac{\partial^{2}}{\partial \hat{\sigma}^{2} \partial \hat{\beta}_{0}}(v_{11}) = \frac{\partial^{2}}{\partial \hat{\sigma}^{2} \partial \hat{\beta}_{0}}(v_{22}) = \frac{\partial^{2}}{\partial \hat{\sigma}^{2} \partial \hat{\beta}_{0}}(v_{12}) = 0, \quad \frac{\partial^{2}}{\partial \hat{\sigma}^{2} \partial \hat{\beta}_{0}}(v_{33}) = g_{33}^{2} \sum_{i=1}^{N} 4\tilde{v}_{i}x_{i}^{\alpha}(\hat{e}_{i}),$$

$$\frac{\partial^{2}}{\partial \hat{\sigma}^{2} \partial \hat{\beta}_{0}}(v_{23}) = g_{33} \left(g_{21} \sum_{i=1}^{N} \tilde{v}_{i}x_{i}^{\alpha} + g_{22} \sum_{i=1}^{N} \tilde{v}_{i}x_{i}x_{i}^{\alpha}\right), \quad \frac{\partial^{2}}{\partial \hat{\sigma}^{2} \partial \hat{\beta}_{0}}(v_{13}) = g_{33} \left(g_{11} \sum_{i=1}^{N} \tilde{v}_{i}x_{i}^{\alpha} + g_{12} \sum_{i=1}^{N} \tilde{v}_{i}x_{i}x_{i}^{\alpha}\right)$$

$$\begin{split} &\frac{\partial^2}{(\partial\hat{\beta}_1)^2}(v_{11}) = 2g_{12}\left(g_{11}\sum_{i=1}^N\tilde{v}_ix_i^3 + g_{12}\sum_{i=1}^N\tilde{v}_ix_i^4\right) + 2g_{11}\left(g_{11}\sum_{i=1}^N\tilde{v}_ix_i^2 + g_{12}\sum_{i=1}^N\tilde{v}_ix_i^3\right) \\ &\frac{\partial^2}{(\partial\hat{\beta}_1)^2}(v_{12}) = 2g_{21}\left(g_{11}\sum_{i=1}^N\tilde{v}_ix_i^2 + g_{12}\sum_{i=1}^N\tilde{v}_ix_i^3\right) + 2g_{22}\left(g_{11}\sum_{i=1}^N\tilde{v}_ix_i^3 + g_{12}\sum_{i=1}^N\tilde{v}_ix_i^4\right) \\ &\frac{\partial^2}{(\partial\hat{\beta}_1)^2}(v_{13}) = 6g_{33}\left(g_{11}\sum_{i=1}^N\tilde{v}_ix_i^2(\hat{e}_i) + g_{12}\sum_{i=1}^N\tilde{v}_ix_i^3(\hat{e}_i)\right) \\ &\frac{\partial^2}{(\partial\hat{\beta}_1)^2}(v_{22}) = 2g_{22}\left(g_{21}\sum_{i=1}^N\tilde{v}_ix_i^3 + g_{22}\sum_{i=1}^N2\tilde{v}_ix_i^4\right) + 2g_{21}\left(g_{21}\sum_{i=1}^N\tilde{v}_ix_i^2 + g_{22}\sum_{i=1}^N\tilde{v}_ix_i^3\right) \\ &\frac{\partial^2}{(\partial\hat{\beta}_1)^2}(v_{23}) = 6g_{33}\left(g_{21}\sum_{i=1}^N\tilde{v}_ix_i^2(\hat{e}_i) + g_{22}\sum_{i=1}^N\tilde{v}_ix_i^3(\hat{e}_i)\right) \\ &\frac{\partial^2}{(\partial\hat{\beta}_1)^2}(v_{33}) = 4g_{33}^2\sum_{i=1}^N\left(\tilde{v}_ix_i^2\left((\hat{e}_i)^2 - \hat{\sigma}^2x_i^\alpha\right) + 2\tilde{v}_ix_i^2(\hat{e}_i)^2\right) \end{split}$$

$$\frac{\partial^{2}}{\partial \hat{\sigma}^{2} \partial \hat{\beta}_{1}}(v_{11}) = 0, \quad \frac{\partial^{2}}{\partial \hat{\sigma}^{2} \partial \hat{\beta}_{1}}(v_{12}) = 0, \quad \frac{\partial^{2}}{\partial \hat{\sigma}^{2} \partial \hat{\beta}_{1}}(v_{13}) = g_{33} \left(g_{11} \sum_{i=1}^{N} \tilde{v}_{i} x_{i} x_{i}^{\alpha} + g_{12} \sum_{i=1}^{N} \tilde{v}_{i} x_{i}^{2} x_{i}^{\alpha}\right),$$

$$\frac{\partial^{2}}{\partial \hat{\sigma}^{2} \partial \hat{\beta}_{1}}(v_{22}) = 0, \quad \frac{\partial^{2}}{\partial \hat{\sigma}^{2} \partial \hat{\beta}_{1}}(v_{23}) = g_{33} \left(g_{21} \sum_{i=1}^{N} \tilde{v}_{i} x_{i} x_{i}^{\alpha} + g_{22} \sum_{i=1}^{N} \tilde{v}_{i} x_{i}^{2} x_{i}^{\alpha}\right),$$

$$\frac{\partial^{2}}{\partial \hat{\sigma}^{2} \partial \hat{\beta}_{1}}(v_{33}) = 4g_{33}^{2} \sum_{i=1}^{N} \tilde{v}_{i} x_{i} x_{i}^{\alpha}(\hat{e}_{i}),$$

$$\frac{\partial^2}{(\partial \hat{\sigma}^2)^2}(v_{11}) = 0, \quad \frac{\partial^2}{(\partial \hat{\sigma}^2)^2}(v_{12}) = 0, \quad \frac{\partial^2}{(\partial \hat{\sigma}^2)^2}(v_{13}) = 0, \quad \frac{\partial^2}{(\partial \hat{\sigma}^2)^2}(v_{22}) = 0,$$

$$\frac{\partial^2}{(\partial \hat{\sigma}^2)^2}(v_{23}) = 0 \text{ and } \frac{\partial^2}{(\partial \hat{\sigma}^2)^2}(v_{33}) = 2g_{33}^2 \sum_{i=1}^N \tilde{v}_i x_i^{2\alpha}.$$

The bias-corrected variance covariance matrix $\hat{V}ar_{bc}(\hat{\theta})$ for bias-adjusted estimating equations can be obtained from (B.9) by replacing $(\hat{\beta}_0, \hat{\beta}_1, \hat{\sigma}^2, \hat{g}_i, \hat{v}_i)$ wih $(\hat{\beta}_0^*, \hat{\beta}_1^*, \hat{\sigma}^{2*}, \hat{g}_i^*, \hat{v}_i^*)$.

Appendix C

Bias-correction of variance estimator using Taylor expansion under longitudinal setting

The variance estimator $\widehat{Var}(\hat{\Delta}_t)$ has already been discussed in Chapter 3 that is based on simple EEs $\hat{H}(\Delta_t)$ and $\hat{H}(\theta_{t,t-1})$. The variance estimator $\widehat{Var}_{ba}(\hat{\Delta}_t^*)$ is discussed above using bias-adjusted EEs $\hat{H}_{ba}(\Delta_t)$ and $\hat{H}_{ba}(\theta_{t,t-1})$. Each of two variance estimators are basically based on two types of EEs. Here in this section we use the Taylor expansion of both estimators using their respective pairs of estimating equations to correct the bias in these variance estimators.

We discuss below the bias-correction of variance estimator using Taylor expansion for both scalar and vector $\hat{\Delta}_t$ and then explain that the bias-adjusted variance estimator for $\hat{\Delta}^*$ can be obtained with necessary replacements.

C.1 Bias-correction for scalar $\widehat{Var}(\hat{\Delta}_t)$

C.1.1 Bias-correction using $\hat{H}(\Delta_t)$

From (A.5), using EE $\hat{H}(\Delta_t)$, the variance estimator for scalar $\hat{\Delta}_t$ can be written as

$$\widehat{Var}(\hat{\Delta}_t) = N^{-1}G^{-2}(\hat{\Delta}_t)\widehat{Var}[\hat{H}(\hat{\Delta}_t)],$$

From (B.1), the bias-adjusted variance estimator of $\hat{\Delta}_t$ using Taylor expansion can be written as

$$\widehat{Var}_{bcT}(\hat{\Delta}_t) = \widehat{Var}(\hat{\Delta}_t) - \frac{1}{2}D(\hat{\Delta}_t)\widehat{Var}(\hat{\Delta}_t) = \widehat{Var}(\hat{\Delta}_t) \left[1 - D(\hat{\Delta}_t)/2\right], \quad (C.1)$$

where
$$D(\hat{\Delta}_t) = \frac{\partial^2}{\partial \hat{\Delta}_t^2} \widehat{Var}(\hat{\Delta}_t) = \frac{\partial^2}{\partial \hat{\Delta}_t^2} \left\{ N^{-1} G^{-2}(\hat{\Delta}_t) \widehat{Var}[\hat{H}(\hat{\Delta}_t)] \right\}.$$

The above expression for the bias-adjusted variance estimator is in general form. The bias-adjusted variance estimator can be obtained from this expression using simple and bias-adjusted

EEs.

C.1.2 Bias-correction using $\hat{H}(\theta_{t,t-1})$

Here we need to correct the bias of $\widehat{Var}(\hat{\Delta}_t) = \widehat{Var}(\hat{\theta}_t) + \widehat{Var}(\hat{\theta}_{t-1}) - \widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1})$. Similar to the above section, using two cross-sectional EEs $\hat{H}(\theta_t)$ and $\hat{H}(\theta_{t-1})$, the bias-adjusted estimator for $\widehat{Var}_{\hat{\theta}_t}(\hat{\theta}_t)$ and $\widehat{Var}_{\hat{\theta}_{t-1}}(\hat{\theta}_{t-1})$ can be written from (B.1) as

$$\widehat{Var}_{bcT}(\hat{\theta}_t) = \widehat{Var}(\hat{\theta}_t) - \frac{1}{2}D(\hat{\theta}_t)\widehat{Var}(\hat{\theta}_t) = \widehat{Var}(\hat{\theta}_t) \left[1 - D(\hat{\theta}_t)/2\right], \tag{C.2}$$

and

$$\widehat{Var}_{bcT}(\hat{\theta}_{t-1}) = \widehat{Var}(\hat{\theta}_{t-1}) - \frac{1}{2}D(\hat{\theta}_{t-1})\widehat{Var}(\hat{\theta}_{t-1}) = \widehat{Var}(\hat{\theta}_{t-1})\left[1 - D(\hat{\theta}_{t-1})/2\right], \quad (C.3)$$

where

$$D(\hat{\theta}_t) = \frac{\partial^2}{\partial \hat{\theta}_t^2} \widehat{Var}(\hat{\theta}_t) = \frac{\partial^2}{\partial \hat{\theta}_t^2} \left\{ N^{-1} G^{-2}(\hat{\theta}_t) \widehat{Var}[\hat{H}(\hat{\theta}_t)] \right\}.$$

$$D(\hat{\theta}_{t-1}) = \frac{\partial^2}{\partial \hat{\theta}_{t-1}^2} \widehat{Var}(\hat{\theta}_{t-1}) = \frac{\partial^2}{\partial \hat{\theta}_{t-1}^2} \left\{ N^{-1} G^{-2}(\hat{\theta}_{t-1}) \widehat{Var}[\hat{H}(\hat{\theta}_{t-1})] \right\}.$$

The above expressions for the bias-adjusted variance estimators for time t and t-1 are in general form. The bias-adjusted variance estimator can be obtained from this expression using simple and bias-adjusted EEs.

For the bias-adjusted estimator of $\widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1})$ using Taylor expansion, we proceed as follows.

The covariance estimator of scalars $\hat{\theta_t}$ and $\hat{\theta}_{t-1}$ can be written as

$$\widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1}) = N^{-1}G^{-1}(\hat{\theta}_t)G^{-1}(\hat{\theta}_{t-1})\widehat{Cov}(\hat{H}(\hat{\theta}_t)), \hat{H}(\hat{\theta}_{t-1}),$$

The four terms Taylor expansion for $(\hat{\theta}_t, \hat{\theta}_{t-1})$ around $(\theta_{0t}, \theta_{0t-1})$ is

$$\widehat{Cov}(\hat{\theta}_{t}, \hat{\theta}_{t-1}) = \widehat{Cov}(\theta_{t0}, \theta_{0t-1}) + \frac{\partial}{\partial \hat{\theta}_{t}} \widehat{Cov}(\hat{\theta}_{t}, \hat{\theta}_{t-1})|_{\hat{\theta}_{t} = \theta_{0t}} (\hat{\theta}_{t} - \theta_{0t})$$

$$+ \frac{\partial}{\partial \hat{\theta}_{t-1}} \widehat{Cov}(\hat{\theta}_{t}, \hat{\theta}_{t-1})|_{\hat{\theta}_{t-1} = \theta_{0t-1}} (\hat{\theta}_{t-1} - \theta_{0t-1})$$

$$+ \frac{1}{2} \frac{\partial^{2}}{\partial \hat{\theta}_{t} \partial \hat{\theta}_{t-1}} \widehat{Cov}(\hat{\theta}_{t}, \hat{\theta}_{t-1})|_{(\hat{\theta}_{t}, \hat{\theta}_{t-1}) = (\hat{\theta}_{0t}, \hat{\theta}_{0t-1})} (\hat{\theta}_{t} - \theta_{0t})(\hat{\theta}_{t-1} - \theta_{0t-1}).$$

Then

$$\begin{split} Bias\left(\widehat{Cov}(\hat{\theta}_t,\hat{\theta}_{t-1})\right) &= E\left[\widehat{Cov}(\hat{\theta}_t,\hat{\theta}_{t-1}) - \widehat{Cov}(\theta_{t0},\theta_{0t-1})\right] \\ &= \frac{1}{2}D(\theta_{t0},\theta_{0t-1})E((\hat{\theta}_t - \theta_{0t})(\hat{\theta}_{t-1} - \theta_{0t-1}) \\ &= \frac{1}{2}D(\theta_{t0},\theta_{0t-1})Cov(\hat{\theta}_t,\hat{\theta}_{t-1}), \end{split}$$

where $D(\theta_{t0}, \theta_{0t-1}) = \frac{\partial^2}{\partial \hat{\theta}_t \partial \hat{\theta}_{t-1}} Cov(\hat{\theta}_t, \hat{\theta}_{t-1})|_{(\hat{\theta}_t, \hat{\theta}_{t-1}) = (\hat{\theta}_{0t}, \hat{\theta}_{0t-1})}$.

The bias-adjusted $\widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1})$ can be written as

$$\begin{split} \widehat{Cov}_{bcT}(\hat{\theta}_t, \hat{\theta}_{t-1}) &= \widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1}) - \frac{1}{2}D(\hat{\theta}_t, \hat{\theta}_{t-1})Cov(\hat{\theta}_t, \hat{\theta}_{t-1}) \\ &= \widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1}) \left[1 - D(\hat{\theta}_t, \hat{\theta}_{t-1})/2\right], \end{split}$$

where

$$\begin{split} D(\hat{\theta}_t, \hat{\theta}_{t-1}) &= \frac{\partial^2}{\partial \hat{\theta}_t \partial \hat{\theta}_{t-1}} \widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1}) \\ &= \frac{\partial^2}{\partial \hat{\theta}_t \partial \hat{\theta}_{t-1}} \left\{ N^{-1} G^{-1}(\hat{\theta}_t) G^{-1}(\hat{\theta}_{t-1}) \widehat{Cov}(\hat{H}(\hat{\theta}_t), \hat{H}(\hat{\theta}_{t-1})) \right\}. \end{split}$$

Now the bias-adjusted variance of scalar $\hat{\Delta}_t = \hat{\theta}_t - \hat{\theta}_{t-1}$ can be written as

$$Var_{bcT}(\hat{\Delta}_t) = \widehat{Var}(\hat{\theta}_t) \left[1 - D(\hat{\theta}_t)/2 \right] - 2\widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1}) \left[1 - D(\hat{\theta}_t, \hat{\theta}_{t-1})/2 \right]$$

$$+ \widehat{Var}(\hat{\theta}_{t-1}) \left[1 - D(\hat{\theta}_{t-1})/2 \right].$$
(C.4)

Below we illustrate the bias-correction of $\widehat{Var}(\hat{\Delta}_t)$ with an example.

Example-1: In the case of estimation of the population change $\Delta_t = \theta_t - \theta_{t-1}$, from estimating equation (3.3), we can write

$$\hat{H}(\Delta_t) = \frac{1}{N} \sum_{i=1}^{N} \frac{r_{it}}{\hat{p}_i} (d_{it} - \Delta_t)$$

and from equations (A.6) and (A.7), we have

$$G(\hat{\Delta}_t) = -\frac{1}{N} \sum_{i=1}^r \hat{g}_i$$
 and $V(\hat{\Delta}_t) = \frac{1}{N^2} \sum_{i=1}^r \hat{v}_i (d_{it} - \hat{\Delta}_t)^2$,

From (B.1), the bias-adjusted variance of $\hat{\Delta}_t$ is

$$Var_{bcT}(\hat{\Delta}_t) = Var(\hat{\Delta}_t) \left[1 - D(\hat{\Delta}_t)/2 \right],$$
 (C.5)

where

$$Var(\hat{\Delta}_t) = \frac{\sum_{i=1}^{r} \hat{v}_i (d_{it} - \Delta_t)^2}{(\sum_{i=1}^{r} \hat{g}_i)^2}$$

and

$$D(\hat{\Delta}_t) = \frac{\partial^2}{\partial \Delta_t^2} |_{\Delta_t = \hat{\Delta}_t} Var(\hat{\Delta}_t) = \frac{2 \sum_{i=1}^r \hat{v}_i}{\left(\sum_{i=1}^r \hat{g}_i\right)^2}.$$

Further bias-correction of (C.5) using bias-adjusting estimating equations can be obtained using \hat{g}_i and \hat{v}_i .

For estimating equation (3.6), the bias-adjusted variance of $\Delta_t = \theta_t - \theta_{t-1}$, we have

$$Var_{bcT}(\hat{\Delta}_t) = Var_{bcT}(\hat{\theta}_t - \hat{\theta}_{t-1})$$

$$= Var_{bcT}(\hat{\theta}_t) + Var_{bcT}(\hat{\theta}_{t-1}) - 2Cov_{bcT}(\hat{\theta}_t, \hat{\theta}_{t-1})$$
(C.6)

where

$$Var_{bcT}(\hat{\theta}_{t}) = \frac{\sum_{i=1}^{r} \hat{v}_{i}(y_{it} - \hat{\theta}_{t})^{2}}{\left(\sum_{i=1}^{r} \hat{q}_{i}\right)^{2}} \left[1 - \frac{\sum_{i=1}^{r} \hat{v}_{i}}{\left(\sum_{i=1}^{r} \hat{q}_{i}\right)^{2}}\right],$$

$$Var_{bcT}(\hat{\theta}_{t-1}) = \frac{\sum_{i=1}^{r} \hat{v}_{i}(y_{i,t-1} - \hat{\theta}_{t-1})^{2}}{\left(\sum_{i=1}^{r} \hat{q}_{i}\right)^{2}} \left[1 - \frac{\sum_{i=1}^{r} \hat{v}_{i}}{\left(\sum_{i=1}^{r} \hat{q}_{i}\right)^{2}}\right],$$

$$Cov_{bcT}(\hat{\theta}_{t}, \hat{\theta}_{t-1}) = \frac{\sum_{i=1}^{r} \hat{v}_{i}(y_{it} - \hat{\theta}_{t})(y_{i,t-1} - \hat{\theta}_{t-1})}{\left(\sum_{i=1}^{r} \hat{q}_{i}\right)^{2}} \left[1 - \frac{\sum_{i=1}^{r} \hat{v}_{i}}{\left(\sum_{i=1}^{r} \hat{q}_{i}\right)^{2}}\right].$$

Further bias-correction of (C.6) using bias-adjusting estimating equations can be obtained using \hat{q}_i and \hat{v}_i .

C.2 Bias-correction for vector $\widehat{Var}(\hat{\Delta}_t)$

C.2.1 Bias-correction using $\hat{H}(\Delta_t)$

For a p-dimensional vector $\hat{\Delta}_t$, the bias-adjusted variance covariance matrix using Taylor expansion can be written as

$$\widehat{Var}_{bc}(\hat{\Delta}_t) = N^{-1}G^{-1}(\hat{\Delta}_t)\widehat{Var}[\hat{H}(\hat{\Delta}_t)]G^{-T}(\hat{\Delta}_t) - \frac{1}{2}\mathbf{H}(\hat{\Delta}_t)E\{(\hat{\Delta}_t - \hat{\Delta}_{0t})^{\otimes 2} \otimes I_p\}$$

$$\widehat{Var}_{bc}(\hat{\Delta}_t) = \widehat{Var}(\hat{\Delta}_t) - \frac{1}{2}\mathbf{H}(\hat{\Delta}_t)E\{(\hat{\Delta}_t - \hat{\Delta}_{0t})^{\otimes 2} \otimes I_p\},$$
(C.7)

where $\mathbf{H}(\hat{\Delta}_t) = \partial^2 \widehat{Var}(\hat{\Delta}_t)/\partial \hat{\Delta}_t \partial \hat{\Delta}_t^T$. To find $\mathbf{H}(\hat{\Delta}_t)$, the first order partial derivative structure of $\widehat{Var}(\hat{\Delta}_t)$ with respect to $\hat{\Delta}_t$ of dimension p can be written as

$$\frac{\partial}{\partial \hat{\Delta}_t^T} \widehat{Var}(\hat{\Delta}_t) = \left[\frac{\partial}{\partial \hat{\Delta}_{t1}} \widehat{Var}(\hat{\Delta}_t) \quad \vdots \quad \frac{\partial}{\partial \hat{\Delta}_{t2}} \widehat{Var}(\hat{\Delta}_t) \quad \vdots \quad \cdots \quad \vdots \quad \frac{\partial}{\partial \hat{\Delta}_{tp}} \widehat{Var}(\hat{\Delta}_t) \right].$$

The second order partial derivatives of $\widehat{Var}(\hat{\Delta}_t)$ with respect to a 2-dimensional vector $\hat{\Delta}_t$ can be written as

$$\mathbf{H}(\hat{\Delta}_{t}) = \frac{\partial^{2}}{\partial \hat{\Delta}_{t} \partial \hat{\Delta}_{t}^{T}} \widehat{Var}(\hat{\Delta}_{t})$$

$$= \begin{bmatrix} \frac{\partial^{2}}{\partial \Delta_{t1}^{2}} \widehat{Var}(\hat{\Delta}_{t}) & \vdots & \frac{\partial^{2}}{\partial \hat{\Delta}_{t1} \partial \hat{\Delta}_{t2}} \widehat{Var}(\hat{\Delta}_{t}) & \vdots & \frac{\partial^{2}}{\partial \hat{\Delta}_{t2} \partial \hat{\Delta}_{t1}} \widehat{Var}(\hat{\Delta}_{t}) & \vdots & \frac{\partial^{2}}{\partial \hat{\Delta}_{t2}^{2}} \widehat{Var}(\hat{\Delta}_{t}) \end{bmatrix}. \quad (C.8)$$

Similarly, it can be extended for p-dimensions. The above expression (C.7) for bias-adjusted variance estimator is in general form. The bias-adjusted variance estimator can be obtained from this expression using simple and bias-adjusting EEs.

C.2.2 Bias-correction using $\hat{H}(\theta_{t,t-1})$

Here we need to correct the bias of $\widehat{Var}(\hat{\Delta}_t) = \widehat{Var}(\hat{\theta}_t) + \widehat{Var}(\hat{\theta}_{t-1}) - \widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1})$. For estimating equations $\hat{H}(\theta_t)$ and $\hat{H}(\theta_{t-1})$, treating $\hat{\theta}_t$ and $\hat{\theta}_{t-1}$ as vectors, the bias-adjusted estimator using Taylor expansion for $\widehat{Var}(\hat{\theta}_t)$ and $\widehat{Var}(\hat{\theta}_{t-1})$ can be written from (B.4) respectively as

$$\widehat{Var}_{bc}(\hat{\theta}_t) = \widehat{Var}(\hat{\theta}_t) - \frac{1}{2} \mathbf{H}(\hat{\theta}_t) E\{(\hat{\theta}_t - \hat{\theta}_{0t})^{\otimes 2} \otimes I_p\},$$
(C.9)

and

$$\widehat{Var}_{bc}(\hat{\theta}_{t-1}) = \widehat{Var}(\hat{\theta}_{t-1}) - \frac{1}{2} \mathbf{H}(\hat{\theta}_{t-1}) E\{(\hat{\theta}_{t-1} - \hat{\theta}_{0t-1})^{\otimes 2} \otimes I_p\},$$
 (C.10)

where

$$\widehat{Var}(\hat{\theta}_t) = G^{-1}(\hat{\theta}_t) \widehat{Var}[\hat{H}(\hat{\theta}_t)] G^{-T}(\hat{\theta}_t)$$

and

$$\widehat{Var}(\hat{\theta}_{t-1}) = G^{-1}(\hat{\theta}_{t-1})\widehat{Var}[\hat{H}(\hat{\theta}_{t-1})]G^{-T}(\hat{\theta}_{t-1}).$$

To proceed for bias-adjusted $\widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1})$, we can write the covariance estimator from (A.11) as

$$\widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1}) = G^{-1}(\hat{\theta}_t)\widehat{Cov}\left(\hat{H}(\hat{\theta}_t), \hat{H}^T(\hat{\theta}_{t-1})\right)G^{-T}(\hat{\theta}_{t-1})$$
(C.11)

The four terms Taylor expansion of $\widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1})$ for $(\hat{\theta}_t, \hat{\theta}_{t-1})$ around $(\theta_{0t}, \theta_{0t-1})$ can be written as

$$\begin{split} \widehat{Cov}(\hat{\theta}_{t}, \hat{\theta}_{t-1}) &= \widehat{Cov}(\theta_{0t}, \theta_{0t-1}) + \frac{\partial}{\partial \hat{\theta}_{t}^{T}} \widehat{Cov}(\hat{\theta}_{t}, \hat{\theta}_{t-1})|_{\hat{\theta}_{t} = \theta_{0t}} \{ (\hat{\theta}_{t} - \theta_{0t}) \otimes I_{p} \} \\ &+ \frac{\partial}{\partial \hat{\theta}_{t-1}^{T}} \widehat{Cov}(\hat{\theta}_{t}, \hat{\theta}_{t-1})|_{\hat{\theta}_{t-1} = \theta_{0t-1}} \{ (\hat{\theta}_{t-1} - \theta_{0t-1}) \otimes I_{p} \} \\ &+ \frac{1}{2} \frac{\partial}{\partial \hat{\theta}_{t} \hat{\theta}_{t-1}^{T}} \widehat{Cov}(\hat{\theta}_{t}, \hat{\theta}_{t-1})|_{(\hat{\theta}_{t}, \hat{\theta}_{t-1}) = (\theta_{0t}, \theta_{0t-1})} \{ (\hat{\theta}_{t} - \theta_{0t}) \otimes (\hat{\theta}_{t-1} - \theta_{0t-1}) \otimes I_{p} \} \end{split}$$

where \otimes denotes the Kronecker product. The bias of $\widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1})$ can be written as

$$E\left[\widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1}) - \widehat{Cov}(\theta_{0t}, \theta_{0t-1})\right] = \frac{1}{2}\mathbf{H}(\hat{\theta}_t, \hat{\theta}_{t-1})E\{(\hat{\theta}_t - \theta_{0t}) \otimes (\hat{\theta}_{t-1} - \theta_{0t-1}) \otimes I_p\},$$

Then the bias-adjusted $\widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1})$ is

$$\widehat{Cov}_{bc}(\hat{\theta}_t, \hat{\theta}_{t-1}) = \widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1}) - \frac{1}{2}\mathbf{H}(\hat{\theta}_t, \hat{\theta}_{t-1})E\{(\hat{\theta}_t - \theta_{0t}) \otimes (\hat{\theta}_{t-1} - \theta_{0t-1}) \otimes I_p\}$$
 (C.12)

where
$$\mathbf{H}(\hat{\theta}_t, \hat{\theta}_{t-1}) = \frac{\partial}{\partial \hat{\theta}_t \hat{\theta}_{t-1}^T} \widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1})|_{(\hat{\theta}_t, \hat{\theta}_{t-1}) = (\theta_{0t}, \theta_{0t-1})}.$$

To find $\mathbf{H}(\hat{\theta}_t, \hat{\theta}_{t-1})$, the first order partial derivative structure of $\widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1})$ with respect to $\hat{\theta}_t$ of dimension p can be written as

$$\frac{\partial}{\partial \hat{\theta}_{t-1}^{T}} \widehat{Cov}(\hat{\theta}_{t}, \hat{\theta}_{t-1}) = \begin{bmatrix} \frac{\partial}{\partial \hat{\theta}_{(t-1)1}} \widehat{Cov}(\hat{\theta}_{t}, \hat{\theta}_{t-1}) & \dots & \\ \frac{\partial}{\partial \hat{\theta}_{(t-1)2}} \widehat{Cov}(\hat{\theta}_{t}, \hat{\theta}_{t-1}) & \dots & \\ \vdots & \dots & \\ \frac{\partial}{\partial \hat{\theta}_{(t-1)p}} \widehat{Cov}(\hat{\theta}_{t}, \hat{\theta}_{t-1}) & \end{bmatrix}^{T}$$

Now the partial derivative $\frac{\partial}{\partial \hat{\theta}_{t-1}^T} \widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1})$ with respect to 2-dimensional vectors $\hat{\theta}_t$ and $\hat{\theta}_{t-1}$ can be written as

$$\mathbf{H}(\hat{\theta}_{t}, \hat{\theta}_{t-1}) = \frac{\partial^{2}}{\partial \hat{\theta}_{t} \partial \hat{\theta}_{t-1}^{T}} \widehat{Cov}(\hat{\theta}_{t}, \hat{\theta}_{t-1}) = \begin{bmatrix} \frac{\partial^{2}}{\partial \hat{\theta}_{t1} \partial \hat{\theta}_{(t-1)1}} \widehat{Cov}(\hat{\theta}_{t}, \hat{\theta}_{t-1}) & \dots & \\ \frac{\partial^{2}}{\partial \hat{\theta}_{t1} \partial \hat{\theta}_{(t-1)2}} \widehat{Cov}(\hat{\theta}_{t}, \hat{\theta}_{t-1}) & \dots & \\ \frac{\partial^{2}}{\partial \hat{\theta}_{t2} \partial \hat{\theta}_{(t-1)1}} \widehat{Cov}(\hat{\theta}_{t}, \hat{\theta}_{t-1}) & \dots & \\ \frac{\partial^{2}}{\partial \hat{\theta}_{t2} \partial \hat{\theta}_{(t-1)2}} \widehat{Cov}(\hat{\theta}_{t}, \hat{\theta}_{t-1}) & \dots & \\ \frac{\partial^{2}}{\partial \hat{\theta}_{t2} \partial \hat{\theta}_{(t-1)2}} \widehat{Cov}(\hat{\theta}_{t}, \hat{\theta}_{t-1}) & \dots & \\ \end{bmatrix}.$$

Similarly, it can be extended for p-dimensions.

Now the bias-adjusted variance of vector $\hat{\Delta}_t = \hat{\theta}_t - \hat{\theta}_{t-1}$ can be written as

$$\widehat{Var}_{bc}(\hat{\Delta}_{t}) = \widehat{Var}_{bc}(\hat{\theta}_{t} - \hat{\theta}_{t-1}) = \widehat{Var}_{bc}(\hat{\theta}_{t}) - 2\widehat{Cov}_{bc}(\hat{\theta}_{t}, \hat{\theta}_{t-1}) + \widehat{Var}_{bc}(\hat{\theta}_{t-1})$$

$$= \widehat{Var}(\hat{\theta}_{t}) - \frac{1}{2}\mathbf{H}(\hat{\theta}_{t})E\{(\hat{\theta}_{t} - \hat{\theta}_{0t})^{\otimes 2} \otimes I_{p}\} - 2\widehat{Cov}(\hat{\theta}_{t}, \hat{\theta}_{t-1})$$

$$+ \frac{1}{2}\mathbf{H}(\hat{\theta}_{t}, \hat{\theta}_{t-1})E\{(\hat{\theta}_{t} - \theta_{0t}) \otimes (\hat{\theta}_{t-1} - \theta_{0t-1}) \otimes I_{p}\}$$

$$+ \widehat{Var}(\hat{\theta}_{t-1}) - \frac{1}{2}\mathbf{H}(\hat{\theta}_{t-1})E\{(\hat{\theta}_{t-1} - \hat{\theta}_{0t-1})^{\otimes 2} \otimes I_{p}\}$$

$$\widehat{Var}_{bc}(\hat{\Delta}_t) = \widehat{Var}(\hat{\theta}_t - \hat{\theta}_{t-1}) - \frac{1}{2} \left\{ \mathbf{H}(\hat{\theta}_t) E\{(\hat{\theta}_t - \hat{\theta}_{0t})^{\otimes 2} \otimes I_p \} - 2\mathbf{H}(\hat{\theta}_t, \hat{\theta}_{t-1}) E\{(\hat{\theta}_t - \theta_{0t}) \otimes (\hat{\theta}_{t-1} - \theta_{0t-1}) \otimes I_p \} + \mathbf{H}(\hat{\theta}_{t-1}) E\{(\hat{\theta}_{t-1} - \hat{\theta}_{0t-1})^{\otimes 2} \otimes I_p \} \right\}.$$

where $\widehat{Var}(\hat{\theta}_t - \hat{\theta}_{t-1})$ is given in (A.18). The following example illustrates the bias-correction of variance estimators using both types of equation for vector of estimators.

Example-2: To illustrate the bias-correction of variance estimator for vector of parameters. Suppose we want to estimate the finite population chage in mean and variance simultaneously, then using EEs (3.3), we can have

$$\hat{H}(\Delta_t) = \frac{1}{N} \sum_{i=1}^{N} \frac{r_{it}}{\hat{p}_i} \begin{bmatrix} (d_{it} - \Delta_{t1}) \\ (d_{it} - (\Delta_{t1})^2 - \Delta_{t2} \end{bmatrix}$$

where $\Delta_{t1} = (\theta_t - \theta_{t-1})$ and $\Delta_{t2} = (\sigma_t^2 - \sigma_{t-1}^2)$. From (B.4), the bias-adjusted $Var(\hat{\Delta})$ can be written as

$$\widehat{Var}_{bc}(\hat{\Delta}_t) = \widehat{Var}(\hat{\Delta}_t) - \frac{1}{2}\mathbf{H}(\hat{\Delta}_t)E\{(\hat{\Delta}_t - \Delta_{0t})^{\otimes 2} \otimes I_2\},\tag{C.13}$$

First to find the estimated variance covariance matrix $\widehat{Var}(\hat{\Delta_t})$, we can have

$$G(\hat{\Delta}_t) = -\frac{1}{N} \sum_{i=1}^r \hat{g}_i \begin{bmatrix} 1 & 0 \\ 2(d_{it} - \hat{\Delta}_{t1}) & 1 \end{bmatrix} \approx -\frac{1}{N} \sum_{i=1}^r \hat{g}_i \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

since $\frac{1}{N} \sum_{i=1}^{r} \hat{g}_i(d_{it} - \hat{\Delta}_{t1})$ is almost 0. Then

$$G^{-1}(\hat{\Delta}_t) \approx -\frac{1}{N} \begin{bmatrix} 1/\sum_{i=1}^r \hat{g}_i & 0\\ 0 & 1/\sum_{i=1}^r \hat{g}_i \end{bmatrix}$$

and

$$\widehat{Var}[\hat{H}(\hat{\Delta}_t)] = \frac{1}{N^2} \begin{bmatrix} \sum_{i=1}^r \hat{v}_i E_{it}^2 & \sum_{i=1}^r \hat{v}_i E_{it} \left(E_{it}^2 - \hat{\Delta}_{t2}^2 \right) \\ \sum_{i=1}^r \hat{v}_i E_{it} \left(E_{it}^2 - \hat{\Delta}_{t2}^2 \right) & \sum_{i=1}^r \hat{v}_i \left(E_{it}^2 - \hat{\Delta}_{t2}^2 \right)^2 \end{bmatrix}.$$

where \hat{g}_i and \hat{v}_i are given in (2.39) and (2.40) respectively for simple NEE, and $E_{it} = (d_{it} - \hat{\Delta}_{t1})$. Now we can write

$$\widehat{Var}(\hat{\Delta}_t) = N^{-1}G^{-1}(\hat{\Delta}_t)\widehat{Var}[\hat{H}(\hat{\Delta}_t)]G^{-T}(\hat{\Delta}_t) = \left[v_{ij}\right]_{2\times 2} = \hat{V}$$

with

$$v_{11} = \frac{\sum_{i=1}^{r} \hat{v}_{i} E_{it}^{2}}{\left(\sum_{i=1}^{r} \hat{g}_{i}\right)^{2}}, \ v_{22} = \frac{\sum_{i=1}^{r} \hat{v}_{i} \left(E_{it}^{2} - \hat{\Delta}_{t2}^{2}\right)^{2}}{\left(\sum_{i=1}^{r} \hat{g}_{i}\right)^{2}}$$
$$v_{12} = v_{21} = \frac{\sum_{i=1}^{r} \hat{v}_{i} E_{it} \left(E_{it}^{2} - \hat{\Delta}_{t2}^{2}\right)}{\left(\sum_{i=1}^{r} \hat{g}_{i}\right)^{2}}.$$

Then we can write

$$E\{(\hat{\Delta}_t - \Delta_{0t})^{\otimes 2} \otimes I_2\} = \begin{bmatrix} v_{11}I_2 & \vdots & v_{12}I_2 & \vdots & v_{21}I_2 & \vdots & v_{22}I_2 \end{bmatrix}^T.$$

And

$$\mathbf{H}(\hat{\Delta}_t) = \left[\begin{array}{ccc} \frac{\partial^2}{\partial \hat{\Delta} t 1^2} \hat{V} & \vdots & \frac{\partial}{\partial \hat{\Delta} t 1 \partial \hat{\Delta} t 2} \hat{V} & \vdots & \frac{\partial}{\partial \hat{\Delta} t 2 \partial \hat{\Delta} t 1} \hat{V} & \vdots & \frac{\partial^2}{\partial \hat{\Delta} t 2^2} \hat{V} \end{array} \right],$$

where

$$\begin{split} \frac{\partial^2}{(\partial \hat{\Delta}_{t1})^2}(v_{11}) &= 2\frac{\sum_{i=1}^r \hat{v}_i}{\left(\sum_{i=1}^r \hat{g}_i\right)^2}, \ \frac{\partial^2}{(\partial \hat{\Delta}_{t1})^2}(v_{12}) = 6\frac{\sum_{i=1}^r \hat{v}_i E_{it}}{\left(\sum_{i=1}^r \hat{g}_i\right)^2}, \\ \frac{\partial^2}{(\partial \hat{\Delta}_{t1})^2}(v_{22}) &= 4\frac{\sum_{i=1}^r \left(\hat{v}_i \left(E_{it}^2 - \hat{\Delta}_{t2}^2\right) + 2\hat{v}_i E_{it}^2\right)}{\left(\sum_{i=1}^r \hat{g}_i\right)^2}, \\ \frac{\partial^2}{\partial \hat{\Delta}_{t2} \partial \hat{\Delta}_{t1}}(v_{11}) &= 0, \ \frac{\partial^2}{\partial \hat{\Delta}_{t2} \partial \hat{\Delta}_{t1}}(v_{12}) = \frac{\sum_{i=1}^r \hat{v}_i}{\left(\sum_{i=1}^r \hat{g}_i\right)^2}, \\ \frac{\partial^2}{\partial \hat{\Delta}_{t2} \partial \hat{\Delta}_{t1}}(v_{22}) &= 4\frac{\sum_{i=1}^r \hat{v}_i E_{it}}{\left(\sum_{i=1}^r \hat{g}_i\right)^2}, \ \frac{\partial^2}{(\partial \hat{\Delta}_{t2}^2)^2}(v_{11}) = 0, \end{split}$$

$$\frac{\partial^2}{(\partial \hat{\Delta}_{t2}^2)^2}(v_{12}) = 0 \text{ and } \frac{\partial^2}{(\partial \hat{\Delta}_{t2}^2)^2}(v_{22}) = 2 \frac{\sum_{i=1}^r \hat{v}_i}{(\sum_{i=1}^r \hat{g}_i)^2}.$$

The bias-adjusted variance covariance matrix of vector $\mathring{\Delta}_{t}^{*}$ for the bias-adjusted estimating equations can be obtained from (C.13) using the respective g_{i} and v_{i} .

To estimate the finite population change in the mean and variance using EEs (3.6), first we have

$$\widehat{Var}_{bc}(\hat{\theta}_t) = \widehat{Var}(\hat{\theta}_t) - \frac{1}{2} \mathbf{H}(\hat{\theta}_t) E\{(\hat{\theta}_t - \theta_{0t})^{\otimes 2} \otimes I_2\}.$$
(C.14)

Now we can write

$$\widehat{Var}(\hat{\theta}_t) = N^{-1}G^{-1}(\hat{\theta}_t)\widehat{Var}[\hat{H}(\hat{\theta}_t)]G^{-T}(\hat{\theta}_t) = \left[v_{ij}\right]_{2\times 2} = \hat{V}$$

with

$$v_{11} = \frac{\sum_{i=1}^{r} \hat{v}_{i}(y_{it} - \hat{\theta}_{t})^{2}}{(\sum_{i=1}^{r} \hat{g}_{i})^{2}}$$

$$v_{12} = v_{21} = \frac{\sum_{i=1}^{r} \hat{v}_{i}(y_{it} - \hat{\theta}_{t}) \left((y_{it} - \hat{\theta}_{t})^{2} - (\sigma_{t}^{2})^{2} \right)}{(\sum_{i=1}^{r} \hat{g}_{i})^{2}}$$

$$v_{22} = \frac{\sum_{i=1}^{r} \hat{v}_{i} \left((y_{it} - \hat{\theta}_{t})^{2} - (\sigma_{t}^{2})^{2} \right)^{2}}{(\sum_{i=1}^{r} \hat{g}_{i})^{2}}.$$

Then we can write

$$E\{(\hat{\theta}_t - \theta_{0t})^{\otimes 2} \otimes I_2\} = \begin{bmatrix} v_{11}I_2 & \vdots & v_{12}I_2 & \vdots & v_{21}I_2 & \vdots & v_{22}I_2 \end{bmatrix}^T$$

and

$$\mathbf{H}(\hat{\theta}_t) = \begin{bmatrix} \frac{\partial^2}{\partial \hat{\theta}_{t1}^2} \hat{V} & \vdots & \frac{\partial}{\partial \hat{\theta}_{t1} \partial \hat{\theta}_{t2}} \hat{V} & \vdots & \frac{\partial}{\partial \hat{\theta}_{t2} \partial \hat{\theta}_{t1}} \hat{V} & \vdots & \frac{\partial^2}{\partial \hat{\theta}_{t2}^2} \hat{V} \end{bmatrix},$$

where the elements of $\mathbf{H}(\hat{\theta}_t)$ can be written from the elements of $\mathbf{H}(\hat{\Delta}_t)$ after replacing d_{it} with y_{it} , Δ_t with θ_t , and using the respective \hat{g}_i and \hat{v}_i . The bias-adjusted variance covariance matrix of vector $\hat{\theta}_t^*$ for the bias-adjusted estimating equations can be obtained from (C.13) using the respective g_i and v_i .

Now we have

$$\widehat{Var}_{bc}(\hat{\theta}_{t-1}) = \widehat{Var}(\hat{\theta}_{t-1}) - \frac{1}{2}\mathbf{H}(\hat{\theta}_{t-1})E\{(\hat{\theta}_{t-1} - \theta_{0t-1})^{\otimes 2} \otimes I_2\}.$$
(C.15)

The expressions for $\widehat{Var}(\hat{\theta}_{t-1})$, $\mathbf{H}(\hat{\theta}_{t-1})$ and $E\{(\hat{\theta}_{t-1}-\theta_{0t-1})^{\otimes 2}\otimes I_2\}$ can be obtained by replacing θ_t with θ_{t-1} in $\widehat{Var}(\hat{\theta}_t)$, $\mathbf{H}(\hat{\theta}_t)$ and $E\{(\hat{\theta}_t-\theta_{0t})^{\otimes 2}\otimes I_2\}$.

The bias-adjusted variance covariance matrix of vector $\hat{\theta}_{t-1}^*$ for bias-adjusted estimating equations can be obtained from (C.15) using respective g_i and v_i .

For $\widehat{Cov}_{bc}(\hat{\theta}_t, \hat{\theta}_{t-1})$, we have

$$\widehat{Cov}_{bc}(\hat{\theta}_t, \hat{\theta}_{t-1}) = \widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1}) - \frac{1}{2}\mathbf{H}(\hat{\theta}_t, \hat{\theta}_{t-1}) E\{(\hat{\theta}_t - \theta_{0t}) \otimes (\hat{\theta}_{t-1} - \theta_{0t-1}) \otimes I_2\}, \quad (C.16)$$

Now we can write

$$\widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1}) = N^{-1}G^{-1}(\hat{\theta}_t)\widehat{Cov}[\hat{H}(\hat{\theta}_t), \hat{H}^T(\hat{\theta}_{t-1})]G^{-T}(\hat{\theta}_{t-1}) = \left[c_{ij}\right]_{2\times 2} = C$$

with

$$c_{11} = \frac{\sum_{i=1}^{r} \hat{v}_{i}(y_{it} - \hat{\theta}_{t})(y_{i,t-1} - \hat{\theta}_{t-1})}{S_{\hat{g}_{1}}^{r} S_{\hat{g}_{2}}}$$

$$c_{12} = \frac{\sum_{i=1}^{r} \hat{v}_{i}(y_{it} - \hat{\theta}_{t}) \left((y_{i,t-1} - \hat{\theta}_{t-1}) - \hat{\sigma}_{t-1}^{2} \right)}{S_{\hat{g}_{1}}^{r} S_{\hat{g}_{2}}}$$

$$c_{21} = \frac{\sum_{i=1}^{N} \hat{v}_{i} \left((y_{i,t} - \hat{\theta}_{t})^{2} - \hat{\sigma}_{t}^{2} \right) (y_{i,t-1} - \hat{\theta}_{t-1})}{S_{\hat{g}_{1}}^{r} S_{\hat{g}_{2}}}$$

$$c_{22} = \frac{\sum_{i=1}^{r} \hat{v}_{i} \left((y_{it} - \hat{\theta}_{t})^{2} - \hat{\sigma}_{t}^{2} \right) \left((y_{i,t-1} - \hat{\theta}_{t-1}) - \hat{\sigma}_{t-1}^{2} \right)}{S_{\hat{g}_{1}}^{r} S_{\hat{g}_{2}}}$$

where $S_{\hat{g}_1}S_{\hat{g}_2} = \sum_{i=1}^r \hat{g}_{1i} \sum_{i=1}^r \hat{g}_{2i}$ and $\hat{v}_i = \widehat{Cov}(\delta_{it}/\hat{\pi}_{i,t}, \delta_{i,t-1}/\hat{\pi}_{i,t-1})$. Then we can write

$$E\{(\hat{\theta}_t - \theta_{0t}) \otimes (\hat{\theta}_{t-1} - \theta_{0t-1}) \otimes I_2\} = \begin{bmatrix} c_{11}I_2 & \vdots & c_{12}I_2 & \vdots & c_{21}I_2 & \vdots & c_{22}I_2 \end{bmatrix}^T$$

and

$$\mathbf{H}(\hat{\theta}_t, \hat{\theta}_{t-1}) = \begin{bmatrix} \frac{\partial^2}{\partial \hat{\theta}_t \partial \theta_{(t-1)}} C & \vdots & \frac{\partial}{\partial \hat{\theta}_t \partial \hat{\sigma}_{t-1}^2} C & \vdots & \frac{\partial}{\partial \hat{\sigma}_t^2 \partial \hat{\theta}_{t-1}} C & \vdots & \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\sigma}_{t-1}^2} C \end{bmatrix},$$

where

$$\begin{split} &\frac{\partial^{2}}{\partial\hat{\theta}_{t}\partial\hat{\theta}_{t-1}}(c_{11}) = \frac{\sum_{i=1}^{r}\hat{v}_{i}}{S_{\hat{g}_{1}}S_{\hat{g}_{2}}}, \ \frac{\partial^{2}}{\partial\hat{\theta}_{t}\partial\hat{\theta}_{t-1}}(c_{12}) = 2\frac{\sum_{i=1}^{r}\hat{v}_{i}(y_{i,t-1} - \hat{\theta}_{t-1})}{S_{\hat{g}_{1}}S_{\hat{g}_{2}}}, \\ &\frac{\partial^{2}}{\partial\hat{\theta}_{t}\partial\hat{\theta}_{t-1}}(c_{21}) = 2\frac{\sum_{i=1}^{r}\hat{v}_{i}(y_{it} - \hat{\theta}_{t})}{S_{\hat{g}_{1}}S_{\hat{g}_{2}}}, \\ &\frac{\partial^{2}}{\partial\hat{\theta}_{t}\partial\hat{\theta}_{t-1}}(c_{22}) = 4\frac{\sum_{i=1}^{r}\hat{v}_{i}(y_{i,t-1} - \hat{\theta}_{t-1})(y_{it} - \hat{\theta}_{t})}{S_{\hat{g}_{1}}S_{\hat{g}_{2}}}, \ \frac{\partial^{2}}{\partial\hat{\sigma}_{t}^{2}\partial\hat{\theta}_{t-1}}(c_{12}) = 0, \ \frac{\partial^{2}}{\partial\hat{\sigma}_{t}^{2}\partial\hat{\theta}_{t-1}}(c_{21}) = \frac{\sum_{i=1}^{r}\hat{v}_{i}}{S_{\hat{g}_{1}}S_{\hat{g}_{2}}}, \\ &\frac{\partial^{2}}{\partial\hat{\sigma}_{t}^{2}\partial\hat{\theta}_{t-1}}(c_{22}) = 2\frac{\sum_{i=1}^{r}\hat{v}_{i}(y_{i,t-1} - \hat{\theta}_{t-1})}{S_{\hat{g}_{1}}S_{\hat{g}_{2}}}, \ \frac{\partial^{2}}{\partial\hat{\sigma}_{t-1}^{2}\partial\hat{\theta}_{t}}(c_{11}) = 0, \\ &\frac{\partial^{2}}{\partial\hat{\sigma}_{t}^{2}\partial\hat{\theta}_{t}}(c_{12}) = \frac{\sum_{i=1}^{r}\hat{v}_{i}}{S_{\hat{g}_{1}}S_{\hat{g}_{2}}}, \ \frac{\partial^{2}}{\partial\hat{\sigma}_{t-1}^{2}\partial\hat{\theta}_{t}}(c_{21}) = 0, \\ &\frac{\partial^{2}}{\partial\hat{\sigma}_{t-1}^{2}\partial\hat{\theta}_{t}}(c_{22}) = 2\frac{\sum_{i=1}^{r}\hat{v}_{i}(y_{it} - \hat{\theta}_{t})}{S_{\hat{g}_{1}}S_{\hat{g}_{2}}}, \ \frac{\partial^{2}}{\partial\hat{\sigma}_{t}^{2}\partial\hat{\sigma}_{t-1}^{2}}(c_{11}) = 0, \\ &\frac{\partial^{2}}{\partial\hat{\sigma}_{t-1}^{2}\partial\hat{\theta}_{t}}(c_{22}) = 2\frac{\sum_{i=1}^{r}\hat{v}_{i}(y_{it} - \hat{\theta}_{t})}{S_{\hat{g}_{1}}S_{\hat{g}_{2}}}, \ \frac{\partial^{2}}{\partial\hat{\sigma}_{t}^{2}\partial\hat{\sigma}_{t-1}^{2}}(c_{11}) = 0, \\ &\frac{\partial^{2}}{\partial\hat{\sigma}_{t-1}^{2}\partial\hat{\theta}_{t}}(c_{12}) = 0, \\ &\frac{\partial^{2}}{\partial\hat{\sigma}_{t}^{2}\partial\hat{\sigma}_{t-1}^{2}}(c_{12}) = 0, \\ &\frac$$

The bias-adjusted covariance matrix of vector $\hat{\theta}_t^*$ and $\hat{\theta}_{t-1}^*$ for the bias-adjusted estimating equations can be obtained from (C.16) using the respective \hat{g}_i and \hat{v}_i .

Example-3: To illustrate the bias-correction of the variance estimator for vector of regression coefficients. Suppose we want to estimate the change in population regression coefficients for

simple linear regression model with $\epsilon_i \sim N(0, d_{\sigma_t^2} x_i^{\alpha})$, then using (3.3), we can write

$$\hat{H}(\Delta_t) = \frac{1}{N} \sum_{i=1}^{N} \frac{r_{it}}{\hat{p}_i} \begin{bmatrix} D_{it}/x_i^{\alpha} \\ D_{it}x_i/x_i^{\alpha} \\ D_{it}^2/x_i^{\alpha} - d_{\sigma_{it}^2} \end{bmatrix}$$

where $d_{\sigma_{it}^2} = (\sigma_t^2 - \sigma_{(t-1)}^2)$ and $D_{it} = d_{it} - (\beta_{0t} - \beta_{0t-1}) - (\beta_{1t} - \beta_{1(t-1)})x_i = d_{it} - d_{\beta_{0t}} - d_{\beta_{1t}}x_i$. From (B.4), the bias-corrected $\widehat{Var}(\hat{\Delta}_t)$ can be written as

$$\widehat{Var}_{bc}(\hat{\Delta}_t) = \widehat{Var}(\hat{\Delta}_t) - \frac{1}{2}\mathbf{H}(\hat{\Delta}_t)\hat{E}\{(\hat{\Delta}_t - \Delta_{0t})^{\otimes 2} \otimes I_3\}.$$
(C.17)

First, to find the estimated variance covariance matrix $\widehat{Var}_{bc}(\hat{\Delta}_t)$, we have

$$G(\hat{\Delta}_t) = -\frac{1}{N} \sum_{i=1}^r \tilde{g}_i \begin{bmatrix} 1 & x_i & 0 \\ x_i & x_i^2 & 0 \\ 2\hat{D}_{it} & 2x_i\hat{D}_{it} & x_i^{\alpha} \end{bmatrix} \approx -\frac{1}{N} \sum_{i=1}^r \tilde{g}_i \begin{bmatrix} 1 & x_i & 0 \\ x_i & x_i^2 & 0 \\ 0 & 0 & x_i^{\alpha} \end{bmatrix},$$

where $\frac{1}{N}\sum_{i=1}^{r} \tilde{g}_i D_{it}$ and $\frac{1}{N}\sum_{i=1}^{r} \tilde{g}_i x_i D_{it}$ are almost 0 and $\tilde{g}_i = \hat{g}_i / x_i^{\alpha}$.

$$G^{-1}(\hat{\theta}_t) \approx -\frac{1}{dN} \begin{bmatrix} g_{11} & g_{12} & 0 \\ g_{21} & g_{22} & 0 \\ 0 & 0 & g_{33} \end{bmatrix},$$

where

$$d = \sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{\alpha} \sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{2} \sum_{i=1}^{r} \tilde{g}_{i} - \sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{\alpha} \left(\sum_{i=1}^{r} \tilde{g}_{i} x_{i} \right)^{2},$$

$$g_{11} = \sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{\alpha} \sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{2},$$

$$g_{12} = g_{21} = -\sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{\alpha} \sum_{i=1}^{r} \tilde{g}_{i} x_{i},$$

$$g_{22} = \sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{\alpha} \sum_{i=1}^{r} \tilde{g}_{i},$$

$$g_{33} = \sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{2} \sum_{i=1}^{r} \tilde{g}_{i} - \left(\sum_{i=1}^{r} \tilde{g}_{i} x_{i} \right)^{2}.$$

Now

$$\widehat{Var}(\hat{\Delta}_t) = \frac{1}{N^2} \begin{bmatrix} S_{wD^2} & S_{wxD^2} & S_{wDD_{\alpha}} \\ S_{wxD^2} & S_{wx^2D^2} & S_{wxDD_{\alpha}} \\ S_{wDD_{\alpha}} & S_{wxDD_{\alpha}} & S_{wD_{\alpha}^2} \end{bmatrix},$$

where $S_{wxD^2} = \sum_{i=1}^r \tilde{v}_i x_i D_{it}^2, S_{wx^2D^2} = \sum_{i=1}^r \tilde{v}_i x_i^2 D_{it}^2, S_{wD^2} = \sum_{i=1}^r \tilde{v}_i D_{it}^2, S_{wDD_{\alpha}} = \sum_{i=1}^r \tilde{v}_i \hat{D}_{it} \hat{D}_{\alpha},$ $S_{wxDD_{\alpha}} = \sum_{i=1}^r \tilde{v}_i x_i \hat{D}_{it} \hat{D}_{\alpha}$ and $S_{wD_{\alpha}^2} = \sum_{i=1}^r \tilde{v}_i \hat{D}_{\alpha}^2$, and $\tilde{v}_i = \hat{v}_i / x_i^{2\alpha}$ and $\hat{D}_{\alpha} = (\hat{D}_{it}^2 - d_{\hat{\sigma}_{it}^2} x_i^{\alpha}).$ Now we can write

$$\widehat{Var}(\hat{\Delta}_t) = G^{-1}(\hat{\Delta}_t)\widehat{Var}[\hat{H}(\hat{\Delta}_t)]G^{-T}(\hat{\Delta}_t) = \left[v_{ij}\right]_{3\times3} = \hat{V}$$

with

$$\begin{split} v_{11} &= g_{12} \left(g_{11} S_{wxD^2} + g_{12} S_{wx^2D^2} \right) + g_{11} \left(g_{11} S_{wD^2} + g_{12} S_{wxD^2} \right) \\ v_{12} &= g_{21} \left(g_{11} S_{wD^2} + g_{12} S_{wxD^2} \right) + g_{22} \left(g_{11} S_{wxD^2} + g_{12} S_{wx^2D^2} \right) \\ v_{13} &= g_{33} \left(g_{11} S_{wDD_{\alpha}} + g_{12} S_{wxDD_{\alpha}} \right) \end{split}$$

$$\begin{aligned} v_{22} &= g_{22} \left(g_{21} S_{wxD^2} + g_{22} S_{wx^2D^2} \right) + g_{21} \left(g_{21} S_{wD^2} + g_{22} S_{wxD^2} \right) \\ v_{23} &= g_{33} \left(g_{21} S_{wDD_{\alpha}} + g_{22} S_{wxDD_{\alpha}} \right) \\ v_{33} &= g_{33}^2 S_{wD_{\alpha}^2}, \end{aligned}$$

Further,

$$\hat{E}\{(\hat{\Delta}_t - \Delta_{0t})^{\otimes 2} \otimes I_3\} = \begin{bmatrix} v_{11}I_3 & \vdots & v_{12}I_3 & \vdots & v_{13}I_3 & \vdots \\ v_{21}I_3 & \vdots & v_{22}I_3 & \vdots & v_{23}I_3 & \vdots \\ v_{31}I_3 & \vdots & v_{32}I_3 & \vdots & v_{33}I_3 & \end{bmatrix}^T.$$

Now

$$\mathbf{H}(\hat{\Delta}_t) = \begin{bmatrix} \frac{\partial^2}{\partial d_{\hat{\beta}_{0t}}^2} \hat{V} & \vdots & \frac{\partial^2}{\partial d_{\hat{\beta}_{1t}} \partial d_{\hat{\beta}_{0t}}} \hat{V} & \vdots & \frac{\partial^2}{\partial d_{\hat{\sigma}_t}^2 \partial d_{\hat{\beta}_{0t}}} \hat{V} & \vdots \\ \frac{\partial^2}{\partial d_{\hat{\beta}_{1t}^2}^2} \hat{V} & \vdots & \frac{\partial^2}{\partial d_{\hat{\beta}_{0t}} \partial d_{\hat{\beta}_{1t}}} \hat{V} & \vdots & \frac{\partial^2}{\partial d_{\hat{\sigma}_t}^2 \partial d_{\hat{\beta}_{1t}}} \hat{V} & \vdots \\ \frac{\partial^2}{\partial (d_{\hat{\sigma}^2}^2)^2} \hat{V} & \vdots & \frac{\partial^2}{\partial d_{\hat{\beta}_{0t}} \partial (d_{\hat{\sigma}^2})^2} \hat{V} & \vdots & \frac{\partial^2}{\partial d_{\hat{\beta}_{1t}} \partial (d_{\hat{\sigma}^2})^2} \hat{V} \end{bmatrix}.$$

Each element can be obtained as

$$\frac{\partial^2}{(\partial d_{\hat{\beta}_{0t}})^2}(v_{11}) = 2g_{12} \left(g_{11}S_{wx} + g_{12}S_{wx^2}\right) + 2g_{11} \left(g_{11}S_w + g_{12}S_{wx}\right)$$

$$\frac{\partial^2}{(\partial d_{\hat{\beta}_{0t}})^2}(v_{12}) = 2g_{21} \left(g_{11}S_w + g_{12}S_{wx}\right) + 2g_{22} \left(g_{11}S_{wx} + g_{12}S_{wx^2}\right)$$

$$\frac{\partial^2}{(\partial d_{\hat{\beta}_{0t}})^2}(v_{13}) = 6g_{33} \left(g_{11}S_{wD} + g_{12}S_{wxD}\right)$$

$$\frac{\partial^2}{(\partial d_{\hat{\beta}_{0t}})^2}(v_{22}) = 2g_{22} \left(g_{21} S_{wx} + g_{22} S_{wx^2} \right) + 2g_{21} \left(g_{21} 2 S_w + g_{22} S_{wx} \right)$$

$$\frac{\partial^2}{(\partial d_{\hat{\beta}_{0t}})^2}(v_{23}) = 6g_{33} \left(g_{21} S_{wD} + g_{22} S_{wxD} \right)$$

$$\frac{\partial^2}{(\partial d_{\hat{\beta}_{0t}})^2}(v_{33}) = 4g_{33}^2 \left(S_{wD_{\alpha}} + 2S_{wD^2} \right)$$

$$\begin{split} &\frac{\partial^2}{\partial d_{\hat{\beta}_{1t}}\partial d_{\hat{\beta}_{0t}}}(v_{11}) = 2g_{11}\left(g_{11}S_{wx} + g_{12}S_{wx^2}\right) + 2g_{12}\left(g_{11}S_{wx^2} + g_{12}S_{wx^3}\right) \\ &\frac{\partial^2}{\partial d_{\hat{\beta}_{1t}}\partial d_{\hat{\beta}_{0t}}}(v_{12}) = 2g_{21}\left(g_{11}S_{wx} + g_{12}S_{wx^2}\right) + 2g_{22}\left(g_{11}S_{wx^2} + g_{12}S_{wx^3}\right) \\ &\frac{\partial^2}{\partial d_{\hat{\beta}_{1t}}\partial d_{\hat{\beta}_{0t}}}(v_{13}) = 6g_{33}\left(g_{11}S_{wxD} + g_{12}S_{wx^2D}\right) \end{split}$$

$$\frac{\partial^2}{\partial d_{\hat{\beta}_{1t}} \partial d_{\hat{\beta}_{0t}}} (v_{22}) = 2g_{21} \left(g_{21} S_{wx} + g_{22} S_{wx^2} \right) + 2g_{22} \left(g_{21} S_{wx^2} + g_{22} S_{wx^3} \right)
\frac{\partial^2}{\partial d_{\hat{\beta}_{1t}} \partial d_{\hat{\beta}_{0t}}} (v_{23}) = 6g_{33} \left(g_{21} S_{wxD} + g_{22} S_{wx^2D} \right)
\frac{\partial^2}{\partial d_{\hat{\beta}_{1t}} \partial d_{\hat{\beta}_{0t}}} (v_{33}) = 4g_{33}^2 \left(S_{wxD_{\alpha}} + 2S_{wxD^2} \right)$$

$$\begin{split} \frac{\partial^2}{\partial d_{\hat{\sigma}_{it}^2} \partial d_{\hat{\beta}_{0t}}}(v_{11}) &= \frac{\partial^2}{\partial d_{\hat{\sigma}_{it}^2} \partial d_{\hat{\beta}_{0t}}}(v_{22}) = \frac{\partial^2}{\partial d_{\hat{\sigma}_{it}^2} \partial d_{\hat{\beta}_{0t}}}(v_{12}) = 0, \\ \frac{\partial^2}{\partial d_{\hat{\sigma}_{it}^2} \partial d_{\hat{\beta}_{0t}}}(v_{33}) &= 4g_{33}^2 S_{wx^{\alpha}D}, \ \frac{\partial^2}{\partial d_{\hat{\sigma}_{it}^2} \partial d_{\hat{\beta}_{0t}}}(v_{23}) = g_{33} \left(g_{21} S_{wx^{\alpha}} + g_{22} S_{wxx^{\alpha}}\right) \\ \frac{\partial^2}{\partial d_{\hat{\sigma}_{it}^2} \partial d_{\hat{\beta}_{0t}}}(v_{13}) &= g_{33} \left(g_{11} S_{wx^{\alpha}} + g_{12} S_{wxx^{\alpha}}\right) \end{split}$$

$$\begin{split} &\frac{\partial^2}{(\partial d_{\hat{\beta}_{1t}})^2}(v_{11}) = 2g_{12} \left(g_{11} S_{wx^3} + g_{12} S_{wx^4}\right) + 2g_{11} \left(g_{11} S_{wx^2} + g_{12} S_{wx^3}\right) \\ &\frac{\partial^2}{(\partial d_{\hat{\beta}_{1t}})^2}(v_{12}) = 2g_{21} \left(g_{11} S_{wx^2} + g_{12} S_{wx^3}\right) + 2g_{22} \left(g_{11} S_{wx^3} + g_{12} S_{wx^4}\right) \\ &\frac{\partial^2}{(\partial d_{\hat{\beta}_{1t}})^2}(v_{13}) = 6g_{33} \left(g_{11} S_{wx^2D} + g_{12} S_{wx^3D}\right) \\ &\frac{\partial^2}{(\partial d_{\hat{\beta}_{1t}})^2}(v_{22}) = 2g_{22} \left(g_{21} S_{wx^3} + g_{22} S_{wx^4}\right) + 2g_{21} \left(g_{21} S_{wx^2} + g_{22} S_{wx^3}\right) \\ &\frac{\partial^2}{(\partial d_{\hat{\beta}_{1t}})^2}(v_{23}) = 6g_{33} \left(g_{21} S_{wx^2D} + g_{22} S_{wx^3D}\right) \\ &\frac{\partial^2}{(\partial d_{\hat{\beta}_{1t}})^2}(v_{33}) = 4g_{33}^2 \left(S_{wx^2D\alpha} + 2S_{wx^2D}\right) \end{split}$$

$$\begin{split} &\frac{\partial^2}{\partial d_{\hat{\sigma}_{it}^2}\partial d_{\hat{\beta}_{1t}}}(v_{11}) = 0, \quad \frac{\partial^2}{\partial d_{\hat{\sigma}_{it}^2}\partial d_{\hat{\beta}_{1t}}}(v_{12}) = 0, \\ &\frac{\partial^2}{\partial d_{\hat{\sigma}_{it}^2}\partial d_{\hat{\beta}_{1t}}}(v_{13}) = g_{33}\left(g_{11}S_{wxx^{\alpha}} + g_{12}S_{wx^2x^{\alpha}}\right), \\ &\frac{\partial^2}{\partial d_{\hat{\sigma}_{it}^2}\partial d_{\hat{\beta}_{1t}}}(v_{22}) = 0, \quad \frac{\partial^2}{\partial d_{\hat{\sigma}_{it}^2}\partial d_{\hat{\beta}_{1t}}}(v_{23}) = g_{33}\left(g_{21}S_{wxx^{\alpha}} + g_{22}S_{wx^2x^{\alpha}}\right), \\ &\frac{\partial^2}{\partial d_{\hat{\sigma}_{it}^2}\partial d_{\hat{\beta}_{1t}}}(v_{33}) = 4g_{33}^2S_{wxx^{\alpha}D}, \end{split}$$

$$\begin{split} \frac{\partial^2}{(\partial d_{\hat{\sigma}_{it}^2})^2}(v_{11}) &= 0, \ \frac{\partial^2}{(\partial d_{\hat{\sigma}_{it}^2})^2}(v_{12}) = 0, \ \frac{\partial^2}{(\partial d_{\hat{\sigma}_{it}^2})^2}(v_{13}) = 0, \ \frac{\partial^2}{(\partial d_{\hat{\sigma}_{it}^2})^2}(v_{22}) = 0, \\ \frac{\partial^2}{(\partial d_{\hat{\sigma}_{it}^2})^2}(v_{23}) &= 0 \text{ and } \frac{\partial^2}{(\partial d_{\hat{\sigma}_{it}^2})^2}(v_{33}) = 2g_{33}^2 S_{wx^{2\alpha}}. \end{split}$$

The bias-corrected variance covariance matrix $\hat{V}ar_{bc}(\hat{\Delta}_t^*)$ for the bias-adjusted estimating equations can be obtained by using the respective \hat{g}_i and \hat{v}_i . To find the bias-corrected estimator of the variance for $\hat{\Delta}_t = \hat{\theta}_t - \hat{\theta}_{t-1}$ using EEs (3.6) and Taylor expansion. We need to find

$$\widehat{Var}_{bc}(\hat{\theta}_t - \hat{\theta}_{t-1}) = \widehat{Var}_{bc}(\hat{\theta}_t) - 2\widehat{Cov}_{bc}(\hat{\theta}_t, \hat{\theta}_{t-1}) + \widehat{Var}_{bc}(\hat{\theta}_{t-1}).$$

Suppose θ_t denote the regression parameters for time t and $\epsilon_{it} \sim N(0, \sigma_t^2 x_i^{\alpha})$ then we can write

$$\hat{H}(\theta_t) = \frac{1}{N} \sum_{i=1}^{N} \frac{\delta_{it}}{\hat{\pi}_i} \begin{bmatrix} (y_{it} - \beta_{0t} - \beta_{1t}x_i)/x_i^{\alpha} \\ x_i(y_{it} - \beta_{0t} - \beta_{1t}x_i)/x_i^{\alpha} \\ (y_{it} - \beta_0 - \beta_1x_i)^2/x_i^{\alpha} - \sigma_t^2 \end{bmatrix}.$$

From (B.4), the bias-corrected $\widehat{Var}(\hat{\theta}_t)$ can be written as

$$\widehat{Var}_{bc}(\hat{\theta}_t) = \widehat{Var}(\hat{\theta}_t) - \frac{1}{2}\mathbf{H}(\hat{\theta}_t)\hat{E}\{(\hat{\theta}_t - \theta_{0t})^{\otimes 2} \otimes I_3\},\tag{C.18}$$

First, to find the estimated variance covariance matrix $\widehat{Var}(\hat{\theta}_t)$, we have

$$G(\hat{\theta}_t) = -\frac{1}{N} \sum_{i=1}^r \tilde{g}_i \begin{bmatrix} 1 & x_i & 0 \\ x_i & x_i^2 & 0 \\ 2(y_{it} - \beta_{0t} - \beta_{1t}x_i) & 2x_i(y_{it} - \beta_{0t} - \beta_{1t}x_i) & x_i^{\alpha} \end{bmatrix}$$

$$\approx -\frac{1}{N} \sum_{i=1}^r \tilde{g}_i \begin{bmatrix} 1 & x_i & 0 \\ x_i & x_i^2 & 0 \\ 0 & 0 & x_i^{\alpha} \end{bmatrix},$$

where $\frac{1}{N}\sum_{i=1}^r \tilde{g}_i(y_{it}-\beta_{0t}-\beta_{1t}x_i)$ and $\frac{1}{N}\sum_{i=1}^r \tilde{g}_ix_i(y_{it}-\beta_{0t}-\beta_{1t}x_i)$ are almost 0 and $\tilde{g}_i=\hat{g}_i/x_i^{\alpha}$.

$$G^{-1}(\hat{\theta}_t) \approx -\frac{1}{dN} \begin{bmatrix} g_{11} & g_{12} & 0 \\ g_{21} & g_{22} & 0 \\ 0 & 0 & g_{33} \end{bmatrix},$$

where

$$d = \sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{\alpha} \sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{2} \sum_{i=1}^{r} \tilde{g}_{i} - \sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{\alpha} \left(\sum_{i=1}^{r} \tilde{g}_{i} x_{i}\right)^{2},$$

$$g_{11} = \sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{\alpha} \sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{2},$$

$$g_{12} = g_{21} = -\sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{\alpha} \sum_{i=1}^{r} \tilde{g}_{i} x_{i},$$

$$g_{22} = \sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{\alpha} \sum_{i=1}^{r} \tilde{g}_{i},$$

$$g_{33} = \sum_{i=1}^{r} \tilde{g}_{i} x_{i}^{2} \sum_{i=1}^{r} \tilde{g}_{i} - \left(\sum_{i=1}^{r} \tilde{g}_{i} x_{i} \right)^{2}.$$

Now

$$\widehat{Var}[\hat{H}(\hat{\theta}_t)] = \frac{1}{N^2} \begin{bmatrix} S_{we^2} & S_{wxe^2} & S_{wee_{\alpha}} \\ S_{wxe^2} & S_{wx^2e^2} & S_{wxee_{\alpha}} \\ S_{wee_{\alpha}} & S_{wxee_{\alpha}} & S_{we^2_{\alpha}} \end{bmatrix},$$

where $S_{wxe^2} = \sum_{i=1}^r \tilde{v}_i x_i e_{it}^2$, $S_{wx^2e^2} = \sum_{i=1}^r \tilde{v}_i x_i^2 e_{it}^2$, $S_{we^2} = \sum_{i=1}^r \tilde{v}_i e_{it}^2$, $S_{wee_{\alpha}} = \sum_{i=1}^r \tilde{v}_i \hat{e}_{it} \hat{e}_{\alpha}$, $S_{wxee_{\alpha}} = \sum_{i=1}^r \tilde{v}_i x_i \hat{e}_{it} \hat{e}_{\alpha}$, $S_{we^2} = \sum_{i=1}^r \tilde{v}_i \hat{e}_{\alpha}^2$, and $\tilde{v}_i = \hat{v}_i / x_i^{2\alpha}$ and $\hat{e}_{\alpha} = (\hat{e}_{it}^2 - \hat{\sigma}_{it}^2 x_i^{\alpha})$ with $\hat{e}_{it} = (y_{it} - \hat{\beta}_{0t} - \hat{\beta}_{1t} x_i)$ and $\tilde{v}_i = \hat{v}_i / x_i^{2\alpha}$.

Now we can write

$$\widehat{Var}(\hat{\theta}_t) = N^{-1}G^{-1}(\hat{\theta}_t)\widehat{Var}[\hat{H}(\hat{\theta}_t)]G^{-T}(\hat{\theta}_t) = \left[v_{ij}\right]_{3\times 3} = \hat{V}$$

with

$$\begin{split} v_{11} &= g_{12} \left(g_{11} S_{wxe^2} + g_{12} S_{wx^2e^2} \right) + g_{11} \left(g_{11} S_{we^2} + g_{12} S_{wxe^2} \right) \\ v_{12} &= g_{21} \left(g_{11} S_{we^2} + g_{12} S_{wxe^2} \right) + g_{22} \left(g_{11} S_{wxe^2} + g_{12} S_{wx^2e^2} \right) \\ v_{13} &= g_{33} \left(g_{11} S_{wee_{\alpha}} + g_{12} S_{wxee_{\alpha}} \right) \end{split}$$

$$\begin{split} v_{22} &= g_{22} \left(g_{21} S_{wxe^2} + g_{22} S_{wx^2e^2} \right) + g_{21} \left(g_{21} S_{we^2} + g_{22} S_{wxe^2} \right) \\ v_{23} &= g_{33} \left(g_{21} S_{wee_{\alpha}} + g_{22} S_{wxee_{\alpha}} \right) \\ v_{33} &= g_{33}^2 S_{we_{\alpha}^2}. \end{split}$$

Further,

$$\hat{E}\{(\hat{\theta}_t - \theta_{0t})^{\otimes 2} \otimes I_3\} = \begin{bmatrix} v_{11}I_3 & \vdots & v_{12}I_3 & \vdots & v_{13}I_3 & \vdots \\ v_{21}I_3 & \vdots & v_{22}I_3 & \vdots & v_{23}I_3 & \vdots \\ v_{31}I_3 & \vdots & v_{32}I_3 & \vdots & v_{33}I_3 \end{bmatrix}^T.$$

Now

$$\mathbf{H}(\hat{\theta}_t) = \begin{bmatrix} \frac{\partial^2}{\partial \hat{\beta}_{0t} \partial \hat{\beta}_{0t-1}} \hat{V} & \vdots & \frac{\partial^2}{\partial \hat{\beta}_{1t} \partial \hat{\beta}_{0t}} \hat{V} & \vdots & \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{0t}} \hat{V} & \vdots \\ \frac{\partial^2}{\partial \hat{\beta}_{1t}^2} \hat{V} & \vdots & \frac{\partial^2}{\partial \hat{\beta}_{0t} \partial \hat{\beta}_{1t}} \hat{V} & \vdots & \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{1t}} \hat{V} & \vdots \\ \frac{\partial^2}{\partial (\hat{\sigma}_t^2)^2} \hat{V} & \vdots & \frac{\partial^2}{\partial \hat{\beta}_{0t} \partial (\hat{\sigma}_t^2)^2} \hat{V} & \vdots & \frac{\partial^2}{\partial \hat{\beta}_{1t} \partial (\hat{\sigma}_t^2)^2} \hat{V} & \end{bmatrix}.$$

Each element can be obtained as

$$\frac{\partial^2}{(\partial \hat{\beta}_{0t})^2}(v_{11}) = 2g_{12} \left(g_{11} S_{wx} + g_{12} S_{wx^2} \right) + 2g_{11} \left(g_{11} S_w + g_{12} S_{wx} \right)$$

$$\frac{\partial^2}{(\partial \hat{\beta}_{0t})^2}(v_{12}) = 2g_{21} \left(g_{11} S_w + g_{12} S_{wx} \right) + 2g_{22} \left(g_{11} S_{wx} + g_{12} S_{wx^2} \right)$$

$$\frac{\partial^2}{(\partial \hat{\beta}_{0t})^2}(v_{13}) = 6g_{33} \left(g_{11} S_{we} + g_{12} S_{wxe} \right)$$

$$\frac{\partial^2}{(\partial \hat{\beta}_{0t})^2}(v_{22}) = 2g_{22} \left(g_{21} S_{wx} + g_{22} S_{wx^2} \right) + 2g_{21} \left(g_{21} S_w + g_{22} S_{wx} \right)$$

$$\frac{\partial^2}{(\partial \hat{\beta}_{0t})^2}(v_{23}) = 6g_{33} \left(g_{21} S_{we} + g_{22} S_{wxe} \right)$$

$$\frac{\partial^2}{(\partial \hat{\beta}_{0t})^2}(v_{33}) = 4g_{33}^2 \left(S_{we_{\alpha}} + 2S_{we^2} \right)$$

$$\begin{split} \frac{\partial^2}{\partial \hat{\beta}_{1t} \partial \hat{\beta}_{0t}}(v_{11}) &= 2g_{11} \left(g_{11} S_{wx} + g_{12} S_{wx^2}\right) + 2g_{12} \left(g_{11} S_{wx^2} + g_{12} S_{wx^3}\right) \\ \frac{\partial^2}{\partial \hat{\beta}_{1t} \partial \hat{\beta}_{0t}}(v_{12}) &= 2g_{21} \left(g_{11} S_{wx} + g_{12} S_{wx^2}\right) + 2g_{22} \left(g_{11} S_{wx^2} + g_{12} S_{wx^3}\right) \\ \frac{\partial^2}{\partial \hat{\beta}_{1t} \partial \hat{\beta}_{0t}}(v_{13}) &= 6g_{33} \left(g_{11} S_{wxe} + g_{12} S_{wx^2e}\right) \end{split}$$

$$\frac{\partial^2}{\partial \hat{\beta}_{1t} \partial \hat{\beta}_{0t}}(v_{22}) = 2g_{21} \left(g_{21} S_{wx} + g_{22} S_{wx^2} \right) + 2g_{22} \left(g_{21} S_{wx^2} + g_{22} S_{wx^3} \right)
\frac{\partial^2}{\partial \hat{\beta}_{1t} \partial \hat{\beta}_{0t}}(v_{23}) = 6g_{33} \left(g_{21} S_{wxe} + g_{22} S_{wx^2e} \right)
\frac{\partial^2}{\partial \hat{\beta}_{1t} \partial \hat{\beta}_{0t}}(v_{33}) = 4g_{33}^2 \left(S_{wxe_{\alpha}} + 2S_{wxe^2} \right)$$

$$\frac{\partial^{2}}{\partial \hat{\sigma}_{t}^{2} \partial \hat{\beta}_{0t}}(v_{11}) = \frac{\partial^{2}}{\partial \hat{\sigma}_{t}^{2} \partial \hat{\beta}_{0t}}(v_{22}) = \frac{\partial^{2}}{\partial \hat{\sigma}_{t}^{2} \partial \hat{\beta}_{0t}}(v_{12}) = 0, \quad \frac{\partial^{2}}{\partial \hat{\sigma}_{t}^{2} \partial \hat{\beta}_{0t}}(v_{33}) = 4g_{33}^{2} S_{wx^{\alpha}e}, \\
\frac{\partial^{2}}{\partial \hat{\sigma}_{t}^{2} \partial \hat{\beta}_{0t}}(v_{23}) = g_{33} \left(g_{21} S_{wx^{\alpha}} + g_{22} S_{wxx^{\alpha}}\right), \quad \frac{\partial^{2}}{\partial \hat{\sigma}_{t}^{2} \partial \hat{\beta}_{0t}}(v_{13}) = g_{33} \left(g_{11} S_{wx^{\alpha}} + g_{12} S_{wxx^{\alpha}}\right)$$

$$\begin{split} \frac{\partial^2}{(\partial \hat{\beta}_{1t})^2}(v_{11}) &= 2g_{12} \left(g_{11} S_{wx^3} + g_{12} S_{wx4}\right) + 2g_{11} \left(g_{11} S_{wx^2} + g_{12} S_{wx^3}\right) \\ \frac{\partial^2}{(\partial \hat{\beta}_{1t})^2}(v_{12}) &= 2g_{21} \left(g_{11} S_{wx^2} + g_{12} S_{wx^3}\right) + 2g_{22} \left(g_{11} S_{wx^3} + g_{12} S_{wx4}\right) \\ \frac{\partial^2}{(\partial \hat{\beta}_{1t})^2}(v_{13}) &= 6g_{33} \left(g_{11} S_{wx^2e} + g_{12} S_{wx^3e}\right) \\ \frac{\partial^2}{(\partial \hat{\beta}_{1t})^2}(v_{22}) &= 2g_{22} \left(g_{21} S_{wx^3} + g_{22} S_{wx^4}\right) + 2g_{21} \left(g_{21} S_{wx^2} + g_{22} S_{wx^3}\right) \\ \frac{\partial^2}{(\partial \hat{\beta}_{1t})^2}(v_{23}) &= 6g_{33} \left(g_{21} S_{wx^2e} + g_{22} S_{wx^3e}\right) \\ \frac{\partial^2}{(\partial \hat{\beta}_{1t})^2}(v_{33}) &= 4g_{33}^2 \left(S_{wx^2e^\alpha} + 2S_{wx^2e^2}\right) \end{split}$$

$$\begin{split} \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{1t}}(v_{11}) &= 0, \quad \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{1t}}(v_{12}) = 0, \quad \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{1t}}(v_{13}) = g_{33} \left(g_{11} S_{wxx^{\alpha}} + g_{12} S_{wx^2x^{\alpha}}\right), \\ \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{1t}}(v_{22}) &= 0, \quad \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{1t}}(v_{23}) = g_{33} \left(g_{21} S_{wxx^{\alpha}} + g_{22} S_{wx^2x^{\alpha}}\right), \\ \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{1t}}(v_{33}) &= 4g_{33}^2 S_{wxx^{\alpha}e} \end{split}$$

$$\frac{\partial^2}{(\partial \hat{\sigma}_t^2)^2}(v_{11}) = 0, \quad \frac{\partial^2}{(\partial \hat{\sigma}_t^2)^2}(v_{12}) = 0, \quad \frac{\partial^2}{(\partial \hat{\sigma}_t^2)^2}(v_{13}) = 0, \quad \frac{\partial^2}{(\partial \hat{\sigma}_t^2)^2}(v_{22}) = 0,$$

$$\frac{\partial^2}{(\partial \hat{\sigma}_t^2)^2}(v_{23}) = 0 \text{ and } \frac{\partial^2}{(\partial \hat{\sigma}_t^2)^2}(v_{33}) = 2g_{33}^2 S_{wx^{2\alpha}}.$$

The bias-corrected variance covariance matrix $\hat{V}ar_{bc}(\hat{\theta}_t^*)$ for the bias-adjusted estimating equations can be obtained by using the respective \hat{g}_i and \hat{v}_i .

For $\widehat{Var}_{bc}(\hat{\theta}_{t-1})$, we have

$$\widehat{Var}_{bc}(\hat{\theta}_{t-1}) = \widehat{Var}(\hat{\theta}_{t-1}) - \frac{1}{2}\mathbf{H}(\hat{\theta}_{t-1})\hat{E}\{(\hat{\theta}_{t-1} - \theta_{0t-1})^{\otimes 2} \otimes I_3\},\tag{C.19}$$

The expressions for $\widehat{Var}(\hat{\theta}_{t-1})$, $\mathbf{H}(\hat{\theta}_{t-1})$ and $\widehat{E}\{(\hat{\theta}_{t-1}-\theta_{0t-1})^{\otimes 2}\otimes I_3\}$ can be obtained by replacing θ_t with θ_{t-1} in $\widehat{Var}(\hat{\theta}_t)$, $\mathbf{H}(\hat{\theta}_t)$ and $\widehat{E}\{(\hat{\theta}_t-\theta_{0t})^{\otimes 2}\otimes I_3\}$ that are discussed above for the case of θ_t where θ_t denote the regression parameters at time t. The bias-corrected variance covariance matrix $\widehat{Var}_{bc}(\hat{\theta}_{t-1}^*)$ for the bias-adjusted estimating equations can be obtained by using the respective \hat{g}_i and \hat{v}_i .

The bias-corrected $\widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1})$ can be written as

$$\widehat{Cov}_{bc}(\hat{\theta}_t, \hat{\theta}_{t-1}) = \widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1}) - \frac{1}{2}\mathbf{H}(\hat{\theta}_t, \hat{\theta}_{t-1})\hat{E}\{(\hat{\theta}_t - \theta_{0t}) \otimes (\hat{\theta}_{t-1} - \theta_{0t-1}) \otimes I_3\}, \quad (C.20)$$

First, to find $\widehat{Cov}(\hat{\theta}_t, \hat{\theta}_{t-1})$, we can have

$$G(\hat{\theta}_t) \approx -\frac{1}{N} \sum_{i=1}^r \tilde{g}_{1i} \begin{bmatrix} 1 & x_i & 0 \\ x_i & x_i^2 & 0 \\ 0 & 0 & x_i^{\alpha} \end{bmatrix}, \text{ and } G(\hat{\theta}_{t-1}) \approx -\frac{1}{N} \sum_{i=1}^r \tilde{g}_{2i} \begin{bmatrix} 1 & x_i & 0 \\ x_i & x_i^2 & 0 \\ 0 & 0 & x_i^{\alpha} \end{bmatrix},$$

where $\tilde{g}_{1i} = \hat{g}_{1i}/x_i^{\alpha}$ and $\tilde{g}_{2i} = \hat{g}_{2i}/x_i^{\alpha}$.

$$G^{-1}(\hat{\theta}_t) \approx -\frac{1}{d_1 N} \begin{bmatrix} g_{111} & g_{112} & 0 \\ g_{121} & g_{122} & 0 \\ 0 & 0 & g_{133} \end{bmatrix},$$

where

$$d = \sum_{i=1}^{r} \tilde{g}_{1i} x_{i}^{\alpha} \sum_{i=1}^{r} \tilde{g}_{1i} x_{i}^{2} \sum_{i=1}^{r} \tilde{g}_{1i} - \sum_{i=1}^{r} \tilde{g}_{1i} x_{i}^{\alpha} \left(\sum_{i=1}^{r} \tilde{g}_{1i} x_{i} \right)^{2},$$

$$g_{111} = \sum_{i=1}^{r} \tilde{g}_{1i} x_{i}^{\alpha} \sum_{i=1}^{r} \tilde{g}_{1i} x_{i}^{2},$$

$$g_{112} = g_{121} = -\sum_{i=1}^{r} \tilde{g}_{1i} x_{i}^{\alpha} \sum_{i=1}^{r} \tilde{g}_{1i} x_{i},$$

$$g_{122} = \sum_{i=1}^{r} \tilde{g}_{1i} x_{i}^{\alpha} \sum_{i=1}^{r} \tilde{g}_{1i},$$

$$g_{133} = \sum_{i=1}^{r} \tilde{g}_{1i} x_{i}^{2} \sum_{i=1}^{r} \tilde{g}_{1i} - \left(\sum_{i=1}^{r} \tilde{g}_{1i} x_{i} \right)^{2}.$$

and

$$G^{-1}(\hat{\theta}_{t-1}) \approx -\frac{1}{d_2 N} \begin{bmatrix} g_{211} & g_{212} & 0 \\ g_{221} & g_{222} & 0 \\ 0 & 0 & g_{233} \end{bmatrix},$$

where

$$d_{2} = \sum_{i=1}^{r} \tilde{g}_{2i} x_{i}^{\alpha} \sum_{i=1}^{r} \tilde{g}_{2i} x_{i}^{2} \sum_{i=1}^{r} \tilde{g}_{2i} - \sum_{i=1}^{r} \tilde{g}_{2i} x_{i}^{\alpha} \left(\sum_{i=1}^{r} \tilde{g}_{2i} x_{i} \right)^{2},$$

$$g_{211} = \sum_{i=1}^{r} \tilde{g}_{2i} x_{i}^{\alpha} \sum_{i=1}^{r} \tilde{g}_{2i} x_{i}^{2},$$

$$g_{212} = g_{121} = -\sum_{i=1}^{r} \tilde{g}_{2i} x_{i}^{\alpha} \sum_{i=1}^{r} \tilde{g}_{2i} x_{i},$$

$$g_{222} = \sum_{i=1}^{r} \tilde{g}_{2i} x_{i}^{\alpha} \sum_{i=1}^{r} \tilde{g}_{2i},$$

$$g_{233} = \sum_{i=1}^{r} \tilde{g}_{2i} x_{i}^{2} \sum_{i=1}^{r} \tilde{g}_{2i} - \left(\sum_{i=1}^{r} \tilde{g}_{2i} x_{i} \right)^{2}.$$

Now

$$\widehat{Cov}[\hat{H}(\hat{\theta}_t), \hat{H}^T(\hat{\theta}_{t-1})] = \frac{1}{N^2} \begin{bmatrix} S_{we_t e_{t-1}} & S_{wxe_t e_{t-1}} & S_{we_t e_{\alpha(t-1)}} \\ S_{wxe_t e_{t-1}} & S_{wx^2 e_t e_{t-1}} & S_{wxe_t e_{\alpha(t-1)}} \\ S_{we_{t-1} e_{\alpha t}} & S_{wxe_{t-1} e_{\alpha t}} & S_{we_{\alpha t} e_{\alpha(t-1)}} \end{bmatrix},$$

where

$$\begin{split} S_{we_{t}e_{t-1}} &= \sum_{i=1}^{r} \tilde{v}_{i}e_{it}e_{i,t-1}, \ S_{wxe_{t}e_{t-1}} = \sum_{i=1}^{r} \tilde{v}_{i}x_{i}e_{it}e_{i,t-1}, \\ S_{we_{t}e_{\alpha(t-1)}} &= \sum_{i=1}^{r} \tilde{v}_{i}e_{it}(\hat{e}_{i,t-1}^{2} - \hat{\sigma}_{t-1}^{2}x_{i}^{\alpha}), \ S_{wx^{2}e_{t}e_{t-1}} = \sum_{i=1}^{r} \tilde{v}_{i}x_{i}^{2}e_{it}e_{i,t-1}, \\ S_{wxe_{t}e_{\alpha(t-1)}} &= \sum_{i=1}^{r} \tilde{v}_{i}x_{i}e_{it}(\hat{e}_{i,t-1}^{2} - \hat{\sigma}_{t-1}^{2}x_{i}^{\alpha}), \ S_{we_{t-1}e_{\alpha t}} = \sum_{i=1}^{r} \tilde{v}_{i}\hat{e}_{i,t-1}(\hat{e}_{it}^{2} - \hat{\sigma}_{t}^{2}x_{i}^{\alpha}), \\ S_{wxe_{t-1}e_{\alpha t}} &= \sum_{i=1}^{r} \tilde{v}_{i}x_{i}\hat{e}_{i,t-1}(\hat{e}_{it}^{2} - \hat{\sigma}_{t}^{2}x_{i}^{\alpha}) \\ S_{we_{\alpha t}e_{\alpha(t-1)}} &= \sum_{i=1}^{r} \tilde{v}_{i}(\hat{e}_{it}^{2} - \hat{\sigma}_{t}^{2}x_{i}^{\alpha})(\hat{e}_{i,t-1}^{2} - \hat{\sigma}_{t-1}^{2}x_{i}^{\alpha}). \end{split}$$

And $\hat{e}_{it} = (y_{it} - \hat{\beta}_{0t} - \hat{\beta}_{1t}x_i)$, $\hat{e}_{i,t-1} = (y_{i,t-1} - \hat{\beta}_{0t-1} - \hat{\beta}_{1t-1}x_i)$ and $\tilde{v}_i = \hat{v}_i/x_i^{2\alpha}$ with $\hat{v}_i = \widehat{Cov}(\delta_{it}/\hat{\pi}_{i,t}, \delta_{i,t-1}/\hat{\pi}_{i,t-1})$.

Now we can write

$$\widehat{Cov}(\hat{\theta}_{t}, \hat{\theta}_{t-1}) = N^{-1}G^{-1}(\hat{\theta}_{t})\widehat{Cov}[\hat{H}(\hat{\theta}_{t}), \hat{H}^{T}(\hat{\theta}_{t-1})G^{-T}(\hat{\theta}_{t-1}) = \left[c_{ij}\right]_{3\times 3} = \hat{C}$$

with

$$\begin{split} c_{11} &= g_{212} \left(g_{111} S_{we_{t}e_{t-1}} + g_{112} S_{wx^{2}e_{t}e_{t-1}} \right) + g_{211} \left(g_{111} S_{we_{t}e_{t-1}} + g_{112} S_{we_{t}e_{t-1}} \right) \\ c_{12} &= g_{221} \left(g_{111} S_{we_{t}e_{t-1}} + g_{112} S_{we_{t}e_{t-1}} \right) + g_{222} \left(g_{111} S_{we_{t}e_{t-1}} + g_{112} S_{wx^{2}e_{t}e_{t-1}} \right) \\ c_{13} &= g_{233} \left(g_{111} S_{we_{t}e_{\alpha(t-1)}} + g_{112} S_{wxe_{t}e_{\alpha(t-1)}} \right) \\ c_{21} &= g_{211} \left(g_{121} S_{we_{t}e_{t-1}} + g_{122} S_{we_{t}e_{t-1}} \right) + g_{212} \left(g_{121} S_{we_{t}e_{t-1}} + g_{122} S_{wx^{2}e_{t}e_{t-1}} \right) \\ c_{22} &= g_{222} \left(g_{121} S_{we_{t}e_{t-1}} + g_{122} S_{wx^{2}e_{t}e_{t-1}} \right) + g_{221} \left(g_{121} S_{we_{t}e_{t-1}} + g_{122} S_{we_{t}e_{t-1}} \right) \\ c_{23} &= g_{233} \left(g_{121} S_{we_{t}e_{\alpha(t-1)}} + g_{122} S_{wxe_{t}e_{\alpha(t-1)}} \right) \\ c_{31} &= g_{133} \left(g_{211} S_{we_{t-1}e_{\alpha t}} + g_{212} S_{wxe_{t-1}e_{\alpha t}} \right) \\ c_{32} &= g_{133} \left(g_{221} S_{we_{t-1}e_{\alpha t}} + g_{222} S_{wxe_{t-1}e_{\alpha t}} \right) \\ c_{33} &= g_{133} g_{233} S_{we_{\alpha t}e_{\alpha(t-1)}}. \end{split}$$

Further,

$$\hat{E}\{(\hat{\theta}_t - \theta_{0t}) \otimes (\hat{\theta}_{t-1} - \theta_{0t-1}) \otimes I_3\} = \begin{bmatrix} c_{11}I_3 & \vdots & c_{12}I_3 & \vdots & c_{13}I_3 & \vdots \\ c_{21}I_3 & \vdots & c_{22}I_3 & \vdots & c_{23}I_3 & \vdots \\ c_{31}I_3 & \vdots & c_{32}I_3 & \vdots & c_{33}I_3 & \end{bmatrix}^T.$$

Now

$$\mathbf{H}(\hat{\theta}_t) = \begin{bmatrix} \frac{\partial^2}{\partial \hat{\beta}_{0t} \partial \hat{\beta}_{0(t-1)}} \hat{C} & \vdots & \frac{\partial^2}{\partial \hat{\beta}_{0t} \partial \hat{\beta}_{1(t-1)}} \hat{C} & \vdots & \frac{\partial^2}{\partial \hat{\beta}_{0t} \partial \hat{\sigma}_{t-1}^2} \hat{C} & \vdots \\ \frac{\partial^2}{\partial \hat{\beta}_{1t} \partial \hat{\beta}_{0(t-1)}} \hat{C} & \vdots & \frac{\partial^2}{\partial \hat{\beta}_{1t} \partial \hat{\beta}_{1(t-1)}} \hat{C} & \vdots & \frac{\partial^2}{\partial \hat{\beta}_{1t} \partial \hat{\sigma}_{t-1}^2} \hat{C} & \vdots \\ \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{0(t-1)}} \hat{C} & \vdots & \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{1(t-1)}} \hat{C} & \vdots & \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\sigma}_{t-1}^2} \hat{C} & \vdots \end{bmatrix},$$

Each element can be obtained as

$$\begin{split} &\frac{\partial^2}{\partial \hat{\beta}_{0t} \partial \hat{\beta}_{0(t-1)}}(c_{11}) = g_{212}\left(g_{111}S_{wx} + g_{112}S_{wx^2}\right) + g_{211}\left(g_{111}S_{w} + g_{112}S_{wx}\right) \\ &\frac{\partial^2}{\partial \hat{\beta}_{0t} \partial \hat{\beta}_{0(t-1)}}(c_{12}) = g_{221}\left(g_{111}S_{w} + g_{112}S_{wx}\right) + g_{222}\left(g_{111}S_{wx} + g_{112}S_{wx^2}\right) \\ &\frac{\partial^2}{\partial \hat{\beta}_{0t} \partial \hat{\beta}_{0(t-1)}}(c_{13}) = 2g_{233}\left(g_{111}S_{we_{t-1}} + g_{112}S_{wxe_{t-1}}\right) \\ &\frac{\partial^2}{\partial \hat{\beta}_{0t} \partial \hat{\beta}_{0(t-1)}}(c_{21}) = g_{211}\left(g_{121}S_{w} + g_{122}S_{wx}\right) + g_{212}\left(g_{121}S_{wx} + g_{122}S_{wx^2}\right) \\ &\frac{\partial^2}{\partial \hat{\beta}_{0t} \partial \hat{\beta}_{0(t-1)}}(c_{22}) = g_{221}\left(g_{121}S_{wx} + g_{122}S_{wx^2}\right) + g_{222}\left(2g_{121}S_{w} + g_{122}S_{wx}\right) \\ &\frac{\partial^2}{\partial \hat{\beta}_{0t} \partial \hat{\beta}_{0(t-1)}}(c_{23}) = 2g_{233}\left(g_{121}S_{we_{t-1}} + g_{122}S_{wxe_{t-1}}\right) \\ &\frac{\partial^2}{\partial \hat{\beta}_{0t} \partial \hat{\beta}_{0(t-1)}}(c_{31}) = 2g_{133}\left(g_{211}S_{we_{t}} + g_{212}S_{wxe_{t}}\right) \\ &\frac{\partial^2}{\partial \hat{\beta}_{0t} \partial \hat{\beta}_{0(t-1)}}(c_{32}) = 2g_{133}\left(g_{221}S_{we_{t}} + g_{222}S_{wxe_{t}}\right) \\ &\frac{\partial^2}{\partial \hat{\beta}_{0t} \partial \hat{\beta}_{0(t-1)}}(c_{32}) = 2g_{133}\left(g_{221}S_{wx} + g_{112}S_{wx^2}\right) + g_{212}\left(g_{111}S_{wx^2} + g_{112}S_{wx^3}\right) \\ &\frac{\partial^2}{\partial \hat{\beta}_{0t} \partial \hat{\beta}_{0(t-1)}}(c_{11}) = g_{211}\left(g_{111}S_{wx} + g_{112}S_{wx^2}\right) + g_{212}\left(g_{111}S_{wx^2} + g_{112}S_{wx^3}\right) \\ &\frac{\partial^2}{\partial \hat{\beta}_{0t} \partial \hat{\beta}_{1(t-1)}}(c_{12}) = g_{221}\left(g_{111}S_{wx} + g_{112}S_{wx^2}\right) + g_{222}\left(g_{111}S_{wx^2} + g_{112}S_{wx^3}\right) \\ &\frac{\partial^2}{\partial \hat{\beta}_{0t} \partial \hat{\beta}_{1(t-1)}}(c_{12}) = g_{211}\left(g_{121}S_{wx} + g_{122}S_{wx^2}\right) + g_{222}\left(g_{121}S_{wx^2} + g_{122}S_{wx^3}\right) \\ &\frac{\partial^2}{\partial \hat{\beta}_{0t} \partial \hat{\beta}_{1(t-1)}}(c_{21}) = g_{211}\left(g_{121}S_{wx} + g_{122}S_{wx^2}\right) + g_{222}\left(g_{121}S_{wx^2} + g_{122}S_{wx^3}\right) \\ &\frac{\partial^2}{\partial \hat{\beta}_{0t} \partial \hat{\beta}_{1(t-1)}}(c_{21}) = g_{211}\left(g_{121}S_{wx} + g_{122}S_{wx^2}\right) + g_{222}\left(g_{121}S_{wx^2} + g_{122}S_{wx^3}\right) \\ &\frac{\partial^2}{\partial \hat{\beta}_{0t} \partial \hat{\beta}_{1(t-1)}}(c_{31}) = 2g_{33}\left(g_{211}S_{wxe_{t-1}} + g_{122}S_{wx^2}\right) \\ &\frac{\partial^2}{\partial \hat{\beta}_{0t} \partial \hat{\beta}_{1(t-1)}}(c_{31}) = 2g_{133}\left(g_{221}S_{wxe_{t}} + g_{222}S_{wx^2e_{t}}\right) \\ &\frac{\partial^2}{\partial \hat{\beta}_{0t} \partial \hat{\beta}_{1(t-1)}}(c_{32}) = 2g_{133}\left(g_{$$

$$\begin{split} \frac{\partial^2}{\partial \hat{\rho}_{0t} \partial \hat{\sigma}_{t-1}^2}(c_{21}) &= \frac{\partial^2}{\partial \hat{\rho}_{0t} \partial \hat{\sigma}_{t-1}^2}(c_{22}) = 0 \\ \frac{\partial^2}{\partial \hat{\rho}_{0t} \partial \hat{\sigma}_{t-1}^2}(c_{23}) &= g_{233} \left(g_{121} S_{wx^*} + g_{122} S_{wxx^*}\right) \\ \frac{\partial^2}{\partial \hat{\rho}_{0t} \partial \hat{\sigma}_{t-1}^2}(c_{31}) &= \frac{\partial^2}{\partial \hat{\rho}_{0t} \partial \hat{\sigma}_{t-1}^2}(c_{32}) = 0 \\ \frac{\partial^2}{\partial \hat{\rho}_{0t} \partial \hat{\sigma}_{t-1}^2}(c_{33}) &= 2g_{133} g_{233} S_{wx^* c_{t-1}} \\ \frac{\partial^2}{\partial \hat{\rho}_{1t} \partial \hat{\rho}_{0(t-1)}}(c_{11}) &= g_{211} \left(g_{111} S_{wx} + g_{112} S_{wx^2}\right) + g_{212} \left(g_{111} S_{wx^2} + g_{112} S_{wx^3}\right) \\ \frac{\partial^2}{\partial \hat{\rho}_{1t} \partial \hat{\rho}_{0(t-1)}}(c_{12}) &= g_{221} \left(g_{111} S_{wx} + g_{112} S_{wx^2}\right) + g_{222} \left(g_{111} S_{wx^2} + g_{112} S_{wx^3}\right) \\ \frac{\partial^2}{\partial \hat{\rho}_{1t} \partial \hat{\rho}_{0(t-1)}}(c_{13}) &= 2g_{233} \left(g_{111} S_{wx} + g_{122} S_{wx^2}\right) + g_{222} \left(g_{121} S_{wx^2} + g_{122} S_{wx^3}\right) \\ \frac{\partial^2}{\partial \hat{\rho}_{1t} \partial \hat{\rho}_{0(t-1)}}(c_{21}) &= g_{211} \left(g_{121} S_{wx} + g_{122} S_{wx^2}\right) + g_{222} \left(g_{121} S_{wx^2} + g_{122} S_{wx^3}\right) \\ \frac{\partial^2}{\partial \hat{\rho}_{1t} \partial \hat{\rho}_{0(t-1)}}(c_{21}) &= g_{211} \left(g_{121} S_{wx} + g_{122} S_{wx^2}\right) + g_{222} \left(g_{121} S_{wx^2} + g_{122} S_{wx^3}\right) \\ \frac{\partial^2}{\partial \hat{\rho}_{1t} \partial \hat{\rho}_{0(t-1)}}(c_{23}) &= 2g_{233} \left(g_{211} S_{wxe_{t-1}} + g_{122} S_{wx^2}\right) + g_{222} \left(g_{121} S_{wx^2} + g_{122} S_{wx^3}\right) \\ \frac{\partial^2}{\partial \hat{\rho}_{1t} \partial \hat{\rho}_{0(t-1)}}(c_{31}) &= 2g_{133} \left(g_{211} S_{wxe_{t}} + g_{212} S_{wx^2e_{t-1}}\right) \\ \frac{\partial^2}{\partial \hat{\rho}_{1t} \partial \hat{\rho}_{0(t-1)}}(c_{31}) &= 2g_{133} \left(g_{211} S_{wxe_{t}} + g_{212} S_{wx^2e_{t}}\right) \\ \frac{\partial^2}{\partial \hat{\rho}_{1t} \partial \hat{\rho}_{0(t-1)}}(c_{31}) &= 2g_{133} \left(g_{211} S_{wx^2} + g_{112} S_{wx^3}\right) + g_{222} \left(g_{111} S_{wx^2} + g_{112} S_{wx^3}\right) \\ \frac{\partial^2}{\partial \hat{\rho}_{1t} \partial \hat{\rho}_{0(t-1)}}(c_{11}) &= g_{211} \left(g_{111} S_{wx^2} + g_{112} S_{wx^3}\right) + g_{222} \left(g_{111} S_{wx^3} + g_{112} S_{wx^4}\right) \\ \frac{\partial^2}{\partial \hat{\rho}_{1t} \partial \hat{\rho}_{1(t-1)}}(c_{12}) &= g_{221} \left(g_{111} S_{wx^2} + g_{122} S_{wx^3}\right) + g_{212} \left(g_{121} S_{wx^3} + g_{122} S_{wx^4}\right) \\ \frac{\partial^2}{\partial \hat{\rho}_{1t} \partial \hat{\rho}_{1(t-1)}}(c_{21}) &= g_{211} \left(g_{121} S_{wx^2} + g_{122} S_{wx^3}\right) + g_{212} \left(g_{121} S_{wx^3} + g_{122} S_{w$$

$$\begin{split} \frac{\partial^2}{\partial \hat{\beta}_{1t} \partial \hat{\beta}_{1(t-1)}}(c_{32}) &= 2g_{133} \left(g_{221} S_{wx^2 e_t} + g_{222} S_{wx^3 e_t} \right) \\ \frac{\partial^2}{\partial \hat{\beta}_{1t} \partial \hat{\beta}_{1(t-1)}}(c_{33}) &= 4g_{133} g_{233} S_{wx^2 e_t e_{t-1}} \\ \frac{\partial^2}{\partial \hat{\beta}_{1t} \partial \hat{\alpha}_{t-1}^2}(c_{11}) &= \frac{\partial^2}{\partial \hat{\beta}_{1t} \partial \hat{\sigma}_{t-1}^2}(c_{12}) &= 0 \\ \frac{\partial^2}{\partial \hat{\beta}_{1t} \partial \hat{\sigma}_{t-1}^2}(c_{13}) &= g_{233} \left(g_{111} S_{wxx^\alpha} + g_{112} S_{wx^2x^\alpha} \right) \\ \frac{\partial^2}{\partial \hat{\beta}_{1t} \partial \hat{\sigma}_{t-1}^2}(c_{21}) &= \frac{\partial^2}{\partial \hat{\beta}_{1t} \partial \hat{\sigma}_{t-1}^2}(c_{22}) &= 0 \\ \frac{\partial^2}{\partial \hat{\beta}_{1t} \partial \hat{\sigma}_{t-1}^2}(c_{23}) &= g_{233} \left(g_{121} S_{wxx^\alpha} + g_{122} S_{wx^2x^\alpha} \right) \\ \frac{\partial^2}{\partial \hat{\beta}_{1t} \partial \hat{\sigma}_{t-1}^2}(c_{31}) &= \frac{\partial^2}{\partial \hat{\beta}_{1t} \partial \hat{\sigma}_{t-1}^2}(c_{32}) &= 0 \\ \frac{\partial^2}{\partial \hat{\beta}_{1t} \partial \hat{\sigma}_{t-1}^2}(c_{33}) &= 2g_{133} g_{233} S_{wxx^\alpha e_{t-1}} \\ \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{0(t-1)}}(c_{11}) &= \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{0(t-1)}}(c_{12}) &= \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{0(t-1)}}(c_{13}) &= 0 \\ \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{0(t-1)}}(c_{21}) &= \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{0(t-1)}}(c_{22}) &= \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{0(t-1)}}(c_{23}) &= 0 \\ \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{0(t-1)}}(c_{31}) &= g_{133} \left(g_{211} S_{wx^\alpha} + g_{212} S_{wxx^\alpha} \right) \\ \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{0(t-1)}}(c_{32}) &= g_{133} \left(g_{221} S_{wx^\alpha} + g_{222} S_{wxx^\alpha} \right) \\ \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{1(t-1)}}(c_{21}) &= \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{1(t-1)}}(c_{12}) &= \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{1(t-1)}}(c_{13}) &= 0 \\ \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{1(t-1)}}(c_{21}) &= \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{1(t-1)}}(c_{22}) &= \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{1(t-1)}}(c_{23}) &= 0 \\ \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{1(t-1)}}(c_{21}) &= \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{1(t-1)}}(c_{22}) &= \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{1(t-1)}}(c_{23}) &= 0 \\ \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{1(t-1)}}(c_{31}) &= g_{133} \left(g_{211} S_{wx^\alpha} + g_{212} S_{wx^2\alpha} \right) \\ \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{1(t-1)}}(c_{31}) &= g_{133} \left(g_{211} S_{wx^\alpha} + g_{222} S_{wx^2\alpha} \right) \\ \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{1(t-1)}}(c_{31}) &= g_{133} \left(g_{211} S_{wx^\alpha} + g_{222} S_{wx^2\alpha} \right) \\ \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\beta}_{1(t-1)}}(c_{32}) &= g_{133} \left(g_{211} S_$$

$$\begin{split} \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\sigma}_{t-1}^2}(c_{11}) &= \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\sigma}_{t-1}^2}(c_{12}) = \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\sigma}_{t-1}^2}(c_{13}) = 0\\ \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\sigma}_{t-1}^2}(c_{21}) &= \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\sigma}_{t-1}^2}(c_{22}) = \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\sigma}_{t-1}^2}(c_{23}) = 0\\ \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\sigma}_{t-1}^2}(c_{31}) &= \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\sigma}_{t-1}^2}(c_{32}) = 0 \frac{\partial^2}{\partial \hat{\sigma}_t^2 \partial \hat{\sigma}_{t-1}^2}(c_{33}) = g_{133}g_{233}S_{wx^{2\alpha}} \end{split}$$

The bias-corrected covariance matrix $\widehat{Cov}_{bc}(\hat{\theta}_t^*, \hat{\theta}_{t-1}^*)$ for the bias-adjusted estimating equations can be obtained by using the respective \hat{g}_i and \hat{v}_i .

Appendix D

Results for Cross-sectional Setting

D.1 Estimation of Mean

Table D.1: Results under model (2.41), by response and correlation. Population: stable

	low 1	es and lo	w corr	high 1	es and l	ow corr	low re	es and h	igh corr	high r	es and h	igh corr
						$T=3, \theta_3 =$	11747.05	5	0			0
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	20.78	0.02	4.39	38.02	0.05	4.42	15.57	0.00	1.37	20.56	0.00	2.92
SE	121.46	100.65	137.78	81.09	62.23	83.35	38.87	41.29	51.83	43.44	44.44	54.26
ERSE	540.52	97.68	202.21	549.47	63.73	120.87	411.25	40.49	79.66	409.00	43.33	84.53
$ERSE_ba$	540.50	97.68	202.20	549.44	63.73	120.86	411.23	40.49	79.66	408.99	43.33	84.52
	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	3.87	8.39	1.63	11.07	11.41	6.84	11.34	1.72	8.27	16.22	0.90	12.09
SE	154.70	132.60	149.59	85.67	81.59	85.07	62.04	47.45	59.16	61.51	49.68	59.92
ERSE	127.71	149.62	133.17	68.06	90.65	72.86	50.09	53.16	51.56	49.23	55.75	51.80
$ERSE_ba$	127.71	149.61	133.17	68.06	90.64	72.86	50.09	53.16	51.56	49.23	55.75	51.80
						$T=4, \theta_4 =$	= 11000.5	,				
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
APRB	18.88	0.00	0.66	35.99	0.00	3.28	14.89	0.00	3.70	20.06	0.01	5.42
SE	107.27	89.51	117.62	73.40	57.41	69.92	33.70	35.97	47.57	39.43	40.33	50.34
ERSE	436.25	89.35	169.40	445.28	58.16	106.06	334.10	36.98	75.81	331.84	39.89	82.45
ERSE_ba	436.23	89.35	169.38	445.26	58.16	106.05	334.09	36.98	75.81	331.82	39.89	82.45
	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	8.15	4.48	5.97	16.91	5.26	12.87	12.42	0.19	9.45	16.79	1.26	12.85
SE	133.88	111.16	128.81	73.26	66.57	72.57	58.79	41.22	55.52	60.26	43.66	57.73
ERSE	109.64	128.20	114.59	60.17	79.40	64.70	48.10	48.56	49.38	49.48	51.87	51.60
ERSE_ba	109.64	128.20	114.58	60.17	79.39	64.70	48.10	48.56	49.37	49.48	51.87	51.60
		- PP			- PP	$T=7, \theta_7=$					- DD	- PP
1.DDD	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	18.87	0.03	4.09	35.88	0.01	7.33	14.86	0.01	3.75	20.05	0.00	4.82
SE	107.97	89.74	104.57	76.21	59.32	69.53	33.98	36.17	46.70	38.59	40.09	49.92
ERSE	436.21	89.70	143.57	445.35	58.32	102.19	334.18	37.05	69.48	331.98	39.86	75.34
ERSE_ba	436.18	89.70	143.56	445.33	58.32	102.18	334.17	37.05	69.48	331.97	39.86	75.34
APRB	EE _i 10.06	EE _ii 0.63	EE (0.5) 7.93	EE _i 17.19	EE _ii 2.30	EE (0.5)	EE _i	EE _ii 2.20	EE (0.5) 6.74	EE _i 11.30	EE _ii 3.16	EE (0.5) 8.45
SE	116.49	99.82	112.39	75.99	63.66	13.55 74.60	8.97 58.29	41.10	54.30	61.67	3.10 44.16	57.75
ERSE	102.37	110.68	112.39 106.07	63.54	71.08	67.37	49.71	46.18	50.09	52.84	49.54	53.58
ERSE_ba	102.37	110.68	106.06	63.54	71.03	67.36	49.71	46.18	50.09	52.84	49.54	53.58
EIGE_ba	102.51	110.00	100.00	05.54		$T=10, \theta_{10}$			50.00	02.04	43.04	00.00
	naïve	\mathbf{EE}_{h}	EE	naïve	\mathbf{EE}_h	\mathbf{EE}	naïve	$\frac{\mathbf{EE}_{h}}{\mathbf{EE}_{h}}$	EE	naïve	\mathbf{EE}_h	EE
APRB	18.82	0.00	3.30	35.85	0.01	5.62	14.83	0.01	2.57	20.05	0.00	3.25
SE	105.45	87.69	96.85	76.47	59.46	67.32	34.72	36.94	43.65	39.19	40.14	47.02
ERSE	436.19	89.81	123.09	445.34	58.40	89.75	334.11	37.07	56.38	332.06	39.85	60.40
ERSE_ba	436.17	89.81	123.09	445.32	58.40	89.74	334.10	37.07	56.37	332.04	39.85	60.40
	EE_i	EE ₋ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE ₋ii	EE (0.5)
APRB	7.30	1.95	5.61	12.11	3.79	9.24	5.67	2.14	4.10	7.09	2.82	5.09
SE	103.46	94.25	100.97	73.49	63.63	71.76	49.99	41.57	47.45	53.51	44.76	50.99
ERSE	98.30	102.88	101.04	64.55	67.22	67.17	45.93	43.99	46.07	48.81	47.16	49.20
ERSE_ba	98.30	102.87	101.04	64.55	67.22	67.17	45.93	43.99	46.07	48.81	47.16	49.20

Table D.2: Results under model (2.43), by response and correlation. Population: stable

	low 1	es and lo	w corr	high	res and le	ow corr	low re	es and h	igh corr	high r	es and h	igh corr
						$T=3, \theta_3 =$	11747.05)				
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	21.89	1.22	5.78	39.15	1.39	5.98	15.56	0.57	1.26	21.78	0.82	2.16
SE	112.95	94.89	138.81	76.74	59.19	81.58	35.57	38.12	49.38	44.37	44.69	56.13
ERSE	541.50	107.54	214.48	549.30	70.81	131.28	403.01	39.29	77.47	412.36	44.52	86.23
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	2.48	9.86	0.25	9.44	13.04	5.24	11.28	1.71	8.16	15.54	1.71	11.40
SE	159.96	132.52	153.70	85.65	80.23	84.44	59.29	44.83	56.57	63.11	51.59	61.60
ERSE	137.16	164.45	143.43	76.85	102.61	82.14	48.81	51.36	50.21	50.47	57.27	53.08
						$T=4, \theta_4 =$	11000.5					
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
APRB	19.12	0.37	0.29	36.37	0.66	2.57	14.71	0.28	3.62	20.43	0.16	5.28
SE	107.25	89.05	118.13	75.03	58.27	70.68	31.77	34.56	45.63	39.69	40.48	51.10
ERSE	436.74	91.11	171.29	445.47	60.12	108.11	327.18	35.75	73.60	332.32	40.49	82.68
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	7.79	4.89	5.61	16.18	6.03	12.15	12.31	0.33	9.31	16.65	1.12	12.72
SE	134.10	112.00	129.10	73.04	68.76	72.53	57.02	39.26	53.71	60.70	44.52	58.26
ERSE	111.12	130.47	116.19	62.01	81.95	66.64	46.85	46.76	48.03	49.78	52.45	51.94
						T=7, θ_7 =	11000.5					
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	19.12	0.42	3.70	36.35	0.75	6.58	14.71	0.33	3.30	20.43	0.16	4.62
SE	103.31	86.45	102.29	73.02	57.57	67.29	32.25	35.20	44.90	39.39	40.12	49.82
ERSE	436.69	91.62	145.07	445.45	60.54	104.08	327.21	35.89	67.01	332.33	40.54	75.38
	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	9.67	0.21	7.55	16.45	1.51	12.82	8.31	1.95	6.13	11.09	2.99	8.24
SE	114.43	98.37	110.16	74.72	61.82	72.98	56.05	40.09	52.11	61.05	44.67	57.28
ERSE	103.75	112.64	107.56	65.35	73.39	69.26	48.51	44.69	48.73	53.10	50.08	53.89
					,	$T=10, \theta_{10}$:	= 11000.5	5				
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	19.10	0.43	2.89	36.39	0.82	4.80	14.71	0.34	2.12	20.42	0.14	3.09
SE	105.70	88.86	98.70	71.74	56.18	63.75	31.93	34.63	40.80	38.54	39.21	46.04
ERSE	436.68	91.82	124.95	445.57	60.75	91.93	327.18	35.95	54.04	332.30	40.56	60.70
	EE_i	EE ₋ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)
APRB	6.89	1.53	5.20	11.30	2.95	8.43	5.06	1.76	3.54	6.93	2.67	4.93
SE	104.57	97.29	102.27	70.50	60.34	68.49	47.07	38.71	44.54	52.38	43.88	49.92
ERSE	99.95	104.78	102.77	66.62	69.56	69.31	44.53	42.61	44.59	49.21	47.73	49.64

 $\begin{tabular}{ll} Table D.3: Results under model (2.45), by response and correlation. Population: stable \\ \end{tabular}$

		low res			high re	S
			T=3, θ_3 =	11747.0	5	
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	0.93	0.08		0.29	0.04	0.34
SE	249.20	270.83	351.88	139.84	194.24	241.73
ERSE	433.96	267.60	489.34	372.73	197.06	374.42
	EE_i	EE ₋ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)
APRB	0.37	0.33	0.25	0.60	0.32	0.52
SE	417.90	320.50	399.50	326.89	209.86	300.83
ERSE	309.75	337.33	319.56	258.18	234.69	256.59
			$T=4, \theta_4 =$	= 11000.5	5	
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	0.78			0.52		
SE	202.51	218.65	283.45		139.29	
ERSE	352.88	218.68	432.71		141.12	
	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	0.20	0.29	0.12	0.55	0.24	0.45
SE	346.84		328.33	258.36		235.44
ERSE	277.02	289.25	285.26	208.63		206.62
			$T=7, \theta_7$:	= 11000.5		
	naïve	\mathbf{EE}_h 0.01	EE	naïve	\mathbf{EE}_h	EE
APRB	0.70	0.01	0.22	0.56		
SE		218.72	274.15	104.42		
ERSE			418.40		141.20	
			EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	0.50	0.04	0.40 318.94	0.15	0.12	0.11
SE	342.08	242.67	318.94	258.13	159.54	232.47
ERSE	290.13	274.85	294.19	220.68	182.84	215.92
			$T=10, \theta_{10}$	= 11000	.5	
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	0.73	0.03	0.14	0.56	0.02	0.02
SE			268.89	105.82		
ERSE		218.76	360.64	311.26	141.59	
		EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	0.30	0.09	0.23	0.05	0.05	0.02
SE	320.41	247.41	300.86	226.01	164.10	206.81
ERSE	277.58	263.44	279.23	198.88	176.18	194.90

Table D.4: Results under model (2.42), by response and correlation. Population: stable

	low 1	es and lo	w corr	high 1	es and l	low corr	low re	es and h	igh corr	high r	es and h	igh corr
						T=3, θ_3 =		5				
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	20.84	0.03	4.44	37.93	0.03	4.34	15.56	0.01	1.38	20.55	0.01	2.94
SE	120.02	99.04	136.05	83.74	64.37	84.97	36.54	38.60	50.81	41.86	43.13	54.61
ERSE	540.53	97.70	202.16	549.16	63.67	120.83	411.12	40.48	79.65	408.99	43.33	84.52
	\mathbf{EE}_{-i}	EE _ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	3.83	8.45	1.60	11.14	11.33	6.91	11.35	1.71	8.28	16.25	0.87	12.11
SE	155.12	129.71	149.44	86.87	83.67	86.36	61.86	46.12	58.76	62.04	49.87	60.42
ERSE	127.67	149.58	133.13	68.05	90.64	72.85	50.10	53.14	51.57	49.22	55.75	51.79
						$T=4, \theta_4 =$	= 11000.5					
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
APRB	18.87	0.01	0.70	35.98	0.00	3.27	14.90	0.01	3.69	20.05	0.00	5.43
SE	106.30	88.32	113.06	76.53	59.18	71.82	35.10	37.37	47.82	38.43	39.62	50.36
ERSE	436.14	89.33	169.21	445.29	58.15	106.09	334.13	36.98	75.81	331.81	39.89	82.44
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	8.20	4.45	6.02	16.90	5.26	12.85	12.41	0.19	9.44	16.80	1.27	12.86
SE	128.74	107.10	123.83	74.52	68.60	74.05	58.77	41.82	55.57	60.53	43.47	57.94
ERSE	109.51	128.07	114.45	60.20	79.41	64.73	48.11	48.56	49.38	49.48	51.86	51.60
						T=7, θ_7 =	= 11000.5					
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
APRB	18.85	0.01	4.10	35.88	0.01	7.33	14.86	0.01	3.75	20.03	0.01	4.82
SE	109.52	91.33	104.60	72.77	56.61	65.84	33.94	36.31	45.92	38.80	39.83	49.66
ERSE	436.06	89.67	143.23	445.25	58.31	102.11	334.15	37.04	69.49	331.93	39.85	75.22
	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	$\mathbf{EE}_{ ext{-}ii}$	EE(0.5)
APRB	10.07	0.64	7.95	17.19	2.31	13.55	8.97	2.21	6.74	11.30	3.18	8.45
SE	116.08	101.18	112.02	73.04	60.81	71.36	57.38	40.63	53.41	61.22	44.34	57.35
ERSE	102.19	110.60	105.89	63.50	71.06	67.32	49.71	46.16	50.08	52.78	49.51	53.53
						$T=10, \theta_{10}$	= 11000.	5				
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	18.80	0.01	3.30	35.84	0.01	5.62	14.84	0.00	2.56	20.04	0.01	3.25
SE	108.78	90.47	99.29	76.18	59.07	66.58	34.25	36.47	42.68	38.59	39.98	46.72
ERSE	436.10	89.78	123.25	445.27	58.39	89.75	334.15	37.08	56.32	332.03	39.85	60.27
	EE_i	EE ₋ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)
APRB	7.29	1.95	5.60	12.11	3.79	9.24	5.65	2.13	4.08	7.09	2.83	5.08
SE	105.41	97.10	103.09	72.56	63.10	70.87	49.10	40.50	46.54	53.28	44.23	50.75
ERSE	98.40	102.94	101.13	64.54	67.19	67.16	45.90	43.98	46.04	48.75	47.14	49.14

Table D.5: Results under model (2.44), by response and correlation. Population: stable

	low 1	es and lo	ow corr	high	res and le			es and h	igh corr	high r	es and h	igh corr
						$T=3, \theta_3 =$						
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	EE
APRB	21.90	1.22	5.80	39.12	1.36	5.97	15.55	0.56	1.26	21.76	0.80	2.18
SE	114.50	95.88	135.95	83.53	64.68	88.02	36.03	39.01	48.95	43.11	43.53	55.00
ERSE	541.72	107.57	214.48	549.22	70.79	131.28	402.98	39.29	77.48	412.26	44.50	86.20
	\mathbf{EE}_{-i}	$\mathbf{EE}_{ ext{-}}$ ii	EE(0.5)	EE_i	$\mathbf{EE}_{-\mathrm{ii}}$	EE(0.5)	EE_i	$\mathbf{EE}_{-\mathrm{ii}}$	EE(0.5)	\mathbf{EE}_{-i}	EE _ii	EE(0.5)
APRB	2.46	9.89	0.23	9.45	13.02	5.24	11.29	1.70	8.17	15.56	1.68	11.41
SE	155.24	131.43	149.35	90.52	86.84	89.81	59.56	44.43	56.60	62.47	50.38	60.80
ERSE	137.15	164.45	143.43	76.85	102.59	82.13	48.83	51.38	50.22	50.46	57.25	53.06
						$T=4, \theta_4 =$	11000.5					
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	19.11	0.36	0.27	36.35	0.64	2.59	14.71	0.28	3.62	20.43	0.16	5.27
SE	106.70	88.64	117.78	72.83	56.94	72.84	32.20	34.92	46.07	40.58	41.69	52.69
ERSE	436.74	91.12	171.42	445.41	60.10	108.04	327.18	35.75	73.61	332.34	40.49	82.71
	\mathbf{EE}_{-i}	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	7.75	4.91	5.59	16.20	6.02	12.17	12.31	0.33	9.31	16.64	1.11	12.71
SE	134.59	111.11	129.35	76.06	68.98	75.49	57.58	39.45	54.26	62.70	45.51	60.19
ERSE	111.20	130.55	116.27	61.96	81.91	66.59	46.85	46.76	48.03	49.81	52.47	51.97
						$T=7, \theta_7 =$	11000.5					
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
APRB	19.09	0.40	3.72	36.36	0.75	6.56	14.71	0.33	3.31	20.45	0.17	4.61
SE	106.40	88.93	105.24	72.95	57.36	69.30	31.70	34.35	44.38	37.87	38.47	49.43
ERSE	436.70	91.61	145.13	445.41	60.55	104.07	327.20	35.89	67.03	332.38	40.54	75.45
	EE_i	EE _ii	EE(0.5)	EE_i	$\mathbf{EE}_{-\mathrm{ii}}$	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)
APRB	9.69	0.24	7.57	16.44	1.50	12.80	8.32	1.96	6.14	11.08	2.98	8.24
SE	117.82	100.47	113.43	77.19	63.13	75.33	56.00	39.26	51.91	61.36	43.36	57.41
ERSE	103.74	112.54	107.54	65.35	73.41	69.27	48.51	44.69	48.73	53.12	50.08	53.92
						$T=10, \theta_{10}$:						
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
APRB	19.12	0.45	2.88	36.35	0.79	4.82	14.71	0.34	2.12	20.44	0.16	3.08
SE	107.72	89.63	99.80	72.56	57.11	66.45	31.86	34.78	41.03	38.50	39.10	44.81
ERSE	436.64	91.84	124.88	445.43	60.73	91.83	327.16	35.95	54.00	332.34	40.56	60.78
	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	6.88	1.52	5.18	11.32	2.97	8.45	5.06	1.76	3.54	6.92	2.65	4.92
SE	105.93	97.96	103.55	73.40	62.19	71.37	47.10	39.02	44.64	50.73	43.10	48.40
ERSE	99.92	104.75	102.74	66.56	69.51	69.24	44.51	42.60	44.58	49.25	47.75	49.68

Table D.6: Results under model (2.46), by response and correlation. Population: stable

		low res			high res	8
			T=3, θ_3 =			
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	0.99	0.00	0.22	0.18	0.10	0.43
SE	243.15	265.19	343.07	138.26	187.80	230.52
ERSE	433.17	267.00	491.32	368.24	189.30	365.50
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	0.19	0.42	0.08	0.65	0.43	0.58
SE	406.38	314.12	388.60	308.99	202.66	284.73
ERSE	311.04	338.08	320.80	253.09	228.84	251.20
			$T=4$, θ_4 :	= 11000.5		
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	
APRB	0.65	0.06	0.05	0.51	0.03	
SE	198.57	214.06	283.04	100.66	132.27	179.75
ERSE	350.62	216.54	430.74	307.35	135.93	295.14
	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	0.34	0.14	0.25	0.41	0.16	0.32
SE	346.97	244.50	328.26	250.11	147.06	227.07
ERSE	275.72	286.78	283.79	205.00	176.14	202.57
			$T=7, \theta_7$:	= 11000.5		
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	
APRB	0.65	0.06	0.24	0.46	0.03	0.12
SE	201.21	216.46	280.53	102.02	133.65	178.96
ERSE	351.25	216.87	423.38	307.04	134.53	276.22
	EE_i	EE ₋ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)
APRB	0.50	0.09	0.41	0.19	0.15	0.15
SE	353.35	243.14	328.85	243.14	152.29	218.98
ERSE	293.27	275.88	297.08	206.85	173.10	202.19
			$T=10, \theta_{10}$			
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	0.73	0.03	0.13	0.48	0.00	0.05
SE	200.41	215.70	259.08	99.97	131.99	164.04
ERSE	352.28	217.74	356.73	307.17	134.02	211.57
	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	0.28	0.08	0.22	0.09	0.06	0.06
SE	307.01	240.07	288.68	197.62	153.88	183.23
ERSE	275.74	262.32	277.37	178.75	164.40	175.84

Table D.7: Results under model (2.41), by response and correlation. Population: volatile

	low 1	es and lo	w corr	high	res and l	ow corr	low re	es and h	igh corr	high r	es and h	igh corr
						$T=3, \theta_3 =$	11747.05	,				
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	12.25	0.03	3.33	26.31	0.01	3.12	10.94	0.01	1.14	11.15	0.01	3.10
SE	160.42	137.19	197.57	90.95	73.57	99.76	43.15	44.99	60.31	27.85	29.97	38.62
ERSE	522.82	136.47	282.74	531.70	74.47	149.12	403.03	43.62	90.37	378.08	31.21	65.43
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	1.45	5.76	0.16	7.89	8.14	4.88	8.44	1.11	6.18	11.68	1.12	8.88
SE	227.65	186.43	218.86	110.73	95.82	107.49	76.58	55.22	71.50	49.90	34.18	46.64
ERSE	179.97	207.34	187.17	92.40	110.94	96.82	61.74	61.35	62.33	42.57	42.06	43.28
						$T=4, \theta_4 =$						
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	EE
APRB	7.98	0.01	0.32	19.68	0.01	1.34	11.16	0.00	2.89	15.92	0.00	4.31
SE	161.35	140.59	183.58	104.52	84.66	111.69	45.22	44.87	58.83	40.93	39.60	50.12
ERSE	408.11	140.90	276.05	435.19	86.11	161.45	337.71	45.62	90.38	344.21	39.22	78.17
	\mathbf{EE}_{-i}	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	$\mathbf{EE}_{-\mathrm{ii}}$	EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	3.04	2.85	2.09	9.14	3.85	6.86	9.37	0.22	7.18	12.96	0.96	10.02
SE	215.77	169.71	205.85	126.89	105.15	122.19	73.63	53.17	68.73	59.88	45.18	56.98
ERSE	179.79	202.35	186.84	104.54	122.76	109.39	62.59	62.18	63.44	50.24	52.10	51.79
						$T=7, \theta_7 =$						
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	5.50	0.04	1.40	14.63	0.01	3.34	8.60	0.02	2.22	12.16	0.00	2.86
SE	175.88	158.29	189.45	125.92	103.79	119.59	53.40	52.66	61.39	41.39	40.53	48.30
ERSE	396.66	159.09	265.87	424.25	103.25	159.86	333.18	52.68	81.68	334.88	40.30	64.47
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	3.61	0.06	2.86	8.06	0.79	6.37	5.22	1.41	3.93	6.59	2.08	4.92
SE	218.38	179.61	208.00	132.39	115.34	127.74	70.69	58.51	66.95	56.32	45.18	53.30
ERSE	192.35	199.51	197.39	117.68	126.10	121.56	66.03	64.25	66.26	50.67	49.02	51.03
						$\Gamma=10, \theta_{10}$:						
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	3.58	0.04	0.92	11.90	0.01	2.16	7.35	0.04	1.21	10.26	0.01	1.56
SE	198.89	180.73	203.24	143.04	117.83	127.74	57.85	57.23	62.82	42.99	41.78	46.87
ERSE	382.10	178.43	247.33	416.19	115.80	150.92	330.25	58.31	74.39	329.53	42.13	54.01
	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	2.06	0.43	1.62	4.75	1.37	3.64	2.69	1.05	1.93	3.37	1.45	2.39
SE	220.09	197.51	213.31	133.40	125.86	131.11	66.37	62.10	64.68	49.62	46.21	48.39
ERSE	201.66	207.27	205.74	125.64	131.33	128.80	66.74	66.66	67.06	48.21	48.08	48.50

Table D.8: Results under model (2.43), by response and correlation. Population: volatile

	low r	es and lo	w corr	high	res and le	ow corr	low r	es and hi	gh corr	high 1	es and h	igh corr
						T=3, θ_3 =						
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
APRB	21.66	13.39	20.06	39.19	21.60	30.45	15.51	10.85	11.78	21.74	13.20	11.56
SE	111.43	107.58	265.98	79.55	71.84	224.22	34.81	39.48	144.28	44.94	45.67	114.63
ERSE	541.20	261.78	584.69	549.61	239.26	515.48	402.79	156.16	331.01	412.19	136.43	251.21
	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	17.48	21.78	18.14	23.77	34.58	25.50	8.41	13.37	9.40	5.27	13.90	7.16
SE	369.21	208.01	342.07	314.35	175.75	290.71	232.31	113.15	205.70	167.74	101.43	151.29
ERSE	369.48	417.64	383.41	325.95	376.28	339.44	236.87	228.22	236.98	182.23	187.45	184.60
						$T=4$, θ_4 :	= 11000.5	5				
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
APRB	22.31	15.58	16.97	36.46	23.75	24.15	14.72	11.71	10.84	20.43	14.62	12.45
SE	92.52	91.42	196.23	71.45	66.47	170.78	31.97	36.44	102.21	39.57	40.10	90.97
ERSE	434.11	217.53	421.10	440.85	205.41	373.82	327.11	123.64	235.91	332.33	124.58	205.83
	EE_i	EE _ii	EE(0.5)	EE_i	$\mathbf{EE}_{-\mathrm{ii}}$	EE(0.5)	EE_i	$\mathbf{EE}_{ ext{-}ii}$	EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	13.61	19.96	14.52	17.73	29.45	19.50	8.00	12.50	8.90	8.29	14.17	9.69
SE	268.75	151.61	248.19	235.97	132.10	217.51	159.66	80.37	140.67	131.00	79.70	117.23
ERSE	275.99	309.29	286.48	247.40	284.23	257.78	175.16	166.39	174.82	158.66	159.26	160.03
						$T=7, \theta_7$:	= 11000.5					
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	EE
APRB	22.29	17.83	16.21	37.95	29.70	26.91	14.73	12.82	11.90	20.45	16.41	15.36
SE	91.48	92.80	179.11	75.53	71.12	143.12	31.61	35.94	75.26	38.96	39.26	74.83
ERSE	434.38	223.65	360.19	466.72	247.54	336.53	327.10	120.35	169.40	332.39	140.31	180.12
	EE_i	EE_ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	13.61	18.21	14.46	23.25	28.98	24.56	10.64	12.41	11.13	14.01	15.58	14.61
SE	242.08	147.42	221.05	180.93	131.06	167.02	99.23	69.64	89.33	89.34	73.38	82.71
ERSE	265.13	276.64	271.89	271.48	290.52	279.08	145.67	143.66	145.66	160.03	161.59	161.15
						$T=10, \theta_{10}$						
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	EE
APRB	22.31	20.40	19.44	36.48	30.03	28.20	14.68	14.30	13.98	20.44	16.93	16.40
SE	89.90	92.27	175.03	71.99	69.70	131.98	32.13	36.98	78.48	38.86	38.81	59.54
ERSE	434.33	269.58	370.68	440.86	240.68	307.41	327.09	159.27	197.58	332.34	130.18	153.44
	EE_i	EE ₋ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	18.26	20.11	18.69	26.08	29.01	26.93	13.63	14.09	13.77	15.76	16.42	16.10
SE	221.42	157.88	203.51	158.73	124.87	147.84	92.30	77.34	85.47	65.20	59.47	62.10
ERSE	306.51	314.24	311.87	261.73	272.84	267.46	181.61	181.31	181.74	142.01	143.44	143.03

Table D.9: Results under model (2.45), by response and correlation. Population: volatile

		low res			high res	3
			T=3, θ_3 =	11747.0	5	
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	1.22	0.09	0.18	1.41	0.02	0.15
SE	264.13	298.96	369.19	171.01	233.89	296.64
ERSE	410.52	299.55	534.08	353.32	231.46	445.14
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	0.36	0.45	0.21	0.74	0.49	0.48
SE	436.82	336.85	418.00	400.39	257.31	368.74
ERSE	337.17	364.58	347.58	307.01	279.26	305.15
			$T=4, \theta_4 :$	= 11000.5	5	
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	0.25	0.06	0.19	0.22	0.04	0.16
SE	355.80	250.83	336.74	273.62	162.53	249.08
ERSE	289.71	301.23	298.22	220.70	192.99	218.78
			$T=7, \theta_7 =$			
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	0.19	0.03	0.02	_	0.05	
SE			297.90			
ERSE		233.72				
	EE_i	EE ₋ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	0.02	0.00	0.03	0.29	0.16	0.23
SE	376.99	253.25	349.74		159.02	229.27
ERSE	310.58	288.09	313.31	212.59	179.84	208.53
			$T=10, \theta_{10}$	= 11000	.5	
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
APRB	0.81	0.05	0.22	0.54	0.01	0.12
SE	214.09	244.60	304.84	139.28	187.84	237.71
ERSE		243.90			189.10	
			EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	0.42	0.14	0.34	0.24		0.18
SE	373.20	275.34	347.51	293.79	220.06	270.27
ERSE	323.09	298.77	323.70	264.03	237.03	259.12

Table D.10: Results under model (2.41), by response and correlation. Population: simulated

	low r	es and le	ow corr	high 1	res and l	ow corr	low re	es and hi	igh corr	high r	es and h	igh corr
						T=3, θ_3 =	= 808.135	5				
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	57.02	0.00	0.42	61.64	0.07	2.39	19.63	0.02	4.73	23.53	0.02	2.62
SE	12.93	8.80	10.93	13.52	9.28	12.04	5.54	5.52	7.10	5.82	6.05	7.77
ERSE	248.42	8.87	16.35	253.44	9.37	17.39	185.07	5.50	11.13	190.75	6.32	12.33
	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	25.12	9.20	18.19	23.90	12.92	16.56	18.35	1.41	14.01	17.98	1.76	13.18
SE	9.61	11.05	10.07	10.46	12.13	11.03	8.32	6.45	8.02	8.98	7.05	8.70
ERSE	7.71	12.30	8.71	8.06	13.16	9.15	6.73	7.34	7.02	7.24	8.16	7.60
						$T=4, \theta_4 =$	= 108.539	4				
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	44.52	0.01	6.52	51.69	0.03	6.07	17.63	0.01	5.58	21.49	0.01	5.58
SE	1.79	1.34	1.63	1.66	1.21	1.47	0.69	0.70	0.90	0.74	0.79	1.04
ERSE	15.55	1.35	2.45	15.86	1.23	2.25	11.59	0.69	1.44	11.87	0.80	1.65
	EE ₋i	EE ₋ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)
APRB	23.54	2.79	18.32	25.47	5.02	19.57	15.80	2.54	12.12	18.11	0.94	13.76
SE	1.71	1.58	1.69	1.46	1.42	1.48	1.11	0.78	1.05	1.26	0.89	1.20
ERSE	1.44	1.85	1.54	1.19	1.69	1.31	0.92	0.92	0.95	1.00	1.04	1.04
						T=7, θ_7 =						
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	57.70	0.03	10.94	59.28	0.02	11.48	19.69	0.00	4.41	24.51	0.01	5.80
SE	28.71	19.33	21.77	26.92	18.58	21.18	11.15	10.89	13.11	12.86	12.91	15.79
ERSE	579.48	18.97	31.91	565.99	18.35	32.19	417.95	10.89	18.66	433.32	12.63	23.35
	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	24.63	5.15	19.33	26.18	5.02	20.51	10.07	3.51	7.41	13.61	3.77	10.18
SE	22.94	20.28	22.91	22.35	19.43	22.40	15.54	12.16	14.67	19.02	14.22	17.97
ERSE	19.10	22.63	20.67	18.37	22.06	20.05	14.01	13.35	14.16	16.25	15.59	16.58
						$T=10, \theta_{10}$						
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	37.23	0.01	5.69	53.59	0.01	7.93	20.61	0.00	3.08	23.72	0.01	3.84
SE	63.98	48.81	51.75	37.60	26.91	29.79	17.58	16.99	19.18	18.22	18.18	21.10
ERSE	314.99	48.71	63.26	311.83	27.11	41.60	233.89	16.78	23.40	234.88	18.19	27.35
	EE_i	$\mathbf{EE}_{-\mathrm{ii}}$	EE(0.5)	EE_i	$\mathbf{EE}_{-\mathrm{ii}}$	EE(0.5)	EE_i	EE ₋ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)
APRB	12.19	3.94	9.30	16.92	5.59	12.84	6.63	2.84	4.70	8.37	3.31	6.01
SE	52.93	51.35	52.55	31.90	28.36	31.48	20.87	18.69	20.20	23.76	20.11	22.75
ERSE	50.95	54.65	52.77	28.82	30.93	30.40	19.67	19.46	19.90	21.96	21.40	22.21

Table D.11: Results under model (2.43), by response and correlation. Population: simulated

	low 1	low res and low corr		high	res and le	ow corr	low re	es and h	igh corr	high r	es and h	igh corr
						$T=3, \theta_3 =$	808.1355	i				
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
APRB	51.44	15.46	20.78	49.33	9.22	13.02	17.23	0.95	3.41	22.37	1.93	6.26
SE	11.87	9.68	69.50	10.77	8.73	50.50	5.15	5.13	21.64	5.74	5.51	22.70
ERSE	235.86	78.75	158.46	231.34	65.54	115.66	180.95	30.77	46.95	188.76	31.14	46.59
	\mathbf{EE}_{-i}	$\mathbf{EE}_{ ext{-}}$ ii	EE(0.5)	EE_i	$\mathbf{EE}_{ ext{-}ii}$	EE(0.5)	EE_i	$\mathbf{EE}_{-\mathrm{ii}}$	EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	4.06	29.40	8.57	5.72	22.20	0.61	15.01	0.23	11.37	20.93	1.93	16.44
SE	98.24	57.70	90.39	68.48	46.12	63.34	28.28	23.22	25.88	27.93	24.89	25.99
ERSE	103.75	121.38	108.04	78.71	98.20	82.68	37.25	41.90	38.16	36.11	43.14	37.50
						$T=4, \theta_4 =$						
	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
APRB	51.90	16.29	10.74	57.26	15.74	9.94	21.34	6.48	1.57	31.52	7.58	1.38
SE	1.63	1.30	2.69	1.67	1.31	2.28	0.76	0.75	1.39	1.00	0.93	1.42
ERSE	15.65	3.97	5.56	15.75	3.40	4.69	11.85	1.98	2.93	12.79	1.84	2.73
	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	5.68	21.32	0.85	8.36	21.24	2.91	7.36	4.40	4.19	11.12	5.83	6.83
SE	3.14	2.69	2.99	2.54	2.32	2.45	1.76	1.35	1.63	1.67	1.35	1.59
ERSE	3.94	5.18	4.19	3.30	4.42	3.52	2.31	2.49	2.36	2.01	2.28	2.09
						$T=7, \theta_7 =$						
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$	naïve	\mathbf{EE}_h	EE
APRB	58.45	23.69	14.30	62.02	17.70	6.80	21.16	2.45	1.98	23.41	4.48	10.10
SE	26.61	21.48	84.53	27.53	20.92	66.28	11.77	11.23	24.60	11.78	10.18	25.64
ERSE	563.88	173.43	201.22	570.00	163.70	172.58	421.26	51.94	62.87	428.23	72.65	79.84
	EE_i	EE _ii	EE(0.5)	EE ₋i	EE ₋ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)
APRB	2.01	21.39	6.31	7.58	15.41	2.62	7.69	0.75	5.17	17.63	8.31	14.40
SE	96.00	85.62	91.06	69.59	69.95	67.53	28.26	24.35	26.48	28.11	25.67	26.71
ERSE	163.42	199.11	172.44	140.41	181.42	150.19	54.72	58.27	56.07	68.36	76.28	71.20
						$\Gamma = 10, \theta_{10} =$						
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	50.80	31.60	26.72	57.73	30.30	23.65	21.53	9.12	6.77	20.46	0.43	3.69
SE	37.02	33.47	67.54	38.49	32.75	62.53	17.70	17.75	30.34	15.77	14.38	27.09
ERSE	308.88	135.33	162.81	309.11	126.96	151.52	230.80	64.06	75.98	226.88	65.16	74.88
	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	21.23	28.95	23.41	16.20	26.96	19.09	4.09	7.15	5.39	7.53	3.11	5.69
SE	79.15	64.56	74.40	73.60	59.34	69.29	34.23	29.77	32.33	30.66	26.40	29.03
ERSE	137.65	149.63	142.26	125.26	138.89	130.24	68.50	70.47	69.55	66.13	69.59	67.83

Table D.12: Results under model (2.45), by response and correlation. Population: simulated

	le	ow respo	nse	h	igh respo	nse
			T=3, θ_3 =	808.135	5	
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	$\mathbf{E}\mathbf{E}$
APRB	1.48	0.11	0.15	0.19	0.16	0.80
SE	123.70	126.03	168.17	66.96	69.75	95.11
ERSE	197.95	127.72	248.12	178.52	71.70	156.77
	EE_i	$\mathbf{EE}_{-\mathrm{ii}}$	EE(0.5)	$\mathbf{E}\mathbf{E}_{-\mathbf{i}}$	$\mathbf{EE}_{-\mathrm{ii}}$	EE(0.5)
APRB	1.10	0.36	0.85	0.81	0.94	0.79
SE	196.91	154.20	188.95	128.91	84.42	118.30
ERSE	155.51	171.09	160.90	109.21	104.46	109.42
			T=4, θ_4 =	108.539	4	
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	0.94	0.15	0.21	1.26	0.02	0.41
SE	7.87	8.19	10.48	4.69	5.45	7.47
ERSE	12.52	8.15	16.00	10.86	5.45	11.85
	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	0.68	0.12	0.54	1.18	0.10	0.92
SE	12.73	9.09	12.08	10.18	6.27	9.29
ERSE	10.21	10.71	10.53	8.30	7.38	8.25
			T=7, θ_7 =	= 1619.25	3	
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	6.66	0.36	1.97	4.32	0.03	0.93
SE	225.58	198.08	235.59	80.55	87.35	107.82
ERSE	501.61	197.70	336.11	419.75	88.58	150.85
	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
APRB	4.06	0.97	3.28	2.21	0.67	1.63
SE	275.98	219.83	261.61	132.65	100.14	122.65
ERSE	243.33	245.31	248.67	120.54	110.40	119.23
			$T=10, \theta_{10}$			
	naïve	\mathbf{EE}_h	EE	naïve	\mathbf{EE}_h	EE
APRB	1.23	0.16	0.43	1.59	0.01	0.34
SE	146.87	148.58	173.02	76.99	84.25	95.00
ERSE	246.65	147.95	225.50	216.52	83.44	114.97
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	0.76	0.31	0.62	0.75	0.27	0.55
SE	198.16	163.57	188.34	105.11	92.73	100.47
ERSE	180.08	176.01	181.83	101.45	98.05	100.92

D.2 Estimation of Regression Coefficients

Table D.13: Results under model (2.41), by response and correlation. Population: stable

	low 1	res and lo	w corr	high 1	res and l	ow corr	low re	es and h	igh corr	high r	es and h	igh corr
				7	$\Gamma=3, \beta_0$	= 11764.93	$\beta_1 = -$	-0.32023	86			
	naïve	$\mathbf{EE}_{-}\mathrm{h}$	$\mathbf{E}\mathbf{E}$	naïve	$\mathbf{EE}_{-}\mathrm{h}$	$\mathbf{E}\mathbf{E}$	naïve	$\mathbf{EE}_{-}\mathbf{h}$	$\mathbf{E}\mathbf{E}$	naïve	$\mathbf{EE}_{-}\mathrm{h}$	$\mathbf{E}\mathbf{E}$
$APRB(\beta_0)$	21.55	0.03	4.52	37.90	0.00	4.37	16.14	0.02	1.43	20.52	0.01	2.95
SE	123.98	102.07	143.46	83.41	64.46	84.18	41.57	43.77	54.48	44.40	45.57	56.65
ERSE	549.11	100.08	207.10	551.00	64.56	122.56	415.35	41.78	81.92	409.91	43.82	85.48
$APRB(\beta_1)$	322.71	0.25	97.35	6.35	5.40	5.31	310.69	0.43	22.65	0.76	1.35	3.60
SE	0.05	0.05	0.07	0.24	0.16	0.21	0.02	0.02	0.03	0.11	0.11	0.14
ERSE	0.70	0.05	0.11	1.21	0.17	0.31	0.69	0.02	0.04	0.81	0.11	0.21
	EE_i	$\mathbf{EE}_{ ext{-}ii}$	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	$\mathbf{EE}_{-}\mathrm{ii}$	EE(0.5)	EE_i	EE _ii	EE(0.5)
$APRB(\beta_0)$	3.94	8.66	1.66	11.10	11.35	6.87	11.64	1.76	8.51	16.25	0.86	12.12
SE	161.96	137.93	156.39	86.44	82.54	85.82	64.82	50.04	61.94	64.39	51.51	62.72
ERSE	130.35	153.71	136.08	69.05	91.88	73.90	51.21	54.83	52.83	49.80	56.37	52.39
$APRB(\beta_1)$	18.63	161.27	11.32	1.99	9.95	2.68	218.78	40.01	158.73	8.64	3.54	6.65
SE	0.09	0.07	0.09	0.22	0.21	0.22	0.03	0.03	0.03	0.16	0.12	0.15
ERSE	0.07	0.08	0.07	0.17	0.23	0.18	0.03	0.03	0.03	0.12	0.14	0.13
						= 11023.06		-0.40412				
	naïve	$\mathbf{EE}_{-}\mathbf{h}$	EE	naïve	$\mathbf{EE}_{-}\mathbf{h}$	EE	naïve	$\mathbf{EE}_{-}\mathbf{h}$	EE	naïve	$\mathbf{EE}_{-}\mathbf{h}$	$\mathbf{E}\mathbf{E}$
$APRB(\beta_0)$	19.59	0.02	0.69	35.97	0.01	3.28	15.47	0.01	3.81	20.03	0.00	5.41
SE	114.01	93.64	124.12	76.44	59.46	75.44	35.17	37.33	49.97	40.60	41.58	51.08
ERSE	444.64	91.54	173.11	448.25	58.94	107.54	339.13	38.19	77.95	333.80	40.32	83.32
$APRB(\beta_1)$	218.16	0.40	2.95	40.33	1.49	1.34	221.09	0.10	53.38	6.05	1.52	4.42
SE	0.05	0.05	0.06	0.19	0.16	0.19	0.02	0.02	0.03	0.10	0.10	0.13
ERSE	0.55	0.05	0.09	0.82	0.15	0.27	0.55	0.02	0.04	0.55	0.10	0.19
	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	$\mathbf{EE}_{-\mathrm{ii}}$	EE(0.5)	EE_i	EE _ii	EE(0.5)
$APRB(\beta_0)$	8.34	4.61	6.13	16.91	5.25	12.86	12.73	0.19	9.70	16.77	1.27	12.84
SE	140.95	116.69	135.77	79.18	71.07	78.48	61.42	43.20	58.12	60.27	45.29	57.91
ERSE	111.78	131.64	116.96	61.07	80.48	65.65	49.21	50.11	50.62	50.04	52.41	52.17
$APRB(\beta_1)$	82.40	67.73	58.52	18.70	10.02	13.60	182.45	0.16	138.81	11.05	3.58	8.39
SE	0.08	0.06	0.07	0.20	0.18	0.20	0.03	0.02	0.03	0.15	0.11	0.14
ERSE	0.06	0.07	0.06	0.15	0.20	0.16	0.03	0.03	0.03	0.12	0.12	0.12
						= 11023.06		-0.40412				
ADDD(A)	naïve	EE _h	EE	naïve	EE_h	EE	naïve	EE_h	EE	naïve	EE_h	EE
$APRB(\beta_0)$	19.58	0.02	4.18	35.93	0.03	7.30	15.42	0.00	3.87	20.01	0.02	4.83
SE	19.58 112.74	0.02 92.45	4.18 106.95	35.93 76.90	0.03 59.70	7.30 69.38	15.42 35.82	0.00 38.24	3.87 48.10	20.01 38.95	0.02 40.21	4.83 50.80
SE ERSE	19.58 112.74 444.61	0.02 92.45 91.90	4.18 106.95 146.47	35.93 76.90 448.46	0.03 59.70 59.14	7.30 69.38 103.49	15.42 35.82 339.17	0.00 38.24 38.25	3.87 48.10 71.55	20.01 38.95 333.90	0.02 40.21 40.29	4.83 50.80 76.06
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}(\beta_1) \end{array}$	19.58 112.74 444.61 218.13	0.02 92.45 91.90 0.19	4.18 106.95 146.47 48.81	35.93 76.90 448.46 42.87	0.03 59.70 59.14 3.75	7.30 69.38 103.49 6.50	15.42 35.82 339.17 220.46	0.00 38.24 38.25 0.06	3.87 48.10 71.55 56.18	20.01 38.95 333.90 7.12	0.02 40.21 40.29 0.38	4.83 50.80 76.06 3.45
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}(\beta_1) \\ \text{SE} \end{array}$	19.58 112.74 444.61 218.13 0.05	0.02 92.45 91.90 0.19 0.05	4.18 106.95 146.47 48.81 0.05	35.93 76.90 448.46 42.87 0.20	0.03 59.70 59.14 3.75 0.17	7.30 69.38 103.49 6.50 0.19	15.42 35.82 339.17 220.46 0.02	0.00 38.24 38.25 0.06 0.02	3.87 48.10 71.55 56.18 0.03	20.01 38.95 333.90 7.12 0.09	0.02 40.21 40.29 0.38 0.09	4.83 50.80 76.06 3.45 0.12
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}(\beta_1) \end{array}$	19.58 112.74 444.61 218.13 0.05 0.55	0.02 92.45 91.90 0.19 0.05 0.05	4.18 106.95 146.47 48.81 0.05 0.08	35.93 76.90 448.46 42.87 0.20 0.83	0.03 59.70 59.14 3.75 0.17 0.15	7.30 69.38 103.49 6.50 0.19 0.25	15.42 35.82 339.17 220.46 0.02 0.55	0.00 38.24 38.25 0.06 0.02 0.02	3.87 48.10 71.55 56.18 0.03 0.04	20.01 38.95 333.90 7.12 0.09 0.55	0.02 40.21 40.29 0.38 0.09 0.09	4.83 50.80 76.06 3.45 0.12 0.17
SE ERSE APRB(β_1) SE ERSE	19.58 112.74 444.61 218.13 0.05 0.55 EE .i	0.02 92.45 91.90 0.19 0.05 0.05	4.18 106.95 146.47 48.81 0.05 0.08 EE (0.5)	35.93 76.90 448.46 42.87 0.20 0.83 EE .i	0.03 59.70 59.14 3.75 0.17 0.15 EE _ii	7.30 69.38 103.49 6.50 0.19 0.25 EE (0.5)	15.42 35.82 339.17 220.46 0.02 0.55 EE .i	0.00 38.24 38.25 0.06 0.02 0.02 EE _ii	3.87 48.10 71.55 56.18 0.03 0.04 EE (0.5)	20.01 38.95 333.90 7.12 0.09 0.55 EE .i	0.02 40.21 40.29 0.38 0.09 0.09 EE .ii	4.83 50.80 76.06 3.45 0.12 0.17 EE (0.5)
SE ERSE APRB (β_1) SE ERSE APRB (β_0)	19.58 112.74 444.61 218.13 0.05 0.55 EE .i 10.27	0.02 92.45 91.90 0.19 0.05 0.05 EE _iii	4.18 106.95 146.47 48.81 0.05 0.08 EE (0.5)	35.93 76.90 448.46 42.87 0.20 0.83 EE .i 17.17	0.03 59.70 59.14 3.75 0.17 0.15 EE .ii	7.30 69.38 103.49 6.50 0.19 0.25 EE (0.5)	15.42 35.82 339.17 220.46 0.02 0.55 EE .i 9.23	0.00 38.24 38.25 0.06 0.02 0.02 EE _iii	3.87 48.10 71.55 56.18 0.03 0.04 EE (0.5)	20.01 38.95 333.90 7.12 0.09 0.55 EE .i 11.30	0.02 40.21 40.29 0.38 0.09 0.09 EE _iii	4.83 50.80 76.06 3.45 0.12 0.17 EE (0.5) 8.46
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE	19.58 112.74 444.61 218.13 0.05 0.55 EE .i 10.27 117.65	0.02 92.45 91.90 0.19 0.05 0.05 EE _ii 0.61 104.53	4.18 106.95 146.47 48.81 0.05 0.08 EE (0.5) 8.11 113.83	35.93 76.90 448.46 42.87 0.20 0.83 EE .i 17.17 76.03	0.03 59.70 59.14 3.75 0.17 0.15 EE _iii 2.27 64.17	7.30 69.38 103.49 6.50 0.19 0.25 EE (0.5) 13.53 74.49	15.42 35.82 339.17 220.46 0.02 0.55 EE .i 9.23 60.49	0.00 38.24 38.25 0.06 0.02 0.02 EE _ii 2.28 41.99	3.87 48.10 71.55 56.18 0.03 0.04 EE (0.5) 6.94 56.25	20.01 38.95 333.90 7.12 0.09 0.55 EE .i 11.30 62.90	0.02 40.21 40.29 0.38 0.09 0.09 EE _iii 3.18 44.63	4.83 50.80 76.06 3.45 0.12 0.17 EE (0.5) 8.46 58.89
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE	19.58 112.74 444.61 218.13 0.05 0.55 EE .i 10.27 117.65 104.28	0.02 92.45 91.90 0.19 0.05 0.05 EE _ii 0.61 104.53 113.45	4.18 106.95 146.47 48.81 0.05 0.08 EE (0.5) 8.11 113.83 108.19	35.93 76.90 448.46 42.87 0.20 0.83 EE .i 17.17 76.03 64.40	0.03 59.70 59.14 3.75 0.17 0.15 EE _iii 2.27 64.17 72.05	7.30 69.38 103.49 6.50 0.19 0.25 EE (0.5) 13.53 74.49 68.27	15.42 35.82 339.17 220.46 0.02 0.55 EE .i 9.23 60.49 51.00	0.00 38.24 38.25 0.06 0.02 0.02 EE _ii 2.28 41.99 47.59	3.87 48.10 71.55 56.18 0.03 0.04 EE (0.5) 6.94 56.25 51.47	20.01 38.95 333.90 7.12 0.09 0.55 EE .i 11.30 62.90 53.38	0.02 40.21 40.29 0.38 0.09 0.09 EE .ii 3.18 44.63 50.05	4.83 50.80 76.06 3.45 0.12 0.17 EE (0.5) 8.46 58.89 54.13
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1)	19.58 112.74 444.61 218.13 0.05 0.55 EE .i 10.27 117.65 104.28 123.97	0.02 92.45 91.90 0.19 0.05 0.05 EE _ii 0.61 104.53 113.45	4.18 106.95 146.47 48.81 0.05 0.08 EE (0.5) 8.11 113.83 108.19 97.98	35.93 76.90 448.46 42.87 0.20 0.83 EE .i 17.17 76.03 64.40 20.27	0.03 59.70 59.14 3.75 0.17 0.15 EE .ii 2.27 64.17 72.05 0.48	7.30 69.38 103.49 6.50 0.19 0.25 EE (0.5) 13.53 74.49 68.27 15.28	15.42 35.82 339.17 220.46 0.02 0.55 EE .i 9.23 60.49 51.00	0.00 38.24 38.25 0.06 0.02 0.02 EE .ii 2.28 41.99 47.59	3.87 48.10 71.55 56.18 0.03 0.04 EE (0.5) 6.94 56.25 51.47 101.35	20.01 38.95 333.90 7.12 0.09 0.55 EE .i 11.30 62.90 53.38 7.51	0.02 40.21 40.29 0.38 0.09 0.09 EE _iii 3.18 44.63 50.05	4.83 50.80 76.06 3.45 0.12 0.17 EE (0.5) 8.46 58.89 54.13 5.59
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE	19.58 112.74 444.61 218.13 0.05 0.55 EE .i 10.27 117.65 104.28 123.97 0.06	0.02 92.45 91.90 0.19 0.05 0.05 EE _iii 0.61 104.53 113.45 1.38 0.05	4.18 106.95 146.47 48.81 0.05 0.08 EE (0.5) 8.11 113.83 108.19 97.98 0.06	35.93 76.90 448.46 42.87 0.20 0.83 EE .i 17.17 76.03 64.40 20.27 0.21	0.03 59.70 59.14 3.75 0.17 0.15 EE .ii 2.27 64.17 72.05 0.48 0.18	7.30 69.38 103.49 6.50 0.19 0.25 EE (0.5) 13.53 74.49 68.27 15.28 0.20	15.42 35.82 339.17 220.46 0.02 0.55 EE _i 9.23 60.49 51.00 134.59 0.03	0.00 38.24 38.25 0.06 0.02 0.02 EE. ii 2.28 41.99 47.59 32.20 0.02	3.87 48.10 71.55 56.18 0.03 0.04 EE (0.5) 6.94 56.25 51.47 101.35 0.03	20.01 38.95 333.90 7.12 0.09 0.55 EE .i 11.30 62.90 53.38 7.51 0.14	0.02 40.21 40.29 0.38 0.09 0.09 EE. ii 3.18 44.63 50.05 2.49 0.11	4.83 50.80 76.06 3.45 0.12 0.17 EE (0.5) 8.46 58.89 54.13 5.59 0.14
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1)	19.58 112.74 444.61 218.13 0.05 0.55 EE .i 10.27 117.65 104.28 123.97	0.02 92.45 91.90 0.19 0.05 0.05 EE _ii 0.61 104.53 113.45	4.18 106.95 146.47 48.81 0.05 0.08 EE (0.5) 8.11 113.83 108.19 97.98	35.93 76.90 448.46 42.87 0.20 0.83 EE. i 17.17 76.03 64.40 20.27 0.21 0.16	0.03 59.70 59.14 3.75 0.17 0.15 EE .ii 2.27 64.17 72.05 0.48 0.18	7.30 69.38 103.49 6.50 0.19 0.25 EE (0.5) 13.53 74.49 68.27 15.28 0.20 0.17	15.42 35.82 339.17 220.46 0.02 0.55 EE. i 9.23 60.49 51.00 134.59 0.03 0.03	0.00 38.24 38.25 0.06 0.02 0.02 EE .ii 2.28 41.99 47.59 32.20 0.02 0.03	3.87 48.10 71.55 56.18 0.03 0.04 EE (0.5) 6.94 56.25 51.47 101.35 0.03 0.03	20.01 38.95 333.90 7.12 0.09 0.55 EE .i 11.30 62.90 53.38 7.51	0.02 40.21 40.29 0.38 0.09 0.09 EE _iii 3.18 44.63 50.05	4.83 50.80 76.06 3.45 0.12 0.17 EE (0.5) 8.46 58.89 54.13 5.59
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE	19.58 112.74 444.61 218.13 0.05 0.55 EE .i 10.27 117.65 104.28 123.97 0.06 0.06	0.02 92.45 91.90 0.19 0.05 0.05 EE .ii 0.61 104.53 113.45 1.38 0.05	4.18 106.95 146.47 48.81 0.05 0.08 EE (0.5) 8.11 113.83 108.19 97.98 0.06 0.06	35.93 76.90 448.46 42.87 0.20 0.83 EE _i 17.17 76.03 64.40 20.27 0.21 0.16	$\begin{array}{c} 0.03 \\ 59.70 \\ 59.14 \\ \hline 3.75 \\ 0.17 \\ 0.15 \\ \hline \textbf{EE.ii} \\ 2.27 \\ 64.17 \\ 72.05 \\ \hline 0.48 \\ 0.18 \\ 0.18 \\ \hline = 10, \beta_0 \end{array}$	7.30 69.38 103.49 6.50 0.19 0.25 $EE(0.5)$ 13.53 74.49 68.27 15.28 0.20 0.17 $= 11023.00$	$\begin{array}{c} 15.42 \\ 35.82 \\ 339.17 \\ 220.46 \\ 0.02 \\ 0.55 \\ \hline \textbf{EE_i} \\ 9.23 \\ 60.49 \\ 51.00 \\ 134.59 \\ 0.03 \\ 0.03 \\ 6, \ \beta_1 = - \end{array}$	0.00 38.24 38.25 0.06 0.02 0.02 EE .ii 2.28 41.99 47.59 32.20 0.02 0.03 -0.40412	3.87 48.10 71.55 56.18 0.03 0.04 EE (0.5) 6.94 56.25 51.47 101.35 0.03 0.03	20.01 38.95 333.90 7.12 0.09 0.55 EE _i 11.30 62.90 53.38 7.51 0.14	0.02 40.21 40.29 0.38 0.09 0.09 EE .ii 3.18 44.63 50.05 2.49 0.11 0.12	4.83 50.80 76.06 3.45 0.12 0.17 EE (0.5) 8.46 58.89 54.13 5.59 0.14 0.12
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE	19.58 112.74 444.61 218.13 0.05 0.55 EE .i 10.27 117.65 104.28 123.97 0.06 0.06	0.02 92.45 91.90 0.19 0.05 0.05 EE.ii 0.61 104.53 113.45 0.05 0.06	4.18 106.95 146.47 48.81 0.05 0.08 EE (0.5) 8.11 113.83 108.19 97.98 0.06 0.06	35.93 76.90 448.46 42.87 0.20 0.83 EE _i 17.17 76.03 64.40 20.27 0.21 0.16	$\begin{array}{c} 0.03\\ 59.70\\ 59.14\\ 3.75\\ 0.17\\ 0.15\\ \hline \textbf{EE.ii}\\ 2.27\\ 64.17\\ 72.05\\ 0.48\\ 0.18\\ 0.18\\ \hline \textbf{-10},\ \beta_0\\ \hline \textbf{EE.h} \end{array}$	7.30 69.38 103.49 6.50 0.19 0.25 EE (0.5) 13.53 74.49 68.27 15.28 0.20 0.17 = 11023.00	$\begin{array}{c} 15.42\\ 35.82\\ 339.17\\ 220.46\\ 0.02\\ 0.55\\ \textbf{EE_i}\\ 9.23\\ 60.49\\ 51.00\\ 134.59\\ 0.03\\ 0.03\\ 6,\ \beta_1 = -\\ \textbf{na\"{ive}} \end{array}$	0.00 38.24 38.25 0.06 0.02 0.02 EE.ii 2.28 41.59 47.59 32.20 0.02 0.03 -0.40412 EE.h	3.87 48.10 71.55 56.18 0.03 0.04 EE (0.5) 6.94 56.25 51.47 101.35 0.03 0.03 32 EE	20.01 38.95 333.90 7.12 0.09 0.55 EE _i 11.30 62.90 53.38 7.51 0.14 0.12	0.02 40.21 40.29 0.38 0.09 0.09 EE. ii 3.18 44.63 50.05 2.49 0.11 0.12	4.83 50.80 76.06 3.45 0.12 0.17 EE (0.5) 8.46 58.89 54.13 5.59 0.14 0.12
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE	19.58 112.74 444.61 218.13 0.05 0.55 EE .i 10.27 117.65 104.28 123.97 0.06 0.06 0.06	0.02 92.45 91.90 0.19 0.05 0.05 EE .ii 0.61 104.53 113.45 0.05 0.06	4.18 106.95 146.47 48.81 0.05 0.08 EE (0.5) 8.11 113.83 108.19 97.98 0.06 0.06	35.93 76.90 448.46 42.87 0.20 0.83 EE _i 17.17 76.03 64.40 20.27 0.21 0.16 T naïve 35.90	$\begin{array}{c} 0.03\\ 59.70\\ 59.14\\ 3.75\\ 0.17\\ 0.15\\ \hline \textbf{EE.ii}\\ 2.27\\ 64.17\\ 72.05\\ 0.48\\ 0.18\\ 0.18\\ 0.18\\ \hline \textbf{-10},\ \beta_0\\ \hline \textbf{EE.h}\\ 0.03\\ \end{array}$	$\begin{array}{c} 7.30 \\ 69.38 \\ 103.49 \\ \hline 6.50 \\ 0.19 \\ 0.25 \\ \hline \textbf{EE}(0.5) \\ 13.53 \\ 74.49 \\ 68.27 \\ 15.28 \\ 0.20 \\ 0.17 \\ \hline = 11023.0 \\ \hline \textbf{EE} \\ 5.57 \\ \end{array}$	$\begin{array}{c} 15.42\\ 35.82\\ 339.17\\ 220.46\\ 0.02\\ 0.55\\ \hline{\textbf{EE}_i}\\ 9.23\\ 60.49\\ 51.00\\ 134.59\\ 0.03\\ 0.03\\ 6,\ \beta_1 = -\\ \textbf{na\"{ve}}\\ 15.39\\ \end{array}$	0.00 38.24 38.25 0.06 0.02 0.02 EE.ii 2.28 41.99 47.59 32.20 0.02 0.03 -0.40412 EE.h 0.02	3.87 48.10 71.55 56.18 0.03 0.04 EE (0.5) 6.94 56.25 51.47 101.35 0.03 0.03 232 EE	20.01 38.95 333.90 7.12 0.09 0.55 EE _i 11.30 62.90 53.38 7.51 0.14 0.12	0.02 40.21 40.29 0.38 0.09 0.09 EE.ii 3.18 44.63 50.05 2.49 0.11 0.12 EE. h	4.83 50.80 76.06 3.45 0.12 0.17 EE (0.5) 8.46 58.89 54.13 5.59 0.14 0.12 EE 3.26
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE	19.58 112.74 444.61 218.13 0.05 0.55 EE.i 10.27 117.65 104.28 123.97 0.06 0.06 naïve 19.51 111.48	0.02 92.45 91.90 0.19 0.05 0.05 EE .ii 0.61 104.53 113.45 0.05 0.06 EE _h	4.18 106.95 146.47 48.81 0.05 0.08 EE (0.5) 8.11 113.83 108.19 97.98 0.06 0.06 EE 3.44 102.84	35.93 76.90 448.46 42.87 0.20 0.83 EE _i 17.17 76.03 64.40 20.27 0.21 0.16 T naïve 35.90 78.03	$\begin{array}{c} 0.03 \\ 59.70 \\ 59.14 \\ \hline 3.75 \\ 0.17 \\ 0.15 \\ \hline \textbf{EE.ii} \\ 2.27 \\ 64.17 \\ 72.05 \\ 0.48 \\ 0.18 \\ 0.18 \\ \hline 0.18 \\ 0.03 \\ 60.54 \\ \end{array}$	7.30 69.38 103.49 6.50 0.19 0.25 EE(0.5) 13.53 74.49 68.27 15.28 0.20 0.17 = 11023.0 EE 5.57 68.81	$\begin{array}{c} 15.42\\ 35.82\\ 339.17\\ 220.46\\ 0.02\\ 0.55\\ \hline{\textbf{EE}_i}\\ 9.23\\ 60.49\\ 51.00\\ 134.59\\ 0.03\\ 6,\ \beta_1 = -\\ \hline{\textbf{na\"{ive}}}\\ 15.39\\ 36.31\\ \end{array}$	0.00 38.24 38.25 0.06 0.02 0.02 EE.ii 2.28 41.99 47.59 0.02 0.03 -0.40412 EE.h 0.02 38.51	3.87 48.10 71.55 56.18 0.03 0.04 EE(0.5) 6.94 56.25 51.47 101.35 0.03 0.03 32 EE 2.66 45.81	20.01 38.95 333.90 7.12 0.09 0.55 EE _i 11.30 62.90 53.38 7.51 0.14 0.12	0.02 40.21 40.29 0.38 0.09 0.09 EE.ii 3.18 44.63 50.05 2.49 0.11 0.12 EE. h	4.83 50.80 76.06 3.45 0.12 0.17 EE(0.5) 8.46 58.89 54.13 5.59 0.14 0.12 EE 3.26 47.63
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE	19.58 112.74 444.61 218.13 0.05 0.55 EE.i 10.27 117.65 104.28 123.97 0.06 0.06 naïve 19.51 111.48 444.52	0.02 92.45 91.90 0.19 0.05 0.05 EE .ii 0.61 104.53 113.45 0.05 0.06 EE _h 0.02 91.91	4.18 106.95 146.47 48.81 0.05 0.08 EE (0.5) 8.11 113.83 108.19 97.98 0.06 0.06 EE 3.44 102.84 126.01	35.93 76.90 448.46 42.87 0.20 0.83 EE _i 17.17 76.03 64.40 20.27 0.21 0.16 T naïve 35.90 78.03 448.56	$\begin{array}{c} 0.03 \\ 59.70 \\ 59.14 \\ \hline 3.75 \\ 0.17 \\ 0.15 \\ \hline \textbf{EE.ii} \\ 2.27 \\ 64.17 \\ 72.05 \\ 0.48 \\ 0.18 \\ 0.18 \\ \hline \textbf{EE.h} \\ 0.03 \\ 60.54 \\ 59.22 \\ \end{array}$	$\begin{array}{c} 7.30 \\ 69.38 \\ 103.49 \\ \hline 6.50 \\ 0.19 \\ 0.25 \\ \hline \textbf{EE}(0.5) \\ 13.53 \\ 74.49 \\ 68.27 \\ 15.28 \\ 0.20 \\ 0.17 \\ \hline = 11023.0 \\ \hline \textbf{EE} \\ 5.57 \\ 68.81 \\ 90.83 \\ \end{array}$	$\begin{array}{c} 15.42\\ 35.82\\ 339.17\\ 220.46\\ 0.02\\ 0.55\\ \hline{\textbf{EE.i}}\\ 9.23\\ 60.49\\ 51.00\\ 134.59\\ 0.03\\ 0.03\\ 0.03\\ 6,\ \beta_1 = -\\ \hline{\textbf{naïve}}\\ 15.39\\ 36.31\\ 339.08\\ \end{array}$	0.00 38.24 38.25 0.06 0.02 0.02 EE.ii 2.28 41.99 47.59 32.20 0.02 EE.h 0.02 38.51 38.28	3.87 48.10 71.55 56.18 0.03 0.04 EE(0.5) 6.94 56.25 51.47 101.35 0.03 0.03 32 EE 2.66 45.81 57.99	20.01 38.95 333.90 7.12 0.09 0.55 EE.i 11.30 62.90 53.38 7.51 0.14 0.12 naïve 20.01 41.07 333.96	0.02 40.21 40.29 0.38 0.09 0.09 EE.ii 3.18 44.63 50.05 2.49 0.11 0.12 EE. h 0.01 42.43 40.27	4.83 50.80 76.06 3.45 0.12 0.17 EE(0.5) 8.46 58.89 54.13 5.59 0.14 0.12 EE 3.26 47.63 60.91
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_0)	19.58 112.74 444.61 218.13 0.05 0.55 EE.i 10.27 117.65 104.28 123.97 0.06 0.06 visual of the control of the contr	0.02 92.45 91.90 0.19 0.05 0.05 EE .ii 0.61 104.53 113.45 0.05 0.06 EE .h 0.02 91.91 92.01	4.18 106.95 146.47 48.81 0.05 0.08 EE (0.5) 8.11 113.83 108.19 97.98 0.06 0.06 0.06 EE 3.44 102.84 126.01 41.92	35.93 76.90 448.46 42.87 0.20 0.83 EE.i 17.17 76.03 64.40 20.27 0.21 0.16 T naïve 35.90 78.03 448.56	$\begin{array}{c} 0.03\\ 59.70\\ 59.14\\ \hline 3.75\\ 0.17\\ 0.15\\ \hline \textbf{EE.ii}\\ 2.27\\ 64.17\\ 72.05\\ 0.48\\ 0.18\\ 0.18\\ \hline 0.18\\ 0.03\\ 60.54\\ 59.22\\ \hline 3.88\\ \end{array}$	$\begin{array}{c} 7.30 \\ 69.38 \\ 103.49 \\ \hline 6.50 \\ 0.19 \\ 0.25 \\ \hline \textbf{EE}(0.5) \\ 13.53 \\ 74.49 \\ 68.27 \\ 15.28 \\ 0.20 \\ 0.17 \\ \hline = 11023.0 \\ \hline \textbf{EE} \\ 5.57 \\ 68.81 \\ 90.83 \\ 2.65 \\ \end{array}$	$\begin{array}{c} 15.42\\ 35.82\\ 339.17\\ 220.46\\ 0.02\\ 0.55\\ \hline{\textbf{EE}_i}\\ 9.23\\ 60.49\\ 51.00\\ 134.59\\ 0.03\\ 3.03\\ 6,\ \beta_1 = -\\ \hline{\textbf{naïve}}\\ 15.39\\ 36.31\\ 339.08\\ 220.06\\ \end{array}$	0.00 38.24 38.25 0.06 0.02 0.02 EE.ii 2.28 41.99 47.59 32.20 0.03 -0.40412 EE.h 0.02 38.51 38.28 0.21	3.87 48.10 71.55 56.18 0.03 0.04 EE(0.5) 6.94 56.25 51.47 101.35 0.03 0.03 32 EE 2.66 45.81 57.99 38.64	20.01 38.95 333.90 7.12 0.09 0.55 EE.i 11.30 62.90 53.38 7.51 0.14 0.12 naïve 20.01 41.07 333.96 6.92	0.02 40.21 40.29 0.38 0.09 0.09 EE .ii 3.18 44.63 50.05 2.49 0.11 0.12 EE .h 0.01 42.43 40.27 0.69	4.83 50.80 76.06 3.45 0.12 0.17 EE(0.5) 8.46 58.89 54.13 5.59 0.14 0.12 EE 3.26 47.63 60.91 2.73
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE	19.58 112.74 444.61 218.13 0.05 0.55 EE.i 10.27 117.65 104.28 123.97 0.06 0.06 naïve 19.51 111.48 444.52 217.26 0.05	0.02 92.45 91.90 0.19 0.05 0.05 EE .ii 0.61 104.53 113.45 0.05 0.06 EE .h 0.02 91.91 92.01 0.45 0.05	4.18 106.95 146.47 48.81 0.05 0.08 EE (0.5) 8.11 113.83 108.19 97.98 0.06 0.06 	35.93 76.90 448.46 42.87 0.20 0.83 EE.i 17.17 76.03 64.40 20.27 0.21 0.16 T naïve 35.90 78.03 448.56 43.66 0.21	$\begin{array}{c} 0.03\\ 59.70\\ 59.14\\ \hline 3.75\\ 0.17\\ 0.15\\ \hline \textbf{EE.ii}\\ 2.27\\ 64.17\\ 72.05\\ 0.48\\ 0.18\\ 0.18\\ \hline \textbf{EE.h}\\ 0.03\\ 60.54\\ 59.22\\ \hline 3.88\\ 0.17\\ \end{array}$	$\begin{array}{c} 7.30 \\ 69.38 \\ 103.49 \\ \hline 6.50 \\ 0.19 \\ 0.25 \\ \hline \textbf{EE}(0.5) \\ 13.53 \\ 74.49 \\ 68.27 \\ 15.28 \\ 0.20 \\ 0.17 \\ \hline = 11023.0 \\ \hline \textbf{EE} \\ 5.57 \\ 68.81 \\ 90.83 \\ 2.65 \\ 0.19 \\ \end{array}$	$\begin{array}{c} 15.42\\ 35.82\\ 339.17\\ 220.46\\ 0.02\\ 0.55\\ \hline{\textbf{EE}_i}\\ 9.23\\ 60.49\\ 51.00\\ 134.59\\ 0.03\\ 0.03\\ 3.03\\ 6,\ \beta_1 = -\\ \hline{\textbf{naïve}}\\ 15.39\\ 36.31\\ 339.08\\ 220.06\\ 0.02\\ \end{array}$	0.00 38.24 38.25 0.06 0.02 0.02 EE.ii 2.28 41.99 47.59 32.20 0.03 -0.40412 EE.h 0.02 38.51 38.28 0.21 0.02	3.87 48.10 71.55 56.18 0.03 0.04 EE(0.5) 6.94 56.25 51.47 101.35 0.03 0.03 32 EE 2.66 45.81 57.99 38.64 0.02	20.01 38.95 333.90 7.12 0.09 0.55 EE.i 11.30 62.90 53.38 7.51 0.14 0.12 naïve 20.01 41.07 333.96 6.92 0.09	0.02 40.21 40.29 0.38 0.09 0.09 EE .ii 3.18 44.63 50.05 2.49 0.11 0.12 EE .h 0.01 42.43 40.27 0.69 0.10	4.83 50.80 76.06 3.45 0.12 0.17 EE(0.5) 8.46 58.89 54.13 5.59 0.14 0.12 EE 3.26 47.63 60.91 2.73 0.11
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_0)	19.58 112.74 444.61 218.13 0.05 0.55 EE.i 10.27 117.65 104.28 123.97 0.06 0.06 naïve 19.51 111.48 444.52 217.26 0.05 0.55	0.02 92.45 91.90 0.19 0.05 0.61 104.53 113.45 0.06 EE_h 0.02 91.91 92.01 0.45 0.05	4.18 106.95 146.47 48.81 0.05 0.08 EE(0.5) 8.11 113.83 108.19 97.98 0.06 0.06 EE 3.44 102.84 126.01 41.92 0.05 0.06	35.93 76.90 448.46 42.87 0.20 0.83 EE.i 17.17 76.03 64.40 20.27 0.21 0.16 T naïve 35.90 78.03 448.56 43.66 0.21 0.81	$\begin{array}{c} 0.03\\ 59.70\\ 59.14\\ \hline 3.75\\ 0.17\\ 0.15\\ \hline \textbf{EE.ii}\\ 2.27\\ 64.17\\ 72.05\\ 0.48\\ 0.18\\ 0.18\\ \hline \textbf{0.18}\\ 0.18\\ 5-10,\beta_0\\ \hline \textbf{EE.h}\\ 0.03\\ 60.54\\ 59.22\\ \hline 3.88\\ 0.17\\ 0.15\\ \end{array}$	7.30 69.38 103.49 6.50 0.19 0.25 EE(0.5) 13.53 74.49 68.27 15.28 0.20 0.17 = 11023.0 EE 5.57 68.81 90.83 2.65 0.19 0.22	$\begin{array}{c} 15.42 \\ 35.82 \\ 339.17 \\ 220.46 \\ 0.02 \\ 0.55 \\ \hline{\textbf{EE.i}} \\ 9.23 \\ 60.49 \\ 51.00 \\ 134.59 \\ 0.03 \\ 0.03 \\ 0.03 \\ 6, \ \beta_1 = - \\ \hline{\textbf{naïve}} \\ 15.39 \\ 36.31 \\ 339.08 \\ 220.06 \\ 0.02 \\ 0.55 \\ \end{array}$	0.00 38.24 38.25 0.06 0.02 0.02 EE.ii 2.28 41.99 47.59 32.20 0.03 -0.40412 EE.h 0.02 38.51 38.28 0.21 0.02 0.02	3.87 48.10 71.55 56.18 0.03 0.04 EE(0.5) 6.94 56.25 51.47 101.35 0.03 0.03 32 EE 2.66 45.81 57.99 38.64 0.02 0.03	20.01 38.95 333.90 7.12 0.09 0.55 EE.i 11.30 62.90 53.38 7.51 0.14 0.12 naïve 20.01 41.07 333.96 6.92 0.09 0.55	0.02 40.21 40.29 0.38 0.09 0.09 EE .ii 3.18 44.63 50.05 2.49 0.11 0.12 EE _h 0.01 42.43 40.27 0.69 0.10	4.83 50.80 76.06 3.45 0.12 0.17 EE(0.5) 8.46 58.89 54.13 5.59 0.14 0.12 EE 3.26 47.63 60.91 2.73 0.11 0.14
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE ERSE	19.58 112.74 444.61 218.13 0.05 0.55 EE.i 10.27 117.65 104.28 123.97 0.06 0.06 naïve 19.51 111.48 444.52 217.26 0.05 0.55 EE.i	0.02 92.45 91.90 0.19 0.05 0.61 104.53 113.45 0.06 EE_h 0.02 91.91 92.01 0.45 0.05 0.05 EE_ii	4.18 106.95 146.47 48.81 0.05 0.08 EE(0.5) 8.11 113.83 108.19 97.98 0.06 0.06 EE 3.44 126.01 41.92 0.05 0.06 EE(0.5)	35.93 76.90 448.46 42.87 0.20 0.83 EE.i 17.17 76.03 64.40 20.27 0.21 0.16 T naïve 35.90 78.03 448.56 43.66 0.21 0.81 EE.i	$\begin{array}{c} 0.03\\ 59.70\\ 59.14\\ \hline 3.75\\ 0.17\\ 0.15\\ \hline \textbf{EE.ii}\\ 2.27\\ 64.17\\ 72.05\\ 0.48\\ 0.18\\ \hline -10,\ \beta_0\\ \hline \textbf{EE.h}\\ 0.03\\ 60.54\\ 59.22\\ \hline 3.88\\ 0.17\\ 0.15\\ \hline \textbf{EE.ii}\\ \hline \end{array}$	7.30 69.38 103.49 6.50 0.19 0.25 EE(0.5) 13.53 74.49 68.27 15.28 0.20 0.17 = 11023.00 EE 5.57 68.81 90.83 2.65 0.19 0.22 EE(0.5)	$\begin{array}{c} 15.42\\ 35.82\\ 339.17\\ 220.46\\ 0.02\\ 0.55\\ \hline{\textbf{EE.i}}\\ 9.23\\ 60.49\\ 51.00\\ 134.59\\ 0.03\\ 0.03\\ 6,\ \beta_1 = -\\ \hline{\textbf{naïve}}\\ 15.39\\ 36.31\\ 339.08\\ 220.06\\ 0.02\\ 0.55\\ \hline{\textbf{EE.i}}\\ \end{array}$	0.00 38.24 38.25 0.06 0.02 0.02 EE.ii 2.28 41.99 47.59 32.20 0.03 -0.40412 EE.h 0.02 38.51 38.28 0.21 0.02 0.02 EE.ii	3.87 48.10 71.55 56.18 0.03 0.04 EE(0.5) 6.94 56.25 51.47 101.35 0.03 0.03 232 EE 2.66 45.81 57.99 38.64 0.02 0.03 EE(0.5)	20.01 38.95 333.90 7.12 0.09 0.55 EE.i 11.30 62.90 53.38 7.51 0.14 0.12 naïve 20.01 41.07 333.96 6.92 0.09 0.55 EE.i	0.02 40.21 40.29 0.38 0.09 0.09 EE.ii 3.18 44.63 50.05 2.49 0.11 0.12 EE.h 0.01 42.43 40.27 0.69 0.10 0.10 EE.ii	4.83 50.80 76.06 3.45 0.12 0.17 EE(0.5) 8.46 58.89 54.13 5.59 0.14 0.12 EE 3.26 47.63 60.91 2.73 0.11 0.14 EE(0.5)
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE	19.58 112.74 444.61 218.13 0.05 0.55 EE.i 10.27 117.65 104.28 123.97 0.06 0.06 naïve 19.51 111.48 444.52 217.26 0.05 0.55 EE.i 7.54	0.02 92.45 91.90 0.19 0.05 0.61 104.53 113.45 0.06 EE_h 0.02 91.91 92.01 0.45 0.05 0.05 EE_ii 2.05	4.18 106.95 146.47 48.81 0.05 0.08 EE(0.5) 8.11 113.83 108.19 97.98 0.06 0.06 EE 3.44 126.01 41.92 0.05 0.06 EE(0.5)	35.93 76.90 448.46 42.87 0.20 0.83 EE. i 17.17 76.03 64.40 20.27 0.21 0.16 T naïve 35.90 78.03 448.56 43.66 0.21 0.81 EE. i	$\begin{array}{c} 0.03\\ 59.70\\ 59.14\\ \hline 3.75\\ 0.17\\ 0.15\\ \hline \textbf{EE.ii}\\ 2.27\\ 64.17\\ 72.05\\ 0.48\\ 0.18\\ \hline 0.18\\ 0.18\\ \hline 0.03\\ 60.54\\ 59.22\\ \hline 3.88\\ 0.17\\ 0.15\\ \hline \textbf{EE.ii}\\ \hline 3.75\\ \end{array}$	7.30 69.38 103.49 6.50 0.19 0.25 EE(0.5) 13.53 74.49 68.27 15.28 0.20 0.17 = 11023.00 EE 5.57 68.81 90.83 2.65 0.19 0.22 EE(0.5) 9.19	$\begin{array}{c} 15.42\\ 35.82\\ 339.17\\ 220.46\\ 0.02\\ 0.55\\ \hline{\textbf{EE.i}}\\ 9.23\\ 60.49\\ 51.00\\ 134.59\\ 0.03\\ 6,\ \beta_1 = -\\ \textbf{naïve}\\ 15.39\\ 36.31\\ 339.08\\ 220.06\\ 0.02\\ 0.55\\ \hline{\textbf{EE.i}}\\ 5.83\\ \end{array}$	0.00 38.24 38.25 0.06 0.02 0.02 EE.ii 2.28 41.99 47.59 32.20 0.03 -0.40412 EE.h 0.02 38.51 38.28 0.21 0.02 0.02 EE.ii 2.21	3.87 48.10 71.55 56.18 0.03 0.04 EE(0.5) 6.94 56.25 51.47 101.35 0.03 0.03 32 EE 2.66 45.81 57.99 38.64 0.02 0.03 EE(0.5) 4.22	20.01 38.95 333.90 7.12 0.09 0.55 EE.i 11.30 62.90 53.38 7.51 0.14 0.12 naïve 20.01 41.07 333.96 6.92 0.09 0.55 EE.i 7.09	0.02 40.21 40.29 0.38 0.09 0.09 EE .ii 3.18 44.63 50.05 2.49 0.11 0.12 EE _h 0.01 42.43 40.27 0.69 0.10 0.10 EE .ii	4.83 50.80 76.06 3.45 0.12 0.17 EE(0.5) 8.46 58.89 54.13 5.59 0.14 0.12 EE 3.26 47.63 60.91 2.73 0.11 0.14 EE(0.5) 5.09
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE	19.58 112.74 444.61 218.13 0.05 0.55 EE.i 10.27 117.65 104.28 123.97 0.06 0.06 naïve 19.51 111.48 444.52 217.26 0.05 0.55 EE.i 7.54 109.36	0.02 92.45 91.90 0.19 0.05 0.61 104.53 113.45 1.38 0.05 0.06 EE_h 0.02 91.91 0.45 0.05 0.05 EE_ii 2.05 100.77	4.18 106.95 146.47 48.81 0.05 0.08 EE(0.5) 8.11 113.83 108.19 97.98 0.06 0.06 EE 3.44 102.84 126.01 41.92 0.05 0.06 EE(0.5) 5.80 106.90	35.93 76.90 448.46 42.87 0.20 0.83 EE. i 17.17 76.03 64.40 20.27 0.21 0.16 T naïve 35.90 448.56 43.66 0.21 0.81 EE. i 12.07 74.46	$\begin{array}{c} 0.03\\ 59.70\\ 59.14\\ \hline 3.75\\ 0.17\\ 0.15\\ \hline \textbf{EE.ii}\\ 2.27\\ 64.17\\ 72.05\\ 0.48\\ 0.18\\$	$\begin{array}{c} 7.30 \\ 69.38 \\ 103.49 \\ \hline 6.50 \\ 0.19 \\ 0.25 \\ \hline \textbf{EE}(0.5) \\ 13.53 \\ 74.49 \\ 68.27 \\ 15.28 \\ 0.20 \\ 0.17 \\ \hline = 11023.00 \\ \hline \textbf{EE} \\ 5.57 \\ 68.81 \\ 90.83 \\ 2.65 \\ 0.19 \\ 0.22 \\ \hline \textbf{EE}(0.5) \\ 9.19 \\ 72.85 \\ \end{array}$	$\begin{array}{c} 15.42\\ 35.82\\ 339.17\\ 220.46\\ 0.02\\ 0.55\\ \hline{\textbf{EE.i}}\\ 9.23\\ 60.49\\ 51.00\\ 134.59\\ 0.03\\ 6,\ \beta_1 = -\\ \textbf{naïve}\\ 15.39\\ 36.31\\ 339.08\\ 220.06\\ 0.02\\ 0.55\\ \hline{\textbf{EE.i}}\\ 5.83\\ 52.47\\ \end{array}$	0.00 38.24 38.25 0.06 0.02 0.02 EE.ii 2.28 41.99 47.59 32.20 0.02 0.03 -0.40412 EE.ii 0.02 0.02 0.02 EE.ii 2.21 43.50	3.87 48.10 71.55 56.18 0.03 0.04 EE(0.5) 6.94 56.25 51.47 101.35 0.03 0.03 32 EE 2.66 45.81 57.99 38.64 0.02 0.03 EE(0.5) 4.22 49.84	20.01 38.95 333.90 7.12 0.09 0.55 EE.i 11.30 62.90 53.38 7.51 0.14 0.12 naïve 20.01 41.07 333.96 6.92 0.09 0.55 EE.i 7.09 53.53	0.02 40.21 40.29 0.38 0.09 0.09 EE.ii 3.18 44.63 50.05 2.49 0.11 0.12 EE.h 0.01 42.43 40.27 0.69 0.10 0.10 EE.ii 2.83 45.75	4.83 50.80 76.06 3.45 0.12 0.17 EE(0.5) 8.46 58.89 54.13 5.59 0.14 0.12 EE 3.26 47.63 60.91 2.73 0.11 0.14 EE(0.5) 5.09 51.23
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE	19.58 112.74 444.61 218.13 0.05 0.55 EE. i 10.27 117.65 104.28 123.97 0.06 0.06 naïve 19.51 111.48 444.52 217.26 0.05 0.55 EE. i 7.54 109.36 100.38	0.02 92.45 91.90 0.19 0.05 0.61 104.53 113.45 1.38 0.05 0.06 EE_h 0.02 91.91 0.45 0.05 0.05 EE_ii 2.05 100.77	4.18 106.95 146.47 48.81 0.05 0.08 EE(0.5) 8.11 113.83 108.19 97.98 0.06 0.06 EE(0.5) 41.92 0.05 0.06 EE(0.5) 5.80 106.90 103.27	35.93 76.90 448.46 42.87 0.20 0.83 EE. i 17.17 76.03 64.40 20.27 0.21 0.16 T naïve 35.90 448.56 43.66 0.21 0.81 EE. i 12.07 74.46 65.42	$\begin{array}{c} 0.03 \\ 59.70 \\ 59.14 \\ \hline 3.75 \\ 0.17 \\ 0.15 \\ \hline \textbf{EE.ii} \\ 2.27 \\ 64.17 \\ 72.05 \\ 0.48 \\ 0.18 \\ 0.18 \\ \hline 0.10 \\ \beta 0.03 \\ \hline \textbf{EE.h} \\ 0.03 \\ \hline 0.05 \\ 0.05 \\ \hline \textbf{EE.h} \\ 0.03 \\ \hline 0.05 \\ 0.05 \\ \hline \textbf{EE.h} \\ 0.05 \\ 0.$		$\begin{array}{c} 15.42 \\ 35.82 \\ 339.17 \\ 220.46 \\ 0.02 \\ 0.55 \\ \hline \textbf{EE.i} \\ 9.23 \\ 60.49 \\ 51.00 \\ 134.59 \\ 0.03 \\ 6, \ \beta_1 = - \\ \textbf{naïve} \\ 15.39 \\ 36.31 \\ 339.08 \\ 220.06 \\ 0.02 \\ 0.55 \\ \hline \textbf{EE.i} \\ 5.83 \\ 52.47 \\ 47.18 \\ \end{array}$	0.00 38.24 38.25 0.06 0.02 0.02 EE.ii 2.28 41.99 47.59 32.20 0.03 -0.40412 EE.h 0.02 38.51 0.02 0.03 6.21 0.02 0.02 EE.ii 2.21 43.50 45.33	3.87 48.10 71.55 56.18 0.03 0.04 EE(0.5) 6.94 56.25 51.47 101.35 0.03 0.03 32 EE 2.66 45.81 57.99 38.64 0.02 0.03 EE(0.5) 4.22 49.84 47.38	20.01 38.95 333.90 7.12 0.09 0.55 EE.i 11.30 62.90 53.38 7.51 0.14 0.12 naïve 20.01 41.07 333.96 6.92 0.09 0.55 EE.i 7.09 53.53 49.28	0.02 40.21 40.29 0.38 0.09 0.09 EE.ii 3.18 44.63 50.05 2.49 0.11 0.12 EE.h 0.01 42.43 40.27 0.69 0.10 0.10 EE.ii 2.83 45.75 47.64	4.83 50.80 76.06 3.45 0.12 0.17 EE(0.5) 8.46 58.89 54.13 5.59 0.14 0.12 EE 3.26 47.63 60.91 2.73 0.11 0.14 EE(0.5) 5.09 51.23 49.67
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE	19.58 112.74 444.61 218.13 0.05 0.55 EE.i 10.27 117.65 104.28 123.97 0.06 0.06 naïve 19.51 111.48 444.52 217.26 0.05 0.55 EE.i 7.54 109.36 100.38 93.11	0.02 92.45 91.90 0.19 0.05 0.61 104.53 113.45 1.38 0.05 0.06 EE_h 0.02 91.91 0.45 0.05 0.05 EE_ii 2.05 100.77 105.30 22.70	4.18 106.95 146.47 48.81 0.05 0.08 EE(0.5) 8.11 113.83 108.19 97.98 0.06 0.06 EE 3.44 102.84 126.01 41.92 0.05 0.06 EE(0.5) 5.80 106.90 103.27 72.01	35.93 76.90 448.46 42.87 0.20 0.83 EE.i 17.17 76.03 64.40 20.27 0.21 0.16 T maïve 35.90 78.05 43.66 0.21 0.81 EE.i 12.07 74.46 65.42 11.16	$\begin{array}{c} 0.03 \\ 59.70 \\ 59.14 \\ \hline 3.75 \\ 0.17 \\ 0.15 \\ \hline \textbf{EE.ii} \\ 2.27 \\ 64.17 \\ 72.05 \\ 0.48 \\ 0.18 \\ 0.18 \\ \hline 0.10 \\ \beta 0.03 \\ \hline \textbf{EE.h} \\ 0.03 \\ \hline 0.03 \\ \hline \textbf{EE.h} \\ 0.03 \\ 60.54 \\ 59.22 \\ 3.88 \\ 0.17 \\ 0.15 \\ \hline \textbf{EE.ii} \\ \hline 3.75 \\ 65.72 \\ 68.14 \\ 0.53 \\ \hline \end{array}$	7.30 69.38 103.49 6.50 0.19 0.25 EE(0.5) 13.53 74.49 68.27 15.28 0.20 0.17 = 11023.00 EE 5.57 68.81 90.83 2.65 0.19 0.22 EE(0.5) 9.19 72.85 68.07 7.40	$\begin{array}{c} 15.42\\ 35.82\\ 339.17\\ 220.46\\ 0.02\\ 0.55\\ \hline{\textbf{EE.i}}\\ 9.23\\ 60.49\\ 51.00\\ 134.59\\ 0.03\\ 6,\ \beta_1 = -\\ \textbf{naïve}\\ 15.39\\ 36.31\\ 339.08\\ 220.06\\ 0.02\\ 0.55\\ \hline{\textbf{EE.i}}\\ 5.83\\ 52.47\\ 47.18\\ 85.04\\ \end{array}$	0.00 38.24 38.25 0.06 0.02 0.02 EE.ii 2.28 41.99 47.59 32.20 0.03 -0.40412 EE.h 0.02 38.51 0.02 0.03 5.21 0.02 0.02 EE.ii 2.21 43.50 45.33 31.88	3.87 48.10 71.55 56.18 0.03 0.04 EE(0.5) 6.94 56.25 51.47 101.35 0.03 0.03 32 EE 2.66 45.81 57.99 38.64 0.02 0.03 EE(0.5) 4.22 49.84 47.38 61.73	20.01 38.95 333.90 7.12 0.09 0.55 EE_i 11.30 62.90 53.38 7.51 0.14 0.12 naïve 20.01 41.07 333.96 6.92 0.09 0.55 EE_i 7.09 53.53 49.28 4.90	0.02 40.21 40.29 0.38 0.09 0.09 EE.ii 3.18 44.63 50.05 2.49 0.11 0.12 EE.h 0.01 42.43 40.27 0.69 0.10 0.10 EE.ii 2.83 45.75 47.64 2.49	4.83 50.80 76.06 3.45 0.12 0.17 EE(0.5) 8.46 58.89 54.13 5.59 0.14 0.12 EE 3.26 47.63 60.91 2.73 0.11 0.14 EE(0.5) 5.09 51.23 49.67 3.71
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE	19.58 112.74 444.61 218.13 0.05 0.55 EE. i 10.27 117.65 104.28 123.97 0.06 0.06 naïve 19.51 111.48 444.52 217.26 0.05 0.55 EE. i 7.54 109.36 100.38	0.02 92.45 91.90 0.19 0.05 0.61 104.53 113.45 1.38 0.05 0.06 EE_h 0.02 91.91 0.45 0.05 0.05 EE_ii 2.05 100.77	4.18 106.95 146.47 48.81 0.05 0.08 EE(0.5) 8.11 113.83 108.19 97.98 0.06 0.06 EE(0.5) 41.92 0.05 0.06 EE(0.5) 5.80 106.90 103.27	35.93 76.90 448.46 42.87 0.20 0.83 EE. i 17.17 76.03 64.40 20.27 0.21 0.16 T naïve 35.90 448.56 43.66 0.21 0.81 EE. i 12.07 74.46 65.42	$\begin{array}{c} 0.03 \\ 59.70 \\ 59.14 \\ \hline 3.75 \\ 0.17 \\ 0.15 \\ \hline \textbf{EE.ii} \\ 2.27 \\ 64.17 \\ 72.05 \\ 0.48 \\ 0.18 \\ 0.18 \\ \hline 0.10 \\ \beta 0.03 \\ \hline \textbf{EE.h} \\ 0.03 \\ \hline 0.05 \\ 0.05 \\ \hline \textbf{EE.h} \\ 0.03 \\ \hline 0.05 \\ 0.05 \\ \hline \textbf{EE.h} \\ 0.05 \\ 0.$		$\begin{array}{c} 15.42 \\ 35.82 \\ 339.17 \\ 220.46 \\ 0.02 \\ 0.55 \\ \hline \textbf{EE.i} \\ 9.23 \\ 60.49 \\ 51.00 \\ 134.59 \\ 0.03 \\ 6, \ \beta_1 = - \\ \textbf{naïve} \\ 15.39 \\ 36.31 \\ 339.08 \\ 220.06 \\ 0.02 \\ 0.55 \\ \hline \textbf{EE.i} \\ 5.83 \\ 52.47 \\ 47.18 \\ \end{array}$	0.00 38.24 38.25 0.06 0.02 0.02 EE.ii 2.28 41.99 47.59 32.20 0.03 -0.40412 EE.h 0.02 38.51 0.02 0.03 6.21 0.02 0.02 EE.ii 2.21 43.50 45.33	3.87 48.10 71.55 56.18 0.03 0.04 EE(0.5) 6.94 56.25 51.47 101.35 0.03 0.03 32 EE 2.66 45.81 57.99 38.64 0.02 0.03 EE(0.5) 4.22 49.84 47.38	20.01 38.95 333.90 7.12 0.09 0.55 EE.i 11.30 62.90 53.38 7.51 0.14 0.12 naïve 20.01 41.07 333.96 6.92 0.09 0.55 EE.i 7.09 53.53 49.28	0.02 40.21 40.29 0.38 0.09 0.09 EE.ii 3.18 44.63 50.05 2.49 0.11 0.12 EE.h 0.01 42.43 40.27 0.69 0.10 0.10 EE.ii 2.83 45.75 47.64	4.83 50.80 76.06 3.45 0.12 0.17 EE(0.5) 8.46 58.89 54.13 5.59 0.14 0.12 EE 3.26 47.63 60.91 2.73 0.11 0.14 EE(0.5) 5.09 51.23 49.67

Table D.14: Results under model (2.43), by response and correlation. Population: stable

		low 1	res and lo	ow corr		res and l			es and h	0	high r	es and h	igh corr
Mathematical Mat													
See													
Figs					1								
Part					ı								
SE													
Fig. 1					I						1		
REB. REB. EE.		1			I								
APABLO 2.49 10.25 0.21 9.37 13.08 5.17 11.57 11.67	EIGE												
SE 15.50 134.61 151.20 94.95 90.38 94.08 61.56 46.88 55.74 65.23 52.17 63.48 APRB(β) 0.44 183.06 30.61 12.08 17.51 12.28 21.82 39.58 157.04 8.13 5.91 7.42 SE 0.09 0.07 0.08 0.24 0.24 0.12 0.02 0.03 0.03 0.03 0.18 0.14 0.10 0.03 0.03 0.03 0.15 0.16 0.14 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	$APRB(\beta_0)$. ,			
Page	,				I						1		
APRIB AP					I						1		
SE 0.09 0.07 0.08 0.08 0.04 0.24 0.09 0.03 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
Part		0.09	0.07	0.08	0.24		0.24		0.02	0.03		0.15	0.17
Native Native EEL Native SEL Native	ERSE	0.08	0.08	0.08	0.18	0.24	0.19	0.03	0.03	0.03	0.13	0.16	0.14
APRB(β ₀ 19.88 0.93 0.23 36.55 0.65 2.59 15.26 0.29 3.72 20.39 0.14 52.87 ERSE						$\Gamma=4, \beta_0$:	= 11023.06	$\beta_1 = -$	0.404123	32			
SE 109.93 91.17 119.17 75.98 59.60 74.21 33.18 36.91 46.94 40.55 41.44 52.87 APRB(β)1 221.77 4.67 8.60 41.78 3.37 0.26 218.33 4.27 52.97 9.24 0.05 3.60 SE 0.05 0.05 0.06 0.19 0.16 0.20 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.00 0.01 0.01 EE 0.55 0.05 0.06 0.09 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.05 0.09 0.11 12.18 12.16 0.05 0.05 0.05 0.01 12.18 12.21 12.18 12.21 12.18 12.21 12.21 12.21 12.21 12.21 12.21 12.21 12.21 12.21 12.21 12.21 12.21 12.21 12.21		naïve	$\mathbf{EE}_{-}\mathbf{h}$	$\mathbf{E}\mathbf{E}$	naïve	$\mathbf{EE}_{-}\mathbf{h}$	EE	naïve	$\mathbf{EE}_{-}\mathbf{h}$	$\mathbf{E}\mathbf{E}$	naïve	$\mathbf{EE}_{-}\mathbf{h}$	$\mathbf{E}\mathbf{E}$
Reser	$APRB(\beta_0)$	19.88	0.39	0.23	36.35	0.65	2.59	15.26	0.29	3.72	20.39	0.14	
APRB(β) Series 221.7 4.67 8.60 41.7s 3.73 0.26 218.33 4.27 52.27 9.24 0.05 0.05 0.06 0.12 0.02		1		119.17	I				36.81	46.49			
SE 0.05 0.05 0.05 0.09 0.09 0.10 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.05 0.09 0.10 ERS EE EE EE EE EE EE EE EE EE 10 0													
ERSE 0.55 0.05 0.05 0.02 0.15 EE.i EE.ii EE.ii EE.i I.10 3.3 8.4 4.9 4.0 4.0 4.9 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 <t< td=""><td></td><td></td><td></td><td></td><td>I</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					I								
Patrice Pa					l						1		
$ RARB(β_0) = RA$	ERSE												
SE 136.15 111.80 130.88 76.72 71.31 76.26 57.10 40.80 54.03 63.25 45.49 60.63 APRB(β) 76.66 73.77 52.86 17.57 12.24 110.22 20.33 136.81 111.6 2.14 8.23 SE 0.08 0.06 0.07 0.01 0.19 0.21 0.03 0.02 0.03 0.14 0.10 0.14 ERSE 0.08 0.06 0.07 0.01 0.19 0.21 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.03 0.01 0.12 0.15 0.02 0.02 0.03 3.03 2.01 6.02 0.35 3.39 3.07 4.93 8.93 4.09 9.03 1	ADDD(a)						. ,						
ERSE 11.3.47 13.40s 11.8.78 62.82 82.9s 67.50 47.94 48.23 49.24 50.37 53.05 52.5s APRB(β) 76.6e 73.77 52.8e 10.7e 12.1g 12.4g 18.10 2.03 13.6s 11.1e 2.1d 0.01 ERSE 0.06 0.07 0.15 0.2g 0.16 0.03 0.03 0.03 0.12 0.12 0.12 APRB(β) 19.79 0.38 3.85 36.37 0.76 6.57 15.28 0.35 3.39 20.0 0.15 4.62 APRB(β) 19.79 0.38 3.85 36.73 0.76 6.57 15.28 0.35 3.39 20.00 0.15 4.62 APRB(β) 19.79 0.38 3.85 36.74 59.29 6.627 15.28 3.39 30.9 30.42 49.94 APRB(β) 19.79 0.35 0.05 0.06 0.20 0.92 0.02 30.	0 7	1			I								
APRB(β ₁) 76.66 73.77 52.86 17.75 12.24 12.49 181.02 2.03 136.81 11.16 2.14 0.10 0.14 ERSE 0.06 0.07 0.07 0.01 0.20 0.03 0.03 0.03 0.14 0.10 0.12 ERSE 0.06 0.07 0.07 0.015 0.20 10.16 0.03 0.03 0.03 0.12 0.12 0.12 APRB(β) 19.79 0.38 3.85 36.37 0.76 6.57 15.28 0.05 0.33 20.40 0.15 4.62 SE 113.46 93.54 109.26 75.44 59.22 69.26 33.56 35.9 30.93 30.03 40.93 4.69 68.83 44.93 61.40 90.26 69.50 93.35 40.12 49.96 68.23 14.99 69.26 33.56 35.9 45.99 93.35 40.13 49.96 68.23 40.98 40.25 10.50 <					I								
SE 0.08 0.06 0.07 0.07 0.15 0.09 0.01 0.03 0.03 0.03 0.12 0.12 0.12 ERSE 0.07 0.07 0.01 0.09 0.03 0.03 0.03 0.12 0.12 0.12 PROR(β) 19.79 0.38 3.85 36.37 0.06 6.57 15.28 0.35 3.39 2.04 0.15 4.62 SE 113.46 3.54 109.26 75.44 59.29 69.26 33.56 35.89 45.99 39.35 40.12 4.42 ERSE 44.52 33.86 148.51 44.43 61.40 105.36 33.90 45.99 39.35 40.12 49.96 ERSE 44.52 38.86 144.51 44.71 44.13 5.86 42.52 18.59 40.91 8.99 40.98 76.13 ERSE 0.55 0.05 0.05 0.08 0.21 15.1 12.81 8.53 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
ERSE 0.06 0.07 0.07 0.01 0.02 0.06 0.03 0.03 0.03 0.01 0.12 0.12 0.12 RPB(β) naïve EEh Au 4 4 4 6.67 6.57 15.28 0.33 3.99 2.04 9.04 2.04 4 4 6.62 6.62 6.62 33.56 35.99 45.99 33.33 40.12 4.93 4.02 4.02 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03 4.03		1			I						1		
APRB(β) EEh EEh naïve EEh naïve EEh naïve EEh EEh EEh EEh EEh EEh naïve EEh EEh EEh Raïve EEh 449.96 APRB(β) 29.78 4.42 44.71 44.83 61.40 10.53 33.90 37.07 69.02 334.23 40.98 7.73 33.22 55.80 4.92 2.92 34.23 40.98 7.73 60.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.02		1			I								
APRB(β) INITION EEL Naïve EEL Naïve EEL Naïve EEL Naïve EEL Naïve EEL Naïve EEL APRB(β) 19.79 0.38 3.85 36.37 0.76 6.57 15.28 0.35 3.33 20.40 0.15 4.62 SE 113.46 93.54 190.26 75.44 59.22 69.26 33.56 35.89 45.99 39.35 40.98 76.13 APRB(β) 220.78 44.2 44.71 44.13 5.86 4.25 218.58 5.10 49.31 85.9 1.07 3.32 EES 0.05 0.05 0.06 0.20 0.16 0.02 0.02 0.02 0.02 0.09 0.09 0.12 ERSE 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.12 2.62 3.53 2.01 0.02 0.09 0.12 2.03 0.02 <t< td=""><td>ETGE</td><td>0.00</td><td>0.01</td><td>0.01</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.12</td><td>0.12</td><td>0.12</td></t<>	ETGE	0.00	0.01	0.01							0.12	0.12	0.12
APRB(β ₀) 19.79 0.38 3.85 36.37 0.76 6.57 15.28 0.35 3.39 20.40 0.15 4.62 SE 113.46 93.54 109.26 75.44 59.22 69.26 33.56 35.89 45.99 39.35 40.12 49.96 ERSE 445.20 93.86 148.51 448.43 61.40 105.36 331.90 37.07 69.02 334.23 40.98 76.13 APRB(β ₁) 220.78 4.42 44.71 44.13 5.86 4.25 218.58 5.10 49.31 8.59 1.07 3.32 SE 0.05 0.05 0.06 0.20 0.16 0.19 0.02 0.02 0.02 0.09 0.09 0.12 ERSE 0.55 0.05 0.08 0.81 0.15 0.25 0.55 0.02 0.04 0.54 0.0 0.09 0.12 ERSE 0.50 0.28 0.81 1.51 12.81 <td></td> <td>naïve</td> <td>EE_h</td> <td>EE</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>naïve</td> <td>EE_h</td> <td>EE</td>		naïve	EE_h	EE							naïve	EE_h	EE
SE 113.46 93.54 109.26 75.44 59.22 69.26 33.56 35.89 45.99 39.35 40.12 49.96 APRB(β1) 245.20 33.86 148.51 448.43 61.40 105.36 33.90 37.07 69.02 334.23 40.98 76.13 APRB(β1) 22.78 44.24 44.71 44.13 5.86 4.25 218.58 5.10 49.31 8.59 1.07 33.23 ERSE 0.05 0.05 0.06 0.20 0.15 0.05 0.05 0.00 0.01 0.17 APRB(β0) 9.94 0.28 7.78 16.45 1.51 12.81 8.53 2.01 6.30 11.08 2.99 8.24 SER 102.79 15.45 109.90 66.22 74.35 70.17 49.83 50.00 50.46 53.64 50.10 53.64 50.59 54.44 APRB(β1) 119.80 2.77 93.87 18.02 3.01 </td <td>$APRB(\beta_0)$</td> <td></td>	$APRB(\beta_0)$												
APRB(β) (β) 220.78 (β) 4.42 (β) 44.71 (β) 5.86 (β) 4.25 (β) 218.58 (β) 5.10 (β) 49.31 (β) 8.59 (β) 1.07 (β) 3.32 (β) SE 0.05 (\$0.05 (\$0.05 (\$0.06 (\$0.06 (\$0.20 (\$0.16 (\$0.19 (\$0.02 (\$0.02 (\$0.02 (\$0.00 (\$0.04 (\$0.04 (\$0.10 (\$0.17 (\$0.17 (\$0.18 (\$		113.46	93.54	109.26	I		69.26		35.89	45.99	39.35	40.12	49.96
SE 0.05 0.05 0.06 0.06 0.16 0.19 0.02 0.02 0.02 0.09 0.09 0.01 ERSE EE.i EE.i EE(0.5) EE.i EE.ii EE(0.5) EE.ii EE.ii EE.ii EE.ii EE.ii EE.ii EE.ii EE.ii EE.ii EE.ii<	ERSE	445.20	93.86	148.51	448.43	61.40	105.36	331.90	37.07	69.02	334.23	40.98	76.13
ERSE 0.55 0.05 0.08 0.81 0.15 0.25 0.55 0.02 0.04 0.54 0.10 0.17 APRB(β) 9.94 0.28 7.78 16.45 1.51 12.81 8.53 2.01 6.30 11.08 2.99 8.24 SE 12.78 10.27 118.26 76.90 63.89 75.05 57.53 40.44 53.49 61.27 44.83 57.48 ERSE 105.90 115.45 109.90 66.22 74.35 70.17 49.80 46.08 50.10 53.64 50.59 54.48 APRB(β) 119.80 2.77 93.87 18.02 3.06 13.09 124.57 28.35 92.04 7.26 5.59 54.44 APRB(β) 119.90 0.06 0.20 0.17 0.20 0.03 0.02 0.03 0.12 0.03 0.12 0.03 0.12 0.03 0.12 0.02 0.11 0.03 0.02 0.03 </td <td>$APRB(\beta_1)$</td> <td>220.78</td> <td>4.42</td> <td>44.71</td> <td>44.13</td> <td>5.86</td> <td>4.25</td> <td>218.58</td> <td>5.10</td> <td>49.31</td> <td>8.59</td> <td>1.07</td> <td>3.32</td>	$APRB(\beta_1)$	220.78	4.42	44.71	44.13	5.86	4.25	218.58	5.10	49.31	8.59	1.07	3.32
APRB(β) EE.i EE(b.) EE.i EE(b.) EE(b.) EE.i EE(b.) EE.i EE(b.) EE.i EE(b.)	SE	0.05	0.05	0.06	0.20	0.16	0.19	0.02	0.02	0.02	0.09	0.09	0.12
APRB($β_0$) 9.94 0.28 7.78 16.45 1.51 12.81 8.53 2.01 6.30 11.08 2.99 8.24 SE 122.78 102.79 118.26 76.90 63.89 75.05 57.53 40.64 53.49 61.27 44.83 57.48 ERSE 105.90 115.45 109.90 66.22 74.35 70.17 49.80 46.08 50.10 53.64 50.59 54.44 APRB($β_1$) 119.80 2.77 93.87 18.02 3.06 13.09 124.57 28.35 92.04 7.26 2.76 5.33 SE 0.07 0.05 0.06 0.20 0.17 0.20 0.03 0.02 0.03 0.12 0.12 0.12 0.12 ERSE 0.06 0.06 0.16 0.18 0.17 0.03 0.02 0.03 0.12 0.12 0.12 APRB($β_0$) 19.91 0.50 2.91 36.41 0.84 <t< td=""><td>ERSE</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.04</td><td></td><td></td><td></td></t<>	ERSE									0.04			
SE 122.78 102.79 118.26 76.90 63.89 75.05 57.53 40.64 53.49 61.27 44.83 57.48 ERSE 105.90 115.45 109.90 66.22 74.35 70.17 49.80 46.08 50.10 53.64 50.59 54.44 APRB(β1) 119.80 2.77 93.87 18.02 3.06 13.09 124.57 28.35 92.04 7.26 2.76 5.33 SE 0.07 0.05 0.06 0.20 0.17 0.20 0.03 0.02 0.03 0.12 0.12 0.12 T=T, β= 11023.05 β=0.404123 5.20 0.03 0.02 0.03 0.12 0.12 0.12 APRB(β) 19.91 0.50 2.91 36.41 0.84 4.78 15.27 0.37 2.15 20.40 0.15 3.08 SE 11.01 91.73 102.40 71.38 56.03 66.34 32.43 34.70<													
ERSE 105.90 115.45 109.90 66.22 74.35 70.17 49.80 46.08 50.10 53.64 50.59 54.44 APRB(β ₁) 119.80 2.77 93.87 18.02 3.06 13.09 124.57 28.35 92.04 7.26 2.76 5.33 SE 0.07 0.05 0.06 0.16 0.18 0.17 0.03 0.02 0.03 0.12 0.12 0.12 ERSE 0.06 0.06 0.16 0.18 0.17 0.03 0.02 0.03 0.12 0.12 0.12 APRB(β ₀) 19.91 0.50 2.91 36.41 0.84 4.78 15.27 0.37 2.15 20.40 0.15 3.08 SE 111.01 91.73 102.40 71.38 56.03 66.34 32.04 34.70 39.95 41.31 42.55 49.33 ERSE 445.31 94.14 128.21 448.46 61.59 <td< td=""><td></td><td>1</td><td></td><td></td><td>I</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		1			I								
APRB($β_1$) 119.80 2.77 93.87 18.02 3.06 13.09 124.57 28.35 92.04 7.26 2.76 5.33 SE 0.07 0.05 0.06 0.20 0.17 0.20 0.03 0.02 0.03 0.14 0.11 0.13 ERSE 0.06 0.06 0.16 0.18 0.17 0.03 0.02 0.03 0.12 0.12 0.12 T=10, $β_0 = 11023.06$, $β_1 = -0.4041232$ T=10, $β_1 = 1.023.06$, $β_1 = 0.024123$ T=10, $β_1 =$					I						1		
SE 0.07 0.05 0.06 0.20 0.17 0.20 0.03 0.02 0.03 0.14 0.11 0.13 ERSE 0.06 0.06 0.06 0.16 0.18 0.17 0.03 0.02 0.03 0.12 0.12 0.12 0.12 Principle 1 1 1 1 0.18 0.17 0.03 0.02 0.03 0.12 0.12 0.12 0.12 Principle 1 1 1 1 1 1 0.12 1 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.02 0.03 0.03 0.21 0.15 0.03 0.04 0.15 0.08 0.08 0.03 0.04 0.05 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03													
ERSE 0.06 0.06 0.06 0.16 0.18 0.17 0.03 0.02 0.03 0.12 0.12 0.12 0.12 Principal 1 1 1 1 1 1 0.03 0.02 0.03 0.12 0.13 0.12 0.13	0 -7				I								
καν (παίνα) EE.h EE naïve EE.h EE.h EE APRB(β0) 19.91 0.50 2.91 36.41 0.84 4.78 15.27 0.37 2.15 20.40 0.15 3.08 SE 111.01 91.73 102.40 71.38 56.03 66.34 32.04 34.70 39.95 41.31 42.55 49.33 ERSE 445.31 94.14 128.21 448.46 61.59 92.99 331.87 37.12 55.53 334.22 41.00 61.35 APRB(β1) 222.04 5.94 35.51 43.69 5.25 1.30 218.52 5.31 31.31 7.57 2.07 3.91 SE 0.05 0.05 0.02 0.17 0.19 0.02 0.02 0.02 0.02 0.03 0.53		1			I								
APRB(β) 19.91 0.50 2.91 36.41 0.84 4.78 15.27 0.37 2.15 20.40 0.15 3.08 SE 111.01 91.73 102.40 71.38 56.03 66.34 32.04 34.70 39.95 41.31 42.55 49.33 ERSE 445.31 94.14 128.21 448.46 61.59 92.99 331.87 37.12 55.53 334.22 41.00 61.35 APRB(β) 222.04 5.94 35.51 43.69 5.25 1.30 218.52 5.31 31.31 7.57 2.07 3.91 SE 0.05 0.05 0.02 0.17 0.19 0.02 0.02 0.02 0.09 0.09 0.01 ERSE 0.55 0.05 0.07 0.79 0.15 0.22 0.55 0.02 0.03 0.53 0.10 0.13 APRB(β) 7.01 1.52 5.28 11.28 2.93 8.41 5.16	ERSE	0.00	0.00	0.00							0.12	0.12	0.12
APRB($β_0$) 19.91 0.50 2.91 36.41 0.84 4.78 15.27 0.37 2.15 20.40 0.15 3.08 SE 111.01 91.73 102.40 71.38 56.03 66.34 32.04 34.70 39.95 41.31 42.55 49.33 ERSE 445.31 94.14 128.21 448.46 61.59 92.99 331.87 37.12 55.53 334.22 41.00 61.35 APRB($β_1$) 222.04 5.94 35.51 43.69 5.25 1.30 218.52 5.31 31.31 7.57 2.07 3.91 SE 0.05 0.05 0.02 0.17 0.19 0.02 0.02 0.02 0.09 0.09 0.10 ERSE 0.55 0.05 0.07 0.79 0.15 0.22 0.55 0.02 0.03 0.53 0.10 0.13 APRB($β_0$) 7.01 1.52 5.28 11.28 2.93 8.41 <td< td=""><td></td><td>naïvo</td><td>EE h</td><td>EE</td><td></td><td></td><td></td><td></td><td></td><td></td><td>naïvo</td><td>EE b</td><td>EE</td></td<>		naïvo	EE h	EE							naïvo	EE b	EE
SE 111.01 91.73 102.40 71.38 56.03 66.34 32.04 34.70 39.95 41.31 42.55 49.33 ERSE 445.31 94.14 128.21 448.46 61.59 92.99 331.87 37.12 55.53 334.22 41.00 61.35 APRB(β1) 222.04 5.94 35.51 43.69 5.25 1.30 218.52 5.31 31.31 7.57 2.07 3.91 SE 0.05 0.05 0.05 0.20 0.17 0.19 0.02 0.02 0.02 0.02 0.03 0.53 0.10 0.13 ERSE 0.55 0.05 0.07 0.79 0.15 0.22 0.55 0.02 0.03 0.53 0.10 0.13 APRB(β0) 7.01 1.52 5.28 11.28 2.93 8.41 5.16 1.79 3.61 6.92 2.66 4.92 SE 109.55 99.15 106.92 73.70	APRR(B ₀)												
ERSE 445.31 94.14 128.21 448.46 61.59 92.99 331.87 37.12 55.53 334.22 41.00 61.35 APRB(β ₁) 222.04 5.94 35.51 43.69 5.25 1.30 218.52 5.31 31.31 7.57 2.07 3.91 SE 0.05 0.05 0.05 0.20 0.17 0.19 0.02 0.02 0.02 0.02 0.09 0.09 0.10 ERSE 0.55 0.05 0.07 0.79 0.15 0.22 0.55 0.02 0.03 0.53 0.10 0.13 APRB(β ₀) 7.01 1.52 5.28 11.28 2.93 8.41 5.16 1.79 3.61 6.92 2.66 4.92 SE 109.55 99.15 106.92 73.70 61.74 71.56 45.65 38.55 43.30 55.93 46.83 53.39 ERSE 102.25 107.36 105.21 67.48 70.49	0 07				ı								
APRB($β_1$) 222.04 5.94 35.51 43.69 5.25 1.30 218.52 5.31 31.31 7.57 2.07 3.91 SE 0.05 0.05 0.05 0.20 0.17 0.19 0.02 0.02 0.02 0.09 0.09 0.10 ERSE 0.55 0.05 0.07 0.79 0.15 0.22 0.55 0.02 0.03 0.53 0.10 0.13 PEL: EE.i EE.i EE.ii EE.iii EE.ii EE.ii EE.ii					I								
SE 0.05 0.05 0.05 0.05 0.20 0.17 0.19 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.09 0.09 0.10 ERSE 0.55 0.05 0.07 0.79 0.15 0.22 0.55 0.02 0.03 0.53 0.10 0.13 APRB(β) 7.01 1.52 EE.05 EE.i E													
ERSE 0.55 0.05 0.07 0.79 0.15 0.22 0.55 0.02 0.03 0.53 0.10 0.13 APRB(β ₀) 7.01 1.52 5.28 11.28 2.93 8.41 5.16 1.79 3.61 6.92 2.66 4.92 SE 109.55 99.15 106.92 73.70 61.74 71.56 45.65 38.55 43.30 55.93 46.83 53.39 ERSE 102.25 107.36 105.21 67.48 70.49 70.20 45.74 43.92 45.86 49.74 48.24 50.17 APRB(β ₁) 86.65 16.30 65.60 9.91 1.14 61.8 75.36 25.78 52.79 6.28 3.59 4.97 SE 0.06 0.05 0.06 0.20 0.18 0.19 0.02 0.02 0.02 0.12 0.10 0.11		l .			1								
APRB($β_0$) 7.01 1.52 5.28 11.28 2.93 8.41 5.16 1.79 3.61 6.92 2.66 4.92 SE 109.55 99.15 106.92 73.70 61.74 71.56 45.65 38.55 43.30 55.93 46.83 53.39 ERSE 102.25 107.36 105.21 67.48 70.49 70.20 45.74 43.92 45.86 49.74 48.24 50.17 APRB($β_1$) 86.65 16.30 65.60 9.91 1.14 6.18 75.36 25.78 52.79 6.28 3.59 4.97 SE 0.06 0.05 0.06 0.20 0.18 0.19 0.02 0.02 0.02 0.12 0.10 0.11	ERSE				l						1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		EE_i	EE ₋ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)
ERSE 102.25 107.36 105.21 67.48 70.49 70.20 45.74 43.92 45.86 49.74 48.24 50.17 APRB(β1) 86.65 16.30 65.60 9.91 1.14 6.18 75.36 25.78 52.79 6.28 3.59 4.97 SE 0.06 0.05 0.06 0.20 0.18 0.19 0.02 0.02 0.02 0.12 0.10 0.11	$APRB(\beta_0)$	7.01	1.52	5.28	11.28	2.93	. ,	5.16	1.79		6.92	2.66	4.92
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		109.55	99.15	106.92	73.70	61.74	71.56	45.65	38.55	43.30	55.93	46.83	53.39
SE 0.06 0.05 0.06 0.20 0.18 0.19 0.02 0.02 0.02 0.12 0.10 0.11	l ~ _		107 00	105.91	67.48	70.49	70.20	45.74	43.92	45.86	49.74	48.24	50.17
	ERSE	102.25	107.36	105.21	01.40	.0.10							
ERSE 0.05 0.05 0.05 0.16 0.17 0.17 0.02 0.02 0.02 0.11 0.11 0.11	$APRB(\beta_1)$	86.65						75.36	25.78	52.79	6.28	3.59	
	$\begin{array}{c} \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \end{array}$	86.65 0.06	16.30 0.05	65.60 0.06	9.91 0.20	1.14 0.18	6.18 0.19	75.36 0.02	0.02	0.02	0.12	0.10	0.11

Table D.15: Results under model (2.45), by response and correlation. Population: stable

		low res			high res	S
		$T=3, \beta_0$	= 11764.93	$\beta_1 = -$		
	naïve	EE_h	EE	naïve		EE
$APRB(\beta_0)$	1.14	0.02	0.17	0.37	0.01	0.36
SE	254.91	276.14	351.66	144.89	199.99	248.04
ERSE	437.70		501.83		203.71	
$APRB(\beta_1)$	27.47			6.07		
SE	0.12	0.14		0.08	0.11	
ERSE	0.65	0.14	0.25	0.66	0.11	0.21
			EE(0.5)	EE ₋i	\mathbf{EE}_{-ii}	EE(0.5)
$APRB(\beta_0)$		0.43	0.20	0.63	0.34	0.54
SE	415.53	321.62	397.75	334.63	214.73	0.54 308.33 263 31
ERSE	316.50	347.56	397.75 327.04	264.56	241.88	263.31
$APRB(\beta_1)$			12.52	10.96	6.66	9.60
SE	0.23	0.16		0.19		
ERSE	0.17	0.17	0.17	0.15	0.13	0.15
			= 11023.06			32
		EE_h		naïve	EE_h	EE
$APRB(\beta_0)$		0.04		0.63		
SE	209.39	224.45	286.64	109.58	146.66	
ERSE	357.57	224.70	445.51	314.22	145.94	
$APRB(\beta_1)$	16.13	0.14	2.65	8.77	0.14	
SE (F1)	0.10	0.11		0.06	0.08	
ERSE	0.46	0.11	0.21	0.46	0.08	0.17
			EE(0.5)		EE _ii	
$APRB(\beta_0)$		0.27	. ,		0.18	0.37
SE			333.91			
ERSE	284.12	298.29	292.95		187.44	213.76
$APRB(\beta_1)$		1.83		6.19		
SE	0.18	0.12		0.15		0.13
ERSE		0.14	0.14	0.12		0.12
			= 11023.06	$\beta_1 = -$	-0.404123	39
	naïve	EE_h		naïve	EE_h	EE
$APRB(\beta_0)$	0.77	0.09	0.26	0.63	0.00	
SE	203.42			106.41		192.89
ERSE	354.44	222.66	441.40	314.14	145.71	308.94
$APRB(\beta_1)$	15.19	0.64	4.56	8.80	0.07	0.78
SE	0.09	0.10	0.14	0.06	0.08	0.11
ERSE	0.46	0.11	0.22	0.46	0.08	0.17
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
$APRB(\beta_0)$	0.54	0.09	0.44	0.13	0.11	0.09
SE	359.78	244.16	334.76	262.81	163.68	236.87
ERSE	304.17	286.96	308.52	226.83	188.58	222.20
$APRB(\beta_1)$	10.35	1.92	8.03	1.53	1.56	0.98
SE	0.18	0.12	0.17	0.15	0.09	0.13
ERSE	0.15	0.14	0.15	0.13	0.10	0.12
				-	0.40.410	32
	· '	$T=10, \beta_0$	= 11023.0	$6, \beta_1 =$	-0.40412	
	naïve	$\frac{T=10, \beta_0}{\mathbf{EE}_{-}\mathbf{h}}$	= 11023.0 EE	$\beta_1 = \frac{\beta_1}{\text{na\"ive}}$	_0.40412 EE _h	EE
$APRB(\beta_0)$,,,				EE 0.02
$\begin{array}{c} \text{APRB}(\beta_0) \\ \text{SE} \end{array}$	naïve	EE _h	EE	0.67 111.73	$\mathbf{EE}_{-}\mathbf{h}$	
	naïve 0.76	EE _h 0.11	EE 0.34	naïve 0.67	EE _h 0.06	0.02
SE	0.76 214.27	EE_h 0.11 228.85	0.34 265.96	0.67 111.73	EE_h 0.06 148.49	0.02 182.90
SE ERSE	0.76 214.27 355.40	EE_h 0.11 228.85 223.05	0.34 265.96 358.29	0.67 111.73 314.22	EE_h 0.06 148.49 146.00	0.02 182.90 242.17
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}(\beta_1) \end{array}$	naïve 0.76 214.27 355.40 14.66	EE_h 0.11 228.85 223.05 1.42	EE 0.34 265.96 358.29 5.34	naïve 0.67 111.73 314.22 9.41	EE_h 0.06 148.49 146.00 0.96	0.02 182.90 242.17 0.18
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}(\beta_1) \\ \text{SE} \end{array}$	naïve	EE.h 0.11 228.85 223.05 1.42 0.11 0.11	0.34 265.96 358.29 5.34 0.13 0.18	naïve 0.67 111.73 314.22 9.41 0.06 0.46	0.06 148.49 146.00 0.96 0.08 0.08	0.02 182.90 242.17 0.18 0.10 0.13
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}(\beta_1) \\ \text{SE} \\ \text{ERSE} \end{array}$	naïve 0.76 214.27 355.40 14.66 0.10 0.46 EE.i	EE.h 0.11 228.85 223.05 1.42 0.11 0.11 EE.ii	0.34 265.96 358.29 5.34 0.13 0.18 EE (0.5)	naïve 0.67 111.73 314.22 9.41 0.06 0.46 EE.i	EE_h 0.06 148.49 146.00 0.96 0.08 0.08 EE_ii	0.02 182.90 242.17 0.18 0.10 0.13 EE (0.5)
SE ERSE APRB(β_1) SE ERSE APRB(β_0)	naïve	EE_h 0.11 228.85 223.05 1.42 0.11 0.11 EE_iii 0.25	0.34 265.96 358.29 5.34 0.13 0.18 EE (0.5)	naïve	EE_h 0.06 148.49 146.00 0.96 0.08 0.08 EE_ii 0.02	0.02 182.90 242.17 0.18 0.10 0.13 EE (0.5)
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE	naïve	EE.h 0.11 228.85 223.05 1.42 0.11 0.11 EE.ii 0.25 250.43	0.34 265.96 358.29 5.34 0.13 0.18 EE (0.5) 0.48 293.28	naïve	EE_h 0.06 148.49 146.00 0.96 0.08 0.08 EE_ii 0.02 171.62	0.02 182.90 242.17 0.18 0.10 0.13 EE (0.5) 0.05 205.74
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE	naïve 0.76 214.27 355.40 14.66 0.10 0.46 EE.i 0.57 310.51 277.56	EE_h 0.11 228.85 223.05 1.42 0.11 0.11 EE_ii 0.25 250.43 267.04	0.34 265.96 358.29 5.34 0.13 0.18 EE (0.5) 0.48 293.28 279.83	0.67 111.73 314.22 9.41 0.06 0.46 EE .i 0.09 222.56 199.29	EE_h 0.06 148.49 146.00 0.96 0.08 0.08 EE_iii 0.02 171.62 180.42	0.02 182.90 242.17 0.18 0.10 0.13 EE (0.5) 0.05 205.74 195.95
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}(\beta_1) \\ \text{SE} \\ \text{ERSE} \\ \\ \\ \text{APRB}(\beta_0) \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}(\beta_1) \\ \end{array}$	naïve 0.76 214.27 355.40 14.66 0.10 0.46 EE_i 0.57 310.51 277.56	EE.h 0.11 228.85 223.05 1.42 0.11 0.11 EE.ii 0.25 250.43 267.04 3.95	0.34 265.96 358.29 5.34 0.13 0.18 EE (0.5) 0.48 293.28 279.83 7.58	naïve 0.67 111.73 314.22 9.41 0.06 0.46 EE_i 0.09 222.56 199.29 1.08	EE_h 0.06 148.49 146.00 0.96 0.08 0.08 EE_ii 0.02 171.62 180.42 0.19	0.02 182.90 242.17 0.18 0.10 0.13 EE (0.5) 0.05 205.74 195.95 0.51
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE	naïve 0.76 214.27 355.40 14.66 0.10 0.46 EE.i 0.57 310.51 277.56	EE_h 0.11 228.85 223.05 1.42 0.11 0.11 EE_ii 0.25 250.43 267.04	0.34 265.96 358.29 5.34 0.13 0.18 EE (0.5) 0.48 293.28 279.83	0.67 111.73 314.22 9.41 0.06 0.46 EE .i 0.09 222.56 199.29	EE_h 0.06 148.49 146.00 0.96 0.08 0.08 EE_iii 0.02 171.62 180.42	0.02 182.90 242.17 0.18 0.10 0.13 EE (0.5) 0.05 205.74 195.95

Table D.16: Results under model (2.41), by response and correlation. Population: volatile

		low 1	res and lo	ow corr		res and l			es and h	0	high r	es and h	nigh corr
APABB													
SERSE 16.54 14.05 193.35 16.31 8.18 18.62 46.84 46.52 61.07 48.25 45.64 57.10 SERSE 36.03 34.01 70.78 33.90 5.75 3.17 246.19 40.04 16.12 6.81 3.72 44.05 SERSE 40.78 40.70 0.15 1.35 0.21 0.42 0.02 0.03 0.02 0.03 0.02 0.03 SERSE 40.72 40.07 0.15 1.35 0.21 0.42 0.02 0.05 0.05 0.07 0.11 0.14 SERSE 40.77 18.49 212.66 182.15 14.04 128.11 74.27 57.16 10.00 64.17 53.48 62.32 APRB(β ₀) 1.34 60.29 0.13 13.97 0.273 0.04 0.55 0.57 0.40 0.15 0.15 SERSE 48.52 212.57 18.14 15.91 0.274 0.08 63.01 6.57 0.00 64.17 53.48 62.32 APRB(β ₀) 1.39 10.19 31.23 13.97 0.275 10.84 16.56 0.577 0.03 0.01 0.15 0.15 0.15 SERSE 40.11 0.11 0.10 0.26 0.22 0.27 0.03 0.03 0.03 0.01 0.15 0.15 0.15 SERSE 40.11 0.11 0.10 0.26 0.22 0.27 0.03 0.03 0.03 0.01 0.15 0.15 0.15 SERSE 40.15 18.25 18.75 0.05 0.02 0.02 0.03 0.03 0.01 0.15 0.15 0.15 SERSE 40.15 18.25 18.75 0.15 0.02 0.02 0.03 0.03 0.02 0.04 0.01 SERSE 40.15 18.25 18.75 0.15 0.02 0.02 0.03 0.03 0.02 0.04 0.02 SERSE 40.15 18.25 18.75 0.15 0.02 0.02 0.03 0.03 0.02 0.04 0.02 SERSE 40.15 18.25 18.75 0.15 0.05 0.02 0.03 0.04 0.02 0.05 0.00 0.00 0.00 APRB(β ₀) 81.67 0.07 0.15 13.25 0.05 0.02 0.05 0.00 0.00 0.00 0.00 0.00 SERSE 40.17 13.39 0.05 0.05 0.05 0.00 0													
Page					!						I		
APABL APA					l						l		
See													
Fig. 1					I						I		
Reb Ref Els Els Els Se Se Se Se Se Se Se S					!						I		
APABLØ 1.34 6.02 0.03 6.34 8.92 3.54 10.09 1.69 7.42 1.39 1.49 10.20 1.25 1.25 1.403 1.25 1	EIGE												
SE 29.77 184.69 212.60 191.44 10.59 127.45 11.03 10.98 10.03 65.97 64.09 51.05 53.68 63.93 67.09 64.00 51.05 53.68 53.90 67.00	$APRB(\beta_0)$. ,			. ,			
ERSE 18.62 212.57 191.4 10.591 127.45 110.84 65.86 34.59 64.40 51.52 58.61 59.90 APRB(β) 1.03 0.09 0.12 0.32 0.27 10.84 16.58 34.59 12.03 10.13 0.01 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.03 0.03 0.03 0.03 0.12 0.14 0.15 APRB(β) BEK B	,				I						l		
APRB(β) APB 104.79 31.23 13.97 0.57 10.84 10.58 34.59 120.73 14.13 0.18 0.15 10.15 ERSE 0.11 0.11 0.11 0.12 0.32 0.29 0.31 0.03 0.03 0.03 0.03 0.12 0.14 0.15					I						I		
SE RSE													
Part		0.13	0.09	0.12	0.32	0.29	0.31	0.04	0.03	0.04	0.15	0.13	0.15
Native Native EE Native	ERSE	0.11	0.11	0.11	0.26	0.32	0.27	0.03	0.03	0.03	0.12	0.14	0.12
APRIB APR					. ,	$\Gamma=4, \beta_0$	= 11023.06	$\beta_1 = -$	0.404123	32			
SE 166.98 145.25 118.75 110.54 89.30 116.54 47.70 69.30 61.24 40.25 38.99 48.24 79.07 APRB(β)1 81.67 0.97 11.38 7.34 11.30 24.22 11.41 0.05 35.06 36.1 0.32 3.17 SE 0.08 0.08 0.10 0.46 0.33 0.043 0.02 0.03 0.01 0.09 0.10 EE 0.72 0.07 0.15 1.23 0.32 0.75 0.73 0.09 0.01 0.01 APRB(β) 2.99 3.04 2.02 9.19 3.81 6.691 9.50 0.23 7.40 12.93 0.09 9.01 2.90 3.04 9.02 9.06 1.93 3.03 10.04 9.03 0.23 7.40 12.93 3.04 9.09 9.02 3.00 4.91 9.09 3.04 1.91 1.01 1.01 1.01 1.01 1.01 1.01 <td< td=""><td></td><td>naïve</td><td>$\mathbf{EE}_{-}\mathbf{h}$</td><td>$\mathbf{E}\mathbf{E}$</td><td>naïve</td><td>$\mathbf{EE}_{-}\mathbf{h}$</td><td>EE</td><td>naïve</td><td>$\mathbf{EE}_{-}\mathbf{h}$</td><td>EE</td><td>naïve</td><td>$\mathbf{EE}_{-}\mathbf{h}$</td><td>$\mathbf{E}\mathbf{E}$</td></td<>		naïve	$\mathbf{EE}_{-}\mathbf{h}$	$\mathbf{E}\mathbf{E}$	naïve	$\mathbf{EE}_{-}\mathbf{h}$	EE	naïve	$\mathbf{EE}_{-}\mathbf{h}$	EE	naïve	$\mathbf{EE}_{-}\mathbf{h}$	$\mathbf{E}\mathbf{E}$
ERSE 420,35 144 for 282,69 444.42 87.91 164.10 346.49 47.00 92.68 35.13 30.90 79.07 APRB(β) 81.67 0.08 0.01 0.46 0.33 0.43 0.02 0.02 0.05 0.01 0.09 0.12 ERSE 0.72 0.07 0.05 1.23 0.32 0.57 0.73 0.02 0.05 0.99 0.01 0.19 APRB(β) 2.99 3.04 2.02 9.19 181.90 110.50 127.10 75.09 56.00 70.53 55.83 52.93 9.99 9.99 9.91 19.11 10.64 120.50 111.40 3.00 10.04 10.33 10.39 6.03 50.35 52.70 52.39 APRB(β) 20.05 39.31 11.81 4.74 1.89 3.03 10.03 0.04 0.04 0.03 0.04 0.04 0.03 0.04 0.01 10.10 10.02 0.03 0.03	$APRB(\beta_0)$	8.45	0.08	0.44	19.67	0.02	1.39	11.59	0.00	2.99	15.90	0.02	
APRB(β ₁) 81.67 0.97 11.38 7.34 1.43 2.42 141.66 0.05 3.56 3.61 0.32 0.17 SE 0.08 0.08 0.01 0.15 1.23 0.32 0.57 0.73 0.02 0.05 0.90 0.01 0.01 APRB(β ₀) 2.99 3.04 2.02 9.19 3.15 EE.0 EE.1 EE.0 6.91 9.93 7.40 12.93 0.94 9.99 SE 219.17 173.59 20.955 131.30 110.69 127.10 75.09 56.00 75.33 57.83 34.65 54.97 ERSE 133.71 20.79 191.11 104.10 125.06 111.34 6.90 6.37 64.93 55.83 50.90 7.03 52.39 APRB(β ₁) 30.03 30.12 10.11 13.80 14.90 10.00 10.00 0.03 0.03 0.03 0.03 0.03 0.03 10.12 0.01			145.25		I		116.54	47.70			40.25		
SE 0.08 0.08 0.01 1.23 0.33 0.43 0.02 0.02 0.05 0.09 0.10 0.12 ERS EE.i EE.i5 EE.i7 EE.i5 EE.i5 EE.i7 EE.i5 <													
ERSE 0.72 0.07 0.15 1.23 0.32 0.75 0.73 0.02 0.05 0.91 0.10 0.01 <t< td=""><td></td><td></td><td></td><td></td><td>l</td><td></td><td></td><td></td><td></td><td></td><td>l</td><td></td><td></td></t<>					l						l		
Part					I						I		
APRB(β0) 2.99 3.04 2.02 9.19 3.81 6.91 9.63 0.23 7.40 12.93 0.94 9.99 SE 219.17 173.59 299.55 131.90 110.69 127.10 75.09 56.00 70.53 57.83 43.65 54.93 APRB(β1) 20.05 39.13 11.81 4.74 1.89 3.93 118.09 0.05 90.52 9.06 0.59 7.04 SE 0.13 0.09 0.12 0.46 0.43 0.45 0.04 0.03 0.04 0.11 0.14 0.16 0.42 0.22 0.04 0.04 0.01 0.12 28.8 0.02 0.08 0.02 2.24 12.15 0.01 2.83 18.93 0.02 <	ERSE												
SE 219.17 173.59 209.55 131.90 11.06 127.10 75.09 56.00 70.53 57.83 43.65 54.97 ERSE 183.71 20.79 191.11 160.41 125.06 111.34 63.96 63.97 64.33 50.83 52.70 52.39 APRB(β) 20.05 3.03 11.18 4.74 1.89 3.33 118.09 0.05 90.52 9.06 0.59 7.04 SE 0.11 0.11 0.11 0.11 0.11 0.01 0.03 0.03 0.03 0.01 0.13 0.12 EE 1.01 0.01 0.38 0.04 0.03 0.03 0.03 0.02 2.24 1.01 0.01 2.87 APRB(β) 5.81 0.03 1.48 14.10 100.89 3.33 18.09 0.02 2.24 12.15 0.01 2.88 APRB(β) 5.88 0.30 1.44 0.12 0.04 0.23	ADDD(A)			\ /						· /			(/
ERSE 18.7.1 207.99 191.11 106.41 25.06 111.34 63.96 63.97 64.93 50.83 52.70 52.39 APRB(β) 20.55 39.13 11.81 4.74 1.89 3.93 118.09 0.05 90.52 9.06 0.59 7.04 ERSE 0.11 0.11 0.11 0.13 0.44 0.43 0.03 0.03 0.03 0.12 0.13 0.12 APRB(β) Tarive ELb EE 10.00 3.36 8.98 0.02 2.24 12.15 0.01 2.87 SE 18818 167.45 193.64 129.11 104.82 122.34 55.34 54.02 65.71 41.06 3.90 46.37 SE 18818 167.45 193.64 129.11 104.82 120.98 33.78 54.20 65.71 41.06 39.90 46.37 SE 18818 0.03 0.04 0.04 0.02 0.23 3					I						I		
APRB(β ₁) 20.05 39.13 11.81 4.74 1.89 3.93 118.09 0.05 90.52 9.06 0.59 7.04 SE 0.13 0.09 0.12 0.46 0.43 0.45 0.04 0.03 0.03 0.03 0.01 0.11 0.12 ERSE 0.11 0.11 0.18 0.47 0.04 0.03 0.03 0.03 0.12 0.12 0.12 APRB(β ₀) 5.81 0.03 1.48 160 0.00 3.36 8.98 0.02 2.24 12.15 0.01 2.87 SE 188.18 167.45 193.64 129.11 106.78 122.34 55.34 50.02 22.1 12.16 0.03 2.63 2.87 ERSE 193.40 162.97 267.54 421.20 104.32 160.98 33.78 54.29 84.02 32.11 40.05 2.88 APRB(β) 53.88 0.30 0.14 0.61 0.22					I						l		
SE 0.13 0.09 0.12 0.46 0.43 0.45 0.04 0.03 0.03 0.04 0.13 0.04 0.13 0.03 0.12 0.13 0.12 EES 1 0.11 0.18 0.03 0.03 0.03 0.03 0.12 0.13 0.14 PRE naïve EEA naïve EEA naïve EEA naïve EEA naïve EEA naïve EEA 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.24 0.24 0.03 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.05 0.03 0.03 0.04 0.01 0.03 0.03 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01													
ERSE 0.11 0.11 0.31 0.38 0.47 0.40 0.03 0.03 0.03 0.12 0.13 0.12 RPB(β) Raïve EEA naïve EEA naïve EEA per ber ber ber ber ber ber ber ber ber b					I						I		
Nation											I		
Nariva	ETGE	0.11	0.11	0.11							0.12	0.10	0.12
APRB(β ₀) 5.81 0.03 1.48 14.60 0.00 3.36 8.98 0.02 2.24 12.15 0.01 2.87 SE 188.18 167.45 193.64 129.11 106.78 122.34 55.34 54.20 65.71 41.06 39.90 46.37 ERSE 397.40 162.97 267.54 421.20 104.32 160.98 333.78 54.29 84.02 332.81 40.77 65.28 APRB(β ₁) 53.88 0.30 1.40 7.05 0.29 3.69 100.96 0.21 25.84 13.14 0.45 3.04 SE 0.08 0.08 0.14 0.61 0.20 0.33 0.33 0.03 0.04 0.47 0.10 0.12 ERSE 0.34 0.08 0.63 5.33 1.41 4.00 6.60 2.09 4.93 SE 220.76 186.10 210.86 134.34 118.87 129.91 75.33 1.41		naïve	EE_h	EE							naïve	EE_h	EE
SE 188.18 167.45 193.64 129.11 106.78 122.34 55.34 54.20 65.71 41.06 39.90 46.37 ERSE 37.40 162.97 267.54 421.20 104.32 160.98 333.78 54.29 84.02 328.1 40.77 65.28 APRB(β) 3.88 0.08 0.10 7.05 0.29 3.69 10.96 0.21 25.84 13.14 0.45 0.34 ERSE 0.34 0.08 0.14 0.61 0.20 0.33 0.33 0.03 0.03 0.04 0.07 0.15 APRB(β) 3.79 0.06 3.01 8.09 0.80 6.39 5.33 1.41 4.00 6.60 2.09 4.93 SE 20.76 186.10 210.45 118.49 118.79 127.22 122.59 6.61 6.61 6.61 51.29 4.03 51.33 SER 193.94 193.42 118.59 127.22	$APRB(\beta_0)$												
APRB(β) (β) (β) (β) (β) (β) (β) (β) (β) (β)		188.18	167.45	193.64	129.11	106.78	122.34		54.20	65.71	41.06	39.90	46.37
SE 0.08 0.08 0.10 0.24 0.21 0.25 0.03 0.03 0.04 0.10 0.12 ERSE 0.34 0.08 0.14 0.61 0.20 0.33 0.36 0.03 0.04 0.47 0.10 0.15 APRB(β) 3.79 0.06 3.01 8.09 0.80 6.39 5.33 1.41 4.00 6.60 2.09 4.93 SE 220.76 186.10 210.86 134.34 118.87 129.91 75.10 62.83 71.31 54.04 43.58 51.13 ERSE 193.96 203.42 199.42 118.59 127.22 122.52 67.80 66.16 68.11 51.29 49.60 51.65 APRB(β) 37.41 2.63 29.60 8.91 0.41 7.18 61.79 15.59 46.51 7.44 2.26 5.38 SE 0.12 0.01 0.24 0.25 0.25 0.04 0.03	ERSE	397.40	162.97	267.54	421.20	104.32	160.98	333.78	54.29	84.02	332.81	40.77	65.28
ERSE 0.34 0.08 0.14 0.61 0.20 0.33 0.36 0.03 0.04 0.47 0.10 0.15 APRB(β) 3.79 0.06 3.01 8.09 0.80 6.39 5.33 1.41 4.00 6.60 2.09 4.93 SE 220.76 18.01 210.86 134.34 118.77 129.91 75.10 62.83 71.31 54.04 3.58 51.13 ERSE 193.96 203.42 199.42 118.59 127.22 122.52 67.80 66.16 68.11 51.09 49.00 51.63 APRB(β) 3.741 2.63 2.960 8.91 0.41 7.18 61.79 15.59 46.51 7.44 2.26 51.63 SE 0.11 0.10 0.19 0.24 0.25 0.04 0.03 0.04 0.13 0.11 0.13 ERSE 0.11 0.19 0.11 0.22 0.25 0.02 0.04	$APRB(\beta_1)$	53.88	0.30	14.00	7.05	0.29	3.69	100.96	0.21	25.84	13.14	0.45	3.04
APRB(β) EE.ii EE(i) EE.ii EE(i)	SE	0.08	0.08	0.10	0.24	0.21	0.25	0.03	0.03	0.03	0.10	0.10	0.12
APRB($β_0$) 3.79 0.06 3.01 8.09 0.80 6.39 5.33 1.41 4.00 6.60 2.09 4.93 SE 220.76 186.10 210.86 134.34 118.87 129.91 75.10 62.83 71.31 54.04 43.58 51.13 ERSE 193.96 203.42 199.42 118.59 127.22 122.52 67.80 66.16 68.11 51.29 49.60 51.65 APRB($β_1$) 37.41 2.63 29.60 8.91 0.41 7.18 61.79 15.59 46.51 7.44 2.26 5.38 SE 0.12 0.10 0.11 0.29 0.24 0.27 0.04 0.03 0.04 0.12 0.12 0.12 0.12 0.12 0.11 0.13 0.27 0.04 0.03 0.04 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.	ERSE			0.14	0.61		0.33			0.04			
SE 220.76 186.10 210.86 134.34 118.87 129.91 75.10 62.83 71.31 54.04 43.58 51.13 ERSE 193.96 203.42 199.42 118.59 127.22 122.52 67.80 66.16 68.11 51.29 49.60 51.65 APRB(β ₁) 37.41 2.63 29.60 8.91 0.41 7.18 61.79 15.59 46.51 7.44 2.26 5.38 SE 0.12 0.10 0.11 0.29 0.24 0.27 0.04 0.03 0.04 0.13 0.11 0.13 ERSE 0.11 0.10 0.11 0.29 0.24 0.27 0.04 0.03 0.04 0.13 0.11 0.13 ERSE 0.11 0.10 0.12 0.25 0.25 0.02 0.03 0.04 0.13 0.11 0.12 0.12 APRB(β ₀) 3.80 0.03 0.91 12.07 0.05 2.09				\ /			(/						
ERSE 193.96 203.42 199.42 118.59 127.22 122.52 67.80 66.16 68.11 51.29 49.60 51.65 APRB(β ₁) 37.41 2.63 29.60 8.91 0.41 7.18 61.79 15.59 46.51 7.44 2.26 5.38 SE 0.12 0.10 0.11 0.29 0.24 0.27 0.04 0.03 0.04 0.13 0.11 0.13 ERSE 0.11 0.10 0.11 0.29 0.25 0.25 0.04 0.03 0.04 0.12 0.12 0.12 PRSE 0.11 0.21 0.25 0.25 0.04 0.03 0.04 0.12 0.12 0.12 APRB(β ₀) 3.80 0.03 0.91 12.07 0.05 2.09 7.57 0.01 1.30 10.31 0.02 1.55 SE 202.55 185.34 209.55 142.49 118.02 12.91 59.46 58.52					I						I		
APRB($β_1$) 37.41 2.63 29.60 8.91 0.41 7.18 61.79 15.59 46.51 7.44 2.26 5.38 SE 0.12 0.10 0.11 0.29 0.24 0.27 0.04 0.03 0.04 0.13 0.11 0.13 ERSE 0.11 0.10 0.11 0.24 0.25 0.25 0.04 0.03 0.04 0.12 0.12 0.12 T=10.7 β = 11023.06 β = -0.4041232 T=10.8 β = 11023.06 β = -0.4041232 T=10.8 β = 11023.06 β = -0.4041232 T=10.4041232 T=10.8 β = -0.4041232 T=10.4041232 T=10.4041232 <					1						I		
SE 0.12 0.10 0.01 0.29 0.24 0.27 0.04 0.03 0.04 0.13 0.11 0.13 0.13 0.11 0.13 0.12 0.01 0.04 0.04 0.03 0.04 0.12 0.12 0.12 0.12 0.01 0.02 0.01 0.02 0.03 0.03 0.01 1.55 1.53 0.02 1.55 SE 0.01 1.30 10.31 0.02 1.55 SE 202.55 185.34 209.55 142.49 118.02 129.71 59.46 58.52 65.61 43.81 42.48 45.85 ERSE BS 395.21 212.93 217.72 25.04 30.93													
ERSE 0.11 0.10 0.11 0.24 0.25 0.25 0.04 0.03 0.04 0.12 0.12 0.12 0.12 PRSE maïve EE DE D	0 -7				I						I		
καινε EE.h A5.85 SE 202.55 185.34 252.06 426.16 117.65 153.64 339.50 59.98 76.42 336.79 42.94 54.96 APRB(β1) 118.21 2.01 31.95 212.79 21.14 2.59 327.29 0.39 57.60 86.21 13.57 1.72 SE 0.05 0.09 0.13					I						I		
APRB(β) 3.80 0.03 0.91 12.07 0.05 2.09 7.57 0.01 1.30 10.31 0.02 1.55 SE 202.55 185.34 209.55 142.49 118.02 129.71 59.46 58.52 65.61 43.81 42.48 45.85 ERSE 395.24 183.38 252.06 426.16 117.65 153.64 339.50 59.98 76.42 336.79 42.94 54.96 APRB(β1) 118.21 2.01 31.95 212.79 21.14 2.59 327.29 0.39 57.60 86.21 13.57 1.72 SE 0.09 0.01 0.44 0.38 0.41 0.03 0.03 0.03 0.17 0.16 0.17 ERSE 0.51 0.09 0.13 0.75 0.35 0.45 0.54 0.03 0.04 0.61 0.15 0.18 APRB(β2) 2.11 0.37 1.64 4.69 1.31 3.57 2	ERSE	0.11	0.10	0.11							0.12	0.12	0.12
APRB($β_0$) 3.80 0.03 0.91 12.07 0.05 2.09 7.57 0.01 1.30 10.31 0.02 1.55 SE 202.55 185.34 209.55 142.49 118.02 129.71 59.46 58.52 65.61 43.81 42.48 45.85 ERSE 395.24 183.38 252.06 426.16 117.65 153.64 339.50 59.98 76.42 336.79 42.94 54.96 APRB($β_1$) 118.21 2.01 31.95 212.79 21.14 2.59 327.29 0.39 57.60 86.21 13.57 1.72 SE 0.09 0.09 0.11 0.44 0.38 0.41 0.03 0.03 0.03 0.17 0.16 0.17 ERSE 0.51 0.09 0.13 0.75 0.35 0.45 0.54 0.03 0.04 0.61 0.15 0.18 APRB($β_0$) 2.11 0.37 1.64 4.69 1.31		naïvo	EE b	EE							naïvo	EE b	EE
SE 202.55 185.34 209.55 142.49 118.02 129.71 59.46 58.52 65.61 43.81 42.48 45.85 ERSE 395.24 183.38 252.06 426.16 117.65 153.64 339.50 59.98 76.42 336.79 42.94 54.96 APRB(β ₁) 118.21 2.01 31.95 212.79 21.14 2.59 327.29 0.39 57.60 86.21 13.57 1.72 SE 0.09 0.01 0.44 0.38 0.41 0.03 0.03 0.03 0.01 0.15 0.17 ERSE 0.51 0.09 0.13 0.75 0.35 0.45 0.54 0.03 0.04 0.61 0.15 0.18 APRB(β ₀) 2.11 0.37 1.64 4.69 1.31 3.57 2.82 1.14 2.04 3.36 1.44 2.38 SE 227.20 203.17 220.14 134.47 129.54 132.38	APRR(B ₀)												
ERSE 395.24 183.38 252.06 426.16 117.65 153.64 339.50 59.98 76.42 336.79 42.94 54.96 APRB(β ₁) 118.21 2.01 31.95 212.79 21.14 2.59 327.29 0.39 57.60 86.21 13.57 1.72 SE 0.09 0.09 0.11 0.44 0.38 0.41 0.03 0.03 0.03 0.17 0.16 0.17 ERSE 0.51 0.09 0.13 0.75 0.35 0.45 0.54 0.03 0.04 0.61 0.15 0.18 APRB(β ₀) 2.11 0.37 1.64 4.69 1.31 3.57 2.82 1.14 2.04 3.36 1.44 2.38 SE 227.20 203.17 220.14 134.47 129.54 132.38 69.44 64.76 67.65 48.57 44.94 47.39 ERSE 205.87 212.91 210.34 127.90 133.66	0 07				ı						ı		
APRB($β_1$) 118.21 2.01 31.95 212.79 21.14 2.59 327.29 0.39 57.60 86.21 13.57 1.72 SE 0.09 0.09 0.11 0.44 0.38 0.41 0.03 0.03 0.03 0.17 0.16 0.17 ERSE 0.51 0.09 0.13 0.75 0.35 0.45 0.54 0.03 0.04 0.61 0.15 0.18 PELi EE.ii EE(0.5) EE.ii					I						ı		
SE 0.09 0.09 0.11 0.44 0.38 0.41 0.03 0.03 0.03 0.17 0.16 0.17 ERSE 0.51 0.09 0.13 0.75 0.35 0.45 0.54 0.03 0.04 0.61 0.15 0.18 PEL EE.i EE.i EE.ii EE.iii EE.iii EE.iii EE.iii													
ERSE 0.51 0.09 0.13 0.75 0.35 0.45 0.54 0.03 0.04 0.61 0.15 0.18 APRB(β) 2.11 0.37 1.64 4.69 1.31 3.57 2.82 1.14 2.04 3.36 1.44 2.38 SE 227.20 203.17 220.14 134.47 129.54 132.38 69.44 64.76 67.65 48.57 44.94 47.39 ERSE 205.87 212.91 210.34 127.90 133.66 131.11 68.45 68.43 68.81 49.08 48.97 49.38 APRB(β ₁) 77.78 8.38 60.92 27.60 0.62 15.27 125.53 49.84 91.03 10.61 2.20 3.81 SE 0.12 0.10 0.11 0.42 0.41 0.04 0.03 0.04 0.18 0.17 0.18					I						I		
APRB($β_0$) 2.11 0.37 1.64 4.69 1.31 3.57 2.82 1.14 2.04 3.36 1.44 2.38 SE 227.20 203.17 220.14 134.47 129.54 132.38 69.44 64.76 67.65 48.57 44.94 47.39 ERSE 205.87 212.91 210.34 127.90 133.66 131.11 68.45 68.43 68.81 49.08 48.97 49.38 APRB($β_1$) 77.78 8.38 60.92 27.60 0.62 15.27 125.53 49.84 91.03 10.61 2.20 3.81 SE 0.12 0.10 0.11 0.42 0.41 0.04 0.03 0.04 0.18 0.17 0.18	ERSE				l						l		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		EE_i	EE ₋ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)
ERSE 205.87 212.91 210.34 127.90 133.66 131.11 68.45 68.43 68.81 49.08 48.97 49.38 APRB(β ₁) 77.78 8.38 60.92 27.60 0.62 15.27 125.53 49.84 91.03 10.61 2.20 3.81 SE 0.12 0.10 0.11 0.42 0.41 0.42 0.04 0.03 0.04 0.18 0.17 0.18	$APRB(\beta_0)$	2.11	0.37	1.64	4.69	1.31	. ,	2.82		2.04	3.36	1.44	2.38
APRB($β_1$) 77.78 8.38 60.92 27.60 0.62 15.27 125.53 49.84 91.03 10.61 2.20 3.81 SE 0.12 0.10 0.11 0.42 0.41 0.42 0.04 0.03 0.04 0.18 0.17 0.18		227.20	203.17	220.14	134.47	129.54	132.38	69.44	64.76	67.65	48.57	44.94	47.39
SE 0.12 0.10 0.11 0.42 0.41 0.42 0.04 0.03 0.04 0.18 0.17 0.18			212.91	210.34	127.90	133.66	131.11	68.45	68.43	68.81	49.08	48.97	49.38
					27.60	0.62	15.27	125.53	49.84	91.03	10.61	2.20	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					ı						I		
	ERSE	0.11	0.11	0.11	0.38	0.40	0.39	0.04	0.04	0.04	0.16	0.16	0.16

Table D.17: Results under model (2.43), by response and correlation. Population: volatile

	low 1	res and lo	ow corr	high	res and l			es and hi		high 1	es and h	igh corr
						= 11764.93						
	naïve	EE_h	EE	naïve	EE_h	EE	naïve	EE_h	EE	naïve	EE_h	EE
$APRB(\beta_0)$	25.89	15.63	23.08	39.15	21.63	29.98	16.10	11.16	12.13	21.80	13.21	11.54
SE	102.59	98.23	250.44	81.45	73.85	222.75	37.33	42.48	144.52	45.00	45.76	111.85
ERSE	551.36	261.74	582.45	553.42	239.03	511.43	411.78	161.05	341.35	419.16	137.48	249.10
$APRB(\beta_1)$	355.58	237.78	381.16	30.85	20.03	12.96	287.15	201.54	222.89	42.19	2.01	15.62
SE	0.05	0.05	0.13	0.21	0.19	0.52	0.02	0.02	0.08	0.10	0.11	0.31
ERSE	0.76	0.13	0.31	1.33	0.55	1.22	0.73	0.09	0.19	0.91	0.36	0.72
	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
$APRB(\beta_0)$	19.68	25.30	20.55	23.15	34.15	24.92	8.64	13.77	9.66	5.22	13.89	7.13
SE	347.10	199.69	321.41	309.98	177.53	286.88	229.71	115.66	203.94	161.63	101.72	145.94
ERSE	368.59	417.26	382.55	324.59	373.57	337.79	243.40	235.64	243.82	181.20	187.11	183.65
$APRB(\beta_1)$	375.88	406.74	372.82	3.67	17.65	6.22	164.00	252.42	180.95	47.03	7.12	37.11
SE	0.20	0.10	0.18	0.73	0.42	0.67	0.13	0.06	0.11	0.50	0.26	0.44
ERSE	0.21	0.22	0.21	0.79	0.89	0.82	0.13	0.13	0.13	0.53	0.51	0.53
					,,,	= 11023.00						
	naïve	EE_h	EE	naïve	$\mathbf{EE}_{-}\mathbf{h}$	EE	naïve	$\mathbf{EE}_{-}\mathbf{h}$	EE	naïve	$\mathbf{EE}_{-}\mathbf{h}$	EE
$APRB(\beta_0)$	23.16	15.95	17.49	36.39	23.73	24.17	15.30	12.06	11.10	20.40	14.66	12.51
SE	93.26	91.44	197.21	70.62	65.69	172.42	34.09	38.54	110.72	39.19	39.75	93.38
ERSE	447.14	222.97	438.96	450.35	209.15	384.35	335.59	127.44	243.65	338.75	126.26	208.52
$APRB(\beta_1)$	229.43	165.80	194.00	14.89	21.72	28.19	195.36	155.22	143.89	9.32	37.17	41.77
SE	0.04	0.05	0.10	0.20	0.18	0.50	0.02	0.02	0.06	0.10	0.09	0.16
ERSE	0.76	0.11	0.23	1.31	0.58	1.05	0.74	0.07	0.13	0.91	0.18	0.31
A DDD D (0)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
$APRB(\beta_0)$	14.03	20.56	14.96	17.79	29.43	19.55	8.12	12.83	9.06	8.40	14.23	9.78
SE	273.42	148.65	252.01	238.00	133.66	219.43	172.17	85.46	152.02	132.85	83.62	119.12
ERSE	286.58	321.84	297.67	254.19	291.14	264.74	180.06	171.16	179.85	161.00	161.84	162.41
$APRB(\beta_1)$	169.21	225.00	174.42	31.07	27.89	30.09	105.94	166.66	117.83	49.26	43.31	45.96
SE	0.15	0.08	0.14	0.69	0.38	0.64	0.09	0.05	0.08	0.22	0.14	0.20
ERSE	0.16	0.16	0.16	0.71	0.81	0.73	0.10	0.09	0.10	0.24	0.24	0.24
		TOTO 1	1717			= 11023.00		-0.404123			TOTO 1	1212
ADDD(2)	naïve	EE_h	16.20	naïve	EE _h	EE	naïve	EE_h	12.21	naïve	EE_h	EE
$APRB(\beta_0)$	23.08	18.15	16.39	36.50	28.09	25.09	15.27	13.16	12.21	20.48	16.41	15.37
SE ERSE	94.94	95.92 228.51	174.57	71.15	67.55	151.00	32.87	37.36	78.63	39.12	39.33	72.27 177.04
	437.98		359.27	438.17	230.93	337.03	327.70	123.97	175.09	330.62	138.46	
$APRB(\beta_1)$ SE	209.21 0.04	164.49 0.05	147.31	50.64	34.76	30.60 0.28	179.78	155.90	144.69	34.67	20.46	18.50
			0.10	0.17	0.17		0.02	0.02	0.04	0.08	0.08	0.13
ERSE	0.43 EE _i	0.13 EE _ii	0.20	0.65 EE _i	0.35 EE _ii	0.56 EE (0.5)	0.41 EE _i	0.07 EE _ii	0.09	0.44 EE _i	0.19 EE _ii	0.25
ADDD(2)	13.62	18.52	$\frac{\mathbf{EE}(0.5)}{14.52}$		27.96	22.24		12.74	EE(0.5) 11.41	14.02	15.59	EE (0.5)
$APRB(\beta_0)$ SE		16.52 146.53		20.80			10.90	73.12	92.69	85.87		
ERSE	232.97 266.06	281.96	213.40 273.47	199.00 258.22	131.63 277.78	182.41 266.00	102.60 150.28	148.42	150.37	157.25	71.21 158.82	79.62 158.38
$APRB(\beta_1)$	118.91	170.46	128.02	23.45	34.44	25.96	128.99	151.23	135.02	157.25	18.41	16.92
SE	0.13	0.08	0.12	0.36	0.24	0.33	0.06	0.04	0.05	0.15	0.12	0.14
ERSE	0.13	0.08	0.12	0.30	0.24	0.33	0.08	0.04	0.03	0.13	0.12	0.14
ERSE	0.10	0.10	0.10			0.43 0.43 0.43				0.22	0.22	0.22
	naïve	EE_h	EE	naïve	ΕΕ _h	$\frac{\mathbf{EE}}{\mathbf{E}}$	naïve	EE_h	EE	naïve	EE_h	EE
$APRB(\beta_0)$	23.07	20.87	19.83	36.55	30.09	28.23	15.21	14.72	14.39	20.46	16.96	16.41
SE	93.81	95.54	177.87	71.70	69.28	136.32	33.12	37.97	77.97	39.45	39.59	62.07
ERSE	449.05	277.12	379.29	449.61	245.35	313.93	336.66	164.20	203.31	338.67	132.69	155.85
$APRB(\beta_1)$	800.47	783.88	750.71	199.36	167.01	163.54	687.15	670.13	655.11	87.25	97.17	96.44
SE	0.04	0.05	0.09	0.26	0.25	0.32	0.02	0.02	0.04	0.08	0.08	0.10
ERSE	0.64	0.03	0.09	0.20	0.25 0.41	0.53	0.02	0.02	0.04	0.08	0.08	0.10
110011	EE_i	EE _ii	$\mathbf{EE}(0.5)$	EE _i	EE _ii	EE (0.5)	EE _i	EE _ii	$\mathbf{EE}(0.5)$	EE _i	EE _ii	EE (0.5)
$APRB(\beta_0)$	18.57	20.53	19.03	26.11	29.05	26.96	14.01	14.49	14.16	15.77	16.43	16.12
SE	221.28	165.86	204.24	165.55	$\frac{29.05}{128.37}$	153.74	91.23	76.74	84.68	67.90	62.02	64.70
ERSE	312.90	321.46	318.67	266.48	277.03	272.21	186.77	186.76	187.05	144.31	145.83	145.37
$APRB(\beta_1)$	709.99	781.73	721.99	156.12	165.78	159.10	638.11	660.11	644.77	97.13	96.46	96.55
μ_1	103.33	101.10	141.99	100.12	100.10	109.10	050.11	000.11	044.11	91.10		
SE	0.19	0.00	Λ 11	0.3⊭	0.21	0.34	0.0%	0.04	0.0%	0.11	0.10	0.11
SE ERSE	0.12 0.17	$0.09 \\ 0.17$	0.11 0.17	0.35 0.46	$0.31 \\ 0.47$	$0.34 \\ 0.46$	0.05 0.10	0.04 0.10	$0.05 \\ 0.10$	0.11 0.21	$0.10 \\ 0.22$	0.11 0.22

Table D.18: Results under model (2.45), by response and correlation. Population: volatile

		low res			high res	3
		$T=3, \beta_0$	= 11766.36	$\beta_1 = -$	-0.345997	78
	naïve	$\mathbf{EE}_{-}\mathbf{h}$	EE	naïve	$\mathbf{EE}_{-}\mathbf{h}$	EE
$APRB(\beta_0)$	1.17	0.13	0.05	1.39	0.04	
SE	268.06	300.19	380.42	182.36	247.96	315.40
ERSE	419.26	308.76	554.98	360.21	240.17	456.11
$APRB(\beta_1)$	27.57	2.40	2.11	26.61	0.86	2.76
SE	0.13	0.15	0.20	0.10	0.14	0.17
ERSE	0.70	0.16	0.29	0.70	0.13	0.25
	$\mathbf{E}\mathbf{E}_{-\mathbf{i}}$	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
$APRB(\beta_0)$	0.53	0.35	0.37	0.67	0.47	0.42
SE	450.36	346.10	431.03	421.05	275.26	0.42 388.91
ERSE	348.93	379.64	360.16	313.65		312.27
$APRB(\beta_1)$	21.00	4.10	15.03	13.56	8.67	8.59
SE	0.25	0.18	0.23	0.23	0.15	0.21
ERSE	0.19	0.19	0.19	0.17	0.16	0.17
		$T=4, \beta_0$	= 11025.7	$\beta_1 = -1$	-0.452641	13
	naïve		EE		EE_h	EE
$APRB(\beta_0)$	0.42	0.08	0.04	0.21	0.02	0.06
SE	224.91	243.53	315.08	117.45	150.46	203.46
ERSE			460.07		153.63	323.96
$APRB(\beta_1)$	5.95	0.62	0.54	2.85	0.28	
SE	0.10	0.12	0.15	0.06	0.08	0.11
ERSE	0.70	0.12	0.23		0.08	0.18
	$\mathbf{E}\mathbf{E}_{-\mathbf{i}}$	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
$APRB(\beta_0)$	0.11	0.14	0.07	0.02	0.11	0.01
SE	379.29	274.86	360.69	276.99	168.69	253.05
ERSE		307.76	302.46	223.83	197.22	222.24
$APRB(\beta_1)$	3.70	1.04	2.64	0.34	1.54	0.05
SE	0.19	0.13	0.18	0.15	0.09	0.14
ERSE	0.15	0.15	0.15	0.12	0.11	0.12
		$T=7, \beta_0$	= 11025.7	$\beta_1 = -1$	-0.452641	13
	naïve	$\mathbf{EE}_{-}\mathbf{h}$	EE	naïve	EE_h	EE
$APRB(\beta_0)$	0.91	0.01	0.18	0.52	0.01	
SE			070 77		145.20	187.33
		217.51				
ERSE		212.32	418.80	309.08	144.46	
ERSE APRB (β_1)	363.82 11.20	212.32 0.07	418.80	6.28	0.12	286.65 2.21
ERSE APRB (β_1) SE	363.82 11.20 0.09	212.32 0.07 0.11	418.80 2.46 0.14	6.28 0.06	0.12 0.08	286.65 2.21 0.10
ERSE APRB (β_1)	363.82 11.20 0.09 0.33	212.32 0.07 0.11 0.11	2.46 0.14 0.22	6.28 0.06 0.33	0.12 0.08 0.08	286.65 2.21 0.10 0.16
ERSE APRB (β_1) SE ERSE	363.82 11.20 0.09 0.33 EE _i	212.32 0.07 0.11 0.11 EE _ii	418.80 2.46 0.14 0.22 EE (0.5)	6.28 0.06 0.33 EE _i	0.12 0.08 0.08 EE _ii	286.65 2.21 0.10 0.16 EE (0.5)
ERSE APRB(β_1) SE ERSE APRB(β_0)	363.82 11.20 0.09 0.33 EE _i	212.32 0.07 0.11 0.11 EE _ii	418.80 2.46 0.14 0.22 EE (0.5)	6.28 0.06 0.33 EE _i	0.12 0.08 0.08 EE _ii	286.65 2.21 0.10 0.16 EE (0.5)
ERSE APRB (β_1) SE ERSE APRB (β_0) SE	363.82 11.20 0.09 0.33 EE .i 0.43 352.59	212.32 0.07 0.11 0.11 EE.ii 0.05 242.38	418.80 2.46 0.14 0.22 EE (0.5) 0.33 327.80	6.28 0.06 0.33 EE _i 0.37 249.00	0.12 0.08 0.08 EE_ii 0.13 162.46	286.65 2.21 0.10 0.16 EE (0.5) 0.29 225.89
ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE	363.82 11.20 0.09 0.33 EE .i 0.43 352.59 287.60	212.32 0.07 0.11 0.11 EE_ii 0.05 242.38 269.32	418.80 2.46 0.14 0.22 EE (0.5) 0.33 327.80 291.52	6.28 0.06 0.33 EE .i 0.37 249.00 213.78	0.12 0.08 0.08 EE _ii 0.13 162.46 183.57	286.65 2.21 0.10 0.16 EE (0.5) 0.29 225.89 210.17
ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1)	363.82 11.20 0.09 0.33 EE .i 0.43 352.59 287.60 5.82	212.32 0.07 0.11 0.11 EE_ii 0.05 242.38 269.32 0.88	418.80 2.46 0.14 0.22 EE (0.5) 0.33 327.80 291.52 4.49	6.28 0.06 0.33 EE _i 0.37 249.00 213.78 4.42	0.12 0.08 0.08 EE _iii 0.13 162.46 183.57 1.55	286.65 2.21 0.10 0.16 EE (0.5) 0.29 225.89 210.17 3.47
ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE	363.82 11.20 0.09 0.33 EE .i 0.43 352.59 287.60 5.82 0.19	212.32 0.07 0.11 0.11 EE.ii 0.05 242.38 269.32 0.88 0.12	2.46 0.14 0.22 EE (0.5) 0.33 327.80 291.52 4.49 0.17	6.28 0.06 0.33 EE .i 0.37 249.00 213.78 4.42 0.14	0.12 0.08 0.08 EE.ii 0.13 162.46 183.57 1.55 0.09	286.65 2.21 0.10 0.16 EE (0.5) 0.29 225.89 210.17 3.47 0.12
ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1)	363.82 11.20 0.09 0.33 EE _i 0.43 352.59 287.60 5.82 0.19 0.15	212.32 0.07 0.11 0.11 EE.ii 0.05 242.38 269.32 0.88 0.12 0.14	418.80 2.46 0.14 0.22 EE (0.5) 0.33 327.80 291.52 4.49 0.17 0.15	6.28 0.06 0.33 EE .i 0.37 249.00 213.78 4.42 0.14 0.12	0.12 0.08 0.08 EE _ii 0.13 162.46 183.57 1.55 0.09 0.10	286.65 2.21 0.10 0.16 EE (0.5) 0.29 225.89 210.17 3.47 0.12 0.12
ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_0)$ SE ERSE $APRB(\beta_1)$ SE $APRB(\beta_1)$ SE	363.82 11.20 0.09 0.33 EE _i 0.43 352.59 287.60 5.82 0.19 0.15	$\begin{array}{c} 212.32 \\ \hline 0.07 \\ 0.11 \\ \hline 0.11 \\ \hline \textbf{EE.ii} \\ \hline 0.05 \\ 242.38 \\ 269.32 \\ \hline 0.88 \\ 0.12 \\ 0.14 \\ \hline \textbf{T=10}, \beta_0 \end{array}$	$\begin{array}{c} 418.80 \\ 2.46 \\ 0.14 \\ 0.22 \\ \textbf{EE}(0.5) \\ 0.33 \\ 327.80 \\ 291.52 \\ 4.49 \\ 0.17 \\ 0.15 \\ = 11025.7 \end{array}$	$\begin{array}{c} 6.28 \\ 0.06 \\ 0.33 \\ \hline \textbf{EE.i} \\ 0.37 \\ 249.00 \\ 213.78 \\ 4.42 \\ 0.14 \\ 0.12 \\ 7, \ \beta_1 = \end{array}$	0.12 0.08 0.08 EE .ii 0.13 162.46 183.57 1.55 0.09 0.10 -0.45264	286.65 2.21 0.10 0.16 EE(0.5) 0.29 225.89 210.17 3.47 0.12 0.12
ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE	363.82 11.20 0.09 0.33 EE _i 0.43 352.59 287.60 5.82 0.19 0.15	$\begin{array}{c} 212.32 \\ \hline 0.07 \\ 0.11 \\ \hline 0.11 \\ \hline \textbf{EE.ii} \\ \hline 0.05 \\ 242.38 \\ 269.32 \\ \hline 0.88 \\ 0.12 \\ 0.14 \\ \hline \textbf{T=10}, \beta_0 \\ \hline \textbf{EE.h} \\ \end{array}$	418.80 2.46 0.14 0.22 EE (0.5) 0.33 327.80 291.52 4.49 0.17 0.15 0=11025.7 EE	$\begin{array}{c} 6.28 \\ 0.06 \\ 0.33 \\ \hline \textbf{EE.i} \\ 0.37 \\ 249.00 \\ 213.78 \\ 4.42 \\ 0.14 \\ 0.12 \\ \hline \textbf{7}, \ \beta_1 = \\ \hline \textbf{na\"{ve}} \end{array}$	0.12 0.08 0.08 EE _ii 0.13 162.46 183.57 1.55 0.09 0.10 -0.45264 EE _h	286.65 2.21 0.10 0.16 EE(0.5) 0.29 225.89 210.17 3.47 0.12 0.12 13 EE
ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE APRB(β_1)	363.82 11.20 0.09 0.33 EE _i 0.43 352.59 287.60 5.82 0.19 0.15 naïve 0.86	$\begin{array}{c} 212.32 \\ \hline 0.07 \\ 0.11 \\ \hline 0.11 \\ \hline \textbf{EE.ii} \\ \hline 0.05 \\ 242.38 \\ 269.32 \\ \hline 0.88 \\ 0.12 \\ 0.14 \\ \hline \textbf{T=10}, \beta_0 \\ \hline \textbf{EE.h} \\ \hline 0.00 \\ \end{array}$	$\begin{array}{c} 418.80 \\ 2.46 \\ 0.14 \\ 0.22 \\ \hline \textbf{EE}(0.5) \\ 0.33 \\ 327.80 \\ 291.52 \\ 4.49 \\ 0.17 \\ 0.15 \\ = 11025.7 \\ \hline \textbf{EE} \\ 0.24 \\ \end{array}$	$\begin{array}{c} 6.28 \\ 0.06 \\ 0.33 \\ \hline \textbf{EE.i} \\ 0.37 \\ 249.00 \\ 213.78 \\ 4.42 \\ 0.14 \\ 0.12 \\ \hline \textbf{7}, \ \beta_1 = \\ \hline \textbf{na\"{i}ve} \\ \hline \end{array}$	0.12 0.08 0.08 EE.ii 0.13 162.46 183.57 1.55 0.09 0.10 -0.45264 EE.h	286.65 2.21 0.10 0.16 EE(0.5) 0.29 225.89 210.17 3.47 0.12 0.12 13 EE 0.05
ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE	363.82 11.20 0.09 0.33 EE.i 0.43 352.59 287.60 5.82 0.19 0.15 naïve 0.86 221.13	$\begin{array}{c} 212.32 \\ \hline 0.07 \\ 0.11 \\ 0.11 \\ \hline \textbf{EE.ii} \\ 0.05 \\ 242.38 \\ 269.32 \\ 0.88 \\ 0.12 \\ 0.14 \\ \hline \textbf{T=10}, \ \beta_0 \\ \hline \textbf{EE.h} \\ 0.00 \\ 249.88 \\ \end{array}$	418.80 2.46 0.14 0.22 EE(0.5) 0.33 327.80 291.52 4.49 0.17 0.15 = 11025.7 EE 0.24 318.11	$\begin{array}{c} 6.28 \\ 0.06 \\ 0.33 \\ \hline \text{EE_i} \\ 0.37 \\ 249.00 \\ 213.78 \\ 4.42 \\ 0.14 \\ 0.12 \\ 7, \ \beta_1 = \\ \hline \textbf{na\"{i}ve} \\ 0.54 \\ 146.33 \\ \end{array}$	0.12 0.08 0.08 EE.ii 0.13 162.46 183.57 1.55 0.09 0.10 -0.45264 EE.h 0.00 195.77	286.65 2.21 0.10 0.16 EE(0.5) 0.29 225.89 210.17 0.12 0.12 13 EE 0.05 247.82
ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE	363.82 11.20 0.09 0.33 EE.i 0.43 352.59 287.60 5.82 0.19 0.15 naïve 0.86 221.13 343.35	$\begin{array}{c} 212.32 \\ \hline 0.07 \\ 0.11 \\ 0.11 \\ \hline \textbf{EE.ii} \\ 0.05 \\ 242.38 \\ 269.32 \\ 0.88 \\ 0.12 \\ 0.14 \\ \hline \textbf{T=10}, \ \beta_0 \\ \hline \textbf{EE.h} \\ 0.00 \\ 249.88 \\ 250.78 \\ \end{array}$	418.80 2.46 0.14 0.22 EE(0.5) 0.33 327.80 291.52 4.49 0.17 0.15 = 11025.7 EE 0.24 318.11 439.81	$\begin{array}{c} 6.28 \\ 0.06 \\ 0.33 \\ \hline \text{EE.i} \\ 0.37 \\ 249.00 \\ 213.78 \\ 4.42 \\ 0.14 \\ 0.12 \\ \hline \textbf{7}, \ \beta_1 = \\ \hline \textbf{na\"{ve}} \\ 0.54 \\ 146.33 \\ 294.03 \\ \end{array}$	0.12 0.08 0.08 EE.ii 0.13 162.46 183.57 1.55 0.09 0.10 -0.45264 EE.h 0.00 195.77 194.07	286.65 2.21 0.10 0.16 EE(0.5) 0.29 225.89 210.17 0.12 0.12 13 EE 0.05 247.82 326.54
ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE	363.82 11.20 0.09 0.33 EE.i 0.43 352.59 287.60 5.82 0.19 0.15 maïve 0.86 221.13 343.35 47.46	$\begin{array}{c} 212.32 \\ \hline 0.07 \\ 0.11 \\ 0.11 \\ \hline \textbf{EE.ii} \\ 0.05 \\ 242.38 \\ 269.32 \\ 0.88 \\ 0.12 \\ 0.14 \\ \hline \textbf{T=}10, \beta_0 \\ \hline \textbf{EE.h} \\ 0.00 \\ 249.88 \\ 250.78 \\ \hline 0.31 \\ \end{array}$	$\begin{array}{c} 418.80 \\ 2.46 \\ 0.14 \\ 0.22 \\ \hline \textbf{EE}(0.5) \\ 0.33 \\ 327.80 \\ 291.52 \\ 4.49 \\ 0.17 \\ 0.15 \\ \hline \textbf{EE} \\ 0.24 \\ 318.11 \\ 439.81 \\ 11.82 \\ \end{array}$	$\begin{array}{c} 6.28 \\ 0.06 \\ 0.33 \\ \hline \textbf{EE.i} \\ 0.37 \\ 249.00 \\ 213.78 \\ 4.42 \\ 0.14 \\ 0.12 \\ 7, \ \beta_1 = \\ \hline \textbf{na\"{i}ve} \\ 0.54 \\ 146.33 \\ 294.03 \\ 25.18 \\ \end{array}$	0.12 0.08 0.08 EE.ii 0.13 162.46 183.57 1.55 0.09 0.10 -0.45264 EE.h 0.00 195.77 194.07	286.65 2.21 0.10 0.16 EE(0.5) 0.29 225.89 210.17 0.12 0.12 13 EE 0.05 247.82 326.54 2.34
ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE	363.82 11.20 0.09 0.33 EE _i 0.43 352.59 287.60 5.82 0.19 0.15 naïve 0.86 221.13 343.35 47.46 0.11	$\begin{array}{c} 212.32 \\ \hline 0.07 \\ 0.11 \\ 0.11 \\ \hline \textbf{EE.ii} \\ 0.05 \\ 242.38 \\ 269.32 \\ 0.88 \\ 0.12 \\ 0.14 \\ \hline \textbf{T=10}, \beta_0 \\ \hline \textbf{EE.h} \\ 0.00 \\ 249.88 \\ 250.78 \\ \hline 0.31 \\ 0.13 \\ \end{array}$	$\begin{array}{c} 418.80 \\ 2.46 \\ 0.14 \\ 0.22 \\ \hline \textbf{EE}(0.5) \\ 0.33 \\ 327.80 \\ 291.52 \\ 4.49 \\ 0.17 \\ \hline 0.15 \\ \hline \textbf{EE} \\ 0.24 \\ 318.11 \\ 439.81 \\ \hline 11.82 \\ 0.17 \\ \end{array}$	$\begin{array}{c} 6.28 \\ 0.06 \\ 0.33 \\ \hline \textbf{EE.i} \\ 0.37 \\ 249.00 \\ 213.78 \\ 4.42 \\ 0.14 \\ 0.12 \\ \hline \textbf{7}, \ \beta_1 = \\ \hline \textbf{naïve} \\ 0.54 \\ 146.33 \\ 294.03 \\ 25.18 \\ 0.08 \\ \end{array}$	0.12 0.08 0.08 EE.ii 0.13 162.46 183.57 1.55 0.09 0.10 -0.45264 EE.h 0.00 195.77 194.07 0.16 0.11	286.65 2.21 0.10 0.16 EE(0.5) 0.29 225.89 210.17 0.12 0.12 13 EE 0.05 247.82 326.54 2.34 0.14
ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE	363.82 11.20 0.09 0.33 EE .i 0.43 352.59 287.60 5.82 0.19 0.15 maïve 221.13 343.35 47.46 0.11 0.48	$\begin{array}{c} 212.32 \\ \hline 0.07 \\ 0.11 \\ 0.11 \\ \hline \textbf{EE.ii} \\ 0.05 \\ 242.38 \\ 269.32 \\ 0.88 \\ 0.12 \\ 0.14 \\ \hline \textbf{T=}10, \beta_0 \\ \hline \textbf{EE.h} \\ 0.00 \\ 249.88 \\ 250.78 \\ \hline 0.31 \\ 0.13 \\ 0.13 \\ 0.13 \end{array}$	$\begin{array}{c} 418.80 \\ 2.46 \\ 0.14 \\ 0.22 \\ \textbf{EE}(0.5) \\ 0.33 \\ 327.80 \\ 291.52 \\ 4.49 \\ 0.17 \\ 0.15 \\ \textbf{=} 11025.7 \\ \textbf{EE} \\ 0.24 \\ 318.11 \\ 439.81 \\ 11.82 \\ 0.17 \\ 0.24 \\ \end{array}$	$\begin{array}{c} 6.28 \\ 0.06 \\ 0.33 \\ \hline \textbf{EE.i} \\ 0.37 \\ 249.00 \\ 213.78 \\ 4.42 \\ 0.14 \\ 0.12 \\ 7, \ \beta_1 = \\ \hline \textbf{na\"{ve}} \\ 0.54 \\ 146.33 \\ 294.03 \\ 25.18 \\ 0.08 \\ 0.48 \\ \end{array}$	0.12 0.08 0.08 EE.ii 0.13 162.46 183.57 1.55 0.09 0.10 -0.45264 EE.h 0.00 195.77 194.07 0.16 0.11 0.11	286.65 2.21 0.10 0.16 EE(0.5) 0.29 225.89 210.17 3.47 0.12 0.12 0.12 13 EE 0.05 247.82 326.54 0.14 0.18
ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE	363.82 11.20 0.09 0.33 EE _i 0.43 352.59 287.60 5.82 0.19 0.15 naïve 221.13 343.35 47.46 0.11 0.48 EE _i	$\begin{array}{c} 212.32 \\ \hline 0.07 \\ 0.11 \\ 0.11 \\ \hline \textbf{EE.ii} \\ 0.05 \\ 242.38 \\ 269.32 \\ 0.88 \\ 0.12 \\ 0.14 \\ \hline \textbf{T=10}, \beta_0 \\ \hline \textbf{EE.h} \\ 0.00 \\ 249.88 \\ 250.78 \\ \hline 0.31 \\ 0.13 \\ 0.13 \\ \hline \textbf{EE.ii} \\ \end{array}$	$\begin{array}{c} 418.80 \\ 2.46 \\ 0.14 \\ 0.22 \\ \textbf{EE}(0.5) \\ 0.33 \\ 327.80 \\ 291.52 \\ 4.49 \\ 0.17 \\ 0.15 \\ \textbf{=} 11025.7 \\ \textbf{EE} \\ 0.24 \\ 318.11 \\ 439.81 \\ 11.82 \\ 0.17 \\ 0.24 \\ \textbf{EE}(0.5) \\ \end{array}$	$\begin{array}{c} 6.28 \\ 0.06 \\ 0.33 \\ \hline \textbf{EE.i} \\ 0.37 \\ 249.00 \\ 213.78 \\ 4.42 \\ 0.14 \\ 0.12 \\ \hline \textbf{7}, \ \beta_1 = \\ \hline \textbf{naïve} \\ 0.54 \\ 146.33 \\ 294.03 \\ 25.18 \\ 0.08 \\ 0.48 \\ \hline \textbf{EE.i} \\ \end{array}$	0.12 0.08 0.08 EE.ii 0.13 162.46 183.57 1.55 0.09 0.10 -0.45264 EE.h 0.00 195.77 194.07 0.16 0.11 0.11 EE.ii	286.65 2.21 0.10 0.16 EE(0.5) 0.29 225.89 210.17 3.47 0.12 0.12 13 EE 0.05 247.82 326.54 0.14 0.18 EE(0.5)
ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE	363.82 11.20 0.09 0.33 EE_i 0.43 352.59 287.60 5.82 0.19 0.15 naïve 0.86 221.13 343.35 47.46 0.11 0.48 EE_i 0.44	$\begin{array}{c} 212.32 \\ \hline 0.07 \\ 0.11 \\ 0.11 \\ \hline \textbf{EE.ii} \\ 0.05 \\ 242.38 \\ 269.32 \\ 0.88 \\ 0.12 \\ 0.14 \\ \hline \textbf{T=10}, \beta_0 \\ \hline \textbf{EE.h} \\ 0.00 \\ 249.88 \\ 250.78 \\ 0.31 \\ 0.13 \\ \hline 0.13 \\ 0.13 \\ \hline \textbf{EE.ii} \\ 0.17 \\ \hline \end{array}$	$\begin{array}{c} 418.80 \\ 2.46 \\ 0.14 \\ 0.22 \\ \textbf{EE}(0.5) \\ 0.33 \\ 327.80 \\ 291.52 \\ 4.49 \\ 0.17 \\ 0.15 \\ \textbf{=} 11025.7 \\ \textbf{EE} \\ 0.24 \\ 318.11 \\ 439.81 \\ 11.82 \\ 0.17 \\ 0.24 \\ \textbf{EE}(0.5) \\ 0.35 \\ \end{array}$	$\begin{array}{c} 6.28 \\ 0.06 \\ 0.33 \\ \hline \textbf{EE.i} \\ 0.37 \\ 249.00 \\ 213.78 \\ 4.42 \\ 0.14 \\ 0.12 \\ \hline \textbf{7}, \ \beta_1 = \\ \textbf{naïve} \\ 0.54 \\ 146.33 \\ 294.03 \\ 25.18 \\ 0.08 \\ 0.48 \\ \hline \textbf{EE.i} \\ 0.14 \\ \end{array}$	0.12 0.08 0.08 EE.ii 0.13 162.46 183.57 1.55 0.09 0.10 -0.45264 EE.h 0.00 195.77 194.07 0.16 0.11 0.11 EE.ii	286.65 2.21 0.10 0.16 EE(0.5) 0.29 225.89 210.17 3.47 0.12 0.12 13 EE 0.05 247.82 326.54 0.14 0.18 EE(0.5) 0.09
ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE	363.82 11.20 0.09 0.33 EE_i 0.43 352.59 287.60 5.82 0.19 0.15 maïve 221.13 343.35 47.46 0.11 0.48 EE_i 0.44 391.16	$\begin{array}{c} 212.32 \\ \hline 0.07 \\ 0.11 \\ 0.11 \\ \hline \textbf{EE.ii} \\ 0.05 \\ 242.38 \\ 269.32 \\ 0.88 \\ 0.12 \\ \hline 0.10 \\ \hline \textbf{EE.h} \\ \hline 0.00 \\ 249.88 \\ 250.78 \\ 0.31 \\ 0.13 \\ \hline 0.13 \\ 0.13 \\ \hline \textbf{EE.ii} \\ 0.17 \\ 284.71 \\ \end{array}$	$\begin{array}{c} 418.80 \\ 2.46 \\ 0.14 \\ 0.22 \\ \textbf{EE}(0.5) \\ 0.33 \\ 327.80 \\ 291.52 \\ 4.49 \\ 0.17 \\ 0.15 \\ \textbf{=} 11025.7 \\ \textbf{EE} \\ 0.24 \\ 318.11 \\ 439.81 \\ 11.82 \\ 0.17 \\ 0.24 \\ \textbf{EE}(0.5) \\ 0.35 \\ 364.02 \\ \end{array}$	$\begin{array}{c} 6.28 \\ 0.06 \\ 0.33 \\ \hline \textbf{EE.i} \\ 0.37 \\ 249.00 \\ 213.78 \\ 4.42 \\ 0.14 \\ 0.12 \\ \hline \textbf{7}, \ \beta_1 = \\ \hline \textbf{na\"ve} \\ 0.54 \\ 24.03 \\ 294.03 \\ 25.18 \\ 0.08 \\ 0.48 \\ \hline \textbf{EE.i} \\ 0.14 \\ 306.47 \\ \end{array}$	0.12 0.08 0.08 EE.ii 0.13 162.46 183.57 1.55 0.09 0.10 -0.45264 EE.h 0.00 0.95 0.11 0.11 0.11 EE.ii 0.04 228.69	286.65 2.21 0.10 0.16 EE(0.5) 0.29 225.89 210.17 3.47 0.12 0.12 13 EE 0.05 247.82 326.54 0.14 0.18 EE(0.5) 0.09 281.91
ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE	363.82 11.20 0.09 0.33 EE_i 0.43 352.59 287.60 5.82 0.19 0.15 maïve 221.13 343.35 47.46 0.11 0.48 EE_i 0.44 391.16 333.53	$\begin{array}{c} 212.32 \\ \hline 0.07 \\ 0.11 \\ 0.11 \\ \hline \textbf{EE.ii} \\ 0.05 \\ 242.38 \\ 269.32 \\ 0.88 \\ 0.12 \\ 0.14 \\ \hline \textbf{T=10}, \beta_0 \\ \hline \textbf{EE.h} \\ 0.00 \\ 249.88 \\ 250.78 \\ 0.31 \\ 0.13 \\ 0.13 \\ \hline \textbf{EE.ii} \\ 0.17 \\ 284.71 \\ 309.82 \\ \end{array}$	$\begin{array}{c} 418.80 \\ 2.46 \\ 0.14 \\ 0.22 \\ \textbf{EE}(0.5) \\ 0.33 \\ 327.80 \\ 291.52 \\ 4.49 \\ 0.17 \\ 0.15 \\ \textbf{=} 11025.7 \\ \textbf{EE} \\ 0.24 \\ 318.11 \\ 439.81 \\ 11.82 \\ 0.17 \\ 0.24 \\ \textbf{EE}(0.5) \\ 0.35 \\ 364.02 \\ 334.52 \\ \end{array}$	$\begin{array}{c} 6.28 \\ 0.06 \\ 0.33 \\ \hline \textbf{EE.i} \\ 0.37 \\ 249.00 \\ 213.78 \\ 4.42 \\ 0.14 \\ 0.12 \\ \hline \textbf{7}, \ \beta_1 = \\ \hline \textbf{na\"{ve}} \\ 0.54 \\ 146.33 \\ 294.03 \\ 25.18 \\ 0.08 \\ 0.48 \\ \hline \textbf{EE.i} \\ 0.14 \\ 306.47 \\ 265.89 \\ \end{array}$	0.12 0.08 0.08 EE.ii 0.13 162.46 183.57 1.55 0.09 0.10 -0.45264 EE.h 0.00 195.77 194.07 0.16 0.11 0.11 EE.ii 0.04 228.69 238.02	286.65 2.21 0.10 0.16 EE(0.5) 0.29 225.89 210.17 3.47 0.12 0.12 13 EE 0.05 247.82 326.54 0.14 0.18 EE(0.5) 0.09 281.91 261.16
ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE	363.82 11.20 0.09 0.33 EE_i 0.43 352.59 287.60 5.82 0.19 0.15 maïve 221.13 343.35 47.46 0.11 0.48 EE_i 0.44 391.16 333.53 23.04	$\begin{array}{c} 212.32 \\ \hline 0.07 \\ 0.11 \\ \hline 0.11 \\ \hline \textbf{EE.ii} \\ \hline 0.05 \\ 242.38 \\ 269.32 \\ \hline 0.88 \\ 0.12 \\ \hline 0.14 \\ \hline \textbf{T=}10, \beta_0 \\ \hline \textbf{EE.h} \\ \hline 0.00 \\ 249.88 \\ \hline 0.31 \\ \hline 0.13 \\ \hline 0.13 \\ \hline \textbf{EE.ii} \\ \hline 0.17 \\ 284.71 \\ \hline 309.82 \\ 8.93 \\ \end{array}$	$\begin{array}{c} 418.80 \\ 2.46 \\ 0.14 \\ 0.22 \\ \hline {\bf EE}(0.5) \\ 0.33 \\ 327.80 \\ 291.52 \\ 4.49 \\ 0.17 \\ 0.15 \\ \hline {\bf EE} \\ 0.24 \\ 318.11 \\ 439.81 \\ 11.82 \\ 0.17 \\ 0.24 \\ \hline {\bf EE}(0.5) \\ 0.35 \\ 364.02 \\ 334.52 \\ 17.88 \\ \end{array}$	$\begin{array}{c} 6.28 \\ 0.06 \\ 0.33 \\ \hline \textbf{EE.i} \\ 0.37 \\ 249.00 \\ 213.78 \\ 4.42 \\ 0.14 \\ 0.12 \\ \hline \textbf{7}, \ \beta_1 = \\ \hline \textbf{naïve} \\ 0.54 \\ 146.33 \\ 294.03 \\ 25.18 \\ 0.08 \\ 0.48 \\ \hline \textbf{EE.i} \\ 0.14 \\ 306.47 \\ 265.89 \\ 6.20 \\ \end{array}$	0.12 0.08 0.08 EE.ii 0.13 162.46 183.57 1.55 0.09 0.10 -0.45264 EE.h 0.00 195.77 194.07 0.16 0.11 0.11 EE.ii 0.04 228.69 238.02 2.02	286.65 2.21 0.10 0.16 EE(0.5) 0.29 225.89 210.17 3.47 0.12 0.12 13 EE 0.05 247.82 326.54 0.14 0.18 EE(0.5) 0.09 281.91 261.16 4.11
ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE	363.82 11.20 0.09 0.33 EE_i 0.43 352.59 287.60 5.82 0.19 0.15 maïve 221.13 343.35 47.46 0.11 0.48 EE_i 0.44 391.16 333.53	$\begin{array}{c} 212.32 \\ \hline 0.07 \\ 0.11 \\ 0.11 \\ \hline \textbf{EE.ii} \\ 0.05 \\ 242.38 \\ 269.32 \\ 0.88 \\ 0.12 \\ 0.14 \\ \hline \textbf{T=10}, \beta_0 \\ \hline \textbf{EE.h} \\ 0.00 \\ 249.88 \\ 250.78 \\ 0.31 \\ 0.13 \\ 0.13 \\ \hline \textbf{EE.ii} \\ 0.17 \\ 284.71 \\ 309.82 \\ \end{array}$	$\begin{array}{c} 418.80 \\ 2.46 \\ 0.14 \\ 0.22 \\ \textbf{EE}(0.5) \\ 0.33 \\ 327.80 \\ 291.52 \\ 4.49 \\ 0.17 \\ 0.15 \\ \textbf{=} 11025.7 \\ \textbf{EE} \\ 0.24 \\ 318.11 \\ 439.81 \\ 11.82 \\ 0.17 \\ 0.24 \\ \textbf{EE}(0.5) \\ 0.35 \\ 364.02 \\ 334.52 \\ \end{array}$	$\begin{array}{c} 6.28 \\ 0.06 \\ 0.33 \\ \hline \textbf{EE.i} \\ 0.37 \\ 249.00 \\ 213.78 \\ 4.42 \\ 0.14 \\ 0.12 \\ \hline \textbf{7}, \ \beta_1 = \\ \hline \textbf{na\"{ve}} \\ 0.54 \\ 146.33 \\ 294.03 \\ 25.18 \\ 0.08 \\ 0.48 \\ \hline \textbf{EE.i} \\ 0.14 \\ 306.47 \\ 265.89 \\ \end{array}$	0.12 0.08 0.08 EE.ii 0.13 162.46 183.57 1.55 0.09 0.10 -0.45264 EE.h 0.00 195.77 194.07 0.16 0.11 0.11 EE.ii 0.04 228.69 238.02	286.65 2.21 0.10 0.16 EE(0.5) 0.29 225.89 210.17 3.47 0.12 0.12 13 EE 0.05 247.82 326.54 0.14 0.18 EE(0.5) 0.09 281.91 261.16

Table D.19: Results under model (2.41), by response and correlation. Population: simulated

	low r	es and le	ow corr	0	es and l			es and h	0	high r	es and h	igh corr
						= 873.431						
	naïve	EE_h	EE	naïve	EE_h	EE	naïve	EE_h	EE	naïve	$\mathbf{EE}_{-}\mathbf{h}$	EE
$APRB(\beta_0)$	62.51	0.05	1.38	61.74	0.20	2.46	25.06	0.03	5.34	23.17	0.07	2.46
SE	16.63	11.38	14.24	18.79	12.58	15.97	7.89	7.65	9.72	7.53	8.02	10.23
ERSE	283.14	11.29	20.78	282.54	12.23	22.31	214.28	7.66	15.14	211.62	7.93	15.33
$APRB(\beta_1)$	107.63	0.24	19.53	64.20	2.01	3.73	75.49	0.18	11.37	18.85	0.27	1.50
SE	0.38	0.31	0.39	0.96	0.62	0.79	0.18	0.18	0.23	0.30	0.34	0.40
ERSE	5.30	0.31	0.61	6.93	0.54	0.93	4.49	0.18	0.36	5.04	0.32	0.59
ADDD(a)	EE_i	EE _ii	EE (0.5)	EE_i	EE_ii	EE (0.5)	EE _i	EE_ii	EE (0.5)	EE_i	EE_ii	EE (0.5)
$APRB(\beta_0)$	24.85	12.04	17.57	23.85	12.96	16.49	21.73	1.03	16.60	17.63	1.84	12.88
SE ERSE	12.56 9.75	14.31	13.16	13.68	16.34	14.46	11.08	8.82	10.79	11.82	9.25	11.46 9.47
		15.64	11.01	10.35	17.04	11.76	8.79	10.06	9.29	9.02	10.15	10.51
$APRB(\beta_1)$ SE	20.67 0.40	39.08 0.38	10.04 0.40	23.13 0.66	$14.05 \\ 0.82$	15.55 0.71	60.13 0.27	3.41 0.21	45.17 0.26	0.46	0.37	0.44
ERSE	0.40	0.38	0.40	0.00	0.82 0.74	0.49	0.27	0.21 0.24	0.20	0.40	0.37	0.44
ERSE	0.32	0.42	0.34			= 114.9522				0.34	0.59	0.30
	naïve	EE_h	EE	naïve	\mathbf{EE}_{-h}	= 114.952. EE	$p_1 = -$	-0.52964 EE _h	EE	naïve	EE_h	EE
$APRB(\beta_0)$	49.24	0.08	6.12	51.43	0.08	6.02	22.78	0.03	6.75	21.04	0.01	5.45
SE	2.26	1.71	2.17	2.13	1.57	1.88	0.98	0.03	1.26	0.92	0.01	1.26
ERSE	18.18	1.68	3.08	18.54	1.54	2.79	13.90	0.95	1.26	13.77	0.98	2.01
$APRB(\beta_1)$	105.54	0.13	0.64	48.24	0.93	4.66	91.43	0.95	25.61	14.51	0.98	4.15
SE	0.05	0.15	0.04	0.09	0.95	0.08	0.02	0.14	0.03	0.04	0.17	0.05
ERSE	0.03	0.05	0.00	0.09	0.06	0.08	0.02	0.02	0.05	0.04	0.04	0.03
EIGE	EE _i	EE_ii	EE (0.5)	EE _i	EE _ii	$\mathbf{EE}(0.5)$	EE _i	EE_ii	EE (0.5)	EE _i	EE_ii	EE(0.5)
$APRB(\beta_0)$	24.37	4.51	18.87	25.40	5.04	19.50	19.33	2.71	14.89	17.81	0.92	13.51
SE	2.29	2.08	2.26	1.84	1.82	1.87	1.50	1.09	1.44	1.54	1.08	1.47
ERSE	1.81	2.33	1.93	1.47	2.10	1.62	1.20	1.25	1.25	1.22	1.27	1.27
$APRB(\beta_1)$	36.40	27.69	26.84	23.82	5.79	17.90	78.64	5.65	60.45	14.36	0.80	10.67
SE	0.07	0.06	0.07	0.07	0.08	0.08	0.04	0.03	0.03	0.06	0.04	0.06
ERSE	0.06	0.07	0.06	0.06	0.09	0.06	0.03	0.03	0.03	0.05	0.05	0.05
				0.00		$B_0 = 1176.5$				0.00	0.00	
	naïve	EE_h	EE	naïve	EE_h	EE	naïve	EE_h	EE	naïve	EE_h	EE
$APRB(\beta_0)$	75.87	0.06	13.89	55.34	0.76	12.03	30.46	0.02	6.57	22.75	0.07	5.46
SE	33.13	22.56	24.51	101.85	61.43	63.38	12.82	11.81	13.95	37.03	41.90	50.10
ERSE	448.57	21.65	34.75	553.79	56.13	75.46	369.42	11.94	20.25	414.98	37.84	60.84
$APRB(\beta_1)$	1.94	0.07	0.42	70.96	2.17	10.20	17.81	0.00	4.13	30.68	0.49	6.66
SE	1.56	1.30	1.44	9.17	5.51	5.72	0.29	0.29	0.34	3.39	3.78	4.47
ERSE	49.32	1.22	1.77	70.57	4.98	6.71	41.83	0.29	0.50	53.43	3.38	5.44
	EE_i	EE _ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
$APRB(\beta_0)$	31.10	5.65	24.71	26.35	5.74	20.84	14.84	5.18	10.99	12.80	3.77	9.53
SE	25.33	23.40	25.38	60.13	62.04	62.25	16.17	12.99	15.44	57.23	43.67	55.41
ERSE	21.53	25.75	23.22	44.32	63.28	49.63	14.80	14.50	15.13	40.06	45.43	42.22
$APRB(\beta_1)$	0.48	3.70	0.49	26.05	3.04	19.91	9.47	2.92	7.11	16.05	3.52	12.08
SE	1.51	1.39	1.49	5.42	5.59	5.61	0.41	0.32	0.39	5.08	3.93	4.93
ERSE	1.36	1.43	1.40	3.93	5.63	4.41	0.37	0.35	0.37	3.57	4.07	3.77
						$\beta_0 = 2222.8$						
	naïve	$\mathbf{EE}_{-}\mathbf{h}$	EE	naïve	$\mathbf{EE}_{-}\mathrm{h}$	EE	naïve	EE_h	EE	naïve	$\mathbf{EE}_{-}\mathbf{h}$	EE
$APRB(\beta_0)$					0 4 0	0.01		0.01	4 1 7	23.31	0.02	3.76
0. 47	42.34	0.03	6.50	52.22	0.16	8.01	28.67	0.01	4.15			
SE	79.02	0.03 60.93	65.38	67.35	45.48	48.81	23.37	21.36	24.66	29.15	30.28	34.93
SE ERSE	79.02 364.26	0.03 60.93 60.18	65.38 78.03	67.35 379.57	$45.48 \\ 43.78$	48.81 60.53	23.37 286.39	21.36 21.44	24.66 30.08	29.15 284.58	30.28 28.23	$34.93 \\ 40.46$
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}(\beta_1) \end{array}$	79.02 364.26 35.66	0.03 60.93 60.18 0.30	65.38 78.03 7.53	67.35 379.57 72.71	45.48 43.78 2.81	48.81 60.53 6.19	23.37 286.39 83.91	21.36 21.44 0.04	24.66 30.08 13.13	29.15 284.58 30.03	30.28 28.23 0.73	34.93 40.46 4.29
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}(\beta_1) \\ \text{SE} \end{array}$	79.02 364.26 35.66 2.38	0.03 60.93 60.18 0.30 2.16	65.38 78.03 7.53 2.33	67.35 379.57 72.71 5.17	45.48 43.78 2.81 3.38	48.81 60.53 6.19 3.56	23.37 286.39 83.91 0.52	21.36 21.44 0.04 0.51	24.66 30.08 13.13 0.60	29.15 284.58 30.03 2.10	30.28 28.23 0.73 2.22	34.93 40.46 4.29 2.55
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}(\beta_1) \end{array}$	79.02 364.26 35.66 2.38 16.69	0.03 60.93 60.18 0.30 2.16 2.12	65.38 78.03 7.53 2.33 2.69	67.35 379.57 72.71 5.17 23.48	45.48 43.78 2.81 3.38 3.17	48.81 60.53 6.19 3.56 4.14	23.37 286.39 83.91 0.52 14.18	21.36 21.44 0.04 0.51 0.51	24.66 30.08 13.13 0.60 0.74	29.15 284.58 30.03 2.10 17.55	30.28 28.23 0.73 2.22 2.04	34.93 40.46 4.29 2.55 2.85
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}(\beta_1) \\ \text{SE} \\ \text{ERSE} \end{array}$	79.02 364.26 35.66 2.38 16.69 EE .i	0.03 60.93 60.18 0.30 2.16 2.12 EE _ii	65.38 78.03 7.53 2.33 2.69 EE (0.5)	67.35 379.57 72.71 5.17 23.48 EE _i	45.48 43.78 2.81 3.38 3.17 EE .ii	48.81 60.53 6.19 3.56 4.14 EE (0.5)	23.37 286.39 83.91 0.52 14.18 EE .i	21.36 21.44 0.04 0.51 0.51 EE _ii	24.66 30.08 13.13 0.60 0.74 EE (0.5)	29.15 284.58 30.03 2.10 17.55 EE _i	30.28 28.23 0.73 2.22 2.04 EE .ii	34.93 40.46 4.29 2.55 2.85 EE (0.5)
SE ERSE APRB(β_1) SE ERSE APRB(β_0)	79.02 364.26 35.66 2.38 16.69 EE .i 13.99	0.03 60.93 60.18 0.30 2.16 2.12 EE _iii	65.38 78.03 7.53 2.33 2.69 EE (0.5)	67.35 379.57 72.71 5.17 23.48 EE .i 16.89	45.48 43.78 2.81 3.38 3.17 EE .ii 5.68	48.81 60.53 6.19 3.56 4.14 EE (0.5)	23.37 286.39 83.91 0.52 14.18 EE .i 8.90	21.36 21.44 0.04 0.51 0.51 EE _iii 3.79	24.66 30.08 13.13 0.60 0.74 EE (0.5)	29.15 284.58 30.03 2.10 17.55 EE .i 8.18	30.28 28.23 0.73 2.22 2.04 EE .ii 3.26	34.93 40.46 4.29 2.55 2.85 EE (0.5)
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE	79.02 364.26 35.66 2.38 16.69 EE .i 13.99 67.34	0.03 60.93 60.18 0.30 2.16 2.12 EE .ii 4.21 64.23	65.38 78.03 7.53 2.33 2.69 EE (0.5) 10.76 66.70	67.35 379.57 72.71 5.17 23.48 EE .i 16.89 50.17	45.48 43.78 2.81 3.38 3.17 EE .ii 5.68 46.91	48.81 60.53 6.19 3.56 4.14 EE (0.5) 12.88 50.24	23.37 286.39 83.91 0.52 14.18 EE .i 8.90 27.05	21.36 21.44 0.04 0.51 0.51 EE .ii 3.79 23.64	24.66 30.08 13.13 0.60 0.74 EE (0.5) 6.36 26.18	29.15 284.58 30.03 2.10 17.55 EE .i 8.18 38.42	30.28 28.23 0.73 2.22 2.04 EE .ii 3.26 33.34	34.93 40.46 4.29 2.55 2.85 EE (0.5) 5.87 37.17
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE	79.02 364.26 35.66 2.38 16.69 EE .i 13.99 67.34 62.98	0.03 60.93 60.18 0.30 2.16 2.12 EE _ii 4.21 64.23 67.86	65.38 78.03 7.53 2.33 2.69 EE (0.5) 10.76 66.70 65.20	67.35 379.57 72.71 5.17 23.48 EE .i 16.89 50.17 42.63	45.48 43.78 2.81 3.38 3.17 EE .ii 5.68 46.91 48.01	48.81 60.53 6.19 3.56 4.14 EE (0.5) 12.88 50.24 45.38	23.37 286.39 83.91 0.52 14.18 EE .i 8.90 27.05 24.75	21.36 21.44 0.04 0.51 0.51 EE .ii 3.79 23.64 24.74	24.66 30.08 13.13 0.60 0.74 EE (0.5) 6.36 26.18 25.20	29.15 284.58 30.03 2.10 17.55 EE .i 8.18 38.42 32.36	30.28 28.23 0.73 2.22 2.04 EE .ii 3.26 33.34 32.76	34.93 40.46 4.29 2.55 2.85 EE (0.5) 5.87 37.17 33.01
SE ERSE APRB(β_1) SE ERSE ERSE APRB(β_0) SE ERSE APRB(β_1)	79.02 364.26 35.66 2.38 16.69 EE .i 13.99 67.34 62.98 17.16	0.03 60.93 60.18 0.30 2.16 2.12 EE .ii 4.21 64.23 67.86 1.33	65.38 78.03 7.53 2.33 2.69 EE (0.5) 10.76 66.70 65.20 14.32	67.35 379.57 72.71 5.17 23.48 EE .i 16.89 50.17 42.63 16.57	45.48 43.78 2.81 3.38 3.17 EE .ii 5.68 46.91 48.01 3.68	48.81 60.53 6.19 3.56 4.14 EE (0.5) 12.88 50.24 45.38 11.74	23.37 286.39 83.91 0.52 14.18 EE .i 8.90 27.05 24.75 28.39	21.36 21.44 0.04 0.51 0.51 EE .ii 3.79 23.64 24.74	24.66 30.08 13.13 0.60 0.74 EE (0.5) 6.36 26.18 25.20 20.56	29.15 284.58 30.03 2.10 17.55 EE .i 8.18 38.42 32.36 10.05	30.28 28.23 0.73 2.22 2.04 EE.ii 3.26 33.34 32.76 3.33	34.93 40.46 4.29 2.55 2.85 EE (0.5) 5.87 37.17 33.01 7.18
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE	79.02 364.26 35.66 2.38 16.69 EE .i 13.99 67.34 62.98	0.03 60.93 60.18 0.30 2.16 2.12 EE _ii 4.21 64.23 67.86	65.38 78.03 7.53 2.33 2.69 EE (0.5) 10.76 66.70 65.20	67.35 379.57 72.71 5.17 23.48 EE .i 16.89 50.17 42.63	45.48 43.78 2.81 3.38 3.17 EE .ii 5.68 46.91 48.01	48.81 60.53 6.19 3.56 4.14 EE (0.5) 12.88 50.24 45.38	23.37 286.39 83.91 0.52 14.18 EE .i 8.90 27.05 24.75	21.36 21.44 0.04 0.51 0.51 EE .ii 3.79 23.64 24.74	24.66 30.08 13.13 0.60 0.74 EE (0.5) 6.36 26.18 25.20	29.15 284.58 30.03 2.10 17.55 EE .i 8.18 38.42 32.36	30.28 28.23 0.73 2.22 2.04 EE .ii 3.26 33.34 32.76	34.93 40.46 4.29 2.55 2.85 EE (0.5) 5.87 37.17 33.01

Table D.20: Results under model (2.43), by response and correlation. Population: simulated

	low i	res and lo	ow corr		res and l			es and h	0	high r	es and h	nigh corr
						= 873.4317						
ADDD (A)	naïve	EE_h	EE	naïve	EE_h	EE	naïve	EE_h	EE	naïve	EE_h	EE
$APRB(\beta_0)$	55.99	15.20	22.42	48.72	8.29	11.49	21.90	0.72	4.15	21.96	2.28	6.49
SE ERSE	15.25 267.67	12.47	72.61	14.08	11.21	54.00	7.18 208.39	6.98	25.18	7.08	6.87	22.53
$APRB(\beta_1)$	95.08	82.93 13.54	170.33 38.22	255.95 41.05	68.14 3.89	121.25 6.57	65.68	33.21 0.38	52.84 12.17	209.17 17.56	31.65 6.35	49.96 10.97
SE	0.36	0.35	1.59	0.59	0.45	1.64	0.16	0.38 0.17	0.39	0.28	0.33	0.62
ERSE	5.13	1.73	3.70	5.98	1.74	3.66	4.41	0.17	0.80	4.92	0.29	1.21
ERSE	EE_i	EE_ii	$\mathbf{EE}(0.5)$	EE _i	EE_ii	$\mathbf{EE}(0.5)$	EE_i	EE_ii	EE(0.5)	EE _i	EE_ii	EE (0.5)
$APRB(\beta_0)$	4.18	32.01	9.07	7.31	20.48	2.16	18.16	0.07	13.84	21.06	2.23	16.60
SE	102.37	59.28	94.42	72.64	50.01	67.25	31.90	27.03	29.52	27.69	24.87	25.76
ERSE	110.50	132.43	115.58	82.09	101.43	86.11	40.29	47.01	41.72	38.47	45.90	39.96
$APRB(\beta_1)$	4.50	56.97	13.43	27.18	1.45	21.36	55.55	1.74	42.33	24.98	7.66	20.59
SE (%1)	2.58	1.27	2.27	2.32	1.37	2.13	0.54	0.39	0.49	0.75	0.66	0.70
ERSE	2.67	2.58	2.66	2.40	2.76	2.49	0.64	0.65	0.64	0.91	1.08	0.95
						= 114.9522		0.529645				
	naïve	$\mathbf{EE}_{-}\mathbf{h}$	EE	naïve	EE_h	EE	naïve	$\mathbf{E}\mathbf{E}_{-}\mathbf{h}$	EE	naïve	EE_h	EE
$APRB(\beta_0)$	57.17	17.57	12.69	56.95	16.33	10.65	27.62	8.07	2.03	31.37	7.91	1.77
SE	1.98	1.62	3.32	2.09	1.67	2.98	1.16	1.12	1.98	1.23	1.14	1.72
ERSE	18.28	4.83	7.21	18.45	4.25	5.86	14.30	2.67	3.95	14.90	2.37	3.47
$APRB(\beta_1)$	123.98	40.19	42.88	53.29	26.56	23.37	110.51	34.15	11.63	28.77	12.72	8.11
SE	0.05	0.05	0.10	0.10	0.08	0.11	0.03	0.03	0.04	0.05	0.05	0.07
ERSE	0.52	0.13	0.21	0.73	0.14	0.19	0.45	0.06	0.09	0.56	0.08	0.12
	$\mathbf{E}\mathbf{E}_{-\mathrm{i}}$	EE _ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE ₋ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
$APRB(\beta_0)$	4.91	24.67	0.18	7.41	21.81	2.03	9.12	5.87	5.25	10.56	6.16	6.32
SE	4.09	3.14	3.85	3.37	2.93	3.24	2.41	1.94	2.25	2.04	1.66	1.93
ERSE	5.04	6.48	5.33	4.11	5.50	4.39	3.06	3.37	3.14	2.57	2.92	2.67
$APRB(\beta_1)$	8.79	74.20	17.41	8.92	32.58	13.24	34.68	30.59	19.17	1.69	11.65	1.71
SE	0.13	0.09	0.11	0.11	0.11	0.11	0.06	0.04	0.05	0.08	0.07	0.08
ERSE	0.16	0.10	0.10	0.19	0.10	0.14	0.07	0.00	0.07	0.00	0.10	0.00
	0.10	0.18	0.16	0.13	0.18	0.14	0.07	0.08	0.07	0.09	0.10	0.09
				I	$T=7, \beta_0$	$_{0} = 1176.52$	$9, \ \beta_1 = 3$	36.56497		I		
	naïve	EE_h	EE	naïve	T=7, β ₀	0 = 1176.52 EE	9, $\beta_1 = 3$	36.56497 EE _h	EE	naïve	EE_h	EE
$APRB(\beta_0)$	naïve 77.64	EE _h 31.42	EE 19.25	naïve 62.67	T=7, β ₀ EE _h 22.27	0 = 1176.52 EE 11.99	9, $\beta_1 = 3$ naïve 32.52	36.56497 EE _h 5.97	EE 0.24	naïve 23.02	EE _h 3.24	EE 8.64
$\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \end{array}$	naïve 77.64 29.46	EE_h 31.42 23.93	EE 19.25 84.14	naïve 62.67 79.84	T=7, β ₀ EE _h 22.27 55.07	$ \begin{array}{c} $	9, $\beta_1 = 3$ naïve 32.52 13.82	36.56497 EE _h 5.97 12.62	EE 0.24 29.48	naïve 23.02 34.39	EE_h 3.24 33.57	EE 8.64 44.91
$\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \end{array}$	naïve 77.64 29.46 439.72	EE_h 31.42 23.93 166.58	EE 19.25 84.14 202.73	naïve 62.67 79.84 525.74	T=7, β ₀ EE _h 22.27 55.07 160.47	$ \begin{array}{c} $	9, $\beta_1 = 3$ naïve 32.52 13.82 368.69	36.56497 EE _h 5.97 12.62 62.78	EE 0.24 29.48 75.67	naïve 23.02 34.39 402.72	EE_h 3.24 33.57 77.50	8.64 44.91 90.94
$ APRB(\beta_0) SE ERSE APRB(\beta_1) $	naïve 77.64 29.46 439.72 2.98	EE_h 31.42 23.93 166.58 4.27	EE 19.25 84.14 202.73 5.40	naïve 62.67 79.84 525.74 60.88	T=7, β ₀ EE _h 22.27 55.07 160.47 5.56	$ \begin{array}{c} \mathbf{EE} \\ 11.99 \\ 87.87 \\ 185.55 \\ 6.71 \end{array} $	9, $\beta_1 = 3$ naïve 32.52 13.82 368.69 17.63	36.56497 EE _h 5.97 12.62 62.78 4.10	EE 0.24 29.48 75.67 0.45	naïve 23.02 34.39 402.72 25.01	EE_h 3.24 33.57 77.50 7.82	8.64 44.91 90.94 14.28
$APRB(\beta_0)$ SE ERSE $APRB(\beta_1)$ SE	naïve 77.64 29.46 439.72 2.98 1.43	EE_h 31.42 23.93 166.58 4.27 1.36	EE 19.25 84.14 202.73 5.40 6.73	naïve 62.67 79.84 525.74 60.88 7.11	T=7, β ₀ EE_h 22.27 55.07 160.47 5.56 4.86	$ \begin{array}{c} \mathbf{EE} \\ 11.99 \\ 87.87 \\ 185.55 \\ 6.71 \\ 8.30 \end{array} $	9, $\beta_1 = 3$ naïve 32.52 13.82 368.69 17.63 0.30	36.56497 EE_h 5.97 12.62 62.78 4.10 0.30	EE 0.24 29.48 75.67 0.45 0.88	naïve 23.02 34.39 402.72 25.01 3.03	EE_h 3.24 33.57 77.50 7.82 2.94	8.64 44.91 90.94 14.28 4.47
$ APRB(\beta_0) SE ERSE APRB(\beta_1) $	naïve 77.64 29.46 439.72 2.98 1.43 49.04	EE_h 31.42 23.93 166.58 4.27 1.36 15.78	EE 19.25 84.14 202.73 5.40 6.73 18.99	naïve 62.67 79.84 525.74 60.88 7.11 67.01	T=7, β ₀ EE_h 22.27 55.07 160.47 5.56 4.86 18.09	$\begin{array}{c} \mathbf{EE} \\ \mathbf{EE} \\ 11.99 \\ 87.87 \\ 185.55 \\ 6.71 \\ 8.30 \\ 18.90 \end{array}$	9, $\beta_1 = 3$ naïve 32.52 13.82 368.69 17.63 0.30 41.92	36.56497 EE_h 5.97 12.62 62.78 4.10 0.30 1.88	EE 0.24 29.48 75.67 0.45 0.88 2.42	naïve 23.02 34.39 402.72 25.01 3.03 51.61	EE_h 3.24 33.57 77.50 7.82 2.94 10.09	8.64 44.91 90.94 14.28 4.47 11.07
$\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \operatorname{ERSE} \end{array}$	naïve 77.64 29.46 439.72 2.98 1.43 49.04 EE.i	EE_h 31.42 23.93 166.58 4.27 1.36 15.78 EE_ii	EE 19.25 84.14 202.73 5.40 6.73 18.99 EE(0.5)	naïve 62.67 79.84 525.74 60.88 7.11 67.01 EE.i	T=7, β ₀ EE_h 22.27 55.07 160.47 5.56 4.86 18.09 EE_ii	$\begin{array}{c} \mathbf{EE} \\ \mathbf{EE} \\ 11.99 \\ 87.87 \\ 185.55 \\ 6.71 \\ 8.30 \\ 18.90 \\ \mathbf{EE} (0.5) \end{array}$	9, β_1 = 3 naïve 32.52 13.82 368.69 17.63 0.30 41.92 EE.i	36.56497 EE_h 5.97 12.62 62.78 4.10 0.30 1.88 EE_ii	EE 0.24 29.48 75.67 0.45 0.88 2.42 EE(0.5)	naïve 23.02 34.39 402.72 25.01 3.03 51.61 EE.i	EE_h 3.24 33.57 77.50 7.82 2.94 10.09 EE_ii	EE 8.64 44.91 90.94 14.28 4.47 11.07 EE(0.5)
$\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$	naïve 77.64 29.46 439.72 2.98 1.43 49.04 EE.i 3.29	EE_h 31.42 23.93 166.58 4.27 1.36 15.78 EE_ii 29.38	EE 19.25 84.14 202.73 5.40 6.73 18.99 EE(0.5) 8.71	naïve 62.67 79.84 525.74 60.88 7.11 67.01 EE.i 2.11	T=7, β ₀ EE_h 22.27 55.07 160.47 5.56 4.86 18.09 EE_ii 20.85	11.76.52 EE 11.99 87.87 185.55 6.71 8.30 18.90 EE(0.5) 2.69	9, β_1 = 3 naïve 32.52 13.82 368.69 17.63 0.30 41.92 EE.i 8.22	36.56497 EE_h 5.97 12.62 62.78 4.10 0.30 1.88 EE_iii 1.71	EE 0.24 29.48 75.67 0.45 0.88 2.42 EE(0.5)	naïve 23.02 34.39 402.72 25.01 3.03 51.61 EE.i 15.85	EE_h 3.24 33.57 77.50 7.82 2.94 10.09 EE_ii 6.97	8.64 44.91 90.94 14.28 4.47 11.07 EE (0.5)
$\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \end{array}$	naïve 77.64 29.46 439.72 2.98 1.43 49.04 EE .i 3.29 98.77	EE_h 31.42 23.93 166.58 4.27 1.36 15.78 EE_ii 29.38 83.13	EE 19.25 84.14 202.73 5.40 6.73 18.99 EE(0.5) 8.71 92.77	naïve 62.67 79.84 525.74 60.88 7.11 67.01 EE.i 2.11 95.06	T=7, β ₀ EE_h 22.27 55.07 160.47 5.56 4.86 18.09 EE_ii 20.85 86.42	EE 11.99 87.87 185.55 6.71 8.30 18.90 EE(0.5) 2.69 92.45	9, β_1 = : naïve 32.52 13.82 368.69 17.63 0.30 41.92 EE.i 8.22 33.19	86.56497 EE_h 5.97 12.62 62.78 4.10 0.30 1.88 EE_ii 1.71 29.75	EE 0.24 29.48 75.67 0.45 0.88 2.42 EE(0.5) 4.80 31.29	naïve 23.02 34.39 402.72 25.01 3.03 51.61 EE.i 15.85 49.65	EE_h 3.24 33.57 77.50 7.82 2.94 10.09 EE_ii 6.97 41.98	8.64 44.91 90.94 14.28 4.47 11.07 EE (0.5) 12.74 48.14
$\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$	77.64 29.46 439.72 2.98 1.43 49.04 EE. i 3.29 98.77 167.76	EE_h 31.42 23.93 166.58 4.27 1.36 15.78 EE_ii 29.38 83.13 194.71	EE 19.25 84.14 202.73 5.40 6.73 18.99 EE(0.5) 8.71 92.77 174.28	naïve 62.67 79.84 525.74 60.88 7.11 67.01 EE .i 2.11 95.06 142.10	T=7, β ₀ EE.h 22.27 55.07 160.47 5.56 4.86 18.09 EE.ii 20.85 86.42 180.69	$\begin{array}{c} \mathbf{EE} \\ \mathbf{EE} \\ 11.99 \\ 87.87 \\ 185.55 \\ 6.71 \\ 8.30 \\ 18.90 \\ \mathbf{EE} (0.5) \\ 2.69 \\ 92.45 \\ 151.66 \end{array}$	9, β_1 = 32.52 13.82 368.69 17.63 0.30 41.92 EE.i 8.22 33.19 65.27	86.56497 EE_h 5.97 12.62 62.78 4.10 0.30 1.88 EE_ii 1.71 29.75 70.72	EE 0.24 29.48 75.67 0.45 0.88 2.42 EE(0.5) 4.80 31.29 67.21	naïve 23.02 34.39 402.72 25.01 3.03 51.61 EE.i 15.85 49.65 73.58	EE_h 3.24 33.57 77.50 7.82 2.94 10.09 EE_ii 6.97 41.98 82.68	8.64 44.91 90.94 14.28 4.47 11.07 EE (0.5) 12.74 48.14 76.91
$\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \\ \operatorname{APRB}(\beta_1) \\ \end{array}$	77.64 29.46 439.72 2.98 1.43 49.04 EE _i 3.29 98.77 167.76	EE.h 31.42 23.93 166.58 4.27 1.36 15.78 EE.ii 29.38 83.13 194.71 1.47	EE 19.25 84.14 202.73 5.40 6.73 18.99 EE(0.5) 8.71 92.77 174.28 7.35	naïve 62.67 79.84 525.74 60.88 7.11 67.01 EE.i 2.11 95.06 142.10 21.66	$ \begin{array}{c} \mathbf{T}{=}7,\beta_0\\ \mathbf{EE.h}\\ 22.27\\ 55.07\\ 160.47\\ \hline 5.56\\ 4.86\\ 18.09\\ \mathbf{EE.ii}\\ 20.85\\ 86.42\\ 180.69\\ \hline 1.12\\ \end{array} $	11.76.52 EE 11.99 87.87 185.55 6.71 8.30 18.90 EE(0.5) 2.69 92.45 151.66 16.33	$\begin{array}{c} 9, \ \beta_1 = \\ \hline \textbf{naïve} \\ 32.52 \\ 13.82 \\ 368.69 \\ 17.63 \\ 0.30 \\ 41.92 \\ \hline \textbf{EE_i} \\ 8.22 \\ 33.19 \\ 65.27 \\ 4.37 \end{array}$	86.56497 EE_h 5.97 12.62 62.78 4.10 0.30 1.88 EE_ii 1.71 29.75 70.72 2.06	EE 0.24 29.48 75.67 0.45 0.88 2.42 EE(0.5) 4.80 31.29 67.21 2.48	23.02 34.39 402.72 25.01 3.03 51.61 EE_i 15.85 49.65 73.58 22.82	EE_h 3.24 33.57 77.50 7.82 2.94 10.09 EE_ii 6.97 41.98 82.68 12.08	8.64 44.91 90.94 14.28 4.47 11.07 EE(0.5) 12.74 48.14 76.91 19.19
$\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \end{array}$	77.64 29.46 439.72 2.98 1.43 49.04 EE _i 3.29 98.77 167.76 7.65 7.78	EE_h 31.42 23.93 166.58 4.27 1.36 15.78 EE_ii 29.38 83.13 194.71 1.47 6.85	EE 19.25 84.14 202.73 5.40 6.73 18.99 EE(0.5) 8.71 92.77 174.28 7.35 7.21	naïve 62.67 79.84 525.74 60.88 7.11 67.01 EE.i 2.11 95.06 142.10 21.66 8.35	$\begin{array}{c} \mathbf{T=7}, \beta_0 \\ \mathbf{EE.h} \\ 22.27 \\ 55.07 \\ 160.47 \\ \hline 5.56 \\ 4.86 \\ 18.09 \\ \mathbf{EE.ii} \\ 20.85 \\ 86.42 \\ 180.69 \\ \hline 1.12 \\ 8.60 \\ \end{array}$	EE 11.99 87.87 185.55 6.71 8.30 18.90 EE(0.5) 2.69 92.45 151.66 16.33 8.28	$\begin{array}{c} 9, \ \beta_1 = \\ \hline \textbf{naïve} \\ 32.52 \\ 13.82 \\ 368.69 \\ \hline 17.63 \\ 0.30 \\ 41.92 \\ \hline \textbf{EE_i} \\ 8.22 \\ 33.19 \\ 65.27 \\ \hline 4.37 \\ 1.02 \\ \end{array}$	86.56497 EE_h 5.97 12.62 62.78 4.10 0.30 1.88 EE_ii 1.71 29.75 70.72 2.06 0.89	EE 0.24 29.48 75.67 0.45 0.88 2.42 EE(0.5) 4.80 31.29 67.21 2.48 0.94	naïve 23.02 34.39 402.72 25.01 3.03 51.61 EE_i 15.85 49.65 73.58 22.82 4.88	EE_h 3.24 33.57 77.50 7.82 2.94 10.09 EE_ii 6.97 41.98 82.68 12.08 4.27	EE 8.64 44.91 90.94 14.28 4.47 11.07 EE(0.5) 12.74 48.14 76.91 19.19 4.72
$\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \\ \operatorname{APRB}(\beta_1) \\ \end{array}$	77.64 29.46 439.72 2.98 1.43 49.04 EE _i 3.29 98.77 167.76	EE.h 31.42 23.93 166.58 4.27 1.36 15.78 EE.ii 29.38 83.13 194.71 1.47	EE 19.25 84.14 202.73 5.40 6.73 18.99 EE(0.5) 8.71 92.77 174.28 7.35	naïve 62.67 79.84 525.74 60.88 7.11 67.01 EE.i 2.11 95.06 142.10 21.66	$\begin{array}{c} \mathbf{T}{=}7,\beta\\ \mathbf{EE}{,}\mathbf{h}\\ 22.27\\ 55.07\\ 160.47\\ 5.56\\ 4.86\\ 18.09\\ \mathbf{EE}{,}\mathbf{i}\\ 20.85\\ 86.42\\ 180.69\\ 1.12\\ 8.60\\ 19.51\\ \end{array}$	D = 1176.52 EE 11.99 87.87 185.55 6.71 8.30 18.90 EE(0.5) 2.69 92.45 151.66 16.33 8.28 16.09	$\begin{array}{c} 9, \ \beta_1 = \\ \hline \textbf{naïve} \\ 32.52 \\ 13.82 \\ 368.69 \\ \hline 17.63 \\ 0.30 \\ 41.92 \\ \hline \textbf{EE_i} \\ 8.22 \\ 33.19 \\ 65.27 \\ \hline 4.37 \\ 1.02 \\ 2.22 \end{array}$	36.56497 EE_h 5.97 12.62 62.78 4.10 0.30 1.88 EE_ii 1.71 29.75 70.72 2.06 0.89 2.26	EE 0.24 29.48 75.67 0.45 0.88 2.42 EE(0.5) 4.80 31.29 67.21 2.48 0.94 2.22	23.02 34.39 402.72 25.01 3.03 51.61 EE_i 15.85 49.65 73.58 22.82	EE_h 3.24 33.57 77.50 7.82 2.94 10.09 EE_ii 6.97 41.98 82.68 12.08	8.64 44.91 90.94 14.28 4.47 11.07 EE(0.5) 12.74 48.14 76.91 19.19
$\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \end{array}$	naïve 77.64 29.46 439.72 2.98 1.43 49.04 EE.i 3.29 98.77 167.76 7.65 7.78 17.00	EE_h 31.42 23.93 166.58 4.27 1.36 15.78 EE_ii 29.38 83.13 194.71 1.47 6.85	EE 19.25 84.14 202.73 5.40 6.73 18.99 EE(0.5) 8.71 92.77 174.28 7.35 7.21	naïve 62.67 79.84 525.74 60.88 7.11 67.01 EE.i 2.11 95.06 142.10 21.66 8.35	$\begin{array}{c} \mathbf{T}{=}7,\beta\\ \mathbf{EE}{,}\mathbf{h}\\ 22.27\\ 55.07\\ 160.47\\ 5.56\\ 4.86\\ 18.09\\ \mathbf{EE}{,}\mathbf{i}\\ 20.85\\ 86.42\\ 180.69\\ 1.12\\ 8.60\\ 19.51\\ \end{array}$	EE 11.99 87.87 185.55 6.71 8.30 18.90 EE(0.5) 2.69 92.45 151.66 16.33 8.28	$\begin{array}{c} 9, \ \beta_1 = \\ \hline \textbf{naïve} \\ 32.52 \\ 13.82 \\ 368.69 \\ \hline 17.63 \\ 0.30 \\ 41.92 \\ \hline \textbf{EE_i} \\ 8.22 \\ 33.19 \\ 65.27 \\ \hline 4.37 \\ 1.02 \\ 2.22 \end{array}$	36.56497 EE_h 5.97 12.62 62.78 4.10 0.30 1.88 EE_ii 1.71 29.75 70.72 2.06 0.89 2.26	EE 0.24 29.48 75.67 0.45 0.88 2.42 EE(0.5) 4.80 31.29 67.21 2.48 0.94 2.22	naïve 23.02 34.39 402.72 25.01 3.03 51.61 EE_i 15.85 49.65 73.58 22.82 4.88	EE_h 3.24 33.57 77.50 7.82 2.94 10.09 EE_ii 6.97 41.98 82.68 12.08 4.27	EE 8.64 44.91 90.94 14.28 4.47 11.07 EE(0.5) 12.74 48.14 76.91 19.19 4.72
$\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \end{array}$	77.64 29.46 439.72 2.98 1.43 49.04 EE _i 3.29 98.77 167.76 7.65 7.78	EE_h 31.42 23.93 166.58 4.27 1.36 15.78 EE_ii 29.38 83.13 194.71 1.47 6.85 17.79	EE 19.25 84.14 202.73 5.40 6.73 18.99 EE(0.5) 8.71 174.28 7.35 7.21 17.26	naïve 62.67 79.84 525.74 60.88 7.11 67.01 E.L.i 2.11 95.06 142.10 21.66 8.35 14.99	$\begin{array}{c} \mathbf{T=7}, \ \beta \\ \mathbf{EE_h} \\ 22.27 \\ 55.07 \\ 160.47 \\ 5.56 \\ 4.86 \\ 18.09 \\ \mathbf{EE_ii} \\ 20.85 \\ 86.42 \\ 180.69 \\ 1.12 \\ 8.60 \\ 19.51 \\ \mathbf{T=10}, \ \beta \end{array}$	$\begin{array}{c} \mathbf{EE} \\ \mathbf{EE} \\ 11.99 \\ 87.87 \\ 185.55 \\ 6.71 \\ 8.30 \\ 18.90 \\ \hline \mathbf{EE}(0.5) \\ 2.69 \\ 92.45 \\ 151.66 \\ 16.33 \\ 8.28 \\ 16.09 \\ 0 = 2222.86 \end{array}$	$\begin{array}{c} 9, \ \beta_1 = \\ \hline \textbf{naïve} \\ 32.52 \\ 13.82 \\ 368.69 \\ 17.63 \\ 0.30 \\ 41.92 \\ \hline \textbf{EE_i} \\ 8.22 \\ 33.19 \\ 65.27 \\ 4.37 \\ 1.02 \\ 2.22 \\ 61, \ \beta_1 = \\ \end{array}$	36.56497 EE_h 5.97 12.62 62.78 4.10 0.30 1.88 EE_ii 1.71 29.75 70.72 2.06 0.89 2.26 14.4251	EE 0.24 29.48 75.67 0.45 0.88 2.42 EE(0.5) 4.80 31.29 67.21 2.48 0.94 2.22	23.02 34.39 402.72 25.01 3.03 51.61 EE.i 15.85 49.65 73.58 22.82 4.88 9.25	EE_h 3.24 33.57 77.50 7.82 2.94 10.09 EE_ii 6.97 41.98 82.68 12.08 4.27 10.45	EE 8.64 44.91 90.94 14.28 4.47 11.07 EE(0.5) 12.74 48.14 76.91 19.19 4.72 9.67
$\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$	naïve 77.64 29.46 439.72 2.98 1.43 49.04 EE_i 3.29 98.77 167.76 7.65 7.78 17.00 naïve	EE_h 31.42 23.93 166.58 4.27 1.36 15.78 EE_ii 29.38 83.13 194.71 1.47 6.85 17.79 EE_h 36.98	EE 19.25 84.14 202.73 5.40 6.73 18.99 EE(0.5) 8.71 92.77 174.28 7.35 7.21 17.26	naïve 62.67 79.84 525.74 60.88 7.11 67.01 EE_i 2.11 95.06 142.10 21.66 8.35 14.99 naïve 56.59	$\begin{array}{c} \mathbf{T=7,\beta}\\ \mathbf{EE,h}\\ 22.27\\ 55.07\\ 160.47\\ 5.56\\ 4.86\\ 18.09\\ \mathbf{EE.ii}\\ 20.85\\ 8.642\\ 180.69\\ 1.12\\ 8.60\\ 19.51\\ \mathbf{T=10,\beta}\\ \mathbf{EE.h} \end{array}$	$\begin{array}{c} \mathbf{EE} \\ \mathbf{EE} \\ 11.99 \\ 87.87 \\ 185.55 \\ 6.71 \\ 8.30 \\ 18.90 \\ \mathbf{EE}(0.5) \\ 2.69 \\ 92.45 \\ 151.66 \\ 16.33 \\ 8.28 \\ 16.09 \\ 6 = 2222.86 \\ \mathbf{EE} \end{array}$	$\begin{array}{c} 9, \ \beta_1 = \\ \hline {\bf na\"{i}ve} \\ \hline 32.52 \\ 13.82 \\ 368.69 \\ 17.63 \\ 0.30 \\ 41.92 \\ \hline {\bf EE_i} \\ 8.22 \\ 33.19 \\ 65.27 \\ 4.37 \\ 1.02 \\ 2.22 \\ 61, \ \beta_1 = \\ {\bf na\"{i}ve} \end{array}$	36.56497 EE_h 5.97 12.62 62.78 4.10 0.30 1.88 EE_ii 1.71 29.75 70.72 2.06 0.89 2.26 14.4251 EE_h 12.79	EE 0.24 29.48 75.67 0.45 0.88 2.42 EE(0.5) 4.80 31.29 67.21 2.48 0.94 2.22	naïve 23.02 34.39 402.72 25.01 3.03 51.61 EE_i 15.85 49.65 73.58 22.82 4.88 9.25	EE_h 3.24 33.57 77.50 7.82 2.94 10.09 EE_ii 6.97 41.98 82.68 12.08 4.27 10.45	EE 8.64 44.91 90.94 14.28 4.47 11.07 EE(0.5) 12.74 48.14 76.91 19.19 4.72 9.67
$APRB(\beta_0)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_0)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_1)$ SE ERSE	naïve 77.64 29.46 439.72 2.98 1.43 49.04 EE_i 3.29 98.77 167.76 7.65 7.78 17.00 naïve 59.42	EE_h 31.42 23.93 166.58 4.27 1.36 15.78 EE_ii 29.38 83.13 194.71 1.47 6.85 17.79	EE 19.25 84.14 202.73 5.40 6.73 18.99 EE(0.5) 8.71 92.77 174.28 7.35 7.21 17.26 EE 30.76	naïve 62.67 79.84 525.74 60.88 7.11 67.01 EE_i 2.11 95.06 142.10 21.66 8.35 14.99	T=7, β EE .h 22.27 55.07 160.47 5.56 4.86 18.09 EE .ii 20.85 86.42 180.69 1.12 8.60 19.51 $T=10$, β EE .h 28.83	$\begin{array}{c} 5 = 1176.52 \\ \hline \mathbf{EE} \\ 11.99 \\ 87.87 \\ 185.55 \\ 6.71 \\ 8.30 \\ 18.90 \\ \hline \mathbf{EE}(0.5) \\ 2.69 \\ 92.45 \\ 151.66 \\ 16.33 \\ 8.28 \\ 16.09 \\ 6 = 2222.86 \\ \hline \mathbf{EE} \\ 22.31 \\ \end{array}$	$\begin{array}{c} 9, \ \beta_1 = \\ \hline {\bf na\"{i}ve} \\ \hline 32.52 \\ 13.82 \\ 368.69 \\ 17.63 \\ 0.30 \\ 41.92 \\ \hline {\bf EE_i} \\ 8.22 \\ 33.197 \\ 4.37 \\ 1.02 \\ 2.22 \\ 61, \ \beta_1 = \\ \hline {\bf na\"{i}ve} \\ \hline 29.53 \\ \end{array}$	36.56497 EE_h 5.97 12.62 62.78 4.10 0.30 1.88 EE_ii 1.71 29.75 70.72 2.06 0.89 2.26 14.4251 EE_h	EE 0.24 29.48 75.67 0.45 0.88 2.42 EE(0.5) 4.80 31.29 67.21 2.48 0.94 2.22	23.02 34.39 402.72 25.01 3.03 51.61 EE_i 15.85 49.65 73.58 22.82 4.88 9.25 naïve 20.05	EE_h 3.24 33.57 77.50 7.82 2.94 10.09 EE_ii 6.97 41.98 82.68 12.08 4.27 10.45	EE 8.64 44.91 90.94 14.28 4.47 11.07 EE(0.5) 12.74 48.14 76.91 19.19 4.72 9.67 EE 3.50
$\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{SE} \\ \operatorname{SE} \\ \end{array}$	naïve 77.64 29.46 439.72 2.98 1.43 49.04 EE_i 3.29 98.77 167.765 7.78 17.00 naïve 59.42 41.85	EE_h 31.42 23.93 166.58 4.27 1.36 15.78 EE_ii 29.38 83.13 194.71 1.47 6.85 17.79 EE_h 36.98 38.61	EE 19.25 84.14 202.73 5.40 6.73 18.99 EE(0.5) 8.71 92.77 174.28 7.35 7.21 17.26 EE 30.76 76.39	naïve 62.67 79.84 525.74 60.88 7.11 67.01 EE_i 2.11 95.06 142.10 21.66 8.35 14.99 naïve 56.59 71.64	$\begin{array}{c} \mathbf{T}{=}7,\beta\\ \mathbf{EE}.\mathbf{h}\\ 22.27\\ 55.07\\ 160.47\\ 5.56\\ 4.86\\ 18.09\\ \mathbf{EE}.\mathbf{ii}\\ 20.85\\ 86.42\\ 180.69\\ 1.12\\ 8.60\\ 19.51\\ \mathbf{T}{=}10,\beta\\ \mathbf{EE}.\mathbf{h}\\ 28.83\\ 61.68\\ \end{array}$	$\begin{array}{c} \mathbf{EE} \\ \mathbf{EE} \\ 11.99 \\ 87.87 \\ 185.55 \\ 6.71 \\ 8.30 \\ 18.90 \\ \mathbf{EE}(0.5) \\ 2.69 \\ 92.45 \\ 151.66 \\ 16.33 \\ 8.28 \\ 16.09 \\ 6 = 2222.86 \\ \mathbf{EE} \\ 22.31 \\ 91.19 \\ \end{array}$	$\begin{array}{c} 9, \ \beta_1 = \\ \hline {\bf na\"{i}ve} \\ \hline 32.52 \\ 13.82 \\ 368.69 \\ \hline 17.63 \\ 0.30 \\ 41.92 \\ \hline {\bf EE_i} \\ 8.22 \\ 33.19 \\ 65.27 \\ 4.37 \\ 1.02 \\ 2.22 \\ 61, \ \beta_1 = \\ \hline {\bf na\"{i}ve} \\ \hline 29.53 \\ 22.43 \\ \end{array}$	36.56497 EE_h 5.97 12.62 62.78 4.10 0.30 1.88 EE_ii 1.71 29.75 70.72 2.06 0.89 2.26 14.4251 EE_h 12.79 21.94	EE 0.24 29.48 75.67 0.45 0.88 2.42 EE(0.5) 4.80 31.29 67.21 2.48 0.94 2.22 EE 9.67 38.18	naïve 23.02 34.39 402.72 25.01 3.03 51.61 EE.i 15.85 49.65 73.58 22.82 4.88 9.25 naïve 20.05 33.61	EE_h 3.24 33.57 77.50 7.82 2.94 10.09 EE_ii 6.97 41.98 82.68 12.08 4.27 10.45 EE_h 0.28 28.16	EE 8.64 44.91 90.94 14.28 4.47 11.07 EE(0.5) 12.74 48.14 76.91 19.19 4.72 9.67 EE 3.50 39.34
$\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$	naïve 77.64 29.46 439.72 2.98 1.43 49.04 EE_i 3.29 98.77 167.76 7.65 7.78 17.00 naïve 59.42 41.85 358.15	EE_h 31.42 23.93 166.58 4.27 1.36 15.78 EE_ii 29.38 83.13 194.71 1.47 6.85 17.79 EE_h 36.98 38.61 154.92	EE 19.25 84.14 202.73 5.40 6.73 18.99 EE(0.5) 8.71 92.77 174.28 7.35 7.21 17.26 EE 30.76 76.39 187.01	naïve 62.67 79.84 525.74 60.88 7.11 67.01 EE_i 2.11 95.06 142.10 21.66 8.35 14.99 naïve 56.59 71.64 378.29	$\begin{array}{c} \mathbf{T=7}, \ \beta \\ \mathbf{EE_h} \\ 22.27 \\ 55.07 \\ 160.47 \\ 5.56 \\ 4.86 \\ 18.09 \\ \mathbf{EE_ii} \\ 20.85 \\ 86.42 \\ 180.69 \\ 1.12 \\ 8.60 \\ 19.51 \\ \mathbf{T=10}, \ \beta \\ \mathbf{EE_h} \\ 28.83 \\ 61.68 \\ 158.02 \\ \end{array}$	$\begin{array}{c} \mathbf{EE} \\ \mathbf{EE} \\ 11.99 \\ 87.87 \\ 185.55 \\ 6.71 \\ 8.30 \\ 18.90 \\ \mathbf{EE}(0.5) \\ 2.69 \\ 92.45 \\ 151.66 \\ 16.33 \\ 8.28 \\ 16.09 \\ 6 = 2222.86 \\ \mathbf{EE} \\ 22.31 \\ 91.19 \\ 188.79 \\ \end{array}$	$\begin{array}{c} 9, \ \beta_1 = \\ \textbf{na\"{i}ve} \\ 32.52 \\ 13.82 \\ 368.69 \\ 17.63 \\ 0.30 \\ 41.92 \\ \textbf{EE_i} \\ 8.22 \\ 33.19 \\ 65.27 \\ 4.37 \\ 1.02 \\ 2.22 \\ 61, \ \beta_1 = \\ \textbf{na\"{i}ve} \\ 29.53 \\ 22.43 \\ 280.58 \end{array}$	36.56497 EE_h 5.97 12.62 62.78 4.10 0.30 1.88 EE_ii 1.71 29.75 70.75 2.06 0.89 2.26 14.4251 EE_h 12.79 21.94 77.58	EE 0.24 29.48 75.67 0.45 0.88 2.42 EE(0.5) 4.80 31.29 67.21 2.48 0.94 2.22 EEE 9.67 38.18 92.04	23.02 34.39 402.72 25.01 3.03 51.61 EE_i 15.85 49.65 73.58 22.82 4.88 9.25 naïve 20.05 33.61 279.61	EE_h 3.24 33.57 77.50 7.82 2.94 10.09 EE_ii 6.97 41.98 82.68 12.08 4.27 10.45 EE_h 0.28 28.16 76.60	EE 8.64 44.91 90.94 14.28 4.47 11.07 EE(0.5) 12.74 48.14 76.91 19.19 4.72 9.67 EE 3.50 39.34 89.43
$\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$	naïve 77.64 29.46 439.72 2.98 1.43 49.04 EE_i 3.29 98.77 167.76 7.78 17.00 naïve 59.42 41.85 358.15 62.57	EE_h 31.42 23.93 166.58 4.27 1.36 15.78 EE_ii 29.38 83.13 194.71 1.47 6.85 17.79 EE_h 36.98 38.61 154.92 35.76	EE 19.25 84.14 202.73 5.40 6.73 18.99 EE(0.5) 8.71 92.77 174.28 7.35 7.21 17.26 EE 30.76 76.39 187.01 25.46	naïve 62.67 79.84 525.74 60.88 7.11 67.01 EE_i 2.11 95.06 142.10 21.66 8.35 14.99 naïve 56.59 71.64 378.29 72.65	$\begin{array}{c} \mathbf{T=7}, \ \beta \\ \mathbf{EE_h} \\ 22.27 \\ 55.07 \\ 160.47 \\ 5.56 \\ 4.86 \\ 18.09 \\ \mathbf{EE_ii} \\ 20.85 \\ 86.42 \\ 180.69 \\ 1.12 \\ 8.60 \\ 19.51 \\ \mathbf{T=10}, \ \beta \\ \mathbf{EE_h} \\ 28.83 \\ 61.68 \\ 158.02 \\ 49.03 \\ \end{array}$	$\begin{array}{c} \mathbf{EE} \\ \mathbf{EE} \\ 11.99 \\ 87.87 \\ 185.55 \\ 6.71 \\ 8.30 \\ 18.90 \\ \mathbf{EE}(0.5) \\ 2.69 \\ 92.45 \\ 151.66 \\ 16.33 \\ 8.28 \\ 16.09 \\ \mathbf{EE} \\ 22.31 \\ 91.19 \\ 188.79 \\ 41.20 \\ \end{array}$	$\begin{array}{c} 9, \ \beta_1 = \\ \hline {\bf na\"{i}ve} \\ \hline 32.52 \\ 13.82 \\ 368.69 \\ \hline 17.63 \\ 0.30 \\ 41.92 \\ \hline {\bf EE_i} \\ 8.22 \\ 33.19 \\ 65.27 \\ 4.37 \\ 1.02 \\ 2.22 \\ \\ 51, \ \beta_1 = \\ \hline {\bf na\"{i}ve} \\ \hline 29.53 \\ 22.43 \\ 280.58 \\ \hline 82.11 \\ \hline \end{array}$	36.56497 EE_h 5.97 12.62 62.78 4.10 0.30 1.88 EE_ii 1.71 29.75 70.72 2.06 0.89 2.26 14.4251 EE_h 12.79 21.94 77.58 34.88	EE 0.24 29.48 75.67 0.45 0.88 2.42 EE(0.5) 4.80 31.29 67.21 2.48 0.94 2.22 EE 9.67 38.18 92.04 25.02	23.02 34.39 402.72 25.01 3.03 51.61 EE_i 15.85 49.65 73.58 22.82 4.88 9.25 naïve 20.05 33.61 279.61 25.81	EE_h 3.24 33.57 77.50 7.82 2.94 10.09 EE_ii 6.97 41.98 82.68 12.08 4.27 10.45 EE_h 0.28 28.16 76.60 2.67	EE 8.64 44.91 90.94 14.28 4.47 11.07 EE(0.5) 12.74 48.14 76.91 19.19 4.72 9.67 EE 3.50 39.34 89.43 6.95
$\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$	naïve 77.64 29.46 439.72 2.98 1.43 49.04 EE_i 3.29 98.77 167.76 7.65 7.78 17.00 naïve 59.42 41.85 358.15 62.57 1.34	EE_h 31.42 23.93 166.58 4.27 1.36 15.78 EE_ii 29.38 83.13 194.71 1.47 6.85 17.79 EE_h 36.98 38.61 154.92 35.76 1.42	EE 19.25 84.14 202.73 5.40 6.73 18.99 EE(0.5) 8.71 92.77 174.28 7.35 7.21 17.26 EE 30.76 76.39 187.01 25.46 2.89	naïve 62.67 79.84 525.74 60.88 7.11 67.01 EE_i 2.11 95.06 142.10 21.66 8.35 14.99 naïve 56.59 71.64 378.29 72.65 5.55	$\begin{array}{c} \mathbf{T=7}, \ \beta \\ \mathbf{EE_h} \\ 22.27 \\ 55.07 \\ 160.47 \\ 5.56 \\ 4.86 \\ 18.09 \\ \mathbf{EE_ii} \\ 20.85 \\ 86.42 \\ 180.69 \\ 1.12 \\ 8.60 \\ 19.51 \\ \mathbf{T=10}, \ \beta \\ \mathbf{EE_h} \\ 28.83 \\ 61.68 \\ 158.02 \\ 49.03 \\ 4.79 \end{array}$	$\begin{array}{c} \mathbf{EE} \\ \mathbf{EE} \\ 11.99 \\ 87.87 \\ 185.55 \\ 6.71 \\ 8.30 \\ 18.90 \\ \mathbf{EE}(0.5) \\ 2.69 \\ 92.45 \\ 151.66 \\ 16.33 \\ 8.28 \\ 16.09 \\ \mathbf{EE} \\ 22.31 \\ 91.19 \\ 188.79 \\ 41.20 \\ 6.55 \end{array}$	$\begin{array}{c} 9, \ \beta_1 = \\ \hline {\bf na\"{i}ve} \\ \hline 32.52 \\ 13.82 \\ 368.69 \\ \hline 17.63 \\ 0.30 \\ 41.92 \\ \hline {\bf EE.i.} \\ 8.22 \\ 33.19 \\ 65.27 \\ 4.37 \\ 1.02 \\ 2.22 \\ 51, \ \beta_1 = \\ \hline {\bf na\"{i}ve} \\ \hline 29.53 \\ 22.43 \\ 280.58 \\ \hline 82.11 \\ 0.50 \\ \end{array}$	36.56497 EE_h 5.97 12.62 62.78 4.10 0.30 1.88 EE_ii 1.71 29.75 70.72 2.06 0.89 2.26 14.4251: EE_h 12.79 21.94 77.58 34.88 0.54	EE 0.24 29.48 75.67 0.45 0.88 2.42 EE(0.5) 4.80 31.29 67.21 2.48 0.94 2.22 EE 9.67 38.18 92.04 25.02 0.88	23.02 34.39 402.72 25.01 3.03 51.61 EE_i 15.85 49.65 73.58 22.82 4.88 9.25 naïve 20.05 33.61 279.61 25.81 2.70	EE_h 3.24 33.57 77.50 7.82 2.94 10.09 EE_ii 6.97 41.98 82.68 12.08 4.27 10.45 EE_h 0.28 28.16 76.60 2.67 2.21	EE 8.64 44.91 90.94 14.28 4.47 11.07 EE(0.5) 12.74 48.14 76.91 19.19 4.72 9.67 EE 3.50 39.34 89.43 6.95 2.83
$\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}(\beta_1) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$ $\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \end{array}$	naïve 77.64 29.46 439.72 2.98 1.43 49.04 EE.i 3.29 98.77 167.76 7.65 7.78 17.00 naïve 59.42 41.85 358.15 62.57 1.34 16.49	EE_h 31.42 23.93 166.58 4.27 1.36 15.78 EE_ii 29.38 83.13 194.71 1.47 6.85 17.79 EE_h 36.98 38.61 154.92 35.76 1.42 6.18	EE 19.25 84.14 202.73 5.40 6.73 18.99 EE(0.5) 8.71 92.77 174.28 7.35 7.21 17.26 EE 30.76 76.39 187.01 25.46 2.89 7.50	naïve 62.67 79.84 525.74 60.88 7.11 67.01 EE.i 2.11 95.06 142.10 21.66 8.35 14.99 naïve 56.59 71.64 378.29 72.65 5.55 23.54	$\begin{array}{c} \mathbf{T=7}, \ \beta \\ \mathbf{EE_h} \\ 22.27 \\ 55.07 \\ 160.47 \\ 5.56 \\ 4.86 \\ 18.09 \\ \mathbf{EE_ii} \\ 20.85 \\ 86.42 \\ 180.69 \\ 1.12 \\ 8.60 \\ 9.51 \\ \mathbf{T=10}, \ \beta \\ \mathbf{EE_h} \\ 28.83 \\ 61.68 \\ 158.02 \\ 49.03 \\ 4.79 \\ 11.02 \end{array}$	$\begin{array}{c} \mathbf{EE} \\ \mathbf{EE} \\ 11.99 \\ 87.87 \\ 185.55 \\ 6.71 \\ 8.30 \\ 18.90 \\ \mathbf{EE}(0.5) \\ 2.69 \\ 92.45 \\ 151.66 \\ 16.33 \\ 8.28 \\ 16.09 \\ \mathbf{EE} \\ 22.31 \\ 91.19 \\ 188.79 \\ 41.20 \\ 6.55 \\ 13.02 \\ \end{array}$	$\begin{array}{c} 9, \ \beta_1 = \\ \hline {\bf na\"{i}ve} \\ \hline 32.52 \\ 13.82 \\ 368.69 \\ \hline 17.63 \\ 0.30 \\ 41.92 \\ \hline {\bf EE.i.} \\ 8.22 \\ 33.19 \\ 65.27 \\ 4.37 \\ 1.02 \\ 2.22 \\ 2.22 \\ 51, \ \beta_1 = \\ \hline {\bf na\"{i}ve} \\ 29.53 \\ 22.43 \\ 280.58 \\ \hline 82.11 \\ 0.50 \\ 14.14 \\ \end{array}$	86.56497 EE_h 5.97 12.62 62.78 4.10 0.30 1.88 EE_ii 1.71 29.75 70.72 2.06 0.89 2.26 14.4251: EE_h 12.79 21.94 77.58 34.88 0.54 1.76	EE 0.24 29.48 75.67 0.45 0.88 2.42 EE(0.5) 4.80 31.29 67.21 2.48 0.94 2.22 1 EE 9.67 38.18 92.04 25.02 0.88 2.15	23.02 34.39 402.72 25.01 3.03 51.61 EE_i 15.85 49.65 73.58 22.82 4.88 9.25 naïve 20.05 33.61 279.61 25.81 2.70 17.47	EE_h 3.24 33.57 77.50 7.82 2.94 10.09 EE_ii 6.97 41.98 82.68 12.08 4.27 10.45 EE_h 0.28 28.16 76.60 2.67 2.21 4.73	EE 8.64 44.91 90.94 14.28 4.47 11.07 EE(0.5) 12.74 48.14 76.91 19.19 4.72 9.67 EE 3.50 39.34 89.43 6.95 2.83 5.65
$APRB(\beta_0)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_0)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_0)$ SE ERSE $APRB(\beta_0)$ SE ERSE $APRB(\beta_1)$ SE ERSE	naïve 77.64 29.46 439.72 2.98 1.43 49.04 EE.i 3.29 98.77 167.76 7.65 7.78 17.00 naïve 59.42 41.85 358.15 62.57 1.34 16.49 EE.i	EE_h 31.42 23.93 166.58 4.27 1.36 15.78 EE_ii 29.38 83.13 194.71 6.85 17.79 EE_h 36.98 38.61 154.92 35.76 1.42 6.18 EE_ii	EE 19.25 84.14 202.73 5.40 6.73 18.99 EE(0.5) 8.71 92.77 174.28 7.35 7.21 17.26 EE 30.76 76.39 187.01 25.46 2.89 7.50 EE(0.5)	naïve 62.67 79.84 525.74 60.88 7.11 67.01 EE.i 2.11 95.06 142.10 21.66 8.35 14.99 naïve 56.59 71.64 378.29 72.65 5.55 23.54 EE.i	$T=7$, β A EE_h 22.27 55.07 160.47 5.56 4.86 18.09 EE_h 20.85 86.42 180.69 1.12 8.60 1.951 $T=10$, β EE_h 28.83 61.68 158.02 49.03 4.79 11.02 EE_h i	$\begin{array}{c} 5 = 1176.52 \\ \mathbf{EE} \\ 11.99 \\ 87.87 \\ 185.55 \\ 6.71 \\ 8.30 \\ 18.90 \\ \mathbf{EE}(0.5) \\ 2.69 \\ 92.45 \\ 151.66 \\ 16.33 \\ 8.28 \\ 16.09 \\ 6 = 2222.80 \\ \mathbf{EE} \\ 22.31 \\ 91.19 \\ 188.79 \\ 41.20 \\ 6.55 \\ 13.02 \\ \mathbf{EE}(0.5) \\ \end{array}$	$\begin{array}{c} 9, \ \beta_1 = \\ \hline \textbf{na\"{i}ve} \\ \hline 32.52 \\ 13.82 \\ 368.69 \\ \hline 17.63 \\ 0.30 \\ 41.92 \\ \hline \textbf{EE.i} \\ 8.22 \\ 33.19 \\ 65.27 \\ 4.37 \\ 1.02 \\ 2.22 \\ 2.22 \\ 51, \ \beta_1 = \\ \hline \textbf{na\"{i}ve} \\ 29.53 \\ 22.43 \\ 280.58 \\ \hline 82.11 \\ 0.50 \\ 14.14 \\ \hline \textbf{EE.i} \end{array}$	86.56497 EE_h 5.97 12.62 62.78 4.10 0.30 1.88 EE_ii 1.71 29.75 70.72 2.06 0.89 2.26 14.4251: EE_h 12.79 21.94 77.58 34.88 0.54 1.76 EE_ii	EE 0.24 29.48 75.67 0.45 0.88 2.42 EE(0.5) 4.80 31.29 67.21 2.48 0.94 2.22 1 EE 9.67 38.18 92.04 25.02 0.88 2.15 EE(0.5)	naïve 23.02 34.39 402.72 25.01 3.03 51.61 EE.i 15.85 49.65 73.58 22.82 4.88 9.25 naïve 20.05 33.61 279.61 25.81 2.70 17.47 EE.i	EE_h 3.24 33.57 77.50 7.82 2.94 10.09 EE_ii 6.97 41.98 82.68 12.08 4.27 10.45 EE_h 0.28 28.16 76.60 2.67 2.21 4.73 EE_ii	EE 8.64 44.91 90.94 14.28 4.47 11.07 EE(0.5) 12.74 48.14 76.91 19.19 4.72 9.67 EE 3.50 39.34 89.43 6.95 2.83 5.65 EE(0.5)
$APRB(\beta_0)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_0)$ SE ERSE $APRB(\beta_0)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_0)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_1)$ SE ERSE	naïve 77.64 29.46 439.72 2.98 1.43 49.04 EE.i 3.29 98.77 167.76 7.65 7.78 17.00 naïve 59.42 41.85 358.15 62.57 1.34 16.49 EE.i 24.07	EE_h 31.42 23.93 166.58 4.27 1.36 15.78 EE_ii 29.38 83.13 194.71 1.47 6.85 17.79 EE_h 36.98 38.61 154.92 35.76 1.42 6.18 EE_ii 33.74	EE 19.25 84.14 202.73 5.40 6.73 18.99 EE(0.5) 8.71 92.77 174.28 7.35 7.21 17.26 EE 30.76 76.39 187.01 25.46 2.89 7.50 EE(0.5)	naïve 62.67 79.84 525.74 60.88 7.11 67.01 EE.i 2.11 95.06 142.10 21.66 8.35 14.99 naïve 56.59 71.64 378.29 72.65 5.55 23.54 EE.i 14.89	$ T=7, β$ EE_h 22.27 55.07 160.47 5.56 4.86 18.09 EE_ii 20.85 86.42 180.69 1.12 8.60 $1.9.51$ $T=10, β$ EE_h 28.83 61.68 158.02 49.03 4.79 11.02 EE_ii 25.58	$\begin{array}{c} \mathbf{EE} \\ \mathbf{EE} \\ 11.99 \\ 87.87 \\ 185.55 \\ \hline 6.71 \\ 8.30 \\ 18.90 \\ \hline \mathbf{EE}(0.5) \\ 2.69 \\ 92.45 \\ 151.66 \\ 16.33 \\ 8.28 \\ 16.09 \\ \mathbf{e} = 2222.80 \\ \hline \mathbf{EE} \\ 22.31 \\ 91.19 \\ 188.79 \\ 41.20 \\ 6.55 \\ 13.02 \\ \hline \mathbf{EE}(0.5) \\ 17.78 \\ \end{array}$	$\begin{array}{c} 9, \ \beta_1 = \\ \hline {\bf na\"{i}ve} \\ \hline 32.52 \\ 13.82 \\ 368.69 \\ \hline 17.63 \\ 0.30 \\ 41.92 \\ \hline {\bf EE.i.} \\ 8.22 \\ 33.19 \\ 65.27 \\ 4.37 \\ 1.02 \\ 2.22 \\ 61, \ \beta_1 = \\ \hline {\bf na\"{i}ve} \\ \hline 29.53 \\ 22.43 \\ 280.58 \\ 82.11 \\ 0.50 \\ 14.14 \\ \hline {\bf EE.i.} \\ 6.13 \\ \end{array}$	36.56497 EE_h 5.97 12.62 62.78 4.10 0.30 1.88 EE_ii 1.71 29.75 70.72 2.06 0.89 2.26 14.4251 EE_h 12.79 21.94 77.58 34.88 0.54 1.76 EE_ii 10.24	EE 0.24 29.48 75.67 0.45 0.88 2.42 EE(0.5) 4.80 31.29 67.21 2.48 0.94 2.22 1 EE 9.67 38.18 92.04 25.02 0.88 2.15 EE(0.5) 7.82	naïve 23.02 34.39 402.72 25.01 3.03 51.61 EE.i 15.85 49.65 73.58 22.82 4.88 9.25 naïve 20.05 33.61 279.61 25.81 2.70 17.47 EE.i 7.29	EE_h 3.24 33.57 77.50 7.82 2.94 10.09 EE_ii 6.97 41.98 82.68 12.08 4.27 10.45 EE_h 0.28 28.16 76.60 2.67 2.21 4.73 EE_ii 2.94	EE 8.64 44.91 90.94 14.28 4.47 11.07 EE(0.5) 12.74 48.14 76.91 19.19 4.72 9.67 EE 3.50 39.34 89.43 6.95 2.83 5.65 EE(0.5)
$APRB(\beta_0)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_0)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_0)$ SE ERSE $APRB(\beta_0)$ SE ERSE $APRB(\beta_1)$ SE ERSE	naïve 77.64 29.46 439.72 2.98 1.43 49.04 EE.i 3.29 98.77 167.76 7.65 7.78 17.00 naïve 59.42 41.85 358.15 62.57 1.34 16.49 EE.i 24.07 89.91	EE_h 31.42 23.93 166.58 4.27 1.36 15.78 EE_ii 29.38 89.47 1.47 6.85 17.79 EE_h 36.98 38.61 154.92 35.76 1.42 6.18 EE_ii 33.74 72.59 171.57	EE 19.25 84.14 202.73 5.40 6.73 18.99 EE(0.5) 8.71 92.77 174.28 7.35 7.21 17.26 EE 30.76 76.39 187.01 25.46 2.89 7.50 EE(0.5)	naïve 62.67 79.84 525.74 60.88 7.11 67.01 E.L.i 2.11 95.06 142.10 21.66 8.35 14.99 naïve 56.59 71.64 378.29 72.65 5.55 23.54 E.L.i 14.89 102.43 155.84	T=7, β (EE) h 22.27 55.07 160.47 5.56 4.86 18.09 EE .ii 20.85 86.42 180.69 1.12 8.60 19.51 $T=10$, β (EE) h 28.83 61.68 158.02 49.03 4.79 11.02 EE .ii 25.58 87.81 173.25 45.24	$\begin{array}{c} \mathbf{EE} \\ \mathbf{EE} \\ 11.99 \\ 87.87 \\ 185.55 \\ 6.71 \\ 8.30 \\ 18.90 \\ \hline \mathbf{EE}(0.5) \\ 2.69 \\ 92.45 \\ 151.66 \\ 16.33 \\ 8.28 \\ 16.09 \\ 6 = 2222.86 \\ \hline \mathbf{EE} \\ 22.31 \\ 91.19 \\ 188.79 \\ 41.20 \\ 6.55 \\ 13.02 \\ \hline \mathbf{EE}(0.5) \\ 17.78 \\ 98.03 \\ 162.07 \\ 36.29 \\ \end{array}$	$\begin{array}{c} 9, \ \beta_1 = \\ \hline {\bf na\"{i}ve} \\ \hline 32.52 \\ 13.82 \\ 368.69 \\ \hline 17.63 \\ 0.30 \\ 41.92 \\ \hline {\bf EE.i.} \\ 8.22 \\ 33.19 \\ 65.27 \\ 4.37 \\ 1.02 \\ 2.22 \\ 61, \ \beta_1 = \\ \hline {\bf na\"{i}ve} \\ 29.53 \\ 22.43 \\ 280.58 \\ 82.11 \\ 0.50 \\ 14.14 \\ \hline {\bf EE.i.} \\ 6.13 \\ 43.13 \\ \end{array}$	36.56497 EE_h 5.97 12.62 62.78 4.10 0.30 1.88 EE_ii 1.71 29.75 70.72 2.06 0.89 2.26 14.4251 EE_h 12.79 21.94 77.58 34.88 0.54 1.76 EE_ii 10.24 37.44 84.97 27.34	EE 0.24 29.48 75.67 0.45 0.88 2.42 EE(0.5) 4.80 31.29 67.21 2.48 0.94 2.22 1 EE 9.67 38.18 92.04 25.02 0.88 2.15 EE(0.5) 7.82 40.77	naïve 23.02 34.39 402.72 25.01 3.03 51.61 EE.i 15.85 49.65 73.58 22.82 4.88 9.25 naïve 20.05 33.61 279.61 25.81 2.70 17.47 EE.i 7.29 43.36 78.14 11.59	EE_h 3.24 33.57 77.50 7.82 2.94 10.09 EE_ii 6.97 41.98 82.68 12.08 4.27 10.45 EE_h 0.28 28.16 76.60 2.67 2.21 4.73 EE_ii 2.94 38.25	EE 8.64 44.91 90.94 14.28 4.47 11.07 EE(0.5) 12.74 48.14 76.91 19.19 4.72 9.67 EE 3.50 39.34 89.43 6.95 2.83 5.65 EE(0.5) 5.47 41.63
$APRB(\beta_0)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_0)$ SE ERSE $APRB(\beta_0)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_0)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_1)$ SE ERSE	naïve 77.64 29.46 439.72 2.98 1.43 49.04 EE.i 3.29 98.77 167.76 7.65 7.78 17.00 naïve 59.42 41.85 358.15 62.57 1.34 16.49 EE.i 24.07 89.91 157.47	EE_h 31.42 23.93 166.58 4.27 1.36 15.78 EE_ii 29.38 83.13 194.71 1.47 6.85 17.79 EE_h 36.98 38.61 154.92 35.76 1.42 6.18 EE_ii 33.74 72.59 171.57 33.43 2.83	EE 19.25 84.14 202.73 5.40 6.73 18.99 EE(0.5) 8.71 174.28 7.35 7.21 17.26 EE 30.76 76.39 187.01 25.46 2.89 7.50 EE(0.5) 26.66 84.47 162.67	naïve 62.67 79.84 525.74 60.88 7.11 67.01 EE.i 2.11 95.06 142.10 21.66 8.35 14.99 naïve 56.59 71.64 378.29 72.65 5.55 23.54 EE.i 14.89 102.43 155.84	$ T=7, β$ EE_h 22.27 55.07 160.47 5.56 4.86 18.09 EE_ii 20.85 86.42 180.69 1.12 8.60 $1.95.1$ $T=10, β$ EE_h 28.86 158.02 49.03 4.79 11.02 EE_ii 25.58 87.81 173.25	$\begin{array}{c} \mathbf{EE} \\ \mathbf{EE} \\ 11.99 \\ 87.87 \\ 185.55 \\ 6.71 \\ 8.30 \\ 18.90 \\ \mathbf{EE}(0.5) \\ 2.69 \\ 92.45 \\ 151.66 \\ 16.33 \\ 8.28 \\ 16.09 \\ 0 = 2222.80 \\ \mathbf{EE} \\ 22.31 \\ 91.19 \\ 188.79 \\ 41.20 \\ 6.55 \\ 13.02 \\ \mathbf{EE}(0.5) \\ 17.78 \\ 98.03 \\ 162.07 \end{array}$	$\begin{array}{c} 9, \ \beta_1 = \\ \hline {\bf na\"{i}ve} \\ \hline 32.52 \\ 13.82 \\ 368.69 \\ \hline 17.63 \\ 0.30 \\ 41.92 \\ \hline {\bf EE.i.} \\ 8.22 \\ 33.19 \\ 65.27 \\ 4.37 \\ 1.02 \\ 2.22 \\ 61, \ \beta_1 = \\ \hline {\bf na\"{i}ve} \\ 29.53 \\ 22.43 \\ 280.58 \\ 82.11 \\ 0.50 \\ 14.14 \\ \hline {\bf EE.i.} \\ 6.13 \\ 43.13 \\ 81.99 \\ \end{array}$	86.56497 EE_h 5.97 12.62 62.78 4.10 0.30 1.88 EE_ii 1.71 29.75 70.72 2.06 0.89 2.26 14.4251 EE_h 12.79 21.94 77.58 34.88 0.54 1.76 EE_ii 10.24 37.44 84.97	EE 0.24 29.48 75.67 0.45 0.88 2.42 EE(0.5) 4.80 31.29 67.21 2.48 0.94 2.22 1 EE 9.67 38.18 92.04 25.02 0.88 2.15 EE(0.5) 7.82 40.77 83.53	naïve 23.02 34.39 402.72 25.01 3.03 51.61 EE.i 15.85 49.65 73.58 22.82 4.88 9.25 naïve 20.05 33.61 279.61 25.81 2.70 17.47 EE.i 7.29 43.36 78.14	EE_h 3.24 33.57 77.50 7.82 2.94 10.09 EE_ii 6.97 41.98 82.68 12.08 4.27 10.45 EE_h 0.28 28.16 76.60 2.67 2.21 4.73 EE_ii 2.94 38.25 82.16	EE 8.64 44.91 90.94 14.28 4.47 11.07 EE(0.5) 12.74 48.14 76.91 19.19 4.72 9.67 EE 3.50 39.34 89.43 6.95 2.83 5.65 EE(0.5) 5.47 41.63 80.16
$APRB(\beta_0)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_0)$ SE ERSE $APRB(\beta_0)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_0)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_1)$ SE ERSE $APRB(\beta_1)$ SE ERSE	naïve 77.64 29.46 439.72 2.98 1.43 49.04 EE.i 3.29 98.77 167.76 7.65 7.78 17.00 naïve 59.42 41.85 358.15 62.57 1.34 16.49 EE.i 24.07 89.91 157.47 13.17	EE_h 31.42 23.93 166.58 4.27 1.36 15.78 EE_ii 29.38 89.47 1.47 6.85 17.79 EE_h 36.98 38.61 154.92 35.76 1.42 6.18 EE_ii 33.74 72.59 171.57	EE 19.25 84.14 202.73 5.40 6.73 18.99 EE(0.5) 8.71 174.28 7.35 7.21 17.26 EE 30.76 76.39 187.01 25.46 2.89 7.50 EE(0.5) 26.66 84.47 162.67	naïve 62.67 79.84 525.74 60.88 7.11 67.01 E.L.i 2.11 95.06 142.10 21.66 8.35 14.99 naïve 56.59 71.64 378.29 72.65 5.55 23.54 E.L.i 14.89 102.43 155.84	T=7, β (EE) h 22.27 55.07 160.47 5.56 4.86 18.09 EE .ii 20.85 86.42 180.69 1.12 8.60 19.51 $T=10$, β (EE) h 28.83 61.68 158.02 49.03 4.79 11.02 EE .ii 25.58 87.81 173.25 45.24	$\begin{array}{c} \mathbf{EE} \\ \mathbf{EE} \\ 11.99 \\ 87.87 \\ 185.55 \\ 6.71 \\ 8.30 \\ 18.90 \\ \hline \mathbf{EE}(0.5) \\ 2.69 \\ 92.45 \\ 151.66 \\ 16.33 \\ 8.28 \\ 16.09 \\ 6 = 2222.86 \\ \hline \mathbf{EE} \\ 22.31 \\ 91.19 \\ 188.79 \\ 41.20 \\ 6.55 \\ 13.02 \\ \hline \mathbf{EE}(0.5) \\ 17.78 \\ 98.03 \\ 162.07 \\ 36.29 \\ \end{array}$	$\begin{array}{c} 9, \ \beta_1 = \\ \hline {\bf na\"{i}ve} \\ \hline 32.52 \\ 13.82 \\ 368.69 \\ \hline 17.63 \\ 0.30 \\ 41.92 \\ \hline {\bf EE.i.} \\ 8.22 \\ 33.19 \\ 65.27 \\ 4.37 \\ 1.02 \\ 2.22 \\ 61, \ \beta_1 = \\ \hline {\bf na\"{i}ve} \\ 29.53 \\ 22.43 \\ 280.58 \\ 82.11 \\ 0.50 \\ 14.14 \\ \hline {\bf EE.i.} \\ 6.13 \\ 43.13 \\ 81.99 \\ 13.46 \\ \hline \end{array}$	36.56497 EE_h 5.97 12.62 62.78 4.10 0.30 1.88 EE_ii 1.71 29.75 70.72 2.06 0.89 2.26 14.4251 EE_h 12.79 21.94 77.58 34.88 0.54 1.76 EE_ii 10.24 37.44 84.97 27.34	EE 0.24 29.48 75.67 0.45 0.88 2.42 EE(0.5) 4.80 31.29 67.21 2.48 0.94 2.22 1 EE 9.67 38.18 92.04 25.02 0.88 2.15 EE(0.5) 7.82 40.77 83.53 18.72	naïve 23.02 34.39 402.72 25.01 3.03 51.61 EE.i 15.85 49.65 73.58 22.82 4.88 9.25 naïve 20.05 33.61 279.61 25.81 2.70 17.47 EE.i 7.29 43.36 78.14 11.59	EE_h 3.24 33.57 77.50 7.82 2.94 10.09 EE_ii 6.97 41.98 82.68 12.08 4.27 10.45 EE_h 0.28 28.16 76.60 2.67 2.21 4.73 EE_ii 2.94 38.25 82.16 6.16	EE 8.64 44.91 90.94 14.28 4.47 11.07 EE(0.5) 12.74 48.14 76.91 19.19 4.72 9.67 EE 3.50 39.34 89.43 6.95 2.83 5.65 EE(0.5) 5.47 41.63 80.16 9.37

Table D.21: Results under model (2.45), by response and correlation. Population: simulated

		low res			high res	5
		$T=3, \beta_0$	= 873.431	$7, \ \beta_1 = 1$	-5.39286	7
	naïve	$\mathbf{EE}_{-}\mathbf{h}$	EE		$\mathbf{EE}_{-}\mathbf{h}$	
$APRB(\beta_0)$	0.58			2.68	0.39 90.27	1.14
SE	152.07	151.17	197.52	87.79	90.27	124.38
ERSE	229.48	147.08	276.44	209.17	90.71	189.96
$APRB(\beta_1)$	4.81	0.02	2.93	14.35	1.47	1.76
SE	2.49	2.87	3.87	1.60	1.88	2.48
ERSE	4.24	2.83	5.80	4.27	1.85	3.75
	EE_i	EE_ii	EE(0.5)	EE_i	EE ₋ii	3.75 EE (0.5)
$APRB(\beta_0)$	0.33	0.92	0.41		1.77	
SE	226.00	183.64	218.16	158.62		
ERSE	171.69	195.13	178.56	128.31	129.29	130.15
$APRB(\beta_1)$	1.15	5.38	0.03	8.21	4.87	
SE	5.23	3.44	4.79	3.31	2.20	3.05
ERSE	4.08	3.75	4.03	2 20	9.44	2.57
		$T=4, \beta_0$	= 114.9522	$\beta_1 = -1$	-0.529645	55
	naïve	EE_h	EE	naïve	EE_h	
$APRB(\beta_0)$	0.12		0.23	0.47		
SE	9.57	10.21	12.96	6.99	7.89	
ERSE		10.21		12.77		
$APRB(\beta_1)$	0.25	0.04		3.23		
SE	0.23	0.29	0.39	0.16	0.19	
ERSE	0.41	0.29	0.63	0.41	0.10	0.20
	EE_i	EE_ii	EE(0.5)	EE_i	EE _ii	EE(0.5)
$APRB(\beta_0)$	0.22	0.24		0.73	0.18	
SE	15.86	11.17		14.05	9.03	12.98
ERSE	12.69	13.36	13.08	10.99	10.14	
$APRB(\beta_1)$	1.37		1.30	3.61		
SE (%1)	0.56	0.33	0.50	0.34	0.21	0.31
ERSE		0.39	0.44			0.26
		$T=7$, β	$r_0 = 1176.5$	$29, \ \beta_1 =$		
			$C_0 = 1176.5$		36.56497	,
$APRB(\beta_0)$	naïve		$\mathbf{E}\mathbf{E}$	naïve	36.56497	EE
$\begin{array}{c} \operatorname{APRB}(\beta_0) \\ \operatorname{SE} \end{array}$	naïve	EE _h 0.17	EE 1.28	naïve	36.56497 EE _h 0.18	EE 0.14
	naïve 5.12 203.04	EE _h 0.17 204.69	1.28 246.83	0.11 104.59	36.56497 EE _h 0.18 113.25	EE 0.14 143.68
SE ERSE	naïve 5.12 203.04 367.24 4.42	EE_h 0.17 204.69 204.92 1.02	1.28 246.83 364.05 2.28	naïve 0.11	36.56497 EE _h 0.18 113.25 115.09	EE 0.14 143.68 204.38
SE	naïve 5.12 203.04 367.24 4.42	EE_h 0.17 204.69 204.92 1.02 14.93	1.28 246.83 364.05 2.28	0.11 104.59 370.02	36.56497 EE _h 0.18 113.25 115.09 0.23	EE 0.14 143.68 204.38 0.19
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}(\beta_1) \end{array}$	naïve 5.12 203.04 367.24 4.42	EE_h 0.17 204.69 204.92 1.02 14.93	1.28 246.83 364.05 2.28	0.11 104.59 370.02 0.39 2.18	36.56497 EE _h 0.18 113.25 115.09 0.23 2.62	EE 0.14 143.68 204.38 0.19
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}(\beta_1) \\ \text{SE} \end{array}$	naïve 5.12 203.04 367.24 4.42 14.18	EE_h 0.17 204.69 204.92 1.02	1.28 246.83 364.05 2.28 17.42	0.11 104.59 370.02 0.39 2.18	36.56497 EE _h 0.18 113.25 115.09 0.23 2.62	EE 0.14 143.68 204.38 0.19 3.48
SE ERSE APRB(β_1) SE ERSE	naïve 5.12 203.04 367.24 4.42 14.18 42.70	EE_h 0.17 204.69 204.92 1.02 14.93 15.40 EE_ii	1.28 246.83 364.05 2.28 17.42 21.88 EE (0.5)	naïve 0.11 104.59 370.02 0.39 2.18 41.98 EE_i	36.56497 EE_h 0.18 113.25 115.09 0.23 2.62 2.66 EE_ii	EE 0.14 143.68 204.38 0.19 3.48 5.05 EE(0.5)
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}(\beta_1) \\ \text{SE} \end{array}$	naïve 5.12 203.04 367.24 4.42 14.18 42.70 EE.i 2.11	EE_h 0.17 204.69 204.92 1.02 14.93 15.40 EE_iii 1.11	1.28 246.83 364.05 2.28 17.42 21.88 EE(0.5)	0.11 104.59 370.02 0.39 2.18 41.98 EE .i 0.06 179.13	36.56497 EE.h 0.18 113.25 115.09 0.23 2.62 2.66 EE.ii 0.27 131.77	EE 0.14 143.68 204.38 0.19 3.48 5.05 EE(0.5) 0.07 165.39
SE ERSE APRB(β_1) SE ERSE APRB(β_0)	naïve 5.12 203.04 367.24 4.42 14.18 42.70 EE.i 2.11 298.81	EE_h 0.17 204.69 204.92 1.02 14.93 15.40 EE_ii	1.28 246.83 364.05 2.28 17.42 21.88 EE (0.5) 1.72 280.93	0.11 104.59 370.02 0.39 2.18 41.98 EE .i 0.06 179.13	36.56497 EE.h 0.18 113.25 115.09 0.23 2.62 2.66 EE.ii 0.27 131.77	EE 0.14 143.68 204.38 0.19 3.48 5.05 EE(0.5) 0.07 165.39
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE	naïve 5.12 203.04 367.24 4.42 14.18 42.70 EE .i 2.11 298.81 262.09	EE_h 0.17 204.69 204.92 1.02 14.93 15.40 EE_ii 1.11 221.96	1.28 246.83 364.05 2.28 17.42 21.88 EE (0.5) 1.72 280.93 266.24	0.11 104.59 370.02 0.39 2.18 41.98 EE .i 0.06 179.13	36.56497 EE_h 0.18 113.25 115.09 0.23 2.62 2.66 EE_ii 0.27	0.14 143.68 204.38 0.19 3.48 5.05 EE (0.5) 0.07 165.39 157.25
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE	naïve 5.12 203.04 367.24 4.42 14.18 42.70 EE.i 2.11 298.81 262.09 2.57	EE_h 0.17 204.69 204.92 1.02 14.93 15.40 EE_iii 1.11 221.96 257.20 2.57	1.28 246.83 364.05 2.28 17.42 21.88 EE(0.5) 1.72 280.93 266.24 2.25	0.11 104.59 370.02 0.39 2.18 41.98 EE .i 0.06 179.13 158.39	36.56497 EE_h 0.18 113.25 115.09 0.23 2.62 2.66 EE_ii 0.27 131.77 144.67	0.14 143.68 204.38 0.19 3.48 5.05 EE (0.5) 0.07 165.39 157.25
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1)	naïve 5.12 203.04 367.24 4.42 14.18 42.70 EE .i 2.11 298.81 262.09	EE_h 0.17 204.69 204.92 1.02 14.93 15.40 EE_ii 1.11 221.96 257.20	1.28 246.83 364.05 2.28 17.42 21.88 EE(0.5) 1.72 280.93 266.24 2.25 18.28	0.11 104.59 370.02 0.39 2.18 41.98 EE_i 0.06 179.13 158.39 0.04	36.56497 EE_h 0.18 113.25 115.09 0.23 2.62 2.66 EE_ii 0.27 131.77 144.67	**EE** 0.14 143.68 204.38 0.19 3.48 5.05 **EE(0.5)* 0.07 165.39 157.25 0.10
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE	naïve 5.12 203.04 367.24 4.42 14.18 42.70 EE_i 2.11 298.81 262.09 2.57 19.08	EE_h 0.17 204.69 204.92 1.02 14.93 15.40 EE_ii 1.11 221.96 2257.20 2.57 17.23 19.28	1.28 246.83 364.05 2.28 17.42 21.88 EE(0.5) 1.72 280.93 266.24 2.25 18.28 19.50	0.11 104.59 370.02 0.39 2.18 41.98 EE_i 0.06 179.13 158.39 0.04 4.53 3.88	36.56497 EE.h 0.18 113.25 115.09 0.23 2.62 2.66 EE.ii 0.27 131.77 144.67 0.29 3.12 3.38	EE 0.14 143.68 204.38 0.19 3.48 5.05 EE(0.5) 0.07 165.39 157.25 0.10 4.12 3.81
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE	naïve 5.12 203.04 367.24 4.42 14.18 42.70 EE.i 2.11 298.81 262.09 2.57 19.08 19.60	EE_h 0.17 204.69 204.92 1.02 14.93 15.40 EE_ii 1.11 221.96 257.20 2.57 17.23 19.28 T=10, /	1.28 246.83 364.05 2.28 17.42 21.88 EE(0.5) 1.72 280.93 266.24 2.25 18.28	$\begin{array}{c} \textbf{na\"ive} \\ \hline 0.11 \\ 104.59 \\ 370.02 \\ 0.39 \\ 2.18 \\ 41.98 \\ \hline \textbf{EE_i} \\ 0.06 \\ 179.13 \\ 158.39 \\ 0.04 \\ 4.53 \\ 3.88 \\ 361, \ \beta_1 = \end{array}$	36.56497 EE.h 0.18 113.25 115.09 0.23 2.62 2.66 EE.ii 0.27 131.77 144.67 0.29 3.12 3.38	EE 0.14 143.68 204.38 0.19 3.48 5.05 EE(0.5) 0.07 165.39 157.25 0.10 4.12 3.81
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE	naïve 5.12 203.04 367.24 4.42 14.18 42.70 EE.i 2.11 298.81 262.09 2.57 19.08 19.60 naïve	EE_h 0.17 204.69 204.92 1.02 14.93 15.40 EE_ii 1.11 221.96 257.20 2.57 17.23 19.28 T=10, \(\begin{subarray}{c} EE_h \end{subarray} \)	$\begin{array}{c} \textbf{EE} \\ 1.28 \\ 246.83 \\ 364.05 \\ 2.28 \\ 17.42 \\ 21.88 \\ \textbf{EE}(0.5) \\ 1.72 \\ 280.93 \\ 266.24 \\ 2.25 \\ 18.28 \\ 19.50 \\ \textbf{B}_0 = 2222.8 \\ \textbf{EE} \end{array}$	$\begin{array}{c} \textbf{na\"{i}ve}\\ \hline 0.11\\ 104.59\\ 370.02\\ 0.39\\ 2.18\\ 41.98\\ \hline \textbf{E}\textbf{E}.\textbf{i}\\ 0.06\\ 179.13\\ 158.39\\ 0.04\\ 4.53\\ 3.88\\ 361,\ \beta_1=\\ \textbf{na\"{i}ve} \end{array}$	36.56497 EE_h 0.18 113.25 115.09 0.23 2.62 2.66 EE_ii 0.27 131.77 144.67 0.29 3.12 3.38 = 14.4251 EE_h	EE 0.14 143.68 204.38 0.19 3.48 5.05 EE(0.5) 0.07 165.39 157.25 0.10 4.12 3.81
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE	naïve 5.12 203.04 367.24 4.42 14.18 42.70 EE_i 2.11 298.81 262.09 2.57 19.08 19.60 naïve 0.03	EE_h 0.17 204.69 204.92 1.02 14.93 15.40 EE_ii 1.11 221.96 257.20 2.57 17.23 19.28 T=10, \(\begin{subarray}{c} EE_h \\ 0.05 \end{subarray} \]	$\begin{array}{c} \textbf{EE} \\ 1.28 \\ 246.83 \\ 364.05 \\ 2.28 \\ 17.42 \\ 21.88 \\ \textbf{EE}(0.5) \\ 1.72 \\ 280.93 \\ 266.24 \\ 2.25 \\ 18.28 \\ 19.50 \\ 30 = 2222.8 \\ \textbf{EE} \\ 0.20 \\ \end{array}$	naïve 0.11 104.59 370.02 0.39 2.18 41.98 EE_i 0.06 179.13 158.39 0.4 4.53 3.88 361, β1 = naïve 1.27	36.56497 EE_h 0.18 113.25 115.09 0.23 2.62 2.66 EE_ii 0.27 131.77 144.67 0.29 3.12 3.38 = 14.4251 EE_h 0.07	EE 0.14 143.68 204.38 0.19 3.48 5.05 EE(0.5) 0.07 165.39 157.25 0.10 4.12 3.81 1 EE 0.28
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE	naïve 5.12 203.04 367.24 4.42 14.18 42.70 EE_i 2.11 298.81 262.09 2.57 19.06 naïve 0.03 173.04	EE_h 0.17 204.69 204.92 1.02 14.93 15.40 EE_ii 1.11 221.96 257.20 2.57 17.23 19.28 T=10, \(\begin{subarray}{c} EE_h \\ 0.05 \end{subarray} \]	$\begin{array}{c} \textbf{EE} \\ 1.28 \\ 246.83 \\ 364.05 \\ 2.28 \\ 17.42 \\ 21.88 \\ \hline \textbf{EE}(0.5) \\ 1.72 \\ 280.93 \\ 266.24 \\ 2.25 \\ 18.28 \\ 19.50 \\ \hline \textbf{30} = 2222.8 \\ \hline \textbf{EE} \\ 0.20 \\ 210.06 \\ \end{array}$	$\begin{array}{c} \textbf{na\"{i}ve} \\ \hline 0.11 \\ 104.59 \\ 370.02 \\ \hline 0.39 \\ 2.18 \\ 41.98 \\ \hline \textbf{EE_i} \\ 0.06 \\ 179.13 \\ 158.39 \\ 0.04 \\ 4.53 \\ 3.88 \\ 361, \ \beta_1 = \\ \hline \textbf{na\"{i}ve} \\ \hline 1.27 \\ 100.43 \\ \end{array}$	36.56497 EE_h 0.18 113.25 115.09 0.23 2.62 2.66 EE_ii 0.27 131.77 144.67 0.29 3.12 3.38 = 14.4251; EE_h 0.07 108.61	EE 0.14 143.68 204.38 0.19 3.48 5.05 EE(0.5) 0.07 165.39 157.25 0.10 4.12 3.81
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE	naïve 5.12 203.04 367.24 4.42 14.18 42.70 EE_i 2.11 298.81 262.09 2.57 19.08 19.60 naïve 0.03	EE_h 0.17 204.69 204.92 1.02 14.93 15.40 EE_ii 1.11 221.96 257.20 2.57 17.23 19.28 T=10, \(\begin{subarray}{c} EE_h \\ 0.05 \\ 174.87 \\ 173.38 \end{subarray}	$\begin{array}{c} \textbf{EE} \\ 1.28 \\ 246.83 \\ 364.05 \\ 2.28 \\ 17.42 \\ 21.88 \\ \textbf{EE}(0.5) \\ 1.72 \\ 280.93 \\ 266.24 \\ 2.25 \\ 18.28 \\ 19.50 \\ 30 = 2222.8 \\ \textbf{EE} \\ 0.20 \\ \end{array}$	naïve 0.11 104.59 370.02 0.39 2.18 41.98 EE_i 0.06 179.13 158.39 0.04 4.53 3.88 361, β1 = naïve 1.27 100.43 267.56	36.56497 EE_h 0.18 113.25 115.09 0.23 2.62 2.66 EE_ii 0.27 131.77 144.67 0.29 3.12 3.38 = 14.4251 EE_h 0.07 108.61 110.30	EE 0.14 143.68 204.38 0.19 3.48 5.05 EE(0.5) 0.07 165.39 157.25 0.10 4.12 3.81 1 EE 0.28 123.05 150.17
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE	naïve 5.12 203.04 367.24 4.42 14.18 42.70 EE_i 2.11 298.81 262.99 19.08 19.60 naïve 0.03 173.04 295.29 0.36	EE_h 0.17 204.69 204.92 1.02 14.93 15.40 EE_ii 1.11 221.96 257.20 2.57 17.23 19.28 T=10, EE_h 0.05 174.87 173.38 0.88	$\begin{array}{c} \textbf{EE} \\ 1.28 \\ 246.83 \\ 364.05 \\ 2.28 \\ 17.42 \\ 21.88 \\ \hline \textbf{EE}(0.5) \\ 1.72 \\ 280.93 \\ 266.24 \\ 2.25 \\ 18.28 \\ 19.50 \\ \hline \textbf{SO} = 2222.8 \\ \hline \textbf{EE} \\ 0.20 \\ 210.06 \\ 275.98 \\ 0.55 \\ \end{array}$	$\begin{array}{c} \textbf{na\"{i}ve} \\ \hline 0.11 \\ 104.59 \\ 370.02 \\ \hline 0.39 \\ 2.18 \\ 41.98 \\ \hline \textbf{EE_i} \\ 0.06 \\ 179.13 \\ 158.39 \\ 0.04 \\ 4.53 \\ 3.88 \\ 361, \ \beta_1 = \\ \hline \textbf{na\"{i}ve} \\ \hline 1.27 \\ 100.43 \\ \end{array}$	36.56497 EE_h 0.18 113.25 115.09 0.23 2.62 2.66 EE_ii 0.27 131.77 144.67 0.29 3.12 3.38 = 14.4251 EE_h 0.07 108.61 110.30 0.03	EE 0.14 143.68 204.38 0.19 3.48 5.05 EE(0.5) 0.07 165.39 157.25 0.10 4.12 3.81 1 EE 0.28 123.05 150.17 1.83
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE	naïve 5.12 203.04 367.24 4.42 14.18 42.70 EE_i 2.11 298.81 262.09 2.57 19.08 19.60 naïve 0.03 173.04 295.29 0.36 4.30	EE_h 0.17 204.69 204.92 1.02 14.93 15.40 EE_ii 1.11 221.96 257.20 2.57 17.23 19.28 T=10, EE_h 0.05 174.87 173.38 0.88 4.84	$\begin{array}{c} \textbf{EE} \\ 1.28 \\ 246.83 \\ 364.05 \\ 2.28 \\ 17.42 \\ 21.88 \\ \hline \textbf{EE}(0.5) \\ 1.72 \\ 280.93 \\ 266.24 \\ 2.25 \\ 18.28 \\ 19.50 \\ 3_0 = 2222.8 \\ \hline \textbf{EE} \\ 0.20 \\ 210.06 \\ 275.98 \\ \hline 0.55 \\ 5.84 \\ \end{array}$	$\begin{array}{c} \textbf{na\"{i}ve}\\ \hline 0.11\\ 104.59\\ 370.02\\ \hline 0.39\\ 2.18\\ 41.98\\ \hline \textbf{EE_i}\\ 0.06\\ 179.13\\ 158.39\\ 0.04\\ 4.53\\ 3.88\\ 361,\ \beta_1 =\\ \hline \textbf{na\"{i}ve}\\ \hline 1.27\\ 100.43\\ 267.56\\ \hline 6.78\\ 2.12\\ \end{array}$	36.56497 EE_h 0.18 113.25 115.09 0.23 2.62 2.66 EE_ii 0.27 131.77 144.67 0.29 3.12 3.38 = 14.4251 EE_h 0.07 108.61 110.30 0.03 2.49	EE 0.14 143.68 204.38 0.19 3.48 5.05 EE(0.5) 0.07 165.39 157.25 0.10 4.12 3.81 1 EE 0.28 123.05 150.17 1.83 2.88
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE	naïve 5.12 203.04 367.24 4.42 14.18 42.70 EE_i 2.11 298.81 262.09 2.57 19.08 19.60 naïve 0.03 173.04 295.29 0.36 4.30 14.92	EE_h 0.17 204.69 204.92 1.02 14.93 15.40 EE_ii 1.11 221.96 257.20 2.57 17.23 19.28 T=10, // EE_h 0.05 174.87 173.38 0.88 4.84 4.83	$\begin{array}{c} \textbf{EE} \\ 1.28 \\ 246.83 \\ 364.05 \\ 2.28 \\ 17.42 \\ 21.88 \\ \hline \textbf{EE}(0.5) \\ 1.72 \\ 280.93 \\ 266.24 \\ 2.25 \\ 18.28 \\ 19.50 \\ \hline \beta_0 = 2222.8 \\ \hline \textbf{EE} \\ 0.20 \\ 210.06 \\ 275.98 \\ 0.55 \\ 5.84 \\ 7.20 \\ \end{array}$	$\begin{array}{c} \textbf{na\"ive} \\ \hline 0.11 \\ 104.59 \\ 370.02 \\ \hline 0.39 \\ 2.18 \\ 41.98 \\ \hline \textbf{EE_i} \\ 0.06 \\ 179.13 \\ 158.39 \\ 0.04 \\ 4.53 \\ 3.88 \\ 361, \ \beta_1 = \\ \hline \textbf{na\"ive} \\ 1.27 \\ 100.43 \\ 267.56 \\ \hline 6.78 \\ 2.12 \\ 14.24 \\ \end{array}$	36.56497 EE_h 0.18 113.25 115.09 0.23 2.62 2.66 EE_ii 0.27 131.77 144.67 0.29 3.12 3.38 = 14.4251 EE_h 0.07 108.61 110.30 0.03 2.49 2.48	EE 0.14 143.68 204.38 0.19 3.48 5.05 EE(0.5) 0.07 165.39 157.25 0.10 4.12 3.81 1 EE 0.28 123.05 150.17 1.83 2.88 3.54
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE ERSE	naïve 5.12 203.04 367.24 4.42 14.18 42.70 EE_i 2.11 298.81 262.09 2.57 19.08 19.60 naïve 0.03 173.04 295.29 0.36 4.30 14.92 EE_i	EE_h 0.17 204.69 204.92 1.02 14.93 15.40 EE_ii 1.11 221.96 257.20 2.57 17.23 19.28 T=10, // EE_h 0.05 174.87 173.38 0.88 4.84 4.83 EE_ii	$\begin{array}{c} \textbf{EE} \\ 1.28 \\ 246.83 \\ 364.05 \\ 2.28 \\ 17.42 \\ 21.88 \\ \hline \textbf{EE}(0.5) \\ 1.72 \\ 280.93 \\ 266.24 \\ 2.25 \\ 18.28 \\ 19.50 \\ 3\theta_0 = 2222.8 \\ \hline \textbf{EE} \\ 0.20 \\ 210.06 \\ 275.98 \\ 0.55 \\ 5.84 \\ 7.20 \\ \hline \textbf{EE}(0.5) \\ \end{array}$	$\begin{array}{c} \textbf{na\"ive} \\ \hline 0.11 \\ 104.59 \\ 370.02 \\ \hline 0.39 \\ 2.18 \\ 41.98 \\ \hline \textbf{EE_i} \\ 0.06 \\ 179.13 \\ 158.39 \\ 0.04 \\ 4.53 \\ 3.88 \\ 361, \beta_1 = \\ \hline \textbf{na\"ive} \\ \hline 1.27 \\ 100.43 \\ 267.56 \\ 6.78 \\ 2.12 \\ 14.24 \\ \hline \textbf{EE_i} \\ \end{array}$	36.56497 EE_h 0.18 113.25 115.09 0.23 2.62 2.66 EE_ii 0.27 131.77 144.67 0.29 3.12 EE_h 0.07 108.61 110.30 0.03 2.49 2.48 EE_ii	EE
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE	naïve 5.12 203.04 367.24 4.42 14.18 42.70 EE.i 2.11 298.81 262.09 2.57 19.08 19.60 naïve 0.03 173.04 295.29 0.36 4.30 14.92 EE.i 0.16	EE_h 0.17 204.69 204.92 1.02 14.93 15.40 EE_ii 1.11 221.96 257.20 2.57 17.23 19.28 T=10, // EE_h 0.05 174.87 173.38 0.88 4.84 4.83 EE_ii 0.23	$\begin{array}{c} \textbf{EE} \\ 1.28 \\ 246.83 \\ 364.05 \\ 2.28 \\ 17.42 \\ 21.88 \\ \hline \textbf{EE}(0.5) \\ 1.72 \\ 280.93 \\ 266.24 \\ 2.25 \\ 18.28 \\ 19.50 \\ \hline \boldsymbol{\beta}_0 = 2222.8 \\ \hline \textbf{EE} \\ 0.20 \\ 210.06 \\ 275.98 \\ 0.55 \\ 5.84 \\ 7.20 \\ \hline \textbf{EE}(0.5) \\ 0.17 \\ \end{array}$	$\begin{array}{c} \textbf{na\"ive} \\ \hline \textbf{0.11} \\ 104.59 \\ 370.02 \\ \hline 0.39 \\ 2.18 \\ 41.98 \\ \hline \textbf{EE_i} \\ 0.06 \\ 179.13 \\ 158.39 \\ 0.04 \\ 4.53 \\ 3.88 \\ 361, \beta_1 = \\ \hline \textbf{na\"ive} \\ \hline 1.27 \\ 100.43 \\ 267.56 \\ 6.78 \\ 2.12 \\ 14.24 \\ \hline \textbf{EE_i} \\ 0.70 \\ \end{array}$	36.56497 EE_h 0.18 113.25 115.09 0.23 2.62 2.66 EE_ii 0.27 131.77 144.67 0.29 3.12 3.38 = 14.4251: EE_h 0.07 108.61 110.30 0.03 2.49 2.48 EE_ii 0.16	EE
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE	naïve 5.12 203.04 367.24 4.42 14.18 42.70 EE.i 2.11 298.81 262.09 2.57 19.08 19.60 naïve 0.03 173.04 295.29 0.36 4.30 14.92 EE.i 0.16 244.43	EE_h 0.17 204.69 204.92 1.02 14.93 15.40 EE_ii 1.11 221.96 257.20 2.57 17.23 19.28 T=10, // EE_h 0.05 174.87 173.38 0.88 4.84 4.83 EE_ii 0.23 195.55	$\begin{array}{c} \textbf{EE} \\ 1.28 \\ 246.83 \\ 364.05 \\ 2.28 \\ 17.42 \\ 21.88 \\ \hline \textbf{EE}(0.5) \\ 1.72 \\ 280.93 \\ 266.24 \\ 2.25 \\ 18.28 \\ 19.50 \\ \hline \boldsymbol{\beta}_0 = 2222.8 \\ \hline \textbf{EE} \\ 0.20 \\ 210.06 \\ 275.98 \\ 0.55 \\ 5.84 \\ 7.20 \\ \hline \textbf{EE}(0.5) \\ 0.17 \\ 231.40 \\ \end{array}$	naïve 0.11 104.59 370.02 0.39 2.18 41.98 EE.i 0.06 179.13 158.39 0.04 4.53 3.88 61, β_1 = naïve 1.27 100.43 267.56 6.78 2.12 14.24 EE.i 0.70	36.56497 EE_h 0.18 113.25 115.09 0.23 2.62 2.66 EE_ii 0.27 131.77 144.67 0.29 3.12 EE_h 0.07 108.61 110.30 0.03 2.49 2.48 EE_ii 0.16 120.86	EE
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE	naïve 5.12 203.04 367.24 4.42 14.18 42.70 EE.i 2.11 298.81 262.09 2.57 19.08 19.60 naïve 0.03 173.04 295.29 0.36 4.30 14.92 EE.i 0.16 244.43 215.51	EE_h 0.17 204.69 204.92 1.02 14.93 15.40 EE_iii 1.11 221.96 257.20 2.57 17.23 19.28 T=10, // EE_h 0.05 174.87 173.38 4.84 4.83 EE_ii 0.23 195.55 209.50	$\begin{array}{c} \textbf{EE} \\ 1.28 \\ 246.83 \\ 364.05 \\ 2.28 \\ 17.42 \\ 21.88 \\ \hline \textbf{EE}(0.5) \\ 1.72 \\ 280.93 \\ 266.24 \\ 2.25 \\ 18.28 \\ 19.50 \\ \hline \textbf{B}_0 = 2222.8 \\ \hline \textbf{EE} \\ 0.20 \\ 210.06 \\ 275.98 \\ 0.55 \\ 5.84 \\ 7.20 \\ \hline \textbf{EE}(0.5) \\ 0.17 \\ 231.40 \\ 217.79 \\ \end{array}$	naïve 0.11 104.59 370.02 0.39 2.18 41.98 EE.i 0.06 179.13 158.39 0.04 4.53 3.88 361, β_1 = naïve 1.27 100.43 267.56 6.78 2.12 14.24 EE.i 0.70 134.31	36.56497 EE_h 0.18 113.25 115.09 0.23 2.62 2.66 EE_ii 0.27 131.77 144.67 0.29 3.12 3.38 = 14.4251 EE_h 0.07 108.61 110.30 0.03 2.49 2.48 EE_ii 0.16 120.86 129.61	EE
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE	naïve 5.12 203.04 367.24 4.42 14.18 42.70 EE.i 2.11 298.81 262.09 2.57 19.08 19.60 naïve 0.03 173.04 295.29 0.36 4.30 0.14.92 EE.i 0.16 244.43 215.51 0.40	EE_h 0.17 204.69 204.92 1.02 14.93 15.40 EE_ii 1.11 221.96 257.20 2.57 17.23 19.28 T=10, // EE_h 0.05 174.87 173.38 0.88 4.84 4.83 EE_ii 0.23 195.55 209.50 1.18	$\begin{array}{c} \textbf{EE} \\ 1.28 \\ 246.83 \\ 364.05 \\ 2.28 \\ 17.42 \\ 21.88 \\ \textbf{EE}(0.5) \\ 1.72 \\ 280.93 \\ 266.24 \\ 2.25 \\ 18.28 \\ 19.50 \\ 30 = 2222.8 \\ \textbf{EE} \\ 0.20 \\ 210.06 \\ 275.98 \\ 0.55 \\ 5.84 \\ 7.20 \\ \textbf{EE}(0.5) \\ 0.17 \\ 231.40 \\ 217.79 \\ 0.10 \\ \end{array}$	$\begin{array}{c} \textbf{na\"ive}\\ \hline 0.11\\ 104.59\\ 370.02\\ \hline 0.39\\ 2.18\\ 41.98\\ \hline \textbf{EE.i}\\ 0.06\\ 179.13\\ 158.39\\ 0.04\\ 4.53\\ 3.88\\ 361,\ \beta_1=\\ \hline \textbf{na\"ive}\\ 1.27\\ 100.43\\ 267.56\\ \hline 6.78\\ 2.12\\ 14.24\\ \hline \textbf{EE.i}\\ 0.70\\ 134.31\\ 132.07\\ \hline 3.94\\ \end{array}$	36.56497 EE_h 0.18 113.25 115.09 0.23 2.62 2.66 EE_ii 0.27 131.77 144.67 0.29 3.12 3.38 = 14.4251: EE_h 0.07 108.61 110.30 0.03 2.49 EE_ii 0.16 120.86 129.61 1.32	EE
SE ERSE APRB(β_1) SE ERSE APRB(β_0) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE APRB(β_1) SE ERSE	naïve 5.12 203.04 367.24 4.42 14.18 42.70 EE.i 2.11 298.81 262.09 2.57 19.08 19.60 naïve 0.03 173.04 295.29 0.36 4.30 14.92 EE.i 0.16 244.43 215.51	EE_h 0.17 204.69 204.92 1.02 14.93 15.40 EE_iii 1.11 221.96 257.20 2.57 17.23 19.28 T=10, // EE_h 0.05 174.87 173.38 4.84 4.83 EE_ii 0.23 195.55 209.50	$\begin{array}{c} \textbf{EE} \\ 1.28 \\ 246.83 \\ 364.05 \\ 2.28 \\ 17.42 \\ 21.88 \\ \hline \textbf{EE}(0.5) \\ 1.72 \\ 280.93 \\ 266.24 \\ 2.25 \\ 18.28 \\ 19.50 \\ \hline \textbf{B}_0 = 2222.8 \\ \hline \textbf{EE} \\ 0.20 \\ 210.06 \\ 275.98 \\ 0.55 \\ 5.84 \\ 7.20 \\ \hline \textbf{EE}(0.5) \\ 0.17 \\ 231.40 \\ 217.79 \\ \end{array}$	naïve 0.11 104.59 370.02 0.39 2.18 41.98 EE.i 0.06 179.13 158.39 0.04 4.53 3.88 361, β_1 = naïve 1.27 100.43 267.56 6.78 2.12 14.24 EE.i 0.70 134.31	36.56497 EE_h 0.18 113.25 115.09 0.23 2.62 2.66 EE_ii 0.27 131.77 144.67 0.29 3.12 3.38 = 14.4251 EE_h 0.07 108.61 110.30 0.03 2.49 2.48 EE_ii 0.16 120.86 129.61	EE

Appendix E

Results for Longitudinal Setting

E.1 Estimation of Change in Mean

Table E.1: Results under model (2.41), by response and correlation. Population: stable(Left), volatile(Middle), simulated(right). T=t=4, {Stable and Volatile: $\Delta_4 = -746.55$ }, {Simulated: $\Delta_4 = -699.5961$ }

								low res	ponse and	low corre	elation							
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	106.57	0.08	37.62	44.72	0.43	34.78	101.88	2.28	35.95	44.62	0.54	21.51	157.25	0.03	47.43	63.20	0.03	8.66
SE	104.98	80.73	120.04	154.01	128.92	168.12	406.97	312.35	483.58	237.59	206.95	261.83	30.38	14.03	22.19	14.18	9.40	12.17
ERSE	438.71	78.22	162.02	675.10	131.57	223.72	958.29	318.38	661.59	647.51	203.91	348.22	402.35	13.77	28.11	254.76	9.30	16.52
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	$\mathbf{EE}_{\mathbf{i}}$	EE _ii	EE(0.5)
APRB	11.63	50.25	21.85	13.49	33.67	18.71	10.99	48.27	20.80	5.79	22.37	10.78	6.41	67.20	22.54	14.31	15.08	4.83
SE	139.31	112.07	131.09	189.49	160.78	179.12	566.63	447.40	531.62	307.12	247.79	285.40	18.38	23.39	20.03	11.79	11.74	12.02
ERSE	101.31	114.44	106.33	152.05	162.55	157.29	413.53	466.04	433.88	239.26	250.21	245.89	12.74	22.30	15.32	8.69	11.61	9.80
									onse and	high corr								
	naïve	$\mathbf{EE}_{\mathbf{h}}$	$EE(\hat{p}_i)$	naïve	EE_h	$EE(\hat{\pi}_i)$	naïve	$\mathbf{EE}_{\mathbf{h}}$	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$EE(\hat{\pi}_i)$
APRB	147.25	0.12	46.74	59.73	0.38	53.77	167.02	1.10	52.67	67.29	0.33	37.57	146.81	0.00	46.74	61.23	0.08	8.87
SE	57.14	38.01	61.64	104.82	81.63	103.74	272.40	179.25	291.46	149.54	122.05	157.75	25.70	13.56	20.67	12.95	8.99	11.74
ERSE	448.40	37.25	84.77	681.20	83.58	144.05	1077.61	169.59	390.30	682.33	117.64	199.16	382.12	13.81	27.25	250.25	9.33	16.48
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	8.99	65.00	23.84	12.12	54.52	22.20	11.23	73.22	27.43	5.47	40.18	14.75	7.00	65.42	22.79	13.86	15.17	4.45
SE	71.47	57.74	67.22	110.19	97.43	107.40	333.21	274.31	315.23	179.18	150.19	168.95	17.74	21.32	19.09	11.60	11.20	11.74
ERSE	52.65	60.07	55.39	85.97	100.24	92.31	242.47	278.06	255.55	134.88	145.50	139.99	12.51	21.20	14.95	8.70	11.50	9.79
								high res	sponse and	low corr	elation							
	naïve	$\mathbf{EE}_{-}\mathbf{h}$	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	$\mathbf{EE}_{-}\mathbf{h}$	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	$\mathbf{EE}_{-}\mathbf{h}$	$EE(\hat{\pi}_i)$
APRB	47.53	0.03	13.04	24.07	0.22	19.61	50.40	0.34	15.01	25.41	0.34	13.59	46.86	0.03	11.81	23.41	0.03	2.37
SE	18.63	19.16	26.95	49.80	52.80	65.39	91.83	90.89	129.38	65.33	66.88	82.98	8.49	8.52	9.86	6.24	6.06	7.42
ERSE	257.47	19.09	40.13	518.51	54.05	92.94	620.64	87.86	193.80	521.85	66.47	110.54	224.72	8.37	14.45	190.16	6.08	10.61
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	\mathbf{EE}_{-i}	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	\mathbf{EE}_{-i}	EE_ii	EE(0.5)
APRB	6.83	20.66	1.67	9.86	22.93	1.09	5.14	22.89	3.45	8.96	16.79	1.54	8.32	19.49	0.29	9.33	4.38	4.16
SE	36.38	23.55	32.16	79.18	59.47	72.75	174.31	113.46	154.15	102.46	77.75	92.91	10.79	9.25	10.49	8.83	6.87	8.21
ERSE	27.29	25.36	27.10	63.05	60.65	63.60	132.19	122.70	131.24	82.26	77.94	81.61	8.09	9.68	8.76	6.93	6.99	7.11
								high res	ponse and	high cor								
	naïve	$\mathbf{EE}_{-}\mathbf{h}$	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	$\mathbf{EE}_{-}\mathbf{h}$	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	$\mathbf{EE}_{-}\mathbf{h}$	$EE(\hat{\pi}_i)$
APRB	48.98	0.10	12.70	24.24	0.19	22.13	67.29	0.04	15.51	32.61	0.00	16.24	46.79	0.07	14.48	24.15	0.01	3.09
SE	10.58	10.75	14.86	59.45	61.21	77.01	53.28	47.68	75.34	52.97	52.71	66.78	7.82	9.01	10.00	6.36	6.55	8.02
ERSE	258.14	10.62	22.04	517.54	59.02	102.42	641.63	48.17	110.73	528.60	53.78	91.82	224.39	8.98	14.49	191.23	6.40	11.01
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	$\mathbf{EE}_{\mathbf{i}}$	EE _ii	EE(0.5)
APRB	8.16	20.67	0.76	14.01	26.26	3.44	12.42	26.54	0.62	17.95	21.58	6.79	4.87	21.78	3.48	8.95	5.42	3.63
SE	19.70	13.09	17.55	91.65	69.67	84.97	101.55	65.39	89.93	81.05	61.46	74.30	11.25	9.24	10.81	9.62	7.33	8.93
ERSE	14.69	14.02	14.71	67.68	66.34	68.94	74.59	71.02	74.63	63.82	61.90	64.35	8.31	9.56	8.89	7.13	7.19	7.32

Table E.2: Results under model (2.41), by response and correlation. Population: stable(Left), volatile(Middle), simulated(right). T=t=7, {Stable and Volatile: $\Delta_7 = -746.55$ }, {Simulated: $\Delta_7 = 1448.408$ }

								low res	ponse and	low corre	elation							
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$EE(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	112.36	0.53	12.08	47.76	1.26	4.95	96.80	1.36	15.52	44.19	2.30	3.83	156.22	0.05	12.73	62.97	0.03	0.28
SE	103.40	79.53	110.59	151.28	127.65	147.96	447.53	354.59	497.54	254.91	226.17	272.63	57.61	27.15	36.69	27.61	18.43	21.32
ERSE	438.89	77.85	145.58	675.40	131.27	188.97	909.33	368.02	682.58	628.27	233.79	337.46	916.51	28.64	54.06	578.91	18.71	29.44
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	$\mathbf{EE}_{-\mathbf{i}}$	EE_ii	EE(0.5)
APRB	11.01	33.60	0.44	15.73	16.14	6.44	6.64	38.37	3.40	10.66	10.97	3.70	17.98	40.06	3.88	11.43	2.72	4.98
SE	124.07	105.66	117.31	157.92	144.53	152.30	572.02	461.39	535.34	304.32	262.40	286.72	32.06	37.88	34.62	22.18	20.48	21.82
ERSE	94.94	112.00	101.25	144.38	150.84	148.79	444.94	519.30	473.59	261.85	268.33	267.60	24.78	44.97	30.51	19.53	21.62	21.02
								low resp	ponse and	high corr								
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	\mathbf{EE}_{-h}	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	\mathbf{EE}_{-h}	$\mathbf{EE}(\hat{\pi}_i)$
APRB	156.16	0.08	12.80	63.57	0.20	5.33	156.41	1.56	15.16	63.56	0.34	3.29	144.69	0.06	12.43	60.34	0.04	0.38
SE	55.76	36.77	50.58	105.40	82.91	97.92	308.21	205.82	288.36	172.01	142.27	158.61	55.30	28.53	36.90	26.85	18.42	21.13
ERSE	448.59	37.08	68.58	681.29	83.33	133.26	1038.50	210.15	390.31	667.36	140.55	195.84	865.02	28.22	53.07	565.64	18.48	29.19
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	$\mathbf{EE}_{-\mathbf{i}}$	EE_ii	EE(0.5)
APRB	18.79	40.49	4.25	27.05	21.22	12.77	16.81	44.26	2.16	19.72	13.40	8.89	17.60	38.25	3.70	11.12	2.77	4.77
SE	54.77	50.82	52.51	105.88	92.18	101.99	323.27	282.02	305.15	167.79	157.03	162.30	32.54	38.19	35.00	22.39	19.97	21.82
ERSE	45.03	55.80	48.47	90.48	95.76	95.15	258.32	312.67	276.79	153.60	160.55	158.13	24.47	42.81	29.95	19.43	21.30	20.83
									sponse and									
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	$\mathbf{EE}_{-}\mathbf{h}$	$\mathbf{EE}(\hat{\pi}_i)$	naïve	$\mathbf{EE}_{-}\mathbf{h}$	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	$\mathbf{EE}_{-}\mathbf{h}$	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	50.28	0.08	1.79	25.33	0.12	1.40	56.65	0.36	1.39	27.78	0.54	0.21	49.07	0.01	1.23	24.35	0.02	0.05
SE	18.95	19.14	25.31	51.46	54.96	65.86	109.84	110.36	146.68	76.58	77.47	86.58	18.27	17.72	21.51	13.09	12.65	14.30
ERSE	257.57	19.05	35.79	518.37	53.92	82.26	610.77	108.48	203.36	515.95	77.01	103.01	513.97	17.68	33.57	432.02	12.35	17.63
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	14.70	10.55	6.33	15.89	6.25	7.62	17.78	11.50	8.04	13.06	2.75	6.53	14.55	9.45	6.54	5.08	0.42	2.03
SE	31.52	22.63	28.26	76.50	61.66	70.79	182.53	133.29	163.41	94.15	85.73	89.69	24.60	18.91	23.28	15.69	13.90	14.93
ERSE	25.49	24.46	25.61	63.48	60.31	63.43	147.90	141.35	148.06	87.83	86.01	87.60	19.40	21.08	20.86	14.00	13.80	14.16
									ponse and									
	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	51.83	0.02	1.35	25.46	0.44	0.85	61.64	0.27	0.04	29.51	0.40	0.06	48.70	0.01	2.22	24.65	0.04	0.03
SE	10.84	10.93	14.14	56.65	58.61	69.09	62.78	57.42	75.23	53.07	52.75	59.37	16.90	18.00	22.25	12.65	12.73	14.64
ERSE	258.25	10.73	20.15	517.70	58.86	90.18	610.92	58.27	104.88	513.67	53.06	72.75	512.24	18.40	34.50	432.83	12.70	18.72
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	15.45	10.08	6.91	19.02	6.24	9.62	19.49	8.73	9.47	14.67	2.36	7.29	13.82	10.99	5.70	5.44	0.60	2.23
SE	17.16	12.85	15.59	79.38	65.02	73.86	91.61	69.68	82.71	65.11	58.27	61.82	25.78	19.02	24.28	16.65	13.92	15.55
ERSE	13.92	13.67	14.13	68.82	65.97	69.14	78.18	76.78	78.67	60.72	59.18	60.70	19.85	21.42	21.30	14.57	14.20	14.71

Table E.3: Results under model (2.41), by response and correlation. Population: stable(Left), volatile(Middle), simulated(right). T=t=10, {Stable and Volatile: $\Delta_{10} = -746.55$ }, {Simulated: $\Delta_{10} = 190.6555$ }

								low res	ponse and	low corre	elation							
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$EE(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$EE(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$EE(\hat{\pi}_i)$
APRB	113.67	0.21	2.90	46.81	0.48	0.03	81.16	1.06	5.47	37.58	0.31	0.56	48.19	0.32	3.15	22.83	0.72	1.26
SE	102.96	77.62	103.15	157.96	132.72	147.02	520.23	413.73	556.41	300.83	267.19	298.40	48.58	28.49	37.64	52.85	37.50	41.79
ERSE	439.42	78.05	137.55	675.51	131.28	164.71	846.47	417.72	739.92	604.86	264.29	329.83	594.85	28.22	45.28	483.97	37.27	49.52
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	\mathbf{EE}_{-i}	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	\mathbf{EE}_{-i}	EE_ii	EE(0.5)
APRB	17.04	20.68	7.22	12.94	4.03	6.20	11.75	21.64	3.43	7.49	2.79	3.10	9.96	16.63	3.72	4.55	4.06	2.43
SE	118.29	96.72	110.28	149.93	145.69	148.21	642.89	513.29	597.57	310.21	295.78	303.07	39.43	38.77	38.28	42.20	41.04	42.08
ERSE	93.28	105.96	98.81	138.94	144.42	142.65	501.20	559.06	528.92	282.50	291.10	288.45	32.14	39.94	34.65	38.81	41.33	40.69
								low resp	onse and	high corr	elation							
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	159.94	0.25	2.21	64.92	0.10	0.20	136.40	1.94	0.40	54.56	1.83	1.67	84.53	0.53	2.45	36.57	1.08	1.41
SE	57.85	38.12	47.90	104.84	82.55	94.55	354.17	244.79	311.46	191.04	158.79	172.14	27.77	18.08	22.46	49.99	36.55	41.37
ERSE	448.71	37.10	62.31	681.47	83.28	113.50	1016.26	238.08	401.94	657.51	157.70	191.70	566.57	17.88	28.86	475.80	35.44	48.48
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	$\mathbf{EE}_{\mathbf{i}}$	EE_ii	EE(0.5)
APRB	24.17	23.83	11.05	18.94	5.39	9.01	24.02	18.79	12.25	13.92	1.06	7.23	15.33	18.68	6.61	3.51	4.65	2.07
SE	51.60	48.47	49.45	98.57	92.19	96.56	341.30	308.71	324.51	174.82	171.29	173.16	23.89	23.21	23.00	42.33	40.35	41.95
ERSE	42.67	50.98	45.70	88.62	92.51	92.08	279.78	321.74	296.90	166.00	172.38	170.13	20.46	25.24	22.00	37.14	39.50	39.02
									sponse and									
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	51.22	0.07	1.36	25.59	0.14	0.02	44.48	0.55	0.78	23.09	0.88	0.91	20.87	0.17	0.83	11.56	0.31	0.38
SE	18.35	18.80	23.94	51.26	54.51	61.11	120.82	123.68	148.08	87.37	88.81	94.78	19.82	17.91	21.82	24.66	24.10	26.11
ERSE	257.55	19.08	32.54	518.42	53.89	69.58	606.35	122.82	201.05	512.85	85.43	100.78	338.55	17.35	27.19	363.15	23.54	28.86
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	14.32	4.78	7.20	9.01	1.16	3.99	12.34	4.53	5.96	4.77	1.41	1.46	7.82	2.89	4.07	2.69	0.03	1.77
SE	28.66	22.39	25.99	65.56	59.97	63.00	175.39	140.22	159.55	98.28	94.21	96.10	24.71	20.95	23.02	27.06	25.91	26.51
ERSE	24.37	23.42	24.45	59.85	59.02	60.07	156.71	151.36	156.73	92.23	92.26	92.47	21.45	21.42	21.67	25.50	25.58	25.74
									ponse and									
	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	53.04	0.02	1.46	26.45	0.02	0.14	53.97	0.08	2.48	26.56	0.11	0.17	45.02	0.01	0.75	22.95	0.08	0.07
SE	10.40	10.60	13.51	56.48	58.34	65.25	71.00	65.57	78.79	54.05	53.66	58.06	3.79	3.71	4.62	24.83	24.81	27.33
ERSE	258.41	10.81	18.71	518.04	58.85	75.99	596.17	65.10	98.66	505.98	54.42	64.34	341.29	3.65	6.21	367.54	24.78	31.84
1 DDD	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	14.53	4.58	7.32	9.95	1.30	4.37	15.36	2.06	8.05	6.81	0.02	2.86	12.50	5.21	6.08	2.16	0.86	1.64
SE	16.24	12.36	14.75	69.69	63.82	67.19	89.46	75.68	83.16	59.98	57.88	58.80	5.29	4.33	4.93	28.78	26.94	27.96
ERSE	13.58	13.22	13.74	64.99	64.52	65.50	80.43	79.43	80.77	58.72	58.69	58.92	4.39	4.45	4.51	27.18	27.15	27.47

Table E.4: Results under model (2.43), by response and correlation. Population: stable(Left), volatile(Middle), simulated(right). T=t=4, {Stable and Volatile: $\Delta_4 = -746.55$ }, {Simulated: $\Delta_4 = -699.5961$ },

								low r	esponse an	d low cor	relation							
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	162.42	0.54	61.98	76.63	11.87	72.80	56.60	158.71	36.42	77.26	9.06	72.00	120.67	18.41	86.33	52.50	13.61	28.89
SE	112.37	61.29	95.99	106.28	84.28	111.43	557.66	438.19	711.80	103.28	94.64	312.73	108.28	68.07	198.10	11.55	9.28	72.75
ERSE	439.58	58.58	119.05	684.21	91.32	159.52	895.18	488.78	1095.54	691.65	312.07	728.57	361.27	118.71	401.36	237.88	76.61	174.85
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	$\mathbf{EE}_{-\mathbf{i}}$	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EEi	EE_ii	EE(0.5)
APRB	22.65	83.31	38.06	35.03	73.42	43.89	29.12	40.47	31.95	69.35	72.33	70.26	75.18	91.50	79.49	17.57	33.34	22.20
SE	98.69	99.26	96.87	122.28	103.77	117.52	831.09	649.31	782.36	477.73	227.97	405.51	254.60	166.44	232.25	110.16	57.78	94.41
ERSE	76.10	93.82	81.29	100.49	116.31	107.01	673.03	781.67	712.15	489.24	488.53	498.35	245.60	284.18	259.71	118.10	125.19	121.75
									sponse and									
	naïve	\mathbf{EE}_{-h}	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	$\mathbf{EE}_{-}\mathbf{h}$	$\mathbf{EE}(\hat{p}_i)$	naïve	$\mathbf{EE}_{-}\mathbf{h}$	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	\mathbf{EE}_{-h}	$\mathbf{EE}(\hat{\pi}_i)$
APRB	164.59	0.24	61.68	77.30	11.37	73.78	56.51	164.88	35.45	77.00	11.04	73.54	121.05	15.71	79.89	48.25	8.33	20.01
SE	107.53	56.66	89.53	105.48	82.35	107.06	539.52	419.51	686.81	104.66	95.35	301.65	61.10	37.30	173.73	10.89	8.82	57.79
ERSE	436.73	54.89	111.02	681.35	89.13	155.05	899.24	483.94	1101.11	689.41	307.85	709.13	357.24	105.15	398.20	231.83	65.70	135.86
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	$\mathbf{EE}_{-\mathbf{i}}$	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	$\mathbf{EE}_{-\mathbf{i}}$	EE _ii	EE(0.5)
APRB	21.09	83.46	37.02	34.25	74.16	43.53	27.39	40.28	30.51	71.61	73.04	72.08	66.39	86.08	71.62	6.44	25.23	12.02
SE	92.47	92.20	90.53	115.88	100.26	112.09	804.58	625.54	756.46	459.97	223.02	390.60	234.45	138.58	210.70	85.27	49.03	73.62
ERSE	70.71	85.96	75.31	95.82	111.68	102.46	675.92	785.26	715.32	477.69	478.93	486.88	243.78	279.52	257.26	94.28	104.16	98.03
									response ar									
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	$\mathbf{EE}_{-}\mathbf{h}$	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	54.08	0.17	19.47	30.74	5.10	28.09	3.64	89.07	10.66	29.65	2.89	34.27	46.68	1.23	14.63	18.35	1.79	0.76
SE	26.10	25.62	35.44	51.92	55.12	69.59	238.40	272.49	421.14	50.06	56.36	184.43	10.66	8.97	95.86	5.42	5.22	24.23
ERSE	257.08	26.18	56.31	518.67	55.50	95.93	559.39	319.07	699.89	524.73	206.31	451.58	227.09	47.44	203.35	184.29	31.57	54.28
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	1.56	28.49	7.42	0.36	31.06	8.40	14.50	9.12	12.88	39.57	33.57	37.67	0.26	20.77	5.85	11.06	1.34	6.55
SE	47.46	31.33	42.03	85.22	62.93	77.91	580.70	356.56	511.30	306.31	143.88	249.54	146.14	70.67	125.47	32.17	26.11	28.63
ERSE	38.34	35.68	38.08	65.88	63.39	66.34	471.61	444.46	470.76	336.83	302.39	328.86	131.90	130.63	133.87	44.17	47.98	45.30
									esponse an									
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	61.40	0.83	21.61	41.53	10.44	36.59	39.94	98.33	16.39	41.26	7.48	28.24	48.36	1.67	7.81	17.93	4.05	4.09
SE	22.68	22.05	30.23	59.82	60.71	76.96	239.37	227.73	381.09	58.54	59.26	150.01	9.77	8.49	76.02	5.40	5.28	19.18
ERSE	260.94	21.50	44.99	521.33	60.48	104.19	594.67	283.13	700.58	527.20	184.84	346.44	229.02	37.07	147.41	184.18	25.24	39.48
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE.i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EEi	EE _ii	EE(0.5)
APRB	2.17	31.99	7.94	1.05	41.68	10.10	5.32	20.86	9.89	19.37	30.39	23.07	10.90	15.99	3.27	15.58	1.86	10.56
SE	39.34	27.13	35.25	91.45	69.92	84.83	516.77	324.49	458.64	229.66	131.89	192.00	114.01	56.73	98.49	24.85	20.81	22.33
ERSE	30.33	28.66	30.27	69.09	68.13	70.45	459.25	457.89	466.28	268.27	255.49	265.75	95.01	95.66	96.85	31.87	35.04	32.83

Table E.5: Results under model (2.43), by response and correlation. Population: stable(Left), volatile(Middle), simulated(right). T=t=7, {Stable and Volatile: $\Delta_7 = -746.55$ }, {Simulated: $\Delta_7 = 1448.408$ }

								low r	esponse an	d low cor	rrelation							
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	161.74	0.25	18.69	76.80	10.40	17.62	77.56	55.01	73.89	77.41	41.63	76.63	99.96	12.24	24.25	44.45	8.22	9.14
SE	121.95	66.10	85.06	107.10	84.89	103.29	550.77	477.93	753.37	104.93	100.13	270.91	197.14	108.76	152.84	19.83	15.95	47.51
ERSE	438.69	58.53	98.57	684.52	91.39	141.10	898.74	572.57	1222.83	691.45	362.65	655.84	764.70	157.48	218.36	508.40	108.31	132.08
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	\mathbf{EE}_{-i}	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	13.85	48.85	1.05	14.61	33.95	0.34	74.34	72.01	74.15	75.95	77.24	76.18	3.14	44.77	12.77	1.40	10.85	5.59
SE	84.70	92.68	84.11	112.42	97.61	107.82	932.98	613.02	848.62	397.69	215.00	332.47	144.28	175.61	147.04	52.30	48.05	49.28
ERSE	66.65	87.62	72.55	99.13	105.80	104.06	771.21	841.09	815.24	497.47	482.51	501.26	165.47	247.61	185.69	112.36	124.92	118.11
								low re	sponse and	d high co	rrelation							
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	165.51	0.72	19.25	77.15	9.67	17.30	78.94	56.16	78.23	76.25	40.55	75.46	101.66	6.93	18.69	37.57	0.26	0.27
SE	106.85	56.46	77.36	105.01	82.71	103.34	538.91	466.13	716.36	106.17	100.96	280.30	135.86	67.89	111.64	18.28	14.56	35.76
ERSE	437.29	54.96	92.92	682.14	89.19	139.96	893.29	570.82	1213.90	688.83	362.97	649.38	746.29	148.35	201.92	487.06	94.06	111.17
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	$\mathbf{EE}_{\mathbf{i}}$	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	14.17	49.90	1.15	15.77	33.88	1.16	78.82	76.84	78.55	74.43	76.33	74.80	3.80	39.55	6.47	8.26	1.42	3.91
SE	78.54	83.16	77.31	112.55	96.97	108.07	889.09	588.02	807.57	410.02	221.38	343.54	104.73	130.02	106.94	38.62	36.11	36.71
ERSE	63.17	83.83	68.88	97.04	103.63	102.06	766.45	836.73	810.24	494.80	481.24	498.76	156.48	241.75	177.50	94.40	106.09	99.77
									esponse ar									
	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	54.43	0.63	4.91	30.80	4.47	6.75	38.16	28.07	30.83	31.50	13.29	25.37	43.49	3.55	2.72	12.70	7.61	9.06
SE	26.11	25.53	33.72	48.63	52.03	61.50	202.59	240.49	378.67	50.96	57.23	130.81	19.80	16.55	60.07	8.72	8.01	21.70
ERSE	257.11	26.19	48.06	518.79	55.48	84.02	589.32	301.76	685.25	524.44	196.79	300.42	503.27	86.47	122.23	397.86	55.63	66.45
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	12.28	14.44	3.58	10.52	11.66	2.26	29.92	30.10	30.42	23.81	25.89	24.71	16.45	4.39	9.60	13.31	8.86	10.79
SE	41.89	30.90	37.52	71.46	58.05	66.03	526.18	303.58	450.62	179.11	118.83	152.65	63.38	64.24	61.08	24.03	21.94	22.42
ERSE	34.73	34.02	35.00	65.28	62.26	65.26	474.99	416.72	469.52	257.59	248.23	254.98	100.38	125.48	108.33	59.14	62.08	60.77
									esponse an									
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	61.43	0.85	5.88	41.36	10.23	13.41	42.28	27.69	32.83	40.81	21.77	33.89	32.71	4.81	5.20	8.33	8.34	9.87
SE	22.50	21.71	27.84	57.54	58.27	67.66	247.73	249.15	370.33	59.49	60.00	124.60	14.07	12.73	54.26	7.00	6.71	20.02
ERSE	260.94	21.56	39.15	521.26	60.31	91.60	586.62	324.86	659.95	526.75	216.54	300.99	462.09	85.96	116.66	382.06	54.49	62.46
I DD =	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	12.54	15.94	3.23	7.36	18.97	2.51	31.05	32.39	31.95	31.45	34.18	32.73	16.83	0.02	10.90	13.41	9.78	11.27
SE ERSE	33.49 28.08	26.09	30.46	77.41	64.28	72.14	501.89	311.26	433.77	159.70	119.69	140.13	58.31	58.02	55.58	22.33	20.20	20.72
		27.84	28.42	70.07	67.49	70.50	469.48	436.11	469.41	264.79	261.26	264.36	97.61	116.41	103.82	56.19	58.31	57.39

Table E.6: Results under model (2.43), by response and correlation. Population: stable(Left), volatile(Middle), simulated(right). T=t=10, {Stable and Volatile: $\Delta_{10} = -746.55$ }, {Simulated: $\Delta_{10} = 190.6555$ }

								low re	sponse and	l low cor								
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	161.83	0.45	5.89	76.99	10.14	12.11	49.71	38.09	46.80	76.65	56.75	76.12	64.66	73.64	52.13	20.10	10.24	22.91
SE	117.38	62.69	75.41	105.42	82.91	96.40	575.15	526.15	797.82	104.49	101.05	238.78	219.61	174.75	339.83	52.26	47.30	107.04
ERSE	438.43	58.41	88.26	684.45	91.51	121.94	877.26	621.21	1310.32	691.80	389.52	558.56	558.59	282.65	610.12	485.80	228.83	312.11
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE.i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	$\mathbf{EE}_{-\mathbf{i}}$	EE_ii	EE(0.5)
APRB	20.99	28.74	7.70	6.79	17.23	3.03	47.34	44.83	47.08	75.26	76.88	75.68	58.74	39.40	55.80	25.07	24.95	23.19
SE	74.92	80.55	74.63	100.34	94.34	98.30	1005.78	653.92	901.40	302.83	220.45	267.33	441.72	265.52	391.84	132.00	101.43	118.09
ERSE	63.10	80.90	68.58	97.40	102.11	101.10	851.62	845.04	884.04	476.30	478.42	481.70	400.48	444.93	424.48	265.40	276.76	272.45
								low re	sponse and									
	naïve	\mathbf{EE}_{-h}	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	$\mathbf{EE}_{-}\mathbf{h}$	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	164.70	0.43	6.20	76.69	8.72	10.62	52.41	31.59	51.18	76.50	58.98	78.27	64.95	125.96	140.11	15.88	19.14	15.43
SE	110.13	59.58	73.84	101.87	80.32	93.55	543.55	489.99	755.38	107.33	104.16	234.68	140.81	104.25	246.73	49.74	41.90	85.79
ERSE	436.26	54.76	82.89	681.68	89.23	120.27	877.68	608.72	1275.33	689.12	382.74	542.65	555.19	227.97	484.14	477.90	192.48	249.12
	EE_i	EE _ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	$\mathbf{EE}_{-\mathbf{i}}$	EE_ii	EE(0.5)
APRB	20.95	29.03	7.50	8.85	15.95	1.26	51.73	49.81	51.47	77.91	78.73	78.03	161.19	112.40	151.57	24.51	8.40	20.66
SE	74.18	78.44	73.46	97.98	90.99	95.69	956.07	621.42	855.21	296.64	217.22	262.12	321.31	186.68	285.63	102.93	81.21	93.35
ERSE	59.15	75.58	64.23	95.09	99.63	98.80	831.82	828.58	863.57	463.63	466.12	469.08	314.86	373.07	338.38	210.68	225.93	218.76
									esponse an									
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	54.23	0.41	0.96	30.84	4.25	4.99	21.15	29.19	4.25	29.25	18.60	25.63	26.50	49.10	59.22	5.83	10.74	14.03
SE	27.00	26.44	33.43	51.46	54.76	61.99	248.17	311.78	455.97	49.95	56.60	129.86	31.74	26.21	76.78	25.76	22.98	40.15
ERSE	257.07	26.18	42.50	518.45	55.50	71.48	559.34	380.99	769.36	524.61	247.22	327.08	345.06	109.93	169.20	370.09	112.05	130.94
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	12.36	7.46	5.05	4.05	6.12	0.98	1.32	5.11	3.00	25.77	25.54	25.78	66.20	53.99	62.78	23.46	11.02	18.95
SE	39.05	31.36	35.85	66.86	60.68	64.07	618.06	385.95	529.10	162.96	123.67	143.45	100.00	65.60	88.13	44.64	39.48	41.94
ERSE	32.63	32.35	32.92	61.68	60.89	61.91	564.02	491.43	552.63	297.36	292.32	295.82	122.92	148.17	131.63	115.99	122.41	119.66
									sponse and									
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	61.27	0.69	1.47	40.80	9.70	10.95	4.79	25.21	11.35	41.17	37.33	46.36	20.52	44.49	53.73	7.74	15.00	19.86
SE	22.21	21.80	25.09	55.50	56.04	64.36	262.97	259.58	346.17	60.19	60.43	104.76	21.94	19.20	65.30	20.18	18.39	34.44
ERSE	260.93	21.53	33.52	521.42	60.27	77.62	584.90	326.37	540.61	527.30	217.84	265.81	315.41	95.44	145.97	352.85	101.03	115.99
	EE_i	EE _ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE.i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	$\mathbf{EE}_{-\mathbf{i}}$	EE_ii	EE(0.5)
APRB	12.69	8.23	4.91	0.20	12.21	6.18	12.87	11.01	12.04	46.68	46.43	46.41	59.86	50.19	56.81	30.07	17.11	25.03
SE	28.35	24.49	26.44	69.07	62.88	66.43	416.64	325.97	376.55	116.75	104.58	109.22	87.94	53.81	76.32	38.21	33.98	35.91
ERSE	25.92	26.48	26.36	66.37	65.98	66.94	430.62	414.65	430.69	245.95	247.11	247.05	105.56	123.94	112.43	103.13	108.51	106.25

 $Table\ E.7:\ Results\ under\ model\ (2.45),\ by\ response\ and\ correlation.\ Population:\ stable(Left),\ volatile(Middle),\ simulated(right)$

					T=t=	I, {Stable a	and Volat	ile: Δ_4 =	-746.55}	. {Simula	ted: Δ_4	= -699.59	61 }, low	response				
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$EE(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$EE(\hat{\pi}_i)$
APRB	12.34	0.20	6.51	5.30	0.28	2.40	29.51	2.73	12.57	13.43	0.79	3.00	3.90	0.59	0.88	1.75	0.00	0.27
SE	198.02	230.40	252.44	315.69	341.71	425.73	488.92	644.87	660.51	334.68	375.38	451.92	191.88	205.66	235.30	126.85	129.27	149.93
ERSE	297.75	231.70	336.88	553.40	347.21	579.23	642.59	636.83	831.38	532.38	377.58	627.81	241.82	203.11	306.66	195.91	125.82	208.68
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	\mathbf{EE}_{-i}	EE_ii	EE(0.5)
APRB	4.29	7.52	5.17	0.36	2.86	1.07	5.58	16.20	8.35	2.46	4.99	0.27	0.31	1.56	0.15	0.34	0.44	0.09
SE	294.32	232.57	276.86	521.27	383.06	477.21	772.70	605.21	726.43	561.46	406.37	511.40	268.23	218.66	254.63	179.43	139.77	166.00
ERSE	211.84	233.32	221.00	388.91	382.89	394.53	522.61	575.29	545.16	419.90	410.37	425.38	190.08	215.82	199.95	138.97	140.18	141.68
					T=t=4		nd Volat		-746.55,	{Simula			,, 0	response				
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	6.02	0.99	4.45	5.06	1.39	2.76	31.61	3.60	12.37	17.31	1.60	2.85	0.43	0.87	0.85	0.01	0.51	0.05
SE	84.33	166.91	144.35	170.45	235.79	278.14	219.33	420.82	380.46	190.72	261.37	298.90	95.02	103.05	136.36	65.58	68.43	85.46
ERSE	209.52	167.06	206.09	470.48	234.71	392.39	488.08	438.97	555.06	460.74	264.08	435.32	194.97	99.27	198.09	176.06	66.82	117.89
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
APRB	3.36	4.93	3.83	2.18	2.97	2.54	0.37	16.93	5.58	5.87	4.81	2.01	1.51	0.62	1.23	0.21	0.10	0.13
SE	195.75	125.25	172.84	378.86	243.43	330.46	523.38	327.90	459.65	408.92	264.72	356.31	181.65	120.22	161.43	111.25	79.74	98.87
ERSE	143.15	126.18	139.99	286.94	243.36	276.43	385.77	340.74	377.41	319.16	273.09	308.01	134.75	125.95	134.06	88.21	80.71	86.43
		EE_h	DD(a)		T=t=	., (and Vola	tile: Δ_7 \mathbf{EE}_h	= -746.55		ated: Δ_7			response	DD(c)	naïve	EE_h	DD(△)
APRB	naïve 11.25	0.66	$\mathbf{EE}(\hat{p}_i)$ 0.51	naïve 5.80	EE_h 0.74	$\frac{\mathbf{EE}(\hat{\pi}_i)}{0.14}$	naïve 23.85	0.22	$\frac{\mathbf{EE}(\hat{p}_i)}{4.45}$	naïve 12.88	EE_h 1.03	$\mathbf{EE}(\hat{\pi}_i)$ 1.66	18.05	EE_h 0.70	$\mathbf{EE}(\hat{p}_i)$ 1.37	7.93	0.30	$\mathbf{EE}(\hat{\pi}_i)$ 0.50
SE	198.91	235.84	265.26	328.42	359.61	425.52	453.14	545.67	637.83	297.65	321.77	386.68	413.64	319.63	413.42	235.06	207.99	234.36
ERSE	296.71	230.83	372.38	553.93	347.18	554.73	759.02	544.84	911.71	573.20	326.49	525.38	711.85	308.72	547.56	502.42	198.39	263.99
ERSE	EE_i	EE _ii	EE(0.5)	EE _i	EE_ii	EE(0.5)	EE _i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE _i	EE_ii	EE(0.5)
APRB	4.04	3.20	2.44	1.70	0.79	0.82	2.40	12.27	0.68	2.32	3.48	0.37	3.22	6.09	1.14	2.48	0.09	1.42
SE	316.35	231.28	291.80	502.03	396.27	460.99	761.91	545.03	702.82	464.27	357.98	422.60	464.30	392.08	438.75	249.90	230.96	240.95
ERSE	237.54	255.11	249.55	409.27	387.64	410.25	578.77	611.91	606.85	387.90	367.76	388.86	358.00	421.16	381.80	213.74	221.65	218.86
					T=t=			tile: Δ_7 =				= 1448.408		response				
																		- 1
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h		naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
APRB	naïve 6.52	EE _h 0.21	$EE(\hat{p}_i)$ 2.38	naïve 3.94		, (/ ($\mathbf{EE}(\hat{\pi}_i)$ 0.75	,, .		$\mathbf{EE}(\hat{p}_i)$ 0.03	naïve 4.83	EE_h 0.42	$\mathbf{EE}(\hat{\pi}_i)$ 0.24
APRB SE					EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h				
	6.52	0.21	2.38	3.94	EE_h 0.18 237.36 233.26	$\mathbf{EE}(\hat{\pi}_i)$ 0.45	naïve 23.50	EE_h 0.61	$\mathbf{EE}(\hat{p}_i)$ 3.40	naïve 13.07	EE _h 0.28	$\mathbf{EE}(\hat{\pi}_i)$ 0.75	naïve 10.05	EE_h 0.49	0.03	4.83	0.42	0.24
SE ERSE	6.52 83.59 208.65 EE _i	0.21 164.16 163.62 EE _ii	2.38 185.59 291.79 EE (0.5)	3.94 170.25 470.12 EE _i	EE_h 0.18 237.36 233.26 EE_ii	$\mathbf{EE}(\hat{\pi}_i)$ 0.45 277.13 379.70 $\mathbf{EE}(0.5)$	23.50 187.31 541.48 EE _i	EE_h 0.61 322.77 322.87 EE_iii	EE(\hat{p}_i) 3.40 372.89 571.16 EE(0.5)	13.07 155.28 486.92 EE _i	EE_h 0.28 203.25 198.49 EE_ii	$\mathbf{EE}(\hat{\pi}_i)$ 0.75 240.22 313.99 $\mathbf{EE}(0.5)$	10.05 116.81 489.17 EE_i	EE_h 0.49 136.20 133.11 EE_ii	0.03 172.44 252.27 EE (0.5)	4.83 81.00 418.77 EE _i	0.42 87.76 88.85 EE _ii	0.24 101.29 124.22 EE (0.5)
SE ERSE	6.52 83.59 208.65 EE _i 0.40	0.21 164.16 163.62 EE _ii 4.70	2.38 185.59 291.79 EE (0.5) 0.97	3.94 170.25 470.12 EE _i 2.23	EE_h 0.18 237.36 233.26 EE_ii 0.31	$\mathbf{EE}(\hat{\pi}_i)$ 0.45 277.13 379.70 $\mathbf{EE}(0.5)$ 1.28	23.50 187.31 541.48 EE_i 4.42	EE_h 0.61 322.77 322.87 EE_iii 7.92	EE(\hat{p}_i) 3.40 372.89 571.16 EE(0.5) 0.46	13.07 155.28 486.92 EE_i 3.25	0.28 203.25 198.49 EE_ii 1.48	$\mathbf{EE}(\hat{\pi}_i)$ 0.75 240.22 313.99 $\mathbf{EE}(0.5)$	10.05 116.81 489.17 EE_i 3.17	EE_h 0.49 136.20 133.11 EE_ii 1.58	0.03 172.44 252.27 EE (0.5) 1.54	4.83 81.00 418.77 EE _i 1.34	0.42 87.76 88.85 EE _iii 0.16	0.24 101.29 124.22 EE (0.5) 0.69
SE ERSE APRB SE	6.52 83.59 208.65 EE _i 0.40 262.83	0.21 164.16 163.62 EE _ii 4.70 138.99	2.38 185.59 291.79 EE (0.5) 0.97 223.41	3.94 170.25 470.12 EE _i 2.23 349.25	0.18 237.36 233.26 EE _ii 0.31 256.67	$\mathbf{EE}(\hat{\pi}_i)$ 0.45 277.13 379.70 $\mathbf{EE}(0.5)$ 1.28 309.07	naïve 23.50 187.31 541.48 EE_i 4.42 514.48	EE_h 0.61 322.77 322.87 EE_ii 7.92 294.63	$\mathbf{EE}(\hat{p}_i)$ 3.40 372.89 571.16 $\mathbf{EE}(0.5)$ 0.46 441.73	naïve 13.07 155.28 486.92 EE _i 3.25 303.51	EE_h 0.28 203.25 198.49 EE_ii 1.48 219.79	$\mathbf{EE}(\hat{\pi}_i)$ 0.75 240.22 313.99 $\mathbf{EE}(0.5)$ 1.08 268.26	10.05 116.81 489.17 EE_i	EE_h 0.49 136.20 133.11 EE_iii 1.58 148.36	0.03 172.44 252.27 EE (0.5) 1.54 197.14	4.83 81.00 418.77 EE _i	0.42 87.76 88.85 EE_ii 0.16 98.80	0.24 101.29 124.22 EE (0.5) 0.69 107.16
SE ERSE	6.52 83.59 208.65 EE _i 0.40	0.21 164.16 163.62 EE _ii 4.70	2.38 185.59 291.79 EE (0.5) 0.97	3.94 170.25 470.12 EE _i 2.23	EE_h 0.18 237.36 233.26 EE_ii 0.31 256.67 256.99	$\mathbf{EE}(\hat{\pi}_i)$ 0.45 277.13 379.70 $\mathbf{EE}(0.5)$ 1.28 309.07 287.04	naïve 23.50 187.31 541.48 EE.i 4.42 514.48 393.56	EE_h 0.61 322.77 322.87 EE_ii 7.92 294.63 324.64	$\mathbf{EE}(\hat{p}_i)$ 3.40 372.89 571.16 $\mathbf{EE}(0.5)$ 0.46 441.73 383.60	naïve 13.07 155.28 486.92 EE .i 3.25 303.51 249.91	EE_h 0.28 203.25 198.49 EE_ii 1.48 219.79 219.83	$\mathbf{EE}(\hat{\pi}_i)$ 0.75 240.22 313.99 $\mathbf{EE}(0.5)$ 1.08 268.26 241.62	naïve 10.05 116.81 489.17 EE .i 3.17 224.32 177.68	EE_h 0.49 136.20 133.11 EE_ii 1.58 148.36 159.16	0.03 172.44 252.27 EE (0.5) 1.54 197.14 175.94	4.83 81.00 418.77 EE _i 1.34	0.42 87.76 88.85 EE _iii 0.16	0.24 101.29 124.22 EE (0.5) 0.69
SE ERSE APRB SE	6.52 83.59 208.65 EE _i 0.40 262.83 198.27	0.21 164.16 163.62 EE _iii 4.70 138.99 156.55	2.38 185.59 291.79 EE (0.5) 0.97 223.41 192.12	3.94 170.25 470.12 EE _i 2.23 349.25 298.38	EE_h 0.18 237.36 233.26 EE_ii 0.31 256.67 256.99 T=t=1	EE($\hat{\pi}_i$) 0.45 277.13 379.70 EE(0.5) 1.28 309.07 287.04 0, {Stable	naïve 23.50 187.31 541.48 EE_i 4.42 514.48 393.56 and Vola	EE_h 0.61 322.77 322.87 EE_ii 7.92 294.63 324.64 tile: Δ ₁₀	$\begin{array}{c} \mathbf{EE}(\hat{p}_i) \\ 3.40 \\ 372.89 \\ 571.16 \\ \mathbf{EE}(0.5) \\ 0.46 \\ 441.73 \\ 383.60 \\ = -746.55 \end{array}$	naïve 13.07 155.28 486.92 EE .i 3.25 303.51 249.91 }, {Simu	EE_h 0.28 203.25 198.49 EE_ii 1.48 219.79 219.83 lated: Δ	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.75 \\ 240.22 \\ 313.99 \\ \mathbf{EE}(0.5) \\ 1.08 \\ 268.26 \\ 241.62 \\ 0 = 190.65 \end{array}$	naïve 10.05 116.81 489.17 EE_i 3.17 224.32 177.68 55 }, low	EE_h 0.49 136.20 133.11 EE_iii 1.58 148.36 159.16	0.03 172.44 252.27 EE (0.5) 1.54 197.14 175.94	4.83 81.00 418.77 EE .i 1.34 115.46 106.13	0.42 87.76 88.85 EE _ii 0.16 98.80 100.92	0.24 101.29 124.22 EE (0.5) 0.69 107.16 104.66
SE ERSE APRB SE ERSE	6.52 83.59 208.65 EE. i 0.40 262.83 198.27	0.21 164.16 163.62 EE _ii 4.70 138.99 156.55	$\begin{array}{c} 2.38 \\ 185.59 \\ 291.79 \\ \textbf{EE}(0.5) \\ 0.97 \\ 223.41 \\ 192.12 \\ \\ \textbf{EE}(\hat{p}_i) \end{array}$	3.94 170.25 470.12 EE_i 2.23 349.25 298.38 naïve	EE_h 0.18 237.36 233.26 EE_ii 0.31 256.67 256.99 T=t=1 EE_h	$ \begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.45 \\ 277.13 \\ 379.70 \\ \mathbf{EE}(0.5) \\ 1.28 \\ 309.07 \\ 287.04 \\ 0, \{\text{Stable} \\ \mathbf{EE}(\hat{\pi}_i) \\ \end{array} $	naïve 23.50 187.31 541.48 EE_i 4.42 514.48 393.56 and Vola naïve	EE_h 0.61 322.77 322.87 EE_ii 7.92 294.63 324.64 tile: Δ_{10} EE_h	$\begin{array}{c} \mathbf{EE}(\hat{p}_i) \\ 3.40 \\ 372.89 \\ 571.16 \\ \mathbf{EE}(0.5) \\ 0.46 \\ 441.73 \\ 383.60 \\ = -746.55 \\ \mathbf{EE}(\hat{p}_i) \end{array}$	naïve 13.07 155.28 486.92 EE_i 3.25 303.51 249.91 }, {Simu naïve	EE_h 0.28 203.25 198.49 EE_ii 1.48 219.79 219.83 lated: Δ EE_h	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.75 \\ 240.22 \\ 313.99 \\ \mathbf{EE}(0.5) \\ 1.08 \\ 268.26 \\ 241.62 \\ 10 = 190.65 \\ \mathbf{EE}(\hat{\pi}_i) \end{array}$	naïve 10.05 116.81 489.17 EE.i 3.17 224.32 177.68 55 }, low	EE_h 0.49 136.20 133.11 EE_iii 1.58 148.36 159.16 r response EE_h	$\begin{array}{c} 0.03 \\ 172.44 \\ 252.27 \\ \hline \mathbf{EE}(0.5) \\ 1.54 \\ 197.14 \\ 175.94 \\ \hline \mathbf{EE}(\hat{p_i}) \end{array}$	4.83 81.00 418.77 EE .i 1.34 115.46 106.13	0.42 87.76 88.85 EE_ii 0.16 98.80 100.92 EE_h	0.24 101.29 124.22 $\mathbf{EE}(0.5)$ 0.69 107.16 104.66 $\mathbf{EE}(\hat{\pi}_i)$
SE ERSE APRB SE ERSE	6.52 83.59 208.65 EE. i 0.40 262.83 198.27 naïve	0.21 164.16 163.62 EE_ii 4.70 138.99 156.55 EE_h 0.17	2.38 185.59 291.79 EE (0.5) 0.97 223.41 192.12 EE (\hat{p}_i) 0.63	3.94 170.25 470.12 EE _i 2.23 349.25 298.38 naïve 5.94	EE_h 0.18 237.36 233.26 EE_ii 0.31 256.67 256.99 T=t=1 EE_h 0.80	$ \begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.45 \\ 277.13 \\ 379.70 \\ \mathbf{EE}(0.5) \\ 1.28 \\ 309.07 \\ 287.04 \\ 0, \{\text{Stable} \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.90 \end{array} $	naïve 23.50 187.31 541.48 EE.i 4.42 514.48 393.56 and Vola naïve 29.15	EE_h 0.61 322.77 322.87 EE_iii 7.92 294.63 324.64 tile: Δ_{10} EE_h 1.63	$\begin{array}{c} \mathbf{EE}(\hat{p}_i) \\ 3.40 \\ 372.89 \\ 571.16 \\ \mathbf{EE}(0.5) \\ 0.46 \\ 441.73 \\ 383.60 \\ = -746.55 \\ \mathbf{EE}(\hat{p}_i) \\ 4.19 \end{array}$	naïve 13.07 155.28 486.92 EE.i 3.25 303.51 249.91 }, {Simu} naïve 15.18	EE_h 0.28 203.25 198.49 EE_ii 1.48 219.79 219.83 lated: Δ EE_h 1.31	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.75 \\ 240.22 \\ 313.99 \\ \mathbf{EE}(0.5) \\ 1.08 \\ 268.26 \\ 241.62 \\ 10 = 190.65 \\ \mathbf{EE}(\hat{\pi}_i) \\ 2.69 \end{array}$	naïve 10.05 116.81 489.17 EE.i 3.17 224.32 177.68 55 }, low naïve 76.38	EE_h 0.49 136.20 133.11 EE_iii 1.58 148.36 159.16 response EE_h 10.38	$\begin{array}{c} 0.03 \\ 172.44 \\ 252.27 \\ \hline \mathbf{EE}(0.5) \\ 1.54 \\ 197.14 \\ 175.94 \\ \hline \mathbf{EE}(\hat{p_i}) \\ 9.36 \\ \end{array}$	4.83 81.00 418.77 EE. i 1.34 115.46 106.13 naïve 29.25	0.42 87.76 88.85 EE _ii 0.16 98.80 100.92 EE _h	0.24 101.29 124.22 $\mathbf{EE}(0.5)$ 0.69 107.16 104.66 $\mathbf{EE}(\hat{\pi}_i)$ 2.75
SE ERSE APRB SE ERSE APRB SE	6.52 83.59 208.65 EE. i 0.40 262.83 198.27 naïve 12.07 195.71	0.21 164.16 163.62 EE_iii 4.70 138.99 156.55 EE_h 0.17 228.94	$\begin{array}{c} 2.38 \\ 185.59 \\ 291.79 \\ \textbf{EE}(0.5) \\ 0.97 \\ 223.41 \\ 192.12 \\ \textbf{EE}(\hat{p}_i) \\ 0.63 \\ 284.94 \end{array}$	3.94 170.25 470.12 EE_i 2.23 349.25 298.38 naïve 5.94 320.94	EE.h 0.18 237.36 233.26 EE.ii 0.31 256.67 256.99 T=t=1 EE.h 0.80 346.15	$\mathbf{EE}(\hat{\pi}_i)$ 0.45 277.13 379.70 $\mathbf{EE}(0.5)$ 1.28 309.07 287.04 0, {Stable} $\mathbf{EE}(\hat{\pi}_i)$ 0.90 394.39	23.50 187.31 541.48 EE.i 4.42 514.48 393.56 and Vola naïve 29.15 495.78	EE.h 0.61 322.77 322.87 EE.ii 7.92 294.63 324.64 tile: Δ_{10} EE.h 1.63 638.08	$\begin{array}{c} \mathbf{EE}(\hat{p}_i) \\ 3.40 \\ 372.89 \\ 571.16 \\ \mathbf{EE}(0.5) \\ 0.46 \\ 441.73 \\ 383.60 \\ = -746.55 \\ \mathbf{EE}(\hat{p}_i) \\ 4.19 \\ 760.43 \end{array}$	naïve 13.07 155.28 486.92 EE_i 3.25 303.51 249.91 }, {Simu naïve 15.18 338.93	EE.h 0.28 203.25 198.49 EE.ii 1.48 219.79 219.83 lated: Δ EE.h 1.31 377.16	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.75 \\ 240.22 \\ 313.99 \\ \mathbf{EE}(0.5) \\ 1.08 \\ 268.26 \\ 241.62 \\ 10 = 190.65 \\ \mathbf{EE}(\hat{\pi}_i) \\ 2.69 \\ 428.18 \end{array}$	naïve 10.05 116.81 489.17 EE_i 3.17 224.32 177.68 55 }, low naïve 76.38 276.08	EE_h 0.49 136.20 133.11 EE_iii 1.58 148.36 159.16 response EE_h 10.38 309.03	$\begin{array}{c} 0.03 \\ 172.44 \\ 252.27 \\ \textbf{EE}(0.5) \\ \hline 1.54 \\ 197.14 \\ 175.94 \\ \hline \textbf{EE}(\hat{p}_i) \\ 9.36 \\ 392.52 \\ \end{array}$	4.83 81.00 418.77 EE. i 1.34 115.46 106.13 naïve 29.25 243.54	0.42 87.76 88.85 EE _ii 0.16 98.80 100.92 EE _h 0.47 246.52	0.24 101.29 124.22 $\mathbf{EE}(0.5)$ 0.69 107.16 104.66 $\mathbf{EE}(\hat{\pi}_i)$ 2.75 277.69
SE ERSE APRB SE ERSE	6.52 83.59 208.65 EE. i 0.40 262.83 198.27 naïve 12.07 195.71 298.42	0.21 164.16 163.62 EE_ii 4.70 138.99 156.55 EE_h 0.17 228.94 231.42	2.38 185.59 291.79 EE (0.5) 0.97 223.41 192.12 EE (\hat{p}_i) 0.63 284.94 410.58	3.94 170.25 470.12 EE _i 2.23 349.25 298.38 naïve 5.94 320.94 551.18	EE.h 0.18 237.36 233.26 EE.ii 0.31 256.67 256.99 T=t=1 EE.h 0.80 346.15 345.64	$\mathbf{EE}(\hat{\pi}_i)$ 0.45 277.13 379.70 $\mathbf{EE}(0.5)$ 1.28 309.07 (Stable $\mathbf{EE}(\hat{\pi}_i)$ 0.90 394.39 469.51	naïve 23.50 187.31 541.48 EE_i 4.42 514.48 393.56 and Vola naïve 29.15 495.78 663.69	EE.h 0.61 322.77 322.87 EE.ii 7.92 294.63 324.64 tile: $Δ_{10}$ EE.h 1.63 638.08 628.63	$\begin{array}{c} \mathbf{EE}(\hat{p}_i) \\ 3.40 \\ 372.89 \\ 571.16 \\ \mathbf{EE}(0.5) \\ 0.46 \\ 441.73 \\ 383.60 \\ = -746.55 \\ \mathbf{EE}(\hat{p}_i) \\ 4.19 \\ 760.43 \\ 1126.96 \end{array}$	naïve 13.07 155.28 486.92 EE_i 3.25 303.51 249.91 }, {Simu} naïve 15.18 338.93 538.69	EE.h 0.28 203.25 198.49 EE.ii 1.48 219.79 219.83 lated: Δ EE.h 1.31 377.16 371.07	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.75 \\ 240.22 \\ 313.99 \\ \mathbf{EE}(0.5) \\ 1.08 \\ 268.26 \\ 241.62 \\ 0 = 190.65 \\ \mathbf{EE}(\hat{\pi}_i) \\ 2.69 \\ 428.18 \\ 518.81 \end{array}$	naïve 10.05 116.81 489.17 EE_i 3.17 224.32 177.68 55 }, low naïve 76.38 276.08 370.08	EE_h 0.49 136.20 133.11 EE_ii 1.58 148.36 159.16 response EE_h 10.38 309.03 312.67	$\begin{array}{c} 0.03 \\ 172.44 \\ 252.27 \\ \hline \textbf{EE}(0.5) \\ 1.54 \\ 197.14 \\ 175.94 \\ \hline \textbf{EE}(\hat{p_i}) \\ 9.36 \\ 392.52 \\ 565.21 \\ \end{array}$	4.83 81.00 418.77 EE.i 1.34 115.46 106.13 naïve 29.25 243.54 384.75	0.42 87.76 88.85 EE_ii 0.16 98.80 100.92 EE_h 0.47 246.52 245.33	$\begin{array}{c} 0.24 \\ 101.29 \\ 124.22 \\ \textbf{EE}(0.5) \\ 0.69 \\ 107.16 \\ 104.66 \\ \\ \textbf{EE}(\hat{\pi}_i) \\ 2.75 \\ 277.69 \\ 322.10 \\ \end{array}$
APRB SE ERSE APRB SE ERSE APRB SE ERSE	6.52 83.59 208.65 EE. ,i 0.40 262.83 198.27 naïve 12.07 195.71 298.42 EE. ,i	0.21 164.16 163.62 EE_ii 4.70 138.99 156.55 EE_h 0.17 228.94 231.42 EE_ii	2.38 185.59 291.79 EE (0.5) 0.97 223.41 192.12 EE (\hat{p}_i) 0.63 284.94 410.58 EE (0.5)	3.94 170.25 470.12 EE_i 2.23 349.25 298.38 naïve 5.94 320.94 551.18 EE_i	EE.h 0.18 237.36 233.26 EE.ii 0.31 256.67 256.99 T=t=1 EE.h 0.80 346.15 345.64 EE.ii	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.45 \\ 277.13 \\ 379.70 \\ \mathbf{EE}(0.5) \\ 1.28 \\ 309.07 \\ 287.04 \\ 0, \{\text{Stable} \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.90 \\ 394.39 \\ 469.51 \\ \mathbf{EE}(0.5) \\ \end{array}$	naïve 23.50 187.31 541.48 EE.i 4.42 514.48 393.56 and Vola naïve 29.15 495.78 663.69 EE.i	EE.h 0.61 322.77 322.87 EE.ii 7.92 294.63 324.64 tile: $Δ_{10}$ EE.h 1.63 638.08 628.63 EE.ii	$\begin{array}{c} \mathbf{EE}(\hat{p}_i) \\ 3.40 \\ 372.89 \\ 571.16 \\ \mathbf{EE}(0.5) \\ 0.46 \\ 441.73 \\ 383.60 \\ = -746.55 \\ \mathbf{EE}(\hat{p}_i) \\ 4.19 \\ 760.43 \\ 1126.96 \\ \mathbf{EE}(0.5) \end{array}$	naïve 13.07 155.28 486.92 EE_i 3.25 303.51 249.91 }, {Simu naïve 15.18 338.93 538.69 EE_i	EE_h 0.28 203.25 198.49 EE_ii 1.48 219.79 219.83 lated: Δ EE_h 1.31 377.16 371.07 EE_ii	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.75 \\ 240.22 \\ 313.99 \\ \mathbf{EE}(0.5) \\ 1.08 \\ 268.26 \\ 241.62 \\ 0 = 190.65 \\ \mathbf{EE}(\hat{\pi}_i) \\ 2.69 \\ 428.18 \\ 518.81 \\ \mathbf{EE}(0.5) \end{array}$	naïve 10.05 116.81 489.17 EE_i 3.17 224.32 177.68 55 }, low naïve 76.38 276.08 370.08 EE_i	EE.h 0.49 136.20 133.11 EE.ii 1.58 148.36 159.16 7 response EE.h 10.38 309.03 312.67 EE.ii	$\begin{array}{c} 0.03 \\ 172.44 \\ 252.27 \\ \hline \mathbf{EE}(0.5) \\ 1.54 \\ 197.14 \\ 175.94 \\ \hline \mathbf{EE}(\hat{p_i}) \\ 9.36 \\ 392.52 \\ 565.21 \\ \hline \mathbf{EE}(0.5) \\ \end{array}$	4.83 81.00 418.77 EE_i 1.34 115.46 106.13 naïve 29.25 243.54 384.75 EE_i	0.42 87.76 88.85 EE _iii 0.16 98.80 100.92 EE _h 0.47 246.52 245.33 EE _iii	0.24 101.29 124.22 EE(0.5) 0.69 107.16 104.66 EE($\hat{\pi}_i$) 2.75 277.69 322.10 EE(0.5)
APRB SE ERSE APRB SE ERSE APRB SE APRB	6.52 83.59 208.65 EE _i 0.40 262.83 198.27 naïve 12.07 195.71 298.42 EE _i 3.54	0.21 164.16 163.62 EE_ii 4.70 138.99 156.55 EE_h 0.17 228.94 231.42 EE_ii 2.13	2.38 185.59 291.79 EE(0.5) 0.97 223.41 192.12 EE(\hat{p}_i) 0.63 284.94 410.58 EE(0.5)	3.94 170.25 470.12 EE.i 2.23 349.25 298.38 naïve 5.94 320.94 551.18 EE.i 0.20	EE.h 0.18 237.36 233.26 EE.ii 0.31 256.67 256.99 T=t=1 EE.h 0.80 346.15 345.64 EE.ii 1.30	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.45 \\ 277.13 \\ 379.70 \\ \mathbf{EE}(0.5) \\ 1.28 \\ 309.07 \\ 287.04 \\ 0, \{Stable \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.90 \\ 394.39 \\ 469.51 \\ \mathbf{EE}(0.5) \\ 0.40 \end{array}$	naïve 23.50 187.31 541.48 EE_i 4.42 514.48 393.56 and Vola naïve 29.15 663.69 EE_i 1.03	EE_h 0.61 322.77 322.87 EE_iii 7.92 294.63 324.64 tile: $Δ_{10}$ EE_h 1.63 638.08 628.63 EE_iii 8.55	$\begin{array}{c} \mathbf{EE}(\hat{p}_i) \\ 3.40 \\ 372.89 \\ 571.16 \\ \mathbf{EE}(0.5) \\ 0.46 \\ 441.73 \\ 383.60 \\ = -746.55 \\ \mathbf{EE}(\hat{p}_i) \\ 4.19 \\ 1126.96 \\ \mathbf{EE}(0.5) \\ 1.50 \end{array}$	naïve 13.07 155.28 486.92 EE_i 3.25 303.51 249.91 }, {Simu naïve 15.18 338.93 538.69 EE_i 0.94	EE_h 0.28 203.25 198.49 EE_ii 1.48 219.79 219.83 lated: Δ EE_h 1.31 377.16 371.07 EE_iii 2.63	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.75 \\ 240.22 \\ 313.99 \\ \mathbf{EE}(0.5) \\ 1.08 \\ 268.26 \\ 241.62 \\ \underline{00} = 190.65 \\ \mathbf{EE}(\hat{\pi}_i) \\ 2.69 \\ 428.18 \\ 518.81 \\ \mathbf{EE}(0.5) \\ 1.98 \end{array}$	naïve 10.05 116.81 489.17 EE_i 3.17 224.32 177.65 55 }, low naïve 76.38 276.08 370.08 EE_i 6.47	EE.h 0.49 136.20 133.11 EE.ii 1.58 148.36 159.16 7 response EE.h 10.38 309.03 312.67 EE_iii 25.30	0.03 172.44 252.27 EE (0.5) 1.54 197.14 175.94 2 EE (\hat{p}_i) 9.36 392.52 565.21 EE (0.5) 1.21	4.83 81.00 418.77 EE_i 1.34 115.46 106.13 naïve 29.25 243.54 384.75 EE_i 8.76	0.42 87.76 88.85 EE _ii 0.16 98.80 100.92 EE _h 0.47 246.52 245.33 EE _ii 1.28	0.24 101.29 124.22 $EE(0.5)$ 0.69 107.16 104.66 $EE(\hat{\pi}_i)$ 2.75 277.69 322.10 $EE(0.5)$ 5.33
APRB SE ERSE APRB SE ERSE APRB SE SE ERSE	6.52 83.59 208.65 EE. ii 0.40 262.83 198.27 naïve 12.07 195.71 298.42 EE. i 3.54 349.28	0.21 164.16 163.62 EE_ii 4.70 138.99 156.55 EE_h 0.17 228.94 231.42 EE_ii 2.13 236.87	$\begin{array}{c} 2.38 \\ 185.59 \\ 291.79 \\ \hline \text{EE}(0.5) \\ 0.97 \\ 223.41 \\ 192.12 \\ \hline \text{EE}(\hat{p_i}) \\ 0.63 \\ 284.94 \\ 410.58 \\ \hline \text{EE}(0.5) \\ 2.13 \\ 316.98 \\ \end{array}$	3.94 170.25 470.12 EE.i 2.23 349.25 298.38 naïve 5.94 320.94 551.18 EE.i 0.20 434.07	EE.h 0.18 237.36 233.26 EE.ii 0.31 256.67 256.99 T=t=1 EE.h 0.80 346.15 345.64 EE.ii 1.30 382.65	$\mathbf{EE}(\hat{\pi}_i)$ 0.45 277.13 379.70 $\mathbf{EE}(0.5)$ 1.28 309.07 287.04 0, {Stable $\mathbf{EE}(\hat{\pi}_i)$ 0.90 394.39 469.51 $\mathbf{EE}(0.5)$ 0.40 411.44	naïve 23.50 187.31 541.48 EE_i 4.42 514.48 393.56 and Vola naïve 29.15 495.78 663.69 EE_i 1.03 946.37	EE_h 0.61 322.77 322.87 EE_ii 7.92 294.63 324.64 tile: $Δ_{10}$ EE_h 1.63 638.08 628.63 EE_ii 8.55 627.62	$\begin{array}{c} \mathbf{EE}(\hat{p}_i) \\ 3.40 \\ 372.89 \\ 571.16 \\ \mathbf{EE}(0.5) \\ 0.46 \\ 441.73 \\ 383.60 \\ = -746.55 \\ \mathbf{EE}(\hat{p}_i) \\ 4.19 \\ 760.43 \\ 1126.96 \\ \mathbf{EE}(0.5) \\ 1.50 \\ 853.08 \end{array}$	naïve 13.07 155.28 486.92 EE_i 3.25 303.51 249.91 }, {Simu naïve 15.18 338.93 538.69 EE_i 0.94 484.03	EE_h 0.28 203.25 198.49 EE_ii 1.48 219.79 219.83 lated: Δ EE_h 1.31 377.16 371.07 EE_ii 2.63 409.02	$\mathbf{EE}(\hat{\pi}_i)$ 0.75 240.22 313.99 $\mathbf{EE}(0.5)$ 1.08 268.26 241.62 $\mathbf{EE}(\hat{\pi}_i)$ 2.69 428.18 518.81 $\mathbf{EE}(0.5)$ 1.98 452.12	naïve 10.05 116.81 489.17 EE_i 3.17 224.32 177.68 55 }, low naïve 76.38 276.08 370.08 EE_i 6.47 482.76	EE_h 0.49 136.20 133.11 EE_ii 1.58 148.36 159.16 response EE_h 10.38 309.03 312.67 EE_ii 25.30 327.00	0.03 172.44 252.27 $EE(0.5)$ 1.54 197.14 175.94 9.36 392.52 565.21 $EE(0.5)$ 1.21 437.43	4.83 81.00 418.77 EE.i 1.34 115.46 106.13 naïve 29.25 243.54 384.75 EE.i 8.76 299.40	0.42 87.76 88.85 EE _iii 0.16 98.80 100.92 EE _h 0.47 246.52 245.33 EE _ii 1.28 271.95	$\begin{array}{c} 0.24\\ 101.29\\ 124.22\\ \textbf{EE}(0.5)\\ 0.69\\ 107.16\\ 104.66\\ \\ \textbf{EE}(\hat{\pi}_i)\\ 2.75\\ 277.69\\ 322.10\\ \textbf{EE}(0.5)\\ 5.33\\ 286.94\\ \end{array}$
APRB SE ERSE APRB SE ERSE APRB SE APRB	6.52 83.59 208.65 EE _i 0.40 262.83 198.27 naïve 12.07 195.71 298.42 EE _i 3.54	0.21 164.16 163.62 EE_ii 4.70 138.99 156.55 EE_h 0.17 228.94 231.42 EE_ii 2.13	2.38 185.59 291.79 EE(0.5) 0.97 223.41 192.12 EE(\hat{p}_i) 0.63 284.94 410.58 EE(0.5)	3.94 170.25 470.12 EE.i 2.23 349.25 298.38 naïve 5.94 320.94 551.18 EE.i 0.20	EE.h 0.18 237.36 233.26 EE.ii 0.31 256.69 T=t=1 EE.h 0.80 346.15 345.64 EE.ii 1.30 382.65 381.93	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.45 \\ 277.13 \\ 379.70 \\ \mathbf{EE}(0.5) \\ 1.28 \\ 309.07 \\ 287.04 \\ 0, \{Stable \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.90 \\ 394.39 \\ 469.51 \\ \mathbf{E}(0.5) \\ 0.40 \\ 411.44 \\ 390.21 \\ \end{array}$	naïve 23.50 187.31 541.48 EE_i 4.42 514.48 393.56 and Vola naïve 29.15 495.78 663.69 EE_i 1.03 946.37 727.75	EE_h 0.61 322.77 322.87 EE_ii 7.92 294.63 324.64 tile: $Δ_{10}$ EE_h 1.63 638.08 628.63 EE_ii 8.55 627.62 705.80	$\begin{array}{c} \mathbf{EE}(\hat{p}_i) \\ 3.40 \\ 372.89 \\ 571.16 \\ \mathbf{EE}(0.5) \\ 0.46 \\ 441.73 \\ 383.60 \\ = -746.55 \\ \mathbf{EE}(\hat{p}_i) \\ 4.19 \\ 760.43 \\ 1126.96 \\ \mathbf{EE}(0.5) \\ 1.50 \\ \mathbf{ES}(0.5) \\ 353.08 \\ 752.33 \end{array}$	naïve 13.07 155.28 486.92 EE_i 3.25 303.51 249.91 }, {Simu naïve 15.18 338.93 538.69 EE_i 0.94 484.03 423.63	EE_h 0.28 203.25 198.49 EE_ii 1.48 219.79 219.83 lated: Δ EE_h 1.31 377.16 371.07 EE_ii 2.63 409.02 410.30	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.75 \\ 240.22 \\ 313.99 \\ \mathbf{EE}(0.5) \\ 1.08 \\ 268.26 \\ 241.62 \\ 10 \\ = 190.65 \\ \mathbf{EE}(\hat{\pi}_i) \\ 2.69 \\ 428.18 \\ 518.81 \\ \mathbf{EE}(0.5) \\ 1.98 \\ 452.12 \\ 424.10 \end{array}$	naïve 10.05 116.81 489.17 EE_i 3.17 224.32 177.68 55 }, low naïve 76.38 276.08 370.08 EE_i 6.47 482.76 367.96	EE_h 0.49 136.20 133.11 EE_ii 1.58 148.36 159.16 response EE_h 10.38 309.03 312.67 EE_ii 25.30 327.00 362.90	0.03 172.44 252.27 $\mathbf{EE}(0.5)$ 1.54 197.14 175.94 $\mathbf{EE}(\hat{p}_i)$ 9.36 392.52 565.21 $\mathbf{EE}(0.5)$ 1.21 437.43 381.17	4.83 81.00 418.77 EE_i 1.34 115.46 106.13 naïve 29.25 243.54 384.75 EE_i 8.76	0.42 87.76 88.85 EE _ii 0.16 98.80 100.92 EE _h 0.47 246.52 245.33 EE _ii 1.28	0.24 101.29 124.22 $EE(0.5)$ 0.69 107.16 104.66 $EE(\hat{\pi}_i)$ 2.75 277.69 322.10 $EE(0.5)$ 5.33
APRB SE ERSE APRB SE ERSE APRB SE SE ERSE	6.52 83.59 208.65 EE_i 0.40 262.83 198.27 naïve 12.07 195.71 298.42 EE_i 3.54 349.28 266.88	0.21 164.16 163.62 EE.ii 4.70 138.99 156.55 EE_h 0.17 228.94 231.42 EE_ii 2.13 236.87 264.86	2.38 185.59 291.79 EE (0.5) 0.97 223.41 192.12 EE (\hat{p}_i) 0.63 284.94 410.58 EE (0.5) 2.13 316.98 276.74	3.94 170.25 470.12 EE.i 2.23 349.25 298.38 naïve 5.94 320.94 551.18 EE.i 0.20 434.07 388.28	EE_h 0.18 237.36 233.26 EE_ii 0.31 256.67 256.99 T=t=1 EE_h 0.80 346.15 345.64 EE_ii 1.30 382.65 381.93 T=t=10	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.45 \\ 277.13 \\ 379.70 \\ \mathbf{EE}(0.5) \\ 1.28 \\ 309.07 \\ 287.04 \\ 0, \{ \mathbf{Stable} \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.90 \\ 394.39 \\ 469.51 \\ \mathbf{EE}(0.5) \\ 0.40 \\ 411.44 \\ 390.21 \\ 0, \{ \mathbf{Stable} \ \} \\ 0, \{ \mathbf{Stable} \ \} \\ 0, \{ \mathbf{Stable} \ \} \\ 1, \{ \mathbf{Stable} \ \} \\ 1, \{ \mathbf{Stable} \ \} \\ 2, \{ \mathbf{Stable} \ \} \\ 3, \{ \mathbf{Stable} \$	187.31 541.48 EE_i 541.48 393.56 and Vola naïve 29.15 495.78 663.69 EE_i 1.03 946.37 727.75 and Volat	EE.h 0.61 322.77 322.87 EE.ii 7.92 294.63 324.64 tile: Δ_{10} EE.h 1.63 638.08 628.63 EE.ii 8.55 627.62 705.80 tile: Δ_{10}	$\begin{array}{c} \mathbf{EE}(\hat{p}_i) \\ 3.40 \\ 372.89 \\ 571.16 \\ \mathbf{EE}(0.5) \\ 0.46 \\ 441.73 \\ 383.60 \\ = -746.55 \\ \mathbf{EE}(\hat{p}_i) \\ 4.19 \\ 760.43 \\ 1126.96 \\ \mathbf{EE}(0.5) \\ 1.50 \\ 853.08 \\ 752.33 \\ = -746.55 \end{array}$	naïve 13.07 155.28 486.92 EE_i 3.25 303.51 249.91 }, {Simu naïve 15.18 338.93 538.69 EE_i 0.94 484.03 423.63 }, {Simul	EE_h 0.28 203.25 198.49 EE_ii 1.48 219.79 219.83 lated: Δ EE_h 377.16 371.07 EE_ii 2.63 409.02 410.30 ated: Δ_1	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.75 \\ 240.22 \\ 313.99 \\ \mathbf{EE}(0.5) \\ 1.08 \\ 268.26 \\ 241.62 \\ 10 = 190.65 \\ \mathbf{EE}(\hat{\pi}_i) \\ 2.69 \\ 428.18 \\ \mathbf{EE}(0.5) \\ 1.98 \\ 452.12 \\ 424.10 \\ 0 = 190.65 \end{array}$	naïve 10.05 116.81 489.17 EEi 3.17 224.32 177.68 555 }, low naïve 647 482.76 367.96 555 }, higi	EE_h 0.49 136.20 133.11 EE_iii 1.58 148.36 159.16 7 response EE_h 10.38 309.03 312.67 EE_iii 25.30 327.00 362.90 h respons	0.03 172.44 252.27 $\mathbf{EE}(0.5)$ 1.54 197.14 175.94 $\mathbf{EE}(\hat{p}_i)$ 9.36 392.52 565.21 $\mathbf{EE}(0.5)$ 1.21 437.43 381.17 \mathbf{e}	4.83 81.00 418.77 EE_i 1.34 115.46 106.13 naïve 29.25 243.54 384.75 EE_i 8.76 299.40 272.60	0.42 87.76 88.85 EE.ii 0.16 98.80 100.92 EE_h 0.47 246.52 245.33 EE.ii 1.28 271.95 272.98	0.24 101.29 124.22 $EE(0.5)$ 0.69 107.16 104.66 $EE(\hat{\pi}_i)$ 2.75 27.69 322.10 $EE(0.5)$ 5.33 286.94 275.35
APRB SE ERSE APRB SE ERSE APRB SE ERSE	6.52 83.59 208.65 EE.i 0.40 262.83 198.27 naïve 12.07 195.71 298.42 EE.i 3.54 349.28 266.88	0.21 164.16 163.62 EE_ii 4.70 138.99 156.55 EE_h 0.17 228.94 231.42 EE_ii 2.13 236.87 264.86	$\begin{array}{c} 2.38 \\ 185.59 \\ 291.79 \\ \textbf{EE}(0.5) \\ 0.97 \\ 223.41 \\ 192.12 \\ \\ \textbf{EE}(\hat{p}_i) \\ 0.63 \\ 284.94 \\ 410.58 \\ \textbf{EE}(0.5) \\ 2.13 \\ 316.98 \\ 276.74 \\ \\ \textbf{EE}(\hat{p}_i) \\ \end{array}$	3.94 170.25 470.12 EE.i 2.23 349.25 298.38 naïve 5.94 320.94 551.18 EE.i 0.20 434.07 388.28	EE_h 0.18 237.36 233.26 EE_ii 0.31 256.67 256.99 T=t=1 EE_h 0.80 346.15 345.64 EE_ii 1.30 382.65 381.93 T=t=11 EE_h	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.45 \\ 277.13 \\ 379.70 \\ \mathbf{EE}(0.5) \\ 1.28 \\ 309.07 \\ 287.04 \\ 0, \{Stable \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.90 \\ 394.39 \\ 469.51 \\ \mathbf{EE}(0.5) \\ 0.40 \\ 411.44 \\ 390.21 \\ 0, \{Stable \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.40 \\ 0.90 \\ 0.90 \\ 394.39 \\ 469.51 \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.40 \\ 0.10 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.41 \\$	187.31 187.31 541.48 EE.i 4.42 514.48 393.56 and Vola naïve 29.15 495.78 663.69 EE.i 1.03 946.37 727.75 and Volation	EE.h 0.61 322.77 322.87 EE.ii 7.92 294.63 324.64 tile: Δ ₁₀ EE.h 1.63 638.08 628.63 EE.ii 8.55 627.62 705.80 tile: Δ ₁₀ EE.h	$\begin{array}{c} \mathbf{EE}(\hat{p}_i) \\ 3.40 \\ 3.72.89 \\ 571.16 \\ \mathbf{EE}(0.5) \\ 0.46 \\ 441.73 \\ 383.60 \\ = -746.55 \\ \mathbf{EE}(\hat{p}_i) \\ 4.19 \\ 760.43 \\ 1126.96 \\ \mathbf{EE}(0.5) \\ 1.50 \\ 853.08 \\ 752.33 \\ = -746.55 \\ \mathbf{EE}(\hat{p}_i) \\ \end{array}$	naïve 13.07 155.28 486.92 EE_i 3.25 303.51 249.91 }, {Simu naïve 15.18 338.93 538.69 EE_i 0.94 484.03 423.63 }, {Simul naïve	EE_h 0.28 203.25 198.49 EE_ii 1.48 219.79 219.83 lated: Δ EE_h 377.16 371.07 EE_ii 2.63 409.02 410.30 ated: Δ ₁ EE_h	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.75 \\ 240.22 \\ 313.99 \\ \mathbf{EE}(0.5) \\ 1.08 \\ 268.26 \\ 241.62 \\ 0.0 = 190.65 \\ \mathbf{EE}(\hat{\pi}_i) \\ 2.69 \\ 428.18 \\ 518.81 \\ \mathbf{EE}(0.5) \\ 1.98 \\ 452.12 \\ 424.10 \\ 0.0 = 190.65 \\ \mathbf{EE}(\hat{\pi}_i) \\ \end{array}$	naïve 10.05 116.81 489.17 EE_i 3.17 224.32 177.68 55 }, low 76.38 276.08 370.08 EE_i 6.47 482.76 367.96 55 }, high naïve	EE_h 0.49 136.20 133.11 EE_ii 1.58 148.36 159.16 7 response EE_h 10.38 309.03 312.67 EE_ii 25.30 327.00 362.90 h respons EE_h	0.03 172.44 252.27 $\mathbf{EE}(0.5)$ 1.54 197.14 175.94 $\mathbf{EE}(\hat{p_i})$ 9.36 392.52 565.21 $\mathbf{EE}(0.5)$ 1.21 437.43 381.17 \mathbf{e} $\mathbf{EE}(\hat{p_i})$	4.83 81.00 418.77 EE.i 11.346 106.13 naïve 29.25 243.54 384.75 EE.i 8.76 299.40 272.60	0.42 87.76 88.85 EE_ii 0.16 98.80 100.92 EE_h 0.47 246.52 245.33 EE_ii 1.28 271.95 272.98	0.24 101.29 124.22 EE(0.5) 0.69 107.16 104.66 2.75 277.69 322.10 EE(0.5) 5.33 286.94 275.35 EE($\hat{\pi}_i$)
APRB SE ERSE APRB SE ERSE APRB SE ERSE APRB SE ERSE	6.52 83.59 208.65 EE_i 0.40 262.83 198.27 naïve 12.07 195.71 298.42 EE_i 3.54 349.28 266.88 naïve 6.68	0.21 164.16 163.62 EE_ii 4.70 138.99 156.55 EE_h 0.17 228.94 231.42 EE_ii 2.13 236.87 264.86	$\begin{array}{c} 2.38 \\ 185.59 \\ 291.79 \\ \textbf{EE}(0.5) \\ 0.97 \\ 223.41 \\ 192.12 \\ \hline 0.63 \\ 284.94 \\ 410.58 \\ \textbf{EE}(0.5) \\ 2.13 \\ 316.98 \\ 276.74 \\ \hline \textbf{EE}(\hat{p}_i) \\ 0.61 \\ \end{array}$	3.94 170.25 470.12 EE.i. 2.23 349.25 298.38 naïve 5.94 320.94 551.18 EE.i. 0.20 434.07 388.28 naïve	EE.h 0.18 237.36 233.26 EE.ii 0.31 256.67 256.99 T=t=1 EE.h 0.80 346.15 345.64 EE.ii 1.30 382.65 381.93 T=t=10 EE.h 0.05	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.45 \\ 277.13 \\ 379.70 \\ \mathbf{EE}(0.5) \\ 1.28 \\ 309.07 \\ 287.04 \\ 0, \{\text{Stable} \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.90 \\ 394.39 \\ 469.51 \\ \mathbf{EE}(0.5) \\ 0.40 \\ 411.44 \\ 390.21 \\ 0, \{\text{Stable} \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.11 \\ \end{array}$	naïve 23.50 187.31 541.48 EE.i 4.42 514.48 393.56 and Vola naïve 29.15 495.78 663.69 EE.i 1.03 946.37 727.75 and Volar naïve 27.21	EE_h 0.61 322.77 EE_ii 7.92 294.63 324.64 tile: Δ ₁₀ EE_h 1.63 638.08 628.63 EE_ii 8.55 627.62 705.80 tile: Δ ₁₀ EE_h 0.95	$\begin{array}{c} \mathbf{EE}(\hat{p}_{i}) \\ 3.40 \\ 3.72.89 \\ 571.16 \\ \mathbf{EE}(0.5) \\ 0.46 \\ 441.73 \\ 383.60 \\ = -746.55 \\ \mathbf{EE}(\hat{p}_{i}) \\ 4.19 \\ 760.43 \\ 1126.96 \\ \mathbf{EE}(0.5) \\ 1.50 \\ 853.08 \\ 752.33 \\ = -746.55 \\ \mathbf{EE}(\hat{p}_{i}) \\ 0.97 \end{array}$	naïve 13.07 155.28 486.92 EE.i 3.25 303.51 249.91 }, {Simul naïve 15.18 338.93 538.93 EE.i 0.94 484.03 423.63 }, {Simul naïve 15.56	EE_h 0.28 203.25 198.49 EE_ii 1.48 219.79 219.83 EE_h 1.31 377.16 371.07 EE_ii 2.63 409.02 410.30 ated: Δ_1 EE_h 1.31	$\mathbf{EE}(\hat{\pi}_i)$ 0.75 240.22 313.99 $\mathbf{EE}(0.5)$ 1.08 268.26 241.62 241.62 26.93 428.18 518.81 $\mathbf{EE}(0.5)$ 424.40 0 = 190.65 $\mathbf{EE}(\hat{\pi}_i)$ 6 = $\mathbf{EE}(\hat{\pi}_i)$ 1.98 452.12 424.10 0 = 190.65 $\mathbf{EE}(\hat{\pi}_i)$ 0 = $\mathbf{EE}(\hat{\pi}_i)$ 0.97	naïve 10.05 116.81 489.17 EE.i 3.17 224.32 177.68 55 }, low naïve 76.38 276.08 370.08 EE.i 6.47 482.76 367.6 55 }, high naïve 34.81	EE_h 0.49 136.20 136.21 1.58 148.36 159.16 10.38 309.03 312.67 EE_h 25.30 327.00 362.90 h response EE_h 1.28	0.03 172.44 252.27 $\mathbf{EE}(0.5)$ 1.54 197.14 175.94 $\mathbf{EE}(\hat{p}_i)$ 9.36 392.52 565.21 $\mathbf{EE}(0.5)$ 1.21 437.43 381.17 \mathbf{e} $\mathbf{EE}(\hat{p}_i)$ 5.76	4.83 81.00 418.77 EE.i 1.34 115.46 106.13 naïve 29.25 243.54 384.75 EE.i 8.76 299.40 272.60 naïve 16.57	0.42 87.76 88.85 EE_ii 0.16 98.80 100.92 EE_h 0.47 246.52 245.33 EE_ii 1.28 271.95 272.98 EE_h 0.77	0.24 101.29 124.22 EE(0.5) 0.69 107.16 104.66 277.69 322.10 EE($\hat{\pi}_i$) 532.10 EE(5.5) 533.2 286.94 275.35
APRB SE ERSE APRB SE ERSE APRB SE ERSE APRB SE ERSE APRB SE ERSE	6.52 83.59 208.65 EE.i 0.40 262.83 198.27 naïve 12.07 195.71 298.42 EE.i 3.54 349.28 266.88 naïve 6.68 85.42	0.21 164.16 163.62 EE.ii 4.70 138.99 156.55 EE.h 0.17 228.94 231.42 EE.ii 2.13 236.87 264.86 EE.h 0.45	$\begin{array}{c} 2.38\\ 185.59\\ 291.79\\ \textbf{EE}(0.5)\\ 0.97\\ 223.41\\ 192.12\\ \\ \textbf{EE}(\hat{p_i})\\ 0.63\\ 284.94\\ 410.58\\ \textbf{EE}(0.5)\\ 2.13\\ 316.98\\ 276.74\\ \\ \textbf{EE}(\hat{p_i})\\ 0.61\\ 205.45\\ \end{array}$	3.94 170.25 470.12 EE_i 2.23 349.25 298.38 naïve 5.94 320.94 551.18 EE_i 0.20 434.07 388.28 naïve 4.02 163.67	EE_h 0.18 237.36 233.26 EE_ii 0.31 256.67 256.99 T=t=1 EE_h 0.80 346.15 345.64 EE_ii 1.30 382.65 381.93 T=t=16 EE_h 0.055	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.45 \\ 277.13 \\ 379.70 \\ \mathbf{EE}(0.5) \\ 1.28 \\ 309.07 \\ 287.04 \\ 0, \{Stable\ \mathbf{EE}(\hat{\pi}_i) \\ 0.90 \\ 394.39 \\ 469.51 \\ \mathbf{EE}(0.5) \\ 0.40 \\ 411.44 \\ 390.21 \\ 0, \{Stable\ \mathbf{EE}(\hat{\pi}_i) \\ 0.91 \\ 0.40 \\ 0.11 \\ 0.11 \\ 0.11 \end{array}$	23.50 187.31 541.48 EE_i 4.42 514.48 393.56 and Vola naïve 29.15 495.78 663.69 EE_i 1.03 946.37 727.75 and Volat naïve 27.21 237.99	EE.h 0.61 322.77 EE.ii 7.92 294.63 324.64 tile: $Δ_{10}$ EE.h 1.63 638.08 628.63 EE.ii 8.55 627.62 705.80 cile: $Δ_{10}$ EE.h 0.95 410.78	$\begin{array}{c} \mathbf{EE}(\hat{p}_i) \\ 3.40 \\ 372.89 \\ 571.16 \\ \mathbf{EE}(0.5) \\ 0.46 \\ 441.73 \\ 383.60 \\ = -746.55 \\ \mathbf{EE}(\hat{p}_i) \\ 419 \\ 760.43 \\ 1126.96 \\ \mathbf{EE}(0.5) \\ 1.50 \\ 853.08 \\ = -746.55 \\ \mathbf{EE}(\hat{p}_i) \\ 0.97 \\ 516.19 \\ 0.97 \\ $	naïve 13.07 155.28 486.92 EE_i 3.25 3.25 3.351 249.91 }, {Simu naïve 15.18 338.93 538.69 EE_i 0.94 484.03 423.63 }, {Simul naïve 15.56 190.89	EE_h 0.28 203.25 198.49 EE_ii 1.48 219.79 219.83 lated: Δ EE_h 1.31 377.16 377.16 2.63 409.02 410.30 ated: Δ ₁ EE_h 1.31 249.02	$\mathbf{EE}(\hat{\pi}_i)$ 0.75 240.22 313.99 $\mathbf{EE}(0.5)$ 1.08 268.26 241.62 $\mathbf{e}_{10} = 190.65$ $\mathbf{EE}(\hat{\pi}_i)$ 2.69 428.18 518.81 $\mathbf{EE}(0.5)$ 1.98 452.12 424.10 $\mathbf{e}_{10} = 190.65$ $\mathbf{EE}(\hat{\pi}_i)$ 0.97 271.43	naïve 10.05 116.81 1489.17 EE_i 3.17 224.32 177.68 276.08 370.08 EE_i 6.47 482.76 367.96 55 }, higi naïve 34.81 147.02	EE_h 0.49 136.20 133.11 EE_ii 1.58 148.36 159.16 10.38 309.03 312.67 EE_ii 25.30 327.00 362.90 h response EE_h 1.28 185.46	0.03 172.44 252.27 $EE(0.5)$ 1.54 197.14 175.94 9 $EE(\hat{p_i})$ 9.36 392.52 565.21 $EE(0.5)$ 1.21 437.43 381.17 e $EE(\hat{p_i})$ 6	4.83 81.00 418.77 EE_i 1.34 115.46 106.13 naïve 29.25 243.54 384.75 EE_i 8.76 299.40 272.60 naïve 16.57 124.67	0.42 87.76 88.85 EE_ii 0.16 98.80 100.92 EE_h 0.47 246.52 245.33 EE_ii 1.28 271.95 272.98 EE_h 0.77 135.03	0.24 101.29 124.22 EE(0.5) 0.69 107.16 104.66 EE($\hat{\pi}_i$) 2.75 277.69 322.10 EE(0.5) 5.33 286.94 275.35 EE($\hat{\pi}_i$) 2.73 2.75 2.7
APRB SE ERSE APRB SE ERSE APRB SE ERSE APRB SE ERSE	6.52 83.59 208.65 EE.i 0.40 262.83 198.27 naïve 12.07 195.71 298.42 EE.i 3.54 349.28 266.88 naïve 6.68 85.42 208.47	0.21 164.16 163.62 EE_ii 4.70 138.99 156.55 EE_h 0.17 228.94 231.42 EE_ii 2.13 236.87 264.86 EE_h 0.45 167.13 167.13	$\begin{array}{c} 2.38\\ 185.59\\ 291.79\\ \textbf{EE}(0.5)\\ 0.97\\ 223.41\\ 192.12\\ \textbf{EE}(\hat{p}_i)\\ 0.63\\ 284.94\\ 410.58\\ \textbf{EE}(0.5)\\ 2.13\\ 316.98\\ 276.74\\ \\ \textbf{EE}(\hat{p}_i)\\ 0.61\\ 205.45\\ 328.39\\ \end{array}$	3.94 170.25 470.12 EE.i 2.23 349.25 298.38 naïve 5.94 320.94 551.18 EE.i 0.20 434.07 388.28 naïve 4.02 163.67 470.11	EE_h 0.18 237.36 233.26 EE_ii 0.31 256.67 256.99 T=t=1 EE_h 0.80 346.15 345.64 EE_ii 1.30 382.65 381.93 T=t=10 EE_h 0.05 228.09 234.15	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.45 \\ 277.13 \\ 379.70 \\ \mathbf{EE}(0.5) \\ 1.28 \\ 309.07 \\ 287.04 \\ 0.90 \\ 394.39 \\ 469.51 \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.90 \\ 394.39 \\ 469.51 \\ \mathbf{EE}(0.5) \\ 0.10 \\ 1.44 \\ 390.21 \\ 0.5 \\ (Stable: \mathbf{EE}(\hat{\pi}_i)) \\ 0.11 \\ 260.73 \\ 316.56 \end{array}$	naïve 23.50 187.31 541.48 EE_i 4.42 514.48 393.56 and Vola naïve 29.15 495.78 EE_i 1.03 946.37 727.75 and Volat naïve 27.21 237.99 502.46	EE_h 0.61 322.77 EE_ii 7.92 294.63 324.64 tile: Δ ₁₀ EE_h 1.63 638.08 628.63 EE_ii 8.55 627.62 705.80 cille: Δ ₁₀ EE_h 0.95 410.78	$\begin{array}{c} \mathbf{EE}(\hat{p}_i) \\ 3.40 \\ 3.2.89 \\ 571.16 \\ \mathbf{EE}(0.5) \\ 0.46 \\ 441.73 \\ 383.60 \\ = -746.55 \\ \mathbf{EE}(\hat{p}_i) \\ 4.19 \\ 760.43 \\ 1126.96 \\ \mathbf{EE}(0.5) \\ 1.50 \\ 853.08 \\ 752.33 \\ = -746.55 \\ \mathbf{EE}(\hat{p}_i) \\ 0.97 \\ 516.19 \\ 781.56 \end{array}$	naïve 13.07 155.28 486.92 EE_i 3.25 303.51 249.91 }, {Simu naïve 15.18 338.93 538.69 EE_i 0.94 484.03 423.63 }, {Simul naïve 15.56 190.89 467.36	EE_h 0.28 203.25 198.49 EE_ii 1.48 219.79 219.83 lated: Δ EE_h 1.31 377.16 377.107 EE_ii 2.63 409.02 410.30 ated: Δ ₁ EE_h 1.31 249.02 245.18	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.75 \\ 240.22 \\ 313.99 \\ \mathbf{EE}(0.5) \\ 1.08 \\ 268.26 \\ 241.62 \\ 0.0 = 190.65 \\ \mathbf{EE}(\hat{\pi}_i) \\ 2.69 \\ 428.18 \\ \mathbf{EE}(0.5) \\ 1.98 \\ 428.18 \\ \mathbf{EE}(0.5) \\ 0.0 = 190.65 \\ \mathbf{EE}(\hat{\pi}_i) \\ 31.81 \\ \mathbf{EE}(0.5) \\ 0.00 \\$	naïve 10.05 116.81 489.17 EE_i 3.17 224.32 177.68 55 }, low naïve 76.38 276.08 EE_i 6.47 482.76 367.96 55 }, higi naïve 34.81 147.02 279.68	EE_h 0.49 136.20 133.11 EE_ii 1.58 148.36 159.16 7 response EE_h 10.38 309.03 312.67 EE_ii 25.30 327.00 362.90 h response EE_h 1.28 185.46 179.69	0.03 172.44 252.27 $EE(0.5)$ 1.54 197.14 175.94 198.25 199.25 $199.$	4.83 81.00 418.77 EE.i 1.34 115.46 106.13 naïve 29.25 243.54 384.75 EE.i 8.76 299.40 272.60 naïve 16.57 124.67 338.74	0.42 87.76 88.85 EE_ii 0.16 98.80 100.92 EE_h 0.47 246.52 245.33 EE_ii 1.28 271.95 272.98 EE_h 0.77 135.03 134.15	$\begin{array}{c} 0.24\\ 101.29\\ 124.22\\ \textbf{EE}(0.5)\\ 0.69\\ 107.16\\ 104.66\\ \\ \textbf{EE}(\pi_i)\\ 2.75\\ 277.69\\ 322.10\\ \textbf{EE}(0.5)\\ 5.33\\ 225.35\\ \\ \textbf{EE}(\pi_i)\\ 2.75\\ 32.10\\ \textbf{EE}(0.5)\\ 1.33\\ 2.694\\ 2.75.35\\ \\ \textbf{EE}(\pi_i)\\ 1.47.62\\ 161.24\\ 1.49\\$
APRB SE ERSE APRB SE ERSE APRB SE ERSE APRB SE ERSE ERSE	6.52 83.59 208.65 EE.i 0.40 262.83 198.27 12.07 195.71 298.42 EE.i 3.54 349.28 266.88 85.42 208.47 EE.i	0.21 164.16 163.62 EE_ii 4.70 138.99 156.55 EE_h 0.17 228.94 231.42 EE_ii 2.13 236.87 264.86 EE_h 0.45 167.13 163.44 EE_ii	$\begin{array}{c} 2.38\\ 185.59\\ 291.79\\ 291.79\\ 223.41\\ 192.12\\ \hline \\ \mathbf{EE}(\hat{p}_i)\\ 0.63\\ 284.94\\ 410.58\\ \mathbf{EE}(0.5)\\ 2.13\\ 316.98\\ 276.74\\ \hline \\ \mathbf{EE}(\hat{p}_i)\\ 0.61\\ 205.45\\ 328.39\\ \mathbf{EE}(0.5)\\ \end{array}$	3.94 170.25 470.12 EE_i 2.23 349.25 298.38 naïve 5.94 320.94 551.18 EE_i 0.20 434.07 388.28 naïve 4.02 163.67 470.11 EE_i	EE_h 0.18 237.36 233.26 EE_ii 0.31 256.67 256.99 T=t=1 EE_h 0.80 346.15 345.64 EE_ii 1.30 382.65 381.93 T=t=10 EE_h 0.05 228.09 234.15 EE_ii	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.45 \\ 277.13 \\ 379.70 \\ \mathbf{EE}(0.5) \\ 1.28 \\ 399.07 \\ 287.04 \\ 0, \{ \mathbf{Stable} \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.90 \\ 394.39 \\ 469.51 \\ \mathbf{EE}(0.5) \\ 0.40 \\ 411.44 \\ 390.21 \\ 0, \{ \mathbf{Stable} \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.11 \\ 260.73 \\ 316.56 \\ \mathbf{EE}(0.5) \\ \end{array}$	naïve 23.50 187.31 541.48 EE_i 4.42 514.48 393.56 and Volae naïve 29.15 495.78 663.69 EE_i 1.03 946.37 727.75 and Volae naïve 27.21 237.99 502.46 EE_i	EE.h 0.61 322.77 322.87 EE.ii 7.92 294.63 324.64 tile: Δ ₁₀ EE.h 1.63 638.08 628.63 EE.ii 8.55 627.62 705.80 tile: Δ ₁₀ EE.h 0.95 410.78 402.09 EE.ii	$\begin{array}{c} \mathbf{EE}(\hat{p}_i) \\ 3.40 \\ 3.2.89 \\ 571.16 \\ \mathbf{EE}(0.5) \\ 0.46 \\ 441.73 \\ 383.60 \\ = -746.55 \\ \mathbf{EE}(\hat{p}_i) \\ 4.19 \\ 760.43 \\ 1126.96 \\ \mathbf{EE}(0.5) \\ 1.50 \\ 853.08 \\ 752.33 \\ = -746.55 \\ \mathbf{EE}(\hat{p}_i) \\ 0.97 \\ 516.19 \\ 9.81.56 \\ \mathbf{EE}(0.5) \\ 0.97 \\ 516.19 \\ 781.56 \\ \mathbf{EE}(0.5) \\ 0.97 \\ 516.19 \\ 781.56 \\ \mathbf{EE}(0.5) \\ \end{array}$	naïve 13.07 155.28 486.92 EE_i 3.25 303.51 249.91 }, {Simu naïve 15.18 338.93 538.69 EE_i 0.94 484.03 423.63 }, {Simul naïve 15.56 190.89 467.36 EE_i	EE_h 0.28 203.25 198.49 EE_ii 1.48 219.79 219.83 lated: Δ EE_h 1.31 377.16 371.07 EE_ii 2.63 409.02 410.30 ated: Δ ₁ EE_h 1.31 249.02 245.18 EE_ii	$\mathbf{EE}(\hat{\pi}_i)$ 0.75 240.22 313.99 $\mathbf{EE}(0.5)$ 8.268.26 241.62 10 = 190.65 $\mathbf{EE}(\hat{\pi}_i)$ 2.69 428.18 $\mathbf{EE}(0.5)$ 1.98 428.18 $\mathbf{EE}(0.5)$ 1.98 424.10 0 = 190.65 $\mathbf{EE}(\hat{\pi}_i)$ 7.7 424.10 0.97 271.43 334.27 $\mathbf{EE}(0.5)$	naïve 10.05 116.81 1489.17 EE_i 3.17 224.32 177.68 55 }, low naïve 76.38 276.08 370.08 EE_i 6.47 482.76 367.96 55 }, log naïve 34.81 147.02 279.68 EE_i	EE_h 0.49 136.20 133.11 EE_ii 1.58 148.36 159.16 7 response EE_h 10.38 309.03 312.67 EE_ii 25.30 327.00 362.90 h response EE_h 1.28 185.46 179.69 EE_ii	0.03 172.44 252.27 $EE(0.5)$ 1.54 197.14 175.94 $EE(\hat{p}_i)$ 9.36 392.52 565.21 $EE(0.5)$ 1.21 437.43 381.17 e $EE(\hat{p}_i)$ 5.76 241.91 343.95 $EE(0.5)$	4.83 81.00 418.77 EE.i 1.34 115.46 106.13 naïve 29.25 243.54 384.75 EE.i 8.76 299.40 272.60 naïve 16.57 124.67 338.74 EE.i	0.42 87.76 88.85 EE_ii 0.16 98.80 100.92 EE_h 0.47 246.52 245.33 EE_ii 1.28 271.95 272.98 EE_h 0.77 135.03 134.15 EE_ii	0.24 101.29 124.22 $EE(0.5)$ 0.69 107.16 104.66 $EE(\hat{\pi}_t)$ 2.75 277.69 322.10 $EE(0.5)$ 5.33 286.94 275.35 273 147.62 161.24 $EE(0.5)$
APRB SE ERSE APRB SE ERSE APRB SE ERSE APRB SE ERSE APRB SE ERSE	6.52 83.59 208.65 EE.i 0.40 262.83 198.27 naïve 12.07 195.71 298.42 EE.i 3.54 349.28 266.88 naïve 6.68 85.42 208.47 EE.i 2.78	0.21 164.16 163.62 EE_ii 4.70 138.99 156.55 EE_h 0.17 228.94 231.42 EE_ii 2.13 236.87 264.86 EE_h 0.45 167.13 163.44 EE_ii 3.27	2.38 185.59 291.79 EE(0.5) 0.97 223.41 192.12 EE(\hat{p}_i) 328.494 440.58 EE(0.5) 2.13 316.98 276.74 EE(\hat{p}_i) 0.61 205.45 328.39 EE(0.5)	3.94 170.25 470.12 EE.i 2.23 349.25 298.38 naïve 5.94 320.94 551.18 EE.i 0.20 434.07 388.28 naïve 4.02 163.67 470.11 EE.i 1.23	EE_h 0.18 237.36 233.26 EE_ii 0.31 256.67 256.99 T=t=1 EE_h 0.80 346.15 345.64 EE_ii 1.30 382.65 381.93 T=t=10 EE_h 0.055 228.09 234.15 EE_ii 0.23	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.45 \\ 277.13 \\ 379.70 \\ \mathbf{EE}(0.5) \\ 1.28 \\ 309.07 \\ 287.04 \\ 0.90 \\ 394.39 \\ 469.51 \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.90 \\ 394.39 \\ 469.51 \\ \mathbf{EE}(0.5) \\ 0.40 \\ 411.44 \\ 390.21 \\ 0.\{\text{Stable} \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.11 \\ 260.73 \\ 316.56 \\ \mathbf{EE}(0.5) \\ 0.50 \\ 0.50 \\ \mathbf{EE}(0.5) \\ 0.50 \\ 0.50 \\ \mathbf{EE}(0.5) \\ 0.50 \\ 0$	23.50 187.31 1541.48 EE.i 4.42 514.48 393.56 and Vola maïve 29.15 495.78 663.69 EE.i 1.03 946.37 727.75 and Volat naïve 27.21 237.99 502.46 EE.i 8.12	EE.h 0.61 322.77 322.87 EE.ii 7.92 294.63 324.64 tile: $Δ_{10}$ EE.h 1.63 638.08 628.63 EE.ii 8.55 627.62 705.80 cile: $Δ_{10}$ EE.h 0.95 410.78 402.09 EE.ii 6.79	$\begin{array}{c} \mathbf{EE}(\hat{p_i}) \\ 3.40 \\ 372.89 \\ 571.16 \\ \mathbf{EE}(0.5) \\ 0.46 \\ 441.73 \\ 383.60 \\ \mathbf{EE}(\hat{p_i}) \\ 4.19 \\ 760.43 \\ 1126.96 \\ \mathbf{EE}(\hat{p_i}) \\ 1.50 \\ 853.08 \\ 752.33 \\ \mathbf{EE}(\hat{p_i}) \\ 0.97 \\ 516.19 \\ 781.56 \\ \mathbf{EE}(0.5) \\ 3.26 \\ \mathbf{EE}(0.5) \\ \mathbf{EE}(0.5) \\ 3.26 \\ \mathbf{EE}(0.5) $	naïve 13.07 155.28 486.92 EE.i 3.25 303.51 249.91 }, {Simul naïve 15.18 484.03 423.63 }, {Simul naïve 15.56 190.89 467.36 EE.i 1.97	EE_h 0.28 203.25 198.49 EE_ii 1.48 219.79 219.83 lated: Δ EE_h 1.31 377.16 377.16 371.07 EE_ii 2.63 409.02 410.30 ated: Δ 1.31 EE_h 1.31 249.02 245.18 EE_ii 1.42	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.75 \\ 240.22 \\ 313.99 \\ \mathbf{EE}(0.5) \\ 1.08 \\ 268.26 \\ 241.62 \\ 10.e 190.65 \\ \mathbf{EE}(\hat{\pi}_i) \\ 2.69 \\ 428.18 \\ 518.81 \\ \mathbf{EE}(0.5) \\ 1.98 \\ 452.12 \\ 424.10 \\ 0 \\ 0 \\ 1.90 \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.97 \\ 271.43 \\ 334.27 \\ \mathbf{EE}(0.5) \\ 0.19 \\ 0.97 \\$	naïve 10.05 116.81 489.17 EE.i 3.17 224.32 177.68 555 }, low 76.38 276.08 370.08 EE.i 6.47 482.76 367.96 55 }, higi naïve 279.68 EE.i 147.02 279.68 EE.i 13.66	EE_h 0.49 136.20 133.11 EE_ii 1.58 148.36 159.16 7 response EE_h 10.38 309.03 312.67 EE_ii 25.30 362.90 h response EE_h 1.28 185.46 179.69 EE_iii 3.54	0.03 172.44 252.27 $EE(0.5)$ 1.54 197.14 175.94 2 $EE(\hat{p_i})$ 9.36 392.52 $EE(0.5)$ 1.21 437.43 381.17 e $EE(\hat{p_i})$ 241.91 241.91 243.95 240.50	4.83 81.00 418.77 EE.i 1.34 115.46 106.13 maïve 29.25 243.54 384.75 EE.i 8.76 299.40 272.60 maïve 16.57 124.67 338.74 EE.i 4.75	0.42 87.76 88.85 EE_ii 0.16 98.80 100.92 EE_h 0.47 246.52 245.33 EE_ii 1.28 271.95 272.98 EE_h 0.77 135.03 134.15 EE_ii 3.22	$\begin{array}{c} 0.24 \\ 101.29 \\ 124.22 \\ \textbf{EE}(0.5) \\ 0.69 \\ 107.16 \\ 104.66 \\ \hline \\ \textbf{EE}(\hat{\pi}_i) \\ 2.75 \\ 277.69 \\ 322.10 \\ \textbf{EE}(0.5) \\ \hline 5.33 \\ 286.94 \\ 275.35 \\ \hline \\ \textbf{275.35} \\ 147.62 \\ 161.24 \\ \textbf{EE}(0.5) \\ \hline 3.31 \\ \end{array}$
APRB SE ERSE APRB SE ERSE APRB SE ERSE APRB SE ERSE APRB SE ERSE	6.52 83.59 208.65 EE.i 0.40 262.83 198.27 12.07 195.71 298.42 EE.i 3.54 349.28 266.88 85.42 208.47 EE.i	0.21 164.16 163.62 EE_ii 4.70 138.99 156.55 EE_h 0.17 228.94 231.42 EE_ii 2.13 236.87 264.86 EE_h 0.45 167.13 163.44 EE_ii	$\begin{array}{c} 2.38\\ 185.59\\ 291.79\\ 291.79\\ 223.41\\ 192.12\\ \hline \\ \mathbf{EE}(\hat{p}_i)\\ 0.63\\ 284.94\\ 410.58\\ \mathbf{EE}(0.5)\\ 2.13\\ 316.98\\ 276.74\\ \hline \\ \mathbf{EE}(\hat{p}_i)\\ 0.61\\ 205.45\\ 328.39\\ \mathbf{EE}(0.5)\\ \end{array}$	3.94 170.25 470.12 EE_i 2.23 349.25 298.38 naïve 5.94 320.94 551.18 EE_i 0.20 434.07 388.28 naïve 4.02 163.67 470.11 EE_i	EE_h 0.18 237.36 233.26 EE_ii 0.31 256.67 256.99 T=t=1 EE_h 0.80 346.15 345.64 EE_ii 1.30 382.65 381.93 T=t=10 EE_h 0.05 228.09 234.15 EE_ii	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.45 \\ 277.13 \\ 379.70 \\ \mathbf{EE}(0.5) \\ 1.28 \\ 399.07 \\ 287.04 \\ 0, \{ \mathbf{Stable} \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.90 \\ 394.39 \\ 469.51 \\ \mathbf{EE}(0.5) \\ 0.40 \\ 411.44 \\ 390.21 \\ 0, \{ \mathbf{Stable} \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.11 \\ 260.73 \\ 316.56 \\ \mathbf{EE}(0.5) \\ \end{array}$	naïve 23.50 187.31 541.48 EE_i 4.42 514.48 393.56 and Volae naïve 29.15 495.78 663.69 EE_i 1.03 946.37 727.75 and Volae naïve 27.21 237.99 502.46 EE_i	EE.h 0.61 322.77 322.87 EE.ii 7.92 294.63 324.64 tile: Δ ₁₀ EE.h 1.63 638.08 628.63 EE.ii 8.55 627.62 705.80 tile: Δ ₁₀ EE.h 0.95 410.78 402.09 EE.ii	$\begin{array}{c} \mathbf{EE}(\hat{p}_i) \\ 3.40 \\ 3.2.89 \\ 571.16 \\ \mathbf{EE}(0.5) \\ 0.46 \\ 441.73 \\ 383.60 \\ = -746.55 \\ \mathbf{EE}(\hat{p}_i) \\ 4.19 \\ 760.43 \\ 1126.96 \\ \mathbf{EE}(0.5) \\ 1.50 \\ 853.08 \\ 752.33 \\ = -746.55 \\ \mathbf{EE}(\hat{p}_i) \\ 0.97 \\ 516.19 \\ 9.81.56 \\ \mathbf{EE}(0.5) \\ 0.97 \\ 516.19 \\ 781.56 \\ \mathbf{EE}(0.5) \\ 0.97 \\ 516.19 \\ 781.56 \\ \mathbf{EE}(0.5) \\ \end{array}$	naïve 13.07 155.28 486.92 EE_i 3.25 303.51 249.91 }, {Simu naïve 15.18 338.93 538.69 EE_i 0.94 484.03 423.63 }, {Simul naïve 15.56 190.89 467.36 EE_i	EE_h 0.28 203.25 198.49 EE_ii 1.48 219.79 219.83 lated: Δ EE_h 1.31 377.16 371.07 EE_ii 2.63 409.02 410.30 ated: Δ ₁ EE_h 1.31 249.02 245.18 EE_ii	$\mathbf{EE}(\hat{\pi}_i)$ 0.75 240.22 313.99 $\mathbf{EE}(0.5)$ 8.268.26 241.62 10 = 190.65 $\mathbf{EE}(\hat{\pi}_i)$ 2.69 428.18 $\mathbf{EE}(0.5)$ 1.98 428.18 $\mathbf{EE}(0.5)$ 1.98 424.10 0 = 190.65 $\mathbf{EE}(\hat{\pi}_i)$ 7.7 424.10 0.97 271.43 334.27 $\mathbf{EE}(0.5)$	naïve 10.05 116.81 1489.17 EE_i 3.17 224.32 177.68 55 }, low naïve 76.38 276.08 370.08 EE_i 6.47 482.76 367.96 55 }, log naïve 34.81 147.02 279.68 EE_i	EE_h 0.49 136.20 133.11 EE_ii 1.58 148.36 159.16 7 response EE_h 10.38 309.03 312.67 EE_ii 25.30 327.00 362.90 h response EE_h 1.28 185.46 179.69 EE_ii	0.03 172.44 252.27 $EE(0.5)$ 1.54 197.14 175.94 $EE(\hat{p}_i)$ 9.36 392.52 565.21 $EE(0.5)$ 1.21 437.43 381.17 e $EE(\hat{p}_i)$ 5.76 241.91 343.95 $EE(0.5)$	4.83 81.00 418.77 EE.i 1.34 115.46 106.13 naïve 29.25 243.54 384.75 EE.i 8.76 299.40 272.60 naïve 16.57 124.67 338.74 EE.i	0.42 87.76 88.85 EE_ii 0.16 98.80 100.92 EE_h 0.47 246.52 245.33 EE_ii 1.28 271.95 272.98 EE_h 0.77 135.03 134.15 EE_ii	0.24 101.29 124.22 $EE(0.5)$ 0.69 107.16 104.66 $EE(\hat{\pi}_t)$ 2.75 277.69 322.10 $EE(0.5)$ 5.33 286.94 275.35 273 147.62 161.24 $EE(0.5)$

Table E.8: Results under model (2.41), by response and correlation. Population: stable

										10 + 1		746 22 10	0.000	and the lease one of the second areas	, commo									
	naïve	\mathbf{EE}_{h}	$\mathbf{EE}(\hat{p_i})$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE_ii	EE(0.5)]	$\Xi \mathbf{E}(\hat{p}_{i2})$		EE_ii E	EE(0.5)	naïve	ų.	$\mathbf{EE}(\hat{\pi}_i)$	EE.i	EE_ii]	EE(0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE.ii	EE(0.5)
APRB		0.17	68.6	15.53	28.37	2.66	20.72	5.41	37.76	7.82	58.85	36.67	63.26	47.87	62.81	0.95	0.96	19.68	4.25	9.97	23.70	10.23	23.99	17.18
SE		39.76	54.61	59.35	54.03	56.65	56.67	61.71	55.52	58.80	58.47	58.82	58.77	58.34	111.31	87.92	103.62	107.77	100.92	105.69	105.46	106.18	104.83	105.99
ERSE	_	40.47	67.65	47.12	54.14	50.01	68.33	48.15	54.26	50.80	57.54	46.04	50.52	47.94	683.40	84.91	114.53	90.27	94.21	93.67	101.19	85.12	89.53	88.06
										T=10, t=4,	$\Delta_4 = -74$	46.55, lo	w respons	low response and high correlation	h correla	tion.								
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE_ii E	EE(0.5)	naïve	EE,	$\mathbf{EE}(\hat{\pi}_i)$	EE.i	EE_ii]	EE(0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE	EE_ii	EE(0.5)
APRB	⊢	0.05	l	15.93	28.17	1	20.74	5.62	37.68	l		36.49	63.34	47.85	63.54	1.20	29.0	19.71	4.47	9.84	24.26	10.49	24.51	17.59
SE		36.70		52.73	47.01	50.14	48.81	53.35	47.99	50.75		51.37	51.64	51.14	102.84	79.72	93.43	99.76	91.44	95.51	96.95	98.04	96.19	19.76
ERSE	-	37.09		43.19	49.46	45.82	62.91	44.10	49.52	46.51	52.42	41.91	46.00	43.65	680.57	83.25	113.49	88.60	92.50	95.06	99.70	83.35	87.81	86.35
										T=10, t=4,	$\Delta_4 = -74$	746.55, hi	gh respor	high response and low correlation	w correla	tion.								
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE-ii E	EE(0.5)	naïve	EE,	$\mathbf{EE}(\hat{\pi}_i)$	EE.i	EE_ii]	EE(0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE_ii	EE(0.5)
APRB	51.39	0.15	2.93	8.83	7.92	2.26	7.24	3.94	11.56	2.30	20.24	12.71	21.09	16.94		0.14	0.10	9.21	1.07	4.14	10.05	3.81	9.93	7.25
SE		19.37	23.94	28.61	22.19	25.96	23.69	28.10	22.13	25.58		23.20	21.46	22.28	51.14	54.74	64.40	69.62	63.04	29.99	62.43	65.60	62.04	63.80
ERSE	257.56	19.07	30.89	23.58	22.43	23.54	29.74	23.00	21.77	22.88	21.87	19.08	19.03	19.09	518.10	53.89	69.56	59.85	59.03	60.07	59.63	53.35	53.48	53.66
										T=10, t=4,	$\Delta_4 = -74$	46.55, hig	gh respon	high response and high correlation	gh correl	ıtion								
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p_i})$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE-ii E	EE(0.2)	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	EE.i	EE_ii]	EE(0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE.ii	EE(0.5)
APRB		0.04	2.77	9.10	79.7	2.45	7.14	4.16	11.40	2.17	20.32	12.61	21.16	16.96	26.05	0.43	0.40	10.55	0.80	4.94	11.09	4.11	10.90	7.93
SE	10.29	10.57	12.66	15.07	11.78	13.72	12.65	14.98	11.83	13.67	11.62	12.41	11.52	11.95	58.36	59.44	71.73	77.48	70.14	74.28	69.53	72.67	68.79	70.81
ERSE		10.81	17.98	13.28	12.70	13.35	17.33	13.00	12.35	13.01	12.54	10.78	10.80	10.82	517.72	58.84	76.05	65.01	64.51	65.51	65.54	58.31	58.73	58.85
										T=10, t=7,	$\Delta_7 = -7$	-746.55, lo	low response and		low correlation.	ion.								
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE_ii E	EE(0.5)	naïve	EE,	$\mathbf{EE}(\hat{\pi}_i)$	EE.i	EE_ii]	EE(0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE	EE.ii	EE(0.5)
APRB		1		13.28	24.52	1.80	18.08	5.07	32.25	6.72	31.64	8.35	42.91	20.19	58.74	0.04	0.05	7.33	69.0	2.82	7.46	0.58	7.79	4.81
SE		28.97	38.63		37.59	38.72	40.78	40.56	39.40	41.02	42.48	42.00	41.75	42.54	28.69	19.64	22.38	22.81	21.75	22.67	23.07	23.22	22.68	23.22
ERSE	896.79	29.25			40.48	34.38	57.01	31.60	41.42	35.95	55.60	32.47	41.17	36.40	571.84	19.23	25.19	19.88	21.30	20.92	24.11	19.67	20.94	20.57
										T=10, t=7,	$\Delta_7 = -74$	46.55, lo	w respons	46.55, low response and high correlation	h correla	tion								
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	EE i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE ii E	EE(0.5)	naïve	EE,	$\mathbf{EE}(\hat{\pi}_i)$	EE i	EE_ii]	EE(0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE ii	EE(0.5)
APRB	137.74	0.10		12.93	25.15	1.33	18.57	4.59	32.75	7.25	31.85	8.77	43.05	20.55	57.98	0.11	0.14	7.34	0.84	2.77	7.60	0.64	7.97	4.92
SE	53.79	29.02		39.16	37.17	39.84	41.41	41.64	38.99	42.00		42.76	40.53		26.17	18.45	21.12	21.80	20.31	21.51	21.68	21.99	21.22	21.90
ERSE	852.12	28.22		28.48	38.51	32.91	55.55	30.11	39.24	34.35	53.86	30.97	38.88	34.70	561.83	18.46	24.65	19.18	20.50	20.18	23.41	18.90	20.08	19.77
										T=10, t=7,	$\Delta_7 = -74$		high response and	se and lo	low correlation	tion								
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE_ii E	EE(0.5)	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	EE.i	EE_ii]	EE(0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE_ii	EE(0.5)
APRB		0.00		90.7	5.28	1.84	5.44		8.18	1.64	11.24	3.43	13.11	7.85	21.60	0.01	0.01	2.91	0.02	0.98	2.95	0.37	2.90	2.09
SE		18.03	22.18	25.48	20.64	23.76	22.17	. 4	20.65	23.74		23.78	20.32	22.44	12.80	12.28	13.74	14.31	13.56	13.99	13.54	13.96	13.44	13.72
ERSE	509.64	17.40		20.55	20.10	21.08	28.60	20.21	19.69	20.63	25.16	18.76	18.45	19.05	428.54	12.08	14.59	12.98	13.09	13.13	13.49	12.17	12.28	12.29
										$\Gamma = 10, t = 7,$	<u>~</u>	46.55, hig	high response and		high correla	lation								
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$		EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE_i	EE_ii	EE (0.5)]	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE_ii E	EE(0.5)	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	EE.i	EE_ii]	EE(0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE_ii	EE(0.5)
APRB	48.36	0.01		l	7.64	1.85	06.9	3.62	10.89	2.23	13.26		16.06	9.11	24.51	0.04	0.05	3.51	0.16	1.21	3.52	0.40	3.53	2.43
SE	16.99	17.70	21.78	26.02	19.31	23.88	21.52	25.70	19.34	23.56	20.35		18.96		12.55	12.51	14.37	15.29	14.19	14.76	13.88	14.53	13.80	14.16
ERSE	513.02	18.22			20.65	21.96	31.53	20.89	20.13	21.44	27.47	19.33	18.78	19.67	433.33	12.55	15.86	13.69	13.71	13.84	14.41	12.71	12.77	12.83

Table E.9: Results under model (2.41), by response and correlation. Population: volatile

										1-10 +-4	A . — -746	-746 55 low	reconnee and low		correlation									
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	EE.i	EE_ii	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE_ii		Û	EE.i	EE.ii I		naïve	EE, E	$\mathbf{EE}(\hat{\pi}_i)$	EE.i E	EE_ii E	EE(0.5) F	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE_ii I	EE(0.5)
APRB			8.52	5.11	22.27	1.50			26.56	7.53	31.54	22.52	34.41	26.60	26.77	3.05	3.85	2.51	00.9	0.85	12.10	7.90	12.42	10.07
SE	502.24	420.76	542.59	620.43	510.06	578.67		640.23	524.08	596.93	534.31	556.51	531.92	543.07	295.11 2	265.16	293.03 3	306.24 28	289.21	298.27	294.05	298.90	293.45	295.81
ERSE	834.05	422.63	741.04		541.98	530.16		511.39	536.14	530.71	556.95	443.62	473.13	456.95	605.27 2	367.97	337.84 2	288.24 29	295.94	293.99		269.69	277.52	274.65
									L	=10, t=4,	$\Delta_4 = -746$	6.55, low	response a	and high c	correlation									
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	EEj	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE-ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE_ii I	EE(0.5)	naïve	EE, E	$EE(\hat{\pi}_i)$	EE.i F	EE.ii E	EE(0.5) F	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE_ii 1	EE(0.5)
APRB		1	5.68		22.23	5.85		8.63	30.54	3.51	49.08	29.10	53.01	39.22	56.81	1.45	1.42	13.95	1.32	7.09	14.14	4.70	14.41	9:30
SE	351.32	246.94	334.15		316.25	351.81			323.92	359.09	339.18	347.08	338.05	341.99	182.13 1	153.06	173.37 1	177.54 17	72.62	175.00	175.85	177.57	75.50	176.46
ERSE	1006.58	238.18	398.88		312.55	296.40		286.25	312.37	299.45	330.59	267.25	289.34	277.03	657.54 1	157.32	,,	165.59 17	171.92	169.72	178.86	158.72	64.14	162.14
									L	=10, t=4,	$\Delta_4 = -746.55$, high	5.55, high	response	and low	correlation									
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE-ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE_ii I	EE(0.5)	naïve	EE, E	$\mathbf{EE}(\hat{\pi}_i)$	EE.i F	EE_ii E	EE(0.5) F	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE_ii I	EE(0.5)
APRB		0.30	3.51		7.56	0.81		2.14	10.54	2.99	17.62	11.55	18.34	14.95	21.17	0.02	0.28	5.19	0.74	2.03	6.30	2.32	6.24	4.64
SE	127.17	126.84	149.26	172.74	142.63	158.86	147.99	169.86	142.58	156.81	143.79	150.93	143.47	146.43	91.36	91.01	96.52	99.20	96.56	97.48	95.09	96.81	95.10	95.67
ERSE	600.24	126.36	197.00		149.20	155.30	190.55	152.23	145.10	151.26	145.33	128.62	128.35	128.61	512.22	87.50	103.07	94.41 9	94.53	94.69	94.59	87.60	87.84	87.83
									Ţ	=10, t=4, z	$\Delta_4 = -746$	5.55, high	response	and high c	correlation									
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	EE.i	EE_ii	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE_ii	EE(0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE_ii I	EE(0.5)	naïve	\mathbf{EE}_h E	$\mathbf{EE}(\hat{\pi}_i)$	EE.i E	EE_ii E	EE(0.5) E	$\mathbf{3E}(\hat{\pi}_{i1})$	EE.i	EE_ii I	EE(0.5)
APRB			2.54	9.22	6.38	2.47			10.19	2.11	19.60	12.03	20.21	16.42	27.09	0.45	09.0	00.9	0.78	2.07	7.71	2.65	7.50	5.67
SE	65.29	60.62	77.44	88.74	73.88	82.07	76.89	87.31	73.82	81.13	72.26	75.98	71.98	73.71	54.29	54.17	61.83	64.33 (61.63	62.78	60.93	62.72	68.09	61.60
ERSE		65.16	94.44	77.95	76.34	78.01			74.61	76.29	74.99	67.27	67.45	_	505.96	54.36	64.24	58.61	58.58	58.81	58.68	54.21	54.37	54.40
									L	=10, t=7,	$\Delta_7 = -740$	= -746.55, low	response	and low co	correlation.									
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	EE	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EEli	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE_ii I	EE(0.5)	naïve	EE, E	$\mathbf{EE}(\hat{\pi}_i)$	EE.i F	EE_ii E	EE(0.5) E	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE_ii I	EE(0.5)
APRB	84.41	4.83	1	4.71	27.01	3.80		1.86	31.81	10.27	26.63	9.88	36.73	18.07	37.52	1.15	0.12	8.46	2.61	3.81	8.17	1.00	9.40	4.87
SE	484.05				487.42	533.33		571.33	491.71	535.30	489.97	536.52	483.88	509.98	270.82 2	245.88	271.27 2		270.41	275.34	270.89	277.45	270.82	273.29
ERSE	873.43	400.71			512.14	497.44	672.26	472.16	503.93	491.25	601.93	437.64	467.43	453.57	615.42 2	253.13	317.00 2	271.42 27	279.25	276.93	292.88	255.85	262.69	260.43
									T	=10, t=7,	$\Delta_7 = -746.55$, low		response a	and high c	correlation									
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p_i})$	EE.i	EE ii	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE i	EE ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE i	EE-ii I	EE(0.5)	naïve	EE, E	$EE(\hat{\pi}_i)$	EE.i F	EE_ii E	EE(0.5) E	$EE(\hat{\pi}_{i1})$	EE i	EE_ii 1	3E(0.5)
APRB	149.17	0.15		15.42	26.93	2.66		6.05	35.29	6.87	32.59	7.29	44.94	20.11	60.83	0.23	0.36	13.67	2.71	6.39	13.04	1.75	14.43	7.92
SE		227.34	288.23	314.38	289.68	299.02			296.36	306.08	287.42		290.50			150.41	_	, ,	166.05	168.69	170.45	-	02.691	171.24
ERSE	1009.73	237.79			311.03	293.40	388.00	280.61	309.65	294.14	351.98	264.14	291.38	276.08	656.91 1	157.19	190.70 1	65.28 17	[71.79	169.44	179.92	158.52	.63.98	162.00
									L	=10, t=7,	$\Delta_7 = -746.55$, high	5.55, high	response	and low	correlation									
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	EE.i	EE_ii	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE_ii I	EE(0.5)	naïve	EE_h E	$\mathbf{EE}(\hat{\pi}_i)$	EE.i F	EE_ii E	EE(0.5) F	$EE(\hat{\pi}_{i1})$	EE.i	EE_ii I	EE(0.5)
APRB		0.36	2.87	66.6	7.65	2.77		5.04	11.40	1.83	14.74	3.98	17.58	10.01	28.11	0.21	0.24	6.27	0.72	2.42	6.63	1.43	6.70	4.51
SE	122.70		149.15		140.81	159.77			140.75	158.04	141.67	158.04	137.57	148.45	82.77	82.94	88.54		88.06	92.68	29.98	88.82	86.49	87.45
ERSE	603.28	122.11	184.38	148.23	143.64	147.98	177.20	144.18	139.64	143.68	154.27	129.92	127.40	129.55	512.73	84.92	100.10	91.56	91.57	91.80	92.23	85.13	85.21	85.30
									T	=10, t=7, 4	$\Delta_7 = -746$	i.55, high	response	and high c	correlation									
		\mathbf{EE}_h	$\mathbf{EE}(\hat{p_i})$	EE.i	EE_ii	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE_ii 1	EE(0.5)	naïve	EE_h E	$\mathbf{EE}(\hat{\pi}_i)$	EE.i F	EE_ii E	EE(0.5) F	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE_ii I	EE(0.5)
APRB			2.20	9.52	5.18	2.71			60.6	1.83	14.58	4.76	16.27	10.47	28.96	0.19	0.05		0.24	2.71	7.08	1.56	6.97	4.88
SE		60.79	79.67	85.66	79.40	81.92	80.05	85.64	79.74	82.13	79.31	83.04	79.43	80.63	55.35	54.86	60.83	62.68	60.82	61.53	60.19	61.56	60.25	69.09
ERSE			91.32	76.64	75.98	76.90			74.23	75.13	79.03	68.74	68.48	98.89	505.35	54.25	64.09		58.47	58.69	59.06	54.40	54.46	54.57

Table E.10: Results under model (2.41), by response and correlation. Population: simulated

1									$=10, t=4, \Delta_4$		5961, lo	= -699.5961 , low response and low correlation	se and low	correlat	ion.								
naïve EE_h I		$\mathbf{EE}(\hat{p}_i)$	EE.i	EE_ii	EE(0.2)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE_ii]	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE_ii E	3E(0.5)	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	EE.	EE_ii	EE(0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE_ii	EE(0.5)
		8.93	14.07	25.37	2.39	18.87	4.82	34.03	7.20	53.46	33.09	57.43	43.42	58.97	0.10	0.02	8.54	1.06	3.49	10.28	2.88	10.44	7.31
32.99 16.75	,0	21.97		21.85	21.99	23.12	23.01	22.85	23.19	25.33	24.40	25.39	24.91	15.76	10.92	12.43	12.66	12.10	12.58	12.72	12.56	12.63	12.68
399.43 15.67	~	28.85		21.80	18.51	30.20	17.33	22.35	19.51	26.02	18.35	21.65	19.85	254.05	10.62	14.11	10.99	11.80	11.56	12.88	10.72	11.48	11.20
								T=1	10, t=4, Δ_{4}	$_4 = -699.5$	5961, lov	low response		and high correlat	tion								
EE,		$\mathbf{EE}(\hat{p}_i)$		EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE_ii]	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE_ii I	EE(0.5)	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	EE.	EE	EE (0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE_ii	EE(0.5)
138.99 0.13	_	9.45		25.93	1.94	19.38	4.31	34.46	7.77	53.15	33.33	57.00	43.42	58.41	80.0	0.10	8.67	1.27	3.50	10.56	3.06	10.74	7.54
26.16 14.15	10	19.66		18.39	19.95	20.91	21.26	19.63	21.31	22.13	21.78	21.98	22.03	13.07	9.27	11.01	11.59	10.47	11.33	11.16	11.22	11.03	11.23
379.47 14.23	~	27.22	14.56	19.59	16.74	28.42	15.57	20.01	17.65	23.40	16.12	18.96	17.45	249.61	9.55	13.28	10.01	10.71	10.55	11.75	9.62	10.32	10.08
								T=1	=10, t=4, Δ_4	= -699.	5961, hi	5961, high response and low correlation	se and lov	v correla	tion								
naïve EE_h		$\mathbf{EE}(\hat{p_i})$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE-ii]	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE.ii E	EE(0.5)	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	EE.	EE ii	EE (0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE_ii	EE(0.5)
44.06 0.08	00	1.84		5.39	2.28	5.32	3.72	8.42	1.39	15.91	9.65	16.50	13.22	21.68	0.03	0.03	3.43	0.04	1.25	3.64	08.0	3.56	2.64
	-	11.50		10.30	12.51	11.51	13.62	10.40	12.50	10.62	11.32	10.45	10.95	7.13	88.9	7.61	7.95	7.53	7.75	7.51	7.70	7.49	7.59
226.90 9.36		16.08		10.89	11.46	15.56	11.07	10.66	11.25	11.16	9.32	9.47	9.46	190.54	6.67	8.21	7.23	7.26	7.30	7.37	99.9	6.73	6.72
	1							T=10	$0, t=4, \Delta_4$	= -699.5	3961, hig	5961, high response and high correlation	se and hig	h correla	tion								
naïve EE_h		$\mathbf{EE}(\hat{p}_i)$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE.ii]		$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE.ii E	EE(0.5)	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	EE.	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE_ii	EE(0.5)
48.51 0.03	1~	2.73		7.82	2.33	6.88	3.90	11.28	2.08	19.38	12.15	20.25	16.17	24.49	0.07	0.11	4.29	0.11	1.68	4.40	1.01	4.36	3.15
8.95 9.33	\sim			9.95	12.29	10.92	13.19	9.80	12.02	10.03	10.77	88.6	10.38	6.32	6.36	7.15	7.66	7.06	7.37	6.81	7.06	6.78	6.92
	10	16.41	10.45	10.08	10.81	15.79	10.32	9.81	10.57	10.39	8.29	8.41	8.42	192.44	6.27	8.24	6.93	06.9	7.01	7.04	6.21	6.28	6.29
	l							_T	=10, t=7, \triangle	$\Delta_7 = 1448.$.408, low	v response	and low	correlation	on.								
naïve EE_h		$\mathbf{EE}(\hat{p_i})$		EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE_ii]	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE_ii E	EE(0.5)	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	EE.	EE	EE (0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE_ii	EE(0.5)
			13.28	24.52	1.80	18.08	5.07	32.25	6.72	31.64	8.35	42.91	20.19	58.74	0.04	0.05	7.33	69.0	2.82	7.46	0.58	7.79	4.81
7.80 28.97	~				38.72	40.78	40.56	39.40	41.02	42.48	45.00	41.75	42.54	28.69	19.64	22.38	22.81	21.75	22.67	23.07	23.22	22.68	23.22
896.79 29.25	10	55.08			34.38	57.01	31.60	41.42	35.95	55.60	32.47	41.17	36.40	571.84	19.23	25.19	19.88	21.30	20.92	24.11	19.67	20.94	20.57
								T	=10, t=7, Δ	$\Delta_7 = 1448.$		408, low response and high correlation	and high	correlat	ion								
naïve EE_h		$\mathbf{EE}(\hat{p_i})$	EE.i	EE_ii	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE i	EE_ii]	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE_ii F	EE(0.5)	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	EE.	EE ii	EE (0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE i	EE_ii	EE(0.5)
				25.15		18.57	4.59	32.75	7.25	31.85	8.77	43.05	20.55	57.98	0.11	0.14	7.34	0.84	2.77	2.60	0.64	76.7	4.92
53.79 29.02		39.50		37.17	39.84	41.41	41.64	38.99	42.00	42.42	42.76	40.53	43.01	26.17	18.45	21.12	21.80	20.31	21.51	21.68	21.99	21.22	21.90
				38.51	32.91	55.55	30.11	39.24	34.35	53.86	30.97	38.88	34.70	561.83	18.46	24.65	19.18	20.50	20.18	23.41	18.90	20.08	19.77
								_T=	=10, t=7, Δ_7	= 1448.	408, hig	408, high response and low	se and low	correlat	ion								
naïve EE_h		$_{i}$ EE (\hat{p}_{i})	EE.i	EE_ii	EE(0.2)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE_ii]	EE (0.5)]	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE_ii E	EE(0.5)	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	$\mathbf{EE}.i$	EE_ii	EE (0.2)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE_ii	EE(0.5)
				5.28	1.84	5.44	3.35	8.18	1.64	11.24	3.43	13.11	7.85	21.60	0.01	0.01	2.91	0.02	0.98	2.95	0.37	2.90	2.09
18.77 18.03		3 22.18		20.64	23.76	22.17	25.50	20.65	23.74	21.25	23.78	20.32	22.44	12.80	12.28	13.74	14.31	13.56	13.99	13.54	13.96	13.44	13.72
	$\overline{}$			20.10	21.08	28.60	20.21	19.69	20.63	25.16	18.76	18.45	19.02	428.54	12.08	14.59	12.98	13.09	13.13	13.49	12.17	12.28	12.29
	1							_=T	10, t=7, Δ	7 = 1448.4	408, high	408, high response	e and high	n correlation	tion								
naïve \mathbf{EE}_h		$\mathbf{EE}(\hat{p}_i)$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE_ii]	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE_ii I	EE(0.5)	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	EE.	EEli	EE (0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE_ii	EE(0.5)
48.36 0.01		3.04	1	7.64	1.85	06.9	3.62	10.89	2.23	13.26	3.92	16.06	9.11	24.51	0.04	0.02	3.51	0.16	1.21	3.52	0.40	3.53	2.43
			26.02	19.31	23.88	21.52	25.70	19.34	23.56	20.35	23.71	18.96	21.97	12.55	12.51	14.37	15.29	14.19	14.76	13.88	14.53	13.80	14.16
	0			20.65	21.96	31.53	90.89	20.13	21.44	27.47	19.33	22 22	19 67	433.33	12.55	15.86	13.69	13.71	13.84	14.41	19.71	19.77	12.83

Table E.11: Results under model (2.43), by response and correlation. Population: stable

										T=10, t=4.	4	46.55. lo	w respons	-746.55. low response and low correlation.	v correla	tion.								
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p_i})$	EE.i	EE_ii	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE_ii	EE (0.5)	\hat{p}_{i2}	EE.i	EE-ii E	EE (0.5)	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	EE.i	EE_ii	EE(0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE.ii]	EE(0.5)
APRB	\vdash		10.81	15.57	30.10	2.25	18.65	8.49	36.39	5.26	64.83	42.02	69.52	53.42	76.13	9.19	11.10	7.84	16.25	2.00	37.93	24.48	38.22	31.39
SE	112.33		78.04	79.83	89.08	78.41	81.83	83.72	83.66	82.20	91.57	88.37	92.53	89.57	111.51	88.03	106.77	112.33	103.25	109.50	107.82	109.50	106.85	108.79
ERSE			89.26	64.11	77.36	68.76	91.06	65.74	76.82	06.69	85.86	69.48	77.11	72.65	684.59	91.51	122.08	97.46	102.15	101.17	111.17	94.44	99.35	97.63
										T=10, t=4,	$\Delta_4 = -7$	46.55, lo	w respons	low response and high correlation	h correla	tion								
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p_i})$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE_ii E	EE(0.5)	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	EE.i	EE_ii	EE(0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE_ii]	EE(0.5)
APRB		l	10.51	16.26	29.92	2.72	18.45	9.14	36.36	4.86	65.20		69.93	53.65	77.74	9.45	11.74	7.73	17.06	2.38	39.27	25.46	39.54	32.56
SE			78.01	78.61	81.11	77.82	81.64	82.29	84.31	81.42	99.06	87.36	91.77	88.60	106.69	83.79	100.37	105.79	96.85	103.09	100.84	102.25	86.66	101.72
ERSE	436.77	54.86	84.26	08.09	73.98	65.34	86.12	62.34	73.22	66.37	81.61	66.16	73.55	69.22	681.74	89.27	120.61	95.38	99.93	99.10	108.90	92.02	96.91	95.22
										T=10, t=4,	$\Delta_4 = -746.55,$		high response and	ise and lo	low correlation	tion								
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p_i})$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE i	EE-ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE_ii E	EE(0.5)	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	EE.i	EE ii	EE(0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE_ii]	EE(0.5)
APRB			2.86	09.6	8.16	2.66	5.75	6.30	10.43	0.43		14.97	23.67	19.30	30.80	4.23	4.73	4.40	5.89	89.0	15.82	69.6	15.70	13.06
SE		25.76	31.08	35.77	29.79	33.05	31.38	35.88	30.16	33.26	30.40	32.45	30.11	31.22	50.17	53.17	62.20	67.52	60.74	64.48	59.16	61.95	58.81	98.09
ERSE			41.10	32.01	31.23	32.11	40.13	31.64	30.69	31.63	31.69	27.72	27.58	27.68	518.88	55.49	71.50	61.69	60.91	61.93	61.83	55.47	55.62	55.79
									,	Γ=10, t=4,	$\Delta_4 = -74$	6.55, hig	zh respon	46.55, high response and high correlation	gh correl	ation								
		\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	EE.i	EE_ii	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE.ii E	EE(0.5)	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	EE.i	EE_ii	EE(0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE.ii]	EE(0.5)
APRB	61.40	98.0	3.74	9.63	9.32	2.17	6.39	69.9	11.38	0.64			26.29	21.47	41.25	10.03	11.39	0.62	12.68	6.61	24.93	17.60	24.75	21.63
$_{ m SE}$			27.22	30.53	26.67	28.60	27.35	30.66	26.85	28.71	26.57	28.31	26.34	27.26	61.14	61.88	73.18	78.23	71.94	75.40	71.21	74.23	70.82	72.56
ERSE			32.84	25.73	25.74	25.99	32.59	25.80	25.57	25.95	26.88	23.37	23.27		521.10	60.28	77.62	66.38	00.99	66.95	67.26	59.85	98.09	60.44
										T=10, t=7,	$\Delta_7 = -7$	-746.55, lo	low response and	se and lov	low correlation.	tion.								
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE-ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE_ii E	EE(0.5)	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	EE.i	EE	EE(0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE_ii]	EE(0.5)
APRB	-	0.26	11.05	14.67	28.66	1.63	17.77		34.08	4.76		12.09	51.81	-	75.49	8.94	11.07	77.7	16.25	2.02	32.98	17.29	35.24	25.34
SE	_		74.03	73.07	78.78	72.96	76.95		80.93	75.81	79.41		83.49	76.94	104.39	82.08	99.20	104.21	80.96	101.68	100.48	103.86	98.54	102.22
ERSE	439.63		88.26	63.66	76.27	68.21	89.16	64.64	75.43	68.76	83.03	62.73	73.23	66.65	684.63	91.45	121.82	97.25	101.92	100.95	115.00	95.41	99.46	98.57
										T=10, t=7,	$\Delta_7 = -7$	746.55, lo	w respons	low response and high correlation	h correla	rtion								
		\mathbf{EE}_h	$\mathbf{EE}(\hat{p_i})$	EE i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE i	EE-ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE-ii E	EE(0.5)	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	EE i	EE ii	EE(0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE i	EE_ii]	EE(0.5)
APRB			11.45	14.74	29.34	1.44	18.30	8.63	34.89	5.09	39.68	12.68	53.05	26.31	76.13	8.17	10.07	9.59	15.30	0.76	32.46	16.30	34.72	24.59
SE	109.57	57.18	72.73	72.40	76.53	72.11	75.27	74.90	99.82	74.58	89.77	74.97	80.89	75.93	96.95	76.03	91.82	97.90	87.69	94.77	92.18	96.29	89.54	94.24
ERSE	_		81.94	59.28	71.30	63.55	83.08	60.41	70.75	64.29	77.25	58.47	68.32	62.11	681.65	89.25	120.43	95.21	92.66	98.93	113.19	93.20	97.47	96.37
										T=10, t=7,	$\Delta_7 = -7$		high response and		low correlation	tion								
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	EE.i	EE_ii	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE_ii E	EE(0.5)	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	EE.i	EE_ii	EE(0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE_ii]	EE(0.5)
APRB	54.10		3.35	8.75	8.13	1.99	6.02	5.72	10.24	0.85	16.13	00.9	19.06	11.63	31.07	4.40	5.12	4.01	6.31	1.07	14.93	8.07	15.26	11.83
$_{ m SE}$		27.73	32.69	36.40	32.31	34.16	32.96	36.45	32.63	34.33	31.66	33.98	31.61	32.55	52.16	55.55	65.26	71.01	63.53	67.72	62.82	66.84	61.97	64.53
ERSE			40.16	31.62	31.02	31.74	39.27	31.26	30.51	31.29	34.04	28.20	27.86	28.21	519.37	55.50	71.37	61.61	60.85	61.85	63.80	56.50	56.20	56.71
										T=10, t=7,	$\Delta_7 = -74$	46.55, hig	high response and		high correlation	ation								
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p_i})$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE_ii	EE (0.5)	$\mathbf{EE}(\hat{p}_{i2})$	EE.i	EE_ii E	EE(0.5)	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{\pi}_i)$	EE.i	EE ii	EE(0.5)	$\mathbf{EE}(\hat{\pi}_{i1})$	EE.i	EE_ii]	EE(0.5)
APRB			3.80	9.28	8.85	1.96	6.20	l	10.74	0.57			21.22	13.17	l	10.27	11.79	1.22	12.89	7.10	23.86	15.85	24.06	20.24
SE	21.79	21.24	25.04	28.98	23.83	26.71	25.31	29.18	24.15	26.94			23.38	25.11		57.73	66.93	72.33	62.09	69.30	65.56	69.39	64.54	67.25
ERSE			33.40	26.18	25.96	26.38	33.15		25.77	26.32			23.48		521.25	60.28	77.64	66.38	65.99	66.95	69.52	61.02	61.04	61.50

Table E.12: Results under model (2.43), by response and correlation. Population: volatile

ion.	: \mathbf{EE}_h $\mathbf{EE}(\hat{\pi}_i)$ $\mathbf{EE}_{.}$ i $\mathbf{EE}_{.}$ ii $\mathbf{EE}(0.5)$ $\mathbf{EE}(\hat{\pi}_{i1})$ $\mathbf{EE}_{.}$ i $\mathbf{EE}_{.}$ ii $\mathbf{EE}(0.5)$	50.80 71.32 70.49 71.38 70.93 75.74 75.39	i 104.49 240.33 314.75 218.40 273.40 207.73 247.09 202.79 224.92	392.43 584.21 491.12 486.21 494.85 492.74 433.46 438.51 438.29		. :: এব	\mathbf{r}_{i} of \mathbf{r}_{i} and \mathbf{r}_{i} and \mathbf{r}_{i} and \mathbf{r}_{i} and \mathbf{r}_{i} and \mathbf{r}_{i}	51.90 (1.41 09.58 (1.89 (0.52 (8.10 (7.50 (8.10	3 104.67 226.14 282.27 211.99 250.77 194.13 225.49 191.30 207.63	385.34 550.63 469.95 471.92 475.32 479.36 423.11 429.41	tion	\mathbf{EE}_h $\mathbf{EE}(\hat{\pi}_t)$ \mathbf{EE}_J \mathbf{EE}_J $\mathbf{EE}(0.5)$ $\mathbf{EE}(\hat{\pi}_t)$ \mathbf{EE}_J \mathbf{EE}_J \mathbf{EE}_J $\mathbf{EE}(0.5)$	32.52 42.21 44.07 42.41 42.88 41.55 43.42 41.68 42.21	9 60.09 130.05 156.93 127.17 140.98 113.79 132.78 112.97 121.26	0 257.59 339.13 310.41 306.45 308.95 299.21 276.30 273.78 275.23	tion	, \mathbf{EE}_h $\mathbf{EE}(\hat{\pi}_i)$ $\mathbf{EE}_{.}$ i $\mathbf{EE}_{.}$ ii $\mathbf{EE}(0.5)$ $\mathbf{EE}(\hat{\pi}_{i1})$ $\mathbf{EE}_{.}$ ii $\mathbf{EE}(0.5)$	5 29.26 36.02 34.51 36.14 35.37 42.02 41.49 42.02 41.74		220.01	ion.	, \mathbf{EE}_h $\mathbf{EE}(\hat{\pi}_i)$ \mathbf{EE}_i \mathbf{EE}_i $\mathbf{EE}(0.5)$ $\mathbf{EE}(\hat{\pi}_{i1})$ \mathbf{EE}_i $\mathbf{EE}(0.5)$	51.00 68.80 66.47 69.51 67.69 72.29 70.77 72.51 71.54	103.61 238.67 307.75 216.58 269.42 210.18 261.96 197.72 2	377.36 544.22 462.11	tion	\mathbf{EE}_h $\mathbf{EE}(\hat{\pi}_t)$ \mathbf{EE}_J \mathbf{EE}_J $\mathbf{EE}(0.5)$ $\mathbf{EE}(\hat{\pi}_t)$ \mathbf{EE}_J \mathbf{EE}_J \mathbf{EE}_J \mathbf{EE}_J	1 51.08 68.43 65.48 69.48 67.01 72.70 70.77 73.11 71.72	103.41 214.24 270.53 197.47 239.08 192.23 233.04	376.71 530.78 455.09 459.48 461.08 486.54 425.65 430.59 430.69	tion		15.37 20.80 18.89 20.96 20.06 24.61 23.35 24.65	55.75 107.89 126.75 106.20 115.36 98.24 113.18 97.60	201.64 257.27 236.13 234.75 235.83 236.07 218.14 2		EE, EE $(\hat{\pi}_i)$ EE, EE, EE, EE $(\hat{\pi}_i)$ EE, EE $(\hat{\pi}_i)$ EE, EE, EE	28.00 35.24 33.77 35.30 34.62 38.48 37.60 38.45	100 CA 000 A1001 00 00 11011 00 00 00 00 00 00 00 00
low correlat	0.5) naïve	59.63 76.15	706.11 107.85	697.67 691.90	high correla	ingii correra	+		686.55 108.08	682.73 689.05	l low correla	0.5) naïve	21.10 30.22	395.15 53.02	385.42 524.90	high correls	0.5) naïve	41.09 41.65	301.54 58.47	357.53 527.04	low correlat	0.5) naïve	56.99 77.01			high correla	0.5) naïve	66.12 77.04	722.62 106.77	742.65 688.66	l low correla	0.5) naïve		338.22 50.07	352.76 524.46	and high correlation	0.5) naïve	+	
$\Gamma = 10$, $t = 4$, $\Delta_4 = -746.55$, low response and low correlation	EE_ii EE(0.5)	60.67 59	902 20099	704.28 697	Se	Promoe and	3		629.36 686		$\Delta_4 = -746.55$, high response and low correlation	EE .ii EE (0.5)	19.34 21	354.24 395	375.22 385	$\Delta_4 = -746.55$, high response and high correlation	EE.ii EE(0.5)	41.39 41			$\Delta_7 = -746.55$, low response and low correlation	EE _ii EE (0.5)	61.61 56			$\Delta_7 = -746.55$, low response and high correlation	EE-ii EE(0.5)	71.03 66	605.57 722	727.64 742	$\Delta_7 = -746.55$, high response and low correlation	EE_ii EE(0.5)		280.36 338	335.51 352	sponse and	EE_ii EE(0.5)		306.09 333
3.55, low re	EE.i E	59.07	742.24 66	682.97 70	3.55. low re	0.00, 10w 16			724.75 62		3.55, high r	EE.i E	22.95 1	429.46 35	390.36 37	.55, high re	EE.i E	40.87			5.55, low re	EE.i E	55.00 6		715.80 72	3.55, low re	EE.i E	64.22 7		724.80 72	5.55, high r			379.56 28	358.14 33	.55, high re	EEi	38.72 4	257.20 30
$\Delta_4 = -746$	$\mathbf{EE}(\hat{p}_{i2})$	96.09	674.92	880.74	$\Delta_1 = -746$	14 14 55(\$)	EE(pi2)		649.55		$\Delta_4 = -746$	$\mathbf{EE}(\hat{p}_{i2})$	19.65	366.00	454.43	$\Delta_4 = -746$	$\mathbf{EE}(\hat{p}_{i2})$	41.38	288.93		$\Delta_7 = -746$	$\mathbf{EE}(\hat{p}_{i2})$	L	704.25		$\Delta_7 = -746$	$\mathbf{EE}(\hat{p}_{i2})$	68.28	657.71	1026.36	$\Delta_7 = -74c$	$\mathbf{EE}(\hat{p}_{i2})$		304.77	440.62	$\Delta_7 = -746.55$, high response	$\mathbf{EE}(\hat{p}_{i2})$	40.23	
F=10, t=4,	EE (0.5)	56.50	839.17	870.83	4		(e.0) (e.0)	48.93	867.66	855.68	r=10, t=4,	EE (0.5)	30.48	554.64	520.11	=10, t=4, 7	EE (0.5)	36.51	353.89	422.92	$\Gamma = 10, t = 7,$	EE (0.5)	56.05	849.51	803.28	$\Gamma = 10, t = 7,$	EE (0.5)	61.27	797.08	813.30	$\Gamma = 10, t = 7,$	EE(0.5)	17.67	379.47	396.15	=10, t=7, z	EE (0.5)	35.71	959 19
L	EE_ii	58.97	662.00	820.79		- -			631.23	805.77	L	EE_ii	26.10	394.92	459.08	T	EE_ii	37.14	6.4	397.13	Ţ	EE_ii	60.44	9	780.03	L	EE ii	87.78	620.01	780.54	L			295.16	368.44	T	EEii	37.11	313.48
	EE.i		932.45						974.23			EE_i	33.57	649.94	535.38		EE.i	35.86	402.38			EE_i	54.27	945.40			EE_i		889.55	791.77		$\mathbf{EE}_{-\mathbf{i}}$		434.38	402.89		EE.i	34.52	-
	$\mathbf{EE}(\hat{p}_{i1})$	57.43	752.84	1270.18		(\$)dd	(<i>lid</i>)न्नन	49.94	765.53	1246.94		$\mathbf{EE}(\hat{p}_{i1})$	28.03	476.62	715.55		$\mathbf{EE}(\hat{p}_{i1})$	37.11	317.35	538.50		$\mathbf{EE}(\hat{p}_{i1})$	57.96	757.44	1142.88		$\mathbf{EE}(\hat{p}_{i1})$	63.71	712.02	1165.25		$\mathbf{EE}(\hat{p}_{i1})$	20.18	335.23	516.19		$\mathbf{EE}(\hat{p}_{i1})$	36.70	208 07
	EE(0.5)	53.95	847.96	898.73		(20)00	(c.0)यव	45.41	874.62	880.69		EE (0.5)	31.45	570.49	548.06		EE(0.5)	34.39	363.00	436.66		EE (0.5)	53.52	862.26	821.30		EE (0.5)	61.51	794.62	831.14		EE(0.5)	14.43	397.02	415.30		EE (0.5)	33.16	358 70
	EE-ii	56.44	663.70	848.85		.: ::	EE :	49.I	626.28	831.78		EE.ii	26.97	401.52	481.25		EE-ii	35.25	291.37	410.43		EE_ii	59.32	637.46	797.57		EE.ii	68.13	613.39	208.96		EE-ii	20.38	300.48	384.99		EE		-
	EE.i	53.06	943.24	872.93		 G	1.22	44.23	982.46	855.63		EE.i	34.53	669.51	563.13		EE.i	33.56	413.83	440.38		EE.i	51.42	959.56	794.86		EE.i	59.27	888.50	806.00		EE.i			421.72		EE.i	31.68	309 75
	$\mathbf{EE}(\hat{p}_i)$	54.87	758.62	1318.17		(\$)dd	(<i>id</i>)नन	40.07	770.31	1289.61		$\mathbf{EE}(\hat{p}_i)$	29.00	489.09	761.49		$\mathbf{EE}(\hat{p}_i)$	35.12	324.39	557.61		$\mathbf{EE}(\hat{p}_i)$	55.70	768.39	1177.53		$\mathbf{EE}(\hat{p}_i)$	63.91	707.42	1197.95		$\mathbf{EE}(\hat{p}_i)$	17.20	348.72	546.47		$\mathbf{EE}(\hat{p}_i)$	34.37	222 10
	\mathbf{EE}_h	36.64	506.42	611.34		E C	1 E	31.29	502.28	594.93		EE	20.01	324.18	386.27		\mathbf{EE}_h	27.47	241.88	327.32		EE	38.04	481.74	579.39		EE,	43.74	471.77	578.31		\mathbf{EE}_h	12.74	230.54	301.58		EE,	25.62	
	naïve	62.61	560.13	898.62			1		553.27	894.72		naïve	5.63	250.33	559.81		naïve	40.88	237.11	594.60		naïve	72.60		893.43		naïve	77.28		890.12		naïve		193.77	589.64		naïve	_	
		APRB	SE	ERSE			4	AFKB	SE	ERSE			APRB	$_{ m SE}$	ERSE			APRB	SE	ERSE			APRB	SE	ERSE			APRB	SE	ERSE			APRB	SE	ERSE			APRB	S.

Table E.13: Results under model (2.43), by response and correlation. Population: simulated

	EEJ EEJI EE(0.5)	55.03	79.42 64.21	151.07		EE .i EE .ii EE (0.5)	46.09 53.04 49.47	52.91 46.70 49.35	120.54 128.00 124.59		EE.i EE.ii EE(0.5)	14.95 20.33	22.79 21.38	61.00 64.02 62.80		EE.i EE.ii EE(0.5)	14.96	18.33 17.49 17.60	51.13		EE. i EE. ii EE (0.5)	40.24 44.70	108.38 93.36	247.00 258.52 253.61		EE.i EE.ii EE(0.5)	34.16 40.98	102.72	233.57 248.35		EE.i EE.ii EE(0.5)	4.76 9.01	33.46 31.91	90.78 95.12 93.48		EE. : EE. :: EE (0.5)		0.10 3.84 2.37
	$\mathbf{EE}(\hat{\pi}_{i1})$		65.78	173.40		$\mathbf{EE}(\hat{\pi}_{i1})$	52.36				$\mathbf{EE}(\hat{\pi}_{i1})$		21.28			$\mathbf{EE}(\hat{\pi}_{i1})$		3 17.37			$\mathbf{EE}(\hat{\pi}_{i1})$	44.18		279.42		$\mathbf{EE}(\hat{\pi}_{i1})$			266.29		$\mathbf{EE}(\hat{\pi}_{i1})$					$\mathbf{EE}(\hat{\pi}_{i1})$		3.80
	i EE (0.5)		5 84.32			i EE (0.5)		5 51.15			i EE (0.5)					i EE (0.5)					i EE (0.5)			9 251.19		i EE (0.5)			227.61		i EE (0.5)			3 90.71		i EE (0.5)		3 0.11
	EE.i EE.ii		95.07 69.55	161.53 167.77		EE.i EE.ii	32.98 43.45	.63 48.46	119.65 130.89		EE.i EE.ii	8.57 15.15	-	57.69 61.3		EE.i EE.ii	.65 10.83		46.62 49.37		EE.i EE.ii	32.88 38.3		243.76 257.19		EE.i EE.ii			218.55 235.72		EE.i EE.ii	.54 6.18	32.75 31.20	.84 92.56		EE.i EE.ii		2.50 1.73
	$\mathbf{EE}(\hat{\pi}_i)$ E		75.24 95	190.39 161		$\mathbf{EE}(\hat{\pi}_i)$ E	41.16 32	48.56 54	39.50 119		$\mathbf{EE}(\hat{\pi}_i)$ E			64.85 57		$\mathbf{EE}(\hat{\pi}_i)$ E			52.20 46		$\mathbf{EE}(\hat{\pi}_i)$ \mathbf{E}			278.66 243		$\mathbf{EE}(\hat{\pi}_i)$ E	32.27 25		251.29 218		$\mathbf{EE}(\hat{\pi}_i)$ E	6.00	31.13 32	97.42 87		$\mathbf{EE}(\hat{\pi}_i)$ \mathbf{E}		1.63
i	\mathbf{EE}_{n}	42.54	15.67	131.69 1	no	EE, E	35.35	13.35	109.55 1	nc	EE, E	12.89	10.05	55.36	on	\mathbf{EE}_h E	9.27	8.45	45.10	i	EE, E			215.85 2	u	EE, E			208.94 2	n	\mathbf{EE}_h E	5.48	15.79	85.38	uc	EE, E		1.58
v correlation			17.75	268.94	sh correlati	naïve	81.54	17.48	285.43	w correlati		_		237.88	gh correlation		_		231.77	correlation	naïve			296.70	h correlation	naïve	73.71	32.13	616.72	v correlation	naïve	39.66	19.55	493.09	th correlati	naïve		33.43
-699.5961, low response and low	i EE (0.5)	16.89	245.43	7 247.53	nse and higl	i EE (0.5)	89.54	238.86	237.09	5961, high response and low	i EE (0.5)			5 116.27	= -699.5961 , high response and high	i EE (0.5)	52.36		102.06	nse and low	i EE (0.5)		7	502.98	se and high	i EE (0.5)			3 457.69	nse and low	i EE (0.5)		3 112.90	3 156.14	nse and high	i EE (0.5)		3 23.12
low respon	ii EE.ii		77 235.61	19 257.47	low response	i EE ii	104.16	33 243.60	3 256.52	high respo),i BE.ii		77 95.71	123.55	high respo	ii EE.ii	35 60.70		,	low response	i EE.ii			99 548.99	low response	ii BE.ii			71 545.16	$\Delta_7 = 1448.408$, high response	i. EE.ii		59 122.58	11 173.28	high response	ii EE.ii		32 34.13
-699.5961	\hat{p}_{i2} EE		238.32 254.77	307.40 239.19	= -699.5961, low	_	98.68 82.48	240.77 240.63	285.67 225.03	= -699.5961	\hat{p}_{i2} EE.i	62.80 49.16	94.21 90.77	129.57 110.48	-699.5961,	$\hat{p}_{i2})$ EE .	58.51 45.35		113.21 97.31	= 1448.408, low	\hat{p}_{i2} EE.	65.56 51.83		643.54 474.99	= 1448.408, low	\hat{p}_{i2} EE.i	70.41 48.45	362.77 372.82	538.82 419.71	1448.408,	\hat{p}_{i2}) EE.	32.66 17.75	117.82 108.59	172.87 145.11	$\Delta_7 = 1448.408$, high	\hat{p}_{i2} EE		29.59 15.82
=10. t=4. Δ_4 =	E		285.73 23	285.32 30	₹	$0.5)$ EE (\hat{p}_{i2})	49.38 9	216.34 24	217.39 28	=10, t=4, Δ_4 =	$0.5)$ EE (\hat{p}_{i2})				$=10, t=4, \Delta_4 = -$	$EE(0.5)$ $EE(\hat{p}_{i2})$				$^{7}, \Delta_{7}$	0.5) $\mathbf{EE}(\hat{p}_{i2})$	47.64 6		502.31 643	7, A ₇	$EE(0.5) EE(\hat{p}_{i2})$			435.01 53	ļ.,	$\mathbf{EE}(0.5)$ $\mathbf{EE}(\hat{p}_{i2})$	16.45 3.	108.58 11	148.70 17		$\mathbf{EE}(0.5) \mathbf{EE}(\hat{p}_{i2})$		15.23 2
T=10.		66.26 5	241.05 28	294.58 28	T=10, t=4	EE_ii EE(0.5)	83.01 4	232.38 21		T=10,	EE_ii EE(0.5)	50.80		112.33 9	T=10, 1	EE-ii EE(48.74 3		99.54 8	T=10, t=7	EE_ii EE(0.5)	67.80 4		543.71 50	T=10, t=	EE_ii EE(77.56 4		533.17 43	T=10, t=7	EE-ii EE(T=10, t=7	EE ii EE		28.47 1
			312.20 24	272.66 29		EE.i E	39.03 8	219.20 23	200.01 26		EE.i E		3	,,		EE.i E	2	က	5		EE.i E		0	473.62 54		BE.i E	~	4	395.86 53		EE.i E		103.86 12	136.69 16		EE.i E		7.39 2
	$\mathbf{EE}(\hat{p}_{i1})$			397.96		$\mathbf{EE}(\hat{p}_{i1})$					$\mathbf{EE}(\hat{p}_{i1})$		81.22			$\mathbf{EE}(\hat{p}_{i1})$		61.53			$\mathbf{EE}(\hat{p}_{i1})$			671.05 4		$\mathbf{EE}(\hat{p}_{i1})$			522.07		$\mathbf{EE}(\hat{p}_{i1})$		113.85	164.47		$\mathbf{EE}(\hat{p}_{i1})$		22.15
	EE (0.5) 1	43.91	281.89	282.14		EE (0.5) 1	38.66	201.40	204.66		EE (0.5) 1		74.96	94.55		EE (0.5) 1	29.07	58.40	86.33		EE (0.5) 1		444.60	489.23		EE (0.5) 1		334.32	402.66		EE (0.5) 1	12.39	104.81	143.37		EE (0.5) 1		12.03
	EE_ii	61.02	234.14	293.13		EE_ii	74.17	221.85	252.87		EE_ii	46.64	83.78	109.08		EE_ii	45.48	62.76	97.29		EE_ii	61.04	357.73	530.01		EE_ii	69.40	352.64	506.61			28.55	117.21	165.19		EE_ii		25.91
	EE.i		308.33	268.28		EE	28.30				EE.i		72.11			EE.i		57.56			EE	1		460.18		EE.i			363.68			3.99				EE.i		4.07
	h EE (\hat{p}_i)			0 396.30		h EE $(\hat{p_i})$			5 252.15		h EE (\hat{p}_i)		1 78.27			$h = EE(\hat{p_i})$		1 59.74			h EE $(\hat{p_i})$		1 404.02			h EE $(\hat{p_i})$			6 479.30		$h = EE(\hat{p_i})$			7 158.56		$h = \mathbf{EE}(\hat{p_i})$	l	2 19.05
	naïve EE_h		218.76 165.07	362.56 195.30		naïve EE_h	137.55 27.89	238.43 136.49	437.36 155.85		naïve EE_h		103.47 60.51	362.97 84.49		naïve \mathbf{EE}_h	120.64 26.22		356.34 72.82		naïve EE_h		317.46 229.41	951.10 334.9		naïve EE_h			.57 322.46		naïve EE_h	99.19 12.18		743.82 129.57		naïve EE_h		93.83 12.02
		RB		ERSE 362		na	APRB 137					APRB 121.30							ERSE 356		na		SE 317			na		SE 340	RSE 1065.57		na	APRB 99		ERSE 743		na	ļ	APRB 93

Table E.14: Results under model (2.45), by response and correlation.

	EE(0.5)	1.01	419.16	342.54		EE (0.5)	1.19	250.24	223.36		EE(0.5)	1.31	398.71	353.28		$\mathbf{EE}(0.5)$	3.19	258.69	233.44		EE (0.5)	0.18	427.58	371.63		EE (0.5)	0.34	289.25	254.58		EE(0.5)	2.61	345.33	330.79		EE (0.5)	1.52	214.54	199.44
		16	•				14					31				_	30									Ι													
	i EE_ii	9 1.46	3 405.32	9 341.79		i EE.ii	6 1.44	3 238.49	6 219.48		i EE_ii	8 0.31	0 379.04	8 348.52		i EE.ii	1 3.60	8 241.27	4 225.88		i EE.ii	0 1.20	2 412.60	1 369.70		i EE ii	99'1 6		2 249.96		i EE.ii			0 327.12		i EE.ii			7 193.90
	EE.	1 0.49	2 432.63	3 339.79		EE.	2 0.86	3 263.93	3 226.66		EE.i	7 2.08	5 416.30	351.68		EE.	7 2.81	3 276.38) 238.24		EE.	5 1.60	5 442.12	5 369.41		EE.i	3 1.59		3 258.42		EE.i	7 1.45		328.90		EE.i			2 202.87
	$\mathbf{EE}(\hat{\pi}_{i1})$	1.41	408.82	389.56		$\mathbf{EE}(\hat{\pi}_{i1})$	1.42	240.68	248.86		$EE(\hat{\pi}_{i1})$	0.67	385.45	413.18		$\mathbf{EE}(\hat{\pi}_{i1})$	3.47	246.28	267.80		$\mathbf{EE}(\hat{\pi}_{i1})$	0.95	416.65	424.75		$\mathbf{EE}(\hat{\pi}_{i1})$	1.58	278.35	284.08		$\mathbf{EE}(\hat{\pi}_{i1})$	3.57	333.95	385.48		$\mathbf{EE}(\hat{\pi}_{i1})$	2.22	205.62	227.02
	EE(0.5)	0.13	448.32	392.80		EE (0.5)	0.47	289.69	266.39		EE(0.5)	2.69	426.27	394.20		EE (0.5)	2.32	287.49	270.22		EE (0.5)	4.37	464.30	434.09		EE (0.5)	3.39	325.10	300.08		EE(0.5)	0.28	365.80	366.62		EE (0.5)	08.0	233.57	229.13
	EE_ii	0.54	414.26	381.83		EEli	0.83	262.35	255.03		EE_ii	1.44	393.78	384.56		EE_ii	2.93	258.15	256.77		EE_ii	1.89	422.64	419.28		EE ii	1.52	296.84	288.59		EE_ii	1.49	338.60	358.83		EEli	90.0	213.45	218.95
	EE_i	0.38	475.04	391.57		EE.i	0.04	314.77	272.50		EE-i	3.55	452.38	392.70		EE.i	1.81	313.69	277.12		EE.i	6.24	496.17	433.97		EE i	5.72	352.00	306.52		EE.i	1.66	388.65	364.71		EE_i	2.14	253.01	234.24
	$\mathbf{EE}(\hat{\pi}_i)$	0.54	428.15	477.67		$\mathbf{EE}(\hat{\pi}_i)$	92.0	272.16	312.85		$\mathbf{EE}(\hat{\pi}_i)$	1.98	406.73	476.57		$\mathbf{EE}(\hat{\pi}_i)$	2.69	269.19	320.93		$\mathbf{EE}(\hat{\pi}_i)$	2.87	440.39	532.52		$\mathbf{EE}(\hat{\pi}_i)$	1.85	306.35	349.92		$\mathbf{EE}(\hat{\pi}_i)$	98.0	348.88	441.24		$\mathbf{EE}(\hat{\pi}_i)$	0.03	220.34	269.83
	\mathbf{EE}_h]	0.53	361.49	345.48	е	EE,]	0.22	227.83	234.88	e	\mathbf{EE}_h]	0.74	343.09	344.97	e	EE,]	2.19	226.15	233.51	e	EE,]	1.06	397.09	376.53	le	EE,]	0.99	266.47	263.84	e	\mathbf{EE}_h]	0.30	312.07	326.27	le	EE,]	0.83	195.46	198.30
n: stable	naïve	5.86	334.68	551.76	m: stabl	naïve	4.32	165.20	470.41	n: stable	naïve	4.75	320.79	550.17	m: stabl	naïve	5.91	162.62	470.18	: volatil	naïve	12.88	354.33	530.61	: volati	naïve	17.28		460.28	: volatil	naïve	12.43		572.27	1: volati	naïve			486.47
T=10, t=4, $\Delta_4 = -746.55$, low response. Population: stable	EE(0.5)	5.75	267.56	208.47	$\Delta_4 = -746.55$, high response. Population: stable	EE(0.5)	3.78	149.54	126.12	$\Delta_7 = -746.55$, low response. Population: stabl	EE(0.5)	0.35	275.02	235.76	$\Delta_7 = -746.55$, high response. Population: stable	EE(0.2)	1.45	182.80	159.01	response. Population: volatile	EE(0.5)	9.92	00.869	526.28	$\Delta_4 = -746.55$, high response, Population: volatile	EE(0.5)	_		326.74	Population: volatile	EE(0.5)	0.64	_	553.87	Population: volatile	EE(0.5)	6.54	363.61	312.84
esponse.	EE_ii E	08.9	244.75	207.82	esponse.	EE.ii E	4.71	129.76	119.51	esponse.	EE.ii E	4.10	239.64	227.07	esponse.	EE.ii E	3.53	142.51	139.44	sponse. F	EE.ii E	14.21	637.57	524.04	sponse, I	EE ii E	14.00	341.46	309.80	response. F	EE.ii E	7.14	545.00	533.97	sponse.]	EE_ii E	9.41	277.60	273.85
55, low r	EE.i	4.98	282.83 2	205.76 2	55, high 1	EE.i	3.20	164.85	129.89 1	55, low r	EE.i	1.19	296.54 2	231.62 2	55, high 1	EE.i	0.31	209.77 1	165.74		EEi	7.36	731.19 6	520.09 5	5, high re	EE.i	6.26		336.07 3		EE.i	2.18		544.18 5	55, high response.	EE.i			325.49 2
= -746.	$\mathbf{EE}(\hat{p}_{i2})$	6.53	252.70 2	266.09 2	=-746.8	$\mathbf{EE}(\hat{p}_{i2})$	4.39	136.04 1	154.06	= -746.	$\mathbf{EE}(\hat{p}_{i2})$	1.97	255.36 2	331.97 2	=-746.8	$\mathbf{EE}(\hat{p}_{i2})$	2.51	160.21 2	217.47	$\Delta_4 = -746.55$, low	$\mathbf{EE}(\hat{p}_{i2})$	12.78	656.09 7	672.68 5	= -746.5	$\mathbf{EE}(\hat{p}_{i2})$	12.78		399.18 3	$\Delta_7 = -746.55$, low	$\mathbf{EE}(\hat{p}_{i2})$	3.63		779.35 5	$\Delta_7 = -746.5$	$\mathbf{EE}(\hat{p}_{i2})$			429.26 3
, t=4, Δ_4	_	2.01	338.45 2	278.14 2		L	1.33	219.15 1	190.81	T=10, t=7, Δ_7	I	1.38	294.15 2	257.12 3		_	0.36	214.12	189.02 2		_	2.09	861.35	720.34 6	١	_	3.35	593.57	499.98	ı		1.87		612.37 7	1	_			365.89 4
T=10,	.ii EE (0.5)				T=10, t=4	ii EE (0.5)	3.95			T=10	ii EE (0.5)	11			T=10, t=7,	.ii EE (0.5)	3.15			T=10, t=4	ii EE (0.5)	90.6			T=10, t=4,	ii EE (0.5)	8.55			T=10, t=7,	ii EE (0.5)	00.9			T=10, t=7,	ii EE (0.5)			
	i,i EE.ii	3 4.14	92 246.68	94 251.13		ii BEii		93 144.71	95 156.71		i. EE.ii	3.	89 248.07	36 244.16		ii BEii		19 154.90	58 158.12		ii EEii		14 651.63	06 655.79		i EEii			26 401.73		i.i EE.ii			31 578.79		i. EE.ii			19 307.21
	1) EE .i	98 1.03	56 377.92	32 273.94		1) EE.i	13 0.14	12 259.93	75 199.95		1) EE .i	32 3.03	74 319.89	22 251.36		1) EE .i	1.01	26 250.49	10 197.58		1) EE .i	95 6.06	11 957.44	33 709.06		1) EE.i			33 525.26		1) EE .i	27 4.85		52 599.31		1) EE .i			77 381.49
	$\mathbf{EE}(\hat{p}_{i1})$	2.98	300.56	415.82		$\mathbf{EE}(\hat{p}_{i1})$	2.43	185.02	277.75		$\mathbf{EE}(\hat{p}_{i1})$	0.32	270.74	372.22		$\mathbf{EE}(\hat{p}_{i1})$		184.26	271.40		$\mathbf{EE}(\hat{p}_{i1})$	1.95	770.41	1071.63		$\mathbf{EE}(\hat{p}_{i1})$			738.63		$\mathbf{EE}(\hat{p}_{i1})$	1.27		889.52		$\mathbf{EE}(\hat{p}_{i1}$			524.77
	EE(0.5)	1.24	347.15	289.01		EE (0.5)	0.47	232.42	205.95		EE (0.5)	2.47	302.00	268.88		EE(0.5)	0.37	226.45	202.45		EE (0.5)	2.88	879.16	747.48		EE (0.5)	6.07	645.77	538.44		EE(0.2)	3.94	691.61	634.37		EE (0.5)	1.74	440.69	396.13
	EE_ii	3.00	243.10	259.16		EE-ii	3.57	148.04	167.39		EE-ii	2.36	249.64	253.72		EE-ii	2.67	162.61	169.35		EE-ii	7.81	653.56	683.95		EE ii	6.58	396.53	428.68		EE-ii	4.26	561.67	02.009		EE_ii	5.70	300.16	327.49
	$\mathbf{EE}_{.j}$	0.37	389.03	283.09		EE.i	0.88	276.58	215.16		EE.i	4.13	329.76	261.85		EE.i	1.84	264.76	210.81		EE_i	6.52	976.35	730.75		EE.i	12.40	774.62	563.77		EE.i	6.91	758.44	617.67		EE_i	1.04	518.50	412.52
	$\mathbf{EE}(\hat{p}_i)$	2.10	306.33	436.44		$\mathbf{EE}(\hat{p}_i)$	1.69	195.19	303.47		$\mathbf{EE}(\hat{p}_i)$	0.77	276.49	393.98		$\mathbf{EE}(\hat{p}_i)$	0.95	194.89	292.25		$\mathbf{EE}(\hat{p}_i)$	98.0	785.48	1116.95		$\mathbf{EE}(\hat{p}_i)$	99.0	536.76	803.74		$\mathbf{EE}(\hat{p}_i)$	0.84	629.90	927.71		$\mathbf{EE}(\hat{p}_i)$	3.99	376.47	577.30
	\mathbf{EE}_h	0.46	236.48	228.14		\mathbf{EE}_h	0.27	160.68	166.70		\mathbf{EE}_h	0.05	243.15	232.25		\mathbf{EE}_h	0.13	165.90	165.02		\mathbf{EE}_h	0.44	652.56	631.24		\mathbf{EE}_h	1.85	428.16	438.12		\mathbf{EE}_h	4.63	535.80	547.30		\mathbf{EE}_h	0.81	320.49	324.64
	naïve	12.36	198.63	296.82		naïve	6.37	82.71	209.44		naïve		203.67	297.64		naïve	6.62	84.14	209.04		naïve	29.64	504.25	639.39		naïve			487.50		naïve	21.38		757.94		naïve	l		541.78
		APRB	SE	ERSE			APRB	SE	ERSE :			RB	SE ;	ERSE :			APRB	SE	ERSE :			APRB	SE	ERSE (RB		ERSE			APRB	_	ERSE			RB		ERSE

Table E.15: Results under model (2.45), by response and correlation.

	EE (0.5)	0.51	130.79	120.12		EE(0.5)	0.25	73.57	67.93		EE(0.5)	1.00	221.20	202.68		EE(0.5)	0.49	92.76	86.68
	EE_ii	0.45	128.49	120.87		EE_ii	0.31	72.37	67.73		EE_ii	1.57	220.02	204.65		EE_ii	0.74	91.80	89.73
	EE.i	0.51	133.21	118.43		EE.i	0.20	75.41	00.89		EE.i	0.30	223.10	198.96		EE.i	0.05	94.76	80.08
	$\mathbf{EE}(\hat{\pi}_{i1})$	0.49	129.04	134.69		$\mathbf{EE}(\hat{\pi}_{i1})$	0.30	72.46	73.77		$\mathbf{EE}(\hat{\pi}_{i1})$	1.47	220.08	224.66		$\mathbf{EE}(\hat{\pi}_{i1})$	0.73	91.70	97.16
	EE (0.5)]	0.09	139.02	136.84		EE (0.5)	0.03	76.51	74.23		EE (0.5)	0.14	220.10	216.03		EE (0.5)	0.27	96.30	98.02
	EE_ii]	90.0	130.46	136.11		EE_ii]	0.13	74.51	73.88		EE_ii]	0.55	218.01	218.28		EE_ii]	90.0	94.79	09.76
	EE.i	90.0	145.39	135.16		EE.i	0.12	60.62	74.31		EE.i	68.0	223.05	211.66 2		EE.i	0.77	98.94	98.16
	$\mathbf{EE}(\hat{\pi}_i)$	0.09	134.27	160.39		$\mathbf{EE}(\hat{\pi}_i)$	90.0	74.88	81.49		$\mathbf{EE}(\hat{\pi}_i)$	0.38	218.22	242.23		$\mathbf{EE}(\hat{\pi}_i)$	0.01	94.81	106.52
peq	EE_h F	89.0	123.65	127.35	rted	EE, F	90.0	66.01	67.25	eq	EE, F	0.47	200.03	200.62	peq	EE_h F	0.12	88.13	89.47
simula	naïve	1.08	121.81	198.24	: simula	naïve	0.42	63.09	177.35	simulat	naïve	8.79	227.79	504.73	: simula	naïve	5.12	80.46	419.76
Population	EE(0.5)	1.82	242.72	204.99	= -699.5961, high response. Population: simulated	EE(0.5)	1.34	120.03	98.48	Population: simulated	EE(0.5)	5.06	448.35	378.12	Population: simulated	EE (0.5)	2.72	159.74	144.30
esponse.	EE_ii]	1.14	229.48	206.46	esponse.	EE_ii]	1.44	113.92	69.76		EE_ii]	8.16	396.48	374.63	sponse.]	EE_ii]	3.82	140.87	135.35
61, low re	EE.i	2.26	252.83	201.35	61, high 1	EE.i	1.34	125.98	98.81	18, low re	EE.i	3.45	478.69	367.59	8, high re	EE.i	1.77	175.82	147.01
= -699.59	$\mathbf{EE}(\hat{p}_{i2})$	1.38	233.77	258.21	= -699.59	$\mathbf{EE}(\hat{p}_{i2})$	1.39	115.52	112.69	r = 1448.40	$\mathbf{EE}(\hat{p}_{i2})$	69.9	421.92	518.85	= 1448.40	$\mathbf{EE}(\hat{p}_{i2})$	3.45	147.72	183.44
T=10, t=4, Δ_4 = -699.5961, low response. Population: simulated	EE(0.5)	2.26	277.75	250.94	T=10, t=4, Δ_4	EE(0.5)	0.98	140.19	120.21	$T=10, t=7, \Delta_7 = 1448.408, low response.$	EE(0.5)	3.15	474.76	411.63	T=10, t=7, $\Delta_7 = 1448.408$, high response.	EE(0.5)	1.33	177.73	164.24
T=1	EE_ii	1.41	227.11	238.77	T=10	EE_ii	1.33	116.57	112.18	T=1	EE_ii	6.64	394.52	398.92	T=1	EE_ii	2.65	145.96	148.97
	EE_i	2.65	304.21	245.15		EE.i	0.88	156.25	121.89		EE.i	1.53	515.98	399.63		EE.i	0.27	201.21	167.96
	$\mathbf{EE}(\hat{p}_{i1})$	1.85	253.66	363.07		$\mathbf{EE}(\hat{p}_{i1})$	1.11	127.96 156.25	156.90		$\mathbf{EE}(\hat{p}_{i1})$	4.77	438.36	587.04		$\mathbf{EE}(\hat{p}_{i1})$	2.14	160.01	219.79
	EE(0.5)	3.01	286.61	261.76		EE_ii EE(0.5)	0.89	143.09	124.86			1.94	474.34	420.20		EE_ii EE(0.5)	0.46	182.20	171.20
	EE_ii	1.90	228.44	248.62		EE-ii	1.22	116.69	115.60		EE_ii	5.47	387.50	405.25		EE.ii	1.99	148.89	154.89
	EE.i	3.45	314.81	254.44		EE.i	0.78	3 160.57 1	126.51		EE.i EE.ii EE(0.5)	0.36		406.70		EE.i	89.0	206.63	174.75
	$\mathbf{EE}(\hat{p}_i)$	2.57	260.38	382.07		$\mathbf{EE}(\hat{p}_i)$	1.05	129.68	165.63		$\mathbf{EE}(\hat{p}_i)$		135.55	906.16		$\mathbf{EE}(\hat{p}_i)$	1.33	163.67	31.12
	\mathbf{EE}_h	2.52	215.35	211.27		\mathbf{EE}_h	0.26	102.13	100.78		EE,	0.64	323.25	314.24 (\mathbf{EE}_h	90.0	135.42	134.35 2
	naïve	1.82	204.73	253.29		naïve	0.56	92.62	198.25		naïve	20.55	415.15	726.32		naïve	10.56	111.75	491.47 1
		APRB	SE	ERSE			APRB	SE	ERSE			APRB	SE	ERSE			APRB	SE	ERSE

E.2 Estimation of Change in Regression Coefficients

 $\label{eq:continuous} \begin{tabular}{ll} Table E.16: Results under model (2.41), by response and correlation. Population: stable(Left), volatile(Middle), simulated(right). T=t=4, {Stable and Volatile: $$\Delta_4(\beta_0) = 11023.06, $\Delta_4(\beta_1) = -0.4041$, {Simulated: $$\Delta_4(\beta_0) = 114.9522, $$\Delta_4(\beta_1) = -0.5296$ }$ $$$

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	66.02 17.06 1 285.58 1 87.22 0.49 5.55 EE.i F 24.10 1 12.47 1 10.03 1 16.95 3	$ \begin{array}{c cccc} \mathbf{EE_h} & \mathbf{EE}(\hat{\pi}_i) \\ 0.02 & 3.64 \\ 11.53 & 14.34 \\ 11.61 & 21.47 \\ 0.06 & 16.85 \\ 0.35 & 0.44 \\ 0.36 & 0.67 \\ \mathbf{EE.ii} & \mathbf{EE}(0.5) \\ 14.53 & 13.18 \\ 14.59 & 13.30 \\ 16.29 & 11.90 \\ \end{array} $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17.06 1 285.58 1 87.22 0.49 5.55 EE.i F 24.10 1 12.47 1 10.03 1 16.95 3	11.53 14.34 11.61 21.47 0.06 16.85 0.35 0.44 0.36 0.67 EE_ii EE (0.5) 14.53 13.18 14.59 13.30
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	285.58 1 87.22 0.49 5.55 EE.i F 24.10 1 12.47 1 10.03 1 16.95 3	11.61 21.47 0.06 16.85 0.35 0.44 0.36 0.67 EE_ii EE(0.5) 14.53 13.18 14.59 13.30
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	87.22 0.49 5.55 EE. i F 24.10 1 12.47 1 10.03 1 16.95 3 0.41	0.06 16.85 0.35 0.44 0.36 0.67 EE.ii EE(0.5) 14.53 13.18 14.59 13.30
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.49 5.55 EE. i F 24.10 1 12.47 1 10.03 1 16.95 3 0.41	0.35 0.44 0.36 0.67 EE _ii EE (0.5) 14.53 13.18 14.59 13.30
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5.55 EE_i E 24.10 1 12.47 1 10.03 1 16.95 3 0.41	0.36 0.67 EE _ii EE (0.5) 14.53 13.18 14.59 13.30
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	24.10 1 12.47 1 10.03 1 16.95 3 0.41	EE_ii EE (0.5) 14.53 13.18 14.59 13.30
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	24.10 1 12.47 1 10.03 1 16.95 3 0.41	14.53 13.18 14.59 13.30
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.47 1 10.03 1 16.95 3 0.41	14.59 13.30
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10.03 1 16.95 3 0.41	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16.95 3 0.41	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.41	31.50 3.75
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.43 0.42
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.49 0.39
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
SE 60.65 39.27 93.04 106.26 83.05 100.26 257.06 166.72 401.70 140.46 113.50 154.02 36.85 18.61 43.94	naïve I	EE_h $EE(\hat{\pi}_i)$
SE 60.65 39.27 93.04 106.26 83.05 100.26 257.06 166.72 401.70 140.46 113.50 154.02 36.85 18.61 43.94	61.13	0.04 2.95
		12.91 15.62
ERSE 450.68 38.15 134.00 684.27 84.49 156.72 1100.82 173.16 616.61 695.54 119.50 233.52 424.39 17.83 53.57		12.18 22.16
$\overline{\text{APRB}_{\Delta(\beta_1)}} \ \ 695.83 76.67 493.51 243.72 37.90 \qquad 2.77 395.00 21.93 145.32 139.70 19.20 2.86 145.65 2.32 89.07 2.32 $	60.98	0.92 2.43
SE 0.46 0.22 0.50 0.32 0.24 0.30 1.18 0.61 2.00 0.54 0.38 0.50 1.92 0.91 2.16	0.92	0.61 0.76
ERSE 1.04 0.15 0.43 1.44 0.23 0.41 3.22 0.60 2.74 1.78 0.37 0.66 10.99 0.76 2.19	6.80	0.54 0.93
EE.i EE.ii EE(0.5)		EE _ii EE (0.5)
$\frac{\text{APRB}_{\Delta(\beta_0)}}{45.10} \frac{45.10}{121.15} \frac{121.15}{64.50} \frac{64.50}{70.72} \frac{70.72}{96.91} \frac{96.91}{79.88} \frac{79.88}{58.29} \frac{142.01}{12.01} \frac{79.10}{79.10} \frac{45.35}{45.35} \frac{68.17}{68.17} \frac{53.02}{53.02} \frac{37.53}{37.53} \frac{118.58}{118.58} \frac{58.89}{58.99} \frac{118.58}{118.58} 118.$		13.05 13.23
SE 106.25 87.45 100.60 100.75 97.07 100.53 462.93 373.73 437.30 176.32 145.79 166.08 35.67 46.73 39.24 ERSE 81.63 97.92 86.92 87.21 116.11 96.46 374.87 455.44 400.74 148.85 175.26 158.13 23.84 43.07 28.94		15.91 14.46
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		16.86 12.32 12.19 13.58
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.78 0.69
ERSE 0.23 0.35 0.26 0.22 0.30 0.25 1.66 2.07 1.78 0.44 0.54 0.47 0.97 1.80 1.18		0.74 0.52
high response and low correlation	0.40	0.14 0.02
\mathbf{n}	naïve I	$\mathbf{EE}_{-h} = \mathbf{EE}(\hat{\pi}_i)$
$\overline{\text{APRB}}_{\Delta(\beta_0)} 49.67 0.06 18.87 24.54 0.21 33.10 53.04 0.03 25.08 26.65 0.05 21.65 53.94 0.00 20.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 $	26.85	0.02 3.90
SE 19.62 20.20 34.31 49.69 52.37 64.48 96.96 92.97 157.72 69.39 69.93 91.57 10.99 11.03 14.44	8.28	8.13 9.63
ERSE 262.18 19.66 52.75 524.71 55.65 111.37 639.42 90.58 255.10 534.62 68.51 139.55 258.82 11.09 21.04	216.17	7.95 15.55
$\overline{\text{APRB}_{\Delta(\beta_1)}} \ \ 225.65 \ \ 0.23 \ \ 94.36 112.09 \ \ 1.03 \ \ 166.69 190.02 \ \ 0.01 \ \ 98.75 96.14 \ \ 0.07 \ \ 86.20 111.15 \ \ 0.03 \ \ 70.17 \ \ \ \ \ \ \ \ \ \ \ \ \$	57.02	0.01 0.78
SE 0.01 0.01 0.02 0.03 0.03 0.03 0.05 0.05 0.08 0.04 0.04 0.05 0.24 0.27 0.37	0.20	0.20 0.25
ERSE 0.30 0.01 0.03 0.88 0.03 0.06 1.02 0.05 0.13 1.02 0.04 0.07 4.84 0.28 0.55	4.45	0.20 0.41
EE_i EE_ii EE(0.5)		EE _ii EE (0.5)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	21.28 10.55	0.85 13.89 8.94 10.22
SE 45.22 29.92 40.49 70.30 71.52 29.90 11.22 29.90 16.09 16.09 170.30 16.07 114.97 85.08 103.85 14.77 15.79 14.79 ERSE 34.97 34.31 35.29 68.51 72.43 71.53 169.00 166.92 170.93 96.77 95.90 97.81 11.06 14.68 12.35		10.37 9.63
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10.57 9.03
$\frac{1}{2}$ $\frac{1}$		0.23 0.28
ERSE 0.02 0.02 0.02 0.04 0.04 0.04 0.09 0.09 0.05 0.05 0.05 0.31 0.36 0.33	0.26	0.27 0.27
high response and high correlation		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	naïve I	$\mathbf{EE}_{h} \mathbf{EE}(\hat{\pi}_{i})$
$APRB_{\Delta(\beta_0)}$ 48.67 0.05 15.83 24.48 0.12 34.28 67.17 0.35 18.88 32.69 0.01 18.54 45.71 0.01 19.93	23.63	0.03 2.32
SE 11.73 11.58 18.17 56.42 58.21 67.70 54.51 49.02 90.47 54.13 53.03 66.19 9.79 11.43 14.50	7.69	8.14 9.75
	211.92	8.04 15.50
ERSE 259.14 11.00 28.05 519.38 59.44 119.07 655.07 48.88 143.13 539.01 54.31 109.09 247.22 11.27 20.53	19.00	0.13 1.63
$\overline{\text{APRB}}_{\Delta(\beta_1)}$ 86.09 9.40 38.34 50.68 14.15 10.37 69.76 19.70 57.16 34.22 9.23 14.30 35.17 0.82 15.54	0.32	0.35 0.40
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.33 0.59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	EE_i I	EE _ii EE (0.5)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	EE_i E	EE_ii EE(0.5) 1.95 11.28
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	EE_i E 18.01 11.03	EE_ii EE(0.5) 1.95 11.28 8.98 10.56
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	EE_i E 18.01 11.03 9.08	EE_ii EE(0.5) 1.95 11.28 8.98 10.56 10.30 9.70
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	18.01 11.03 9.08 15.12	EE_ii EE(0.5) 1.95 11.28 8.98 10.56 10.30 9.70 1.85 9.20
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	EE_i E 18.01 11.03 9.08	EE_ii EE(0.5) 1.95 11.28 8.98 10.56 10.30 9.70

Table E.17: Results under model (2.41), by response and correlation. Population: stable(Left), volatile(Middle), simulated(right). T=t=7, {Stable and Volatile: } $\Delta_7(\beta_0) = 11023.06$, $\Delta_7(\beta_1) = -0.4041$ }, {Simulated: $\Delta_7(\beta_0) = 1176.529$, $\Delta_7(\beta_1) = 36.56497$ }

								,	-	,	1							
	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	sponse and $\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
ADDD	117.74	0.17	18.03	48.31	0.25	6.88	99,96	1.95	26.99	42.23	0.29	6.91	186.14	0.48	21.32	73.21	0.18	13.65
$APRB_{\Delta(\beta_0)}$ SE	102.61	75.35	129.70	157.13	130.62	145.77	488.92	382.08	596.35	275.42	240.30	284.76	140.46	53.58	76.14	59.82	36.18	37.14
ERSE	453.80	79.81	182.30	686.92	134.58	221.95	918.82	376.67	842.41	627.25	239.37	406.89	720.82	51.70	94.43	486.31	33.88	47.92
$APRB_{\Delta(\beta_1)}$	424.04	0.42	96.81	179.19	2.66	14.72	42.43	1.13	12.54	18.64	0.15	2.91	81.73	1.14	8.81	37.59	0.76	7.04
SE $\Delta(\beta_1)$	0.04	0.42	0.06	0.07	0.06	0.07	0.21	0.19	0.30	0.12	0.13	0.15	11.45	4.71	6.38	4.81	3.01	3.11
ERSE	0.32	0.04	0.10	0.88	0.07	0.07	0.79	0.19	0.45	0.12	0.12	0.13	83.00	4.46	7.84	59.86	2.87	3.95
LIGH	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
$APRB_{\Delta(\beta_0)}$	7.91	49.80	3.46	31.23	14.91	21.26	1.92	61.59	12.75	24.69	7.51	16.80	18.12	71.52	1.07	30.27	5.63	21.78
SE	145.05	122.41	137.72	158.73	141.02	151.65	668.10	559.56	634.01	324.74	271.90	303.07	60.10	93.66	67.63	35.54	37.51	36.44
ERSE	114.96	150.11	125.19	155.02	169.59	162.51	530.81	688.98	577.58	289.18	304.97	299.55	44.18	99.19	56.31	30.81	38.25	34.34
$APRB_{\Delta(\beta_1)}$	8.25	218.29	45.82	105.89	75.48	69.52	0.72	27.70	6.02	11.00	3.57	7.34	32.94	10.03	21.56	16.84	5.14	11.35
SE	0.08	0.06	0.07	0.09	0.07	0.08	0.38	0.27	0.34	0.18	0.14	0.16	5.16	7.54	5.75	3.05	3.13	3.09
ERSE	0.06	0.07	0.07	0.08	0.09	0.08	0.30	0.33	0.31	0.16	0.15	0.16	3.73	7.83	4.71	2.68	3.21	2.95
								low res	ponse and	high corr	elation							
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$EE(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$EE(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$EE(\hat{\pi}_i)$
$APRB_{\Delta(\beta_0)}$	153.09	0.37	12.24	62.31	0.62	15.26	157.16	0.10	17.84	63.67	0.47	13.27	133.47	1.22	9.25	57.19	0.25	11.74
SE	60.50	38.29	61.32	109.29	85.37	92.81	319.38	212.15	347.62	170.93	139.80	163.16	255.55	104.28	148.46	101.17	61.43	64.16
ERSE	451.01	38.07	85.83	684.67	84.40	151.27	1027.32	213.78	477.17	660.75	142.61	227.74	889.30	86.83	143.12	547.11	56.56	75.44
$APRB_{\Delta(\beta_1)}$	690.81	81.11	140.63	247.49	46.55	24.12	142.76	16.85	37.00	55.08	7.56	0.80	173.24	3.45	20.12	68.12	0.71	11.48
SE	0.45	0.21	0.29	0.32	0.25	0.27	1.03	0.73	1.12	0.55	0.45	0.53	23.04	9.38	13.48	9.02	5.45	5.67
ERSE	1.04	0.15	0.27	1.42	0.22	0.39	2.51	0.68	1.40	1.49	0.40	0.66	112.49	7.85	13.19	69.75	5.00	6.68
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
$APRB_{\Delta(\beta_0)}$	23.13	53.23	7.52	53.66	16.76	38.13	17.56	61.54	2.07	42.52	8.87	29.78	23.51	46.03	8.96	26.05	5.64	18.56
SE	65.90	62.64	63.52	98.25	86.91	95.87	382.79	338.43	365.56	180.91	157.75	171.13	107.94	191.84	126.58	60.45	63.37	62.81
$APRB_{\Delta(\beta_1)}$	54.45	74.16	59.64	90.93	104.24	98.56	304.01	407.09	332.39	164.16	177.35	171.23	61.97	170.57	82.02	44.63	63.40	51.70
SE	26.91 0.26	267.96 0.33	77.42 0.27	5.61 0.28	28.08 0.25	11.02 0.27	12.00 1.23	66.24 1.06	23.11 1.17	10.36 0.60	6.34 0.50	4.77 0.56	18.43 9.83	63.70	1.28 11.52	27.08 5.33	4.54 5.64	19.01
ERSE	0.26	0.33	0.27	0.28	0.25	0.27	0.88	1.17	0.96	0.60	0.50	0.48	5.69	17.31 15.57	7.53	3.94	5.62	5.55 4.57
LIGH	0.10	0.21	0.10	0.24	0.21	0.20	0.00		sponse and			0.40	5.05	10.01	1.00	0.34	3.02	4.01
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	DD/^ \
APRBAGO																		$EE(\hat{\pi}_i)$ 7 38
$APRB_{\Delta(\beta_0)}$ SE	52.37	0.03	6.57	26.12	0.02	13.96	60.01	0.42	7.48	29.86	0.13	11.94	66.77	0.02	6.53	32.93	0.04	7.38
$APRB_{\Delta(\beta_0)}$ SE ERSE																		
SE ERSE	52.37 18.67 262.27	0.03 19.05 19.60	6.57 29.42	26.12 53.09	0.02 55.58	13.96 63.01 108.15	60.01 116.99	0.42 115.42	7.48 172.39	29.86 78.60	0.13 78.57 79.37	11.94 93.10 128.57	66.77 21.67 413.13	0.02 20.28	6.53 26.22	32.93 14.51	0.04 13.78	7.38 16.68
SE	52.37 18.67	0.03 19.05	6.57 29.42 44.03	26.12 53.09 524.15	0.02 55.58 55.60	13.96 63.01	60.01 116.99 614.25	0.42 115.42 111.77	7.48 172.39 254.23	29.86 78.60 515.26	0.13 78.57	11.94 93.10	66.77 21.67	0.02 20.28 19.94	6.53 26.22 39.77	32.93 14.51 368.66	0.04 13.78 14.19	7.38 16.68 24.38
SE ERSE APRB $_{\Delta(\beta_1)}$	52.37 18.67 262.27 237.99	0.03 19.05 19.60 0.15	6.57 29.42 44.03 26.17	26.12 53.09 524.15 119.41	0.02 55.58 55.60 0.03	13.96 63.01 108.15 63.43	60.01 116.99 614.25 29.24	0.42 115.42 111.77 0.19	7.48 172.39 254.23 3.18	29.86 78.60 515.26 14.64	0.13 78.57 79.37 0.07	11.94 93.10 128.57 5.87	66.77 21.67 413.13 3.42	0.02 20.28 19.94 0.08	6.53 26.22 39.77 8.98	32.93 14.51 368.66 1.79	0.04 13.78 14.19 0.05	7.38 16.68 24.38 0.16
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \end{array}$	52.37 18.67 262.27 237.99 0.01	0.03 19.05 19.60 0.15 0.01	6.57 29.42 44.03 26.17 0.02	26.12 53.09 524.15 119.41 0.03	0.02 55.58 55.60 0.03 0.03	13.96 63.01 108.15 63.43 0.03	60.01 116.99 614.25 29.24 0.06	0.42 115.42 111.77 0.19 0.06	7.48 172.39 254.23 3.18 0.09	29.86 78.60 515.26 14.64 0.04	0.13 78.57 79.37 0.07 0.04	11.94 93.10 128.57 5.87 0.05	66.77 21.67 413.13 3.42 1.40	0.02 20.28 19.94 0.08 1.31	6.53 26.22 39.77 8.98 1.80	32.93 14.51 368.66 1.79 0.92	0.04 13.78 14.19 0.05 0.89	7.38 16.68 24.38 0.16 1.01
SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_0)}$	52.37 18.67 262.27 237.99 0.01 0.30 EE .i 27.34	0.03 19.05 19.60 0.15 0.01 0.01 EE_ii 8.24	6.57 29.42 44.03 26.17 0.02 0.02 EE (0.5)	26.12 53.09 524.15 119.41 0.03 0.88 EE .i	0.02 55.58 55.60 0.03 0.03 0.03 EE_ii 0.52	13.96 63.01 108.15 63.43 0.03 0.06 EE (0.5)	60.01 116.99 614.25 29.24 0.06 0.80 EE_i 31.67	0.42 115.42 111.77 0.19 0.06 0.06 EE_ii 10.02	7.48 172.39 254.23 3.18 0.09 0.14 EE (0.5) 19.92	29.86 78.60 515.26 14.64 0.04 0.80 EE .i	0.13 78.57 79.37 0.07 0.04 0.04 EE_ iii	11.94 93.10 128.57 5.87 0.05 0.07 EE (0.5)	66.77 21.67 413.13 3.42 1.40 48.11 EE .i 30.97	0.02 20.28 19.94 0.08 1.31 1.24 EE_ iii 12.20	6.53 26.22 39.77 8.98 1.80 2.70 EE (0.5) 19.28	32.93 14.51 368.66 1.79 0.92 45.06 EE .i 16.94	0.04 13.78 14.19 0.05 0.89 0.86 EE _iii	7.38 16.68 24.38 0.16 1.01 1.23
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \end{array}$	52.37 18.67 262.27 237.99 0.01 0.30 EE _i 27.34 37.46	0.03 19.05 19.60 0.15 0.01 0.01 EE _iii 8.24 24.63	6.57 29.42 44.03 26.17 0.02 0.02 EE (0.5) 17.23 33.45	26.12 53.09 524.15 119.41 0.03 0.88 EE _i 41.14 74.75	0.02 55.58 55.60 0.03 0.03 0.03 EE _iii 0.52 57.84	13.96 63.01 108.15 63.43 0.03 0.06 EE (0.5) 28.60 68.56	60.01 116.99 614.25 29.24 0.06 0.80 EE.i 31.67 215.83	0.42 115.42 111.77 0.19 0.06 0.06 EE _ii 10.02 152.03	7.48 172.39 254.23 3.18 0.09 0.14 EE (0.5) 19.92 193.72	29.86 78.60 515.26 14.64 0.04 0.80 EE _i 32.92 106.41	0.13 78.57 79.37 0.07 0.04 0.04 EE _iii 2.89 90.02	11.94 93.10 128.57 5.87 0.05 0.07 EE(0.5) 22.68 98.76	66.77 21.67 413.13 3.42 1.40 48.11 EE _i 30.97 28.36	0.02 20.28 19.94 0.08 1.31 1.24 EE _iii 12.20 23.47	6.53 26.22 39.77 8.98 1.80 2.70 EE (0.5) 19.28 27.61	32.93 14.51 368.66 1.79 0.92 45.06 EE _i 16.94 19.55	0.04 13.78 14.19 0.05 0.89 0.86 EE _iii 5.13 15.27	7.38 16.68 24.38 0.16 1.01 1.23 EE (0.5) 11.56 18.05
SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE	52.37 18.67 262.27 237.99 0.01 0.30 EE .i 27.34 37.46 29.76	0.03 19.05 19.60 0.15 0.01 0.01 EE _ii 8.24 24.63 29.98	6.57 29.42 44.03 26.17 0.02 0.02 EE (0.5) 17.23 33.45 30.46	26.12 53.09 524.15 119.41 0.03 0.88 EE _i 41.14 74.75 74.52	0.02 55.58 55.60 0.03 0.03 0.03 EE_ii 0.52 57.84 69.88	13.96 63.01 108.15 63.43 0.03 0.06 EE (0.5) 28.60 68.56 75.26	60.01 116.99 614.25 29.24 0.06 0.80 EE.i 31.67 215.83 174.13	0.42 115.42 111.77 0.19 0.06 0.06 EE_ii 10.02 152.03 173.89	7.48 172.39 254.23 3.18 0.09 0.14 EE (0.5) 19.92 193.72 177.69	29.86 78.60 515.26 14.64 0.04 0.80 EE .i 32.92 106.41 102.07	0.13 78.57 79.37 0.07 0.04 0.04 EE _iii 2.89 90.02 98.64	11.94 93.10 128.57 5.87 0.05 0.07 EE (0.5) 22.68 98.76 101.99	66.77 21.67 413.13 3.42 1.40 48.11 EE .i 30.97 28.36 21.94	0.02 20.28 19.94 0.08 1.31 1.24 EE_ii 12.20 23.47 27.50	6.53 26.22 39.77 8.98 1.80 2.70 EE (0.5) 19.28 27.61 24.40	32.93 14.51 368.66 1.79 0.92 45.06 EE .i 16.94 19.55 17.62	0.04 13.78 14.19 0.05 0.89 0.86 EE _iii 5.13 15.27 17.29	7.38 16.68 24.38 0.16 1.01 1.23 EE (0.5) 11.56 18.05 18.00
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \\ \text{ERSE} \\ \\ \\ \text{APRB}_{\Delta(\beta_1)} \end{array}$	52.37 18.67 262.27 237.99 0.01 0.30 EE .i 27.34 37.46 29.76	0.03 19.05 19.60 0.15 0.01 0.01 EE _ii 8.24 24.63 29.98 42.97	6.57 29.42 44.03 26.17 0.02 0.02 EE (0.5) 17.23 33.45 30.46 75.03	26.12 53.09 524.15 119.41 0.03 0.88 EE .i 41.14 74.75 74.52	0.02 55.58 55.60 0.03 0.03 0.03 EE_iii 0.52 57.84 69.88	13.96 63.01 108.15 63.43 0.03 0.06 EE (0.5) 28.60 68.56 75.26 131.82	60.01 116.99 614.25 29.24 0.06 0.80 EE _i 31.67 215.83 174.13	0.42 115.42 111.77 0.19 0.06 0.06 EE_ii 10.02 152.03 173.89 5.59	7.48 172.39 254.23 3.18 0.09 0.14 EE (0.5) 19.92 193.72 177.69 9.30	29.86 78.60 515.26 14.64 0.04 0.80 EE .i 32.92 106.41 102.07	0.13 78.57 79.37 0.07 0.04 0.04 EE_ii 2.89 90.02 98.64 1.20	11.94 93.10 128.57 5.87 0.05 0.07 EE (0.5) 22.68 98.76 101.99 11.25	66.77 21.67 413.13 3.42 1.40 48.11 EE .i 30.97 28.36 21.94	0.02 20.28 19.94 0.08 1.31 1.24 EE_ii 12.20 23.47 27.50 9.42	6.53 26.22 39.77 8.98 1.80 2.70 EE (0.5) 19.28 27.61 24.40 11.05	32.93 14.51 368.66 1.79 0.92 45.06 EE .i 16.94 19.55 17.62	0.04 13.78 14.19 0.05 0.89 0.86 EE .ii 5.13 15.27 17.29	7.38 16.68 24.38 0.16 1.01 1.23 EE (0.5) 11.56 18.05 18.00 0.09
SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE	52.37 18.67 262.27 237.99 0.01 0.30 EE _i 27.34 37.46 29.76 121.15 0.02	0.03 19.05 19.60 0.15 0.01 0.01 EE _iii 8.24 24.63 29.98 42.97 0.01	6.57 29.42 44.03 26.17 0.02 0.02 EE (0.5) 17.23 33.45 30.46 75.03 0.02	26.12 53.09 524.15 119.41 0.03 0.88 EE _i 41.14 74.75 74.52 190.25 0.04	0.02 55.58 55.60 0.03 0.03 0.03 EE_ii 0.52 57.84 69.88 1.15 0.03	13.96 63.01 108.15 63.43 0.03 0.06 EE (0.5) 28.60 68.56 75.26 131.82 0.04	60.01 116.99 614.25 29.24 0.06 0.80 EE_i 31.67 215.83 174.13 15.04 0.12	0.42 115.42 111.77 0.19 0.06 0.06 EE _ii 10.02 152.03 173.89 5.59 0.08	7.48 172.39 254.23 3.18 0.09 0.14 EE (0.5) 19.92 193.72 177.69 9.30 0.10	29.86 78.60 515.26 14.64 0.04 0.80 EE .i 32.92 106.41 102.07 16.36 0.06	0.13 78.57 79.37 0.07 0.04 0.04 EE .ii 2.89 90.02 98.64 1.20 0.05	11.94 93.10 128.57 5.87 0.05 0.07 EE (0.5) 22.68 98.76 101.99 11.25 0.05	66.77 21.67 413.13 3.42 1.40 48.11 EE .i 30.97 28.36 21.94 14.13 2.16	0.02 20.28 19.94 0.08 1.31 1.24 EE_ii 12.20 23.47 27.50 9.42 1.58	6.53 26.22 39.77 8.98 1.80 2.70 EE (0.5) 19.28 27.61 24.40 11.05 1.99	32.93 14.51 368.66 1.79 0.92 45.06 EE. i 16.94 19.55 17.62 0.06 1.10	0.04 13.78 14.19 0.05 0.89 0.86 EE.ii 5.13 15.27 17.29 1.01 0.99	7.38 16.68 24.38 0.16 1.01 1.23 EE (0.5) 11.56 18.05 18.00 0.09 1.05
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \\ \text{ERSE} \\ \\ \\ \text{APRB}_{\Delta(\beta_1)} \end{array}$	52.37 18.67 262.27 237.99 0.01 0.30 EE .i 27.34 37.46 29.76	0.03 19.05 19.60 0.15 0.01 0.01 EE _ii 8.24 24.63 29.98 42.97	6.57 29.42 44.03 26.17 0.02 0.02 EE (0.5) 17.23 33.45 30.46 75.03	26.12 53.09 524.15 119.41 0.03 0.88 EE .i 41.14 74.75 74.52	0.02 55.58 55.60 0.03 0.03 0.03 EE_iii 0.52 57.84 69.88	13.96 63.01 108.15 63.43 0.03 0.06 EE (0.5) 28.60 68.56 75.26 131.82	60.01 116.99 614.25 29.24 0.06 0.80 EE _i 31.67 215.83 174.13	0.42 115.42 111.77 0.19 0.06 0.06 EE .ii 10.02 152.03 173.89 5.59 0.08 0.09	7.48 172.39 254.23 3.18 0.09 0.14 EE (0.5) 19.92 193.72 177.69 9.30 0.10 0.10	29.86 78.60 515.26 14.64 0.04 0.80 EE _i 32.92 106.41 102.07 16.36 0.06 0.05	0.13 78.57 79.37 0.07 0.04 0.04 EE _ii 2.89 90.02 98.64 1.20 0.05 0.05	11.94 93.10 128.57 5.87 0.05 0.07 EE (0.5) 22.68 98.76 101.99 11.25	66.77 21.67 413.13 3.42 1.40 48.11 EE .i 30.97 28.36 21.94	0.02 20.28 19.94 0.08 1.31 1.24 EE_ii 12.20 23.47 27.50 9.42	6.53 26.22 39.77 8.98 1.80 2.70 EE (0.5) 19.28 27.61 24.40 11.05	32.93 14.51 368.66 1.79 0.92 45.06 EE .i 16.94 19.55 17.62	0.04 13.78 14.19 0.05 0.89 0.86 EE .ii 5.13 15.27 17.29	7.38 16.68 24.38 0.16 1.01 1.23 EE (0.5) 11.56 18.05 18.00 0.09
SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE	52.37 18.67 262.27 237.99 0.01 0.30 EE _i 27.34 37.46 29.76 121.15 0.02 0.02	0.03 19.05 19.60 0.15 0.01 0.01 EE _iii 8.24 24.63 29.98 42.97 0.01 0.02	6.57 29.42 44.03 26.17 0.02 0.02 EE(0.5) 17.23 33.45 30.46 75.03 0.02	26.12 53.09 524.15 119.41 0.03 0.88 EE_i 41.14 74.75 74.52 190.25 0.04 0.04	0.02 55.58 55.60 0.03 0.03 0.03 EE_ii 0.52 57.84 69.88 1.15 0.03 0.04	13.96 63.01 108.15 63.43 0.03 0.06 EE(0.5) 28.60 68.56 75.26 131.82 0.04 0.04	60.01 116.99 614.25 29.24 0.06 0.80 EE.i 31.67 215.83 174.13 15.04 0.12 0.09	0.42 115.42 111.77 0.19 0.06 0.06 EE .ii 10.02 152.03 173.89 5.59 0.08 0.09	7.48 172.39 254.23 3.18 0.09 0.14 EE(0.5) 19.92 193.72 177.69 9.30 0.10 0.10 sponse and	29.86 78.60 515.26 14.64 0.04 0.80 EE _i 32.92 106.41 102.07 16.36 0.06 0.05 high cor	0.13 78.57 79.37 0.07 0.04 0.04 EE _ii 2.89 90.02 98.64 1.20 0.05 0.05 relation	11.94 93.10 128.57 5.87 0.05 0.07 EE(0.5) 22.68 98.76 101.99 11.25 0.05	66.77 21.67 413.13 3.42 1.40 48.11 EE _i 30.97 28.36 21.94 14.13 2.16 1.73	0.02 20.28 19.94 0.08 1.31 1.24 EE_ii 12.20 23.47 27.50 9.42 1.58 1.80	6.53 26.22 39.77 8.98 1.80 2.70 EE (0.5) 19.28 27.61 24.40 11.05 1.99 1.81	32.93 14.51 368.66 1.79 0.92 45.06 EE _i 16.94 19.55 17.62 0.06 1.10	0.04 13.78 14.19 0.05 0.89 0.86 EE .ii 5.13 15.27 17.29 1.01 0.99 1.03	7.38 16.68 24.38 0.16 1.01 1.23 EE(0.5) 11.56 18.05 18.00 0.09 1.05 1.05
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{ERSE} \\ \end{array}$	52.37 18.67 262.27 237.99 0.01 0.30 EE_i 27.34 37.46 29.76 121.15 0.02 0.02	0.03 19.05 19.60 0.15 0.01 0.01 EE _ii 8.24 24.63 29.98 42.97 0.01 0.02	$\begin{array}{c} 6.57 \\ 29.42 \\ 44.03 \\ 26.17 \\ 0.02 \\ 0.02 \\ \hline EE(0.5) \\ 17.23 \\ 33.45 \\ 30.46 \\ 75.03 \\ 0.02 \\ 0.02 \\ \end{array}$	26.12 53.09 524.15 119.41 0.03 0.88 EE _i 41.14 74.75 74.52 190.25 0.04 0.04	0.02 55.58 55.60 0.03 0.03 0.03 EE_ii 0.52 57.84 69.88 1.15 0.03 0.04	$\begin{array}{c} 13.96 \\ 63.01 \\ 108.15 \\ 63.43 \\ 0.03 \\ 0.06 \\ \textbf{EE}(0.5) \\ 28.60 \\ 68.56 \\ 75.26 \\ 131.82 \\ 0.04 \\ 0.04 \\ \\ \textbf{EE}(\hat{r}_i) \end{array}$	60.01 116.99 614.25 29.24 0.06 0.80 EE.i 31.67 215.83 174.13 15.04 0.12 0.09	0.42 115.42 111.77 0.19 0.06 0.06 EE .ii 10.02 152.03 173.89 5.59 0.08 0.09 high res	7.48 172.39 254.23 3.18 0.09 0.14 $\mathbf{EE}(0.5)$ 19.92 193.72 177.69 9.30 0.10 0.10 esponse and $\mathbf{EE}(\hat{p_i})$	29.86 78.60 515.26 14.64 0.04 0.80 EE _i 32.92 106.41 102.07 16.36 0.06 0.05 high cor	0.13 78.57 79.37 0.07 0.04 0.04 EE _ii 2.89 90.02 98.64 1.20 0.05 0.05 relation EE _h	$\begin{array}{c} 11.94 \\ 93.10 \\ 128.57 \\ 0.05 \\ 0.07 \\ \hline \textbf{EE}(0.5) \\ 22.68 \\ 98.76 \\ 101.99 \\ 11.25 \\ 0.05 \\ 0.05 \\ \end{array}$	66.77 21.67 413.13 3.42 1.40 48.11 EE_i 30.97 28.36 21.94 14.13 2.16 1.73	0.02 20.28 19.94 0.08 1.31 1.24 EE _iii 12.20 23.47 27.50 9.42 1.58 1.80	$\begin{array}{c} 6.53 \\ 26.22 \\ 39.77 \\ 8.98 \\ 1.80 \\ 2.70 \\ \textbf{EE}(0.5) \\ 19.28 \\ 27.61 \\ 24.40 \\ 11.05 \\ 1.99 \\ 1.81 \\ \\ \textbf{EE}(\hat{p_i}) \end{array}$	32.93 14.51 368.66 1.79 0.92 45.06 EE _i 16.94 19.55 17.62 0.06 1.10 1.04	0.04 13.78 14.19 0.05 0.89 0.86 EE _ii 5.13 15.27 17.29 1.01 0.99 1.03	7.38 16.68 24.38 0.16 1.01 1.23 $\mathbf{EE}(0.5)$ 11.56 18.00 0.09 1.05 1.05 1.05
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \end{array}$	52.37 18.67 262.27 237.99 0.01 0.30 EE.i 27.34 37.46 29.76 121.15 0.02 0.02 naïve 51.51	0.03 19.05 19.60 0.15 0.01 0.01 EE_ii 8.24 24.63 29.98 42.97 0.01 0.02	6.57 29.42 44.03 26.17 0.02 0.02 $EE(0.5)$ 17.23 33.45 30.46 75.03 0.02 0.02 $EE(\hat{p}_i)$ 7.34	26.12 53.09 524.15 119.41 0.03 0.88 EE. i 41.14 74.75 74.52 190.25 0.04 0.04 naïve 25.67	0.02 55.58 55.60 0.03 0.03 0.03 EE.ii 0.52 57.84 69.88 1.15 0.03 0.04	$\begin{array}{c} 13.96 \\ 63.01 \\ 108.15 \\ 63.43 \\ 0.03 \\ 0.06 \\ \textbf{EE}(0.5) \\ 28.60 \\ 68.56 \\ 75.26 \\ 131.82 \\ 0.04 \\ 0.04 \\ \hline \textbf{EE}(\hat{\pi}_i) \\ 15.49 \\ \end{array}$	60.01 116.99 614.25 29.24 0.06 0.80 EE.i 31.67 215.83 174.13 15.04 0.12 0.09	0.42 115.42 111.77 0.19 0.06 0.06 EE .ii 10.02 152.03 173.89 5.59 0.08 0.09 high res EE .h	7.48 172.39 254.23 3.18 0.09 0.14 $\mathbf{EE}(0.5)$ 19.372 177.69 9.30 0.10 0.10 0.5ponse and $\mathbf{EE}(\hat{p_i})$ 15.36	29.86 78.60 515.26 14.64 0.80 EE.i 32.92 106.41 102.07 16.36 0.05 high cor naïve 29.59	0.13 78.57 79.37 0.07 0.04 0.04 EE.ii 2.89 90.02 98.64 1.20 0.05 0.05 relation EE.h	11.94 93.10 128.57 5.87 0.05 0.07 EE(0.5) 22.68 98.76 101.99 11.25 0.05 0.05 EE(π_i) 14.84	66.77 21.67 413.13 3.42 1.40 48.11 EE.i 30.97 28.36 21.94 14.13 2.16 1.73	0.02 20.28 19.94 0.08 1.31 1.24 EE .ii 12.20 23.47 27.50 9.42 1.58 1.80	6.53 26.22 39.77 8.98 1.80 2.70 $EE(0.5)$ 19.28 27.41 24.40 11.05 1.99 1.81 $EE(\hat{p_i})$	32.93 14.51 368.66 1.79 0.92 45.06 EE.i 16.94 19.55 17.62 0.06 1.10 1.04	0.04 13.78 14.19 0.05 0.89 0.86 EE _ii 5.13 15.27 17.29 1.01 0.99 1.03	7.38 16.68 24.38 0.16 1.01 1.23 EE(0.5) 11.56 18.05 18.00 0.09 1.05 1.05 EE($\hat{\pi}_i$) 5.68
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \\ \text{SE} \\ \text{SE} \\ \text{SE} \\ \\ \text{SE} \\ \text{SE} \\ \\ \text{SE} \\ \\ \text{SE} \\ \text{SE} \\ \\ S$	52.37 18.67 262.27 237.99 0.01 0.30 EE_i 27.34 37.46 29.76 121.15 0.02 0.02 naïve 51.51 11.84	0.03 19.05 19.60 0.15 0.01 0.01 EE.ii 8.24 24.63 29.98 42.97 0.01 0.02 EE.h 0.14	$\begin{array}{c} 6.57 \\ 29.42 \\ 44.03 \\ 26.17 \\ 0.02 \\ 0.02 \\ \textbf{EE}(0.5) \\ 17.23 \\ 33.45 \\ 30.46 \\ 75.03 \\ 0.02 \\ 0.02 \\ \\ \textbf{EE}(\hat{p}_i) \\ 7.34 \\ 16.17 \\ \end{array}$	26.12 53.09 524.15 119.41 0.03 0.88 EE_i 41.14 74.75 74.52 190.25 0.04 0.04 naïve 25.67 57.90	0.02 55.58 55.60 0.03 0.03 0.03 0.52 57.84 69.88 1.15 0.03 0.04	$\begin{array}{c} 13.96 \\ 63.01 \\ 108.15 \\ 63.43 \\ 0.03 \\ 0.06 \\ \textbf{EE}(0.5) \\ 28.60 \\ 68.56 \\ 75.26 \\ 131.82 \\ 0.04 \\ \textbf{0.04} \\ \\ \textbf{EE}(\hat{\pi}_i) \\ 15.49 \\ 67.07 \end{array}$	60.01 116.99 614.25 29.24 0.06 0.80 EE.i 31.67 215.83 174.13 15.04 0.12 0.09	0.42 115.42 111.77 0.19 0.06 0.06 EE.ii 10.02 152.03 173.89 5.59 0.08 0.09 high res EE.h	7.48 172.39 254.23 3.18 0.09 0.14 $EE(0.5)$ 19.92 177.69 9.30 0.10 0.10 esponse and $EE(\hat{p_i})$ 15.36 87.98	29.86 78.60 515.26 14.64 0.80 EE_i 32.92 106.41 102.07 16.36 0.06 0.05 high cor maïve 29.59 55.52	0.13 78.57 79.37 0.07 0.04 0.04 EE .ii 2.89 90.02 98.64 1.20 0.05 relation EE .h 0.27 54.92	$\begin{array}{c} 11.94 \\ 93.10 \\ 128.57 \\ 5.87 \\ 0.05 \\ 0.07 \\ \textbf{EE}(0.5) \\ 22.68 \\ 98.76 \\ 101.99 \\ 11.25 \\ 0.05 \\ 0.05 \\ \\ \textbf{EE}(\hat{\pi}_i) \\ 14.84 \\ 62.36 \\ \end{array}$	66.77 21.67 413.13 3.42 1.40 48.11 EEL.i 30.97 28.36 21.94 14.13 2.16 1.73 naïve 44.50 48.39	0.02 20.28 19.94 0.08 1.31 1.24 EE_ii 12.20 23.47 27.50 9.42 1.58 1.80 EE_h 1.15 63.44	$\begin{array}{c} 6.53 \\ 26.22 \\ 39.77 \\ 8.98 \\ 1.80 \\ 2.70 \\ \hline \textbf{EE}(0.5) \\ 19.28 \\ 27.61 \\ 24.40 \\ 11.05 \\ 1.99 \\ 1.81 \\ \hline \textbf{EE}(\hat{p}_i) \\ 7.21 \\ 65.46 \\ \end{array}$	32.93 14.51 368.66 1.79 0.92 45.06 EE. i 16.94 19.55 17.62 0.06 1.10 1.04 naïve 22.49 36.36	0.04 13.78 14.19 0.05 0.89 0.86 EE .ii 5.13 15.27 17.29 1.01 0.99 1.03 EE .h	$\begin{array}{c} 7.38\\ 16.68\\ 24.38\\ 0.16\\ 1.01\\ 1.23\\ \mathbf{EE}(0.5)\\ 11.56\\ 18.05\\ 18.00\\ 0.09\\ 1.05\\ 1.05\\ \end{array}$
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \end{array}$	52.37 18.67 262.27 237.99 0.01 0.30 EE_i 27.34 37.46 29.76 121.15 0.02 0.02 naïve 51.51 11.84 259.27	0.03 19.05 19.60 0.15 0.01 EE_ii 8.24 24.63 29.98 42.97 0.01 0.02 EE_h 0.14 11.35 11.15	6.57 29.42 44.03 26.17 0.02 0.02 $EE(0.5)$ 17.23 33.45 30.46 75.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02	26.12 53.09 524.15 119.41 0.03 0.88 EE _i 41.14 74.75 74.52 190.25 0.04 0.04 0.04 maïve 25.67 57.90 519.82	0.02 55.58 55.60 0.03 0.03 EE.ii 0.52 57.84 69.88 1.15 0.03 0.04 EE_h 0.10 59.12 59.43	$\begin{array}{c} 13.96 \\ 63.01 \\ 108.15 \\ 63.43 \\ 0.03 \\ 0.06 \\ \textbf{EE}(0.5) \\ 28.60 \\ 75.26 \\ 131.82 \\ 0.04 \\ 0.04 \\ 0.04 \\ \hline \textbf{EE}(\hat{\pi}_i) \\ 15.49 \\ 67.07 \\ 115.64 \\ \end{array}$	60.01 116.99 614.25 29.24 0.06 0.80 EE.i 31.67 215.83 174.13 15.04 0.12 0.09 naïve 60.66 67.27 606.22	0.42 115.42 111.77 0.19 0.06 0.06 EE.ii 10.02 152.03 173.89 0.08 0.09 high res EE_h 0.63 62.30 59.94	7.48 172.39 254.23 3.18 0.09 0.14 $EE(0.5)$ $19.9.2$ 177.69 9.30 0.10 0.10 0.10 esponse and $EE(\hat{p_i})$ 15.36 87.98 87.98 128.93	29.86 78.60 515.26 14.64 0.04 0.80 EE_i 32.92 106.41 102.07 16.36 0.06 0.05 high cor naïve 29.59 55.52 509.42	0.13 78.57 79.37 0.07 0.04 EE_ii 2.89 90.02 98.64 1.20 0.05 0.05 relation EE_h 0.27 54.92 54.08	11.94 93.10 128.57 5.87 0.05 0.07 EE(0.5) 22.68 98.76 101.99 11.25 0.05 0.05 14.84 62.36 91.22	66.77 21.67 413.13 3.42 1.40 48.11 EE_i 30.97 28.36 21.94 14.13 2.16 1.73 naïve 44.50 48.39 503.12	0.02 20.28 19.94 0.08 1.31 1.24 EE.ii 12.20 23.47 27.50 9.42 1.58 1.80 EE_h 1.15 63.44 53.44	6.53 26.22 39.77 8.98 1.80 2.70 $EE(0.5)$ 19.28 27.61 24.40 11.05 1.99 1.81 $EE(\hat{p}_i)$ 7.21 65.46 82.07	32.93 14.51 368.66 1.79 0.92 45.06 EE. i 16.94 19.55 17.62 0.06 1.10 1.04 naïve 22.49 36.36 415.69	0.04 13.78 14.19 0.05 0.89 0.86 EE_ii 5.13 15.27 17.29 1.01 0.99 1.03 EE_h 0.34 41.11 37.26	$\begin{array}{c} 7.38 \\ 16.68 \\ 24.38 \\ 0.16 \\ 1.01 \\ 1.23 \\ \hline{\textbf{EE}(0.5)} \\ 11.56 \\ 18.05 \\ 18.05 \\ 1.05 \\ 1.05 \\ \hline \end{array}$ $\begin{array}{c} 11.56 \\ 18.05 \\ 18.05 \\ 1.05 \\ \hline \end{array}$ $\begin{array}{c} 1.56 \\ 1.05 \\ 1.05 \\ \hline \end{array}$
$\begin{array}{l} \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{APRB}_{\Delta(\beta_0)} \\ $	52.37 18.67 262.27 237.99 0.01 0.30 EE.i 27.34 37.46 29.76 121.15 0.02 0.02 naïve 51.51 11.84 259.27 96.09	0.03 19.05 19.60 0.15 0.01 EE_ii 8.24 24.63 29.98 42.97 0.01 0.02 EE_h 0.14 11.15 14.12	6.57 29.42 44.03 26.17 0.02 0.02 $EE(0.5)$ 17.23 33.45 30.46 75.03 0.02 0.02 $EE(\hat{p_i})$ 7.34 16.17 24.41 7.91	26.12 53.09 524.15 119.41 0.03 0.88 EE_i 41.14 74.75 74.52 190.25 0.04 0.04 maïve 25.67 57.90 519.82	0.02 55.58 55.60 0.03 0.03 0.03 EE.ii 0.52 57.84 69.88 1.15 0.03 0.04 EE_h 0.10 59.12 59.43 1.42	13.96 63.01 108.15 63.43 0.03 0.06 $\mathbf{EE}(0.5)$ 28.60 68.56 75.26 131.82 0.04 0.04 $\mathbf{EE}(\hat{\pi}_i)$ 15.49 67.07 115.64 7.49	60.01 116.99 614.25 29.24 0.06 0.80 EE.i 31.67 215.83 174.13 15.04 0.12 0.09 naïve 60.66 67.27 606.22 79.38	0.42 115.42 111.77 0.19 0.06 0.06 EE .ii 10.02 152.03 173.89 5.59 0.08 0.09 high res EE _h 0.63 62.30 59.94 14.29	7.48 172.39 254.23 3.18 0.09 0.14 EE(0.5) 19.92 193.72 177.69 9.30 0.10 0.10 EE(\hat{p}_i) 15.36 87.98 128.93 11.90	29.86 78.60 515.26 14.64 0.04 0.80 EE. i 32.92 106.41 102.07 16.36 0.05 bigh cor naïve 29.59 55.52 509.42 37.28	0.13 78.57 79.37 0.07 0.04 EE_ii 2.89 90.02 98.64 1.20 0.05 relation EE_h 0.27 54.08 5.56	11.94 93.10 128.57 5.87 0.05 0.07 EE(0.5) 22.68 98.76 101.99 11.25 0.05 0.05 EE($\hat{\pi}_i$) 14.84 62.36 91.22 0.84	66.77 21.67 413.13 3.42 1.40 48.11 EE_i 30.97 28.36 21.94 14.13 2.16 1.73 naïve 44.50 48.39 503.12 60.64	0.02 20.28 19.94 0.08 1.31 1.24 EE .ii 12.20 23.47 27.50 9.42 1.58 1.80 EE .h 1.15 63.44 53.44 2.92	6.53 26.22 39.77 8.98 1.80 2.70 $EE(0.5)$ 19.28 27.61 24.40 11.05 1.99 1.81 $EE(\hat{p_i})$ 7.21 65.46 82.07 2.09	32.93 14.51 368.66 1.79 0.92 45.06 EE.i 16.94 19.55 17.62 0.06 1.10 1.04 maïve 22.49 36.36 415.69 30.66	0.04 13.78 14.19 0.05 0.89 0.86 EE _ii 5.13 15.27 17.29 1.01 0.99 1.03 EE _h 0.34 41.11 37.26 0.89	$\begin{array}{c} 7.38 \\ 16.68 \\ 24.38 \\ 0.16 \\ 1.01 \\ 1.23 \\ \hline \text{EE}(0.5) \\ 11.56 \\ 18.05 \\ 18.00 \\ 0.09 \\ 1.05 \\ 1.05 \\ \hline \\ \text{EE}(\hat{\pi_i}) \\ \hline \\ 5.68 \\ 49.66 \\ 60.83 \\ 6.02 \\ \end{array}$
$\begin{array}{c} \text{SE} \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ $	52.37 18.67 262.27 237.99 0.01 0.30 EE.i 27.34 37.46 29.76 121.15 0.02 0.02 naïve 51.51 11.84 259.27 96.09 0.11	0.03 19.05 19.60 0.15 0.01 EE.ii 8.24 24.63 29.98 42.97 0.01 0.02 EE_h 0.14 11.35 11.15 14.12 0.08	6.57 29.42 44.03 26.17 0.02 0.02 $EE(0.5)$ 17.23 33.45 30.46 75.03 0.02	26.12 53.09 524.15 119.41 0.03 0.88 EE. i 41.14 74.75 74.52 190.25 0.04 0.04 naïve 25.67 57.90 519.82 41.16 0.15	0.02 55.58 55.60 0.03 0.03 EE.ii 0.52 57.84 69.88 1.15 0.03 0.04 EE_h 0.10 59.12 59.43 1.42 0.15	13.96 63.01 108.15 63.43 0.03 0.06 $\mathbf{EE}(0.5)$ 28.60 68.56 75.26 131.82 0.04 0.04 $\mathbf{EE}(\hat{\pi}_i)$ 15.49 67.07 115.64 7.49	60.01 116.99 614.25 29.24 0.06 0.80 EE.i 31.67 215.83 174.13 15.04 0.12 0.09 naïve 60.66 67.27 606.22 79.38 0.38	0.42 115.42 111.77 0.19 0.06 EE .ii 10.02 152.03 173.89 5.59 0.08 0.08 0.63 62.30 59.94 14.29 0.36	7.48 172.39 254.23 3.18 0.09 0.14 EE(0.5) 19.92 193.72 177.69 9.30 0.10 0.10 eponse and EE($\hat{p_i}$) 15.36 87.98 128.93 11.90 0.42	29.86 78.60 515.26 14.64 0.04 0.80 EE.i 32.92 106.41 102.07 16.36 0.06 0.05 high cor naïve 29.59 55.52 509.42 37.28 37.28	0.13 78.57 79.37 0.04 0.04 EE.ii 2.89 98.64 1.20 0.05 0.05 relation EE.h 0.27 54.92 54.08 5.56 0.25	11.94 93.10 128.57 0.05 5.87 0.05 0.07 EE(0.5) 22.68 98.76 101.99 11.25 0.05 0.05 14.84 62.36 91.22 0.84	66.77 21.67 413.13 3.42 1.40 48.11 EE_i 30.97 28.36 21.94 14.13 2.16 1.73 naïve 44.50 48.39 503.12 60.64 4.49	0.02 20.28 19.94 0.08 1.31 1.24 EE.ii 12.20 23.47 27.50 9.42 1.58 1.80 EE_h 1.15 63.44 53.44 2.99 5.76	6.53 26.22 39.77 8.98 1.80 2.70 $EE(0.5)$ 19.28 27.61 24.40 11.05 1.99 1.81 $EE(\hat{p_i})$ 7.21 65.46 82.07 2.09 6.06	32.93 14.51 368.66 1.79 0.92 45.06 EE. i 16.94 19.55 17.62 0.06 1.10 1.04 naïve 22.49 36.36 415.69 30.66 3.27	0.04 13.78 14.19 0.05 0.89 0.86 EE .ii 5.13 15.27 17.29 1.01 0.99 1.03 EE .h 0.34 41.11 37.26 0.89 3.65	$\begin{array}{c} 7.38 \\ 16.68 \\ 24.38 \\ 0.16 \\ 1.01 \\ 1.23 \\ \textbf{EE}(0.5) \\ 11.56 \\ 18.05 \\ 18.00 \\ 0.09 \\ 1.05 \\ 1.05 \\ 1.05 \\ 66.83 \\ 60.83 \\ 6.02 \\ 4.42 \\ \end{array}$
$\begin{array}{l} \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{APRB}_{\Delta(\beta_0)} \\ $	52.37 18.67 262.27 237.99 0.01 0.30 EE_i 27.34 629.76 121.15 0.02 0.02 naïve 51.51 11.84 259.27 96.09 0.11 0.46	0.03 19.05 19.60 0.15 0.01 0.01 EE_ii 8.24 63 29.98 42.97 0.01 0.02 EE_h 0.14 11.35 11.15 14.12 0.08	6.57 29.42 44.03 26.17 0.02 0.02 $EE(0.5)$ 17.23 33.45 30.46 75.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.04 0.05	26.12 53.09 524.15 10.03 0.88 EE_i 41.14 74.75 74.52 190.25 0.04 naïve 25.67 57.90 519.82 41.16 0.15	0.02 55.58 55.60 0.03 0.03 0.03 EE_ii 0.52 57.84 69.88 1.15 0.03 0.04 EE_h 0.10 59.12 59.43 1.42 0.15 0.15	13.96 63.01 108.15 63.43 0.03 0.06 $\mathbf{EE}(0.5)$ 28.60 68.56 75.26 131.82 0.04 0.04 $\mathbf{EE}(\hat{\pi}_i)$ 15.49 67.07 115.64 7.49 0.17	60.01 116.99 614.25 29.24 0.06 0.80 EE; 31.67 215.83 174.13 15.04 0.12 0.09 naïve 60.66 67.27 606.22 79.38 0.38	0.42 115.42 111.77 0.19 0.06 0.06 EE.ii 10.02 152.03 173.89 5.59 0.08 0.09 high res EE.h 0.63 62.30 59.94 14.29 0.36	7.48 172.39 254.23 3.18 0.09 0.14 $EE(0.5)$ 19.92 193.72 177.69 9.30 0.10 0.10 0.10 0.10 $EE(\hat{p_i})$ 15.36 87.98 128.93 11.90 0.42	29.86 78.60 515.26 14.64 0.04 0.80 EE.i 32.92 106.41 102.07 16.36 0.05 high cor naïve 29.59 55.52 509.42 37.28 0.27 1.12	0.13 78.57 79.37 0.07 0.04 0.04 EE_ii 2.89 90.02 98.64 1.20 0.05 relation EE_h 0.25 54.08 5.56 0.25 0.20	$\begin{array}{c} 11.94 \\ 93.10 \\ 128.57 \\ 0.05 \\ 0.07 \\ \hline \textbf{EE}(0.5) \\ 22.68 \\ 98.76 \\ 101.99 \\ 11.25 \\ 0.05 \\ \hline \textbf{0.05} \\ \\ \hline \textbf{EE}(\hat{\pi_i}) \\ 14.84 \\ 62.36 \\ 91.22 \\ 0.84 \\ 0.26 \\ 0.30 \\ \end{array}$	66.77 21.67 413.13 3.42 1.40 48.11 EE_i 30.97 28.36 21.94 14.13 2.16 1.73 naïve 44.50 48.39 503.12 60.64 4.49 64.93	0.02 20.28 19.94 0.08 1.31 1.24 EE.ii 12.20 23.47 27.50 9.42 1.58 1.80 EE.h 1.15 63.44 53.44 2.92 5.76 4.89	6.53 26.22 39.77 8.98 1.80 2.70 $EE(0.5)$ 19.28 27.61 24.40 11.05 1.99 1.81 $EE(\hat{p_i})$ 7.21 65.46 82.07 2.09 6.06 6	32.93 14.51 368.66 1.79 0.92 45.06 EE.i 16.94 19.55 17.62 0.06 1.10 1.04 naïve 22.49 36.36 415.69 30.66 3.27 53.56	0.04 13.78 14.19 0.05 0.89 0.86 EE.ii 5.13 15.27 17.29 1.01 0.99 1.03 EE.h 0.34 41.11 37.26 0.89 3.65 3.33	$\begin{array}{c} 7.38 \\ 16.68 \\ 24.38 \\ 0.16 \\ 1.01 \\ 1.23 \\ \hline \text{EE}(0.5) \\ 11.56 \\ 18.00 \\ 0.09 \\ 1.05 \\ 1.05 \\ \hline \\ \text{EE}(\hat{\pi_i}) \\ 5.68 \\ 49.66 \\ 60.83 \\ 6.02 \\ 4.42 \\ 5.43 \\ \end{array}$
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \text{ERSE} \\ \end{array}$	52.37 18.67 262.27 237.99 0.01 0.30 EE_i 27.34 37.46 29.76 121.15 0.02 0.02 naïve 51.51 11.84 259.27 96.09 0.11 0.46 EE_i	0.03 19.05 19.60 0.15 0.01 0.01 EE.ii 8.24.63 29.98 42.97 0.01 0.02 EE.h 0.14 11.35 11.15 14.12 0.08 0.06 EE.ii	6.57 29.42 44.03 26.17 0.02 0.02 $EE(0.5)$ 17.23 33.45 75.03 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0.05 0.05 0.09 0.09 0.09 0.09	26.12 53.09 524.15 119.41 0.03 0.88 EE_i 41.14 74.75 74.52 190.25 0.04 0.04 0.04 25.67 57.90 519.82 41.16 0.15 0.95 EE_i	0.02 55.58 55.60 0.03 0.03 0.03 EE.ii 0.52 57.84 69.88 1.15 0.03 0.04 EE.h 0.10 59.43 1.42 0.15 0.15 EE.ii	13.96 63.01 108.15 63.43 0.03 0.06 $EE(0.5)$ 28.60 68.56 68.56 68.56 131.82 0.04 0.04 $EE(\hat{\pi}_i)$ 15.49 67.07 115.64 7.49 0.17 0.27 $EE(0.5)$	60.01 116.99 614.25 29.24 0.06 0.80 EE.i. 31.67 215.83 174.13 15.04 0.12 0.09 naïve 60.66 67.27 606.22 79.38 0.38 1.42 EE.i	0.42 115.42 111.77 0.19 0.06 0.06 EE.ii 10.02 152.03 173.89 5.59 0.09 high res EE.h 0.63 62.30 59.94 14.29 0.36 0.27 EE.ii	7.48 172.39 254.23 3.18 0.09 0.14 $EE(0.5)$ 19.92 177.69 9.30 0.10 0.10 0.10 sponse and $EE(\hat{p}_i)$ 15.36 87.98 128.93 11.90 0.42 0.48 0.48 0.48	29.86 78.60 78.60 14.64 0.04 0.80 EE.i 32.92 106.41 102.07 16.36 0.05 high cor naïve 29.59 55.52 509.42 37.28 0.27 1.12 EE.i	0.13 78.57 79.37 0.04 0.04 0.04 EE.ii 2.89 90.02 98.64 1.20 0.05 relation EE.h 0.27 54.92 54.08 5.56 0.25 0.25 0.25	11.94 93.10 128.57 5.87 0.05 0.07 EE(0.5) 22.68 98.76 101.99 11.25 0.05 0.05 14.84 62.36 91.22 0.84 0.26 0.30 0.84 0.26 0.30 0.84	66.77 21.67 413.13 3.42 1.40 48.11 EE.i 30.97 28.36 21.94 14.13 2.16 1.73 naïve 44.50 48.39 503.12 60.64 4.49 64.93 EE.i	0.02 20.28 19.94 0.08 1.31 1.24 EE.ii 12.20 23.47 27.50 9.42 1.58 1.80 EE.h 1.15 63.44 53.44 2.92 5.76 4.89 EE.ii	6.53 26.22 39.77 8.98 1.80 2.70 $EE(0.5)$ 19.28 27.61 24.40 11.05 1.99 1.81 7.21 65.46 82.07 2.09 6.06 7.64 82.07	32.93 14.51 368.66 1.79 0.92 45.06 EE.i 16.94 19.55 17.62 0.06 1.10 1.04 22.49 36.36 415.69 30.66 3.27 53.56 EE.i	0.04 13.78 14.19 0.05 0.89 0.86 EE.ii 5.13 15.27 17.29 1.01 0.99 1.03 41.11 37.26 0.89 3.65 3.33 EE.ii	$\begin{array}{c} 7.38\\ 16.68\\ 24.38\\ 0.16\\ 1.01\\ 1.23\\ \textbf{EE}(0.5)\\ 11.56\\ 18.05\\ 18.00\\ 0.09\\ 1.05\\ 1.05\\ \\ \textbf{EE}(\hat{\pi}_i)\\ 5.68\\ 49.66\\ 60.83\\ 6.02\\ 4.42\\ 5.43\\ \textbf{EE}(0.5)\\ \end{array}$
$\begin{array}{c} \text{SE} \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ $	52.37 18.67 262.27 262.27 0.01 0.30 EE_i 27.34 37.46 29.76 121.15 0.02 0.02 naïve 51.51 11.84 259.27 96.09 0.11 0.46 EE_i 27.91	0.03 19.05 19.60 0.15 0.01 0.01 EE_ii 8.24 24.63 29.98 42.97 0.01 0.02 EE_h 0.14 11.35 11.15 14.12 0.08 0.06 EE_iii 6.89	$\begin{array}{c} 6.57 \\ 29.42 \\ 44.03 \\ 26.17 \\ 0.02 \\ 0.02 \\ EE(0.5) \\ 17.23 \\ 33.45 \\ 30.46 \\ 75.03 \\ 0.02 \\ 0.02 \\ 0.02 \\ E(\hat{p_i}) \\ 16.17 \\ 24.41 \\ 1.09 \\ 0.09 \\ 0.09 \\ EE(0.5) \\ 17.85 \\ \end{array}$	26.12 53.09 524.15 119.41 0.03 0.88 EE_i 41.14 74.75 74.52 190.25 0.04 0.04 25.67 57.90 519.82 41.16 0.15 0.95 45.09 45.09 45.09 45.09 45.09 45.09 45.09 45.09 45.09 45.09 46.	0.02 55.58 55.60 0.03 0.03 0.52 57.84 69.88 1.15 0.03 0.04 EE_h 0.10 59.12 59.43 1.42 0.15 0.15 EE_iii	$\begin{array}{c} 13.96 \\ 63.01 \\ 108.15 \\ 63.43 \\ 0.03 \\ 0.06 \\ \textbf{EE}(0.5) \\ 28.60 \\ 68.56 \\ 75.26 \\ 131.82 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.07 \\ \textbf{EE}(\hat{\pi}_i) \\ 15.49 \\ 0.7.07 \\ 115.64 \\ 7.49 \\ 0.17 \\ 0.27 \\ \textbf{EE}(0.5) \\ 31.80 \\ 0.21 \\ 0.22 \\ \textbf{EE}(0.5) \\ 0.23 \\ \textbf{EE}(0.5) \\ 0.24 \\ \textbf{EE}(0.5) \\ 0.25 \\ \textbf{EE}(0.5) \\ 0.27 \\ \textbf{EE}(0.5) \\ 0.27 \\ \textbf{EE}(0.5) \\ 0.28 \\$	60.01 116.99 614.25 29.24 0.06 0.80 0.80 EE.i 31.67 215.83 174.13 15.04 0.12 0.09 naïve 60.66 67.27 606.22 79.38 0.38 1.42 EE.i 40.02	0.42 115.42 111.77 0.19 0.06 0.06 EE.ii 10.02 152.03 173.89 5.59 0.08 0.09 high res EE.h 0.63 62.30 59.94 14.29 0.36 0.27 EE.ii	7.48 172.39 254.23 3.18 0.09 0.14 $EE(0.5)$ 19.92 193.72 177.69 9.30 0.10 0.10 0.10 0.5 19.5 19.8 12.8 15.36 15.36 15.36 15.36 10.4	29.86 78.60 78.60 515.26 14.64 0.04 0.80 EE_i 32.92 106.41 102.07 16.36 0.06 0.05 high cor naïve 29.59 55.52 509.42 37.28 0.27 1.12 EE_i 38.29	0.13 78.57 79.37 0.07 0.04 0.04 EE_ii 2.89 90.02 98.64 1.20 0.05 0.05 relation EEE_h 0.27 54.92 54.08 5.56 0.25 0.20 EE_ii 6.56	$\begin{array}{c} 11.94\\ 93.10\\ 128.57\\ \hline \\ 5.87\\ 0.05\\ 0.07\\ \hline \\ EE(0.5)\\ 22.68\\ 98.76\\ 101.99\\ 11.25\\ 0.0$	66.77 21.67 413.13 3.42 1.40 48.11 EE_i 30.97 28.36 21.94 14.13 2.16 1.73 naïve 44.50 48.39 503.12 60.64 4.49 64.93 EE_i 25.85	0.02 20.28 19.94 0.08 1.31 1.24 EE_ii 12.20 23.47 27.50 9.42 1.58 1.80 EE_h 1.15 63.44 53.44 2.92 5.76 4.89 EE_ii 5.61	6.53 26.22 39.77 8.98 1.80 2.70 EE(0.5) 19.28 27.61 24.40 11.05 1.99 1.81 65.46 82.07 2.09 6.06 7.64 EE(0.5)	32.93 14.51 368.66 1.79 0.92 45.06 EE.i 16.94 19.55 17.62 0.06 1.10 1.04 22.49 36.36 415.69 30.66 3.27 53.56 EE.i 12.71	0.04 13.78 14.19 0.05 0.89 0.86 EE.ii 5.13 15.27 17.29 1.01 0.99 1.03 EE_h 0.34 41.11 37.26 0.89 3.65 3.33 EE.ii 4.21	$\begin{array}{c} 7.38\\ 16.68\\ 24.38\\ 0.16\\ 1.01\\ 1.23\\ EE(0.5)\\ 11.56\\ 18.00\\ 0.09\\ 1.05\\ 1.05\\ 1.05\\ 6.68\\ 49.66\\ 60.83\\ 6.02\\ 4.42\\ 5.43\\ EE(0.5)\\ 8.69\\ \end{array}$
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\$	52.37 18.67 262.27 237.99 0.01 0.30 EE.i 27.34 37.46 29.76 121.15 0.02 0.02 maïve 51.51 11.84 259.27 96.09 0.11 0.46 EE.i 27.91	0.03 19.05 19.60 0.15 0.01 0.01 EE_ii 8.24 24.63 29.98 42.97 0.01 0.02 EE_h 0.14 11.35 11.15 14.12 0.08 0.06 EE_ii 6.89 14.35	$\begin{array}{c} 6.57 \\ 29.42 \\ 44.03 \\ 26.17 \\ 0.02 \\ 0.02 \\ \hline \text{EE}(0.5) \\ 17.23 \\ 33.45 \\ 30.46 \\ 75.03 \\ 0.02 \\ 0.02 \\ \hline \\ \text{EE}(\hat{p}_i) \\ 7.34 \\ 16.17 \\ 24.41 \\ 7.91 \\ 0.09 \\ 0.09 \\ \hline \text{EE}(0.5) \\ 17.85 \\ 17.85 \\ \end{array}$	26.12 53.09 524.15 119.41 0.03 0.88 EE.i 41.14 74.75 74.52 190.25 0.04 0.04 marve 25.67 57.90 519.82 41.16 0.15 0.95 EE.i 45.62 78.30	0.02 55.58 55.60 0.03 0.03 0.03 0.52 57.84 69.88 1.15 0.03 0.04 EE_h 0.10 59.12 59.43 1.42 0.15 6.15	$\begin{array}{c} 13.96 \\ 63.01 \\ 108.15 \\ 63.43 \\ 0.03 \\ 0.06 \\ \hline \text{EE}(0.5) \\ 28.60 \\ 68.56 \\ 75.26 \\ 131.82 \\ 0.04 \\ \hline \text{EE}(\frac{\pi}{i}) \\ 15.49 \\ 67.07 \\ 115.64 \\ 7.49 \\ 0.17 \\ 0.27 \\ \hline \text{EE}(0.5) \\ 31.80 \\ 0.72.47 \\ \end{array}$	60.01 116.99 614.25 29.24 0.06 0.80 EE_i 31.67 215.83 174.13 15.04 0.12 0.09 naïve 60.66 67.27 606.22 79.38 0.38 1.42 EE_i 40.02	0.42 115.42 111.77 0.19 0.06 0.06 EE.ii 10.02 152.03 173.89 5.59 0.08 0.09 high res EE.h 0.63 62.30 59.94 14.29 0.36 0.27 EE.ii	7.48 172.39 254.23 3.18 0.09 0.14 EE(0.5) 19.92 177.69 9.30 0.10 EE(\hat{p}_i) 15.36 87.98 128.93 11.90 0.42 0.48 EE(0.5) 27.86 97.41	29.86 78.60 78.60 78.60 14.64 0.80 EE.i 32.92 106.41 102.07 16.36 0.06 0.05 high cor naïve 29.59 55.52 509.42 37.28 0.27 1.12 EE.i 38.29 71.34	0.13 78.57 79.37 0.07 0.04 0.04 EE_ii 2.89 90.02 98.64 1.20 0.05 relation EE_h 0.27 54.92 54.08 5.56 0.25 0.20 EE_ii 6.56 59.58	11.94 93.10 128.57 5.87 0.05 0.07 EE(0.5) 22.68 98.76 101.99 11.25 0.05 0.05 EE($\hat{\pi}_i$) 14.84 62.36 91.22 0.84 0.26 0.30 EE(0.5) 26.81	66.77 21.67 413.13 3.42 1.40 4.81 EE.i 30.97 28.36 21.94 14.13 2.16 1.73 maïve 44.59 503.12 60.64 4.49 64.93 EE.i 25.85 66.79	0.02 20.28 19.94 0.08 1.31 1.24 EE.ii 12.20 23.47 27.50 9.42 1.58 1.80 EE.h 1.15 63.44 2.92 5.76 4.89 EE.ii 5.61 5.61	6.53 26.22 39.77 8.98 1.80 2.70 $EE(0.5)$ 19.28 27.61 24.40 11.05 1.99 1.81 $EE(\hat{p}_i)$ 7.21 65.46 82.07 2.09 6.06 7.64 $EE(0.5)$ 16.72	32.93 14.51 368.66 1.79 0.92 45.06 EE.i 16.94 19.55 17.62 0.06 1.10 1.04 maïve 22.49 36.36 415.69 30.66 3.27 53.56 EE.i 12.71 57.08	0.04 13.78 14.19 0.05 0.89 0.86 EE.ii 5.13 15.27 17.29 1.01 0.99 1.03 EE_h 0.34 41.11 37.26 0.89 3.65 3.33 EE_ii 4.21 43.03	$\begin{array}{c} 7.38\\ 16.68\\ 24.38\\ 0.16\\ 1.01\\ 1.23\\ EE(0.5)\\ 11.56\\ 18.00\\ 0.09\\ 1.05\\ 1.05\\ \\ EE(\pi_i)\\ 5.68\\ 49.66\\ 60.83\\ 6.02\\ 4.42\\ 4.543\\ EE(0.5)\\ 8.69\\ 53.75\\ \end{array}$
$\begin{array}{l} \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \end{array}$	52.37 18.67 262.27 237.99 0.01 0.30 EE.i 27.34 37.46 29.76 121.15 0.02 0.02 51.51 11.84 259.27 96.09 0.11 0.46 EE.i 27.91 19.63 16.06	0.03 19.05 19.60 0.15 0.01 EE_ii 8.24 24.63 29.98 42.97 0.01 0.02 EE_h 0.14 11.35 14.12 0.08 0.06 EE_ii 6.89 14.35	6.57 29.42 44.03 26.17 0.02 0.02 $EE(0.5)$ 17.23 33.45 30.46 75.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.04 0.04 0.05	26.12 53.09 524.15 119.41 0.03 0.88 EE.i 41.14 74.75 74.52 190.25 0.04 0.04 naïve 25.67 57.90 519.82 41.16 0.15 0.95 EE.i 45.62 78.30 78.79	0.02 55.58 55.60 0.03 0.03 E.E.ii 0.52 57.84 69.88 1.15 0.03 0.04 EE_h 0.10 59.12 59.43 1.42 0.15 59.43 1.42 0.15 61.82 EE_iii 1.16 61.82 74.51	13.96 63.01 108.15 63.43 0.03 0.06 $EE(0.5)$ 28.60 68.56 75.26 131.82 0.04 0.04 $EE(\hat{\pi}_i)$ 15.49 67.07 115.64 7.49 0.17 0.27 $EE(0.5)$ 31.80 72.47	60.01 116.99 614.25 29.24 0.06 0.80 EE.i 31.67 215.83 174.13 15.04 0.12 0.09 naïve 60.66 67.27 606.22 79.38 0.38 1.42 EE.i 40.02 107.63 89.98	0.42 115.42 111.77 0.19 0.06 0.06 EE_ii 10.02 152.03 173.89 0.08 0.09 high res EE_h 0.63 62.30 62.30 62.30 62.20 EE_ii 0.25 79.98	7.48 172.39 254.23 3.18 0.09 0.14 $EE(0.5)$ 19.92 177.69 9.30 0.10 0.10 0.00 $EE(\hat{p_i})$ 15.36 87.98 128.93 11.90 0.42 0.48 0.48 0.48 0.48 0.49	29.86 78.60 78.60 515.26 14.64 0.04 0.80 EE.i 32.92 106.41 102.07 16.36 0.06 0.05 high cor naïve 29.59 55.52 509.42 37.28 0.27 1.12 EE.i 38.29 71.34 70.13	0.13 78.57 79.37 0.07 0.04 EE_ii 2.89 90.02 98.64 1.20 0.05 relation EE_h 0.27 54.92 54.08 5.56 0.25 0.20 EE_ii 6.56 59.58 66.89	11.94 93.10 128.57 5.87 0.05 0.07 EE(0.5) 22.68 98.76 101.99 11.25 0.05 0.05 EE($\hat{\pi}_i$) 14.84 62.36 91.22 0.84 0.26 0.30 EE(0.5) 26.81 66.33 70.17	66.77 21.67 413.13 3.42 1.40 48.11 EE.i 30.97 28.36 21.94 14.13 2.16 1.73 naïve 44.50 48.39 503.12 60.64 4.49 64.93 EE.i 25.85 66.79 41.37	0.02 20.28 19.94 0.08 1.31 1.24 EE_ii 12.20 23.47 27.50 9.42 1.58 1.80 EE_h 1.15 63.44 2.92 5.76 4.89 EE_ii 5.61 5.61 5.61 5.61 5.61	6.53 26.22 39.77 8.98 1.80 2.70	32.93 14.51 368.66 1.79 0.92 45.06 EE.i 16.94 19.55 17.62 0.06 1.10 1.04 naïve 22.49 36.36 31.69 30.66 3.27 53.56 EE.i 12.71 57.08	0.04 13.78 14.19 0.05 0.89 0.86 EE.ii 15.27 17.29 1.01 37.26 0.89 2.03 441.11 37.26 3.35 EE.h 4.21 4.21 4.303 44.91	$\begin{array}{c} 7.38\\ 16.68\\ 24.38\\ 0.16\\ 1.01\\ 1.23\\ \textbf{EE}(0.5)\\ 11.56\\ 18.00\\ 0.09\\ 1.05\\ 1.05\\ \textbf{EE}(\hat{\pi}_i)\\ 5.68\\ 49.66\\ 60.83\\ 6.02\\ 4.42\\ 5.43\\ \textbf{EE}(0.5)\\ 8.69\\ 53.75\\ 42.57\\ \end{array}$
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\$	52.37 18.67 262.27 237.99 0.01 0.30 EE.i 27.34 37.46 29.76 121.15 0.02 0.02 maïve 51.51 11.84 259.27 96.09 0.11 0.46 EE.i 27.91	0.03 19.05 19.60 0.15 0.01 0.01 EE_ii 8.24 24.63 29.98 42.97 0.01 0.02 EE_h 0.14 11.35 11.15 14.12 0.08 0.06 EE_iii 6.89 14.35 16.62 24.75	6.57 29.42 44.03 26.17 0.02 0.02 EE(0.5) 17.23 33.45 75.03 0.02 0.02 EE(\hat{p}_i) 7.34 16.17 24.41 7.91 0.09 0.09 EE(0.5) 17.85 17.89 16.59	26.12 53.09 524.15 119.41 0.03 0.88 EE.i 41.14 74.75 74.52 190.25 0.04 0.04 0.04 25.67 57.90 519.82 41.16 0.15 0.95 EE.i 45.62 78.30 78.79 78.79	0.02 55.58 55.60 0.03 0.03 0.03 0.52 57.84 69.88 1.15 0.03 0.04 EE_h 0.10 59.12 59.43 1.42 0.15 6.15	13.96 63.01 108.15 63.43 0.03 0.06 $EE(0.5)$ 28.60 68.56 75.26 131.82 0.04 0.04 15.49 67.07 115.64 7.49 0.17 0.27 $EE(0.5)$ 31.80 72.47 79.96 12.34	60.01 116.99 614.25 29.24 0.06 0.80 EE.i 31.67 215.83 174.13 15.04 0.12 0.09 naïve 60.66 67.27 606.22 79.38 0.38 1.42 EE.i 40.02	0.42 115.42 111.77 0.19 0.06 0.06 EE.ii 10.02 152.03 173.89 5.59 0.08 0.09 high res EE.h 0.63 62.30 59.94 14.29 0.36 0.27 EE.ii	7.48 172.39 254.23 3.18 0.09 0.14 EE(0.5) 19.92 177.69 9.30 0.10 EE(\hat{p}_i) 15.36 87.98 128.93 11.90 0.42 0.48 EE(0.5) 27.86 97.41	29.86 78.60 78.60 78.60 14.64 0.80 EE.i 32.92 106.41 102.07 16.36 0.06 0.05 high cor naïve 29.59 55.52 509.42 37.28 0.27 1.12 EE.i 38.29 71.34	0.13 78.57 79.37 0.07 0.04 EE_ii 2.89 90.02 98.64 1.20 0.05 relation EE_h 0.25 54.92 54.08 5.56 0.25 0.20 EE_ii 6.56 59.58 66.89	11.94 93.10 128.57 5.87 0.05 0.07 $EE(0.5)$ 22.68 98.76 11.25 0.05	66.77 21.67 413.13 3.42 1.40 4.81 EE.i 30.97 28.36 21.94 14.13 2.16 1.73 maïve 44.59 503.12 60.64 4.49 64.93 EE.i 25.85 66.79	0.02 20.28 19.94 0.08 1.31 1.24 23.47 27.50 9.42 1.58 1.80 63.44 53.44 2.99 5.76 4.89 EE.ii 5.61 5.61 5.61 5.61 5.61 5.61 5.61	6.53 26.22 39.77 8.98 1.80 2.70 EE(0.5) 19.28 27.61 24.40 11.05 1.99 1.81 65.46 82.07 2.09 6.06 7.64 EE(0.5) 16.72 67.22 47.87	32.93 14.51 368.66 1.79 0.92 45.06 EE.i 16.94 19.55 17.62 0.06 1.10 1.04 maïve 22.49 36.36 415.69 30.66 3.27 53.56 EE.i 12.71 57.08	0.04 13.78 14.19 0.05 0.89 0.86 EE.ii 5.13 15.27 17.29 1.01 0.99 1.03 EE_h 0.34 41.11 37.26 0.89 3.65 3.33 EE_ii 4.21 43.03	$\begin{array}{c} 7.38\\ 16.68\\ 24.38\\ 0.16\\ 1.01\\ 1.23\\ \hline \text{EE}(0.5)\\ 11.56\\ 18.00\\ 0.09\\ 1.05\\ 1.05\\ \hline 1.05\\ 4.66\\ 6.03\\ 6.02\\ 4.42\\ 5.43\\ \hline \text{EE}(0.5)\\ 8.69\\ 53.75\\ 42.57\\ 10.26\\ \end{array}$
$\begin{array}{c} \text{SE} \\ \text{SE} \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \\ \text{ERSE} \\ \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \\ \text{ERSE} \\ \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \\ \text{ERSE} \\ \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \\ \text{ERSE} \\ \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \\ \text{ERSE} \\ \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \\ \text{ERSE} \\ \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \\ \text{ERSE} \\ \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \\ \text{ERSE} \\ \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \\ \text{ERSE} \\ \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \\ \text{ERSE} \\ \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \\ \text{ERSE} \\ \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \\ \text{ERSE} \\ \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \\ \text{ERSE} \\ \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{ERSE} \\ \\ $	52.37 18.67 262.27 237.99 0.01 0.30 EE.i 27.34 37.46 29.76 121.15 0.02 0.02 11.84 259.27 96.09 0.11 0.46 EE.i 27.91 19.63 16.06 16.16	0.03 19.05 19.60 0.15 0.01 EE_ii 8.24 24.63 29.98 42.97 0.01 0.02 EE_h 0.14 11.35 14.12 0.08 0.06 EE_ii 6.89 14.35	6.57 29.42 44.03 26.17 0.02 0.02 $EE(0.5)$ 17.23 33.45 30.46 75.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.04 0.04 0.05	26.12 53.09 524.15 119.41 0.03 0.88 EE.i 41.14 74.75 74.52 190.25 0.04 0.04 naïve 25.67 57.90 519.82 41.16 0.15 0.95 EE.i 45.62 78.30 78.79	0.02 55.58 55.60 0.03 0.03 0.03 0.52 57.84 69.88 1.15 0.03 0.04 0.10 59.12 59.43 1.42 0.15 0.15 0.15 EE_ii	13.96 63.01 108.15 63.43 0.03 0.06 $EE(0.5)$ 28.60 68.56 75.26 131.82 0.04 0.04 $EE(\hat{\pi}_i)$ 15.49 67.07 115.64 7.49 0.17 0.27 $EE(0.5)$ 31.80 72.47	60.01 116.99 614.25 29.24 0.06 0.80 EE.i 31.67 215.83 174.13 15.04 0.12 0.09 naïve 60.66 67.27 606.22 79.38 1.42 EE.i 40.02 107.63 89.98	0.42 115.42 111.77 0.19 0.06 0.06 EE.ii 10.02 152.03 173.89 0.08 0.09 high res EE.h 0.63 62.30 0.27 EE.ii 0.25 79.98 92.05 92.05	7.48 172.39 254.23 3.18 0.09 0.14 $EE(0.5)$ 19.92 193.72 177.69 9.30 0.10 0.10 0.10 0.10 0.10 15.36 87.98 128.93 11.90 0.42 0.48 $EE(0.5)$ 27.86 97.41 92.10 1.07	29.86 78.60 78.60 515.26 14.64 0.80 EE.i 32.92 106.41 102.07 16.36 0.06 0.05 high cor naïve 29.59 55.52 509.42 37.28 0.27 1.12 EE.i 38.29 71.34 70.13	0.13 78.57 79.37 0.07 0.04 EE_ii 2.89 90.02 98.64 1.20 0.05 relation EE_h 0.27 54.92 54.08 5.56 0.25 0.20 EE_ii 6.56 59.58 66.89	11.94 93.10 128.57 5.87 0.05 0.07 EE(0.5) 22.68 98.76 101.99 11.25 0.05 0.05 EE($\hat{\pi}_i$) 14.84 62.36 91.22 0.84 0.26 0.30 EE(0.5) 26.81 66.33 70.17	66.77 21.67 413.13 3.42 1.40 48.11 EE.i 30.97 28.36 21.94 14.13 2.16 1.73 503.12 60.64 4.49 64.93 EE.i 25.85 66.79 41.37 19.57	0.02 20.28 19.94 0.08 1.31 1.24 EE_ii 12.20 23.47 27.50 9.42 1.58 1.80 EE_h 1.15 63.44 2.92 5.76 4.89 EE_ii 5.61 5.61 5.61 5.61 5.61	6.53 26.22 39.77 8.98 1.80 2.70	32.93 14.51 368.66 1.79 0.92 45.06 EE.i 16.94 19.55 17.62 0.06 1.10 1.04 36.36 415.69 30.66 53.27 53.56 EE.i 12.71 57.08 39.83 315.36	0.04 13.78 14.19 0.05 0.89 0.86 EE.ii 5.13 15.27 17.29 1.03 EE.h 0.34 41.11 0.89 3.65 3.65 3.63 EE.ii 4.21 43.03	$\begin{array}{c} 7.38\\ 16.68\\ 24.38\\ 0.16\\ 1.01\\ 1.23\\ \textbf{EE}(0.5)\\ 11.56\\ 18.00\\ 0.09\\ 1.05\\ 1.05\\ \textbf{EE}(\hat{\pi}_i)\\ 5.68\\ 49.66\\ 60.83\\ 6.02\\ 4.42\\ 5.43\\ \textbf{EE}(0.5)\\ 8.69\\ 53.75\\ 42.57\\ \end{array}$

Table E.18: Results under model (2.41), by response and correlation. Population: stable(Left), volatile(Middle), simulated(right). T=t=10, {Stable and Volatile: } $\Delta_{10}(\beta_0) = 11023.06$, $\Delta_{10}(\beta_1) = -0.4041$ }, {Simulated: $\Delta_{10}(\beta_0) = 2222.861$, $\Delta_{10}(\beta_1) = 14.4251$ }

	T							low res	ponse and	low corre	elation							
	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
$APRB_{\Delta(\beta_0)}$	119.27	0.22	3.79	48.73	0.17	13.22	91.29	1.78	2.57	40.38	1.24	6.66	224.79	5.22	66.79	92.91	1.25	47.92
SE	102.39	76.37	111.60	160.88	132.56	138.09	533.15	418.61	614.32	304.00	268.24	305.55	61.78	36.27	47.79	61.92	45.78	47.87
ERSE	454.21	79.81	158.48	687.28	134.51	189.15	885.46	429.75	858.05	623.33	271.30	386.41	712.19	35.86	65.07	544.45	45.39	68.85
$APRB_{\Delta(\beta_1)}$	429.67	1.48	2.69	180.17	1.79	50.59	116.21	1.60	1.80	53.74	1.36	9.21	62.78	0.40	14.40	29.42	0.03	4.78
SE ERSE	0.04	0.04	0.06	0.07	0.07	0.07 0.10	0.22 0.81	0.21	0.32 0.47	0.14	0.13	0.15 0.20	2.94 25.57	1.77 1.70	2.13 2.95	2.36 21.50	1.97 1.90	2.07 2.64
ERSE	0.32 EE_i	EE_ii	EE(0.5)	0.88 EE _i	EE_ii	EE(0.5)	0.81 EE _i	EE_ii	EE(0.5)	EE_i	0.14 EE _ii	EE(0.5)	25.57 EE_i	EE_ii	EE(0.5)	21.50 EE.i	1.90 EE _ii	EE(0.5)
$APRB_{\Delta(\beta_0)}$	25.48	25.01	15.40	31.83	1.96	22.68	19.34	34.85	9.37	18.41	0.48	12.34	106.14	66.78	83.48	117.58	5.06	85.09
SE	126.43	105.99	118.99	143.56	137.28	140.20	705.66	571.88	660.44	333.39	296.69	317.18	51.07	52.00	49.07	49.62	46.32	48.79
ERSE	102.33	129.91	111.12	148.12	155.52	153.20	552.78	689.29	598.71	309.15	318.50	316.80	43.69	59.73	47.85	48.39	51.86	51.25
$APRB_{\Delta(\beta_1)}$	76.94	119.94	40.98	126.61	0.66	89.57	29.25	44.99	14.64	25.22	0.67	16.84	31.33	2.61	22.56	10.62	3.20	7.19
SE	0.07	0.05	0.06	0.08	0.07	0.07	0.41	0.28	0.36	0.17	0.15	0.16	2.32	2.19	2.21	2.12	2.02	2.10
ERSE	0.06	0.06	0.06	0.08	0.08	0.08	0.32	0.35	0.33	0.16	0.16	0.16	1.97	2.39	2.12	2.10	2.16	2.17
		nn i	PP(A)			PP(A)			ponse and			DD (A)		nn i	TTP(A)		nn i	TT (A)
ADDD	naïve 156.38	EE _h 0.59	$\frac{EE(\hat{p}_i)}{12.20}$	naïve 64.30	EE_h 0.08	$EE(\hat{\pi}_i)$ 19.86	naïve 140.33	EE_h 1.55	$\frac{\mathbf{EE}(\hat{p}_i)}{12.42}$	naïve 57.12	EE _h 0.44	$\frac{\mathbf{EE}(\hat{\pi}_i)}{14.11}$	naïve 450.17	EE_h 23.19	$\frac{\mathbf{EE}(\hat{p}_i)}{17.68}$	naïve 172.63	EE _h 9.12	$\frac{EE(\hat{\pi}_i)}{46.47}$
$APRB_{\Delta(\beta_0)}$ SE	58.37	37.49	54.30	106.22	83.59	89.41	349.03	239.64	327.93	189.40	158.76	176.76	118.70	59.89	68.37	80.38	56.41	58.45
ERSE	451.09	38.06	71.49	684.02	84.38	134.81	1037.74	242.64	458.07	669.79	160.22	214.01	728.53	48.48	65.34	548.99	51.45	75.37
$APRB_{\Delta(\beta_1)}$	656.11	67.18	50.57	225.74	24.78	9.39	47.58	42.40	97.80	22.05	12.15	12.31	161.86	5.29	4.21	66.49	2.21	6.38
SE Z(PI)	0.43	0.21	0.23	0.32	0.24	0.26	1.24	1.03	1.44	0.66	0.59	0.66	10.20	5.04	5.63	5.55	3.79	3.92
ERSE	1.01	0.15	0.23	1.42	0.22	0.34	1.75	0.92	1.77	1.16	0.54	0.72	38.87	4.09	5.24	27.18	3.33	4.47
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
$APRB_{\Delta(\beta_0)}$	40.55	22.39	27.23	46.43	5.23	33.41	38.52	19.51	26.26	31.88	5.91	22.68	77.02	40.15	47.81	126.32	0.72	88.31
SE ERSE	59.84 46.52	53.24 61.70	56.97 50.85	95.33 93.97	85.44 98.00	92.33 98.56	367.81 300.77	316.28 381.87	347.33 326.40	186.14 175.65	173.29 183.45	180.58 180.84	58.28 37.48	82.40 75.21	62.98 44.49	58.70 52.11	57.57 57.36	58.78 55.84
$APRB_{\Delta(\beta_1)}$	22.54	135.47	12.61	93.91	10.54	2.08	101.31	107.25	99.18	10.54	13.99	11.39	32.11	28.62	18.81	16.70	3.92	10.72
SE $\Delta(\beta_1)$	0.22	0.25	0.22	0.27	0.25	0.27	1.61	1.36	1.52	0.70	0.65	0.68	4.57	6.84	5.09	3.87	3.87	3.92
ERSE	0.14	0.22	0.16	0.24	0.26	0.25	1.16	1.44	1.25	0.60	0.63	0.62	2.74	6.26	3.40	3.18	3.60	3.43
									sponse and	low corr								
	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
$APRB_{\Delta(\beta_0)}$	53.54	0.02	12.50	26.64	0.04	10.22	45.43	0.43	10.93	23.22	0.12	6.09	84.18	0.29	18.55	37.40	0.31	29.84
SE ERSE	19.56 262.34	19.76 19.64	26.40 40.53	51.33 524.32	54.06 55.61	58.97 87.74	129.28 624.83	128.30 126.46	179.49 256.74	88.13 525.38	88.72 87.99	98.18 115.16	28.47 460.90	24.16 23.65	31.66 43.61	33.69 435.65	30.83 31.55	33.05 45.13
$APRB_{\Delta(\beta_1)}$	243.31	0.04	56.07	121.92	0.04	47.50	64.41	0.60	15.08	33.09	0.19	8.93	5.83	0.00	1.53	2.74	0.02	1.74
SE	0.01	0.01	0.01	0.03	0.03	0.03	0.07	0.07	0.10	0.05	0.15	0.05	0.62	0.58	0.80	0.74	0.73	0.80
ERSE	0.30	0.01	0.02	0.89	0.03	0.05	0.79	0.07	0.14	0.79	0.05	0.06	16.85	0.57	1.13	17.27	0.75	1.12
	EE_i	EE _ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
$APRB_{\Delta(\beta_0)}$	29.68	0.33	20.71	24.37	5.94	16.77	26.44	0.07	18.31	14.66	4.17	9.86	34.02	10.56	25.45	69.83	17.63	49.33
SE	32.63	24.16	29.24	66.00	56.68	62.00	226.13	156.86	200.81	103.72	97.51	100.25	37.42	29.85	34.22	34.75	32.57	33.79
ERSE	28.13	27.58 1.80	28.64 94.42	69.61 114.10	66.43	69.66	183.45	177.33	185.42 25.98	102.33 21.66	101.67	102.56	31.25	33.14	32.32	36.81 4.14	36.60	37.37
$APRB_{\Delta(\beta_1)}$ SE	136.04 0.02	0.01	0.02	0.04	26.54 0.03	78.45 0.03	37.79 0.12	1.48 0.08	25.98 0.11	0.06	5.91 0.05	14.57 0.05	3.00 1.00	0.86 0.73	2.16 0.89	0.86	0.93	2.89 0.82
ERSE	0.02	0.01	0.02	0.04	0.03	0.03	0.12	0.08	0.11	0.05	0.05	0.05	0.82	0.73	0.83	0.91	0.18	0.92
	****	0.02		0.02			0.20		ponse and					0.00		0.02		****
	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
$APRB_{\Delta(\beta_0)}$	52.81	0.05	12.87	26.13	0.26	11.51	52.80	0.65	16.86	25.19	1.14	8.44	72.18	7.24	0.66	38.23	2.43	26.21
SE	11.70	11.21	15.77	57.44	58.69	65.30	72.93	68.04	87.97	55.29	54.68	59.00	23.28	28.46	32.19	35.19	36.14	38.96
ERSE	259.47	11.23	22.81	519.57	59.47	93.32	608.17	67.03	122.30	515.79	55.43	72.93	434.90	23.72	34.86	422.85	34.96	52.35
$APRB_{\Delta(\beta_1)}$ SE	97.19 0.11	14.34 0.08	5.02 0.09	38.67 0.15	0.21 0.15	5.17 0.17	106.83 0.37	22.93 0.37	4.77 0.43	55.81 0.22	11.68 0.22	6.01 0.24	51.49 2.13	1.61 2.61	7.50 2.97	26.75 2.17	0.77 2.31	3.58 2.51
ERSE	0.11	0.08	0.09	0.15	0.15	0.17	1.19	0.31	0.45	0.22	0.22	0.24	22.85	2.01	3.33	20.83	2.23	3.19
	EE_i	EE_ii	EE(0.5)	EE _i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE.i	EE_ii	EE(0.5)
$APRB_{\Delta(\beta_0)}$	29.84	1.13	20.94	26.93	7.02	18.69	34.92	6.55	25.18	17.65	7.25	12.34	19.82	19.09	9.28	68.43	11.42	46.92
SE $\Delta(\beta_0)$	19.48	13.67	17.54	72.75	62.30	68.60	105.04	82.28	95.37	61.82	58.42	60.10	33.23	27.91	33.18	42.18	37.62	40.42
ERSE	15.39	15.46	15.82	73.76	70.86	74.08	91.74	90.73	92.76	64.64	63.94	64.77	19.09	28.29	22.01	41.29	40.88	41.93
$APRB_{\Delta(\beta_1)}$	11.31	16.06	2.61	11.14	3.15	7.54	19.27	21.13	6.73	1.12	6.10	3.38	23.89	5.45	15.40	8.79	2.85	5.60
SE ERSE	0.09	0.09	0.09	0.18	0.16	0.18	0.47	0.42	0.45	0.24	0.24	0.24	3.09	2.56	3.07	2.70	2.43	2.60
	0.06	0.07	0.06	0.18	0.17	0.18	0.34	0.39	0.36	0.22	0.22	0.22	1.81	2.63	2.08	2.52	2.57	2.59

Table E.19: Results under model (2.43), by response and correlation. Population: stable(Left), volatile(Middle), simulated(right). T=t=4, {Stable and Volatile: } $\Delta_4(\beta_0) = 11023.06$, $\Delta_4(\beta_1) = -0.4041$ }, {Simulated: $\Delta_4(\beta_0) = 114.9522$, $\Delta_4(\beta_1) = -0.5296$ }

								low res	ponse and	low corr	elation							
	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$EE(\hat{\pi}_i)$	naïve	EE h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
$APRB_{\Delta(\beta_0)}$	165.76	0.55	105.74	78.20	12.20	127.34	60.19	160.84	115.75	78.81	9.52	113.93	125.26	16.95	139.15	54.48	12.68	20.86
SE	116.01	61.78	158.84	106.23	83.62	104.74	558.59	435.67	929.72	108.61	99.63	292.42	118.91	73.63	288.39	14.92	12.13	70.43
ERSE	444.90	59.22	224.61	689.99	92.48	169.45	913.95	499.46	1383.96	704.49	317.90	645.81	404.34	124.66	537.75	265.92	80.12	159.28
$APRB_{\Delta(\beta_1)}$	305.64	8.93	284.61	149.26	29.63	371.11	70.84	313.11	82.10	103.49	41.88	221.77	152.36	0.59	169.70	70.15	2.98	19.27
SE	0.04	0.04	0.07	0.08	0.08	0.11	0.30	0.39	0.65	0.08	0.10	0.30	1.25	0.93	4.17	0.43	0.38	1.71
ERSE	0.32	0.04	0.12	0.89	0.09	0.19	1.06	0.46	1.04	1.08	0.30	0.69	6.97	2.59	9.12	5.35	1.86	4.07
ADDD	EE_i 41.34	EE _ii 144.32	EE(0.5) 66.07	EE_i 85.87	EE_ii 112.52	EE(0.5) 95.04	EE _i 52.82	EE _ii 170.22	EE (0.5) 76.60	EE_i 101.38	EE_ii 101.88	EE(0.5) 103.25	EE_i 117.15	EE_ii 150.76	EE(0.5) 125.55	EE _i 2.12	EE_ii 30.04	EE(0.5) 9.51
$APRB_{\Delta(\beta_0)}$ SE	173.07	157.90	166.44	108.31	101.72	106.69	1032.39	877.38	990.23	411.09	225.34	361.54	357.07	249.21	329.97	98.48	58.97	9.51 87.12
ERSE	139.66	176.93	150.33	98.77	129.95	108.48	832.00	1031.71	894.02	416.37	475.58	438.92	325.08	389.99	346.75	103.97	124.67	110.62
$APRB_{\Delta(\beta_1)}$	200.68	342.08	231.97	377.55	297.97	360.18	48.33	157.14	4.88	298.47	156.89	261.72	140.86	184.17	152.07	9.64	33.10	1.88
SE $\Delta(\beta_1)$	0.10	0.06	0.09	0.13	0.10	0.12	0.97	0.55	0.82	0.51	0.23	0.41	5.86	3.33	5.16	2.69	1.33	2.27
ERSE	0.08	0.07	0.08	0.13	0.13	0.13	0.76	0.64	0.72	0.53	0.45	0.51	5.84	6.10	6.00	2.80	2.81	2.83
									ponse and									
	naïve	$\mathbf{EE}_{-}\mathbf{h}$	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$EE(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
$APRB_{\Delta(\beta_0)}$	162.00	0.06	97.65	76.12	11.14	127.34	54.19	168.63	100.11	77.64	11.61	111.23	119.64	13.98	119.38	47.42	7.03	11.99
SE	111.93	60.09	159.74	108.57	85.39	104.14	563.33	440.04	930.15	104.28	96.00	269.36	67.45	41.48	243.52	14.34	11.57	58.30
ERSE	439.20 687.74	55.77 86.35	216.83 508.28	685.05 227.68	90.06	164.52 32.97	916.08 6.78	491.67 123.53	1366.15 298.63	702.57 40.85	312.67 36.19	628.65 8.58	394.14 107.96	109.40 5.20	518.69 29.77	256.25 39.72	68.25 7.23	126.81 9.32
$APRB_{\Delta(\beta_1)}$ SE	0.46	0.22	0.51	0.32	0.24	0.29	1.84	1.32	3.28	0.29	0.25	0.70	1.78	0.98	5.98	0.61	0.48	1.59
ERSE	1.02	0.22	0.54	1.46	0.24	0.29	2.72	1.41	4.16	1.84	0.23	1.55	10.15	2.78	14.17	6.05	1.75	3.57
LIGH	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
$APRB_{\Delta(\beta_0)}$	33.33	135.65	58.12	84.46	112.07	93.94	34.08	157.56	59.03	97.39	99.48	99.61	97.04	130.31	105.61	6.80	20.61	0.66
SE $\Delta(\beta 0)$	174.29	157.27	167.76	104.36	103.13	104.18	1019.10	885.52	982.58	378.76	210.52	332.82	319.60	198.30	290.02	79.66	52.04	70.89
ERSE	134.33	167.27	144.08	94.02	125.46	103.85	820.15	1019.56	882.10	406.39	465.03	428.59	314.15	369.36	333.70	85.48	104.69	91.29
$APRB_{\Delta(\beta_1)}$	256.59	637.13	352.44	105.50	7.74	74.25	356.29	275.79	332.48	17.81	11.84	13.80	11.42	50.56	4.41	30.26	1.74	21.85
SE	0.45	0.55	0.47	0.28	0.28	0.28	3.59	3.14	3.46	0.97	0.56	0.85	8.01	4.80	7.21	2.23	1.33	1.97
ERSE	0.29	0.43	0.32	0.23	0.31	0.25	2.52	3.13	2.70	1.02	1.17	1.07	8.64	10.09	9.15	2.35	2.74	2.48
	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	high re	sponse and $\mathbf{EE}(\hat{p}_i)$	low corr	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
$APRB_{\Delta(\beta_0)}$	56.36	0.14	15.73	31.75	5.05	38.59	3.58	91.88	23.83	30.80	3.00	29.99	54.09	0.66	21.47	20.95	2.47	7.10
SE	27.94	26.82	48.51	51.10	53.67	65.21	271.25	306.48	467.04	50.82	56.75	183.56	13.65	11.48	103.16	6.91	6.61	23.81
ERSE	261.73	26.92	78.84	525.08	57.15	113.44	574.91	329.20	738.10	537.32	212.58	436.29	262.08	48.99	212.21	208.63	32.79	51.13
$APRB_{\Delta(\beta_1)}$	256.09	0.79	82.18	144.70	22.91	191.89	9.11	330.18	56.28	110.87	8.05	122.39	113.60	4.15	59.26	44.14	8.67	14.22
SE	0.01	0.01	0.02	0.03	0.03	0.03	0.14	0.17	0.25	0.03	0.03	0.10	0.28	0.28	1.66	0.17	0.17	0.49
ERSE	0.30	0.01	0.04	0.89	0.03	0.06	1.01	0.18	0.38	1.06	0.11	0.24	4.87	0.82	3.32	4.40	0.58	0.98
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
$APRB_{\Delta(\beta_0)}$	16.80	31.08	3.23	6.46	36.33	14.44	76.26	13.62	54.73	17.99	30.44	21.42 242.84	0.97	30.30	9.20	22.12	2.85	15.76
SE ERSE	64.78 52.15	42.02 51.17	57.73 52.65	76.30 70.45	58.40 74.54	71.51 73.47	601.06 482.99	411.15 489.99	543.68 492.35	291.30 312.11	142.99 303.58	312.85	148.67 133.00	78.08 141.10	130.57 137.82	29.65 39.11	25.73 46.59	27.16 41.37
$APRB_{\Delta(\beta_1)}$	60.13	149.81	0.82	55.73	177.16	87.36	216.71	67.77	152.28	91.38	121.15	98.16	20.30	76.87	35.91	45.82	3.99	32.59
SE	0.03	0.02	0.02	0.04	0.03	0.04	0.32	0.22	0.29	0.16	0.08	0.13	2.82	1.20	2.30	0.69	0.49	0.60
ERSE	0.03	0.03	0.03	0.04	0.04	0.04	0.25	0.25	0.26	0.17	0.16	0.17	2.33	1.98	2.24	0.83	0.82	0.82
							-	high res	ponse and	high cor	relation							
								mgn res	ponse and	mgn cor								
$APRB_{\Delta(\beta_0)}$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
	60.81	0.64	11.90	41.29	10.35	44.01	45.19	EE _h 98.44	$EE(\hat{p}_i)$ 63.26	naïve 42.36	EE_ h 8.81	3.05	47.90	1.85	11.92	17.50	4.41	8.79
SE	60.81 23.98	0.64 22.77	11.90 41.17	41.29 57.10	10.35 57.92	44.01 67.43	45.19 241.57	98.44 230.11	EE(\hat{p}_i) 63.26 381.72	naïve 42.36 62.89	EE_h 8.81 63.60	3.05 140.70	47.90 11.70	1.85 10.57	11.92 78.95	17.50 6.39	4.41 6.37	8.79 19.13
SE ERSE	60.81 23.98 262.08	0.64 22.77 22.12	11.90 41.17 64.05	41.29 57.10 523.20	10.35 57.92 60.97	44.01 67.43 120.89	45.19 241.57 607.57	EE_h 98.44 230.11 287.71	EE(\hat{p}_i) 63.26 381.72 708.37	naïve 42.36 62.89 536.78	8.81 63.60 186.74	3.05 140.70 324.84	47.90 11.70 252.78	1.85 10.57 37.87	11.92 78.95 155.94	17.50 6.39 204.11	4.41 6.37 25.88	8.79 19.13 39.22
SE ERSE APRB $_{\Delta(\beta_1)}$	60.81 23.98 262.08 156.81	0.64 22.77 22.12 32.24	11.90 41.17 64.05 55.12	41.29 57.10 523.20 73.84	10.35 57.92 60.97 8.82	44.01 67.43 120.89 4.09	45.19 241.57 607.57 440.19	EE_h 98.44 230.11 287.71 86.93	EE(\hat{p}_i) 63.26 381.72 708.37 111.72	naïve 42.36 62.89 536.78 92.51	8.81 63.60 186.74 161.19	3.05 140.70 324.84 237.54	47.90 11.70 252.78 43.84	1.85 10.57 37.87 3.74	11.92 78.95 155.94 0.71	17.50 6.39 204.11 13.89	4.41 6.37 25.88 7.65	8.79 19.13 39.22 12.31
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \end{array}$	60.81 23.98 262.08 156.81 0.15	0.64 22.77 22.12 32.24 0.11	11.90 41.17 64.05 55.12 0.18	41.29 57.10 523.20 73.84 0.17	10.35 57.92 60.97 8.82 0.17	44.01 67.43 120.89 4.09 0.19	45.19 241.57 607.57 440.19 0.66	EE_h 98.44 230.11 287.71 86.93 0.60	EE(\hat{p}_i) 63.26 381.72 708.37 111.72 1.07	naïve 42.36 62.89 536.78 92.51 0.15	8.81 63.60 186.74 161.19 0.16	3.05 140.70 324.84 237.54 0.38	47.90 11.70 252.78 43.84 0.50	1.85 10.57 37.87 3.74 0.44	11.92 78.95 155.94 0.71 2.15	17.50 6.39 204.11 13.89 0.26	4.41 6.37 25.88 7.65 0.28	8.79 19.13 39.22 12.31 0.55
SE ERSE APRB $_{\Delta(\beta_1)}$	60.81 23.98 262.08 156.81 0.15 0.49	0.64 22.77 22.12 32.24 0.11 0.08	11.90 41.17 64.05 55.12 0.18 0.17	41.29 57.10 523.20 73.84 0.17 1.01	10.35 57.92 60.97 8.82 0.17 0.16	44.01 67.43 120.89 4.09 0.19 0.30	45.19 241.57 607.57 440.19 0.66 1.65	EE_h 98.44 230.11 287.71 86.93 0.60 0.64	EE(\hat{p}_i) 63.26 381.72 708.37 111.72 1.07 1.71	naïve 42.36 62.89 536.78 92.51 0.15 1.33	8.81 63.60 186.74 161.19 0.16 0.42	3.05 140.70 324.84 237.54 0.38 0.79	47.90 11.70 252.78 43.84 0.50 6.00	1.85 10.57 37.87 3.74 0.44 0.94	11.92 78.95 155.94 0.71 2.15 4.26	17.50 6.39 204.11 13.89 0.26 4.83	4.41 6.37 25.88 7.65 0.28 0.65	8.79 19.13 39.22 12.31 0.55 1.08
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \end{array}$	60.81 23.98 262.08 156.81 0.15 0.49 EE .i	0.64 22.77 22.12 32.24 0.11 0.08 EE _ii	11.90 41.17 64.05 55.12 0.18 0.17 EE (0.5)	41.29 57.10 523.20 73.84 0.17	10.35 57.92 60.97 8.82 0.17 0.16 EE _ii	44.01 67.43 120.89 4.09 0.19	45.19 241.57 607.57 440.19 0.66 1.65 EE _i	98.44 230.11 287.71 86.93 0.60 0.64 EE_ii	EE(\hat{p}_i) 63.26 381.72 708.37 111.72 1.07	naïve 42.36 62.89 536.78 92.51 0.15	EE_h 8.81 63.60 186.74 161.19 0.16 0.42 EE_ii	3.05 140.70 324.84 237.54 0.38	47.90 11.70 252.78 43.84 0.50	1.85 10.57 37.87 3.74 0.44	11.92 78.95 155.94 0.71 2.15	17.50 6.39 204.11 13.89 0.26 4.83 EE.i	4.41 6.37 25.88 7.65 0.28	8.79 19.13 39.22 12.31 0.55 1.08 EE (0.5)
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \end{array}$	60.81 23.98 262.08 156.81 0.15 0.49	0.64 22.77 22.12 32.24 0.11 0.08	11.90 41.17 64.05 55.12 0.18 0.17	41.29 57.10 523.20 73.84 0.17 1.01 EE .i	10.35 57.92 60.97 8.82 0.17 0.16	44.01 67.43 120.89 4.09 0.19 0.30 EE (0.5)	45.19 241.57 607.57 440.19 0.66 1.65	EE_h 98.44 230.11 287.71 86.93 0.60 0.64	EE(\hat{p}_i) 63.26 381.72 708.37 111.72 1.07 1.71 EE(0.5)	naïve 42.36 62.89 536.78 92.51 0.15 1.33 EE.i	8.81 63.60 186.74 161.19 0.16 0.42	3.05 140.70 324.84 237.54 0.38 0.79 EE (0.5)	47.90 11.70 252.78 43.84 0.50 6.00 EE .i	1.85 10.57 37.87 3.74 0.44 0.94 EE_ii	11.92 78.95 155.94 0.71 2.15 4.26 EE (0.5)	17.50 6.39 204.11 13.89 0.26 4.83	4.41 6.37 25.88 7.65 0.28 0.65 EE_ii	8.79 19.13 39.22 12.31 0.55 1.08
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \end{array}$	60.81 23.98 262.08 156.81 0.15 0.49 EE .i	0.64 22.77 22.12 32.24 0.11 0.08 EE_ii 29.54	11.90 41.17 64.05 55.12 0.18 0.17 EE (0.5)	41.29 57.10 523.20 73.84 0.17 1.01 EE .i	10.35 57.92 60.97 8.82 0.17 0.16 EE _iii	44.01 67.43 120.89 4.09 0.19 0.30 EE (0.5)	45.19 241.57 607.57 440.19 0.66 1.65 EE.i 154.07	86.93 0.60 0.64 EE_ii	$ \begin{array}{c} \mathbf{EE}(\hat{p}_i) \\ 63.26 \\ 381.72 \\ 708.37 \\ 111.72 \\ 1.07 \\ 1.71 \\ \mathbf{EE}(0.5) \\ 117.84 \end{array} $	naïve 42.36 62.89 536.78 92.51 0.15 1.33 EE.i 42.56	8.81 63.60 186.74 161.19 0.16 0.42 EE_ii 8.97	3.05 140.70 324.84 237.54 0.38 0.79 EE (0.5) 28.11	47.90 11.70 252.78 43.84 0.50 6.00 EE .i	1.85 10.57 37.87 3.74 0.44 0.94 EE_ii 21.14	11.92 78.95 155.94 0.71 2.15 4.26 EE (0.5)	17.50 6.39 204.11 13.89 0.26 4.83 EE.i 22.81	4.41 6.37 25.88 7.65 0.28 0.65 EE _ii	8.79 19.13 39.22 12.31 0.55 1.08 EE (0.5)
SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$	60.81 23.98 262.08 156.81 0.15 0.49 EE. i 25.18 53.27 41.93	0.64 22.77 22.12 32.24 0.11 0.08 EE_ii 29.54 36.17 41.78 82.02	11.90 41.17 64.05 55.12 0.18 0.17 EE (0.5) 9.75 48.07 42.50 19.81	41.29 57.10 523.20 73.84 0.17 1.01 EE .i 0.90 75.61 71.77	10.35 57.92 60.97 8.82 0.17 0.16 EE _iii 43.41 61.91 78.62 11.06	44.01 67.43 120.89 4.09 0.19 0.30 EE (0.5) 12.17 72.24 76.09 8.24	45.19 241.57 607.57 440.19 0.66 1.65 EE .i 154.07 479.59 448.55 402.32	98.44 230.11 287.71 86.93 0.60 0.64 EE_ii 0.64 340.26 488.35 8.67	$\begin{array}{c} \mathbf{EE}(\hat{p_i}) \\ 63.26 \\ 381.72 \\ 708.37 \\ 111.72 \\ 1.07 \\ 1.71 \\ \mathbf{EE}(0.5) \\ 117.84 \\ 438.48 \\ 466.52 \\ 283.36 \\ \end{array}$	naïve 42.36 62.89 536.78 92.51 0.15 1.33 EE.i 42.56 204.46 242.42 370.61	8.81 63.60 186.74 161.19 0.16 0.42 EE.ii 8.97 125.29 247.62 216.65	3.05 140.70 324.84 237.54 0.38 0.79 EE (0.5) 28.11 174.94 245.84 309.90	47.90 11.70 252.78 43.84 0.50 6.00 EE. i 9.41 116.49 99.04 24.09	1.85 10.57 37.87 3.74 0.44 0.94 EE_ii 21.14 59.20 102.16 11.18	11.92 78.95 155.94 0.71 2.15 4.26 EE (0.5) 0.78 101.29 101.72 13.92	17.50 6.39 204.11 13.89 0.26 4.83 EE. i 22.81 23.74 30.41 25.81	4.41 6.37 25.88 7.65 0.28 0.65 EE _iii 5.21 20.70 35.37 9.44	8.79 19.13 39.22 12.31 0.55 1.08 EE (0.5) 16.83 21.77 31.91 19.98
$\begin{array}{c} \text{SE} \\ \text{ERSE} \\ \text{APRB}_{\Delta(\beta_1)} \\ \text{SE} \\ \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \\ \text{ERSE} \end{array}$	60.81 23.98 262.08 156.81 0.15 0.49 EE .i 25.18 53.27 41.93	0.64 22.77 22.12 32.24 0.11 0.08 EE _ii 29.54 36.17 41.78	11.90 41.17 64.05 55.12 0.18 0.17 EE (0.5) 9.75 48.07 42.50	41.29 57.10 523.20 73.84 0.17 1.01 EE .i 0.90 75.61 71.77	10.35 57.92 60.97 8.82 0.17 0.16 EE _iii 43.41 61.91 78.62	44.01 67.43 120.89 4.09 0.19 0.30 EE (0.5) 12.17 72.24 76.09	45.19 241.57 607.57 440.19 0.66 1.65 EE.i 154.07 479.59 448.55	98.44 230.11 287.71 86.93 0.60 0.64 EE_ii 0.64 340.26 488.35	$ \begin{array}{c} \mathbf{EE}(\hat{p_i}) \\ \hline 63.26 \\ 381.72 \\ 708.37 \\ \hline 111.72 \\ 1.07 \\ 1.71 \\ \hline \mathbf{EE}(0.5) \\ \hline 117.84 \\ 438.48 \\ 466.52 \\ \end{array} $	10 naïve 42.36 62.89 536.78 92.51 0.15 1.33 EE.i 42.56 204.46 242.42	8.81 63.60 186.74 161.19 0.16 0.42 EE_ii 8.97 125.29 247.62	3.05 140.70 324.84 237.54 0.38 0.79 EE (0.5) 28.11 174.94 245.84	47.90 11.70 252.78 43.84 0.50 6.00 EE. i 9.41 116.49 99.04	1.85 10.57 37.87 3.74 0.44 0.94 EE_ii 21.14 59.20 102.16	11.92 78.95 155.94 0.71 2.15 4.26 EE (0.5) 0.78 101.29 101.72	17.50 6.39 204.11 13.89 0.26 4.83 EE .i 22.81 23.74 30.41	4.41 6.37 25.88 7.65 0.28 0.65 EE _ii 5.21 20.70 35.37	8.79 19.13 39.22 12.31 0.55 1.08 EE (0.5) 16.83 21.77 31.91

Table E.20: Results under model (2.43), by response and correlation. Population: stable(Left), volatile(Middle), simulated(right). T=t=7, {Stable and Volatile: } $\Delta_7(\beta_0) = 11023.06$, $\Delta_7(\beta_1) = -0.4041$ }, {Simulated: $\Delta_7(\beta_0) = 1176.529$, $\Delta_7(\beta_1) = 36.56497$ }

								low re	esponse an	l low cor	relation							
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
$APRB_{\Delta(\beta_0)}$	165.34	0.27	13.80	78.29	10.65	4.38	76.26	62.13	64.84	81.35	44.49	39.72	139.90	19.37	43.50	60.72	12.83	1.38
SE	122.35	65.70	103.02	108.82	85.90	94.43	536.83	463.39	761.97	113.28	108.19	258.86	191.24	99.04	190.27	24.46	19.58	45.22
ERSE	444.07	59.04	124.35	690.24	92.70	157.81	905.51	577.47	1228.79	690.40	364.04	568.72	536.00	162.13	292.64	409.61	109.51	124.53
$APRB_{\Delta(\beta_1)}$	301.55	4.80	88.37	148.34	24.65	18.35	1.16	19.44	14.92	15.59	11.96	12.02	1.55	0.41	21.15	1.53	0.03	0.41
SE ERSE	0.04	0.04	0.06 0.10	0.09	0.09	0.10 0.15	0.24	0.42 0.58	0.79 1.54	0.09	0.10	0.27 0.64	3.72 54.40	3.34 15.08	10.43 20.30	$\frac{1.21}{47.47}$	1.09 10.19	3.96 11.96
131(312	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE _i	EE_ii	EE(0.5)	EE _i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
$APRB_{\Delta(\beta_0)}$	25.09	60.97	8.06	43.69	28.66	27.67	39.39	105.21	50.11	15.33	64.52	25.76	13.69	88.16	26.25	12.75	7.80	5.53
SE	104.85	112.02	103.29	99.18	90.20	97.05	880.14	662.64	826.48	352.51	213.48	305.85	198.47	213.95	193.33	49.58	46.27	46.88
ERSE	81.58	120.24	90.51	98.22	113.49	106.20	758.48	962.47	825.46	418.39	448.76	434.40	211.09	310.24	232.59	105.81	121.13	111.42
$APRB_{\Delta(\beta_1)}$	28.18	184.14	52.48	52.54	101.53	26.45	25.08	12.81	19.31	7.55	18.88	9.20	31.01	22.24	25.60	0.59	2.41	0.13
SE	0.09	0.06	0.08	0.11	0.09	0.10	1.28	0.54	1.02	0.41	0.24	0.33	11.66	11.06	10.95	4.45	4.03	4.11
ERSE	0.07	0.06	0.07	0.11	0.11	0.11	1.13	0.83	1.05	0.56	0.51	0.54	16.73	20.87	17.91	10.77	11.26	11.00
	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	DD(≏)	naïve	EE_h	sponse and $\mathbf{EE}(\hat{p}_i)$	naïve	relation EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	DD(c)	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
$APRB_{\Delta(\beta_0)}$	162.00	0.01	12.16	76.57	9.89	$\mathbf{EE}(\hat{\pi}_i)$ 6.10	74.20	61.74	60.11	77.20	41.78	33.32	98.60	11.86	$\frac{EE(\hat{p}_i)}{23.19}$	37.17	4.20	3.39
SE	106.25	56.83	92.66	106.50	83.54	91.90	537.35	467.92	762.97	105.79	99.99	247.20	182.85	94.57	162.77	42.31	34.72	52.06
ERSE	440.03	55.87	117.76	685.27	90.28	156.08	880.25	568.56	1201.49	682.74	361.86	556.93	681.37	156.83	234.54	449.58	100.73	114.09
$APRB_{\Delta(\beta_1)}$	709.20	92.06	142.85	214.72	13.62	11.58	195.74	65.21	109.70	73.15	30.29	19.81	110.06	3.92	3.22	38.84	8.30	17.57
SE	0.47	0.22	0.30	0.32	0.24	0.26	1.32	1.05	1.67	0.44	0.38	0.54	12.23	6.27	12.41	3.79	3.07	4.78
ERSE	1.04	0.16	0.29	1.45	0.23	0.39	2.45	1.22	2.61	1.52	0.72	1.04	88.11	17.86	22.39	57.28	11.04	11.74
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
$APRB_{\Delta(\beta_0)}$ SE	26.50	58.03	9.50	46.29	27.57	29.91	31.64	105.49	43.70	6.90	59.60	18.31	2.00	54.84	9.05	13.22	0.29	8.04
ERSE	95.58 77.42	100.55 113.97	93.59 85.88	96.77 95.51	87.75 110.55	94.61 103.56	890.06 742.43	648.79 934.47	832.42 806.73	335.82 413.29	208.46 443.45	291.37 428.87	149.04 160.54	190.64 292.75	154.81 186.41	55.73 89.47	49.33 108.03	54.04 96.82
$APRB_{\Delta(\beta_1)}$	30.45	271.21	80.24	39.55	8.02	23.93	71.45	169.83	87.89	4.36	29.13	11.87	25.64	35.77	12.95	29.20	13.38	23.11
SE	0.28	0.35	0.29	0.27	0.25	0.26	1.92	1.54	1.80	0.65	0.51	0.59	10.64	15.27	11.38	5.01	4.59	4.90
ERSE	0.17	0.29	0.19	0.24	0.28	0.26	1.66	2.24	1.80	0.78	0.87	0.81	16.17	30.92	19.11	9.41	11.45	10.22
									esponse an									
	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$EE(\hat{\pi}_i)$
$APRB_{\Delta(\beta_0)}$	56.82	0.55	7.35	31.89	4.54	9.28	39.93	29.80	9.08	33.11	14.43	6.67	53.48	6.18	13.07	14.78	10.10	14.61
SE ERSE	28.14 261.76	27.38 26.92	41.82 60.76	51.47 525.32	54.22 57.21	62.40 109.61	204.75 591.04	238.73 311.48	412.23 725.30	52.52 524.39	58.67 202.64	131.67 303.43	30.65 416.39	24.16 83.89	60.18 120.44	13.91 355.51	12.23 55.19	23.67 68.28
$APRB_{\Delta(\beta_1)}$	258.05	2.53	29.25	145.36	20.56	42.26	19.72	15.08	3.53	16.16	6.74	2.84	17.04	3.10	3.84	6.65	1.11	2.14
SE	0.01	0.01	0.02	0.03	0.03	0.03	0.10	0.13	0.22	0.03	0.03	0.07	2.28	1.86	8.19	1.11	1.00	3.02
ERSE	0.30	0.01	0.03	0.89	0.03	0.06	0.79	0.16	0.38	0.84	0.11	0.16	50.92	12.66	17.31	44.76	7.95	9.81
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	$\mathbf{EE}_{-\mathbf{i}}$	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
$APRB_{\Delta(\beta_0)}$	30.35	9.43	19.19	36.73	4.26	24.03	35.93	13.70	23.26	8.35	15.12	0.94	31.83	0.89	22.96	20.53	13.90	17.10
SE	51.39	37.53	46.52	74.29	56.54	68.10	560.52	316.70	487.87	180.68	118.32	154.22	66.10	62.17	62.62	26.72	23.47	24.73
ERSE	41.62	42.87	42.73	76.02	71.63	76.80	481.56	457.69	489.19	252.21	248.52	252.27	100.16	115.80	105.22	61.86	63.27	62.64
$APRB_{\Delta(\beta_1)}$ SE	134.54 0.03	49.24 0.02	83.60 0.02	170.34 0.04	22.81 0.03	111.23 0.04	16.48 0.30	7.72 0.16	10.39 0.26	4.78 0.10	7.19 0.06	1.01 0.08	13.86 8.77	0.86 8.85	8.70 8.37	4.09 3.37	2.26 3.07	2.88 3.12
ERSE	0.03	0.02	0.02	0.04	0.03	0.04	0.30	0.10	0.26	0.10	0.00	0.03	14.64	17.67	15.56	8.94	9.19	9.08
LIGH	0.02	0.02	0.02	0.01	0.01	0.01	0.20		sponse and			0.10	11.01	11.01	10.00	0.01	0.10	0.00
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$EE(\hat{\pi}_i)$
$APRB_{\Delta(\beta_0)}$	60.89	0.70	9.38	41.24	10.39	6.37	42.52	27.48	31.17	42.35	23.93	16.08	30.73	6.99	15.42	6.31	9.57	12.14
SE	23.20	21.88	31.91	59.79	61.09	68.64	241.09	240.35	386.73	61.02	61.00	123.97	39.52	53.95	69.77	24.75	29.26	40.32
ERSE	262.08	22.11	48.95	523.61	60.96	116.89	584.16	323.85	675.79	522.64	215.51	291.00	437.05	89.74	122.60	362.35	57.35	73.19
$APRB_{\Delta(\beta_1)}$	163.46	35.34	31.53	68.43	2.04	16.28	68.59	0.51	6.22	35.30	5.20	0.13	37.55	0.42	3.99	12.96	5.71	9.07
SE ERSE	0.15 0.49	0.11	0.13 0.12	0.17 1.02	0.16 0.16	0.18	0.51 1.27	0.46 0.54	0.64 1.01	0.22 1.06	0.21	0.27 0.49	3.49 56.13	4.76 13.17	8.83 17.30	2.20 46.32	2.60 8.24	4.16 9.97
EUSE	0.49 EE.i	EE_ii	EE(0.5)	EE_i	0.16 EE _ii	EE(0.5)	EE.i	0.54 EE .ii	EE(0.5)	1.06 EE_i	EE_ii	EE(0.5)	50.13 EE.i	EE_ii	EE(0.5)	40.32 EE_i	8.24 EE _ii	EE(0.5)
$APRB_{\Delta(\beta_0)}$		7.80	21.81	38.48	8.93	23.66	64.77	5.43	48.92	2.59	20.96	9.30	29.01	8.01	22.26	15.58	12.17	13.46
	33,54						515.10	310.69	451.61	156.48	118.33	138.50	74.24	68.50	72.09	47.39	36.50	43.81
SE	33.54 39.02	29.26	35.38	79.33	63.70	73.80												
ERSE			35.38 34.53	79.33 79.84	63.70 75.99	73.80 81.16	457.11	451.65	467.55	251.99	252.26	253.35	92.97	119.84	100.90	60.81	64.55	62.75
ERSE	39.02	29.26		79.84 31.34						251.99 8.60	252.26 1.02	253.35 3.95		119.84 7.15				
	39.02 33.50	29.26 35.16	34.53	79.84	75.99	81.16	457.11	451.65	467.55	251.99	252.26	253.35	92.97		100.90	60.81	64.55	62.75

Table E.21: Results under model (2.43), by response and correlation. Population: stable(Left), volatile(Middle), simulated(right). T=t=10, {Stable and Volatile: } $\Delta_{10}(\beta_0) = 11023.06$, $\Delta_{10}(\beta_1) = -0.4041$ }, {Simulated: $\Delta_{10}(\beta_0) = 2222.861$, $\Delta_{10}(\beta_1) = 14.4251$ }

	I							low re	esponse and	d low cor	relation							
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$EE(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
$APRB_{\Delta(\beta_0)}$	165.59	0.36	11.55	77.64	9.48	10.86	52.20	39.22	23.49	79.70	58.75	47.15	12.44	183.07	125.61	85.47	144.12	111.60
SE	120.01	63.52	80.38	111.54	87.61	93.79	584.74	536.46	801.66	106.87	103.57	222.89	284.19	226.16	413.48	61.71	56.91	121.20
ERSE	444.37	59.17	99.36	690.11	92.82	141.23	896.25	632.93	1264.49	705.64	397.31	524.56	675.18	345.21	681.95	552.98	262.72	323.07
$APRB_{\Delta(\beta_1)}$ SE	299.72 0.04	3.06 0.04	14.89 0.06	145.64 0.08	21.08 0.08	20.97 0.09	38.83 0.25	85.72 0.36	80.48 0.62	51.11 0.09	6.31 0.11	7.09 0.18	27.06 6.60	27.94 7.01	35.62 13.32	20.45 1.73	23.45 1.84	22.46 3.80
ERSE	0.04	0.04	0.06	0.08	0.08	0.09	0.25	0.36	1.11	0.09	0.11	0.18	21.12	11.39	23.39	19.86	8.33	10.43
EROE	EE_i	EE_ii	EE(0.5)	EE _i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE _i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE _i	EE_ii	EE(0.5)
$APRB_{\Delta(\beta_0)}$	41.67	26.33	27.62	38.12	4.15	24.72	57.14	33.79	41.91	32.89	56.87	39.99	241.71	121.34	191.60	51.71	182.16	76.87
SE $\Delta(\rho_0)$	80.91	91.16	79.94	99.47	89.29	96.62	960.76	674.76	884.50	278.63	206.37	248.05	495.13	367.36	455.50	147.82	113.15	133.20
ERSE	67.21	97.35	74.56	101.17	106.56	106.09	798.56	918.15	856.56	437.91	455.82	448.93	444.49	587.71	483.80	266.71	294.89	279.06
$APRB_{\Delta(\beta_1)}$	37.68	103.70	15.33	84.38	24.76	54.43	146.03	9.01	112.30	25.30	2.53	15.29	33.37	44.19	34.12	20.32	25.39	21.20
SE	0.08	0.05	0.07	0.10	0.09	0.09	0.93	0.45	0.76	0.22	0.17	0.19	17.69	10.94	15.40	4.57	3.65	4.12
ERSE	0.07	0.06	0.07	0.10	0.10	0.10	0.81	0.63	0.77	0.35	0.34	0.34	16.55	16.90	16.88	9.31	9.48	9.40
	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h		T	low re	esponse and $\mathbf{EE}(\hat{p}_i)$				naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	- T2T2(△)
$APRB_{\Delta(\beta_0)}$	161.44	0.34	12.81	75.98	8.90	$\mathbf{EE}(\hat{\pi}_i)$ 11.68	naïve 40.74	43.99	33.83	naïve 76.50	EE _h 58.87	$EE(\hat{\pi}_i)$ 50.16	535.63	165.41	147.49	270.15	74.01	$EE(\hat{\pi}_i)$ 1.66
SE	110.24	59.32	72.14	108.36	84.64	89.46	558.47	506.84	751.30	105.49	101.86	218.02	232.75	172.05	346.32	78.27	66.59	109.28
ERSE	439.62	55.94	92.18	685.11	90.35	139.77	891.17	618.20	1225.86	701.38	389.55	515.18	706.48	304.37	576.83	548.45	232.75	277.34
$APRB_{\Delta(\beta_1)}$	679.74	81.21	63.79	220.18	12.64	3.78	148.82	128.71	181.95	93.23	79.73	78.44	159.35	64.02	86.49	66.62	29.07	21.07
SE	0.47	0.22	0.25	0.32	0.24	0.25	1.08	1.06	1.51	0.35	0.34	0.52	16.17	13.43	24.55	5.32	4.57	7.27
ERSE	1.02	0.16	0.24	1.44	0.23	0.34	1.57	1.15	2.30	1.18	0.69	0.94	35.88	20.13	39.91	26.72	13.47	17.13
	EE_i	EE _ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
$APRB_{\Delta(\beta_0)}$	42.81	24.34	28.76	39.22	3.49	25.70	67.25	22.84	52.12	37.16	59.22	43.57	366.49	247.54	270.03	109.88	83.85	59.91
SE	72.93 62.34	80.91	71.93	94.92	86.03	92.13	910.61	631.74	833.91	273.37	199.38	243.13	412.99	302.94	381.37	125.49	104.45	116.57
ERSE APRB $_{\Delta(\beta_1)}$	7.39	90.00	69.12 26.80	98.89 24.16	103.95	103.80 11.58	776.25 198.29	893.53 171.43	832.60 190.23	431.32 76.14	448.15 79.83	441.95 77.26	373.34 60.18	526.54 135.77	411.61 71.78	228.20	257.34 24.85	240.69 16.47
SE	0.24	0.28	0.24	0.26	0.24	0.25	1.83	1.29	1.67	0.62	0.48	0.57	29.46	20.60	27.15	8.60	6.85	7.87
ERSE	0.15	0.24	0.17	0.24	0.24	0.26	1.48	1.66	1.56	0.78	0.80	0.80	25.30	33.78	27.64	13.97	15.27	14.58
									response an									
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
$APRB_{\Delta(\beta_0)}$	56.57	0.27	13.72	32.03	4.35	6.07	20.75	31.64	49.87	30.71	19.76	16.13	52.08	234.87	290.66	85.37	80.85	133.45
SE	26.40	25.58	35.36	55.13	57.51	63.18	259.10	321.21	500.42	52.54	59.29	128.96	43.79	36.80	102.40	29.84	26.95	49.64
ERSE $APRB_{\Delta(\beta_1)}$	261.78 256.88	26.94	52.10 61.73	525.23 145.89	57.25 19.56	89.33 29.01	575.38 31.08	392.51 47.18	885.59 73.85	538.20 44.43	254.71 27.96	325.01 22.52	425.88 25.27	138.80 5.66	215.21 10.96	420.08 9.82	127.14 6.29	146.82 8.43
SE	0.01	0.01	0.02	0.03	0.03	0.03	0.13	0.17	0.27	0.03	0.03	0.07	2.32	2.24	7.27	1.24	1.19	2.57
ERSE	0.30	0.01	0.03	0.89	0.03	0.05	0.79	0.21	0.48	0.88	0.14	0.17	18.97	7.86	15.01	18.49	5.97	7.19
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)
$APRB_{\Delta(\beta_0)}$	32.27	0.37	22.61	20.53	1.67	12.76	78.24	24.42	63.80	11.75	17.67	14.19	360.67	234.86	326.11	206.53	100.54	170.06
SE	43.58	31.83	39.14	69.77	60.89	66.03	687.70	400.79	588.92	156.87	124.37	140.45	136.43	84.46	119.05	56.00	48.45	52.25
ERSE	37.08	38.04	38.02	71.19	68.13	71.27	608.03	540.33	606.97	294.13	293.45	294.53	153.79	188.76	164.32	128.23	136.78	132.70
$APRB_{\Delta(\beta_1)}$	148.25	1.88	103.35	97.02	7.50	60.59	117.18	34.84	95.08	15.87	24.93	19.58	19.42	5.23	15.07	12.02	7.35	9.97
SE	0.02	0.02	0.02	0.04	0.03	0.04	0.38	0.21	0.32 0.33	0.08	0.07	0.07	10.52	5.26	8.84	2.92	2.57	2.71
ERSE	0.02	0.02	0.02	0.04	0.04	0.04	0.33		esponse and	0.16	0.16	0.16	10.75	10.86	11.00	6.53	6.67	6.61
	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
$APRB_{\Delta(\beta_0)}$	60.89	0.72	14.20	41.22	10.40	1.62	2.68	26.87	44.23	41.40	38.00	36.70	145.53	281.36	351.23	128.85	130.67	192.51
SE Z(50)	23.66	22.42	28.23	59.16	59.77	65.86	259.15	255.40	380.19	59.99	60.37	103.08	52.66	35.92	98.97	36.96	31.49	48.89
ERSE	262.04	22.05	40.35	523.45	60.95	94.68	594.63	332.28	619.88	536.22	221.55	265.97	406.64	127.31	198.00	405.52	117.78	135.64
$APRB_{\Delta(\beta_1)}$	153.20	28.58	12.93	70.07	2.45	4.52	85.67	44.54	36.70	48.07	22.66	17.60	46.11	23.16	32.15	19.55	15.86	20.10
SE	0.15	0.11	0.12	0.16	0.15	0.16	0.46	0.42	0.58	0.16	0.16	0.21	3.96	2.60	8.17	2.69	2.23	3.51
ERSE	0.49 EE_i	0.08	0.11	1.01	0.16	0.23	0.95	0.50	0.81	0.87 EE _i	0.34	0.40	21.63	9.00	16.85	19.85	6.81	8.18
ADDD	33.12	EE _ii 0.99	EE(0.5) 23.23	EE_i 18.01	EE _ii 3.08	EE(0.5) 9.20	EE.i 64.38	EE_ii 28.37	EE(0.5) 54.00	34.10	EE _ii 37.18	EE (0.5) 35.47	EE .i 432.98	EE_ii 286.82	EE(0.5) 392.76	EE.i 270.55	EE_ii 167.87	EE(0.5) 229.52
$APRB_{\Delta(\beta_0)}$ SE	33.12	27.74	30.13	72.68	63.63	68.84	493.10	329.62	431.89	34.10 114.72	103.03	107.40	128.72	78.53	392.76 113.94	53.95	48.13	50.99
ERSE	29.05	30.97	30.13	74.97	72.29	75.39	457.59	436.47	460.32	244.71	246.91	246.45	138.36	169.18	148.58	118.88	126.27	122.87
$APRB_{\Delta(\beta_1)}$	8.16	26.79	3.11	12.78	4.46	7.54	26.18	47.21	31.21	12.73	17.75	15.68	44.73	21.78	38.54	25.42	19.72	22.19
																		3.68
SE	0.11	0.12	0.12	0.18	0.16	0.17	0.70	0.53	0.63	0.22	0.21	0.21	11.20	5.75	9.72	3.91	3.46	3.00
	0.11	0.12	0.12	0.18	0.16	0.17	0.70	0.64	0.63	0.22	0.21	0.21	11.20	12.71	11.92	7.14	7.52	7.34

 $Table\ E.22:\ Results\ under\ model\ (2.45),\ by\ response\ and\ correlation.\ Population:\ stable(Left),\ volatile(Middle),\ simulated(right)$

		Т	Γ=t=4, {S	table and	Volatile:	$\Delta_4(\beta_0) =$	11023.06,	$\Delta_4(\beta_1)$:	= -0.4041	 , {Simula 	ated: Δ_4	$(\beta_0) = 114.$.9522, Δ_c	$_{4}(\beta_{1}) = -$	$\{0.5296\}, 16$	ow respo	nse	
	naïve	EE_h	$EE(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
$APRB_{\Delta(\beta_0)}$	12.00	0.21	13.82	4.48	0.78	1.54	36.69	3.07	42.82	15.51	0.11	3.07	0.50	0.80	0.48	0.32	0.07	0.25
SE ERSE	204.14 304.45	233.93 238.86	328.18 433.27	335.14 555.47	359.10 354.55	454.37 665.25	516.51 661.49	655.94 652.38	831.63 995.78	355.15 543.66	392.66 387.15	502.26 721.23	236.63 296.54	236.31 235.75	363.46 456.14	143.98 228.86	142.47 145.96	191.08 274.53
$APRB_{\Delta(\beta_1)}$	60.16	0.13	53.30	23.93	3.04	1.37	159.15	11.31	134.84	74.43	0.75	4.55	4.91	2.83	16.58	6.01	0.31	6.06
SE	0.08	0.12	0.13	0.15	0.18	0.22	0.23	0.33	0.39	0.17	0.20	0.25	3.37	4.46	5.93	2.35	2.75	3.65
ERSE	0.30 EE .i	0.12 EE _ii	0.17 EE (0.5)	0.78 EE _i	0.18 EE _ii	0.33 EE (0.5)	1.02 EE _i	0.33 EE _ii	0.48 EE (0.5)	0.99 EE _i	0.20 EE _ii	0.37 EE (0.5)	4.55 EE _i	4.36 EE _ii	7.90 EE (0.5)	4.22 EE .i	2.79 EE _ii	5.55 EE (0.5)
$APRB_{\Delta(\beta_0)}$	10.70	15.59	11.92	1.54	2.25	0.49	36.36	46.14	38.89	4.29	6.70	1.41	1.33	0.15	0.98	0.05	0.54	0.07
SE	374.35	305.39	355.49	531.55	409.57	497.78	944.69	772.10	899.15	599.66	447.68	557.36	394.74	347.80	381.84	220.19	176.52	207.91
ERSE	267.59	309.81	282.73	421.74	454.52	439.56	614.62	707.05	648.46	456.19	489.20	474.98	275.86	336.60	295.02	170.84	193.59	179.99
$APRB_{\Delta(\beta_1)}$ SE	23.56 0.16	65.15 0.12	36.76 0.15	31.42 0.27	3.10 0.20	19.63 0.25	67.39 0.47	158.60 0.36	97.97 0.44	43.40 0.32	18.96 0.22	22.73 0.29	23.75 7.35	14.01 5.40	20.66 6.71	3.87 4.86	7.86 3.27	4.83 4.29
ERSE	0.10	0.12	0.13	0.27	0.20	0.23	0.31	0.30	0.44	0.32	0.24	0.25	5.23	5.28	5.28	3.90	3.63	3.84
			`=t=4, {St		Volatile:			$\Delta_4(\beta_1) =$				$(\beta_0) = 114.$						
ADDD	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{p}_i)$	naïve	EE_h	$\mathbf{EE}(\hat{\pi}_i)$
$APRB_{\Delta(\beta_0)}$ SE	6.98 86.21	0.43 168.35	10.91 153.56	3.08 176.54	1.86 243.65	1.80 298.89	35.60 233.32	0.65 448.13	27.31 417.96	20.36 199.43	1.15 272.08	2.29 345.98	5.16 122.87	0.06 128.96	5.42 198.52	2.92 81.86	0.02 84.04	0.05 112.66
ERSE	210.81	171.57	208.82	473.21	242.67	491.74	498.57	456.61	606.22	469.76	272.54	539.94	240.36	128.98	287.52	206.40	85.78	178.58
$APRB_{\Delta(\beta_1)}$	36.50	2.17	53.25	16.44	9.14	8.41	137.76	2.84	103.71	78.93	4.23	8.61	26.34	0.02	20.51	14.68	0.20	2.42
SE ERSE	0.05	0.09	0.08	0.10 0.77	0.13	0.17 0.27	0.13 1.01	0.25 0.25	0.23 0.32	0.11	0.15 0.15	0.19	2.14 4.55	2.75 2.75	3.49 4.74	1.51 4.23	1.75 1.79	2.28 3.59
ERSE	EE_i	EE _ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE _ii	EE(0.5)	4.23 EE_i	EE_ii	EE(0.5)
$APRB_{\Delta(\beta_0)}$	11.69	10.66	11.35	1.88	1.77	1.97	15.90	31.92	20.78	9.46	5.83	4.42	4.47	5.83	4.88	1.94	0.92	1.08
SE	203.55	133.92	181.72	398.76	256.99	352.61	569.38	357.19	503.20	474.34	296.23	415.38	246.11	177.44	226.25	144.29	102.17	130.08
ERSE $APRB_{\Delta(\beta_1)}$	142.62 54.64	130.31 52.75	141.03 54.16	341.07 6.67	299.18 8.52	334.21 8.03	414.26 57.07	379.30 122.07	409.82 77.25	375.89 37.59	333.98 22.23	369.15 17.69	183.36 9.36	195.67 24.32	189.89 14.52	121.68	120.74	123.14 9.33
SE	0.11	0.07	0.10	0.22	0.14	0.20	0.31	0.19	0.27	0.26	0.16	0.23	4.30	3.15	3.95	3.08	2.00	2.71
ERSE	0.08	0.07	0.08	0.19	0.17	0.19	0.22	0.20	0.22	0.21	0.18	0.20	3.08	3.23	3.14	2.48	2.33	2.46
			T=t=7, {St			$\Delta_7(\beta_0) =$			= -0.4041}			$(\beta_0) = 1176$				ow respo		DD(^)
$APRB_{\Delta(\beta_0)}$	naïve 12.87	EE_h 0.67	$\frac{\mathbf{EE}(\hat{p}_i)}{4.65}$	naïve 4.84	EE_ h	$\mathbf{EE}(\hat{\pi}_i)$ 3.93	naïve 22.39	EE_h 1.34	$\frac{\mathbf{EE}(\hat{p}_i)}{10.97}$	naïve 10.10	EE_h 0.35	$\frac{\mathbf{EE}(\hat{\pi}_i)}{2.44}$	naïve 18.76	EE_h 0.12	$EE(\hat{p}_i)$ 3.12	naïve 6.88	EE_h 0.01	$\frac{\mathbf{EE}(\hat{\pi}_i)}{1.37}$
SE	209.80	242.62	308.90	338.95	363.60	429.08	490.55	576.09	742.44	313.26	334.18	434.50	333.21	334.60	512.41	200.73	203.40	254.67
ERSE	305.48	237.85	443.04	556.63	354.96	686.41	761.25	561.96	1017.56	569.77	335.36	667.60	440.79	329.38	718.37	366.68	206.27	357.13
$APRB_{\Delta(\beta_1)}$ SE	63.42 0.08	2.59 0.12	1.59 0.15	21.90 0.15	7.50 0.18	26.20 0.21	16.82 0.21	0.66 0.29	3.38 0.36	8.81 0.14	0.24 0.17	1.72 0.22	13.24 19.48	1.87 22.13	12.62 37.02	6.09 14.90	0.15 15.68	1.13 17.79
ERSE	0.30	0.12	0.13	0.13	0.18	0.21	0.21	0.29	0.50	0.14	0.17	0.22	42.18	22.13	59.74	42.39	15.30	21.08
	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE (0.5)	EE_i	EE_ii	EE(0.5)	EE_i	EE_ii	EE (0.5)	EE_i	EE_ii	EE(0.5)
$APRB_{\Delta(\beta_0)}$	1.20	9.38	2.70	7.58	0.59	5.92	4.22	21.53	7.12	6.94	0.67	4.88	8.20	0.92	5.81	2.58	1.00	1.92
SE ERSE	357.97 274.92	264.00 326.98	335.58 295.52	510.02 465.88	387.40 448.52	468.30 474.24	852.13 630.93	643.38 746.45	802.01 677.67	545.45 451.02	371.30 429.77	489.04 458.39	615.16 473.10	440.09 524.89	563.44 490.72	303.19 259.34	232.31 258.42	277.46 264.06
$APRB_{\Delta(\beta_1)}$	29.22	27.13	13.85	45.78	12.19	36.40	5.25	10.59	0.86	5.73	0.10	3.67	19.21	10.34	15.80	1.51	1.55	1.19
SE	0.20	0.40	0.15			0.04											4 = =0	10.04
		0.12	0.17	0.27	0.19	0.24	0.45	0.30	0.41	0.28	0.18	0.25	51.64	30.91	43.89	18.97	17.72	18.24
ERSE	0.14	0.14	0.14	0.24	0.22	0.24	0.34	0.34	0.34	0.24	0.21	0.24	43.93	37.83	42.68	18.94	18.78	18.24
	0.14	0.14 T	0.14 =t=7, {St	0.24 able and	0.22 Volatile:	0.24 $\Delta_7(\beta_0) =$	0.34 11023.06,	0.34 $\Delta_7(\beta_1) =$	0.34 -0.4041}	0.24 Simula	ted: Δ_7	$\beta_0 = 1176$	43.93 .529, Δ_7	37.83 $(\beta_1) = 36$	42.68 .56497 }, h	18.94 igh respo	18.78 onse	18.87
ERSE		0.14	0.14	0.24	0.22	0.24	0.34	0.34	0.34	0.24	0.21	0.24	43.93	37.83	42.68	18.94	18.78	
$\begin{array}{c} \text{ERSE} \\ \\ \text{APRB}_{\Delta(\beta_0)} \\ \text{SE} \end{array}$	0.14 naïve 6.61 87.40	0.14 T EE_h 0.90 169.50	0.14 $=$ t=7, {St $=$ EE(\hat{p}_i) 0.14 $=$ EE(\hat{p}_i) 0.14 $=$ EE(0.14 $=$ E	0.24 sable and naïve 5.70 180.83	0.22 Volatile: EE_h 1.72 250.26	0.24 $\Delta_7(\beta_0) = $ EE $(\hat{\pi}_i)$ 0.84 318.34	0.34 11023.06, naïve 23.81 194.75	0.34 $\Delta_7(\beta_1) = \frac{\mathbf{EE}_h}{1.57}$ 331.97	0.34 -0.4041 } EE (\hat{p}_i) 4.93 429.25	0.24 {Simula naïve 13.70 159.58	0.21 ted: Δ ₇ (EE _h 1.54 205.84	0.24 β_0) = 1176 $\mathbf{EE}(\hat{\pi}_i)$ 1.73 280.02	43.93 $.529$, Δ_7 $\mathbf{na\"{i}ve}$ 1.75 150.22	37.83 $(\beta_1) = 36$ EE_h 0.17 175.44	42.68 $.56497$ }, h $\mathbf{EE}(\hat{p_i})$ 0.47 242.70	18.94 igh respo naïve 0.57 107.88	18.78 onse EE_h 0.23 116.88	18.87 $\mathbf{EE}(\hat{\pi}_i)$ 0.35 139.63
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE	0.14 naïve 6.61 87.40 210.99	0.14 TEE_h 0.90 169.50 171.64	$ \begin{array}{c} 0.14 \\ = t = 7, \text{ St} \\ \hline \mathbf{EE}(\hat{p}_i) \\ 3.59 \\ 210.30 \\ 336.31 \end{array} $	0.24 sable and naïve 5.70 180.83 472.73	0.22 Volatile: EE_h 1.72 250.26 240.88	0.24 $\Delta_7(\beta_0) = 0.84$ 0.84 318.34 529.52	0.34 11023.06, naïve 23.81 194.75 539.64	0.34 $\Delta_7(\beta_1) = \frac{\mathbf{EE}_h}{1.57}$ 331.97 335.64	$0.34 \\ = -0.4041 \} \\ \mathbf{EE}(\hat{p}_i) \\ 4.93 \\ 429.25 \\ 666.17$	0.24 {Simula naïve 13.70 159.58 483.75	0.21 ted: Δ ₇ (EE _h 1.54 205.84 204.72	0.24 $(\beta_0) = 1176$ $EE(\hat{\pi}_i)$ 1.73 280.02 423.82	$\begin{array}{c c} 43.93 \\ .529, \ \Delta_7 \\ \hline \textbf{na\"{i}ve} \\ \hline 1.75 \\ 150.22 \\ 416.02 \\ \end{array}$	37.83 $(\beta_1) = 36$ $\overline{\textbf{EE}}_{-h}$ 0.17 175.44 178.05	42.68 0.56497 }, h EE (\hat{p}_i) 0.47 242.70 370.45	18.94 igh respondence naïve 0.57 107.88 369.62	18.78 onse EE_h 0.23 116.88 117.17	18.87 $\mathbf{EE}(\hat{\pi}_i)$ 0.35 139.63 206.29
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$	0.14 naïve 6.61 87.40 210.99 34.73	0.14 T EE_h 0.90 169.50 171.64 4.41	0.14 $=$ t=7, {St $=$ EE(\hat{p}_i) 3.59 210.30 336.31 16.80	0.24 sable and naïve 5.70 180.83 472.73 29.13	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27	0.24 $\Delta_7(\beta_0) = 1$ $EE(\hat{\pi}_i)$ 0.84 318.34 529.52 3.44	0.34 11023.06, naïve 23.81 194.75 539.64 12.41	0.34 $\Delta_7(\beta_1) = \frac{\mathbf{EE}_h}{1.57}$ 331.97 335.64 0.86	0.34 = -0.4041} EE (\hat{p}_i) 4.93 429.25 666.17 2.70	0.24 Simula naïve 13.70 159.58 483.75 7.18	0.21 ted: Δ_7 (EE_h 1.54 205.84 204.72 0.82	0.24 $\beta_0) = 1176$ $\mathbf{EE}(\hat{\pi}_i)$ 1.73 280.02 423.82 0.90	$\begin{array}{c c} 43.93\\ .529, \ \Delta_7\\ \textbf{na\"{r}ve}\\ \hline 1.75\\ 150.22\\ 416.02\\ \hline 0.47\\ \end{array}$	37.83 $(\beta_1) = 36$ EE_h 0.17 175.44 178.05 0.12	42.68 .56497 }, h $\mathbf{EE}(\hat{p}_i)$ 0.47 242.70 370.45 0.10	18.94 igh respo naïve 0.57 107.88 369.62 0.09	18.78 onse EE_h 0.23 116.88 117.17 0.10	18.87 $\mathbf{EE}(\hat{\pi}_i)$ 0.35 139.63 206.29 0.21
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE	0.14 naïve 6.61 87.40 210.99 34.73 0.05 0.31	0.14 T EE_h 0.90 169.50 171.64 4.41 0.09 0.10	$\begin{array}{c} 0.14 \\ = t = 7, \{St \\ \hline EE(\hat{p}_i) \\ 3.59 \\ 210.30 \\ 336.31 \\ 16.80 \\ 0.12 \\ 0.19 \end{array}$	0.24 cable and naïve 5.70 180.83 472.73 29.13 0.10 0.78	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \hline {\bf EE}(\hat{\pi}_i) \\ 0.84 \\ 318.34 \\ 529.52 \\ \hline 3.44 \\ 0.18 \\ 0.30 \\ \end{array}$	0.34 11023.06, naïve 23.81 194.75 539.64 12.41 0.10 0.79	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ \hline \textbf{EE_h} \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.86 \\ 0.18 \\ 0.18 \\ \end{array}$	$\begin{array}{c} 0.34 \\ \hline = -0.4041 \\ \hline \textbf{EE}(\hat{p}_i) \\ \hline 4.93 \\ 429.25 \\ 666.17 \\ \hline 2.70 \\ 0.23 \\ 0.36 \\ \end{array}$	0.24 (Simula naïve 13.70 159.58 483.75 7.18 0.09 0.80	0.21 ted: Δ_7 (EE _h 1.54 205.84 204.72 0.82 0.11 0.11	$\begin{array}{c} 0.24 \\ \beta_0) = 1176 \\ \hline \mathbf{EE}(\hat{\pi}_i) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \end{array}$	$\begin{array}{c c} 43.93\\ .529,\ \Delta_7\\ \hline \textbf{na\"{i}ve}\\ 1.75\\ 150.22\\ 416.02\\ 0.47\\ 2.89\\ 42.11\\ \end{array}$	37.83 $(\beta_1) = 36$ $EE_{\perp}h$ 0.17 175.44 178.05 0.12 4.17 4.21	42.68 $.56497$ }, h EE(\hat{p}_i) 0.47 242.70 370.45 0.10 5.69 8.88	18.94 igh responsive 0.57 107.88 369.62 0.09 2.29 41.97	18.78 onse EE_h 0.23 116.88 117.17 0.10 2.74 2.72	$\begin{array}{c} \textbf{EE}(\hat{\pi}_i) \\ \textbf{O.35} \\ \textbf{139.63} \\ \textbf{206.29} \\ \textbf{0.21} \\ \textbf{3.43} \\ \textbf{5.09} \end{array}$
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE	0.14 naïve 6.61 87.40 210.99 34.73 0.05 0.31 EE.i	0.14 T EE_h 0.90 169.50 171.64 4.41 0.09 0.10 EE_iii	$\begin{array}{c} 0.14 \\ = t = 7, \{ \text{St} \\ \hline \textbf{EE}(\hat{p}_i) \\ 3.59 \\ 210.30 \\ 336.31 \\ 16.80 \\ 0.12 \\ 0.19 \\ \hline \textbf{EE}(0.5) \\ \end{array}$	0.24 sable and naïve 5.70 180.83 472.73 29.13 0.10 0.78 EE.i	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii	$\begin{array}{c} 0.24 \\ \hline \Delta_7(\beta_0) = \\ \hline \mathbf{EE}(\hat{\pi}_i) \\ 0.84 \\ 318.34 \\ 529.52 \\ \hline 3.44 \\ 0.18 \\ 0.30 \\ \hline \mathbf{EE}(0.5) \\ \end{array}$	0.34 11023.06, naïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ \hline \textbf{EE_h} \\ 1.57 \\ 331.97 \\ 335.64 \\ \hline 0.86 \\ 0.18 \\ 0.18 \\ \hline \textbf{EE_ii} \\ \end{array}$	$\begin{array}{c} 0.34 \\ \hline = -0.4041 \\ \hline \textbf{EE}(\hat{p}_i) \\ \hline 4.93 \\ 429.25 \\ 666.17 \\ \hline 2.70 \\ 0.23 \\ 0.36 \\ \hline \textbf{EE}(0.5) \\ \end{array}$	0.24 , {Simula naïve 13.70 159.58 483.75 7.18 0.09 0.80 EE.i	0.21 ted: Δ_7 (EE_h 1.54 205.84 204.72 0.82 0.11 0.11 EE_i i	$\begin{array}{c} 0.24 \\ \hline (\beta_0) = 1176 \\ \hline \mathbf{EE}(\hat{\pi}_i) \\ \hline 1.73 \\ 280.02 \\ 423.82 \\ \hline 0.90 \\ 0.15 \\ 0.23 \\ \hline \mathbf{EE}(0.5) \\ \end{array}$	$\begin{array}{c c} 43.93\\ .529,\ \Delta_7\\ \hline \textbf{na\"{r}ve}\\ 1.75\\ 150.22\\ 416.02\\ 0.47\\ 2.89\\ 42.11\\ \hline \textbf{EE.i} \end{array}$	37.83 $(\beta_1) = 36$ \mathbf{EE} -h 0.17 175.44 178.05 0.12 4.17 4.21 \mathbf{EE} -ii	$\begin{array}{c} 42.68 \\ \underline{.56497} \ \}, \ \mathbf{h} \\ \mathbf{EE}(\hat{p_i}) \\ 0.47 \\ 242.70 \\ 370.45 \\ 0.10 \\ 5.69 \\ 8.88 \\ \mathbf{EE}(0.5) \end{array}$	18.94 igh responding to 10.57 107.88 369.62 0.09 2.29 41.97 EE .i	18.78 onse EE_h 0.23 116.88 117.17 0.10 2.74 2.72 EE_ii	$\begin{array}{c} {\bf 18.87} \\ {\bf EE}(\hat{\pi}_i) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.21 \\ 3.43 \\ 5.09 \\ {\bf EE}(0.5) \\ \end{array}$
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_0)}$	0.14 naïve 6.61 87.40 210.99 34.73 0.05 0.31 EE.i 0.43	0.14 T EE_h 0.90 169.50 171.64 4.41 0.09 0.10 EE_ii 6.87		0.24 sable and naïve 5.70 180.83 472.73 29.13 0.10 0.78 EE.i 1.64	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49	$\begin{array}{c} 0.24 \\ \hline \Delta_7(\beta_0) = \\ \hline \mathbf{EE}(\hat{\pi}_i) \\ 0.84 \\ 318.34 \\ 529.52 \\ \hline 3.44 \\ 0.18 \\ 0.30 \\ \hline \mathbf{EE}(0.5) \\ \hline 0.36 \\ \end{array}$	0.34 11023.06, naïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89	$\begin{array}{c} 0.34 \\ \underline{\Delta_7(\beta_1)} = \\ \hline \textbf{EE_h} \\ 1.57 \\ 331.97 \\ 335.64 \\ \hline 0.86 \\ 0.18 \\ 0.18 \\ \hline \textbf{EE_ii} \\ \hline 10.66 \\ \end{array}$	$\begin{array}{c} 0.34 \\ \hline = -0.4041 \\ \hline \textbf{EE}(\hat{p_i}) \\ \hline 4.93 \\ 429.25 \\ 666.17 \\ \hline 2.70 \\ 0.23 \\ 0.36 \\ \hline \textbf{EE}(0.5) \\ \hline 0.95 \\ \end{array}$	0.24 , {Simula naïve 13.70 159.58 483.75 7.18 0.09 0.80 EE.i 7.76	0.21 ted: Δ ₇ (EE_h 1.54 205.84 204.72 0.82 0.11 0.11 EE_ii 0.76	$\begin{array}{c} 0.24 \\ \hline (\beta_0) = 1176 \\ \hline \textbf{EE}(\hat{\pi}_i) \\ \hline 1.73 \\ 280.02 \\ 423.82 \\ \hline 0.90 \\ 0.15 \\ 0.23 \\ \hline \textbf{EE}(0.5) \\ \hline 4.65 \end{array}$	$\begin{array}{c c} 43.93\\ .529, \Delta_7\\ \hline \textbf{na\"ve}\\ 1.75\\ 150.22\\ 416.02\\ 0.47\\ 2.89\\ 42.11\\ \hline \textbf{EE_i}\\ 0.86\\ \end{array}$	37.83 $(\beta_1) = 36$ \mathbf{EE} -h 0.17 175.44 178.05 0.12 4.17 4.21 \mathbf{EE} -ii 0.27	$\begin{array}{c} 42.68 \\ \underline{.56497} \ \}, \ \mathbf{h} \\ \mathbf{EE}(\hat{p_i}) \\ 0.47 \\ 242.70 \\ 370.45 \\ 0.10 \\ 5.69 \\ 8.88 \\ \mathbf{EE}(0.5) \\ 0.67 \end{array}$	18.94 igh respo naïve 0.57 107.88 369.62 0.09 2.29 41.97 EE.i 0.63	18.78 onse EE_h 0.23 116.88 117.17 0.10 2.74 2.72 EE_ii 0.19	$\begin{array}{c} {\bf 18.87} \\ {\bf EE}(\hat{\pi}_i) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.21 \\ 3.43 \\ 5.09 \\ {\bf EE}(0.5) \\ 0.48 \\ \end{array}$
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE	0.14 naïve 6.61 87.40 210.99 34.73 0.05 0.31 EE.i	0.14 T EE_h 0.90 169.50 171.64 4.41 0.09 0.10 EE_iii	$\begin{array}{c} 0.14 \\ = t = 7, \{ \text{St} \\ \hline \textbf{EE}(\hat{p}_i) \\ 3.59 \\ 210.30 \\ 336.31 \\ 16.80 \\ 0.12 \\ 0.19 \\ \hline \textbf{EE}(0.5) \\ \end{array}$	0.24 sable and naïve 5.70 180.83 472.73 29.13 0.10 0.78 EE.i	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii	$\begin{array}{c} 0.24 \\ \hline \Delta_7(\beta_0) = \\ \hline \mathbf{EE}(\hat{\pi}_i) \\ 0.84 \\ 318.34 \\ 529.52 \\ \hline 3.44 \\ 0.18 \\ 0.30 \\ \hline \mathbf{EE}(0.5) \\ \end{array}$	0.34 11023.06, naïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ \hline \textbf{EE_h} \\ 1.57 \\ 331.97 \\ 335.64 \\ \hline 0.86 \\ 0.18 \\ 0.18 \\ \hline \textbf{EE_ii} \\ \end{array}$	$\begin{array}{c} 0.34 \\ \hline = -0.4041 \\ \hline \textbf{EE}(\hat{p}_i) \\ \hline 4.93 \\ 429.25 \\ 666.17 \\ \hline 2.70 \\ 0.23 \\ 0.36 \\ \hline \textbf{EE}(0.5) \\ \end{array}$	0.24 , {Simula naïve 13.70 159.58 483.75 7.18 0.09 0.80 EE.i	0.21 ted: Δ_7 (EE_h 1.54 205.84 204.72 0.82 0.11 0.11 EE_i i	$\begin{array}{c} 0.24 \\ \hline (\beta_0) = 1176 \\ \hline \mathbf{EE}(\hat{\pi}_i) \\ \hline 1.73 \\ 280.02 \\ 423.82 \\ \hline 0.90 \\ 0.15 \\ 0.23 \\ \hline \mathbf{EE}(0.5) \\ \end{array}$	$\begin{array}{c c} 43.93\\ .529,\ \Delta_7\\ \hline \textbf{na\"{r}ve}\\ 1.75\\ 150.22\\ 416.02\\ 0.47\\ 2.89\\ 42.11\\ \hline \textbf{EE.i} \end{array}$	37.83 $(\beta_1) = 36$ \mathbf{EE} -h 0.17 175.44 178.05 0.12 4.17 4.21 \mathbf{EE} -ii	$\begin{array}{c} 42.68 \\ \underline{.56497} \ \}, \ \mathbf{h} \\ \mathbf{EE}(\hat{p_i}) \\ 0.47 \\ 242.70 \\ 370.45 \\ 0.10 \\ 5.69 \\ 8.88 \\ \mathbf{EE}(0.5) \end{array}$	18.94 igh responding to 10.57 107.88 369.62 0.09 2.29 41.97 EE .i	18.78 onse EE_h 0.23 116.88 117.17 0.10 2.74 2.72 EE_ii	$\begin{array}{c} {\bf EE}(\hat{\pi}_i) \\ {\bf 0.35} \\ {\bf 139.63} \\ {\bf 206.29} \\ {\bf 0.21} \\ {\bf 3.43} \\ {\bf 5.09} \\ {\bf EE}(0.5) \\ \end{array}$
$\begin{array}{c} \operatorname{ERSE} \\ \\ \operatorname{APRB}_{\Delta(\beta_0)} \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}_{\Delta(\beta_1)} \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \\ \operatorname{APRB}_{\Delta(\beta_0)} \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}_{\Delta(\beta_1)} \\ \end{array}$	0.14 naïve 6.61 87.40 210.99 34.73 0.05 0.31 EE.i 0.43 290.35 221.06	0.14 T EE_h 0.90 169.50 171.64 4.41 0.09 0.10 EE_ii 6.87 152.23 182.11 33.59		0.24 sable and naïve 5.70 180.83 472.73 29.13 0.10 0.78 EEi 1.64 422.74 384.35 9.59	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.14 0.13 EE_ii 2.49 271.98 313.74 11.72	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.84 \\ 318.34 \\ 529.52 \\ 3.44 \\ 0.18 \\ 0.30 \\ \mathbf{EE}(0.5) \\ 0.36 \\ 666.74 \\ 369.54 \\ 2.82 \end{array}$	0.34 11023.06, naïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 443.17	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ \hline \textbf{EE_h} \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.86 \\ 0.18 \\ 0.18 \\ \hline \textbf{EE_ii} \\ 10.66 \\ 319.12 \\ 381.70 \\ \hline 5.73 \\ \end{array}$	$\begin{array}{c} 0.34 \\ = -0.4041 \} \\ \textbf{EE}(\hat{p_i}) \\ 4.93 \\ 429.25 \\ 666.17 \\ 2.70 \\ 0.23 \\ 0.36 \\ \textbf{EE}(0.5) \\ 0.95 \\ 508.29 \\ 440.38 \\ 0.60 \\ \end{array}$	0.24 {Simula naïve 13.70 159.58 483.75 7.18 0.09 0.80 EE.i 7.76 383.76 312.62 4.09	$\begin{array}{c} 0.21\\ \text{ted: } \Delta_7 \\ \hline \textbf{EE_h} \\ 1.54\\ 205.84\\ 204.72\\ 0.82\\ 0.11\\ 0.11\\ \hline \textbf{EE_ii} \\ 0.76\\ 232.39\\ 263.53\\ 0.42\\ \end{array}$	$\begin{array}{c} 0.24 \\ \beta_0) = 1176 \\ \hline \textbf{EE}(\hat{\pi}_i) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline \textbf{EE}(0.5) \\ 4.65 \\ 327.99 \\ 302.25 \\ 2.45 \\ \end{array}$	$\begin{array}{c c} \textbf{43.93} \\ \textbf{.529}, \ \Delta_7 \\ \hline \textbf{na\"{i}ve} \\ \textbf{1.75} \\ \textbf{150.22} \\ \textbf{416.02} \\ \textbf{0.47} \\ \textbf{2.89} \\ \textbf{42.11} \\ \hline \textbf{EE_i} \\ \textbf{0.86} \\ \textbf{310.40} \\ \textbf{241.76} \\ \textbf{0.06} \end{array}$	$\begin{array}{c} 37.83 \\ (\beta_1) = 36 \\ \hline {\bf EE_h} \\ 0.17 \\ 175.44 \\ 178.05 \\ 0.12 \\ 4.17 \\ 4.21 \\ \hline {\bf EE_ii} \\ 0.27 \\ 196.88 \\ 238.59 \\ 0.05 \\ \end{array}$	$\begin{array}{c} 42.68 \\ \hline 1.56497 \; \}, \; h \\ \hline EE(\hat{p_i}) \\ 0.47 \\ 242.70 \\ 370.45 \\ 0.10 \\ 5.69 \\ 8.88 \\ \hline EE(0.5) \\ 0.67 \\ 277.39 \\ 248.41 \\ 0.10 \\ \end{array}$	18.94 igh respu- naïve 0.57 107.88 369.62 0.09 2.29 41.97 EE.i 0.63 172.44 160.54 0.37	18.78 DISSE DEE_h 0.23 116.88 117.17 0.10 2.74 2.72 EE_ii 0.19 128.82 147.64 0.09	$\begin{array}{c} 18.87 \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.21 \\ 3.43 \\ 5.09 \\ \mathbf{EE}(0.5) \\ 0.48 \\ 154.06 \\ 158.31 \\ 0.29 \end{array}$
$\begin{array}{c} \operatorname{ERSE} \\ \\ \operatorname{APRB}_{\Delta(\beta_0)} \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \\ \operatorname{APRB}_{\Delta(\beta_0)} \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \\ \operatorname{APRB}_{\Delta(\beta_0)} \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \\ \operatorname{SE} \\ $	0.14 naïve 6.61 87.40 210.99 34.73 0.05 0.31 EE_i 0.43 290.35 221.06 0.60 0.16	0.14 T EE_h 0.90 169.50 171.64 4.41 0.09 0.10 EE_iii 6.87 152.23 182.11 33.59 0.08	$ \begin{array}{c} 0.14 \\ = t = 7, \{\text{St} \\ EE(\hat{p}_i) \\ 3.59 \\ 210.30 \\ 336.31 \\ 16.80 \\ 0.12 \\ 0.19 \\ EE(0.5) \\ 1.94 \\ 250.92 \\ 218.49 \\ 7.85 \\ 0.14 \end{array} $	0.24 cable and naïve 5.70 180.83 472.73 0.10 0.78 EE.i 1.64 422.74 384.35 9.59 0.24	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_iii 2.49 271.98 313.74 11.72 0.15	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.84 \\ 318.34 \\ 529.52 \\ 3.44 \\ 0.18 \\ 0.30 \\ \mathbf{EE}(0.5) \\ 0.36 \\ 366.74 \\ 369.54 \\ 2.82 \\ 0.20 \\ \end{array}$	0.34 11023.06, naïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 443.17 1.43 0.32	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ \hline \textbf{EE.h} \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.86 \\ 0.18 \\ 0.18 \\ \hline \textbf{EE.ii} \\ 10.66 \\ 319.12 \\ 381.70 \\ 5.73 \\ 0.17 \end{array}$	$\begin{array}{c} 0.34 \\ = -0.4041 \} \\ \mathbf{EE}(\hat{p}_i) \\ 4.93 \\ 429.25 \\ 666.17 \\ 2.70 \\ 0.23 \\ 0.36 \\ \mathbf{EE}(0.5) \\ 0.95 \\ 508.29 \\ 440.38 \\ 0.60 \\ 0.28 \end{array}$	0.24 {Simula naïve 13.70 159.58 483.75 7.18 0.09 0.80 EE.i 7.76 383.76 312.62 4.09 0.21	0.21 ted: Δ_7 (\mathbf{EE} h 1.54 205.84 204.72 0.82 0.11 0.11 \mathbf{EE} h 2.76 232.39 263.53 0.42 0.13	$\begin{array}{c} 0.24 \\ \hline B_0) = 1176 \\ \hline \textbf{EE}(\hat{\pi}_i) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline \textbf{EE}(0.5) \\ 4.65 \\ 327.99 \\ 302.25 \\ 0.18 \\ \end{array}$	$\begin{array}{c} 43.93 \\ .529, \ \Delta_7 \\ \hline \text{na\"{}} \text{ve} \\ 1.75 \\ 150.22 \\ 416.02 \\ 0.47 \\ 2.89 \\ 42.11 \\ \hline \text{EE_i} \\ 0.86 \\ 310.40 \\ 241.76 \\ 0.06 \\ 7.64 \\ \end{array}$	$\begin{array}{c} 37.83 \\ (\beta_1) = 36 \\ \hline {\bf EE_h} \\ 0.17 \\ 175.44 \\ 178.05 \\ 0.12 \\ 4.17 \\ 4.21 \\ \hline {\bf EE_ii} \\ 0.27 \\ 196.88 \\ 238.59 \\ 0.05 \\ 4.39 \\ \end{array}$	$\begin{array}{c} 42.68 \\ 56497 \end{array}\}, \\ \mathbf{EE}(\hat{p}_i) \\ 0.47 \\ 242.70 \\ 370.45 \\ 0.10 \\ 5.69 \\ 8.88 \\ \mathbf{EE}(0.5) \\ 0.67 \\ 277.39 \\ 248.41 \\ 0.10 \\ 6.66 \end{array}$	18.94 igh responding r	18.78 Date 18.78 Date 19.73 Date 19.74 Date 19.74 Date 19.74 Date 19.75 Date	18.87 EE(\$\pi_i\$) 0.35 139.63 206.29 0.21 3.43 5.09 EE(0.5) 0.48 154.06 158.31 0.29 3.86
$\begin{array}{c} \operatorname{ERSE} \\ \\ \operatorname{APRB}_{\Delta(\beta_0)} \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}_{\Delta(\beta_1)} \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \\ \operatorname{APRB}_{\Delta(\beta_0)} \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}_{\Delta(\beta_1)} \\ \end{array}$	0.14 naïve 6.61 87.40 210.99 34.73 0.05 0.31 EE.i 0.43 290.35 221.06	0.14 T EE_h 0.90 169.50 171.64 4.41 0.09 0.10 EE_ii 6.87 152.23 182.11 33.59 0.08 0.10	$\begin{array}{c} 0.14 \\ = t = 7, \{ 5t \\ EE(\hat{p_i}) \\ 3.59 \\ 210.30 \\ 336.31 \\ 16.80 \\ 0.12 \\ 0.19 \\ EE(0.5) \\ 1.94 \\ 250.92 \\ 218.49 \\ 7.85 \\ 0.14 \\ 0.12 \end{array}$	0.24 cable and naïve 5.70 180.83 472.73 0.10 0.78 EE.i 1.64 422.74 384.35 9.59 0.24 0.21	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49 271.98 313.74 11.72 0.15 0.17	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.84 \\ 318.34 \\ 529.52 \\ 3.44 \\ 0.18 \\ 0.30 \\ \mathbf{EE}(0.5) \\ 0.36 \\ 366.74 \\ 369.54 \\ 2.82 \\ 0.20 \\ 0.21 \\ \end{array}$	0.34 11023.06, naïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 443.17 1.43 0.32 0.24	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ \textbf{EE.h} \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.86 \\ 0.18 \\ 0.18 \\ \textbf{EE.ii} \\ 10.66 \\ 319.12 \\ 381.70 \\ 5.73 \\ 0.17 \\ 0.21 \\ \end{array}$	$\begin{array}{c} 0.34 \\ = -0.4041 \} \\ \mathbf{EE}(\hat{p}_i) \\ 4.93 \\ 429.25 \\ 666.17 \\ 2.70 \\ 0.23 \\ 0.36 \\ \mathbf{EE}(0.5) \\ 0.95 \\ 508.29 \\ 440.38 \\ 0.60 \\ 0.28 \\ 0.24 \\ \end{array}$	0.24 (Simula naïve 13.70 159.58 483.75 7.18 0.09 0.80 EE.i 7.76 383.76 312.62 4.09 0.21 0.17	$\begin{array}{c} 0.21\\ \text{ted: } \Delta_7(\\ \hline \textbf{EE_h}\\ 1.54\\ 205.84\\ 204.72\\ 0.82\\ 0.11\\ 0.11\\ \hline \textbf{EE_ii}\\ 0.76\\ 232.39\\ 263.53\\ 0.42\\ 0.13\\ 0.14\\ \end{array}$	$\begin{array}{c} 0.24 \\ \beta_0) = 1176 \\ \mathbf{E}(\hat{\pi}_i) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \mathbf{EE}(0.5) \\ 4.65 \\ 327.99 \\ 302.25 \\ 2.45 \\ 0.18 \\ 0.17 \end{array}$	$\begin{array}{c} 43.93\\ .529,\ \Delta_7\\ \textbf{na\"{r}ve}\\ 1.75\\ 150.22\\ 416.02\\ 0.47\\ 2.89\\ 42.11\\ \textbf{EE_i}\\ 0.86\\ 310.40\\ 241.76\\ 0.06\\ 6.764\\ 5.99 \end{array}$	$\begin{array}{c} 37.83 \\ (\beta_1) = 36 \\ \hline {\bf EE.h} \\ 0.17 \\ 175.44 \\ 178.05 \\ 0.12 \\ 4.17 \\ 4.21 \\ \hline {\bf EE.ii} \\ 0.27 \\ 196.88 \\ 238.59 \\ 0.05 \\ 4.39 \\ 5.25 \\ \end{array}$	42.68 .56497 }, h EE(p̄ _i) 0.47 242.70 370.45 0.10 5.69 8.88 EE(0.5) 0.67 277.39 248.41 0.10 6.66 5.93	18.94 igh responding r	18.78 onse EE_h 0.23 116.88 117.17 0.10 2.74 2.72 EE_ii 0.19 128.82 147.64 0.09 3.08 3.47	$\begin{array}{c} 18.87 \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.21 \\ 3.43 \\ 5.09 \\ \mathbf{EE}(0.5) \\ 0.48 \\ 154.06 \\ 158.31 \\ 0.29 \end{array}$
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE ERSE	0.14 naïve 6.61 87.40 210.99 34.73 0.05 0.31 EE_i 0.43 290.35 221.06 0.60 0.16	0.14 T EE_h 0.90 169.50 171.64 4.41 0.09 0.10 EE_ii 6.87 152.23 182.11 33.59 0.08 0.10	$\begin{array}{c} 0.14 \\ = t = 7, \{ 5t \\ EE(\hat{p_i}) \\ 3.59 \\ 210.30 \\ 336.31 \\ 16.80 \\ 0.12 \\ 0.19 \\ EE(0.5) \\ 1.94 \\ 250.92 \\ 218.49 \\ 7.85 \\ 0.14 \\ 0.12 \end{array}$	0.24 cable and naïve 5.70 180.83 472.73 0.10 0.78 EE.i 1.64 422.74 384.35 9.59 0.24 0.21	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49 271.98 313.74 11.72 0.15 0.17	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \mathbf{EE}(\hat{\pi}_i) \\ 0.84 \\ 318.34 \\ 529.52 \\ 3.44 \\ 0.18 \\ 0.30 \\ \mathbf{EE}(0.5) \\ 0.36 \\ 366.74 \\ 369.54 \\ 2.82 \\ 0.20 \\ \end{array}$	0.34 11023.06, naïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 443.17 1.43 0.32 0.24	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ \hline \textbf{EE.h} \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.86 \\ 0.18 \\ 0.18 \\ \hline \textbf{EE.ii} \\ 10.66 \\ 319.12 \\ 381.70 \\ 5.73 \\ 0.17 \end{array}$	$\begin{array}{c} 0.34 \\ = -0.4041 \} \\ \mathbf{EE}(\hat{p}_i) \\ 4.93 \\ 429.25 \\ 666.17 \\ 2.70 \\ 0.23 \\ 0.36 \\ \mathbf{EE}(0.5) \\ 0.95 \\ 508.29 \\ 440.38 \\ 0.60 \\ 0.28 \end{array}$	0.24 (Simula naïve 13.70 159.58 483.75 7.18 0.09 0.80 EE.i 7.76 383.76 312.62 4.09 0.21 0.17	$\begin{array}{c} 0.21\\ \text{ted: } \Delta_7(\\ \hline \textbf{EE_h}\\ 1.54\\ 205.84\\ 204.72\\ 0.82\\ 0.11\\ 0.11\\ \hline \textbf{EE_ii}\\ 0.76\\ 232.39\\ 263.53\\ 0.42\\ 0.13\\ 0.14\\ \end{array}$	$\begin{array}{c} 0.24 \\ \hline B_0) = 1176 \\ \hline \textbf{EE}(\hat{\pi}_i) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline \textbf{EE}(0.5) \\ 4.65 \\ 327.99 \\ 302.25 \\ 0.18 \\ \end{array}$	$\begin{array}{c} 43.93\\ .529,\ \Delta_7\\ \textbf{na\"{r}ve}\\ 1.75\\ 150.22\\ 416.02\\ 0.47\\ 2.89\\ 42.11\\ \textbf{EE_i}\\ 0.86\\ 310.40\\ 241.76\\ 0.06\\ 6.764\\ 5.99 \end{array}$	$\begin{array}{c} 37.83 \\ (\beta_1) = 36 \\ \hline {\bf EE.h} \\ 0.17 \\ 175.44 \\ 178.05 \\ 0.12 \\ 4.17 \\ 4.21 \\ \hline {\bf EE.ii} \\ 0.27 \\ 196.88 \\ 238.59 \\ 0.05 \\ 4.39 \\ 5.25 \\ \end{array}$	$\begin{array}{c} 42.68 \\ 56497 \end{array}\}, \\ \mathbf{EE}(\hat{p}_i) \\ 0.47 \\ 242.70 \\ 370.45 \\ 0.10 \\ 5.69 \\ 8.88 \\ \mathbf{EE}(0.5) \\ 0.67 \\ 277.39 \\ 248.41 \\ 0.10 \\ 6.66 \end{array}$	18.94 igh responding r	18.78 onse EE_h 0.23 116.88 117.17 0.10 2.74 2.72 EE_ii 0.19 128.82 147.64 0.09 3.08 3.47	18.87 EE(\$\pi_i\$) 0.35 139.63 206.29 0.21 3.43 5.09 EE(0.5) 0.48 154.06 158.31 0.29 3.86
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$	0.14 naïve 6.61 87.40 210.99 34.73 0.05 0.31 EE.i 0.43 290.35 221.06 0.16 0.12 naïve 11.82	0.14 T EE_h 0.90 169.50 171.64 4.41 0.09 0.10 EE_ii 6.87 152.23 182.11 33.59 0.08 0.10 T= EE_h 0.73	$\begin{array}{c} 0.14 \\ = t=7, \{St\\ EE(\hat{p_i}) \\ 3.59 \\ 210.30 \\ 336.31 \\ 16.80 \\ 0.12 \\ 0.19 \\ EE(0.5) \\ 1.94 \\ 250.92 \\ 218.49 \\ 7.85 \\ 0.14 \\ 0.12 \\ :t=10, \{St\\ EE(\hat{p_i}) \\ 1.90 \\ \end{array}$	0.24 cable and naïve 5.70 180.83 472.73 29.13 0.10 0.78 EE.i 1.64 422.74 384.35 9.59 0.24 0.21 able and naïve 5.47	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49 271.98 313.74 11.72 0.15 0.17 Volatile: EE_h 0.24	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \hline{\text{EE}(\hat{\pi}_i)} \\ 0.84 \\ 318.34 \\ 529.52 \\ 3.44 \\ 0.18 \\ 0.30 \\ \hline{\text{EE}(0.5)} \\ 0.36 \\ 366.74 \\ 369.54 \\ 2.82 \\ 0.20 \\ 0.21 \\ \Delta_{10}(\beta_0) = \\ \hline{\text{EE}(\hat{\pi}_i)} \\ 1.01 \\ \end{array}$	0.34 11023.06, naïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 443.17 1.43 0.32 0.24 11023.06, naïve 29.64	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ EE_h \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.86 \\ 0.18 \\ 0.18 \\ EE_ii \\ 10.66 \\ 319.12 \\ 381.70 \\ 0.21 \\ \Delta_{10}(\beta_1) \\ EE_h \\ 1.19 \\ \end{array}$	$\begin{array}{c} 0.34 \\ = -0.4041 \} \\ \hline \text{EE}(\hat{p_i}) \\ 4.93 \\ 429.25 \\ 666.17 \\ 2.70 \\ 0.23 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 0.95 \\ 508.29 \\ 440.38 \\ 0.60 \\ 0.28 \\ 0.24 \\ = -0.4041 \\ \hline \text{EE}(\hat{p_i}) \\ 0.45 \\ \end{array}$	0.24 {Simula naïve 13.70 159.58 483.75 7.18 0.09 0.80 EE.i 7.76 383.76 312.62 4.09 0.21 0.17 }, {Simula naïve	$ \begin{array}{c} 0.21 \\ \text{ted: } \Delta_7 (\\ \textbf{EE}_h \\ 1.54 \\ 205.84 \\ 204.72 \\ 0.82 \\ 0.11 \\ 0.11 \\ \textbf{EE}_ii \\ 0.76 \\ 232.39 \\ 263.53 \\ 0.42 \\ 0.13 \\ 0.14 \\ \text{lated: } \Delta \\ \textbf{EE}_h \\ 2.04 \\ \end{array} $	$\begin{array}{c} 0.24 \\ 0.26 \\ \hline \text{EE}(\hat{\kappa}_i) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline \text{EE}(0.5) \\ 4.65 \\ 327.99 \\ 302.25 \\ 2.45 \\ 0.18 \\ 0.17 \\ 10(\beta_0) = 22 \\ \hline \text{EE}(\hat{\kappa}_i) \\ \end{array}$	$\begin{array}{c} 43.93 \\ .529, \ \Delta_7 \\ \textbf{na\"{r}ve} \\ 1.75 \\ 150.22 \\ 416.02 \\ 0.47 \\ 2.89 \\ 42.11 \\ \textbf{EE.i.} \\ 0.86 \\ 310.40 \\ 241.76 \\ 0.06 \\ 7.64 \\ 5.99 \\ 22.861, \ \iota \\ \textbf{na\"{r}ve} \\ 140.23 \\ \end{array}$	$\begin{array}{c} 37.83 \\ (\beta_1) = 36 \\ \hline {\bf EE_h} \\ 0.17 \\ 175.44 \\ 178.05 \\ 0.12 \\ 4.17 \\ 4.21 \\ \hline {\bf EE_ii} \\ 0.27 \\ 196.88 \\ 238.59 \\ 0.05 \\ 4.39 \\ 5.25 \\ \Delta_{10}(\beta_1) = \\ \hline {\bf EE_h} \\ 41.98 \\ \end{array}$	$\begin{array}{c} 42.68 \\ 5.56497 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	18.94 igh respectation of the control of the contro	18.78 DISS 116.88 117.17 0.10 2.74 2.72 EE.ii 0.19 128.82 147.64 0.09 3.08 3.47 0.00se EE.h 4.12	18.87 $\mathbf{EE}(\hat{\pi}_i)$ 0.35 139.63 206.29 0.21 3.43 5.09 $\mathbf{EE}(0.5)$ 0.48 154.06 158.31 0.29 3.86 3.83 $\mathbf{EE}(\hat{\pi}_i)$ 5.49
$\begin{array}{c} \operatorname{ERSE} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0.14 naïve 6.61 87.40 210.99 34.73 0.05 0.31 EE_i 0.43 290.35 221.06 0.60 0.16 0.12 naïve 11.82 204.38	0.14 T EE_h 0.90 169.50 171.64 4.41 0.09 0.10 EE_ii 6.87 152.23 182.11 33.59 0.08 0.10 T= EE_h 0.73 234.13	$\begin{array}{c} 0.14 \\ = t=7, \{St\\ EE(\hat{p_i}) \\ 3.59 \\ 210.30 \\ 336.31 \\ 16.80 \\ 0.12 \\ 0.19 \\ EE(0.5) \\ 1.94 \\ 250.92 \\ 218.49 \\ 7.85 \\ 0.14 \\ 0.12 \\ = t=10, \{St\\ EE(\hat{p_i}) \\ 1.90 \\ 304.63 \\ \end{array}$	0.24 able and naïve 5.70 180.83 472.73 29.13 0.10 0.78 EE.i 1.64 422.74 384.35 9.59 0.24 0.21 able and naïve 5.47 346.54	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49 271.98 313.74 11.72 0.15 0.17 Volatile: EE_h 0.24 371.27	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \hline{\mathbf{EE}(\hat{\pi}_t)} \\ 0.84 \\ 318.34 \\ 529.52 \\ 3.44 \\ 0.18 \\ 0.30 \\ \hline{\mathbf{EE}(0.5)} \\ 0.36 \\ 366.74 \\ 369.54 \\ \hline{2.82} \\ 0.20 \\ 0.21 \\ \Delta_{10}(\beta_0) = \\ \hline{\mathbf{EE}(\hat{\pi}_t)} \\ 1.01 \\ 425.91 \end{array}$	0.34 11023.06, naïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 443.17 1.43 0.32 0.24 11023.06, naïve 29.64 507.83	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ EEh \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.86 \\ 0.18 \\ 0.18 \\ EEii \\ 10.66 \\ 319.12 \\ 381.70 \\ 5.73 \\ 0.17 \\ 0.21 \\ \Delta_{10}(\beta_1) \\ EEh \\ 1.19 \\ 648.26 \\ \end{array}$	$\begin{array}{c} 0.34 \\ \hline = 0.4041 \} \\ \hline \textbf{EE}(\hat{p_i}) \\ 4.93 \\ 429.25 \\ 666.17 \\ 2.70 \\ 0.23 \\ 0.36 \\ \hline \textbf{EE}(0.5) \\ 0.95 \\ 508.29 \\ 440.38 \\ 0.60 \\ 0.28 \\ 0.24 \\ \hline = -0.4041 \\ \hline \textbf{EE}(\hat{p_i}) \\ 0.45 \\ \hline \textbf{S36.17} \end{array}$	0.24 {Simula naïve 13.70 159.58 483.75 7.18 0.09 0.80 EE.i 7.76 383.76 312.62 4.09 0.21 0.17 }, {Simula naïve 16.08 345.91	0.21 ted: Δ_7 (EE_h 1.54 205.84 204.72 0.82 0.11 0.11 EE_ii 0.76 232.39 263.53 0.42 0.13 0.14 lated: Δ EE_h 2.04 381.13	$\begin{array}{c} 0.24 \\ \beta_0) = 1176 \\ \hline \text{EE}(\hat{\pi}_1) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline \text{EE}(0.5) \\ 4.65 \\ 327.99 \\ 302.25 \\ 2.45 \\ 0.18 \\ 0.17 \\ 10(\beta_0) = 22 \\ \hline \text{EE}(\hat{\pi}_1) \\ 0.07 \\ 476.07 \end{array}$	$\begin{array}{c} \textbf{43.93} \\ \textbf{529}, \ \Delta_7 \\ \textbf{naïve} \\ \textbf{1.75} \\ \textbf{150.22} \\ \textbf{416.02} \\ \textbf{0.47} \\ \textbf{2.89} \\ \textbf{42.11} \\ \textbf{EE.i.} \\ \textbf{0.86} \\ \textbf{310.40} \\ \textbf{241.76} \\ \textbf{0.06} \\ \textbf{7.64} \\ \textbf{5.99} \\ \textbf{:22.861, 4} \\ \textbf{naïve} \\ \textbf{140.23} \\ \textbf{357.79} \end{array}$	$\begin{array}{c} 37.83 \\ (\beta_1) = 36 \\ \hline {\rm EE_h} \\ 0.17 \\ 175.44 \\ 178.05 \\ 0.12 \\ 4.21 \\ \hline {\rm EE_ii} \\ 0.27 \\ 196.88 \\ 238.59 \\ 0.05 \\ 4.39 \\ 5.25 \\ \Delta_{10}(\beta_1) = \\ \hline {\rm EE_ii} \\ 41.98 \\ 389.95 \\ \end{array}$	42.68 .56497 }, h EE(\hat{p}_i) 0.47 242.70 370.45 0.10 5.69 8.88 EE(0.5) 0.67 277.39 248.41 0.10 6.66 5.93 = 14.4251 } EE(\hat{p}_i) 40.59 40.59 524.81	18.94 igh respectable 18.94 igh respectable 19.57 107.88 369.62 0.09 2.29 41.97 EE.i 0.63 172.44 160.54 0.37 4.41 3.94 4, low respectable 19.69 arise 280.44	18.78 onse EE_h 0.23 116.88 117.17 0.10 2.74 2.72 EE_ii 0.19 128.82 147.64 0.09 3.08 3.47 conse EE_h 4.12 280.03	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_i) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.211 \\ 3.43 \\ 5.09 \\ \mathbf{EE}(0.5) \\ 0.48 \\ 154.06 \\ 158.31 \\ 0.29 \\ 3.86 \\ 3.83 \\ \mathbf{EE}(\hat{\pi}_i) \\ 5.49 \\ 324.16 \\ \end{array}$
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE ERSE	0.14 naïve 6.61 87.40 210.99 34.73 0.05 0.31 EE.i 0.43 290.35 221.06 0.16 0.12 naïve 11.82	0.14 T EE_h 0.90 169.50 171.64 4.41 0.09 0.10 EE_ii 6.87 152.23 182.11 33.59 0.08 0.10 T= EE_h 0.73 234.13 239.89	$\begin{array}{c} 0.14 \\ = t=7, \{St\\ EE(\hat{p_i}) \\ 3.59 \\ 210.30 \\ 336.31 \\ 16.80 \\ 0.12 \\ 0.19 \\ EE(0.5) \\ 1.94 \\ 250.92 \\ 218.49 \\ 7.85 \\ 0.14 \\ 0.12 \\ :t=10, \{St\\ EE(\hat{p_i}) \\ 1.90 \\ \end{array}$	0.24 cable and naïve 5.70 180.83 472.73 29.13 0.10 0.78 EE.i 1.64 422.74 384.35 9.59 0.24 0.21 able and naïve 5.47	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49 271.98 313.74 11.72 0.15 0.17 Volatile: EE_h 0.24	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \hline{\text{EE}(\hat{\pi}_i)} \\ 0.84 \\ 318.34 \\ 529.52 \\ 3.44 \\ 0.18 \\ 0.30 \\ \hline{\text{EE}(0.5)} \\ 0.36 \\ 366.74 \\ 369.54 \\ 2.82 \\ 0.20 \\ 0.21 \\ \Delta_{10}(\beta_0) = \\ \hline{\text{EE}(\hat{\pi}_i)} \\ 1.01 \\ \end{array}$	0.34 11023.06, naïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 443.17 1.43 0.32 0.24 11023.06, naïve 29.64	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ EE_h \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.86 \\ 0.18 \\ 0.18 \\ EE_ii \\ 10.66 \\ 319.12 \\ 381.70 \\ 0.21 \\ \Delta_{10}(\beta_1) \\ EE_h \\ 1.19 \\ \end{array}$	$\begin{array}{c} 0.34 \\ = -0.4041 \} \\ \hline \text{EE}(\hat{p_i}) \\ 4.93 \\ 429.25 \\ 666.17 \\ 2.70 \\ 0.23 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 0.95 \\ 508.29 \\ 440.38 \\ 0.60 \\ 0.28 \\ 0.24 \\ = -0.4041 \\ \hline \text{EE}(\hat{p_i}) \\ 0.45 \\ \end{array}$	0.24 {Simula naïve 13.70 159.58 483.75 7.18 0.09 0.80 EE.i 7.76 383.76 312.62 4.09 0.21 0.17 }, {Simula naïve	$ \begin{array}{c} 0.21 \\ \text{ted: } \Delta_7 (\\ \textbf{EE}_h \\ 1.54 \\ 205.84 \\ 204.72 \\ 0.82 \\ 0.11 \\ 0.11 \\ \textbf{EE}_ii \\ 0.76 \\ 232.39 \\ 263.53 \\ 0.42 \\ 0.13 \\ 0.14 \\ \text{lated: } \Delta \\ \textbf{EE}_h \\ 2.04 \\ \end{array} $	$\begin{array}{c} 0.24 \\ 0.26 \\ \hline \text{EE}(\hat{\kappa}_i) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline \text{EE}(0.5) \\ 4.65 \\ 327.99 \\ 302.25 \\ 2.45 \\ 0.18 \\ 0.17 \\ 10(\beta_0) = 22 \\ \hline \text{EE}(\hat{\kappa}_i) \\ \end{array}$	$\begin{array}{c} 43.93 \\ .529, \ \Delta_7 \\ \textbf{na\"{r}ve} \\ 1.75 \\ 150.22 \\ 416.02 \\ 0.47 \\ 2.89 \\ 42.11 \\ \textbf{EE.i.} \\ 0.86 \\ 310.40 \\ 241.76 \\ 0.06 \\ 7.64 \\ 5.99 \\ 22.861, \ \iota \\ \textbf{na\"{r}ve} \\ 140.23 \\ \end{array}$	$\begin{array}{c} 37.83 \\ (\beta_1) = 36 \\ \hline {\bf EE_h} \\ 0.17 \\ 175.44 \\ 178.05 \\ 0.12 \\ 4.17 \\ 4.21 \\ \hline {\bf EE_ii} \\ 0.27 \\ 196.88 \\ 238.59 \\ 0.05 \\ 4.39 \\ 5.25 \\ \Delta_{10}(\beta_1) = \\ \hline {\bf EE_h} \\ 41.98 \\ \end{array}$	$\begin{array}{c} 42.68 \\ 5.56497 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	18.94 igh respectation of the control of the contro	18.78 DISS 116.88 117.17 0.10 2.74 2.72 EE.ii 0.19 128.82 147.64 0.09 3.08 3.47 0.00se EE.h 4.12	18.87 $\mathbf{EE}(\hat{\pi}_i)$ 0.35 139.63 206.29 0.21 3.43 5.09 $\mathbf{EE}(0.5)$ 0.48 154.06 158.31 0.29 3.86 3.83 $\mathbf{EE}(\hat{\pi}_i)$ 5.49
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE SE SE SE SSE SSE SSE SSE	0.14 naïve 6.61 87.40 210.99 34.73 0.05 0.31 EE_i 0.43 290.35 221.06 0.16 0.12 naïve 11.82 204.38 304.99 58.94 0.08	0.14 T EE_h 0.90 169.50 171.64 4.41 0.09 0.10 EE_ii 152.23 182.11 33.59 0.08 0.10 T= EE_h 0.73 234.13 239.89 3.74 0.12	$\begin{array}{c} 0.14 \\ = t=7, \{St\\ EE(\hat{p}_i) \\ 3.59 \\ 210.30 \\ 336.31 \\ 16.80 \\ 0.12 \\ 0.19 \\ EE(0.5) \\ 1.94 \\ 250.92 \\ 218.49 \\ 7.85 \\ 0.14 \\ 0.12 \\ = t=10, \{St\\ EE(\hat{p}_i) \\ 1.90 \\ 304.63 \\ 457.95 \\ 1.712 \\ 0.16 \\ \end{array}$	0.24 able and naïve 5.70 180.83 472.73 29.13 0.10 0.78 EE.i 1.64 422.74 384.35 9.59 0.24 0.21 able and naïve 5.47 346.54 555.72 28.52 0.15	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49 271.98 313.74 11.72 0.15 0.17 Volatile: EE_h 0.24 371.27 354.59 1.10 0.18	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \hline{\mathbf{EP}(\hat{\pi}_1)} \\ 0.84 \\ 318.34 \\ 529.52 \\ 3.44 \\ 0.18 \\ 0.30 \\ \hline{\mathbf{EE}(0.5)} \\ 0.36 \\ 366.74 \\ 369.54 \\ \hline{2.82} \\ 0.20 \\ 0.21 \\ \hline{\Delta_{10}(\beta_0)} = \\ \hline{\mathbf{EE}(\hat{\pi}_1)} \\ 101.0(\beta_0) = \\ \hline{\mathbf{EP}(\hat{\pi}_1)} \\ 101.0(\beta_0) = \\ \hline{\mathbf{EP}(\hat{\pi}_2)} \\ 101.0(\beta_0) = \\ $	0.34 11023.06, maïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 443.17 1.43 0.32 0.24 11023.06, maïve 29.64 507.83 686.86 56.40 0.23	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ \hline {\bf EE.h} \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.86 \\ 0.18 \\ 0.18 \\ 0.18 \\ \hline 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.11 \\ 0.11 \\ 0.11 \\ 0.11 \\ 0.11 \\ 0.11 \\ 0.11 \\ 0.11 \\ 0.11 \\ 0.11 \\ 0.11 \\ 0.11 \\ 0.12 \\ 0.12 \\ 0.13 \\ 0.13 \\ 0.13 \\ 0.14 $	$\begin{array}{c} 0.34 \\ = -0.4041 \} \\ \hline \text{EE}(\hat{p}_i) \\ = 4.93 \\ 4.93 \\ 429.25 \\ 666.17 \\ 2.70 \\ 0.23 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 0.95 \\ 508.29 \\ 440.38 \\ 0.60 \\ 0.28 \\ 0.24 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_i) \\ 0.45 \\ 836.17 \\ 1210.36 \\ 0.44 \\ \end{array}$	0.24 ,{Simula naïve 13.70 159.58 483.75 7.18 0.09 0.80 EE.i 7.76 383.76 312.62 4.09 0.21 0.17 },{Simula naïve 16.08 345.91 551.48 31.23 0.16	$\begin{array}{c} 0.21\\ \text{tdet: } \Delta_{7}\\ \hline \textbf{EE.h}\\ 1.54\\ 205.84\\ 204.72\\ 0.82\\ 0.11\\ 0.11\\ \hline \textbf{EE.ii}\\ 0.76\\ 232.39\\ 263.53\\ 0.42\\ 0.13\\ 0.14\\ \text{latet: } \Delta\\ \hline \textbf{EE.h}\\ 381.13\\ 380.03\\ 2.96\\ 0.19\\ \end{array}$	$\begin{array}{c} 0.24 \\ \beta_0) = 1176 \\ \hline \text{EE}(\hat{\pi}_1) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline \text{EE}(0.5) \\ 4.65 \\ 327.99 \\ 302.25 \\ 2.45 \\ 0.18 \\ 0.17 \\ 10(\beta_0) = 22 \\ \hline \text{EE}(\hat{\pi}_1) \\ 0.07 \\ 476.07 \\ 683.45 \\ 1.61 \\ 0.25 \end{array}$	$\begin{array}{c} 43.93 \\ 529, \ \Delta_7 \\ \hline {\bf na\"{i}ve} \\ 1.75 \\ 150.22 \\ 416.02 \\ 0.47 \\ 2.89 \\ 42.11 \\ \hline {\bf EE.i.} \\ 0.86 \\ 310.40 \\ 241.76 \\ 0.06 \\ 7.64 \\ 5.99 \\ 22.861, \ _2 \\ \hline {\bf na\~{i}ve} \\ \hline {\bf na\~{i}ve} \\ \hline {\bf na\~{i}ve} \\ 0.10 \\ 1.00 \\ 1$	$\begin{array}{c} 37.83 \\ (\beta_1) = 36 \\ \hline {\bf EE_h} \\ 0.17 \\ 175.44 \\ 178.05 \\ 0.12 \\ 4.17 \\ 4.21 \\ \hline {\bf EE_ii} \\ 0.27 \\ 196.88 \\ 238.59 \\ 0.05 \\ 4.39 \\ 5.25 \\ \Delta_{10}(\beta_1) = \\ \hline {\bf EE_h} \\ 41.98 \\ 389.95 \\ 386.93 \\ 0.54 \\ 9.33 \end{array}$	42.68 .56497 }, h EE(\hat{p}_i) 0.47 242.70 370.45 0.10 5.69 8.88 EE(0.5) 0.67 277.39 248.41 0.10 6.66 5.93 = 14.4251 } EE(\hat{p}_i) 40.59 524.81 742.91 0.41	18.94 igh responding to the light of the lig	18.78 onse EE.h 0.23 116.88 117.17 0.10 2.74 2.72 EE.ii 0.19 128.82 147.64 0.09 3.08 3.47 oonse EE.h 4.12 280.03 282.83 0.98 6.52	$\begin{array}{c} 18.87 \\ \mathbf{EE}(\hat{\pi}_t) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.21 \\ 3.43 \\ 5.09 \\ \mathbf{EE}(0.5) \\ 0.48 \\ 154.06 \\ 158.31 \\ 0.29 \\ 3.86 \\ 3.83 \\ 3.83 \\ 3.84 \\ 450.22 \\ 0.77 \\ 7.63 \end{array}$
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$	0.14 naïve 6.61 87.40 210.99 34.73 0.05 0.31 EE.i 0.43 290.35 221.06 0.60 0.16 0.12 naïve 11.82 204.38 304.99 58.94 0.08	0.14 T EE.h 0.90 169.50 171.64 4.41 0.09 0.10 EE.ii 6.87 152.23 182.11 33.59 0.08 0.10 T= EE.h 0.73 234.13 239.89 3.74 0.12	$\begin{array}{c} 0.14 \\ = t = 7, \{St \\ EE(\hat{p_i}) \\ = E(\hat{p_i}), \\ 3.59 \\ 210.30 \\ 336.31 \\ 16.80 \\ 0.12 \\ 0.19 \\ EE(0.5) \\ 1.94 \\ 250.92 \\ 218.49 \\ 7.85 \\ 0.14 \\ 50.12 \\ 1.90 \\ 304.63 \\ 1.90 \\ 304.63 \\ 1.712 \\ 0.16 \\ 0.25 \\ 0.25$	0.24	0.22 Volatile: EE.h 1.72 250.26 240.88 8.27 0.14 0.13 EE.ii 2.49 271.98 313.74 11.72 0.15 0.17 Volatile: EE.h 0.24 371.27 354.59 1.10 0.18	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \hline{\text{EE}(\pi_i)} \\ 0.84 \\ 318.34 \\ 529.52 \\ \hline 3.44 \\ 0.18 \\ 0.30 \\ \hline \text{EE}(0.5) \\ 0.36 \\ 366.74 \\ 369.54 \\ \hline 2.82 \\ 0.20 \\ 0.01 \\ \hline \Delta_{10}(\beta_0) = \\ \hline \text{EE}(\pi_i) \\ \hline 1.01 \\ 425.91 \\ \hline 474 \\ 0.21 \\ 0.21 \\ 0.31 \\ \end{array}$	0.34 11023.06, naïve 23.81 194.75 539.64 12.41 0.10 0.79 EE_i 2.89 585.85 443.17 1.43 0.32 0.24 11023.06, naïve 29.64 507.83 686.86 56.40 0.23 0.73	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ \hline{\textbf{EE}.h} \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.86 \\ 0.18 \\ 0.18 \\ \hline{\textbf{0.18}} \\ 0.18 \\ \hline{\textbf{0.20}} \\ 10.66 \\ 319.12 \\ 381.70 \\ \hline{\textbf{0.17}} \\ 0.21 \\ \hline{\Delta_{10}(\beta_1)} \\ \hline{\textbf{EE}.h} \\ 1.19 \\ 648.26 \\ 644.21 \\ 0.46 \\ 0.33 \\ \end{array}$	$\begin{array}{c} 0.34 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_1) \\ 4.93 \\ 429.25 \\ 666.17 \\ 2.70 \\ 0.23 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 0.95 \\ 508.29 \\ 440.38 \\ 0.60 \\ 0.28 \\ 0.24 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_1) \\ 0.45 \\ 836.17 \\ 1210.36 \\ 5.08 \\ 0.44 \\ 0.65 \end{array}$	0.24 , {Simula maïve 13.70 159.58 483.75 7.18 0.09 0.80 EE_i 7.76 383.76 312.62 4.09 0.21 0.17 }, {Simula maïve 16.08 345.91 551.48 31.23 0.16 0.76	$\begin{array}{c} 0.21\\ \text{tdet: } \Delta_{7}\\ \text{EE.h}\\ 1.54\\ 205.84\\ 204.72\\ 0.82\\ 0.11\\ 0.11\\ \text{EE.ii}\\ 0.76\\ 232.39\\ 263.53\\ 0.42\\ 0.13\\ 0.14\\ \text{lated: } \Delta\\ \text{EE.h}\\ 2.04\\ 381.13\\ 380.03\\ 2.96\\ 0.19\\ 0.19\\ \end{array}$	$\begin{array}{c} 0.24 \\ \beta_0) = 1176 \\ \hline \text{EE}(\hat{n}_1) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline \text{EE}(0.5) \\ 4.65 \\ 327.99 \\ 302.25 \\ 2.45 \\ 0.17 \\ 0.07 \\ 476.07 \\ 683.45 \\ 1.61 \\ 0.07 \\ 476.07 \\ 683.45 \\ 0.18 \\ 0.07 \\ 476.07 \\ 0.07 \\ 476.07 \\ 0.07 \\ 476.07 \\ 0.07 \\ 476.07 \\ 0$	$\begin{array}{c} 43.93 \\ 529, \ \Delta_7 \\ \hline {\bf na\"ve} \\ 1.75 \\ 150.22 \\ 416.02 \\ 0.47 \\ 2.89 \\ 42.11 \\ \hline {\bf EE.i} \\ 0.86 \\ 310.40 \\ 241.76 \\ 0.06 \\ 7.64 \\ 5.99 \\ 22.861, \\ a \\ \hline {\bf na\"ve} \\ 140.23 \\ 357.79 \\ 462.21 \\ 7.01 \\ 7.02 \\ 17.30 \\ \end{array}$	$\begin{array}{c} 37.83\\ (\beta_1)=36\\ \hline{\textbf{EE.h}}\\ 0.17\\ 175.44\\ 178.05\\ 0.12\\ 4.17\\ 4.21\\ \hline{\textbf{EE.h}}\\ 0.27\\ 196.88\\ 238.59\\ 0.05\\ 4.39\\ 5.25\\ \hline{\Delta}_{10}(\beta_1)=\\ \hline{\textbf{EE.h}}\\ 41.98\\ 389.95\\ 386.93\\ 0.54\\ 9.33\\ 9.37\\ \end{array}$	42.68 .56497 }, h EE(\hat{p}_i) 0.47 242.70 370.45 0.10 5.69 8.88 EE(0.5) 0.67 277.39 248.41 0.10 6.66 6.69 5.93 =14.4251 } EE(\hat{p}_i) 40.59 524.81 742.91 0.41 12.88	18.94 igh responding to 18.94 107.88 369.62 0.09 2.29 41.97 EE.i 0.63 172.44 160.54 0.37 4.41 3.94 4.10s responding to 18.94 4.41 3.94 4.10s 1.45 5.52 17.77	18.78 onse EE.h 0.23 116.88 117.17 0.10 2.74 2.72 EE.ii 0.19 128.82 147.64 0.09 3.08 3.47 oonse EE.h 4.12 280.03 282.83 0.98 6.52	$\begin{array}{c} 18.87 \\ \mathbf{EE}(\bar{\pi}_t) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.21 \\ 3.43 \\ 5.09 \\ \mathbf{EE}(0.5) \\ 0.48 \\ 154.06 \\ 158.31 \\ 0.29 \\ 3.86 \\ 3.83 \\ \mathbf{EE}(\bar{\pi}_t) \\ 5.49 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 10.87 \end{array}$
$\begin{array}{c} \operatorname{ERSE} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0.14 naïve 6.61 87.40 210.99 34.73 0.05 0.31 EE_i 0.43 290.35 221.06 0.16 0.12 naïve 11.82 204.38 304.99 58.94 0.08 0.30 EE_i	0.14 T EE.h 0.90 169.50 171.64 4.41 0.09 0.10 EE.ii 6.87 152.23 182.11 33.59 0.08 0.10 T= EE.h 0.73 234.13 239.89 3.74 0.12 0.12 EE.ji	$\begin{array}{c} 0.14 \\ = \pm 7, \{\text{St} \\ EE(\hat{p_i}) \\ 3.59 \\ 210.30 \\ 336.31 \\ 16.80 \\ 0.12 \\ 0.19 \\ EE(0.5) \\ 1.94 \\ 250.92 \\ 218.49 \\ 7.85 \\ 0.14 \\ 0.12 \\ \pm \pm 10, \{\text{St} \\ EE(\hat{p_i}) \\ 1.90 \\ 304.63 \\ 457.95 \\ 17.12 \\ 0.16 \\ 0.25 \\ EE(0.5) \\ \end{array}$	0.24 (able and maïve 29.13 (0.10 (able and 29.13 (0.10 (able and 29.13 (able a	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49 271.98 313.74 11.72 0.15 0.17 Volatile: EE_h 0.24 371.27 354.59 1.10 0.18 0.18 0.18 EE_ii	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \hline{\text{EP}(\tilde{\pi}_i)} \\ 0.84 \\ 318.34 \\ 529.52 \\ \hline 3.44 \\ 0.18 \\ 0.30 \\ \hline \text{EE}(0.5) \\ 0.36 \\ 366.74 \\ 369.54 \\ \hline 2.82 \\ 0.20 \\ 0.21 \\ \hline \Delta_{10}(\beta_0) = \\ \hline \text{EE}(\tilde{\pi}_i) \\ 1.01 \\ 425.91 \\ 601.80 \\ 4.74 \\ 0.21 \\ 0.31 \\ \hline \text{EE}(0.5) \\ \end{array}$	0.34 11023.06, maïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 443.17 1.43 0.24 11023.06, maïve 29.64 507.83 66.8.66 56.40 0.23 0.79 EE.i	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ \hline {\bf EE.h} \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.86 \\ 0.18 \\ 0.18 \\ \hline {\bf EE.hi} \\ 10.66 \\ 319.12 \\ 381.70 \\ 0.21 \\ \Delta_{10}(\beta_1) \\ \hline {\bf EE.h} \\ 1.19 \\ 648.26 \\ 644.21 \\ 0.34 \\ 0.33 \\ \hline {\bf EE.hi} \\ \end{array}$	$\begin{array}{c} 0.34 \\ = -0.4041 \} \\ \hline \textbf{EE}(\hat{p}_i) \\ 4.93 \\ 429.25 \\ 666.17 \\ 2.70 \\ 0.23 \\ 0.36 \\ \hline \textbf{EE}(0.5) \\ 0.95 \\ 508.29 \\ 440.38 \\ 0.60 \\ 0.28 \\ 0.24 \\ = -0.4041 \\ \hline \textbf{EE}(\hat{p}_i) \\ 0.45 \\ 836.17 \\ 1210.36 \\ 5.08 \\ 0.44 \\ 0.65 \\ \hline \textbf{E}(0.5) \\ \hline \textbf{E}(0.5$	0.24 ,{Simula naïve 13.70 159.58 483.75 7.18 0.09 0.80 EE_i 7.76 383.76 312.62 4.09 0.21 0.17 },{Simula naïve 16.08 345.91 551.48 31.23 0.16 0.76 EE_i	$\begin{array}{c} 0.21\\ \text{tdet: } \Delta_{7}\\ \text{EE_h}\\ 1.54\\ 205.84\\ 204.72\\ 0.82\\ 0.11\\ 0.11\\ \text{EE_i}\\ 0.62\\ 232.39\\ 263.53\\ 0.42\\ 0.13\\ 0.14\\ \text{lated: } \Delta\\ \text{EE_h}\\ 2.04\\ 381.13\\ 380.03\\ 2.96\\ 0.19\\ 0.19\\ \text{EE_ii}\\ \end{array}$	$\begin{array}{c} 0.24 \\ \beta_0) = 1176 \\ \hline {\rm EE}(\hat{n}_i) \\ = 1173 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline {\rm EE}(0.5) \\ 4.65 \\ 327.99 \\ 302.25 \\ 2.45 \\ 0.17 \\ 10(\beta_0) = 22 \\ \hline {\rm EE}(\hat{n}_i) \\ 0.07 \\ 476.07 \\ 683.45 \\ 1.61 \\ 0.25 \\ 0.36 \\ \hline {\rm EE}(0.5) \\ \end{array}$	$ \begin{array}{c c} \textbf{43.93} \\ \textbf{529}, \Delta_7 \\ \textbf{naïve} \\ \textbf{1.75} \\ \textbf{150.22} \\ \textbf{416.02} \\ \textbf{0.47} \\ \textbf{2.89} \\ \textbf{42.11} \\ \textbf{EE.i.} \\ \textbf{0.86} \\ \textbf{310.40} \\ \textbf{241.76} \\ \textbf{0.06} \\ \textbf{7.64} \\ \textbf{5.99} \\ \textbf{22.861}, \\ \textbf{naïve} \\ \textbf{140.23} \\ \textbf{357.79} \\ \textbf{462.21} \\ \textbf{7.01} \\ \textbf{7.02} \\ \textbf{17.30} \\ \textbf{EE.i.} \\ \end{array} $	$\begin{array}{c} 37.83 \\ (\beta_1) = 36 \\ \textbf{EE.h} \\ 0.17 \\ 175.44 \\ 178.05 \\ 0.12 \\ 4.17 \\ 4.21 \\ \textbf{EE.ii} \\ 0.27 \\ 4.21 \\ \textbf{EE.ii} \\ 0.27 \\ 38.59 \\ 0.05 \\ 4.39 \\ 5.25 \\ \Delta_{10}(\beta_1) = \\ \textbf{EE.h} \\ 41.98 \\ 389.95 \\ 386.93 \\ 0.54 \\ 9.33 \\ 0.54 \\ 9.37 \\ \textbf{EE.h} \\ \end{array}$	$\begin{array}{c} 42.68 \\ 5.56497 \end{array}, \\ \mathbf{b} \\ \overline{\mathbf{E}}(\hat{p}_i) \\ 0.47 \\ 242.70 \\ 3.70.45 \\ 0.10 \\ 5.69 \\ 8.88 \\ \overline{\mathbf{E}}(0.5) \\ 0.67 \\ 277.39 \\ 248.41 \\ 0.10 \\ 6.66 \\ 5.93 \\ \overline{\mathbf{e}}(1.4251) \\ \overline{\mathbf{E}}(\hat{p}_i) \\ 40.59 \\ 524.81 \\ 742.91 \\ 0.41 \\ 12.88 \\ 19.84 \\ \overline{\mathbf{E}}(0.5) \\ \end{array}$	18.94 igh respudich respun	18.78 onse EE_h 0.23 116.88 117.17 0.10 2.74 2.72 EE_ii 0.19 128.82 147.64 0.09 3.08 3.47 oonse EE_h 4.12 280.03 282.83 0.98 6.52 6.79 EE_ii	$\begin{array}{c} 18.87 \\ \mathbf{EE}(\bar{\pi}_t) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.21 \\ 3.43 \\ 5.09 \\ \mathbf{EE}(0.5) \\ 0.48 \\ 154.06 \\ 158.31 \\ 0.29 \\ 3.86 \\ 3.86 \\ 3.83 \\ \mathbf{EE}(\bar{\pi}_t) \\ 5.49 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 10.87 \\ \mathbf{EE}(0.5) \\ \end{array}$
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE SE SE SE SSE SSE SSE SSE	0.14 naïve 6.61 87.40 210.99 34.73 0.05 0.31 EE.i 0.43 290.35 221.06 0.60 0.16 0.12 naïve 11.82 204.38 304.99 58.94 0.08	0.14 T EE.h 0.90 169.50 171.64 4.41 0.09 0.10 EE.ii 6.87 152.23 182.11 33.59 0.08 0.10 T= EE.h 0.73 234.13 239.89 3.74 0.12	$\begin{array}{c} 0.14 \\ = t = 7, \{St \\ EE(\hat{p_i}) \\ = E(\hat{p_i}), \\ 3.59 \\ 210.30 \\ 336.31 \\ 16.80 \\ 0.12 \\ 0.19 \\ EE(0.5) \\ 1.94 \\ 250.92 \\ 218.49 \\ 7.85 \\ 0.14 \\ 50.12 \\ 1.90 \\ 304.63 \\ 1.90 \\ 304.63 \\ 1.712 \\ 0.16 \\ 0.25 \\ 0.25$	0.24	0.22 Volatile: EE.h 1.72 250.26 240.88 8.27 0.14 0.13 EE.ii 2.49 271.98 313.74 11.72 0.15 0.17 Volatile: EE.h 0.24 371.27 354.59 1.10 0.18	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \hline{\text{EE}(\pi_i)} \\ 0.84 \\ 318.34 \\ 529.52 \\ \hline 3.44 \\ 0.18 \\ 0.30 \\ \hline \text{EE}(0.5) \\ 0.36 \\ 366.74 \\ 369.54 \\ \hline 2.82 \\ 0.20 \\ 0.01 \\ \hline \Delta_{10}(\beta_0) = \\ \hline \text{EE}(\pi_i) \\ \hline 1.01 \\ 425.91 \\ \hline 474 \\ 0.21 \\ 0.21 \\ 0.31 \\ \end{array}$	0.34 11023.06, naïve 23.81 194.75 539.64 12.41 0.10 0.79 EE_i 2.89 585.85 443.17 1.43 0.32 0.24 11023.06, naïve 29.64 507.83 686.86 56.40 0.23 0.73	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ \hline{\textbf{EE}.h} \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.86 \\ 0.18 \\ 0.18 \\ \hline{\textbf{0.18}} \\ 0.18 \\ \hline{\textbf{0.20}} \\ 10.66 \\ 319.12 \\ 381.70 \\ \hline{\textbf{0.17}} \\ 0.21 \\ \hline{\Delta_{10}(\beta_1)} \\ \hline{\textbf{EE}.h} \\ 1.19 \\ 648.26 \\ 644.21 \\ 0.46 \\ 0.33 \\ \end{array}$	$\begin{array}{c} 0.34 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_1) \\ 4.93 \\ 429.25 \\ 666.17 \\ 2.70 \\ 0.23 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 0.95 \\ 508.29 \\ 440.38 \\ 0.60 \\ 0.28 \\ 0.24 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_1) \\ 0.45 \\ 836.17 \\ 1210.36 \\ 5.08 \\ 0.44 \\ 0.65 \end{array}$	0.24 , {Simula maïve 13.70 159.58 483.75 7.18 0.09 0.80 EE_i 7.76 383.76 312.62 4.09 0.21 0.17 }, {Simula maïve 16.08 345.91 551.48 31.23 0.16 0.76	$\begin{array}{c} 0.21\\ \text{tdet: } \Delta_{7}\\ \text{EE.h}\\ 1.54\\ 205.84\\ 204.72\\ 0.82\\ 0.11\\ 0.11\\ \text{EE.ii}\\ 0.76\\ 232.39\\ 263.53\\ 0.42\\ 0.13\\ 0.14\\ \text{lated: } \Delta\\ \text{EE.h}\\ 2.04\\ 381.13\\ 380.03\\ 2.96\\ 0.19\\ 0.19\\ \end{array}$	$\begin{array}{c} 0.24 \\ \beta_0) = 1176 \\ \hline \text{EE}(\hat{n}_1) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline \text{EE}(0.5) \\ 4.65 \\ 327.99 \\ 302.25 \\ 2.45 \\ 0.17 \\ 0.07 \\ 476.07 \\ 683.45 \\ 1.61 \\ 0.07 \\ 476.07 \\ 683.45 \\ 0.18 \\ 0.07 \\ 476.07 \\ 0.07 \\ 476.07 \\ 0.07 \\ 476.07 \\ 0.07 \\ 476.07 \\ 0$	$\begin{array}{c} 43.93 \\ 529, \ \Delta_7 \\ \hline {\bf na\"ve} \\ 1.75 \\ 150.22 \\ 416.02 \\ 0.47 \\ 2.89 \\ 42.11 \\ \hline {\bf EE.i} \\ 0.86 \\ 310.40 \\ 241.76 \\ 0.06 \\ 7.64 \\ 5.99 \\ 22.861, \\ a \\ \hline {\bf na\"ve} \\ 140.23 \\ 357.79 \\ 462.21 \\ 7.01 \\ 7.02 \\ 17.30 \\ \end{array}$	$\begin{array}{c} 37.83\\ (\beta_1)=36\\ \hline{\textbf{EE.h}}\\ 0.17\\ 175.44\\ 178.05\\ 0.12\\ 4.17\\ 4.21\\ \hline{\textbf{EE.h}}\\ 0.27\\ 196.88\\ 238.59\\ 0.05\\ 4.39\\ 5.25\\ \hline{\Delta}_{10}(\beta_1)=\\ \hline{\textbf{EE.h}}\\ 41.98\\ 389.95\\ 386.93\\ 0.54\\ 9.33\\ 9.37\\ \end{array}$	42.68 .56497 }, h EE(\hat{p}_i) 0.47 242.70 370.45 0.10 5.69 8.88 EE(0.5) 0.67 277.39 248.41 0.10 6.66 6.69 5.93 =14.4251 } EE(\hat{p}_i) 40.59 524.81 742.91 0.41 12.88	18.94 igh responding to 18.94 107.88 369.62 0.09 2.29 41.97 EE.i 0.63 172.44 160.54 0.37 4.41 3.94 4.10s responding to 18.94 4.41 3.94 4.10s 1.45 5.52 17.77	18.78 onse EE.h 0.23 116.88 117.17 0.10 2.74 2.72 EE.ii 0.19 128.82 147.64 0.09 3.08 3.47 oonse EE.h 4.12 280.03 282.83 0.98 6.52	$\begin{array}{c} \mathbf{EE}(\bar{\pi}_i) \\ \mathbf{EE}(\bar{\pi}_i) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.21 \\ 3.43 \\ 5.09 \\ \mathbf{EE}(0.5) \\ 0.48 \\ 154.06 \\ 158.31 \\ 0.29 \\ 3.86 \\ 3.83 \\ \mathbf{EE}(\bar{\pi}_i) \\ 5.49 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 10.87 \end{array}$
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE	0.14 naïve 6.61 87.40 0.05 34.73 0.05 0.31 EE.i 0.43 221.06 0.60 0.16 0.12 naïve 11.82 204.38 0.30 0.9 4.98 0.80 0.30 EE.i 4.98 4.98	0.14 T EE.h 0.90 169.50 171.64 4.41 0.09 0.10 EE.ii 6.87 152.23 182.11 33.59 0.08 0.10 T= EE.h 0.73 234.13 239.89 3.74 0.12 0.12 EE.ji 2.19 2.19 2.19 2.19	$\begin{array}{c} 0.14 \\ = \pm -7, \ \{ \mathrm{St} \\ \overline{\mathbf{EE}(\hat{p}_i)} \\ 3.59 \\ 210.30 \\ 336.31 \\ 16.80 \\ 0.12 \\ 0.19 \\ \underline{\mathbf{EE}(0.5)} \\ 1.94 \\ 250.92 \\ 218.49 \\ 7.85 \\ 0.14 \\ 0.12 \\ \underline{\mathbf{EE}(\hat{p}_i)} \\ 0.12 \\ \underline{\mathbf{EE}(\hat{p}_i)} \\ 1.90 \\ 304.63 \\ 457.95 \\ \underline{\mathbf{EE}(\hat{p}_i)} \\ 17.12 \\ 0.16 \\ 0.25 \\ \underline{\mathbf{EE}(0.5)} \\ 3.57 \\ 336.46 \\ 305.56 \\ \end{array}$	0.24 (able and maïve 5.70 180.83 472.73 29.13 0.10 0.78 EE.i 1.64 422.74 384.35 9.59 0.24 0.21 (able and maïve 5.47 346.54 555.72 28.52 0.15 0.78 EE.i 2.36 42.97 495.86	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49 271.98 313.74 11.72 0.15 0.17 Volatile: EE_h 0.24 371.27 354.59 1.10 0.18 0.18 0.18 EE_ii 0.45 30.45 30.45 30.45 30.45	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \hline{\text{EP}(\tilde{\pi}_i)} \\ 0.84 \\ 318.34 \\ 529.52 \\ 3.44 \\ 0.18 \\ 0.30 \\ \hline{\text{EE}(0.5)} \\ 0.36 \\ 366.74 \\ 369.54 \\ 2.82 \\ 0.20 \\ 0.21 \\ \Delta_{10}(\beta_0) = \\ \hline{\text{EE}(\tilde{\pi}_i)} \\ 1.01 \\ 425.91 \\ 601.80 \\ 4.74 \\ 0.21 \\ 0.31 \\ \hline{\text{EE}(0.5)} \\ 1.66 \\ 455.41 \\ 455.44 \\ \end{array}$	0.34 11023.06, maïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 443.17 1.43 0.32 0.24 11023.06, maïve 29.64 507.83 666.86 56.40 0.23 0.79 EE.i 6.85 1007.19	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ EE.h \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.86 \\ 0.18 \\ 0.18 \\ EE.ii \\ 10.66 \\ 319.12 \\ 381.70 \\ 5.73 \\ 0.17 \\ 0.21 \\ \Delta_{10}(\beta_1) \\ EE.h \\ 1.19 \\ 648.26 \\ 644.21 \\ 0.34 \\ 0.33 \\ EE.ii \\ 10.71 \\ 659.87 \\ 822.80 \end{array}$	$\begin{array}{c} 0.34 \\ = -0.4041 \\ \hline \textbf{EE}(\hat{p_i}) \\ 4.93 \\ 429.25 \\ 666.17 \\ 2.70 \\ 0.23 \\ 0.36 \\ \hline \textbf{EE}(0.5) \\ 0.95 \\ 508.29 \\ 440.38 \\ 0.60 \\ 0.28 \\ 0.24 \\ = -0.4041 \\ \hline \textbf{EE}(\hat{p_i}) \\ 0.45 \\ 836.17 \\ 1210.36 \\ 0.44 \\ 0.65 \\ \hline \textbf{EE}(0.5) \\ 0.38 \\ 0.38 \\ 0.39 \\ 0.48 \\ 0.49$	0.24 (Simula maïve 13.70 159.58 483.75 7.18 0.09 0.80 EE.i 7.76 383.76 312.62 4.09 0.21 0.17 }, (Simula maïve 16.08 345.91 551.48 51.23 0.16 EE.i 3.29 58.21	0.21 ted: Δr_{7} t	$\begin{array}{c} 0.24 \\ \beta_0) = 1176 \\ \hline {\rm EE}(\hat{\pi}_1) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline {\rm EE}(0.5) \\ 4.65 \\ 327.99 \\ 302.25 \\ 2.45 \\ 0.17 \\ 10(\beta_0) = 22 \\ \hline {\rm EE}(\hat{\pi}_1) \\ 0.07 \\ 476.07 \\ 683.45 \\ 1.61 \\ 0.25 \\ 0.36 \\ \hline {\rm EE}(0.5) \\ 1.52 \\ 524.44 \\ 507.36 \\ \hline \end{array}$	43.93 45.93 47.91 17.55 150.22 17.55 150.22 28.93 42.11 EE.i 0.86 241.76 0.06 7.64 5.99 140.23 357.79 17.01 7.02 17.30 17.30 17.30 18.11 14.62.21 46.29 46.21 46.29 46.21 46.29 46.21	$\begin{array}{c} 37.83 \\ (\beta_1) = 36 \\ \textbf{EE.h} \\ 0.17 \\ 175.44 \\ 178.05 \\ 0.12 \\ 4.17 \\ 4.21 \\ \textbf{EE.ii} \\ 0.27 \\ 4.21 \\ \textbf{EE.ii} \\ 0.27 \\ 38.59 \\ 0.05 \\ 4.39 \\ 5.25 \\ \Delta_{10}(\beta_1) = \\ \textbf{EE.h} \\ 41.98 \\ 389.95 \\ 386.93 \\ 0.54 \\ 9.33 \\ 0.54 \\ 9.37 \\ \textbf{EE.h} \\ 17.40 \\ 440.84 \\ 440.84 \\ 440.84 \\ 440.84 \\ 4526.86 \\ \end{array}$	42.68 .56497 }, h EE(\hat{p}_i) 0.47 242.70 370.45 0.10 5.69 8.88 EE(0.5) 0.67 277.39 248.41 0.10 6.66 5.93 :14.4251 } EE(\hat{p}_i) 9.40.59 524.81 742.91 0.41 12.88 19.84 EE(0.5) 43.91 575.49 497.69	18.94 18.94 10.57 107.88 369.62 0.09 2.29 0.09 2.29 0.63 1.63 1.63 1.63 1.63 1.63 1.64 1.65 1.63 1.64 1.65 1.64 1.65 1.65 1.67 1.68 1.68 1.68 1.68 1.68 1.68 1.68 1.68	18.78 onse EE_h 0.23 116.88 117.17 0.10 2.74 2.72 EE_ii 0.19 128.82 147.64 0.09 3.08 3.47 oonse EE_h 4.12 280.03 282.83 0.98 6.52 6.79 EE_ii 1.51 307.16 337.64	$\begin{array}{c} 18.87 \\ \mathbf{EE}(\bar{\pi}_i) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.21 \\ 3.43 \\ 5.09 \\ \mathbf{EE}(0.5) \\ 0.48 \\ 154.06 \\ 158.31 \\ 0.29 \\ 3.86 \\ 3.86 \\ 3.83 \\ \mathbf{EE}(\bar{\pi}_i) \\ 5.49 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 10.87 \\ \mathbf{FE}(0.5) \\ 7.48 \\ 345.16 \\ 349.03 \\ \end{array}$
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE	0.14 naïve 6.61 87.40 34.73 0.05 34.73 0.05 0.31 0.43 2221.06 0.60 0.16 0.16 204.38 304.99 58.94 0.08 0.30 36.55.56 4.98 365.55 23.265	0.14 T EE.h 0.90 169.50 171.64 4.41 0.09 0.10 EE.ii 6.87 152.23 182.11 33.59 0.08 0.10 T= EE.h 0.73 234.13 239.89 3.74 0.12 0.12 EE.ii 2.19 250.41 314.81	$\begin{array}{c} 0.14 \\ = t=7, \{St\\ EE(\hat{p}_i) \\ 3.59 \\ 210.30 \\ 336.31 \\ 16.80 \\ 0.12 \\ 0.19 \\ 250.92 \\ 218.49 \\ 7.85 \\ 0.14 \\ 0.12 \\ 218.49 \\ 0.18 \\ 250.92 \\ 218.49 \\ 0.34 \\ 6.12 \\ 0.16 \\ 0.25 \\ EE(\hat{p}_i) \\ 1.90 \\ 304.63 \\ 457.95 \\ 17.12 \\ 0.16 \\ 0.25 \\ EE(0.5) \\ 3.57 \\ 336.46 \\ 305.33 \\ 24.89 \end{array}$	0.24 (able and maïve 28.5.72 (28.5.72 (29.13 0.10 0.24 422.74 422.74 384.35 9.59 0.24 0.21 able and maïve 5.47 346.54 (555.72 28.52 0.15 0.78 EE.i 2.36 491.97 453.68 10.99	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49 271.84 11.72 0.15 Volatile: EE_h 0.24 371.27 354.59 1.10 0.18 0.18 EE_ii 0.45 395.22 431.31 2.86	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \hline{\text{EE}(\hat{\pi}_i)} \\ 0.84 \\ 318.34 \\ 529.52 \\ 3.44 \\ 0.18 \\ 0.30 \\ \hline{\text{EE}(0.5)} \\ 0.36 \\ 366.74 \\ 369.54 \\ 2.82 \\ 0.20 \\ 0.21 \\ \Delta_{10}(\beta_0) = \\ \hline{\text{EE}(\hat{\pi}_i)} \\ 1.01 \\ 425.91 \\ 601.80 \\ 4.74 \\ 0.21 \\ 0.31 \\ \hline{\text{EE}(0.5)} \\ 1.66 \\ 455.44 \\ 455.44 \\ 7.58 \\ \end{array}$	0.34 11023.06, maïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 5443.17 1.43 0.32 0.24 11023.06, maïve 29.64 507.83 686.86 56.40 0.23 0.79 EE.i 6.85 1007.19 755.77 26.54	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ \textbf{EE-h} \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.18 \\ 0.18 \\ \textbf{EE-h} \\ 10.66 \\ 319.12 \\ 381.70 \\ 5.73 \\ 0.17 \\ 0.21 \\ \Delta_{10}(\beta_1) \\ \textbf{EE-h} \\ 1.19 \\ 648.26 \\ 644.21 \\ 0.34 \\ 0.33 \\ \textbf{EE-h} \\ 10.71 \\ 659.87 \\ 822.80 \\ 14.71 \\ \end{array}$	$\begin{array}{c} 0.34 \\ = -0.4041 \} \\ \hline \text{EE}(\hat{p}_i) \\ = 4.93 \\ 429.25 \\ 666.17 \\ 2.70 \\ 0.23 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 0.95 \\ 508.29 \\ 440.38 \\ 0.60 \\ 0.28 \\ 0.24 \\ \hline = -0.4041 \\ \hline \text{EE}(\hat{p}_i) \\ 0.45 \\ 836.17 \\ 1210.36 \\ 5.08 \\ 0.44 \\ 0.65 \\ \hline \text{EE}(0.5) \\ 3.51 \\ 926.39 \\ 805.38 \\ 15.30 \\ \end{array}$	0.24 ,{Simula maïve 13.70 159.58 483.75 7.18 0.09 0.80 EE.i. 7.76 382.62 4.09 0.21 0.17 },{Simula maïve 16.08 345.91 551.48 31.23 0.16 0.76 EE.i. 3.29 583.77 508.21 8.55	0.21 tetel: \$\(\alpha_{\text{r}}\) 1.54 205.84 205.84 205.84 201.11 EE.ii 0.16 0.76 0.26 263.53 0.42 263.53 0.42 263.53 0.42 283.13 380.03 2.96 0.19 0.19 0.19 1.26 428.66 471.05 0.69	$\begin{array}{c} 0.24 \\ \beta_0) = 1176 \\ \hline \text{EE}(\hat{\pi}_1) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline 2.65 \\ 0.25 \\ 32.99 \\ 302.25 \\ 2.45 \\ 0.18 \\ 0.17 \\ 10(\beta_0) = 22 \\ \hline \text{EE}(\hat{\pi}_t) \\ 0.07 \\ 476.07 \\ 683.45 \\ 1.61 \\ 0.25 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 1.52 \\ 444 \\ 507.46 \\ 4.50 \\ 4.50 \\ \end{array}$	43.93	$\begin{array}{c} 37.83 \\ (\beta_1) = 36 \\ \hline {\bf EE.h} \\ 0.17 \\ 175.44 \\ 178.05 \\ 0.12 \\ 4.17 \\ 4.21 \\ \hline {\bf EE.ki} \\ 0.27 \\ 196.88 \\ 238.59 \\ 0.05 \\ 4.39 \\ 0.05 \\ 4.39 \\ 0.35 \\ 4.39 \\ 0.54 \\ 41.98 \\ 389.95 \\ 386.93 \\ 0.54 \\ 41.98 \\ 389.95 \\ 386.93 \\ 0.54 \\ 41.98 \\ 38.95 \\ 386.93 \\ 0.54 \\ 41.98 \\ 38.95 \\ 386.93 \\ 0.54 \\ 41.98 \\ 38.95 \\ 386.93 \\ 0.54 \\ 41.98 \\ 38.95 \\ 386.93 \\ 0.54 \\ 41.98 \\ 38.98$	$\begin{array}{c} 42.68 \\ 5.56497 \end{array} , \ \mathbf{b} \\ \mathbf{E}(\hat{p}_i) \\ 0.47 \\ 242.70 \\ 370.45 \\ 0.10 \\ 5.69 \\ 8.88 \\ \mathbf{E}(0.5) \\ 0.67 \\ 277.39 \\ 248.41 \\ 0.10 \\ 6.66 \\ 5.93 \\ = 14.4251 \\ \mathbf{E}(\hat{p}_i) \\ 40.59 \\ 524.81 \\ 742.91 \\ 0.41 \\ 12.88 \\ \mathbf{E}(0.5) \\ 43.91 \\ 575.49 \\ 497.66 \\ 0.65 \end{array}$	18.94 10.57 107.88 108.96 10.63 10.64 10.54 10.55 10.7	18.78 onse EE.h 0.23 116.88 117.17 0.10 2.74 2.72 EE.ii 0.19 128.82 147.64 0.09 3.08 EE.h 4.12 280.03 282.83 0.98 6.52 6.79 EE.ii 1.51 307.16 337.64 1.13	$\begin{array}{c} 18.87 \\ \mathbf{EE}(\hat{\pi}_t) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.21 \\ 3.43 \\ 5.09 \\ \mathbf{EE}(0.5) \\ 0.48 \\ 154.06 \\ 158.31 \\ 0.29 \\ 3.86 \\ 3.83 \\ 3.83 \\ 3.84 \\ 154.06 \\ 158.21 \\ 0.77 \\ 7.63 \\ 10.87 \\ \mathbf{EE}(\hat{\pi}_t) \\ 7.63 \\ 10.87 \\ \mathbf{EE}(0.5) \\ 7.48 \\ 345.16 \\ 349.03 \\ 0.52 \end{array}$
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE	0.14 naïve 6.61 87.10 9.34.73 0.05 0.31 EE.i 0.43 221.06 0.60 0.12 naïve 11.82 204.38 0.80 1.82 0.83 0.83 0.83 EE.i 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83	0.14 T EE.h 0.90 169.50 171.64 4.41 0.09 0.10 EE.ii 6.87 152.23 182.11 33.59 0.08 0.10 T= EE.h 0.73 234.13 234.13 239.89 3.74 0.12 EE.ii 250.41 314.81 1.89	$\begin{array}{c} 0.14 \\ = t = 7, \{ \mathrm{St} \\ = \mathrm{EP}(\tilde{p}_1) \\ = \mathrm{EP}(\tilde{p}_2) \\ = 3.59 \\ = 210.30 \\ = 336.31 \\ = 16.80 \\ = 0.12 \\ = 0.19 \\ = 250.92 \\ = 218.49 \\ = 250.92 \\ = 218.49 \\ = 7.85 \\ = 0.14 \\ = 0.12 \\ = 0.14 \\ = 0.12 \\ = 1.90 \\ = 304.63 \\ = 1.90 \\ = 0.25 \\ = 1.90 \\ = 0.25 \\ = 1.90 \\ = 0.336.46 \\ = 0.25 \\ = 1.90 \\ = 0.25 \\ = 0.336.46 \\ = 0.25 \\ =$	0.24	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49 271.98 313.74 11.72 0.15 0.17 Volatile: EE_h 0.24 354.59 1.10 0.18 EE_ii 0.18 EE_ii 0.43 34.59 1.10 0.18 EE_ii 0.43 354.59 1.10 0.18	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \hline{\text{EE}(\pi_i)} \\ 0.84 \\ 318.34 \\ 529.52 \\ \hline 3.44 \\ 0.18 \\ 0.30 \\ \hline \text{EE}(0.5) \\ 0.36 \\ 366.74 \\ 369.54 \\ 2.82 \\ 0.20 \\ 0.21 \\ \hline \Delta_{10}(\beta_0) = \\ \hline{\text{EE}(\pi_i)} \\ 1.01 \\ 425.91 \\ 601.80 \\ 4.74 \\ 0.21 \\ 0.31 \\ \hline \text{EE}(0.5) \\ 1.66 \\ 455.41 \\ 455.44 \\ 7.58 \\ 0.23 \\ \end{array}$	0.34 11023.06, maïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 443.17 1.43 0.32 0.24 11023.06, maïve 29.64 507.83 686.86 56.40 0.23 0.79 EE.i 6.85 1007.19 755.77	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ EE.h \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.86 \\ 0.18 \\ 0.18 \\ EE.ii \\ 10.66 \\ 319.12 \\ 381.70 \\ 5.73 \\ 0.17 \\ 0.21 \\ \Delta_{10}(\beta_1) \\ EE.h \\ 1.19 \\ 648.26 \\ 644.21 \\ 0.34 \\ 0.34 \\ 0.34 \\ EE.ii \\ 10.71 \\ 659.87 \\ 822.80 \\ 14.71 \\ 0.34 \\ 10.71 \\ 0.34 \\ 10.71 \\ 0.34 \\ 10.71 \\ 0.34 \\ 10.71 $	$\begin{array}{c} 0.34 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_i) \\ 4.93 \\ 429.25 \\ 666.17 \\ 2.70 \\ 0.23 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 0.95 \\ 508.29 \\ 440.38 \\ 0.60 \\ 0.28 \\ 0.24 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_i) \\ 0.45 \\ \hline \text{EE}(\hat{p}_i) \\ 0.45 \\ \hline \text{EE}(0.5) \\ 3.51 \\ \hline \text{926.39} \\ 805.38 \\ 15.30 \\ 0.55 \end{array}$	0.24 (Simula naïve 13.70 159.58 7.18 0.09 0.80 0.80 383.76 312.62 4.09 0.21 0.17), {Simu naïve 16.08 345.91 551.48 31.23 0.16 EE.i 32.62 4.09 0.21 0.17 551.48 34.91 551.48 31.23 0.16 0.76 EE.i 0.76 551.48 31.23 0.16 0.76 0.76 0.76 0.76 0.76 0.76 0.77 0.77 0.78	$\begin{array}{c} 0.21 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.22 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.33 \\ 0.44 \\ 0.42 \\ 0.42 \\ 0.42 \\ 0.43 \\ 0.42 \\ 0.44 \\ 0.42 \\ 0.44 \\ 0.42 \\ 0.44 \\ 0.42 \\ 0.44 \\ 0.$	$\begin{array}{c} 0.24 \\ \beta_0) = 1176 \\ \hline \text{EE}(\hat{\pi}_1) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline \text{EE}(0.5) \\ 4.65 \\ 327.99 \\ 302.25 \\ 2.45 \\ 0.17 \\ 0.07 \\ 476.07 \\ 683.45 \\ 1.61 \\ 0.25 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 1.52 \\ 524.44 \\ 507.36 \\ \hline \text{EE}(0.5) \\ 0.74 \\ 476.07 \\ 483.45 \\ 1.61 \\ 0.25 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 0.36 \\ 0.45 \\ 0.27 \\ 0.45 \\ 0.27 \\ 0.27 \\ 0.28 \\$	43.93 .529, \(\Delta\gamma\) ma\(\text{iv}\) e 1.75 150.22 .03 160.47 160.22 .03 241.76 .03 241.76 .04 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05	$\begin{array}{c} 37.83\\ (\beta_1)=36\\ \hline {\bf EE.h}\\ \hline 0.17\\ 175.44\\ 178.05\\ \hline 0.12\\ 4.17\\ 4.21\\ \hline {\bf EE.ii}\\ 0.27\\ 4.21\\ \hline {\bf EE.ii}\\ 0.27\\ 38.59\\ 0.05\\ 4.39\\ 5.25\\ \hline \Delta_{10}(\beta_1)=\\ \hline {\bf EE.h}\\ 41.98\\ 389.93\\ 386.93\\ 386.93\\ 9.37\\ \hline {\bf EE.h}\\ 17.40\\ 440.84\\ 440.84\\ 526.86\\ 3.89\\ 10.43\\ \end{array}$	42.68 .56497 }, h EE(\dot{p}_i) 0.47 242.70 370.45 0.10 5.69 8.88 EE(0.5) 0.67 277.39 248.41 0.10 6.66 6.69 40.59 14.4251 } EE(\dot{p}_i) 40.59 524.81 742.91 0.41 12.88 19.84 EE(0.5) 43.91 575.49 497.66 0.65	18.94 18.94 10.57 107.88 369.62 0.09 0.09 0.29 0.09 141.97 EE.i 0.63 172.44 160.54 1.60.54 1.60.54 1.60.54 1.70.74 1.60.75 1.7	18.78 onse EE.h 0.23 116.88 117.17 0.10 2.74 2.72 EE.ii 0.19 128.82 147.64 0.09 3.08 3.47 oonse EE.h 4.12 280.03 282.83 0.98 6.52 6.79 EE.ii 1.51 307.16 337.64 1.13 7.21	$\begin{array}{c} \mathbf{EE}(\hat{\pi}_t) \\ \mathbf{EE}(\hat{\pi}_t) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.21 \\ 3.43 \\ 5.09 \\ \mathbf{EE}(0.5) \\ 0.48 \\ 154.06 \\ 158.31 \\ 0.29 \\ 3.86 \\ 3.83 \\ \mathbf{EE}(\hat{\pi}_t) \\ 5.49 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 10.87 \\ \mathbf{EE}(0.5) \\ 7.48 \\ 345.16 \\ 349.03 \\ 0.52 \\ 8.20 \\ \end{array}$
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE	0.14 naïve 6.61 87.40 0.05 34.73 0.05 0.31 EE_i 0.43 2221.06 0.60 0.16 0.12 204.38 304.99 11.82 204.38 304.99 EE_i 4.98 365.55 0.22 0.17	0.14 T EE.h 0.90 169.50 171.64 4.41 0.09 0.10 6.87 152.23 182.11 33.59 0.08 T= EE.h 0.73 234.13 239.89 3.74 0.12 0.12 EE.jii 2.19 250.41 314.81 1.89 0.12 0.15 T=	$\begin{array}{c} 0.14 \\ = t=7, \{St\\ EE(\hat{p}_i) \\ 3.59 \\ 210.30 \\ 336.31 \\ 16.80 \\ 0.12 \\ 0.19 \\ 250.92 \\ 218.49 \\ 7.85 \\ 0.14 \\ 0.12 \\ 218.49 \\ 0.14 \\ 0.12 \\ = t=10, \{St\\ EE(\hat{p}_i) \\ 1.90 \\ 304.63 \\ 457.95 \\ 17.12 \\ 0.16 \\ 0.25 \\ EE(0.5) \\ 3.57 \\ 336.46 \\ 305.53 \\ 24.89 \\ 0.19 \\ 0.17 \\ t=10, \{St\\ 1.90 \\ 1.90 \\ 305.53 \\ 24.89 \\ 0.19 \\ 0.17 \\ 1.90 \\ 305.53 \\ 24.89 \\ 0.19 \\ 0.17 \\ 1.90 \\ 305.53 \\ 24.89 \\ 0.19 \\ 0.17 \\ 1.90 \\ 305.53 \\ 24.89 \\ 0.19 \\ 0.17 \\ 1.90 \\ 305.53 \\ 24.89 \\ 0.19 \\ 0.17 \\ 1.90 \\ 0.17 \\ 1.90 \\ 0.17 \\ 0.17 \\ 0.18 \\ 0.19 \\ 0.17 \\ 0.18 \\ 0.19 \\ 0.17 \\ 0.18 \\ 0.19 \\ 0.17 \\ 0.18 \\ 0.19 \\ 0.19 \\ 0.17 \\ 0.18 \\ 0.19 \\ 0.17 \\ 0.18 \\ 0.19 \\ 0.19 \\ 0.19 \\ 0.19 \\ 0.17 \\ 0.18 \\ 0.19 \\ 0.17 \\ 0.18 \\ 0.19 \\ 0.19 \\ 0.19 \\ 0.17 \\ 0.18 \\ 0.19 \\ 0.18 \\ 0.19 \\ 0.19 \\ 0.19 \\ 0.19 \\ 0.17 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.19 \\ 0.19 \\ 0.18 \\ 0.19 \\ 0.18 \\$	0.24 able and maïve 5.70 180.83 472.73 29.13 0.10 0.78 EE.i 1.64 422.74 384.35 9.59 0.24 0.21 able and naïve 5.47 346.54 555.72 28.52 0.15 0.78 EE.i 2.36 491.97 453.68 10.99 0.26 0.24	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49 21.98 313.74 11.72 0.15 0.17 Volatile: EE_h 0.24 371.27 354.59 1.10 0.18 0.18 EE_iii 0.45 395.22 431.31 2.86 0.20 0.22 Volatile:	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \hline{\text{EE}(\hat{\pi}_i)} \\ 0.84 \\ 318.34 \\ 529.52 \\ 3.44 \\ 0.18 \\ 0.30 \\ \hline{\text{EE}(0.5)} \\ 0.36 \\ 366.74 \\ 369.54 \\ 2.82 \\ 0.21 \\ \Delta_{10}(\beta_0) = \\ \hline{\text{EE}(\hat{\pi}_i)} \\ 1.01 \\ 425.91 \\ 601.80 \\ 4.74 \\ 0.21 \\ 0.31 \\ \hline{\text{EE}(0.5)} \\ 0.30 \\ \Delta_{10}(\beta_0) = \\ \hline{\text{EE}(\hat{\pi}_i)} \\ 0.10 \\ 4.75 \\ 4.75 \\ 0.21 \\ 0.21 \\ 0.31 \\ \hline{\text{EE}(0.5)} \\ 0.31 \\ \hline{\text{EE}(0.5)} \\ 0.30 \\ 0.30 \\ \hline{\text{A}}(0.30) = \\ 0.30 \\ 0.$	0.34 11023.06, maïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 5443.17 1.43 0.32 0.24 11023.06, maïve 29.64 507.83 686.86 56.40 0.23 0.79 EE.i 6.85 1007.19 755.77 26.54 0.56 0.42 11023.06,	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ EE.h \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.18 \\ 0.18 \\ EE.ii \\ 10.66 \\ 319.12 \\ 381.70 \\ 5.73 \\ 0.21 \\ \Delta_{10}(\beta_1) \\ EE.h \\ 1.19 \\ 648.26 \\ 644.21 \\ 0.34 \\ 0.33 \\ EE.ii \\ 10.71 \\ 659.87 \\ 822.80 \\ 14.71 \\ 0.34 \\ 0.41 \\ \end{array}$	$\begin{array}{c} 0.34 \\ = -0.4041 \} \\ \hline \text{EE}(\hat{p}_i) \\ = 4.93 \\ 429.25 \\ 666.17 \\ 2.70 \\ 0.23 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 0.95 \\ 508.29 \\ 440.38 \\ 0.24 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_i) \\ 0.45 \\ \hline \text{S36.17} \\ 1210.36 \\ \hline \text{EE}(0.5) \\ 3.51 \\ 926.39 \\ 805.38 \\ 15.30 \\ 0.50 \\ 0.44 \\ -0.4041 \\ \hline \text{EE}(0.5) \\ 0.65 \\ \hline \text{EE}(0.5) \\ 0.64 \\ 0.65 \\ \hline \text{EE}(0.5) \\ 0.65 \\ 0.64 \\ 0.65 \\ 0$	0.24 (Simula maïve 13.70 159.58 483.75 7.18 0.09 0.80 EE.i. 7.76 382.76 312.62 4.09 0.21), {Simula maïve 16.08 345.91 551.48 31.23 3.29 583.77 508.21 3.29 583.77 508.21 0.27 }, {Simula maïve 16.08	0.21 tetel: ∆r/10 1.54 205.84 204.72 204.72 204.72 204.72 204.72 204.72 204.72 204.72 204.72 204.72 204.72 204.72 204.72 204.72 204.72 204.72 205.73	0.24 $\beta_0) = 1176$ $EE(\hat{\pi}_i)$ 1.73 280.02 423.82 0.90 0.15 0.23 $EE(0.5)$ 4.65 327.99 302.25 2.45 0.18 0.11 $10(\beta_0) = 22$ $EE(\hat{\pi}_i)$ 0.07 476.07 683.45 1.61 0.25 0.36 $EE(0.5)$ 1.52 524.44 507.36 4.50 0.27 0.26 0.07	43.93 43.93 529, \(\Delta \), \(\Delta \) 150.22 150.22 150.22 161.62 162.62 163.63 164.62 164.62 164.62 164.62 164.62 164.62 164.62 164.62 164.62 164.62 164.63 16	37.83 $(\beta_1) = 36$ $EE.h$ 0.17 175.44 178.05 0.12 4.17 196.88 238.59 0.05 4.29 196.88 389.95	$\begin{array}{c} 42.68 \\ 5.56497 \end{array}, \mathbf{b} \\ \mathbf{E}(\hat{p}_i) \\ 0.47 \\ 242.70 \\ 370.45 \\ 0.10 \\ 5.69 \\ 8.88 \\ \mathbf{E}(0.5) \\ 0.67 \\ 277.39 \\ 248.41 \\ 0.10 \\ 6.593 \\ = 14.4251 \end{array}\}$ $\begin{array}{c} \mathbf{E}(\hat{p}_i) \\ 40.59 \\ 524.81 \\ 742.91 \\ 12.88 \\ 19.84 \\ \mathbf{E}(0.5) \\ 0.411 \\ 12.88 \\ 19.84 \\ \mathbf{E}(0.5) \\ 14.82 \\ 13.59 \\ 14.4251 \end{array}$	18.94 18.94 19.16	18.78 onse EE.h 10.23 116.88 117.17 0.10 2.74 2.72 EE.ii 0.19 128.82 147.64 0.09 3.08 3.47 oonse EE.h 4.12 280.03 282.83 0.98 6.52 6.79 EE.ii 1.51 307.16 337.64 337.64 1.13 7.21 8.24 ponse	$\begin{array}{c} 18.87 \\ \mathbf{EE}(\hat{\pi}_t) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.21 \\ 3.43 \\ 5.09 \\ \mathbf{EE}(0.5) \\ 0.48 \\ 154.06 \\ 158.31 \\ 0.29 \\ 3.86 \\ 3.83 \\ 3.83 \\ 3.84 \\ 154.06 \\ 158.21 \\ 0.77 \\ 7.63 \\ 10.87 \\ \mathbf{EE}(\hat{\pi}_t) \\ 7.63 \\ 10.87 \\ \mathbf{EE}(0.5) \\ 7.48 \\ 345.16 \\ 349.03 \\ 0.52 \end{array}$
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE ERSE	0.14 naïve 6.61 87.40 0.05 34.73 0.05 0.31 EE.i 0.43 0.43 0.20 0.52 221.06 0.12 naïve 11.82 204.38 0.30 0.95 58.94 0.08 EE.i 286.36 3.265 286.36 3.265 0.22 0.17	0.14 T EE.h 0.90 169.50 171.64 4.41 0.09 0.10 EE.ii 6.87 152.23 182.11 33.59 0.08 0.10 T= EE.h 0.73 234.13 234.13 239.89 3.74 0.12 EE.ii 2.19 2.50.41 314.81 1.89 0.12 0.15 T= EE.h	$ \begin{array}{c} 0.14 \\ = t = 7, \{ \mathrm{St} \\ = \mathrm{EP}(\bar{p}_1) \\ = \mathrm{EP}(\bar{p}_2) \\ = 3.59 \\ = 210.30 \\ = 336.31 \\ = 16.80 \\ = 0.12 \\ = 0.19 \\ = 250.92 \\ = 218.49 \\ = 250.92 \\ = 218.49 \\ = 7.85 \\ = 0.14 \\ = 0.12 \\ = 0.14 \\ = 0.14 \\ = 0.14 \\ = 0.14 \\ = 0.14 \\ = 0.14 \\ = 0.15 \\ = 0.14 \\ = 0.15 \\ =$	0.24	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49 271.98 313.74 11.72 0.15 0.17 Volatile: EE_h 0.24 371.27 354.59 1.10 0.18 EE_ii 0.45 2.43 31.31 2.86 0.20 0.22 Volatile: EE_h	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \hline{\text{EE}(\pi_i)} \\ 0.84 \\ 318.34 \\ 529.52 \\ \hline 3.44 \\ 0.18 \\ 0.30 \\ \hline \text{EE}(0.5) \\ 0.36 \\ 366.74 \\ 369.54 \\ \hline 2.82 \\ 0.20 \\ 0.21 \\ \hline \Delta_{10}(\beta_0) = \\ \hline \text{EE}(\pi_i) \\ 1.01 \\ 425.91 \\ \hline 601.80 \\ 4.74 \\ 0.21 \\ 0.31 \\ \hline \text{EE}(0.5) \\ 1.664 \\ 455.44 \\ 7.58 \\ 0.23 \\ \Delta_{10}(\beta_0) = \\ \hline \text{EE}(\pi_i) \\ \hline \end{array}$	0.34 11023.06, maïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 443.17 1.43 0.32 0.24 11023.06, maïve 29.64 507.83 686.86 56.40 0.23 0.79 EE.i 1007.19 755.77 26.54 0.42 11023.06,	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ EE.h \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.86 \\ 0.18 \\ 0.18 \\ EE.ii \\ 10.66 \\ 319.12 \\ 381.70 \\ 0.21 \\ \Delta_{10}(\beta_1) \\ EE.h \\ 1.19 \\ 648.26 \\ 644.21 \\ 0.34 \\ 0.34 \\ 0.34 \\ EE.ii \\ 10.71 \\ 659.87 \\ 822.80 \\ 14.71 \\ 0.34 \\ 0.41 \\ \Delta_{10}(\beta_1) \\ EE.h \\ 0.34 \\ 0.59 \\ EE.ii \\ 10.71 \\ 10$	$\begin{array}{c} 0.34 \\ = -0.4041 \\ \hline \textbf{EE}(\hat{p_i}) \\ 4.93 \\ 429.25 \\ 666.17 \\ 2.70 \\ 0.23 \\ 0.36 \\ \hline \textbf{EE}(0.5) \\ 0.95 \\ 508.29 \\ 440.38 \\ 0.60 \\ 0.28 \\ 0.24 \\ = -0.4041 \\ \hline \textbf{EE}(\hat{p_i}) \\ 0.45 \\ 836.17 \\ 1210.36 \\ 5.08 \\ 0.44 \\ 0.65 \\ \hline \textbf{EE}(0.5) \\ 3.51 \\ 926.39 \\ 805.38 \\ 15.30 \\ 0.50 \\ 0.43 \\ = -0.4041 \\ \hline \textbf{EE}(\hat{p_i}) \\ 0.45 \\ \hline \textbf{EE}(0.5) \\ 3.51 \\ 0.65 \\ \hline \textbf{EE}(0.5) \\ 0.65 \\ 0.65 \\ \hline \textbf{EE}(0.5) \\ 0.65 $	0.24 (Simula naïve 13.70 159.58 483.75 7.18 0.09 0.80 EE.i 7.76 382.62 4.09 0.21 0.17 }, {Simula naïve 16.08 345.91 551.48 31.23 0.16 EE.i 0.76 EE.i 0.76 EE.i 0.76 508.21 8.55 0.31 0.27 }, {Simula naïve 18.55 0.31 0.37 Naïve 18.55 0.38 Naïve 18.55 Naïve	0.21 delicit (1.54 delicit) (1.55 d	$ \begin{array}{c} 0.24 \\ \beta_0) = 1176 \\ \hline \mathbf{EE}(\hat{\pi}_1) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline \mathbf{EE}(0.5) \\ 4.65 \\ 327.99 \\ 302.25 \\ 2.45 \\ 0.17 \\ 0.07 \\ 476.07 \\ 468.45 \\ 0.161 \\ 0.25 \\ 0.36 \\ \hline \mathbf{EE}(0.5) \\ 1.61 \\ 0.25 \\ 0.36 \\ \mathbf{EE}(0.5) \\ 0.36 \\ \mathbf{E}(0.5) \\ 0.25 \\ 0.36 \\ 0.20 \\$	43.93 .529, \(\Delta\gamma\) marve 1.75 150.22 150.22 161.02 0.47 42.11 EE.i. 0.86 0.86 164 5.99 164 16.22 222.861, \(\Delta\gamma\) 1.70 1.13 1.37 1.11 1.373 1.71 1.373	37.83 $(\beta_1) = 36$ $EE.h$ 0.17 175.44 178.05 0.12 4.17 4.21 $EE.ii$ 0.27 4.21 196.88 238.59 5.25	$\begin{array}{c} 42.68 \\ .56497 \}, \mathbf{h} \\ EE(\hat{p}_i) \\ 0.47 \\ 242.70 \\ 370.45 \\ 0.10 \\ 5.69 \\ 8.88 \\ EE(0.5) \\ 0.67 \\ 277.39 \\ 248.41 \\ 0.10 \\ 6.66 \\ 6.66 \\ 40.59 \\ 248.41 \\ 0.10 \\ 40.59 \\ 40.59 \\ 40.59 \\ 40.59 \\ 40.41 \\ 12.88 \\ 19.84 \\ EE(0.5) \\ 43.91 \\ 575.49 \\ 497.66 \\ 0.65 \\ 14.82 \\ 13.59 \\ 14.851 \}, \\ 14.851 $	18.94 by 18.94 by 19.10 by 19.	18.78 onse EE.h 0.23 116.88 117.17 0.10 2.74 2.72 EE.ii 0.19 128.82 147.64 0.09 3.08 3.47 onse EE.h 4.12 280.03 282.83 0.98 6.52 6.79 EE.ii 307.16 337.64 1.13 7.21 7.21 ponse EE.h	$\begin{array}{c} 18.87 \\ \mathbf{EE}(\hat{\pi}_t) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.21 \\ 3.43 \\ 5.09 \\ \mathbf{EE}(0.5) \\ 0.48 \\ 154.06 \\ 158.31 \\ 0.29 \\ 3.86 \\ 3.83 \\ \mathbf{EE}(\hat{\pi}_t) \\ 5.49 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 349.03 \\ 0.52 \\ \mathbf{EE}(0.5) \\ 7.48 \\ 345.16 \\ 349.03 \\ 0.52 \\ 8.20 \\ 8.76 \\ \mathbf{EE}(\hat{\pi}_t) \\ \end{array}$
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE	0.14 naïve 6.61 87.40 0.05 34.73 0.05 0.31 EE.i 0.43 0.12 204.38 0.30 1.82 204.38 0.30 EE.i 4.98 0.30 EE.i 4.98 0.30 0.16 0.10 0.10 0.10 0.10 0.10 0.10 0.1	0.14 TELh 0.90 169.50 171.64 4.41 0.09 0.10 EE.ii 6.87 152.23 182.11 33.59 0.08 0.10 T= EE.h 0.73 234.13 239.89 0.12 2.19 2.19 2.19 2.10 2.19 2.10 2.11 314.81 1.89 0.12 0.15 T= EE.h 0.29	$\begin{array}{c} 0.14 \\ = \pm -7, \; \{ \mathrm{St} \\ = \mathbf{EP}(\hat{p}_i) \\ 3.59 \\ 210.30 \\ 336.31 \\ 16.80 \\ 0.12 \\ 0.19 \\ 250.92 \\ 218.49 \\ -7.85 \\ 0.14 \\ 0.12 \\ 250.92 \\ 218.49 \\ -7.85 \\ 0.14 \\ 0.12 \\ = \pm \pm 10, \; \{ \mathrm{St} \\ = \mathbf{EE}(\hat{p}_i) \\ 1.90 \\ 304.63 \\ 457.95 \\ -1.10 \\ 0.25 \\ -1.10 \\ 0.16 \\ 0.25 \\ -1.10 \\ 0.25 \\ -1.10 $	0.24 (able and maïve 1.28.55.70 (2.28.52 0.15 0.78 EE_i 2.36 42.97 453.68 10.99 0.24 able and maïve 4.39 (0.24 able and maïve 4.39 (0.25 able and maïve 4.39 able and maïve 4.30 (0.25 able and maïve 4.30 able and maïve 4.30 (0.	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49 271.98 313.74 11.72 0.15 0.17 Volatile: EE_h 6.18 EE_ii 0.45 354.59 1.10 0.18 EE_ii 0.45 395.22 431.31 2.86 0.22 Volatile: EE_h 0.22	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \hline{\text{EP}(\tilde{\pi}_i)} \\ 0.84 \\ 318.34 \\ 529.52 \\ 3.44 \\ 0.18 \\ 0.30 \\ \hline{\text{GO}} \\ 0.36 \\ 366.74 \\ 369.54 \\ 2.82 \\ 0.20 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.40 \\ 0.21 \\ 1.011 \\ 425.91 \\ 601.80 \\ 4.74 \\ 0.21 \\ 0.31 \\ \hline{\text{EE}(0.5)} \\ 1.66 \\ 455.41 \\ 7.58 \\ 0.23 \\ 0.23 \\ \Delta_{10}(\beta_0) = \\ \hline{\text{EE}(\tilde{\pi}_i)} \\ 0.21 \\ 0.31 \\ \hline{\text{EF}(0.5)} \\ 1.66 \\ 455.41 \\ 7.58 \\ 0.23 \\ 0.23 \\ \Delta_{10}(\beta_0) = \\ \hline{\text{EE}(\tilde{\pi}_i)} \\ 0.91 \\ 0.92 \\ 0.99 \\ 0$	0.34 11023.06, maïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 443.17 1.43 0.24 11023.06, maïve 29.64 507.83 66.86 56.40 0.23 0.79 EE.i 6.85 1007.19 755.77 26.54 0.66 0.42 11023.06, maïve 27.46	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ \hline {\rm EE.h} \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.86 \\ 0.18 \\ \hline 0.86 \\ 0.18 \\ \hline 0.18 \\ 0.18 \\ \hline 0.21 \\ 381.70 \\ 0.21 \\ \hline \Delta_{10}(\beta_1) \\ \hline {\rm EE.h} \\ 0.34 \\ 0.33 \\ \hline {\rm EE.ii} \\ 10.71 \\ 0.24 \\ 0.34 \\ 0.34 \\ 0.33 \\ \hline {\rm EE.ii} \\ 10.71 \\ 0.46 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.41 \\ 0.40(\beta_1) \\ \hline {\rm EE.h} \\ 0.10(\beta_1) \\ \hline {$	$\begin{array}{c} 0.34 \\ = -0.4041 \\ \hline \text{EE}(\hat{p_i}) \\ 4.93 \\ 429.25 \\ 666.17 \\ 2.70 \\ 0.23 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 0.95 \\ 508.29 \\ 440.38 \\ 0.60 \\ 0.28 \\ 0.24 \\ = -0.4041 \\ \hline \text{EE}(\hat{p_i}) \\ 0.45 \\ 836.17 \\ 1210.36 \\ 0.44 \\ 0.65 \\ \hline \text{EE}(0.5) \\ 3.51 \\ 926.39 \\ 805.38 \\ 15.30 \\ 0.40 \\ 0.44 \\ 0.65 \\ \hline \text{EE}(\hat{p_i}) \\ 0.45 \\ \hline \text{EE}(\hat{p_i}) \\ 0.46 \\ 0.67 \\ \hline \text{EE}(\hat{p_i}) \\ 0.47 \\ 0.48 \\ 0.68 \\ 0.49 \\ 0.49 \\ 0.49 \\ 0.49 \\ 0.49 \\ 0.49 \\ 0.49 \\ 0.49 \\ 0.40 \\ 0.56 \\ 0.40 \\ 0.56 \\ 0.44 \\ 0.55 \\ 0.44 \\ 0.55 \\ 0.44 \\ 0.55 \\ 0.44 \\ 0.55 \\ 0.44 \\ 0.55 \\ 0.44 \\ 0.55 \\ 0.44 \\ 0.55 \\ 0.44 \\ 0.65 \\ 0.44 \\ 0.45 \\ 0$	0.24 (Simula maïve 13.70 159.58 483.75 7.18 0.09 0.80 EE.i 7.76 383.76 312.62 4.09 0.21 0.17 }, (Simula maïve 16.08 345.91 551.48 31.23 0.16 EE.i 3.29 583.77 508.21 8.55 0.27 }, (Simula maïve 15.53	$\begin{array}{c} 0.21\\ \text{c} \\ c$	$\begin{array}{c} 0.24 \\ \beta_0) = 1176 \\ \hline {\rm EE}(\hat{\pi}_t) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline {\rm EE}(0.5) \\ 4.65 \\ 327.99 \\ 302.25 \\ 2.45 \\ 0.17 \\ 10(\beta_0) = 22 \\ \hline {\rm EE}(\hat{\pi}_t) \\ 0.07 \\ 476.07 \\ 476.07 \\ 683.45 \\ 1.61 \\ 0.25 \\ 0.36 \\ \hline {\rm EE}(0.5) \\ 1.52 \\ 524.44 \\ 507.36 \\ \hline {\rm 4.50} \\ 0.27 \\ 0.26 \\ (0.60) = 22 \\ \hline {\rm EE}(\hat{\pi}_t) \\ \hline {\rm 2.60} \\ 0.27 \\ 0.26 \\ \hline {\rm EE}(\hat{\pi}_t) \\ 0.27 \\ 0.28 \\ \hline {\rm EE}(\hat{\pi}_t) \\ 0.29 \\ \hline {\rm EE}(\hat{\pi}_t) \\ 0.20 \\ $	43.93	$\begin{array}{c} 37.83 \\ (\beta_1) = 36 \\ \hline {\bf EE.h} \\ 0.17 \\ 175.44 \\ 178.05 \\ 0.12 \\ 4.17 \\ 4.21 \\ \hline {\bf EE.ii} \\ 0.27 \\ 4.21 \\ \hline {\bf EE.ii} \\ 0.38.59 \\ 0.05 \\ 4.39 \\ 5.25 \\ \Delta_{10}(\beta_1) = \\ \hline {\bf EE.h} \\ 41.98 \\ 389.95 \\ 386.93 \\ 389.95 \\ 386.93 \\ 389.95 \\ 386.93 \\ 3.89 \\ 1.740 \\ 40.84 \\ 40.84 \\ 526.86 \\ 3.89 \\ 10.43 \\ 12.41 \\ \Delta_{10}(\beta_1) = \\ \hline {\bf EE.h} \\ 0.06 \\ 0.$	$\begin{array}{c} 42.68 \\ 5.56497 \}, h \\ \hline {\rm EE}(\hat{p}_i) \\ 0.47 \\ 242.70 \\ 3.70.45 \\ 0.10 \\ 5.69 \\ 8.88 \\ \overline{\rm EE}(0.5) \\ 0.67 \\ 277.39 \\ 248.41 \\ 0.10 \\ 6.66 \\ 6.66 \\ 40.59 \\ 524.81 \\ 742.91 \\ 0.41 \\ 12.88 \\ 19.84 \\ \overline{\rm EE}(0.5) \\ 43.91 \\ 575.49 \\ 497.66 \\ 0.65 \\ 14.82 \\ 13.59 \\ 14.4251 \}, \\ \overline{\rm EE}(\hat{p}_i) \\ 34.22 \\ \hline {\rm EE}(\hat{p}_i) \\ 34.22 \\ 34.22 \\ 34.22 \\ 34.22 \\ 34.23 \\ 34.23 \\ 37.04 \\ 34.25 \\ 34$	18.94 18.94 10.57 107.88 369.62 0.09 2.29 0.09 2.29 0.63 1.63 1.63 1.63 1.63 1.64 1.63 1.64 1.65 1.64 1.65 1.64 1.65 1.65 1.64 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65	18.78 onse EE_h 0.23 116.88 117.17 0.10 2.74 2.72 EE_ii 0.19 128.82 147.64 0.09 3.08 3.47 oonse EE_h 4.12 280.03 282.83 0.98 6.52 6.79 EE_ii 1.51 307.16 337.64 1.13 7.21 1.824 ponse EE_h 13.83	$\begin{array}{c} 18.87 \\ \mathbf{EE}(\bar{\pi}_t) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.21 \\ 3.43 \\ 5.09 \\ \mathbf{EE}(0.5) \\ 0.48 \\ 154.06 \\ 158.31 \\ 0.29 \\ 3.86 \\ 3.83 \\ \mathbf{EE}(\bar{\pi}_t) \\ 5.49 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 345.16 \\ 450.25 \\ 0.77 \\ 7.63 \\ 349.03 \\ 0.52 \\ 8.26 \\ 0.52 \\ 0.52 \\ 0.53 \\ 0.54 \\ 0.54 \\ 0.54 \\ 0.54 \\ 0.55 $
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE ERSE	0.14 naïve 6.61 87.40 0.05 34.73 0.05 0.31 EE.i 0.43 0.43 0.20 0.52 221.06 0.12 naïve 11.82 204.38 0.30 0.95 58.94 0.08 EE.i 286.36 3.265 286.36 3.265 0.22 0.17	0.14 T EE.h 0.90 169.50 171.64 4.41 0.09 0.10 EE.ii 6.87 152.23 182.11 33.59 0.08 0.10 T= EE.h 0.73 234.13 234.13 239.89 3.74 0.12 EE.ii 2.19 2.50.41 314.81 1.89 0.12 0.15 T= EE.h	$ \begin{array}{c} 0.14 \\ = t = 7, \{ \mathrm{St} \\ = \mathrm{EP}(\bar{p}_1) \\ = \mathrm{EP}(\bar{p}_2) \\ = 3.59 \\ = 210.30 \\ = 336.31 \\ = 16.80 \\ = 0.12 \\ = 0.19 \\ = 250.92 \\ = 218.49 \\ = 250.92 \\ = 218.49 \\ = 7.85 \\ = 0.14 \\ = 0.12 \\ = 0.14 \\ = 0.14 \\ = 0.14 \\ = 0.14 \\ = 0.14 \\ = 0.14 \\ = 0.15 \\ = 0.14 \\ = 0.15 \\ =$	0.24 (able and maïve 1.28.55.70 (2.28.52 0.15 0.78 EE_i 2.36 42.97 453.68 10.99 0.24 able and maïve 4.39 (0.24 able and maïve 4.39 (0.25 able and maïve 4.39 able and maïve 4.30 (0.25 able and maïve 4.30 able and maïve 4.30 (0.	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49 271.98 313.74 11.72 0.15 0.17 Volatile: EE_h 0.24 371.27 354.59 1.10 0.18 EE_ii 0.45 2.43 31.31 2.86 0.20 0.22 Volatile: EE_h	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \hline{\text{EE}(\pi_i)} \\ 0.84 \\ 318.34 \\ 529.52 \\ \hline 3.44 \\ 0.18 \\ 0.30 \\ \hline \text{EE}(0.5) \\ 0.36 \\ 366.74 \\ 369.54 \\ \hline 2.82 \\ 0.20 \\ 0.21 \\ \hline \Delta_{10}(\beta_0) = \\ \hline \text{EE}(\pi_i) \\ 1.01 \\ 425.91 \\ \hline 601.80 \\ 4.74 \\ 0.21 \\ 0.31 \\ \hline \text{EE}(0.5) \\ 1.664 \\ 455.44 \\ 7.58 \\ 0.23 \\ \Delta_{10}(\beta_0) = \\ \hline \text{EE}(\pi_i) \\ \hline \end{array}$	0.34 11023.06, maïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 443.17 1.43 0.32 0.24 11023.06, maïve 29.64 507.83 686.86 56.40 0.23 0.79 EE.i 1007.19 755.77 26.54 0.42 11023.06,	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ EE.h \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.86 \\ 0.18 \\ 0.18 \\ EE.ii \\ 10.66 \\ 319.12 \\ 381.70 \\ 0.21 \\ \Delta_{10}(\beta_1) \\ EE.h \\ 1.19 \\ 648.26 \\ 644.21 \\ 0.34 \\ 0.34 \\ 0.34 \\ EE.ii \\ 10.71 \\ 659.87 \\ 822.80 \\ 14.71 \\ 0.34 \\ 0.41 \\ \Delta_{10}(\beta_1) \\ EE.h \\ 0.34 \\ 0.59 \\ EE.ii \\ 10.71 \\ 10$	$\begin{array}{c} 0.34 \\ = -0.4041 \\ \hline \textbf{EE}(\hat{p_i}) \\ 4.93 \\ 429.25 \\ 666.17 \\ 2.70 \\ 0.23 \\ 0.36 \\ \hline \textbf{EE}(0.5) \\ 0.95 \\ 508.29 \\ 440.38 \\ 0.60 \\ 0.28 \\ 0.24 \\ = -0.4041 \\ \hline \textbf{EE}(\hat{p_i}) \\ 0.45 \\ 836.17 \\ 1210.36 \\ 5.08 \\ 0.44 \\ 0.65 \\ \hline \textbf{EE}(0.5) \\ 3.51 \\ 926.39 \\ 805.38 \\ 15.30 \\ 0.50 \\ 0.43 \\ = -0.4041 \\ \hline \textbf{EE}(\hat{p_i}) \\ 0.45 \\ \hline \textbf{EE}(0.5) \\ 3.51 \\ 0.65 \\ \hline \textbf{EE}(0.5) \\ 0.65 \\ 0.65 \\ \hline \textbf{EE}(0.5) \\ 0.65 $	0.24 (Simula naïve 13.70 159.58 483.75 7.18 0.09 0.80 EE.i 7.76 382.62 4.09 0.21 0.17 }, {Simula naïve 16.08 345.91 551.48 31.23 0.16 EE.i 0.76 EE.i 0.76 EE.i 0.76 508.21 8.55 0.31 0.27 }, {Simula naïve 18.55 0.31 0.37 Naïve 18.55 0.38 Naïve 18.55 Naïve	0.21 delicit (1.54 delicit) (1.55 d	$ \begin{array}{c} 0.24 \\ \beta_0) = 1176 \\ \hline \mathbf{EE}(\hat{\pi}_1) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline \mathbf{EE}(0.5) \\ 4.65 \\ 327.99 \\ 302.25 \\ 2.45 \\ 0.17 \\ 0.07 \\ 476.07 \\ 468.45 \\ 0.161 \\ 0.25 \\ 0.36 \\ \hline \mathbf{EE}(0.5) \\ 1.61 \\ 0.25 \\ 0.36 \\ \mathbf{EE}(0.5) \\ 0.36 \\ \mathbf{E}(0.5) \\ 0.25 \\ 0.36 \\ 0.20 \\$	43.93 .529, \(\Delta\gamma\) marve 1.75 150.22 150.22 161.02 0.47 42.11 EE.i. 0.86 0.86 164 5.99 164 16.22 222.861, \(\Delta\gamma\) 1.70 1.13 1.37 1.11 1.373 1.71 1.373	$\begin{array}{c} 37.83\\ (\beta_1)=36\\ \textbf{EE.h}\\ 0.17\\ 175.44\\ 178.05\\ 0.12\\ 4.17\\ 4.21\\ \textbf{EE.ii}\\ 0.27\\ 4.21\\ \textbf{EE.ii}\\ 0.27\\ 38.59\\ 0.05\\ 4.39\\ 5.25\\ \Delta_{10}(\beta_1)=\\ \textbf{EE.h}\\ 41.98\\ 389.95\\ 386.93\\ 389.95\\ 386.93\\ 389.95\\ 386.93\\ 3.89\\ 1.740\\ 40.84\\ 80.84\\ 40.84\\$	$\begin{array}{c} 42.68 \\ .56497 \}, \mathbf{h} \\ EE(\hat{p}_i) \\ 0.47 \\ 242.70 \\ 370.45 \\ 0.10 \\ 5.69 \\ 8.88 \\ EE(0.5) \\ 0.67 \\ 277.39 \\ 248.41 \\ 0.10 \\ 6.66 \\ 6.66 \\ 40.59 \\ 248.41 \\ 0.10 \\ 40.59 \\ 40.59 \\ 40.59 \\ 40.59 \\ 40.41 \\ 12.88 \\ 19.84 \\ EE(0.5) \\ 43.91 \\ 575.49 \\ 497.66 \\ 0.65 \\ 14.82 \\ 13.59 \\ 14.851 \}, \\ 14.851 $	18.94 by 18.94 by 19.10 by 19.	18.78 onse EE.h 0.23 116.88 117.17 0.10 2.74 2.72 EE.ii 0.19 128.82 147.64 0.09 3.08 3.47 onse EE.h 4.12 280.03 282.83 0.98 6.52 6.79 EE.ii 307.16 337.64 1.13 7.21 7.21 ponse EE.h	$\begin{array}{c} 18.87 \\ \mathbf{EE}(\hat{\pi}_t) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.21 \\ 3.43 \\ 5.09 \\ \mathbf{EE}(0.5) \\ 0.48 \\ 154.06 \\ 158.31 \\ 0.29 \\ 3.86 \\ 3.83 \\ \mathbf{EE}(\hat{\pi}_t) \\ 5.49 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 349.03 \\ 0.52 \\ \mathbf{EE}(0.5) \\ 7.48 \\ 345.16 \\ 349.03 \\ 0.52 \\ 8.20 \\ 8.76 \\ \mathbf{EE}(\hat{\pi}_t) \\ \end{array}$
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE	0.14 naïve 6.61 87.40 0.05 34.73 0.05 0.31 EE.i 0.43 0.29 201.36 0.16 0.12 naïve 11.82 204.38 0.30 EE.i 4.98 0.30 EE.i 4.98 0.30 65.55 0.22 286.36 32.65 0.25 0.17 naïve 7.30 86.96 7.30	0.14 TELh 0.90 169.50 171.64 4.41 0.09 0.10 0.10 EE.ii 6.87 152.23 182.11 33.59 0.08 0.10 T= EE.h 0.73 234.13 234.13 239.89 0.12 2.19 2.19 2.10 2.19 2.10 2.19 2.10 2.19 2.10 2.19 2.10 2.19 2.10 2.19 2.10 2.19 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10	$\begin{array}{c} 0.14 \\ = \pm -7, \ \{ \mathrm{St} \\ \overline{\mathbf{EE}(\hat{p}_i)} \\ 3.59 \\ 210.30 \\ 336.31 \\ 16.80 \\ 0.12 \\ 0.19 \\ 250.92 \\ 218.49 \\ 7.85 \\ 0.14 \\ 0.12 \\ 250.92 \\ 218.49 \\ 7.85 \\ 0.14 \\ 0.12 \\ \pm \pm 10, \ \{ \mathbf{St} \\ \overline{\mathbf{EE}(\hat{p}_i)} \\ 0.16 \\ 0.25 \\ \overline{\mathbf{S}} \\ \mathbf{EE}(\hat{p}_i) \\ 0.17 \\ \pm 10, \ \{ \mathbf{St} \\ \overline{\mathbf{EE}(\hat{p}_i)} \\ 0.5 \\ 247.56 \\ 449.78 \\ 1.39 \end{array}$	0.24 (able and maïve to 128.55 (2.28.52 0.15 0.78 EE.i 2.36 491.97 453.68 10.99 0.26 0.24 able and maïve to 128.68 10.99 0.26 0.26 0.20 0.20 0.20 0.20 0.20 0.20	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49 271.98 313.74 11.72 0.15 0.17 Volatile: EE_h 0.24 371.27 354.59 1.10 0.18 EE_ii 0.45 395.22 431.31 2.86 0.22 Volatile: EE_h 0.08 246.30 242.39 0.22	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \hline{\text{EP}(\tilde{\pi}_1)} \\ 0.84 \\ 318.34 \\ 529.52 \\ 3.44 \\ 0.18 \\ 0.30 \\ \hline{\text{GO}}. \\ 0.36 \\ 366.74 \\ 369.54 \\ 2.82 \\ 0.20 \\ 0.21 \\ 0.21 \\ 0.21 \\ 1.01 \\ 425.91 \\ 601.80 \\ 4.74 \\ 0.21 \\ 0.31 \\ \hline{\text{EE}(0.5)} \\ 1.66 \\ 455.41 \\ 7.58 \\ 0.23 \\ 0.23 \\ \Delta_{10}(\beta_0) = \\ \hline{\text{EE}(0.5)} \\ 0.60 \\ 0.91 \\ 0.92 \\ 0.95 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.99 \\ 0.94 \\ 0.99 \\ 0$	0.34 11023.06, maïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 443.17 1.43 0.32 0.24 11023.06, maïve 29.64 507.83 686.86 56.40 0.23 0.79 EE.i 6.85 1007.19 755.77 26.54 0.42 11023.06, maïve 27.46 252.70 513.99 43.09	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ \hline {\bf EE.h} \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.86 \\ 0.18 \\ \hline 0.86 \\ 0.18 \\ \hline 0.18 \\ 0.18 \\ \hline 0.21 \\ 381.70 \\ 0.21 \\ \hline \Delta_{10}(\beta_1) \\ \hline {\bf EE.h} \\ 1.19 \\ 648.26 \\ 644.21 \\ 0.34 \\ 0.33 \\ \hline {\bf EE.h} \\ 10.71 \\ 0.24 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.107 \\ 1.07 \\ $	$\begin{array}{c} 0.34 \\ = -0.4041 \\ \hline \text{EE}(\hat{p_i}) \\ 4.93 \\ 429.25 \\ 666.17 \\ 2.70 \\ 0.23 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 0.95 \\ 508.29 \\ 440.38 \\ 0.24 \\ = -0.4041 \\ \hline \text{EE}(\hat{p_i}) \\ 0.45 \\ 836.17 \\ 1210.36 \\ 5.08 \\ 0.44 \\ 0.65 \\ \hline \text{EE}(0.5) \\ 3.51 \\ 926.39 \\ 805.38 \\ 15.30 \\ 0.40 \\ 0.50 \\ 0.43 \\ \hline \text{EE}(\hat{p_i}) \\ 0.50 \\ 0.44 \\ 0.65 \\ \hline \text{EE}(0.5) \\ 0.81 \\ 0.81 \\ \hline \text{EE}(0.5) \\ 0.81 \\ 0.81 \\ \hline \text{EE}(0.5) \\ 0.81 \\ 0.81 \\ 0.81 \\ \hline \text{EE}(0.5) \\ 0.81 \\ $	0.24 {Simula maïve 13.70 159.58 483.75 7.18 0.09 0.80 EE.i 7.76 383.76 312.62 4.09 0.21 0.17 }, {Simul maïve 16.08 345.91 551.48 31.23 0.16 EE.i 3.29 583.77 508.21 8.55 0.31 0.27 }, {Simul maïve 15.53 193.63 476.41 24.45	$\begin{array}{c} 0.21 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.20 \\ 0.21 \\ 0.20 \\ 0.21 \\ 0.22 \\ 0.23 \\ 0.23 \\ 0.24 \\ 0.25 \\ 0.$	$\begin{array}{c} 0.24 \\ \beta_0) = 1176 \\ \hline {\rm EE}(\hat{\pi}_1) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline {\rm EE}(0.5) \\ 4.65 \\ 327.99 \\ 302.25 \\ 2.45 \\ 0.17 \\ 10(\beta_0) = 22 \\ \hline {\rm EE}(\hat{\pi}_1) \\ 0.07 \\ 476.07 \\ 683.45 \\ 1.61 \\ 0.25 \\ 0.36 \\ \hline {\rm EE}(0.5) \\ 1.52 \\ 524.44 \\ 507.36 \\ \hline {\rm EE}(\hat{\pi}_2) \\ 0.27 \\ 0.26 \\ (0.60) = 22 \\ \hline {\rm EE}(\hat{\pi}_1) \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.27 \\ 0.27 \\ 0.28 \\ 0.27 \\ 0.28 \\ 0.27 \\ 0.28 \\ 0.27 \\ 0.28 \\ 0.2$	43.93	$\begin{array}{c} 37.83\\ (\beta_1)=36\\ \textbf{EE.h}\\ 0.17\\ 175.44\\ 178.05\\ 0.12\\ 4.17\\ 4.21\\ \textbf{EE.ii}\\ 0.27\\ 4.21\\ \textbf{EE.ii}\\ 0.27\\ 38.59\\ 0.05\\ 4.39\\ 5.25\\ \Delta_{10}(\beta_1)=\\ \textbf{EE.h}\\ 41.98\\ 38.995\\ 38.995\\ 38.995\\ 38.995\\ 38.693\\ 0.54\\ 40.84\\ 526.86\\ 3.89\\ 10.43\\ 12.41\\ \Delta_{10}(\beta_1)=\\ \textbf{EE.h}\\ 40.84\\ 40.84\\ 526.86\\ 3.89\\ 10.43\\ 12.41\\ \Delta_{10}(\beta_1)=\\ \textbf{EE.h}\\ 40.84\\ 424.47\\ 244.07\\ 0.87\\ \end{array}$	$\begin{array}{c} 42.68 \\ 5.56497 \}, h \\ \hline {\rm EE}(\hat{p}_i) \\ 0.47 \\ 242.70 \\ 3.70.45 \\ 0.10 \\ 5.69 \\ 8.88 \\ \overline{\rm EE}(0.5) \\ 0.67 \\ 277.39 \\ 248.41 \\ 0.10 \\ 6.66 \\ 6.65 \\ 40.59 \\ 524.81 \\ 742.91 \\ 0.41 \\ 12.88 \\ 19.84 \\ \overline{\rm EE}(0.5) \\ 43.91 \\ 575.49 \\ 14.825 \\ 13.59 \\ 14.4251 \}, \\ \overline{\rm EE}(\hat{p}_i) \\ 34.22 \\ 356.86 \\ 561.45 \\ 2.10 \\ \end{array}$	18.94 19.94 10.57 107.88 369.62 0.09 2.29 0.09 2.29 0.69 1.62 1.63 1.64 1.65 1.64 1.65 1.64 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65	18.78 onse EE_h 0.23 116.88 117.17 0.10 2.74 2.72 EE_ii 0.19 128.82 147.64 0.09 3.08 3.47 oonse EE_h 4.12 280.03 282.83 0.98 6.52 6.79 EE_ii 1.51 307.16 337.64 1.13 7.21 1.8.24 ponse EE_h 13.83 176.65 176.65 176.65	$\begin{array}{c} 18.87 \\ \mathbf{EE}(\hat{\pi}_t) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.21 \\ 3.43 \\ 5.09 \\ \mathbf{EE}(0.5) \\ 0.48 \\ 154.06 \\ 158.31 \\ 0.29 \\ 3.86 \\ 3.83 \\ \mathbf{EE}(\hat{\pi}_t) \\ 5.49 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 349.03 \\ 0.52 \\ \mathbf{EE}(\hat{\pi}_t) \\ \mathbf{EE}(\hat{\pi}_t$
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE	0.14 naïve 6.61 87.40 0.05 34.73 0.05 0.31 EE_i 0.43 2221.06 0.60 0.16 0.16 0.12 204.38 304.99 334.99 365.55 0.22 0.17 naïve 7.30 6.96 6.96 6.96 6.96 7.30 6.96 6.96 6.96 6.96 6.96 6.96 6.96 6.9	0.14 T EE.h 0.90 169.50 171.64 4.41 0.09 0.10 6.87 152.23 182.11 33.59 0.08 T= EE.h 0.73 234.13 239.89 0.12 0.12 EE.jii 2.19 250.41 314.81 1.89 0.12 0.15 T= EE.h 0.15 T= EE.h 0.16 0.17 314.81 0.18	$\begin{array}{c} 0.14 \\ = t=7, \{St\\ EE(\hat{p}_i)\\ 3.59\\ 210.30\\ 336.31\\ 16.80\\ 0.12\\ 0.19\\ 250.92\\ 218.49\\ 7.85\\ 0.14\\ 0.12\\ = t=10, \{St\\ EE(\hat{p}_i)\\ 1.90\\ 304.63\\ 457.95\\ 17.12\\ 0.16\\ 0.25\\ EE(0.5)\\ 3.57\\ 336.46\\ 305.53\\ 24.89\\ 0.19\\ 0.17\\ t=10, \{St\\ EE(\hat{p}_i)\\ 1.90\\ 304.63\\ 457.95\\ 17.12\\ 0.16\\ 0.25\\ EE(0.5)\\ EE(0.5)\\ EE(0.5)\\ 409.78\\ 1.39\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.$	0.24 (able and maïve 4.39) (2.75) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49 271.98 313.74 11.72 0.15 0.17 Volatile: EE_h 0.24 371.27 354.59 1.10 0.18 0.18 0.24 43.31 2.86 0.20 0.20 0.20 0.20 0.22 Volatile: EE_h 0.020 0.22 0.22 0.22	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \hline{\text{EE}(\hat{\pi}_i)} \\ 0.84 \\ 318.34 \\ 529.52 \\ 3.44 \\ 0.18 \\ 0.30 \\ \hline{\text{EE}(0.5)} \\ 0.36 \\ 366.74 \\ 2.82 \\ 0.20 \\ 0.21 \\ \Delta_{10}(\beta_0) = \\ \hline{\text{EE}(\hat{\pi}_i)} \\ 1.01 \\ 425.91 \\ 601.80 \\ 4.74 \\ 4.54 \\ 4.54 \\ 4.54 \\ 4.55.41 \\ 4.55.44 \\ 4.55.41 \\ 4.55.40 \\ (0.23) \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ $	0.34 11023.06, maïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 585.85 5443.17 1.43 0.22 411023.06, maïve 29.64 507.83 686.86 56.40 0.23 0.79 EE.i 6.85 1007.19 755.77 26.54 0.56 0.42 211023.06, maïve 27.46 252.70 513.99 43.03	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ EE.h \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.18 \\ 0.18 \\ 0.18 \\ EE.ii \\ 10.66 \\ 319.12 \\ 381.70 \\ 5.73 \\ 0.17 \\ 0.21 \\ \Delta_{10}(\beta_1) \\ EE.h \\ 1.19 \\ 648.26 \\ 644.21 \\ 0.46 \\ 0.34 \\ 0.33 \\ EE.ii \\ 10.71 \\ 659.87 \\ 822.80 \\ 14.71 \\ 0.34 \\ 0.41 \\ 0.41 \\ 1.03 \\ 426.22 \\ 411.40 \\ 1.03 \\ 426.22 \\ 411.40 \\ 1.03 \\ 0.23 \end{array}$	$\begin{array}{c} 0.34\\ = -0.4041\}\\ \hline \text{EE}(\hat{p}_i)\\ 4.93\\ 429.25\\ 666.17\\ 2.70\\ 0.23\\ 0.36\\ \hline \text{EE}(0.5)\\ 0.95\\ 508.29\\ 440.38\\ 0.60\\ 0.28\\ = -0.4041\\ \hline \text{EE}(\hat{p}_i)\\ 0.45\\ 836.17\\ 1210.36\\ \hline \text{EE}(0.5)\\ 836.17\\ 1210.36\\ 0.44\\ 0.65\\ \hline \text{EE}(0.5)\\ 0.45\\ 3.51\\ 926.39\\ 805.38\\ 15.30\\ 0.50\\ 0.43\\ -0.4041\\ \hline \text{EE}(\hat{p}_i)\\ 958.28\\ 947.06\\ 8.81\\ 0.32\\ \end{array}$	0.24 (Simula maïve 13.70 159.58 483.75 7.18 0.09 0.80 EE.i. 7.76 383.76 312.62 4.09 0.21 0.17 }, {Simula maïve 16.08 345.91 551.48 31.23 0.16 0.76 0.76 EE.i. 3.29 583.77 508.21 0.27 7, {Simula maïve 15.56.82 19.363 476.41 24.45 0.10	0.21 tete: ∆r/1 tete:	$\begin{array}{c} 0.24 \\ \beta_0) = 1176 \\ \hline \text{EE}(\hat{\pi}_t) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline 2.65 \\ 0.23 \\ 327.99 \\ 302.25 \\ 2.45 \\ 0.17 \\ 10(\beta_0) = 22 \\ \hline \text{EE}(\hat{\pi}_t) \\ 0.07 \\ 476.07 \\ 476.07 \\ 633.45 \\ 1.61 \\ 0.25 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 0.36 \\ \hline \text{EE}(\hat{\pi}_t) \\ 0.27 \\ 0.26 \\ 0.09 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.27 \\ 0.27 \\ 0.28 \\ 0.27 \\ 0.28 \\ 0.27 \\ 0.28 \\ 0.27 \\ 0.28 \\ 0.27 \\ 0.28 \\ 0.27 \\ 0.28 \\ 0.27 \\ 0.28 \\ 0.27 \\ 0.28 \\ 0.27 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ $	43.93	$\begin{array}{c} 37.83\\ (\beta_1)=36\\ \hline {\bf EE.h}\\ 0.17\\ 175.44\\ 178.05\\ 0.12\\ 4.17\\ 4.21\\ \hline {\bf EE.kii}\\ 0.27\\ 4.21\\ \hline {\bf EE.kii}\\ 0.27\\ 34.21\\ \hline {\bf EE.kii}\\ 0.28\\ 59\\ 0.05\\ 4.39\\ 5.25\\ \hline {\bf \Delta}_{10}(\beta_1)=\\ \hline {\bf EE.h}\\ 41.98\\ 389.95\\ 386.93\\ 0.54\\ 9.33\\ 9.57\\ \hline {\bf EE.h}\\ 17.40\\ 440.84\\ 526.86\\ 3.89\\ 10.43\\ 12.41\\ \hline {\bf \Delta}_{10}(\beta_1)=\\ \hline {\bf EE.h}\\ 40.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ $	$\begin{array}{c} 42.68 \\ 5.56497 \end{array}, \mathbf{b} \\ \mathbf{EE}(\hat{p}_i) \\ 0.47 \\ 242.70 \\ 370.45 \\ 0.10 \\ 5.69 \\ 8.88 \\ \mathbf{EE}(0.5) \\ 0.67 \\ 277.39 \\ 248.41 \\ 0.10 \\ 6.69 \\ 6.93 \\ = 14.4251 \end{array}\}$ $\begin{array}{c} \mathbf{EE}(\hat{p}_i) \\ 40.59 \\ 524.81 \\ 742.91 \\ 0.41 \\ 12.88 \\ 19.84 \\ \mathbf{EE}(0.5) \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.$	18.94 18.94 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18	18.78 onse EE_h 0.23 116.88 117.17 0.10 2.74 2.72 EE_ii 0.19 12.82 147.64 0.09 3.08 3.47 oonse EE_h 1.51 307.16 337.64 1.13 7.21 8.24 ponse EE_h 1.38 1.65 176.24 0.68	$\begin{array}{c} 18.87 \\ \mathbf{EE}(\hat{\pi}_t) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.21 \\ 3.43 \\ 5.09 \\ \mathbf{EE}(0.5) \\ 0.48 \\ 154.06 \\ 3.83 \\ 0.29 \\ 3.86 \\ 3.83 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.48 \\ 345.16 \\ 349.03 \\ 0.52 \\ 8.20 \\ 8.76 \\ 0.52 \\ 10.97 \\ 194.26 \\ 239.23 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.2$
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE	0.14 naïve 6.61 87.40 0.05 34.73 0.05 0.31 EE.i 0.43 0.05 221.06 0.12 naïve 11.82 204.38 204.38 0.80 EE.i 4.98 30.30 EE.i 4.98 6.55 286.36 6.22 0.17 naïve 7.30 6.20 6.21 0.47 38.06 0.05 0.05 0.01 0.05 0.01	0.14 TELh 0.90 169.50 171.64 4.41 0.09 0.10 EE_ii 6.87 152.23 182.11 33.59 0.08 0.10 T= EE_h 0.73 234.13 234.13 239.89 3.74 0.12 2.19 250.41 314.81 1.89 0.15 T= EE_h 0.29 169.87 170.53 1.37 0.09	0.14 =t=7, {Sti EE(\hat{p}_i) 3.59 210.30 336.31 16.80 0.12 0.19 EE(0.5) 1.94 250.92 218.49 7.85 0.12 EE(0.5) 1.90 304.63 3457.95 17.12 0.16 0.25 EE(0.5) 3.57 336.46 305.53 24.89 0.19 0.17 t=10, {Sti EE(\hat{p}_i) 0.50 247.56 409.78 1.39 0.14	0.24 (able and maïve 5.70 (180.83 472.73 (29.13 0.10 0.78 842.74 384.35 9.59 0.21 (able and maïve 55.47 346.54 555.72 28.52 0.15 0.78 EE.i 2.36 491.97 453.68 10.99 0.24 (able and maïve 4.39 179.03 473.14 23.04 0.17	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49 271.98 313.74 11.72 0.15 0.17 Volatile: EE_h 0.24 371.27 354.59 1.10 0.18 EE_ii 0.45 395.22 431.31 2.86 0.20 0.22 Volatile: EE_h 0.08 246.30 0.22 0.14	$\begin{array}{c} 0.24 \\ \Delta_{7}(\beta_{0}) = \\ \hline{\text{EE}(\bar{n}_{i})} \\ 0.84 \\ 318.34 \\ 529.52 \\ 3.44 \\ 0.18 \\ 0.30 \\ \hline{\text{EE}(0.5)} \\ 0.36 \\ 366.74 \\ 369.54 \\ 2.82 \\ 0.20 \\ 0.21 \\ \hline{\text{Lo}_{10}(\beta_{0}) = } \\ \hline{\text{EE}(\bar{n}_{i})} \\ 1.01 \\ 425.91 \\ 601.80 \\ 4.74 \\ 0.21 \\ 0.31 \\ \hline{\text{EE}(0.5)} \\ 1.666 \\ 455.44 \\ 7.58 \\ 0.23 \\ 0.20 \\ 0.2$	0.34 11023.06, maïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 443.17 1.43 0.32 0.24 11023.06, maïve 29.64 507.83 686.86 56.40 0.23 0.79 EE.i 6.85 1007.19 755.77 26.54 0.56 0.42 11023.06, maïve 27.46 252.70 513.99 43.03 0.13	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ EE.h \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.86 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.19 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.23 \\ 0.23 \\ 0.24 \\ 0.33 \\ 0.24 \\ 0.33 \\ 0.24 \\ 0.34 \\ 0.34 \\ 0.33 \\ 0.24 \\ 0.34 \\ 0.41 \\ 0.40 \\ 0.41 \\ 0.40 \\ 0.41 \\ 0.42 \\ 0.42 \\ 0.42 \\ 0.42 \\ 0.42 \\ 0.43 \\ 0.41 \\ 0.41 \\ 0.41 \\ 0.41 \\ 0.42 \\ 0.42 \\ 0.42 \\ 0.42 \\ 0.43 \\ 0.41 \\ 0.41 \\ 0.42 \\ 0.42 \\ 0.42 \\ 0.43 \\ 0.41 \\ 0.41 \\ 0.42 \\ 0.42 \\ 0.43 \\ 0.41 \\ 0.41 \\ 0.40 \\ 0.41 \\ 0.41 \\ 0.41 \\ 0.42 \\ 0.42 \\ 0.42 \\ 0.43 \\ 0.41 \\ 0.42 \\ 0.43 \\ 0.41 \\ 0.42 \\ 0.42 \\ 0.43 \\ 0.42 \\ 0.44 \\ 0.44 \\ 0.43 \\ 0.44 \\ 0.45 \\$	$\begin{array}{c} 0.34 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_i) \\ 4.93 \\ 429.25 \\ 666.17 \\ 2.70 \\ 0.23 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 0.95 \\ 508.29 \\ 440.38 \\ 0.60 \\ 0.28 \\ 0.24 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_i) \\ 0.45 \\ 836.17 \\ 1210.36 \\ \hline \text{EE}(0.5) \\ 3.51 \\ 926.39 \\ 805.38 \\ 15.30 \\ 0.50 \\ 0.44 \\ 0.65 \\ \hline \text{EE}(0.5) \\ 3.51 \\ \hline \text{EE}(\hat{p}_i) \\ 56.98 \\ 8.81 \\ 0.43 \\ 0.43 \\ 0.50 \\ 0.43 \\ 0.50 \\ 0.43 \\ 0.50 \\ 0.43 \\ 0.50 \\ $	0.24 (Simula naïve 13.70 159.58 483.75 7.18 0.09 0.80 0.80 0.81 0.17 7.76 382.62 4.09 0.21 0.17 }, {Simula naïve 16.08 345.91 0.76 EE.i 3.29 553.48 31.23 0.16 EE.i 3.29 583.77 508.21 8.55 0.31 0.27 }, {Simula naïve 15.53 193.63 476.41 0.75	0.21 ted: ∆7/1	$\begin{array}{c} 0.24 \\ \beta_0) = 1176 \\ \hline \text{EE}(\hat{\pi}_1) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline \text{EE}(0.5) \\ 4.65 \\ 327.99 \\ 302.25 \\ 2.45 \\ 0.17 \\ 0.07 \\ 476.07 \\ 683.45 \\ \hline 1.61 \\ 0.25 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 1.61 \\ 0.25 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 0.20 \\ 2.45 \\ 0.17 \\ 0.20 \\ 0.07 \\ 476.07 \\ 0.25 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 0.27 \\ 0.28 \\ 0.29 \\ 0.29 \\ \hline \text{EE}(\hat{\pi}_1) \\ 0.26 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.27 \\ 0.27 \\ 0.28 \\ 0.27 \\ 0.28 \\ 0.29 \\ 0.$	43.93	$(\beta_1) = 36$ $(\beta_$	42.68 .56497 }, h EE(\(\hat{p}_i\)) 0.47 242.70 370.45 0.10 5.69 8.88 EE(0.5) 0.67 277.39 248.41 0.10 6.66 6.66 6.69 40.59 40.59 40.59 524.81 742.91 0.41 12.88 19.84 EE(0.5) 43.91 575.49 497.66 0.65 14.82 13.59 14.4251 }, EE(\(\hat{p}_i\)) 34.22 356.86 561.45 2.10 8.22 13.05	18,94 198,94 107,107,108 107,107,108 107,108 108,108 1	18.78 onse EE.h 0.23 116.88 117.17 0.10 2.74 2.72 EE.ii 0.19 128.82 147.64 0.09 3.08 3.47 onse EE.h 4.12 280.03 282.83 0.98 6.52 6.79 EE.ii 1.51 307.16 337.64 1.13 7.21 9.24 ponse EE.h 13.83 17.62 17.62 17.62 17.62 17.62 17.62 17.62 17.62 17.62 17.62 17.62 17.62 17.62 17.62 17.62 17.62	$\begin{array}{c} 18.87 \\ \mathbf{EE}(\hat{\pi}_t) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.21 \\ 3.43 \\ 5.09 \\ \mathbf{EE}(0.5) \\ 0.48 \\ 154.06 \\ 158.31 \\ 0.29 \\ 3.86 \\ 3.83 \\ \mathbf{EE}(\hat{\pi}_t) \\ 5.49 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 10.87 \\ \mathbf{EE}(0.5) \\ 7.76 \\ 345.16 \\ 349.03 \\ 0.52 \\ 8.20 \\ 8.76 \\ \mathbf{EE}(\hat{\pi}_t) \\ 10.97 \\ 194.26 \\ 239.23 \\ 0.22 \\ 4.37 \\ 5.49 \end{array}$
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE	0.14 naïve 6.61 87.40 0.05 34.73 0.05 0.31 EE_i 0.43 2221.06 0.60 0.16 0.16 0.12 204.38 304.99 334.99 365.55 0.22 0.17 naïve 7.30 6.96 6.96 6.96 6.96 7.30 6.96 6.96 6.96 6.96 6.96 6.96 6.96 6.9	0.14 T EE.h 0.90 169.50 171.64 4.41 0.09 0.10 6.87 152.23 182.11 33.59 0.08 T= EE.h 0.73 234.13 239.89 0.12 0.12 EE.jii 2.19 250.41 314.81 1.89 0.12 0.15 T= EE.h 0.15 T= EE.h 0.16 0.17 314.81 0.18	$\begin{array}{c} 0.14 \\ = t=7, \{St\\ EE(\hat{p}_i)\\ 3.59\\ 210.30\\ 336.31\\ 16.80\\ 0.12\\ 0.19\\ 250.92\\ 218.49\\ 7.85\\ 0.14\\ 0.12\\ = t=10, \{St\\ EE(\hat{p}_i)\\ 1.90\\ 304.63\\ 457.95\\ 17.12\\ 0.16\\ 0.25\\ EE(0.5)\\ 3.57\\ 336.46\\ 305.53\\ 24.89\\ 0.19\\ 0.17\\ t=10, \{St\\ EE(\hat{p}_i)\\ 1.90\\ 304.63\\ 457.95\\ 17.12\\ 0.16\\ 0.25\\ EE(0.5)\\ EE(0.5)\\ EE(0.5)\\ 409.78\\ 1.39\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.17\\ 0.$	0.24 (able and maïve 4.39) (2.75) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.85) (2.	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49 271.98 313.74 11.72 0.15 0.17 Volatile: EE_h 0.24 371.27 354.59 1.10 0.18 0.18 0.24 43.31 2.86 0.20 0.20 0.20 0.20 0.22 Volatile: EE_h 0.020 0.22 0.22 0.22	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \hline{\text{EE}(\hat{\pi}_i)} \\ 0.84 \\ 318.34 \\ 529.52 \\ 3.44 \\ 0.18 \\ 0.30 \\ \hline{\text{EE}(0.5)} \\ 0.36 \\ 366.74 \\ 2.82 \\ 0.20 \\ 0.21 \\ \Delta_{10}(\beta_0) = \\ \hline{\text{EE}(\hat{\pi}_i)} \\ 1.01 \\ 425.91 \\ 601.80 \\ 4.74 \\ 4.54 \\ 4.54 \\ 4.54 \\ 4.55.41 \\ 4.55.44 \\ 4.55.41 \\ 4.55.40 \\ (0.23) \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ $	0.34 11023.06, maïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 585.85 5443.17 1.43 0.22 411023.06, maïve 29.64 507.83 686.86 56.40 0.23 0.79 EE.i 6.85 1007.19 755.77 26.54 0.56 0.42 211023.06, maïve 27.46 252.70 513.99 43.03	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ EE.h \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.18 \\ 0.18 \\ 0.18 \\ EE.ii \\ 10.66 \\ 319.12 \\ 381.70 \\ 5.73 \\ 0.17 \\ 0.21 \\ \Delta_{10}(\beta_1) \\ EE.h \\ 1.19 \\ 648.26 \\ 644.21 \\ 0.46 \\ 0.34 \\ 0.33 \\ EE.ii \\ 10.71 \\ 659.87 \\ 822.80 \\ 14.71 \\ 0.34 \\ 0.41 \\ 0.41 \\ 1.03 \\ 426.22 \\ 411.40 \\ 1.03 \\ 426.22 \\ 411.40 \\ 1.03 \\ 0.23 \end{array}$	$\begin{array}{c} 0.34\\ = -0.4041\}\\ \hline \text{EE}(\hat{p}_i)\\ 4.93\\ 429.25\\ 666.17\\ 2.70\\ 0.23\\ 0.36\\ \hline \text{EE}(0.5)\\ 0.95\\ 508.29\\ 440.38\\ 0.60\\ 0.28\\ = -0.4041\\ \hline \text{EE}(\hat{p}_i)\\ 0.45\\ 836.17\\ 1210.36\\ \hline \text{EE}(0.5)\\ 836.17\\ 1210.36\\ 0.44\\ 0.65\\ \hline \text{EE}(0.5)\\ 0.45\\ 3.51\\ 926.39\\ 805.38\\ 15.30\\ 0.50\\ 0.43\\ -0.4041\\ \hline \text{EE}(\hat{p}_i)\\ 958.28\\ 947.06\\ 8.81\\ 0.32\\ \end{array}$	0.24 (Simula maïve 13.70 159.58 483.75 7.18 0.09 0.80 EE.i. 7.76 383.76 312.62 4.09 0.21 0.17 }, {Simula maïve 16.08 345.91 551.48 31.23 0.16 0.76 0.76 EE.i. 3.29 583.77 508.21 0.27 7, {Simula maïve 15.56.82 19.363 476.41 24.45 0.10	0.21 tete: ∆r/1 tete:	$\begin{array}{c} 0.24 \\ \beta_0) = 1176 \\ \hline \text{EE}(\hat{\pi}_t) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline 2.65 \\ 0.23 \\ 327.99 \\ 302.25 \\ 2.45 \\ 0.17 \\ 10(\beta_0) = 22 \\ \hline \text{EE}(\hat{\pi}_t) \\ 0.07 \\ 476.07 \\ 476.07 \\ 633.45 \\ 1.61 \\ 0.25 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 0.36 \\ \hline \text{EE}(\hat{\pi}_t) \\ 0.27 \\ 0.26 \\ 0.09 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.27 \\ 0.27 \\ 0.28 \\ 0.27 \\ 0.28 \\ 0.27 \\ 0.28 \\ 0.27 \\ 0.28 \\ 0.27 \\ 0.28 \\ 0.27 \\ 0.28 \\ 0.27 \\ 0.28 \\ 0.27 \\ 0.28 \\ 0.27 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ $	43.93	$\begin{array}{c} 37.83\\ (\beta_1)=36\\ \hline {\bf EE.h}\\ 0.17\\ 175.44\\ 178.05\\ 0.12\\ 4.17\\ 4.21\\ \hline {\bf EE.kii}\\ 0.27\\ 4.21\\ \hline {\bf EE.kii}\\ 0.27\\ 34.21\\ \hline {\bf EE.kii}\\ 0.28\\ 59\\ 0.05\\ 4.39\\ 5.25\\ \hline {\bf \Delta}_{10}(\beta_1)=\\ \hline {\bf EE.h}\\ 41.98\\ 389.95\\ 386.93\\ 0.54\\ 9.33\\ 9.57\\ \hline {\bf EE.h}\\ 17.40\\ 440.84\\ 526.86\\ 3.89\\ 10.43\\ 12.41\\ \hline {\bf \Delta}_{10}(\beta_1)=\\ \hline {\bf EE.h}\\ 40.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ 10.03\\ $	$\begin{array}{c} 42.68 \\ 5.56497 \end{array}, \mathbf{b} \\ \mathbf{EE}(\hat{p}_i) \\ 0.47 \\ 242.70 \\ 370.45 \\ 0.10 \\ 5.69 \\ 8.88 \\ \mathbf{EE}(0.5) \\ 0.67 \\ 277.39 \\ 248.41 \\ 0.10 \\ 6.69 \\ 6.93 \\ = 14.4251 \end{array}\}$ $\begin{array}{c} \mathbf{EE}(\hat{p}_i) \\ 40.59 \\ 524.81 \\ 742.91 \\ 0.41 \\ 12.88 \\ 19.84 \\ \mathbf{EE}(0.5) \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 43.91 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.49 \\ 575.$	18.94 18.94 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18 19.18	18.78 onse EE_h 0.23 116.88 117.17 0.10 2.74 2.72 EE_ii 0.19 12.82 147.64 0.09 3.08 3.47 oonse EE_h 1.51 307.16 337.64 1.13 7.21 8.24 ponse EE_h 1.38 1.65 176.24 0.68	$\begin{array}{c} 18.87 \\ \mathbf{EE}(\hat{\pi}_t) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.21 \\ 3.43 \\ 5.09 \\ \mathbf{EE}(0.5) \\ 0.48 \\ 154.06 \\ 3.83 \\ 0.29 \\ 3.86 \\ 3.83 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.48 \\ 345.16 \\ 349.03 \\ 0.52 \\ 8.20 \\ 8.76 \\ 0.52 \\ 10.97 \\ 194.26 \\ 239.23 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 4.37 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.2$
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE	0.14 naïve 6.61 87.40 0.05 34.73 0.05 0.31 EE.i 0.43 221.06 0.12 naïve 11.82 204.38 204.38 304.99 58.94 0.08 205.36 206.20 0.17 naïve 7.30 0.85 286.36 0.22 0.17 naïve 3.30.60 210.47 33.06 0.05 3.31 EE.i 3.37 33.106	0.14 TELh 0.90 169.50 171.64 4.41 0.09 0.10 EE.ii 6.87 152.23 182.11 33.59 0.08 0.10 T= EE.h 0.73 234.13 234.13 239.89 3.74 0.12 EE.ii 2.19 250.41 314.81 1.89 0.15 T= EE.h 0.29 169.87 170.53 1.37 0.09 EE.ii 4.94	$\begin{array}{c} 0.14 \\ = t = 7, \{St \\ EE(\hat{p}_i) \\ = ES(\hat{p}_i) \\ = 1.65 \\ $	0.24 (able and maïve 5.70 (180.83 472.73 (29.13 0.10 0.78 842.74 384.35 9.59 0.21 (able and maïve 5.47 346.54 491.97 453.68 10.99 0.24 (able and maïve 4.39 179.03 473.14 (23.04 0.10 0.77 EE.i 2.47 362.95	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49 271.98 313.74 11.72 0.15 0.17 Volatile: EE_h 0.24 371.27 354.59 1.10 0.18 EE_ii 0.45 395.22 431.31 2.86 0.20 Volatile: EE_h 0.08 246.30 0.22 Volatile: EE_h 0.08 247.38	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \hline{\text{EE}(\pi_i)} \\ 0.84 \\ 318.34 \\ 529.52 \\ 3.44 \\ 0.18 \\ 0.30 \\ \hline{\text{EE}(0.5)} \\ 0.36 \\ 366.74 \\ 369.54 \\ 2.82 \\ 0.20 \\ 0.21 \\ \hline{\Delta_{10}(\beta_0) = } \\ \hline{\text{EE}(\pi_i)} \\ 1.01 \\ 425.91 \\ \hline{\text{601.80}} \\ 4.74 \\ 0.21 \\ 0.31 \\ \hline{\text{EE}(0.5)} \\ 1.666 \\ 455.44 \\ 7.58 \\ 0.23 \\ 0.20 \\ 0.20 \\ \hline{\text{Mod}}_{0}(\beta_0) = \\ \hline{\text{EE}(\pi_i)} \\ 0.21 \\ 0.31 \\ \hline{\text{GO}}_{0}(\beta_0) = \\ \hline{\text{EE}(\pi_i)} \\ 0.24 \\ \hline{\text{EE}(0.5)} \\ 0.92 \\ 295.08 \\ 434.83 \\ 4.67 \\ 0.24 \\ \hline{\text{EE}(0.5)} \\ 1.60 \\ 0.24 \\ 0.24 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ $	0.34 11023.06, maïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 443.17 1.43 0.32 0.24 11023.06, maïve 29.64 507.83 686.86 56.40 0.23 0.79 EE.i 1007.19 755.77 26.54 0.42 11023.06, maïve 27.46 252.70 513.99 43.03 0.13 0.78 EE.i 18.17	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ EE.h \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.86 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.19 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.22 \\ 0.22 \\ 0.22 \\ 0.23 \\ 0.23 \\ 0.24 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.34 \\ 0.41 \\ 0.40 \\ 0.10 \\$	$\begin{array}{c} 0.34 \\ = -0.4041 \\ \hline \text{ED}(\hat{p}_1) \\ = -0.4041 \\ \hline \text{ED}(\hat{p}_2) \\ = -0.4041 \\ \hline \text{CO}(1) \\ = -0.23 \\ = -0.23 \\ = -0.23 \\ = -0.24 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_2) \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_2) \\ = -0.4041 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_2) \\ = -0.4041 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_2) \\ = -0.4041 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_2) \\ = -0.4041 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_2) \\ = -0.4041 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_2) \\ = -0.4041 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_2) \\ = -0.$	0.24 (Simula naïve 13.70 159.58 483.75 7.18 0.09 0.80 0.80 0.80 0.21 7.76 382.62 4.09 0.21 0.17 }, {Simula naïve 16.08 345.91 5551.48 31.23 0.16 EE.i 3.29 7508.21 8.55 0.31 0.27 }, {Simula naïve 17.508.21 8.55 0.31 0.27 }, {Simula naïve 17.508.21 8.55 0.31 0.27 }, {Simula naïve 17.508.21 8.55 0.31 0.27 }, {Simula naïve 17.538 193.63 476.41 24.45 0.10 0.75 EE.i 6.88 399.31	0.21 ted: \$\times 7 \) ted: \$\times 7 \] ted: \$\times 7 \) ted: \$\times 7 \] ted: \$\	$\begin{array}{c} 0.24 \\ \beta_0) = 1176 \\ \hline \text{EE}(\hat{\pi}_1) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline \text{EE}(0.5) \\ 4.65 \\ 327.99 \\ 302.25 \\ 2.45 \\ 0.17 \\ 0.07 \\ 476.07 \\ 10(\beta_0) = 22 \\ \hline \text{EE}(\hat{\pi}_1) \\ 0.07 \\ 476.07 \\ 476.07 \\ 483.45 \\ 0.25 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 1.61 \\ 0.25 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 0.26 \\ 0.22 \\ \hline \text{EE}(\hat{\pi}_1) \\ 0.26 \\ 0.26 \\ 0.27 \\ \hline \text{EE}(\hat{\pi}_1) \\ 0.25 \\ 0.26 \\ 0.27 \\ \hline \text{EE}(\hat{\pi}_1) \\ 0.25 \\ 0.26 \\ 0.27 \\ \hline \text{EE}(\hat{\pi}_1) \\ 0.25 \\ \hline \text{EE}(0.5) \\ 0.44 \\ 344.33 \\ 350.84 \\ 344.33 \\ 350.84 \\$	43.93	$(\beta_1) = 36$ $(\beta_1) = (\beta_1)$ $(\beta_1) = (\beta_$	42.68 .56497 }, h EE(\hat{p}_i) 0.47 242.70 370.45 0.10 5.69 8.88 EE(0.5) 0.67 277.39 248.41 0.10 6.66 6.66 6.66 1.40.59 40.59 524.81 742.91 0.41 12.88 19.84 EE(0.5) 43.91 575.49 497.66 0.65 14.82 13.59 14.4251 }, EE(\hat{p}_i) 34.22 356.66 561.45 2.10 8.22 13.05 EE(0.5) 30.43	18,94 18,94 10,75 107.88 10,57 107.88 10,63 10,6	18.78 onse EE.h 0.23 116.88 117.17 0.10 2.74 2.72 EE.ii 0.19 128.82 147.64 0.09 3.08 3.47 onse EE.h 4.12 280.03 282.83 0.98 6.52 6.79 EE.ii 307.16 337.64 1.13 7.21 9.24 ponse EE.h 1.383 17.65 17.624 0.61 3.89 EE.ii 1.755	$\begin{array}{c} 18.87 \\ \mathbf{EE}(\hat{\pi}_t) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.21 \\ 3.43 \\ 5.09 \\ \mathbf{EE}(0.5) \\ 0.48 \\ 154.06 \\ 158.31 \\ 0.29 \\ 3.86 \\ 3.83 \\ \mathbf{EE}(\hat{\pi}_t) \\ 5.49 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 345.16 \\ 349.03 \\ 0.52 \\ 8.20 \\ 8.76 \\ \mathbf{EE}(\hat{\pi}_t) \\ 10.97 \\ 194.26 \\ 239.23 \\ 0.22 \\ 4.37 \\ 5.49 \\ \mathbf{EE}(0.5) \\ 5.01 \\ 199.51 \\ 19$
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE	0.14 naïve 6.61 87.40 0.05 34.73 0.05 0.31 EE.i 0.43 0.20 11.82 204.38 204.38 30.30 EE.j 4.98 0.30 EE.j 4.98 0.30 6.55 0.22 286.36 0.27 0.17 naïve 7.30 86.96 0.15 0.17 naïve 7.30 7.30 7.30 7.30 7.30 7.30 7.30 7.30	0.14 TELh 0.90 169.50 171.64 4.41 0.09 0.10 0.10 EE.ii 6.87 152.23 182.11 33.59 0.08 0.10 T= EE.h 0.73 234.13 233.89 0.12 2.19 2.19 2.19 2.10 2.19 2.10 2.19 2.10 2.19 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10	$\begin{array}{c} 0.14 \\ = t=7, \{St\\ \overline{EE(\hat{p}_i)}\\ 3.59\\ 210.30\\ 336.31\\ 16.80\\ 0.12\\ 0.19\\ 250.92\\ 218.49\\ 7.85\\ 0.14\\ 0.12\\ 250.92\\ 218.49\\ 7.85\\ 0.14\\ 0.12\\ \overline{EE(\hat{p}_i)}\\ 1.90\\ 304.63\\ 457.95\\ \overline{EE(\hat{p}_i)}\\ 1.90\\ 304.63\\ 457.95\\ \overline{EE(\hat{p}_i)}\\ 1.90\\ 0.16\\ 0.25\\ \overline{EE(\hat{p}_i)}\\ 0.16\\ 0.25\\ \overline{EE(\hat{p}_i)}\\ 0.16\\ 0.25\\ \overline{EE(\hat{p}_i)}\\ 0.17\\ t=10, \{Ste\\ \overline{EE(\hat{p}_i)}\\ 0.50\\ 247.56\\ 409.78\\ 1.39\\ 0.14\\ 0.23\\ \overline{EE(0.5)}\\ 1.65\\ 297.76\\ 297.7$	0.24 (able and maïve 1 (able and 1 (able a	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49 271.98 313.74 11.72 0.15 0.17 Volatile: EE_h 0.24 371.27 354.59 1.10 0.18 EE_ii 0.45 395.22 431.31 2.86 0.22 431.31 2.86 0.22 Volatile: EE_h 0.08 246.30 242.39 0.22 0.14 0.13 EE_ii 0.46 272.86	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \hline{\text{EP}(\vec{\pi}_i)} \\ 0.84 \\ 318.34 \\ 529.52 \\ 3.44 \\ 0.18 \\ 0.30 \\ \hline{\text{GO}}. \\ 0.36 \\ 366.74 \\ 369.54 \\ 2.82 \\ 0.20 \\ 0.21 \\ \hline{\text{Lo}}. \\ 0.21 \\ 1.01 \\ 425.91 \\ 601.80 \\ 4.74 \\ 0.21 \\ 0.31 \\ \hline{\text{EE}(0.5)} \\ 1.66 \\ 455.41 \\ 7.58 \\ 0.23 \\ 0.23 \\ \Delta_{10}(\beta_0) = \\ \hline{\text{EE}(\vec{\pi}_i)} \\ 0.92 \\ 295.08 \\ 434.83 \\ 0.23 \\ 4.67 \\ 0.16 \\ 0.24 \\ \hline{\text{EE}(0.5)} \\ 1.60 \\ 323.67 \\ \hline{\text{I}}. \\ 0.60 \\ 333.67 \\ \hline{\text{I}}. \\ 0.83 \\ 3.83 \\ 0.93 \\ 3.83 \\ 3.87 \\ \hline{\text{I}}. \\ 0.93 \\ 336.87 \\ \hline{\text{I}}. \\ 0.84 \\ 0.93 \\ 336.87 \\ \hline{\text{I}}. \\ 0.84 \\ 0.94 \\ 0.92 \\ 2.95.08 \\ 0.94 \\ 0.92 \\ 2.95.08 \\ 0.93 \\ 3.63 \\ 0.94 \\ 0.$	0.34 11023.06, maïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 443.17 1.43 0.32 0.24 11023.06, maïve 29.64 507.83 686.86 56.40 0.23 0.79 EE.i 6.85 1007.19 755.77 26.54 0.42 11023.06, maïve 27.46 252.70 513.99 43.03 0.13 0.78 EE.i 18.17 807.65 631.45	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ \hline{EE.h} \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.86 \\ 0.18 \\ \hline{0.18} \\ 0.18 \\ \hline{0.18} \\ 0.18 \\ \hline{0.20} \\ 0.20 \\ 0.21 \\ \hline{0.21} \\ \Delta_{10}(\beta_1) \\ \hline{0.21} \\ \Delta_{10}(\beta_1) \\ \hline{0.21} \\ 0.21 \\ \hline{0.21} \\ 0.21 \\ \hline{0.21} \\ 0.21 \\ \hline{0.22} \\ 0.22 \\ \hline{0.23} \\ 0.23 \\ \hline{0.24} \\ 0.24 \\ 0.23 \\ \hline{0.25} \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.23 \\ \hline{0.25} \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.25 \\$	$\begin{array}{c} 0.34 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_i) \\ 4.93 \\ 429.25 \\ 666.17 \\ 2.70 \\ 0.23 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 0.95 \\ 508.29 \\ 440.38 \\ 0.24 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_i) \\ 0.45 \\ 836.17 \\ 1210.36 \\ 5.08 \\ 0.44 \\ 0.65 \\ \hline \text{EE}(0.5) \\ 3.51 \\ 926.39 \\ 805.38 \\ 15.30 \\ 0.40 \\ 0.45 \\ \hline \text{EE}(\hat{p}_i) \\ 0.45 \\ \hline \text{EE}(\hat{p}_i) \\ 0.45 \\ \hline \text{EE}(\hat{p}_i) \\ 0.50 \\ 0.43 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_i) \\ 0.50 \\ 0.43 \\ = 0.52 \\ 0.52 \\ \hline \text{EE}(0.5) \\ 0.17 \\ 0.1$	0.24 {Simula maïve 13.70 159.58 483.75 7.18 0.09 0.80 EE.i 7.76 383.76 312.62 4.09 0.21 0.17 }, {Simul maïve 16.08 345.91 551.48 31.23 0.16 EE.i 3.29 583.77 508.21 8.55 0.31 0.27 }, {Simul maïve 15.53 193.63 476.41 24.45 0.10 0.75 EE.i 6.88 39.83	0.21 ted: Δ ₇ /τ	$\begin{array}{c} 0.24 \\ \beta_0) = 1176 \\ \hline {\rm EE}(\hat{\pi}_1) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline {\rm EE}(0.5) \\ 4.65 \\ 327.99 \\ 302.25 \\ 2.45 \\ 0.17 \\ 0.07 \\ 476.07 \\ 683.45 \\ 0.18 \\ 0.07 \\ 476.07 \\ 683.45 \\ 0.18 \\ 0.07 \\ 476.07 \\ 683.45 \\ 0.18 \\ 0.07 \\ 476.07 \\ 0.25 \\ 0.36 \\ \hline {\rm EE}(0.5) \\ 1.52 \\ 524.44 \\ 507.36 \\ 4.50 \\ 0.27 \\ 0.26 \\ 0.090 \\ 0.27 \\ 0.26 \\ 0.090 \\ 0.27 \\ 0.25 \\ \hline {\rm EE}(\hat{\pi}_i) \\ 0.17 \\ 0.25 \\ \hline {\rm EE}(\hat{\pi}_i) \\ 0.17 \\ 0.25 \\ \hline {\rm EE}(0.5) \\ 4.43 \\ 350.84 \\ 350.84 \\ 345.27 \\ \end{array}$	43.93	37.83 $(\beta_1) = 36$ $EE.h$ 0.17 175.44 178.05 0.12 4.17 4.21 $EE.ii$ 0.27 196.88 238.59 0.05 4.39 5.25	42.68 .56497 }, h EE(p̂ ₁) 0.47 242.70 370.45 0.10 5.69 8.88 EE(0.5) 0.67 277.39 248.41 0.10 6.66 6.65 40.59 40.59 524.81 742.91 0.41 12.88 19.84 EE(0.5) 43.91 575.49 497.66 0.65 14.82 13.59 14.4251 }, EE(p̂ ₁) 34.22 356.86 561.45 2.10 8.22 31.30 2.13.05 EE(0.5) 30.43 413.05 EE(0.5) 30.43 413.05	18.94 by ligh respuis pin resp	18.78 onse EE_h 0.23 116.88 117.17 0.10 2.74 2.72 EE_ii 0.19 128.82 147.64 0.09 3.08 3.47 oonse EE_h 4.12 280.03 282.83 0.98 6.52 6.79 EE_ii 1.51 307.16 337.64 1.13 7.21 1.8.24 ponse EE_h 13.83 176.65 176.24 0.61 3.88 3.90 EE_ii 1.75	$\begin{array}{c} 18.87 \\ \mathbf{EE}(\hat{\pi}_t) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.21 \\ 3.43 \\ 5.09 \\ \mathbf{EE}(0.5) \\ 0.48 \\ 154.06 \\ 158.31 \\ 0.29 \\ 3.86 \\ 3.83 \\ \mathbf{EE}(\hat{\pi}_t) \\ 3.86 \\ 3.83 \\ \mathbf{EE}(\hat{\pi}_t) \\ 7.76 \\ 7.63 \\ 349.03 \\ 0.57 \\ \mathbf{EE}(0.5) \\ 7.48 \\ 349.03 \\ 0.52 \\ 8.20 \\ 0.77 \\ 7.63 \\ 349.03 \\ 0.77 \\ \mathbf{EE}(0.5) \\ 7.48 \\ 349.03 \\ 0.52 \\ 8.20 \\ 0.8.76 \\ \mathbf{EE}(\hat{\pi}_t) \\ 10.97 \\ 194.26 \\ 239.23 \\ 0.22 \\ 4.37 \\ 5.49 \\ \mathbf{EE}(0.5) \\ 5.01 \\ 19.951 \\ 199.51 \\ 210.75 \\ \end{array}$
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE	0.14 naïve 6.61 87.40 0.05 34.73 0.05 0.31 EE_i 0.43 221.06 0.60 0.16 0.12 naïve 11.82 204.38 304.99 6.85 6.96 22.10.47 38.06 6.96 210.47 38.06 0.05 0.31 35.06 0.31 35.06 0.31 35.06 0.32 210.47 38.06 0.32 210.47 38.06 0.32 35.06 0.33 35.06 0.33 35.06 0.33 35.06 0.35 0.31 35.06 0.31 35.06 0.31 35.06 0.31 35.06 0.31 35.06 0.31 35.06 0.31 35.06 0.31 35.06 0.31 35.06 0.31	0.14 T EE.h 0.90 169.50 171.64 4.41 0.09 0.10 6.87 152.23 182.11 33.59 0.08 T= EE.h 0.73 234.13 239.89 0.12 0.12 0.12 0.12 0.15 T= EE.h 0.73 134.81 1.89 0.12 0.15 T= EE.h 0.12 0.15 T= EE.h 0.29 169.87 170.53 1.37 1.09 0.09 EE.ii	$\begin{array}{c} 0.14 \\ = t=7, \{St\\ EE(\hat{p}_i)\\ 3.59\\ 210.30\\ 336.31\\ 16.80\\ 0.12\\ 0.19\\ 250.92\\ 218.49\\ 7.85\\ 0.14\\ 0.12\\ = t=10, \{St\\ EE(\hat{p}_i)\\ 1.90\\ 304.63\\ 45.795\\ 17.12\\ 0.16\\ 0.25\\ EE(0.5)\\ 3.57\\ 336.46\\ 305.53\\ 24.89\\ 0.19\\ 0.17\\ t=10, \{Ste\\ EE(\hat{p}_i)\\ 0.16\\ 0.25\\ EE(0.5)\\ 3.57\\ 336.46\\ 305.53\\ 24.89\\ 0.19\\ 0.17\\ t=10, \{Ste\\ EE(\hat{p}_i)\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.19\\ 0.1$	0.24 (able and maïve 4.36 (49.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.14 (20.	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49 271.98 313.74 11.72 0.15 0.17 Volatile: EE_h 0.24 371.27 354.59 1.10 0.18 EE_ii 0.45 395.22 431.31 2.86 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \hline{EP}(\tilde{\pi}_i) \\ 0.84 \\ 318.34 \\ 529.52 \\ 3.44 \\ 0.18 \\ 0.30 \\ \hline{EE}(0.5) \\ 0.36 \\ 366.74 \\ 2.82 \\ 0.20 \\ 0.21 \\ \Delta_{10}(\beta_0) = \\ \hline{EE}(\tilde{\pi}_i) \\ 1.01 \\ 425.91 \\ 601.80 \\ 4.74 \\ 0.21 \\ 0.31 \\ \hline{EE}(0.5) \\ 0.60 \\ 4.74 \\ 0.21 \\ 0.31 \\ \hline{EE}(0.5) \\ 0.60 \\ 4.74 \\ 0.21 \\ 0.31 \\ \hline{EE}(0.5) \\ 0.60 \\ 4.74 \\ 0.21 \\ 0.31 \\ \hline{EE}(0.5) \\ 0.60 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\$	0.34 11023.06, maïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 443.17 1.43 0.24 11023.06, maïve 29.64 507.83 686.86 0.23 0.79 EE.i 6.85 1007.19 755.77 26.54 0.56 0.42 11023.06, maïve 27.46 252.70 513.99 43.03 0.78 EE.i 18.17 807.65 631.45	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ EE.h \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.18 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.21 \\ 0.22 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.23 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \\$	$\begin{array}{c} 0.34\\ = -0.4041\}\\ \hline \text{EE}(\hat{p}_i)\\ 4.93\\ 429.25\\ 666.17\\ 2.70\\ 0.23\\ 0.36\\ \hline \text{EE}(0.5)\\ 0.95\\ 508.29\\ 440.38\\ 0.24\\ = -0.4041\\ \hline \text{EE}(\hat{p}_i)\\ 0.45\\ 836.17\\ 1210.36\\ 0.44\\ 0.65\\ \hline \text{EE}(0.5)\\ 3.51\\ 926.39\\ 805.38\\ 15.30\\ 0.50\\ \hline \text{eE}(\hat{p}_i)\\ 0.45\\ 3.51\\ 926.39\\ 805.38\\ 15.30\\ 0.50\\ \hline \text{eE}(\hat{p}_i)\\ 0.43\\ 0.55\\ \hline \text{EE}(0.5)\\ 1.79\\ 692.34\\ 0.52\\ \hline \text{eE}(0.5)\\ 1.79\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.05\\ 692.0$	0.24 (Simula maïve 15.58 0.16 0.17 159.58 483.75 7.18 0.09 0.80 EE.i. 7.76 383.76 312.62 4.09 0.17 }, (Simul maïve 15.51.48 8.55 0.31 0.27 7.508.21 8.55 0.31 0.27 7, (Simul maïve 15.58 193.63 476.41 24.45 6.88 399.31 356.94 10.76	0.21 tete: ∆r/1 tete: ∆r/2 tete:	$\begin{array}{c} 0.24 \\ \beta_0) = 1176 \\ \hline \text{EE}(\hat{\pi}_1) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline \text{EE}(0.5) \\ 4.65 \\ 327.99 \\ 302.25 \\ 2.45 \\ 0.18 \\ 0.17 \\ 10(\beta_0) = 22 \\ \hline \text{EE}(\hat{\pi}_1) \\ 0.07 \\ 476.07 \\ 476.07 \\ 683.45 \\ \hline 1.52 \\ 524.44 \\ 507.36 \\ \hline 4.50 \\ 0.27 \\ 0.26 \\ 0.(\beta_0) = 22 \\ \hline \text{EE}(\hat{\pi}_1) \\ 0.27 \\ 0.26 \\ 0.18 \\ 0.27 \\ 0.26 \\ 0.18 \\ 0.27 \\ 0.26 \\ 0.18 \\ 0.27 \\ 0.26 \\ 0.18 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.27 \\ 0.26 \\ 0.28 \\ 0.27 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.29 \\ $	43.93	37.83 $(\beta_1) = 36$ $EE.h$ 0.17 175.44 178.05 0.12 4.17 4.21 $EE.hi$ 0.27 16.25 16.25 16.25 17.40 17.80 18.25 18.25 18.25 18.25 18.25 18.25 18.25 18.25 18.25 18.25 18.25 18.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 19.25 $19.$	42.68 .56497 }, h EE(\$\hat{p}_i\$) 0.47 242.70 370.45 0.10 5.69 8.88 EE(0.5) 0.67 277.39 248.41 0.10 6.66 5.93 14.4251 } EE(\$\hat{p}_i\$) 40.59 524.81 742.91 0.41 12.88 19.84 EE(0.5) 43.91 575.49 497.66 0.65 14.82 13.59 14.4251 }, EE(\$\hat{p}_i\$) 34.25 13.59 14.4251 }, EE(\$\hat{p}_i\$) 36.86 561.45 2.10 8.22 13.05 EE(0.5) 30.43 413.05 378.22 1.44	18.94 igh responding 18.94 igh responding 10.57 107.88 369.62 2.99 41.97 EE.i. 0.63 11.94 10.54 10.54 10.54 10.54 10.54 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.55 10.5	18.78 onse EE_h 0.23 116.88 117.17 0.10 2.74 2.72 EE_ii 0.19 128.82 147.64 0.09 3.08 3.47 oonse EE_h 307.16 337.64 337.64 337.64 337.64 31.13 7.21 8.24 ponse EE_h 1.51 317.16 317.65 176.24 0.61 3.88 3.90 EE_ii 17.75 192.92 209.03	$\begin{array}{c} 18.87 \\ \mathbf{EE}(\bar{\pi}_i) \\ 0.35 \\ 139.63 \\ 206.29 \\ 0.21 \\ 3.43 \\ 5.09 \\ \mathbf{EE}(0.5) \\ 0.48 \\ 154.06 \\ 158.31 \\ 0.29 \\ 3.86 \\ 3.83 \\ \mathbf{EE}(\bar{\pi}_i) \\ 5.49 \\ 324.16 \\ 450.22 \\ 0.77 \\ 7.63 \\ 310.87 \\ \mathbf{EE}(0.5) \\ 7.48 \\ 345.16 \\ 349.03 \\ 0.52 \\ 8.20 \\ 8.76 \\ \mathbf{EE}(\bar{\pi}_i) \\ 19.97 \\ 194.26 \\ 239.23 \\ 0.22 \\ 4.37 \\ 5.49 \\ \mathbf{EE}(0.5) \\ 5.01 \\ 199.51 \\ 199.51 \\ 199.51 \\ \end{array}$
ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_0)}$ SE ERSE APRB $_{\Delta(\beta_1)}$ SE ERSE	0.14 naïve 6.61 87.40 0.05 34.73 0.05 0.31 EE.i 0.43 0.20 11.82 204.38 204.38 30.30 EE.j 4.98 0.30 EE.j 4.98 0.30 6.55 0.22 286.36 0.27 0.17 naïve 7.30 86.96 0.15 0.17 naïve 7.30 7.30 7.30 7.30 7.30 7.30 7.30 7.30	0.14 TELh 0.90 169.50 171.64 4.41 0.09 0.10 0.10 EE.ii 6.87 152.23 182.11 33.59 0.08 0.10 T= EE.h 0.73 234.13 233.89 0.12 2.19 2.19 2.19 2.10 2.19 2.10 2.19 2.10 2.19 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10	$\begin{array}{c} 0.14 \\ = t=7, \{St\\ \overline{EE(\hat{p}_i)}\\ 3.59\\ 210.30\\ 336.31\\ 16.80\\ 0.12\\ 0.19\\ 250.92\\ 218.49\\ 7.85\\ 0.14\\ 0.12\\ 250.92\\ 218.49\\ 7.85\\ 0.14\\ 0.12\\ \overline{EE(\hat{p}_i)}\\ 1.90\\ 304.63\\ 457.95\\ \overline{EE(\hat{p}_i)}\\ 1.90\\ 304.63\\ 457.95\\ \overline{EE(\hat{p}_i)}\\ 1.90\\ 0.16\\ 0.25\\ \overline{EE(\hat{p}_i)}\\ 0.16\\ 0.25\\ \overline{EE(\hat{p}_i)}\\ 0.16\\ 0.25\\ \overline{EE(\hat{p}_i)}\\ 0.17\\ t=10, \{Ste\\ \overline{EE(\hat{p}_i)}\\ 0.50\\ 247.56\\ 409.78\\ 1.39\\ 0.14\\ 0.23\\ \overline{EE(0.5)}\\ 1.65\\ 297.76\\ 297.7$	0.24 (able and maïve to 1.28 (able and maïve to 1.28 (able and 1.29 (able and 1.29 (able and 1.29 (able able and 1.29 (able and 1.29 (able able able able able able able able	0.22 Volatile: EE_h 1.72 250.26 240.88 8.27 0.14 0.13 EE_ii 2.49 271.98 313.74 11.72 0.15 0.17 Volatile: EE_h 0.24 371.27 354.59 1.10 0.18 EE_ii 0.45 395.22 431.31 2.86 0.22 431.31 2.86 0.22 Volatile: EE_h 0.08 246.30 242.39 0.22 0.14 0.13 EE_ii 0.46 272.86	$\begin{array}{c} 0.24 \\ \Delta_7(\beta_0) = \\ \hline{\text{EP}(\vec{\pi}_i)} \\ 0.84 \\ 318.34 \\ 529.52 \\ 3.44 \\ 0.18 \\ 0.30 \\ \hline{\text{GO}}. \\ 0.36 \\ 366.74 \\ 369.54 \\ 2.82 \\ 0.20 \\ 0.21 \\ \hline{\text{Lo}}. \\ 0.21 \\ 1.01 \\ 425.91 \\ 601.80 \\ 4.74 \\ 0.21 \\ 0.31 \\ \hline{\text{EE}(0.5)} \\ 1.66 \\ 455.41 \\ 7.58 \\ 0.23 \\ 0.23 \\ \Delta_{10}(\beta_0) = \\ \hline{\text{EE}(\vec{\pi}_i)} \\ 0.92 \\ 295.08 \\ 434.83 \\ 0.23 \\ 4.67 \\ 0.16 \\ 0.24 \\ \hline{\text{EE}(0.5)} \\ 1.60 \\ 323.67 \\ \hline{\text{I}}. \\ 0.60 \\ 333.67 \\ \hline{\text{I}}. \\ 0.83 \\ 3.83 \\ 0.93 \\ 3.83 \\ 3.87 \\ \hline{\text{I}}. \\ 0.93 \\ 336.87 \\ \hline{\text{I}}. \\ 0.84 \\ 0.93 \\ 336.87 \\ \hline{\text{I}}. \\ 0.84 \\ 0.94 \\ 0.92 \\ 2.95.08 \\ 0.94 \\ 0.92 \\ 2.95.08 \\ 0.93 \\ 3.63 \\ 0.94 \\ 0.$	0.34 11023.06, maïve 23.81 194.75 539.64 12.41 0.10 0.79 EE.i 2.89 585.85 443.17 1.43 0.32 0.24 11023.06, maïve 29.64 507.83 686.86 56.40 0.23 0.79 EE.i 6.85 1007.19 755.77 26.54 0.42 11023.06, maïve 27.46 252.70 513.99 43.03 0.13 0.78 EE.i 18.17 807.65 631.45	$\begin{array}{c} 0.34 \\ \Delta_7(\beta_1) = \\ \hline{EE.h} \\ 1.57 \\ 331.97 \\ 335.64 \\ 0.86 \\ 0.18 \\ \hline{0.18} \\ 0.18 \\ \hline{0.18} \\ 0.18 \\ \hline{0.20} \\ 0.20 \\ 0.21 \\ \hline{0.21} \\ \Delta_{10}(\beta_1) \\ \hline{0.21} \\ \Delta_{10}(\beta_1) \\ \hline{0.21} \\ 0.21 \\ \hline{0.21} \\ 0.21 \\ \hline{0.21} \\ 0.21 \\ \hline{0.22} \\ 0.22 \\ \hline{0.23} \\ 0.23 \\ \hline{0.24} \\ 0.24 \\ 0.23 \\ \hline{0.25} \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.23 \\ \hline{0.25} \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.24 \\ 0.25 \\$	$\begin{array}{c} 0.34 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_i) \\ 4.93 \\ 429.25 \\ 666.17 \\ 2.70 \\ 0.23 \\ 0.36 \\ \hline \text{EE}(0.5) \\ 0.95 \\ 508.29 \\ 440.38 \\ 0.24 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_i) \\ 0.45 \\ 836.17 \\ 1210.36 \\ 5.08 \\ 0.44 \\ 0.65 \\ \hline \text{EE}(0.5) \\ 3.51 \\ 926.39 \\ 805.38 \\ 15.30 \\ 0.40 \\ 0.45 \\ \hline \text{EE}(\hat{p}_i) \\ 0.45 \\ \hline \text{EE}(\hat{p}_i) \\ 0.45 \\ \hline \text{EE}(\hat{p}_i) \\ 0.50 \\ 0.43 \\ = -0.4041 \\ \hline \text{EE}(\hat{p}_i) \\ 0.50 \\ 0.43 \\ = 0.52 \\ 0.52 \\ \hline \text{EE}(0.5) \\ 0.17 \\ 0.1$	0.24 {Simula maïve 13.70 159.58 483.75 7.18 0.09 0.80 EE.i 7.76 383.76 312.62 4.09 0.21 0.17 }, {Simul maïve 16.08 345.91 551.48 31.23 0.16 EE.i 3.29 583.77 508.21 8.55 0.31 0.27 }, {Simul maïve 15.53 193.63 476.41 24.45 0.10 0.75 EE.i 6.88 39.83	0.21 ted: Δ ₇ /τ	$\begin{array}{c} 0.24 \\ \beta_0) = 1176 \\ \hline {\rm EE}(\hat{\pi}_1) \\ 1.73 \\ 280.02 \\ 423.82 \\ 0.90 \\ 0.15 \\ 0.23 \\ \hline {\rm EE}(0.5) \\ 4.65 \\ 327.99 \\ 302.25 \\ 2.45 \\ 0.17 \\ 0.07 \\ 476.07 \\ 683.45 \\ 0.18 \\ 0.07 \\ 476.07 \\ 683.45 \\ 0.18 \\ 0.07 \\ 476.07 \\ 683.45 \\ 0.18 \\ 0.07 \\ 476.07 \\ 0.25 \\ 0.36 \\ \hline {\rm EE}(0.5) \\ 1.52 \\ 524.44 \\ 507.36 \\ 4.50 \\ 0.27 \\ 0.26 \\ 0.090 \\ 0.27 \\ 0.26 \\ 0.090 \\ 0.27 \\ 0.25 \\ \hline {\rm EE}(\hat{\pi}_i) \\ 0.17 \\ 0.25 \\ \hline {\rm EE}(\hat{\pi}_i) \\ 0.17 \\ 0.25 \\ \hline {\rm EE}(0.5) \\ 4.43 \\ 350.84 \\ 350.84 \\ 345.27 \\ \end{array}$	43.93	37.83 $(\beta_1) = 36$ $EE.h$ 0.17 175.44 178.05 0.12 4.17 4.21 $EE.ii$ 0.27 196.88 238.59 0.05 4.39 5.25	42.68 .56497 }, h EE(p̂ ₁) 0.47 242.70 370.45 0.10 5.69 8.88 EE(0.5) 0.67 277.39 248.41 0.10 6.66 6.65 40.59 40.59 524.81 742.91 0.41 12.88 19.84 EE(0.5) 43.91 575.49 497.66 0.65 14.82 13.59 14.4251 }, EE(p̂ ₁) 34.22 356.86 561.45 2.10 8.22 31.30 2.13.05 EE(0.5) 30.43 413.05 EE(0.5) 30.43 413.05	18.94 by sigh respuis properties of the series of the seri	18.78 onse EE_h 0.23 116.88 117.17 0.10 2.74 2.72 EE_ii 0.19 128.82 147.64 0.09 3.08 3.47 oonse EE_h 4.12 280.03 282.83 0.98 6.52 6.79 EE_ii 1.51 307.16 337.64 1.13 7.21 1.8.24 ponse EE_h 13.83 176.65 176.24 0.61 3.88 3.90 EE_ii 1.75	18. EE(iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Table E.23: Results under model (2.41), by response and correlation. Population: stable

								T=1), t=4, Δ	$(\beta_0) = 110$	23.06. Ad	Ī	.4041. lox	v respons	e and lox	ela	ion.							
	naïve	EE,	$EE(\hat{p_i})$	EE.i	EE_ii	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE_i	EE_ii	EE(0.2)			×	\vdash	l l	ГΙ	$\mathbf{E}(\hat{\pi}_i)$	EE.i	EE_ii E	×			1	E(0.5)
APRB _{Δ(β0)}	161.37	0.13	11.06	39.44	24.08	26.15	2.89	32.75	30.83	18.78							19.09	45.12	4.87					8.23
SE ERSE	58.91 458.71	41.09	77.96	50.78	50.57 67.12	55.47	54.20 79.57	51.97	67.03	56.50	28.69	61.48 53.14	52.70 64.03	56.89	689.20	86.26	90.73 135.67	95.77	82.78	100.31	90.99 9. 121.88 9.	92.20	90.79	91.45
$APRB_{\Delta(\beta_1)}$	283.74	3.01	16.23	33.03	100.35	12.25	31.99	20.53	111.04	1.81		_		_			36.66	96.25	6.59					14.11
ERSE	0.33	0.04	0.08	0.00	0.05	0.00	0.08	0.00	0.04	0.00							0.12	0.10	0.10	_				0.00
								T=1(i, t=4, Δ_4	$(\beta_0) = 110$	3	Ī	, lor	121	囯	reg	tion				Ш	ш	Ш	
	naïve	EE,	$\mathbf{EE}(\hat{p_i})$	EE_i	EE ii	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE ii	EE(0.5)			M	\vdash	l l	Γ	$\mathbf{E}(\hat{\pi}_i)$	EE_i	EE_ii E	_			田	E(0.5)
APRB _{A(β0)}	156.24	0.65	11.76	39.97	22.56	26.71	3.53	33.15	29.33	19.24							20.63	46.87	6.35					9:92
ERSE	61.82	38.07	71.56	59.56 46.55	53.27	50.87	56.22	47.64	54.68	51.81							91.02	10.78	87.14 98.02	98.58	120.57 9	90.35 ×	94.58	94.15
APRBA(B,)	702.94	88.55	68.34	5.99	158.61	29.58	94.59	14.66	181.64	52.78		'		+	1	L	50.58	27.85	56.77	_	1			70.41
SE	0.49	0.23	0.25	0.23	0.28	0.24	0.26	0.24	0.29	0.25							0.26	0.27	0.26					0.27
ERSE	1.06	0.15	0.24	0.14	0.23	0.16	0.24	0.15	0.23	0.16	- 1	- [:	\neg		-	0.34	0.24	0.26					0.25
			()			(2)	,	T=1.	, t=4, Δ ₄	$(5_0) = 110$	7	Ī	Ĭ,	하	ĭ.	reg	tion		:	ľ			ľ	9
G	naïve	EE,	EE(p _i)	EE	EE-ii	EE(0.5)	EE(pa)	EE	EE.ii	EE(0.5)			¥	$^{+}$		7	Έ(π̂ _ε)	EE	EE.ii E	×			۳	E(0.5)
APRBA(30)	53.71	12.0	12.62	29.92	0.35	20.89	8.57	25.65	2.76	16.73							10.53	17.77	6.29					26. 17
ERSE	262.31	19.42	40.21	34.80 27.95	27.53	28.48	39.40	27.62	26.95	28.02							87.87	69.67	54.87 66.44	59.42 69.71	74.67 6	59.53 5 62.51 6	54.62 61.14	62.69
$APRB_{\Delta(\beta_1)}$	244.05	1.07	56.74	137.23	1.60	95.35	37.96	117.35	15.78	76.03	l			-			49.41 1	16.14	28.68					22.90
SE	0.01	0.01	0.01	0.02	0.01	0.05	0.01	0.05	0.01	0.05				_			0.03	0.03	0.03					0.03
ERSE	0.30	0.01	0.02	0.02	0.01	0.02	0.02	0.01	0.01	0.02	-	1	-	-13	- 12	- 17	0.02	0.04	0.04					0.03
		5	10/02	 E	:	200	/ VIII	OT = T	t=4, ∆4	$\beta_0) = 1102$	뒥	7		Ξŀ	3		ution		::	1			1	2
4000	naive	EE,	(3d) HH	EET	EE.	(CO)33	(1id) FE	EET	EEJI	EE(0.5)			*	$^{+}$		٦.	Σ(π _ε)	123	EE'II	*1			귁	E(0.5)
APKBA(80) SF	19.17	0.12	15.04	30.04	13.26	21.12	17.61	25.83	13.00	17.03							11.38	20.78	6.90					5.13 66.54
ERSE	259.42	11.23	22.77	15.36	15.46	15.80	22.37	15.23	15.15	15.60							93.39	73.80	70.89				65.48	67.00
$APRB_{\Delta(\beta_1)}$	98.57	15.59	5.38	11.76	16.82	2.62	10.59	7.00	21.78	2.35				_			5.15	9.62	4.86					4.48
SE	0.10	0.08	80.0	0.09	0.00	0.08	0.09	0.09	0.09	0.09				_			0.16	0.18	0.16					0.16
ERSE	0.46	90.0	0.09	90.0	0.07	0.07	0.09	0.06	0.07	90.0					١.	ŀ		0.18	0.18					0.16
	:		() ()		:	(10)	,]=]), t=7, ∆ ₇	$(5_0) = 110$	5	Ī	9	ã۲	의	ela.			:	ľ		- [F	1
APBR	161.37	0.16	EE(p;)	30.51	24.20	(e.0)aa	5 80 2 80	20 22	31.04	18 74			1	+		7		15 25 45 25	4 77 E	1			7	(0.5)
SE 16 (%)	66.54	49.75	58.37	63.55	60.00	60.10	60.03	65.65	60.79	62.53								27.00	12.00					92.95
ERSE	458.51	41.04	77.80	50.70	67.12	55.40	79.39	51.88	67.04	56.43								95.78	00.02	100.33	121.85 90	92.19	96.54	92.96
$APRB_{\Delta(\beta_1)}$	283.69	1.43	11.72	39.60	97.44	17.71	28.35	25.91	108.74	2.64						l	_	00.64	4.87					16.46
SE	0.03	0.04	0.05	0.07	0.04	0.06	0.02	90.0	0.04	0.00								0.10	0.09					0.00
Enge	0.00	10.04	000	00.0	0.00	0.00	0.00	T=1(0.00 t=7. A-	(.6) = 110	1	Į.	15	⊣ 음	1:2	101		0.10	0.10					0.09
	naïve	EE.	EE(n)	EE:	EE ii	EE(0.5)	EE(û.,)	RE:	EE ::	(50) = 110 EE(0.5)	-	Ĭ.	1	-	í١.			. H.	RE II E	1		ľ	E :: E	8(0.5)
APRBA(%)	156.73	0.27	11.57	39.83	22.89	26.56	3.37	33.04	29.62	19.11			1	+	. I	`		46.75	5.60	1	1.		9.95	9.00
SE	58.24	38.84	54.77	60.13	54.65	57.32	56.27	61.88	55.61	58.89								90.41	83.28				5.42	87.69
ERSE	451.23	38.06	71.45	46.50	61.72	50.84	73.01	47.65	99.19	51.83		ľ		\neg				93.97	97.99		1		1.55	94.11
$APKB_{\Delta(\beta_1)}$	0.47	72.67	43.55	32.91	135.44	3.71	68.55	13.90	0.28	25.49								1.18 0.36	28.56				3.70	98.30
ERSE	1.04	0.15	0.24	0.14	0.22	0.16	0.24	0.15	0.22	0.16								0.24	0.26		0.31		0.25	0.24
								T=1(t , $t=7$, Δ_7	$(\beta_0) = 110$	5	Ī	ij	티티	۱ř۱	relg	Ш			П	Ш	Ш	П	
	naïve	EE,	$\mathbf{EE}(\hat{p_i})$	EE_i	EE_ii	EE(0.5)	$EE(\hat{p}_{i1})$	EE.i	EE_ii	EE(0.5)			M	\neg		7		EE_i	EE_ii E	M				E(0.5)
$APRB_{\Delta(\beta_0)}$	53.49	0.00	12.71	29.96	0.49	20.95	8.69	25.71	2.57	16.82								24.37	6.10					1.31
ERSE	262.28	19.63	40.81	28.32	27.74	28.82	39.97	27.98	27.17	28.37								69.51	66.45				61.15	62.63
$APRB_{\Delta(\beta_1)}$	243.09	0.30	57.07	137.32	1.03	95.56	38.43	117.55	15.00	26.36		L		-	1		Γ	14.12	27.41		Ι.			19.96
SE	0.01	0.01	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.02								0.03	0.03					0.03
EKSE	0.30	0.01	0.02	0.02	0.01	0.02	0.02	0.0Z	0.01	0.02	_	1	2	-13	1	1		0.04	0.04					0.03
	ozijou.	9.0	PP(6.)	. 00	:: 0.0	PD/0 E)	PP/6)	T=TO	, τ=ι, Δτ συ::	$D_0) = 1102$	1-	7	E I	ΞH	٩I.	IJE [: 22	d :: dd	ľ		ľ	1	(20/0
APRBA(%)	52.89	0.04	12.82	29.83	1.06	20.90	8.81	25.58	2.02	16.77			1	+	.	1		26.16	6.41	1	- 1		1	4.42
SE	12.27	11.91	14.94	17.80	13.77	16.26	14.94	17.78	13.83	16.23								68.99	62.10		_			62.65
ERSE	259.55	11.25	22.85	15.41	15.51	15.86	22.45	15.29	15.21	15.65								73.90	70.95		- 1			67.02
APRB _{Δ(β1)}	96.76	0.08	0.08	15.50	13.24	6.26	6.66 0.08	10.87	0.09	0.08								0.18	5.37	0.18	0.59	0.17	0.16	0.17
ERSE	0.46	90.0	0.09	90.0	0.07	0.07	0.08	0.06	0.07	0.07				_				0.18	0.18		- 1			0.16

Table E.24: Results under model (2.41), by response and correlation. Population: volatile

EE.j EE.ji EE(0.5)	$\mathbf{EE}(\hat{\rho_i})$ \mathbf{EE}_i \mathbf{EE}_i ii $\mathbf{EE}(0.5)$	EE.j EE.ji EE(0.5)	EE_ii EE(0.5)	EE(0.5)	'			F.	N N	I <u>≅</u> I'''	Iăl		1.4041, lov EE_ii E	response E(0.5)	181	la l			EE.ii E	"	E(\hat{\pi}_{i,1})	EE	EE.ii	3E(0.5)
0.22 3.31 13.08 30.55 5.71 6.98 9.86 32.75 2.31	3.31 13.08 30.55 5.71 6.98 9.86 32.75 2.31	13.08 30.55 5.71 6.98 9.86 32.75 2.31	30.55 5.71 6.98 9.86 32.75 2.31	5.71 6.98 9.86 32.75 2.31	6.98 9.86 32.75 2.31	9.86 32.75 2.31	32.75 2.31	2.31		17.90			1						0.31	1	1.50	6.15	4.40	2.3
513.88 425.55 598.66 686.25 564.13 642.73 606.71 695.29 567.62 650.77 606.88 868.85 434.08 802.08 555.80 694.25 602.07 869.93 563.03 688.55 606.89 848.39	598.66 686.25 564.13 642.73 606.71 695.29 567.62 650.77 862.08 555.80 694.25 602.07 869.93 563.03 688.55 606.89	686.25 564.13 642.73 606.71 695.29 567.62 650.77 555.80 694.25 602.07 869.93 563.03 688.55 606.89	564.13 642.73 606.71 695.29 567.62 650.77 694.25 602.07 869.93 563.03 688.55 606.89	642.73 606.71 695.29 567.62 650.77 602.07 869.93 563.03 688.55 606.89	869.93 563.03 688.55 606.89	695.29 567.62 650.77 563.03 688.55 606.89	567.62 650.77 688.55 606.89	650.77		8.90		690.08 5 566.21 6	580.42	599.09	301.02 2	271.49	387.79	325.21 2	292.89	309.91	351.67	313.66	295.25	304.87
1.24 37.46 0.70 126.79 14.26 44.49 5.72 128.58 20.28	37.46 0.70 126.79 14.26 44.49 5.72 128.58 20.28	0.70 126.79 14.26 44.49 5.72 128.58 20.28	126.79 14.26 44.49 5.72 128.58 20.28	14.26 44.49 5.72 128.58 20.28	44.49 5.72 128.58 20.28	5.72 128.58 20.28	128.58 20.28	20.28		66.17	1								6.82		6.01	14.58	16.25	5.18
0.41 0.28 0.36 0.32 0.40 0.28 0.35 0.32 0.33 0.47 0.32 0.34 0.33	0.32 0.41 0.28 0.36 0.32 0.40 0.28 0.35 0.48 0.32 0.33 0.47 0.32 0.34 0.33	0.41 0.28 0.36 0.32 0.40 0.28 0.35 0.32 0.33 0.47 0.32 0.34 0.33	0.28 0.36 0.32 0.40 0.28 0.35 0.35 0.35 0.33	0.36 0.32 0.40 0.28 0.35 0.33 0.47 0.32 0.34 0.33	0.32 0.40 0.28 0.35 0.47 0.32 0.34 0.33	0.32 0.34 0.33	0.34 0.33	0.33		2.0									0.15		0.15	0.16 0.15	0.15 0.15	0.15
$T=10, t=4, \Delta_4(\beta_0)=110$	T=10, t=4, $\Delta_4(\beta_0)$ = 110	$T=10, t=4, \Delta_d(\beta_0)=110$	$T = 10, t = 4, \Delta_d(\beta_0) = 110$	$T=10, t=4, \Delta_d(\beta_0)=110$	$T=10, t=4, \Delta_d(\beta_0)=110$	$T=10, t=4, \Delta_4(\beta_0)=110$	=10, t=4, $\Delta_4(\beta_0)$ = 110	$\Delta_4(\beta_0) = 110$	ĦΪ	3.06,	اتما	T.	호		.발	B			::	ן ו	< V	 E	::	200
1.41 7.65 33.00 99.00 91.13 0.40 97.11 90.00 14.69	7 65 33.00 99.00 91.13 0.40 97.11 90.00 14.69) Edg 125 (0.9) 25 (0.9) 25 (0.9) 3 (0	22 00 0113 040 0711 00 00 14 60	9113 040 9711 90.00 14.69	0.40 9711 90.00 14.69	9711 90.00 14.63	90.00	(6.0)dd		8			٦.						4 72 E	1	D(\(\pi_{i1}\)	10.25	6.33	4.75
316.49 346.35 332.61 374.65 320.83 352.58	326.38 367.72 316.49 346.35 332.61 374.65 320.83 352.58	3 367.72 316.49 346.35 332.61 374.65 320.83 352.58	316.49 346.35 332.61 374.65 320.83 352.58	346.35 332.61 374.65 320.83 352.58	332.61 374.65 320.83 352.58	374.65 320.83 352.58	320.83 352.58	352.58		1 4									66.26	172.66	174.25	176.97	173.24	175.14
243.08 463.03 303.66 384.00 329.35 471.14 309.85 383.40 334.50	463.03 303.66 384.00 329.35 471.14 309.85 383.40 334.50	3 303.66 384.00 329.35 471.14 309.85 383.40 334.50	384.00 329.35 471.14 309.85 383.40 334.50	329.35 471.14 309.85 383.40 334.50	471.14 309.85 383.40 334.50	309.85 383.40 334.50	383.40 334.50	334.50		29.4									83.18		199.41	169.33	176.31	173.77
61.45 16.47 41.93 84.80 15.61 39.43 19.95 103.66 6.54	16.47 41.93 84.80 15.61 39.43 19.95 103.66 6.54	7 41.93 84.80 15.61 39.43 19.95 103.66 6.54	84.80 15.61 39.43 19.95 103.66 6.54	15.61 39.43 19.95 103.66 6.54	39.43 19.95 103.66 6.54	19.95 103.66 6.54	103.66 6.54	6.54		87.5									7.60		21.25	7.18	22.58	15.06
0.98 1.81 1.24 1.69 1.35 1.87 1.28 1.69 1.39	1.81 1.24 1.69 1.35 1.87 1.28 1.69 1.39	1.24 1.69 1.35 1.87 1.28 1.69 1.39	1.69 1.35 1.87 1.28 1.69 1.39	1.35 1.87 1.28 1.69 1.39	1.87 1.28 1.69 1.39	1.28 1.69 1.39	1.69 1.39	1.39		1 4									0.65		0.69	0.03	0.63	0.62
$T=10, t=4, \Delta_4(\beta_0)=110$	$T=10, t=4, \Delta_4(\beta_0)=110$	$T=10, t=4, \Delta_4(\beta_0)=110$	$T=10, t=4, \Delta_4(\beta_0)=110$	$T=10, t=4, \Delta_4(\beta_0)=110$	$T=10, t=4, \Delta_4(\beta_0)=110$	$T=10$, $t=4$, $\Delta_4(\beta_0) = 110$	=10, t=4, $\Delta_4(\beta_0) = 110$	$\Delta_4(\beta_0) = 110$	E	3.06	17	Ī	Œ		2	a								
\mathbf{EE}_h $\mathbf{EE}(\hat{p}_i)$ \mathbf{EE}_i \mathbf{EE}_i $\mathbf{EE}(0.5)$ $\mathbf{EE}(\hat{p}_{i1})$ \mathbf{EE}_i \mathbf{EE}_{Ji} $\mathbf{EE}(0.5)$	$\mathbf{EE}(\hat{p}_i)$ $\mathbf{EE}_{.}$ ii $\mathbf{EE}(0.5)$ $\mathbf{EE}(\hat{p}_{i.})$ $\mathbf{EE}_{.}$ i $\mathbf{EE}(0.5)$:	$\mathbf{E}(\hat{p}_i)$ EE.i EE.ii EE (0.5) EE (\hat{p}_{i1}) EE.i EE.ii EE (0.5) :	EE_ii EE (0.5) EE (\hat{p}_{i1}) EE_i EE_ii EE (0.5)	$\mathbf{EE}(0.5)$ $\mathbf{EE}(\hat{p}_{i1})$ \mathbf{EE}_{i} \mathbf{EE}_{i} $\mathbf{EE}_{0.5}$	$\mathbf{EE}(\hat{p}_{i1})$ \mathbf{EE}_{i} \mathbf{EE}_{i} $\mathbf{EE}(0.5)$	EE1 EE11 EE(0.5)	EE.ii EE(0.5)	EE(0.2)		$3(\hat{p})$			Г						EE_ii E	Ξ.	$\mathbb{E}(\hat{\pi}_{i1})$	EE-i	EE-ii	3E(0.5)
0.79 11.86 27.48 0.59 19.32 8.43 23.65 1.85 15.70	11.86 27.48 0.59 19.32 8.43 23.65 1.85 15.70	0.59 19.32 8.43 23.65 1.85 15.70	0.59 19.32 8.43 23.65 1.85 15.70	19.32 8.43 23.65 1.85 15.70	8.43 23.65 1.85 15.70	33.65 1.85 15.70	1.85 15.70	15.70		2.									5.33		0.72	7.33	0.10	3.64
78.95 225.98 156.75 200.42 178.72 225.27 157.13 199.84	178.95 225.98 156.75 200.42 178.72 225.27 157.13 199.84	78.95 225.98 156.75 200.42 178.72 225.27 157.13 199.84	156.75 200.42 178.72 225.27 157.13 199.84	200.42 178.72 225.27 157.13 199.84	178.72 225.27 157.13 199.84	225.27 157.13 199.84	157.13 199.84	199.84		99									95.21		94.17	97.13	94.11	95.23
130.16 259.80 186.47 182.17 188.84 254.69 184.25 178.73 185.97	259.80 186.47 182.17 188.84 254.69 184.25 178.73 185.97	59.80 186.47 182.17 188.84 254.69 184.25 178.73 185.97	182.17 188.84 254.69 184.25 178.73 185.97	188.84 254.69 184.25 178.73 185.97	254.69 184.25 178.73 185.97	184.25 178.73 185.97	178.73 185.97	185.97		6									03.91		107.36	97.41	97.49	97.74
2.60 41.65 98.73 0.55 69.03 29.16 84.73 9.26 55.83	41.65 98.73 0.55 69.03 29.16 84.73 9.26 55.83	0.55 69.03 29.16 84.73 9.26 55.83	0.55 69.03 29.16 84.73 9.26 55.83	69.03 29.16 84.73 9.26 55.83	29.16 84.73 9.26 55.83	84.73 9.26 55.83	9.26 55.83	55.83		≓ °									19.36		2.77	27.03	0.42	13.55
0.08 0.11 0.10 0.12 0.08 0.11	0.10 0.12 0.08 0.11 0.10 0.12 0.08 0.11	0.08 0.11 0.10 0.12 0.08 0.11	0.08 0.11 0.10 0.12 0.08 0.11	0.10 0.10 0.12 0.08 0.11	0.10 0.10 0.10 0.10	0.12 0.08 0.11	0.08	0.10		<i>-</i>									0.00		0.05	0.05	0.02	0.05
T=10, t=4, $\Delta_4(g_0) = 110$	$T=10$, $t=4$, $\Delta_{A}(\beta_{0})=110$	$T=10$, $t=4$, $\Delta_4(\beta_0)=110$	$T=10$, $t=4$, $\Delta_4(\beta_0)=110$	$T=10$, $t=4$, $\Delta_4(\beta_0)=110$	T=10, t=4, $\Delta_4(\beta_0) = 110$	$T=10$, $t=4$, $\Delta_4(\beta_0)=110$	10. $t=4$. $\Delta_4(\beta_0) = 110$	$\Delta_4(\beta_0) = 110$	12	IS.	1 3	ľ	ĿĔ		ŀ≗	1-5								
EE_ii EE(0.5) EE(\hat{\hat{\hat{\hat{\hat{\hat{\hat{	$\mathbf{EE}(\hat{\rho}_i)$ \mathbf{EE}_i \mathbf{EE}_i $\mathbf{EE}(0.5)$ $\mathbf{EE}(\hat{\rho}_{i1})$ \mathbf{EE}_i \mathbf{EE}_{i1} $\mathbf{EE}(0.5)$	$\mathbf{E}(\hat{\rho}_i)$ EE, EE, i EE(0.5) EE($\hat{\sigma}_{i1}$) EE, EE, i EE(0.5)	EE_ii EE(0.5) EE(\hat{\hat{\hat{\hat{\hat{\hat{\hat{	EE(0.5) EE(\$\hat{\hat{\hat{\hat{\hat{\hat{\hat{	EE(n) EE; EE; EE(0.5)	EEJ EEJI EE(0.5)	EE.ii EE(0.5)	EE(0.5)	'	F	1	١.	17		1				EE.ii E	ľ	E(f;1)	EE_i	EE.ii	3E(0.5)
0.69 16.00 33.97 5.74 24.28 11.92 29.43 2.48 19.99	16.00 33.97 5.74 24.28 11.92 29.43 2.48 19.99	16.00 33.97 5.74 24.28 11.92 29.43 2.48 19.99	5.74 24.28 11.92 29.43 2.48 19.99	24.28 11.92 29.43 2.48 19.99	11.92 29.43 2.48 19.99	29.43 2.48 19.99	2.48 19.99	19.99		10									6.14		0.05	7.39	0.45	3.10
79.65 94.41 86.19 102.91 79.50 93.48	86.76 104.20 79.65 94.41 86.19 102.91 79.50 93.48	79.65 94.41 86.19 102.91 79.50 93.48	79.65 94.41 86.19 102.91 79.50 93.48	94.41 86.19 102.91 79.50 93.48	86.19 102.91 79.50 93.48	102.91 79.50 93.48	79.50 93.48	93.48		8									60.33		60.16	62.12	59.91	60.91
66.13 121.00 90.97 89.79 91.93 118.70 89.93 88.35 90.66	121.00 90.97 89.79 91.93 118.70 89.93 88.35 90.66	89.79 91.93 118.70 89.93 88.35 90.66	89.79 91.93 118.70 89.93 88.35 90.66	91.93 118.70 89.93 88.35 90.66	118.70 89.93 88.35 90.66	89.93 88.35 90.66	88.35 90.66	99.06		8	- 1								63.54		86.59	59.69	59.50	59.86
1.51 7.89 16.37 1.79 11.88 6.01 14.88 0.40 10.19	7.89 16.37 1.79 11.88 6.01 14.88 0.40 10.19	1.79 11.88 6.01 14.88 0.40 10.19	1.79 11.88 6.01 14.88 0.40 10.19	11.88 6.01 14.88 0.40 10.19	6.01 14.88 0.40 10.19	14.88 0.40 10.19	0.40 10.19	10.19		10									2.92		5.61	2.46	5.78	4.44
0.23 0.19 0.21	0.20 0.23 0.18 0.21 0.20 0.23 0.19 0.21 0.26 0.20 0.21 0.21 0.26 0.20 0.20 0.20	0.18 0.21 0.20 0.23 0.19 0.21 0.21 0.21	0.18 0.21 0.20 0.23 0.19 0.21 0.21 0.21	0.21 0.20 0.23 0.19 0.21	0.20 0.23 0.19 0.21	0.23 0.19 0.21	0.19 0.21	0.21		o 0									0.15		0.15	0.15 0.14	0.14	0.14
$T=10, t=7, \Delta_7(\beta_0)=110$	$T=10, t=7, \Delta_7(\beta_0)=110$	$T=10, t=7, \Delta_{\mathcal{I}}(\beta_0)=110$	$T=10, t=7, \Delta_{\mathcal{I}}(\beta_0)=110$	$T=10, t=7, \Delta_7(\beta_0)=110$	$T=10$, $t=7$, $\Delta_7(\beta_0)=110$	$T=10, t=7, \Delta_7(\beta_0)=110$	=10, t=7, $\Delta_{\tau}(\beta_0)$ = 11($\Delta_{\tau}(\beta_0) = 110$	ΙΞ		14	1	2		18	at								
EE, EE(6) BE BE BE(0.5) BE BE BE BE(0.5)	EE(6.) RE I EE II RE(0.5) RE(6.1) EE I RE(0.5)	E(#) BE I BE II BE(0.5) BE(#) BE I BE II BE(0.5)	BE II BE(0.5) BE(0.1) BE I BE II BE(0.5)	EE(0.5) EE(0.1) EE EE EE(0.5)	EE(6,1) EE EE EE(0.5)	EE i EE ii EE(0.5)	EE ii EE(0.5)	EE(0.5)		li r	îl.		1						EE ii E	ľ	E(#31)	EE :	EE ::	3E(0.5)
0.50 4.83 29.24 33.15 18.15 1.26 23.58 36.34 12.33	4.83 29.24 33.15 18.15 1.26 23.58 36.34 12.33	4.83 29.24 33.15 18.15 1.26 23.58 36.34 12.33	33.15 18.15 1.26 23.58 36.34 12.33	18.15 1.26 23.58 36.34 12.33	1.26 23.58 36.34 12.33	23.58 36.34 12.33	36.34 12.33	12.33	1	il∾			1						1.14	Ί.	2.20	7.89	5.49	2.72
419.16 595.54 674.15 564.42 634.88 609.00 692.85 569.81 650.37	595.54 674.15 564.42 634.88 609.00 692.85 569.81 650.37	4 674.15 564.42 634.88 609.00 692.85 569.81 650.37	564.42 634.88 609.00 692.85 569.81 650.37	634.88 609.00 692.85 569.81 650.37	609.00 692.85 569.81 650.37	692.85 569.81 650.37	569.81 650.37	650.37		-2									89.18		295.91	310.61	291.64	301.81
411.98 823.11 528.77 652.70 571.97 833.72 536.92 646.78 577.66	823.11 528.77 652.70 571.97 833.72 536.92 646.78 577.66	1 528.77 652.70 571.97 833.72 536.92 646.78 577.66	652.70 571.97 833.72 536.92 646.78 577.66	571.97 833.72 536.92 646.78 577.66	833.72 536.92 646.78 577.66	536.92 646.78 577.66	646.78 577.66	577.66		ĕ									303.82	302.64	334.15	278.89	288.07	285.17
0.80 3.12 15.30 14.24 9.52 0.07 12.24 15.83 6.51	3.12 15.30 14.24 9.52 0.07 12.24 15.83 6.51	2 15.30 14.24 9.52 0.07 12.24 15.83 6.51	14.24 9.52 0.07 12.24 15.83 6.51	9.52 0.07 12.24 15.83 6.51	0.07 12.24 15.83 6.51	7 12.24 15.83 6.51	15.83 6.51	6.51		~									0.41		1.03	3.78	2.59	1.27
0.28 0.35 0.32 0.39 0.28 0.35	0.32 0.39 0.28 0.35 0.32 0.39 0.28 0.35	0.28 0.35 0.32 0.39 0.28 0.35	0.28 0.35 0.32 0.39 0.28 0.35	0.35 0.32 0.39 0.28 0.35	0.32 0.39 0.28 0.35	0.39 0.28 0.35	0.28 0.35	0.35		_									0.15		0.15	0.16	0.15	0.15
0.20 0.45 0.31 0.32 0.31 0.44 0.30 0.31 0.31	0.45 0.31 0.32 0.31 0.44 0.30 0.31 0.31	0.32 0.31 0.44 0.30 0.31 0.31	0.32 0.31 0.44 0.30 0.31 0.31	0.31 0.44 0.30 0.31 0.31	0.44 0.30 0.31 0.31	0.30 0.31 0.31	0.31 0.31	0.31			- 1					- 1			0.15		0.17	0.14	0.14	0.14
$T=10, t=7, \Delta_7(\beta_0)=110$	$T=10, t=7, \Delta_7(\beta_0)=110$	$T=10, t=7, \Delta_7(\beta_0)=110$	$T=10, t=7, \Delta_7(\beta_0) = 110$	$T=10, t=7, \Delta_7(\beta_0)=110$	$T=10, t=7, \Delta_7(\beta_0) = 110$	$T=10, t=7, \Delta_7(\beta_0) = 110$	=10, t=7, $\Delta_7(\beta_0) = 110$	$\Delta_7(\beta_0) = 110$	ΞΙ		5	ī	9		ig	la								
\mathbf{EE}_h $\mathbf{EE}(\hat{p}_i)$ \mathbf{EE}_J i \mathbf{EE}_J ii $\mathbf{EE}(0.5)$ $\mathbf{EE}(\hat{p}_{i1})$ \mathbf{EE}_J i $\mathbf{EE}(0.5)$:	$\mathbf{EE}(\hat{p}_i)$ \mathbf{EE}_{J} \mathbf{EE}_{J} \mathbf{EE}_{J} $\mathbf{EE}(0.5)$ $\mathbf{EE}(\hat{p}_{i1})$ \mathbf{EE}_{J} $\mathbf{EE}(0.5)$	$\mathbf{E}(\hat{p}_i)$ EE.i EE.ii EE (0.5) EE (\hat{p}_{i1}) EE.i EE.ii EE (0.5)	EE. II EE(0.5) EE(\hat{p}_{i1}) EE. EE. EE. EE(0.5)	$EE(0.5)$ $EE(\hat{p}_{i1})$ $EE_{}$ $EE_{}$ $EE_{}$	EE (\$\hat{p}_{i1}) EE J EEJ EE(0.5)	EE3 EE31 EE(0.5)	EE:ii EE(0.5)	EE(0.5)					_						EE_ii E	×	$\mathbb{E}(\hat{\pi}_{i1})$	EE_i	EE.ii	3E(0.5)
1.88 15.38 45.53 22.98 31.43 7.19 38.51 29.46 23.89	15.38 45.53 22.98 31.43 7.19 38.51 29.46 23.89	3 45.53 22.98 31.43 7.19 38.51 29.46 23.89	22.98 31.43 7.19 38.51 29.46 23.89	31.43 7.19 38.51 29.46 23.89	7.19 38.51 29.46 23.89	38.51 29.46 23.89	29.46 23.89	23.89			1					1			69.7		0.31	16.43	4.05	8.04
255.18 347.84 382.73 345.30 364.32 351.01 385.84 349.20 367.13	347.84 382.73 345.30 364.32 351.01 385.84 349.20 367.13	1 382.73 345.30 364.32 351.01 385.84 349.20 367.13	345.30 364.32 351.01 385.84 349.20 367.13	364.32 351.01 385.84 349.20 367.13	351.01 385.84 349.20 367.13	385.84 349.20 367.13	349.20 367.13	367.13											74.71		177.12	179.13	177.13	177.58
379.87 324.86 462.63 304.83 379.01 329.28	456.00 299.39 379.87 324.86 462.63 304.83 379.01 329.28	329.39 379.87 324.86 462.63 304.83 379.01 329.28	379.87 324.86 462.63 304.83 379.01 329.28	324.86 462.63 304.83 379.01 329.28	462.63 304.83 379.01 329.28	304.83 379.01 329.28	379.01 329.28	329.28		10									81.90	179.18	197.50	167.85	174.96	172.30
14.36 9.12 7.39 28.46 0.56 13.41 3.94 32.18 4.42	9.12 7.39 28.46 0.56 13.41 3.94 32.18 4.42	2 7.39 28.46 0.56 13.41 3.94 32.18 4.42	28.46 0.56 13.41 3.94 32.18 4.42	0.56 13.41 3.94 32.18 4.42	13.41 3.94 32.18 4.42	3.94 32.18 4.42	32.18 4.42	4.42		55									2.55		6.91	0.83	8.43	4.28
7 1.09 0.92 1.03 0.98 1.11 0.93 1.04	0.97 1.09 0.92 1.03 0.98 1.11 0.93 1.04	7 1.09 0.92 1.03 0.98 1.11 0.93 1.04	0.92 1.03 0.98 1.11 0.93 1.04	1.03 0.98 1.11 0.93 1.04	0.98 1.11 0.93 1.04	1.11 0.93 1.04	0.93 1.04	1.04											0.47		0.48	0.49	0.48	0.48
$0.70 ext{ } 1.31 ext{ } 0.86 ext{ } 1.05 ext{ } 0.92 ext{ } 1.32 ext{ } 0.86 ext{ } 1.04 ext{ } 0.92$	1.31 0.86 1.05 0.92 1.32 0.86 1.04 0.92	. 0.86 1.05 0.92 1.32 0.86 1.04 0.92	1.05 0.92 1.32 0.86 1.04 0.92	0.92 1.32 0.86 1.04 0.92	1.32 0.86 1.04 0.92	0.86 1.04 0.92	1.04 0.92	0.92		-1									0.48		0.51	0.43	0.45	0.44
$T=10, t=7, \Delta_7(\beta_0)=110$	$T=10, t=7, \Delta_7(\beta_0)=110$	$T=10, t=7, \Delta_7(\beta_0)=110$	$T=10, t=7, \Delta_7(\beta_0)=110$	$T=10, t=7, \Delta_7(\beta_0)=110$	$T=10, t=7, \Delta_{7}(\beta_{0})=110$	$T=10, t=7, \Delta_7(\beta_0)=110$	=10, t=7, $\Delta_7(\beta_0)$ = 110	$\Delta_7(\beta_0) = 110$	ΞI	္ဘု	51	Ī	=		୍ଧା	31								
\mathbf{EE}_h $\mathbf{EE}(\hat{p}_i)$ \mathbf{EE}_{-1} \mathbf{EE}_{-1} $\mathbf{EE}(0.5)$ $\mathbf{EE}(\hat{p}_{i1})$ \mathbf{EE}_{-1} $\mathbf{EE}(0.5)$	$\mathbf{EE}(\hat{p}_i)$ \mathbf{EE}_i \mathbf{EE}_i $\mathbf{EE}(0.5)$ $\mathbf{EE}(\hat{p}_{i1})$ \mathbf{EE}_i \mathbf{EE}_i $\mathbf{EE}(0.5)$	EE EE EE I EE (0.5) EE (p_{i1}) EE E EE I EE (0.5)	EE EE EE I EE (0.5) EE (p_{i1}) EE E EE I EE (0.5)	$EE(0.5)$ $EE(\hat{p}_{i1})$ EE_{j} EE_{ji} $EE(0.5)$	$\mathbf{EE}(\hat{p}_{i1})$ \mathbf{EE}_{i} \mathbf{EE}_{i} $\mathbf{EE}(0.5)$	EEJ EEJH EE(0.2)	EE_ii EE(0.5)	EE(0.5)	_	띩	- 1		7						EE :: E	4	$\mathbb{E}(\hat{\pi}_{i1})$	EB.	EE	3E(0.5)
14.94 35.46 0.74 24.71 10.32 30.45 2.81 19.91	14.94 35.46 0.74 24.71 10.32 30.45 2.81 19.91	35.46 0.74 24.71 10.32 30.45 2.81 19.91	35.46 0.74 24.71 10.32 30.45 2.81 19.91	24.71 10.32 30.45 2.81 19.91	10.32 30.45 2.81 19.91	30.45 2.81 19.91	2.81 19.91	19.91											5.06		0.62	7.27	1.52	2.79
123.69 172.51 216.99 153.59 192.68 170.64 213.98 152.83 190.15	172.51 216.99 153.59 192.68 170.64 213.98 152.83 190.15	216.99 153.59 192.68 170.64 213.98 152.83 190.15	216.99 153.59 192.68 170.64 213.98 152.83 190.15	192.68 170.64 213.98 152.83 190.15	170.64 213.98 152.83 190.15	213.98 152.83 190.15	152.83 190.15	190.15		8									95.14		92.11	95.21	92.40	93.17
125.75 255.59 182.62 176.68 184.62 250.17 180.20 173.16 181.55	255.59 182.62 176.68 184.62 250.17 180.20 173.16 181.55	182.62 176.68 184.62 250.17 180.20 173.16 181.55	182.62 176.68 184.62 250.17 180.20 173.16 181.55	184.62 250.17 180.20 173.16 181.55	250.17 180.20 173.16 181.55	180.20 173.16 181.55	173.16 181.55	181.55		31	- 1						1		01.18		104.81	94.90	94.80	95.16
0.62 7.35 17.67 0.07 12.28 5.04 15.16 1.68 9.88	7.35 17.67 0.07 12.28 5.04 15.16 1.68 9.88	17.67 0.07 12.28 5.04 15.16 1.68 9.88	17.67 0.07 12.28 5.04 15.16 1.68 9.88	12.28 5.04 15.16 1.68 9.88	5.04 15.16 1.68 9.88	15.16 1.68 9.88	1.68	88.6		_ '									2.51		0.28	3.66	0.76	1.43
0.12 0.08 0.10 0.09 0.12 0.08 0.10	0.09 0.12 0.08 0.10 0.09 0.12 0.08 0.10	0.12 0.08 0.10 0.09 0.12 0.08 0.10	0.12 0.08 0.10 0.09 0.12 0.08 0.10	0.10 0.09 0.12 0.08 0.10	0.09 0.12 0.08 0.10	0.12 0.08 0.10	0.08 0.10	0.10											0.02		0.02	0.05	0.02	0.02
0.07 0.14 0.10 0.09 0.10 0.14 0.10 0.09 0.10	0.14 0.10 0.09 0.10 0.14 0.10 0.09 0.10	0.10 0.09 0.10 0.14 0.10 0.09 0.10	0.10 0.09 0.10 0.14 0.10 0.09 0.10	0.10 0.14 0.10 0.09 0.10	0.14 0.10 0.09 0.10	0.10 0.09 0.10	0.09 0.10	0.10											0.02		90.0	0.05	0.02	0.02
$T=10, t=7, \Delta_7(\beta_0)=110$	$T=10, t=7, \Delta_7(\beta_0)=110$	$T=10, t=7, \Delta_7(\beta_0) = 110$	$T=10, t=7, \Delta_7(\beta_0) = 110$	$T=10, t=7, \Delta_7(\beta_0) = 110$	$T=10, t=7, \Delta_7(\beta_0) = 110$	$T=10, t=7, \Delta_7(\beta_0) = 110$	10, t=7, $\Delta_7(\beta_0) = 110$	$\Delta_7(\beta_0) = 110$	10		1-	ĭ	hig		ij	ele:								
EE ii EE(0.5) EE(0.1) EE i EE ii EE(0.5)	EE(\$\pi_1\$) EE; EE; EE(0.5) EE(\$\pi_1\$) EE; EE; EE(0.5)	E(\$c) EE_1 EE_11 EE(0.5) EE(\$c_1) EE_1 EE_11 EE(0.5)	EE ii EE(0.5) EE(0.1) EE i EE ii EE(0.5)	EE(0.5) EE(0.1) EE; EE; EE(0.5)	EE(0:1) EE; EE; EE(0.5)	EE; EE; EE(0.5)	EE.ii EE(0.5)	EE(0.5)	_		1	١.	Г						EE ii E	E(0.5) E	E(£,1)	EE.i	EE ii	3E(0.5)
0.72 18.71 37.87 8.22 27.48 14.52 33.30 4.79 23.11	18.71 37.87 8.22 27.48 14.52 33.30 4.79 23.11	18.71 37.87 8.22 27.48 14.52 33.30 4.79 23.11	8.22 27.48 14.52 33.30 4.79 23.11	27.48 14.52 33.30 4.79 23.11	14.52 33.30 4.79 23.11	33.30 4.79 23.11	4.79 23.11	23.11											7.22	12.56	0.55	8.40	0.20	3.83
68 14 65 06 104 90 70 40 09 05 06 109 97 00 91 09 40	95 06 104 90 70 49 92 92 95 95 90 91 99 40	70.40 09.09 05.06 10.9.97 00.91 09.40	70.40 09.09 05.06 10.9.97 00.91 09.40	00 00 00 100 02 00 01 00 70	05 06 109 97 90 91 09 40	109.97 90.91 09.40	00 01 00 40	00 40											E0 69	61 99	20.08	00.08	20 02	50.76
88.36 90.52	121.19 90.85 89.83 91.86 118.74 89.74 88.36 90.52	89.83 91.86 118.74 89.74 88.36 90.52	89.83 91.86 118.74 89.74 88.36 90.52	93.92 50.90 103.91 80.21 30.43	118.74 89.74 88.36 90.52	89.74 88.36 90.52	88.36 90.52	99.49										64.39	63.68	64.52	66.15	59.81	59.64	59.99
5.39 3.71 16.03 4.74 9.51 0.51 12.47 7.23 6.15	3.71 16.03 4.74 9.51 0.51 12.47 7.23 6.15	4.74 9.51 0.51 12.47 7.23 6.15	4.74 9.51 0.51 12.47 7.23 6.15	9.51 0.51 12.47 7.23 6.15	0.51 12.47 7.23 6.15	12.47 7.23 6.15	7.23 6.15	6.15											0.05	1.76	3.31	0.13	3.42	2.03
0.36 0.39 0.38 0.41 0.36 0.40	0.38 0.41 0.36 0.39 0.38 0.41 0.36 0.40	0.36 0.39 0.38 0.41 0.36 0.40	0.36 0.39 0.38 0.41 0.36 0.40	0.39 0.38 0.41 0.36 0.40	0.38 0.41 0.36 0.40	0.41 0.36 0.40	0.36 0.40	0.40											0.23	0.23	0.23	0.23	0.23	0.23
0.28 0.43 0.31 0.35 0.33 0.42 0.31 0.35 0.32	0.43 0.31 0.35 0.33 0.42 0.31 0.35 0.32	0.35 0.33 0.42 0.31 0.35 0.32	0.35 0.33 0.42 0.31 0.35 0.32	0.33 0.42 0.31 0.35 0.32	0.42 0.31 0.35 0.32	0.31 0.35 0.32	0.35 0.32	0.32											0.22	0.21	0.22	0.20	0.30	0.20
									ı		П	ı	ı	1			ı	ı						

Table E.25: Results under model (2.41), by response and correlation. Population: simulated

								T-10	+-4 A	(8) - 114	0599 A.C	8.10	5906 low	osuousoa	and low	correlativ	5							
	naïve	EE,	$\mathbf{EE}(\hat{p_i})$	EE.i	EE_ii]	EE(0.5)	EE(per)	EE.i	EEji	EE(0.5)	EE(p, 2)	EE.i	EE ii E	E(0.5)	naïve	šI.		'	E-ii E	E(0.5) E			E.ii E	E(0.5)
APRBA(Bo)	152.64	0.00	9.56	36.11	24.22	23.71	1.74	29.80	30.76	16.71	22.82	7.49	47.28	+	16.19	1			6.49	15.10			2.28	4.15
SE	35.87	19.21	24.24	22.88	31 19	23.59	25.67	24.26	31.68	25.00	29.67	28.51	29.69	29.19	18.04	12.96	14.42	15.18	13.71	14.83	14.70	15.14 1	14.24	14.95
$APRB_{\Delta(\beta_1)}$	197.54	0.04	3.79	32.99	57.93	16.23	15.56	23.36	66.80	5.61	48.44	6.09	87.24	+	83.83				7.13	23.29			5.41	6.17
ERSE	7.25	0.62	1.14	0.65	0.90	0.73	1.17	0.67	0.90	0.74	1.20	0.71	0.88		5.47				0.50	0.50			0.48	0.48
	ovien		EE(6.)	E	:: 33	RE(0.5)	EE(6)	T=10	, t=4, Δ_4	$(\beta_0) = 114.$	9522, $\Delta_4(t)$	β_1) = -0 .	5296, low RE :: F	181	and high	ᄪ			: 3E				::	8(0.5)
APRBAGE	139.46	0.08	9.95	36.06	21.31	23.71	2.34	29.73	27.51	16.78	21.08	7.79	43.11	+	58.76			1	6.11	1			2.38	3.68
SE	35.39	18.65	22.10	19.40	24.25	20.88	23.94	21.25	25.47	22.74	28.03	26.25	27.83		18.57				13.47	14.54	14.65	14.96	14.32	14.84
APPR	140.00	18.23	31.26	14.85	28.64	18.28	33.21	15.93	29.09	19.42	38.40	19.52	29.27	+	62.04				14.06				3.85	13.50
APKB∆(β ₁) SE	149.90	0.85	1.00	38.02	1.16	0.93	1.08	31.00	1.23	1.01	1.24	1.10	1.34		0.92				0.63				3.70	0.68
ERSE	10.08	0.77	1.22	0.60	1.21	0.74	1.29	0.64	1.23	0.78	1.48	0.78	1.23	-	6.62				0.60				0.59	0.57
								T=10	, t=4, Δ ₄	$(\beta_0) = 114.$	9522, ∆₄(≀	$\beta_1) = -0.$	5296, high	23 1	and low	<u>a</u>				1				
000	naïve	EE,	$\mathbf{EE}(\hat{p_i})$	BE	EE.ii	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.	EE ii	EE(0.5)	EE(p _{c2})	BE.i	EE.ii E	\rightarrow	naïve	- 1			3E.ii E				E III	E(0.5)
$APRB_{\Delta(\beta_0)}$	61.91	0.01	14.23	31.15	2.19	22.39	10.18	27.09	1.08	18.33	2.69	12.48	9.80		29.29				4.30				0.24	1.90
ERSE	283.01	13.35	25.88	15.14	17.34	16.50	25.91	15.35	17.25	16.61	24.49	15.58	16.45		225.12				10.95				0.35	10.43
$APRB_{\Delta(\beta_1)}$	194.77	0.04	43.11	101.68	2.46	71.81	29.42	87.65	12.86	57.94	13.62	37.96	40.25	+	93.83				14.06				1.21	99.9
SE	0.33	0.32	0.40	0.47	0.36	0.44	0.40	0.47	0.36	0.44	0.40	0.47	0.36		0.24				0.25				0.25	0.26
ENSE	000	0.02	0.00	0.03	24.0	0.42	0.00	0.09 T-10	14-0 1-4 A./	8.) = 114.0	0.00 0599 A.(6	3.7 0.5	Octo	۶ 🗕	4.00	18			0.21				0.20	0.20
	naïve	EE	$\mathbf{EE}(\hat{p_i})$	EE	EE.ii 1	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EEj	EE.ii	EE(0.5)	EE(p ₂₂)	EEi	EE,ii F	ĕΗ	naïve	8		-	3E_ii E	Œ		1	E.ii E	E(0.5)
$APRB_{\Delta(S_0)}$	48.30	0.09	10.73	26.72	0.93	18.38	6.97	22.72	3.73	14.50	4.33	9.12	10.85	+	24.47				3.58				0.53	1.66
SE	10.54	11.31	14.50	16.37	11.89	15.66	14.55	16.64	11.92	15.80	14.44	17.07	12.39		7.88				8.67	9.76	8.65	9.43	8.46	9.00
FRSE	252.54	CI.II	22.69	12.40	14.22	13.68	CC.22	12.58	13.99	13.72	20.89	12.78	12.97	+	213.94	- 1			9.39				8,68	8.80
AP KB $\Delta(\beta_1)$	60.73	0.72	9.17	24.30	1.07	10.40	0.40	20.54	4.38	12.60	0.04	0.65	0.40		0.53.70				25.30				1.09	0.10
ERSE	5.90	0.44	0.82	0.02	0.55	0.50	0.82	0.46	0.54	0.50	0.76	0.46	0.49		5.05				0.37				0.34	0.34
								T=10	, t=7, Δ_7	$(\beta_0) = 1176$	i.529, ∆ ₇ ()	$\beta_1) = 36.5$	6497, low	1 %	and low	æ								
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p_i})$	EE.i	EE.ii	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE ii	EE(0.5)	$EE(\hat{p}_{i2})$	EE i	EE_ii F	Н	naïve	H	Ш		BE_ii E	"			E ii E	E(0.5)
$APRB_{\Delta(\beta_0)}$	189.28	0.14	8.65	38.03	32.36	24.67	0.42	31.10	40.12	16.76	29.21	6.33	59.65	_	74.10				7.60				1.61	4.29
ERSE	87.16	38.30	47.15 63.97	33.58	53.24	44.66	67.45	35.62	55.60	47.21	59.20 76.09	54.54 42.16	61.05		39.74				27.49	28.21	32.95	28.99 2	28.99	29.23
$APRB_{\Delta(\beta_1)}$	33.59	99.0	17.34	30.82	13.27	23.37	14.75	27.73	11.10	20.51	5.63	15.63	4.72	-	18.70				2.68				0.13	0.37
FRSE	56.58 57.85	3.13 2.83	3.43	3.31	3.46	9.5	3.57	3.47	3.85	3.55	3.90	3.86	3.86		53.84				2.10				2.15	1 97
								T=10,	$t=7, \Delta_7($	$\beta_0) = 1176$.529, $\Delta_7(c)$	β_1) = 36.5	6497, low	⊣ %	and high	그용								
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p_i})$	EE.i	EE.ii 1	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE_ii	EE(0.5)	$EE(\hat{p}_{i2})$	EE.i	EE.ii E	\vdash	naïve				JE_ii E	Ξ			×	E(0.5)
$APRB_{\Delta(\beta_0)}$	127.56	1.61	11.89	36.44	17.75	24.89	4.87	30.65	23.55	18.52	16.90	10.37	37.86		54.76				6.48					3.75
SE	239.06 858.45	87.07	113.63	52.29	146.96 131.44	102.10 68.01	125.76	97.17 56.90	133.24	73.01	154.89	71.98	172.88		104.33 540.90				57.47 50.97					58.07
$APRB_{\Delta(\beta_1)}$	161.42	4.41	3.92	32.43	29.78	18.83	4.73	25.13	36.67	10.89	31.17	0.02	54.46	+	65.30				5.22					1.79
ERSE	108.26	7.84	10.47	4.76	11.90	6.20	11.15	5.19	12.06	6.67	12.95	6.59	12.02		68.77				5.38	5.30 4.96	6.18	0.13 4.74	5.45	5.12
								T=10	t=7, Δ ₇ ($(\beta_0) = 1176$.529, $\Delta_7(\ell)$	$\beta_1) = 36.5$	6497, hig	121	and low	양미	Ш	Ш		П	H	Ш	Ш	
	naïve	EE	$\mathbf{EE}(\hat{p_i})$	BE.i	EE,ii	EE(0.5)	EE(pil)	EE.	EE.ii	EE(0.5)	EE(p _{i2})	EE.i	EE.ii F	\rightarrow	naïve				BE.ii E	M			E E	E(0.5)
$APRB_{\Delta(\beta_0)}$	73.88	0.03	16.82	36.17	80.00	26.12	12.18	31.58	0.47	21.50	2.83	14.67	10.78		34.71				86.5				0.16	1.62
ERSE	443.54	19.31	36.77	21.40	25.19	23.52	37.00	21.80	25.13	23.78	35.30	22.41	24.07		380.75				15.74				15.00	15.02
$APRB_{\Delta(\beta_1)}$	36.17	0.01	7.74	18.01	0.46	12.84	5.34	15.64	2.33	10.45	2.46	6.81	7.29	-	17.19	1			2.25				0.12	0.92
SE	0.48	0.44	0.56	0.63	0.50	0.60	0.57	0.64	0.51	0.61	0.58	0.67	0.52		0.35				0.34				0.35	0.36
TOTAL	11.00	0.40	0.00	00.00	0.00	0.0	0.00	T=10.	t=7. $\Delta \tau ($	$g_0 = 1176$	529. ∆ 7 (β	$^{1}_{1}$) = 36.56	3497. hiel-	⊣ <u>ĕ</u>	and hig	13			0.01				0.00	0.00
	naïve	EE	$\mathbf{EE}(\hat{p_i})$	EE.i	EE.ii	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE ii	EE(0.5)	$EE(\hat{p}_{c2})$	EE.i	EE,ii F	\vdash	naïve			Γ.	E.ii E	×	1		E.ii E	E(0.5)
$APRB_{\Delta(\beta_0)}$	46.89	0.24	11.87	27.59	0.89	19.36	8.34	23.82	1.78	15.71	2.70	10.54	8.83	+	23.17	1			3.67				0.33	1.84
SE	190.67	65.00	70.45	73.19	61.92	72.87	69.80	73.48	61.63	72.62	69.52	76.03	62.01 54.96		37.09			47.87	13.41	46.35	43.26 4		42.57	44.47
APBR	59.81	1.08	7 93	94.79	5.55	16.05	3.53	20.04	8.69	11.51	8.45	5.75	16.09	+	97 49				9.53				0.00	0.03
SE ACCOUNT	4.82	5.82	6.30	6.55	5.55	6.52	6.27	6.62	5.52	6.53	6.30	6.93	5.61		3.34				3.95				3.90	4.08
ERSE	62.71	4.98	7.85	4.24	5.91	4.85	7.76	4.28	5.71	4.83	7.27	4.35	5.14		52.85				3.66				3.40	3.36

Table E.26: Results under model (2.43), by response and correlation. Population: stable

Table E.27: Results under model (2.43), by response and correlation. Population: volatile

								l÷ l), t=4, \(\Delta\)	$4(\beta_0) = 11$	023.06, A	U	-0.4041, lc	w respons	e and low	8								
	naïve				EE-ii F	(E(0.5)	_ .		EE_ii i		_		71	-								_	M	2(0.5)
		34.89			46.07	19.55			47.04															41.62
	914.29	623.23			16.79	843.62			887.38					_										08.43
		0.32			28.73	20.33	l		36.20		l			-								١		68.83
SE ERSE		0.53	1.35	0.99	0.76	0.93	1.26		0.73						1.08	0.10		0.20	0.19	0.22	0.18	0.38	0.17	0.19
	1 1		H				H	۱÷۱), t=4, \(\Delta\)	IΞI	141	Hil	ŀĭΙ	lä i	ĿΞΊ	腸	H		Ш		Ш	Ш		
					EE ii E	(E(0.5)			EE		_		71	\rightarrow						M				2(0.5)
		36.39			49.86	23.77			50.92					_										41.11
ERSE	918.16		1218.38 77	878.14 6 774.01 8	97.20	830.71	1205.70		628.64 873.16									275.09 21 434.90 45	451.67 4	247.03 IS 445.55 48	198.36 22 454.30 39	227.53 19 392.68 40	194.65 2	402.13
	41.09			L	49.89	54.58	I.		52.49		Ι.	l.		+							l	1.		12.77
SE	1.87	1.60			2.10	2.61			2.08					_							_			0.53
ERSE	2.82	1.83		_	2.71	2.46		17	2.64	12	_ <	Ι.		-18	- 1-	1-3								1.05
	ozija	E E		١	1 11	(E/O K)	1.	: I	FE :: 1	31	1 _	.	= -	5⊢	≅	25			[2	1		١	F	(202)
\neg	raive				1 II-22	(0.0)	_ .		00 20	1	_ .	Ш	٦.	+		1			4	1			4	(0.0)
Δ(β ₀)	0.30				27.14	23.02			403.66					_										31.00
	575.64	400.89	_		144.05	616.58			524.49															78.12
	19.33		1	l_	108.16	69.76	١.	1	102.48		l		1	-		1		1			1	I		15.63
SE	0.14	0.18	0.29	0.41	0.22	0.35	0.28		0.22					_						0.08	0.07	0.08	0.06	0.07
ERSE	1.01	- 1			0.29	0.34		- 2	0.28	- -	_ <	- [`	- 12	-19	2	- 15						_		0.15
	orali ora	ū			:: 0.0	(a) (b) (d)	Ι.	31	, t=4, Q4	٩ľ	ăΙ.	Ī	٦ ٦	Ę٢	ĔΙ	≣ [Ē	٦			100	(20)
	naive			_ _	1 11-22	17.49	_ _		02.60		_ _		7	+					4	4			4	(0.0)
AP KD $\Delta(\beta_0)$ SF.	936.16	28.88			20.00	426.43			314.07					_										29.73
	606.54				(33.00	464.67			420.19													226.02 22	227.89 2	27.45
		1		l.,	72.95	13.93	١.		39.66		1			-		1						l		84.29
SE					0.79	1.03	_		0.79					_										0.25
	1.67		1.41		1.00	1.06	_		66:0		_			-								_		0.51
			- 1					큐), t=7, ∆	=l	⊲	il.	-ĭ	ä١	희	표			-	ľ	- 1		ľ	
	naïve	EE,	- 1		EE.ii E	SE(0.5)			EE-ii	-	_ I.		71	\rightarrow					9	۳			٦,	5(0.5)
	76.65	42.35			67.34	35.41			64.30					_										47.02
ERSE	902.74	586.19	1170.63 74	742.46 8	73.18	799.23	1164.76		857.56									417.28 43	197.40 2 433.51 4	240.00 IS 427.89 40	463.11 39	394.88 40	108.13 4	403.55
	0.10	11.20	4.32		5.17	2.18			3.43		l			+										11.46
SE	0.24				0.56	0.95			0.54		_			_										0.20
ERSE	0.84		- 1		0.85	1.05		- 17	0.80	12	. <		- 1-	-13	. 13	- 1-3								0.43
	orali ora	0.00			2 :: 22	(30/0,		Ħ.), t=/, ∆ pp:: 1	31	11.		۲ ۲	ã H	ĔI.	3			Ē	1		١	Þ	(20)
APBBAGG	76.12			Л.	69.50	35.16	Ι.		66.93		_	ıl.	٦.	_	١.				4	1	_	_	4	41.49
	563.41			_	322.16	860.92			631.78												_			13.39
			58.47	1	821.98	789.32			835.39					-			- 1	1				_		95.17
	201.71				157.54	90.19			148.66					_							_			27.13
ERSE	2.48	1.36		1.66	2.11	1.79			2.02										0.86	0.84		0.74	0.78	0.76
								اۃا), t=7, \(\Delta\)	E	4	U	무	151	12	暖								
	naïve				EE_ii F	E(0.2)			EE ii 1		_			Н					团	įΣį.			124	5(0.5)
$APRB_{\Delta(\beta_0)}$	37.20				14.36	0.36			15.89					_										13.46
EBSE	591.00	310.72	688.92 47		35.02	478.61			421.08													221.56 22	99.00	221.86
	18.34	1			92.9	0.97			7.58		1_			+							١.			6.10
SE	0.10	0.12			0.16	0.24			0.15															90.0
ERSE	0.79				0.23	0.25			0.22		_ !		- 1	\neg		- 1								0.12
								31	, t=7, ∆ ₇	3	ঠা	T	Ξ	된	Ξ	픻	- 1			ľ				
9	naïve	EE,			EE.ii E	(E(0.5)	_ _		EE-ii	_	_ l.		71	$^+$						1	- .	_		5(0.5)
Δ(β ₀)					20.73	386 93			303.66					_										95.56
			560.64 41		199.86	419.22			394.53															21.16
		1			14.03	92.9			14.25		l_			+										10.57
SE ERSE	0.51	0.46	0.62		0.55	0.69	0.62	0.78	0.55	0.69	0.58	0.70	0.54	0.63			0.26	0.28	0.26	0.27	0.25	0.26	0.25	0.38

Table E.28: Results under model (2.43), by response and correlation. Population: simulated

								T=	10, t=4, Z	$_{4}(\beta_{0}) = 1$	4.9522, A.	- = (1g)	0.5296, lo	w respons	and low	correlatio	n.							
		\mathbf{EE}_{h}	$EE(\hat{p}_i)$	EE_i	EE-ii	EE(0.5)	$EE(\hat{p}_{i1})$	EE'i	EE_ii	EE(0.5)		EE_i	EE_ii						囶	_ 			図	
$APRB_{\Delta(\beta_0)}$		31.51	44.65	29.00	73.66	35.89	50.76	35.16	76.93	41.95		46.93	81.59	~ .										
ERSE		215.74	319.53 462.34	366.47	387.56	321.80	330.12 482.56	305.44	389.10	332.91		369.83	301.77											
$APRB_{\Delta(\beta_1)}$			98.50	67.35	165.76	80.76	111.06	81.08	170.11	93.69		95.48	171.97		L.					١				
SE ERSE	3.23 6.44	3.09	9:96	8.07	6.82	6.99	5.96	6.70	4.76 6.66	6.90	5.49 8.99	7.34	5.97	6.34	5.54	2.79	3.51	3.11	3.23	3.15 3.21 3.15 3.21	.22 1.44 .21 2.87	7 2.97	1.31	
								T=	0, t=4, ∆	$_4(\beta_0) = 11$	ΙďΙ	- = (1g)	0.5296, lo	121	hig	a	ш	Ш	Ш	Ш	ш	Ш	Ш	
			$EE(\hat{p}_i)$	EE i	EE ii	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE i	EE ii	EE(0.5)		EE i	EE ii		_				Δ.	_ E		_	国	
APRB _{A(β₀)}	135.55		31.61	5.70	77.19	17.15	39.66	12.86	82.98	24.63		34.31	94.82		<u>.</u>									
SE		149.43	202.80	200.76	250.63	207.58	212.03	213.13	308.18	210.43		231.01	302.81						48.49		.80 47.71	.1 44.19 .3 123.19	114.86	
APRBA(8.)			0.22	24.32	36.93	13.33	11.04	14.91	46.81	3.40		12.19	69.39	╌	L					١.		1.		
SE	4.74	2.53	4.90	5.04	5.71	4.95	5.13	5.28	5.86	5.18		5.58	5.73	-						_				
ERSE	14.01		7.37	5.21	9.09	5.93	7.66	5.41	9.11	6.13	<	5.77	8.57	_ 1		3								
	or i ou	0.00	DD/6.)		::	(20/02	PE/6)		.0, t=4, △ pr::	4(20) = 11 $\overline{v}v(0) = 11$	ă۱	$(D_1) = -$	U.5250, III	ēΗ.	٩١,	ig [5	1			Ē	
4 000	narve	- 1	()d)aa	EE.3	EE.11	(c.0)aa	19.16	19.70	EE31	(c.0)33		EE.1	EE.11	_ ,	. ا	1			7	키.		_ _	3	
AF KD A(S ₀)	124.00	71.27	74.33	63.01	89.73	68.10	77.32	65.92	92.13	20.12		77.51	99.57							_				
ERSE	402.68	88.85	91.45	72.17	117.14	83.04	95.32	75.40	119.93	86.40		89.34	128.70											
$APRB_{\Delta(\beta_1)}$	153.10	16.92	6.59	27.02	46.73	11.28	12.02	22.06	50.47	60.9		2.15	62.27	Ι.								_		
SE	1.38	0.94	1.41	1.46	2.57	1.42	1.44	2.07	1.52	1.45		1.62	1.60					0.65	0.59	0.61 0.60	63 1.47	5 0.60	0.62	
								T=1	0. t=4. Δ	$(\beta_0) = 11$	٦١	$(\beta_1) = -($.5296. his	ã L	. J: <u>ä</u>	lea ea								
	naïve	\mathbf{EE}_h	$\mathbf{EE}(\hat{p}_i)$	EE.i	EE_ii	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE ii	EE(0.5)	1	EE.i	EE.ii	Н	1	Γ.			P	<u> </u>			E	
$APRB_{\Delta(\beta_0)}$	119.07	24.55	8.13	14.81	28.46	3.52	11.11	11.99	30.79	0.62		89.0	38.61		١.									
SE	68.57	40.91	52.74	47.29	61.04	49.72	54.01	48.66	62.10	51.01		55.78	66.22											
APBR	104.99	5 75	10 03	31.37	3 05	90.90	7.71	98.35	6 59	17.86		16.01	13.84	1	. .									
7. (%) 7. (%)	177	8.5	1.00	135	1.63	1.39	1.17	1.30	1.65	1.30		1501	1.76	_										
ERSE	10.04	2.26	2.48	1.89	2.86	2.15	2.55	1.95	2.91	2.21		2.26	3.09											
								T=1	0, t=7, ∆	$\tau(\beta_0) = 11$	1	$(\beta_1) = 30$.56497, lc	SII C	lov	lat								
			$EE(\hat{p}_i)$	EE_i	EE-ii	EE(0.5)	$EE(\hat{p}_{i1})$	EE-i	EE-ii	EE(0.2)		EE-i	EE-ii	Н	_	-			Ξ	田			Ξ	
$APRB_{\Delta(\beta_0)}$			39.94	19.05	79.35	28.09	48.86	27.18	85.66	36.47		58.26	103.59											
SE	330.02	230.69	380.67	422.24	367.17	402.55	392.62	439.24	375.10	416.53		502.75	399.06						88.74 9	95.42 88.93	.93 100.99 38 213.81	9 87.87	93.94	
APBRAGO	- 1	- 1	19.77	8.30	8.59	11.04	13.67	9.74	10 10	19 91		16.91	13.60		١.,			`				`L		
SE	9.41	9.50	20.24	23.84	20.39	21.78	20.68	24.37	20.78	22.25		27.15	21.93											
ERSE	56.83	27.32	37.51	31.19	36.06	32.64	38.61	32.28	36.82	33.65		36.41	38.81	-								_		
								T=1	0, t=7, ∆	$\tau(\beta_0) = 11$	51	$(\beta_1) = 36$.56497, lc	ã.	Ę.	ela								
-	naïve	EE,	$\mathbf{EE}(\hat{p}_i)$	EE	EE_ii	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE	EE	EE(0.5)		EE	EE ii	_						"	- 1		田	
	90.82	15.85	23.21	5.35	54.73	306.08	29.99	11.91	58.99	19.80		29.90	68.28											
ERSE	1130.91	331.43	558.62	376.58	654.17	429.20	608.33	408.79	677.78	462.76		482.17	714.94											
_	245.15	48.35	56.93	14.98	127.11	33.62	70.15	26.04	138.67	45.53		67.19	169.37								1			
SE ERSE	37.95	36.56	47.22	35.61	72.89	31.38	51.70	38.90	75.99	55.55 65.60		52.16	53.89 85.22								.60 IU.54	.4 10.69 .8 24.48	23.06	
								T=1	0, t=7, \(\Dar{\rm }	$7(\beta_0) = 11$	15	$(\beta_1) = 36$.56497, hi	12	12	lea ea		1			1			
	naïve	\mathbf{EE}_h	$EE(\hat{p}_i)$	EE_i	EE ii	EE(0.5)	$EE(\hat{p}_{i1})$	EE i	EE ii	EE(0.2)		EE i	EE ii	┢		ļ.,			M	Г		١.	M	
$APRB_{\Delta(\beta_0)}$	126.02	16.28	1.59	22.92	29.04	11.44	5.54	19.38	32.11	7.71		4.43	41.35	_										
ERSE		128.02	140.63	112.25	158.96	124.72	144.64	115.65	161.55	8.8		128.17	166.12											
APRBA(B1)		4.35	9.22	20.23	6.25	14.07	7.94	18.70	5.10	12.67		11.40	0.92		L		1					1		
SE	4.69	3.43	99.9	99.9	6.91	6.61	6.75	6.77	6.99	6.71		7.16	7.25		_									
ERSE	62.60	13.31	13.96	11.75	14.99	12.82	14.26	12.03	15.19	13.08		13.29	15.88	-	~									
								T=1), t=7, ∆	$\gamma(\beta_0) = 11$	5	$\beta_1) = 36$	56497, hi	타	Ē	ا ا			ľ	ľ	- 1		ĺ	
APPB			(b)	10.01	10.01	EE(0.5)	(bil)	1674	EE.11	EE(0.5)		199	11.33	_ .		1			3	-			3	
SE SE		86.53	97.58	87.25	105.49	92.80	99.00	89.07	106.75	94.41		98.16	111.95									_		
ERSE		138.09	150.63	105.33	169.21	121.87	154.14	108.48	170.87	125.00		122.75	176.74		~									
$APRB_{\Delta(\beta_1)}$		4.32	10.87	31.22	6.84	21.15	7.92	28.54	9.37	18.34		17.63	16.22	_	_									
SE	88.68	6.09	8.56	7.83	9.03	8.23	8.66	7.98	9.13	8.35		8.65	9.44	· ·				4.12 9.01	06.5 6.5 6.5	4.03 9.41 10	3.94 4.08	8 2 3 89	9.63	
						-		1					1											

Table E.29: Results under model (2.45), by response and correlation.

									0,	0, 4	10000	1 00		4										
	naïve	EE.	EE(n)	E.E.	EE ::	EE(0.5)	EE(ô.1)	EE:	T=10,	3	21	¥I	3.1	8-	. L				F	1			F. F. F.	E(0.5)
$APRB_{\Delta(\beta_0)}$			1.42	4.48	2.75	3.07	0.52	3.65	3.32				1	+	l.							.l_	0.71	2.06
SE	304.35	242.88	313.09	368.57	265.03 312.12	342.06	310.20	366.85 276.84	263.43 303.44											445.50 3 456.66 5	397.11 4 517.30 4	444.20 3 408.42 3	80.29 93.58	417.56
$APRB_{\Delta(\beta_1)}$			16.41	33.21	0.35	24.76	11.58	28.84	4.08		1.	١		-	l							L.	7.74	12.35
ERSE			0.24	0.16	0.15	0.19 0.16	0.16	0.15	0.14														0.19	0.20
	naïve	EE,	EE(û)	EE.i	EE ii	EE(0.5)	EE(pa)	EE.i	T=1 EE_iii	10, t=4, ∆ ₄ EE(0.5)	$I(\beta_0) = 11$ $EE(\hat{p}_{i2})$	023.06, Δ EE_i	$\mathbf{EE}_{\mathbf{J}\mathbf{I}} = -\mathbf{e}$	0.4041, hig E(0.5)	igh respon	nse EE, E	EE(#;) E	EE_i E	EE ii EE	"	1 1	Ш.	EE ii E	E(0.5)
$APRB_{\Delta(\beta_0)}$	06.9	0.11	1.32	6.55	4.21	3.94	0.19	4.37	4.49				1	+	١				1	'			29.0	1.65
SE	87.74	169.36	252.76	363.47	164.52	306.62	234.93	336.37	161.30											309.93 2	255.54 2	298.00 2	43.67	273.22
APRBAGG	36.31	0.31	7.18	34.37	20.60	20.63	0.53	23.20	22.15					+	_								3.19	8.18
SE	0.05	0.09	0.14	0.20	0.09	0.17	0.13	0.19	0.09						_								0.14	0.15
ERSE	0.31	0.09	0.23	0.15	0.13	0.15	0.21	0.14	0.11	_ <	. -	l`		-1-	3								0.15	0.16
			EE(p)	EE.i	EE-ii	EE(0.5)	EE(pel)	EE	EE_ii	1	i		i۳	<u>~</u> -	Ē				×	۳		Ι.	EE.ii E	E(0.5)
$APRB_{\Delta(\beta_0)}$			4.09	7.67	1.06	6.03	3.57	7.46	1.77	1.		۱.	Ή.	+	. _		1		1	1			4.25	4.56
SE	204.87	233.88	300.12	356.91	256.53	329.56	292.77	347.75	255.22														78.02	404.53
EKSE			435.59	273.33	305.26	292.15	421.85	266.71	296.46			_ .		+	. I.							1	97.97	415.82
APKB $\Delta(\beta_1)$			28.98	19.43	86.7	39.14	26.34	87.78	3.25														18.25	21.00
ERSE			0.23	0.15	0.14	0.16	0.22	0.14	0.14														0.20	0.21
									T=1	4	I=	lai	L.	년	ď									
	naïve	\mathbf{EE}_h	$EE(\hat{p_i})$	EE_i	EE-ii	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE_i	EE_ii				щ	Н	١				Г.	щ			M	E(0.5)
$APRB_{\Delta(\beta_0)}$	6.32	1.42	0.64	4.82	3.63	2.73	0.61	3.19	4.25															1.04
SE	88.00	168.31	300.55	330.82	169.41	281.96	228.62	321.14	164.23											334.76 2	261.98 3	307.76 2	247.25	281.33
APRBAGE	33.29	6.94	3.89	25.73	17.56	14.67	2.47	17.38	20.77	1.		١.		+	1							`l		5.29
SE	0.05	0.09	0.13	0.18	0.09	0.16	0.13	0.18	0.09						_									0.16
ERSE	0.31	0.10	0.22	0.15	0.11	0.14	0.21	0.14	0.11															0.16
	_							T=1(), t=4, ∆₄	ΞI	اتر	ĭ.	0	필ト	읩	ᆱ			ľ	l'		- 1.	ď	
4	naïve	EE,	EE(pi)	EE.i	EE.ii	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE.ii				۳1	+					۳1	۳			EE.ii E	E(0.5)
APKBA(8 ₀)	591.70	668 94	708.49	6.81	19.70	9.46	708 20	9.05	21.35												_		6.79	3.66
ERSE	659.94	649.85	1213.17	757.28	822.57	806.74	1198.71	750.26	798.22														25.34	447.24
$APRB_{\Delta(\beta_1)}$	164.33	15.68	39.26	7.79	66.71	24.27	52.28	23.22	75.25		1	L		\vdash	l	1	1				l_		26.08	12.44
SE	0.23	0.34	0.42	0.52	0.34	0.47	0.41	0.51	0.33														0.21	0.25
TOTAL	100	0000	0000	1	12.00	OF-10	0000	OF-10	T=1	4	-12	12	T.	45	۱ĕ						.		1	0.00
		\mathbf{EE}_h	$\mathbf{EE}(\hat{p_i})$	EE.i	EE.ii	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE.ii	i	:	Ш.,	1	⊩	. I				124	1			EE.ii E	E(0.5)
$APRB_{\Delta(\beta_0)}$	34.66	1.09	2.10	14.98	8.30	8.36	90.0	12.99	10.15			L		\vdash	l		l	l			l		0.31	2.48
SE	232.38	434.39	594.01 8	843.53	413.76	714.51	566.73	805.86	402.90											385.81 2	389.07 3	356.93 2	281.29	321.99
$APRB_{\Delta(\beta_1)}$	134.30	4.11	8.17	58.61	32.16	32.57	0.33	50.61	39.41			1		+	١.						l_		1.17	9.67
SE	0.12	0.24	0.33	0.47	0.23	0.40	0.31	0.45	0.22														0.16	0.18
ENSE	1.01	0.20	0.01	0.01	0.23	0.01	0.04	00:00	T=T		-		Т'n	HŤ.	. 2									0.10
		EE		EE i	EE ii	EE(0.5)	$\mathbf{EE}(\hat{p}_{i1})$	EE.i	EE ii			1_	۳	⊢	١.				1	1"		١.	۳	E(0.5)
$APRB_{\Delta(\beta_0)}$		1.66		11.62	9.93	7.85	2.06	10.89	11.04					\vdash										3.28
SE	492.74	581.03	793.30	941.75	630.60	871.66	792.54	941.98	635.91										367.28 4:	434.05 3	384.52 4 477.48 3	439.93 3 380.74 3	365.19	382.64
$APRB_{\Delta(\beta_1)}$		0.76		11.91	3.52	7.85	2.83	10.52	4.52		1	l_		+	1_	1				1				1.95
SE		0.29		0.50	0.30	0.44	0.39	0.49	0.30															0.20
ERSE		0.28		0.36	0.36	0.37	0.54	0.35	0.34	<	- 1				_ [0.19
	0.00	ē		 E	E	(20/00	/ 07/00	 G		1	31	٦Į.	٦	5	ايق				- [- 15			::	(20/0
	93 00	1 25	0.18	6.75	4 93	3.33	9 19	2 04	5.50			_ [١,	+	. _	٦.	_		4	1	. I.,	. .	3 66	(0.0)
SE ACCOUNT	200.39	335.19	462.32	632.59	344.98	543.99	449.61	617.61	336.57														30.05	259.44
	538.69	329.38	741.26	494.03	399.92	487.06	702.70	472.44	380.96			_		-									24.69	239.71
$APRB_{\Delta(\beta_1)}$ SE	12.05	0.76	0.09	3.39	2.43	1.58	1.28	1.92	3.12								0.46	0.19	0.07	1.28	1.11	0.53	1.48	0.41
ERSE	0.79	0.18	0.41	0.27	0.22	0.27	0.39	0.26	0.21														0.12	0.13

EE.ii 1.10 163.73 6.95 3.26 3.17 EE.ii 1.01 222.96 228.72 2.97 16.11 16.91 EE.ii 0.05 122.82 126.26 0.00 2.89 3.00 DEE.ii 0.68 90.92 93.76 2.11 1.90 1.96 EE.i 0.38 182.15 160.57 2.95 3.84 3.30 EE.i 0.20 133.18 128.68 0.08 3.20 3.20 EE.i 1.94 248.81 227.10 3.61 16.60 17.00 EE.i 0.34 96.25 93.90 2.64 2.07 2.07 $\begin{array}{c} \mathbf{EE}(\hat{\pi}_{t1}) \\ 0.81 \\ 167.70 \\ 197.17 \\ 5.83 \\ 3.38 \\ 3.92 \end{array}$ EE($\hat{\pi}_{i1}$)
0.49
91.22
105.37
1.33
1.91 EE($\hat{\pi}_{t1}$)
1.06
229.08
269.23
2.92
16.10
18.13 $\begin{array}{c} \mathbf{EE}(\hat{\pi}_{i1}) \\ 0.06 \\ 124.23 \\ 144.51 \\ 0.02 \\ 2.93 \\ 3.49 \end{array}$ 2.89 242.59 244.47 4.14 16.74 18.31 EE(0.5) 0.17 135.60 141.13 0.02 3.29 3.46 EE(0.5)
0.15
180.16
176.35
0.15
3.98 0.94 0.94 95.46 101.76 5.55 2.06 2.20 EE.ii 0.70 165.70 175.39 4.26 3.44 3.57 EE ii 0.03 92.29 100.98 1.50 1.96 2.15 EE-ii 2.03 225.38 243.85 3.79 16.51 18.26 EE_ii 0.06 128.02 137.77 0.14 3.07 3.34 EE.i 0.50 191.37 172.85 2.20 4.41 3.87 EE i 1.58 99.62 101.44 8.72 2.19 2.22 EE.i 3.59 256.33 240.95 4.72 17.18 18.36 EE.i 0.30 143.56 141.94 0.08 3.53 3.52 $\begin{array}{c} \textbf{EE}(\hat{\pi}_t) \\ \textbf{EE}(\hat{\pi}_t) \\ 0.18 \\ 171.50 \\ 2.22.33 \\ 2.15 \\ 3.67 \\ 4.82 \end{array}$ $\begin{array}{c} \mathbf{EE}(\hat{\pi_i}) \\ 0.44 \\ 92.78 \\ 116.30 \\ 3.25 \\ 1.98 \\ 2.57 \end{array}$ EE($\hat{\pi}_t$)
2.42
2.32.55
292.59
3.88
16.52
19.68 EE_h 0.71 0.71 204.69 206.30 1.95 14.88 15.43 EE_h

0.65

81.85

86.34

1.99

1.74

1.81 EE_h 0.97 149.51 147.14 6.72 2.94 2.81 naïve 3.50 7.9.36 206.88 16.63 1.49 4.24 naïve 6.25 367.34 4.01 14.10 42.78 inigh resp naïve 0.99 105.68 369.88 2.30 41.97 naïve 1.21 149.53 230.31 11.19 2.55 4.23 and correlation 28.56497, EE(0.5) 1.77 188.81 171.05 4.21 4.14 3.63 6.56497, lo DEC(0.5) 1.64 364.27 310.93 6.81 6.59 5.71 2.90 4485.82 6.62 29.99 29.66 20.66 under model (2.45), by response 3.60 148.80 157.25 12.65 2.94 3.11 $\Delta_7(\beta_1) = EE_1i$ EE_1i 0.07 408.476.34 27.87 29.27 27.87 29.27 27.87 29.27 **E.E.** ii 0.67 0.67 0.078.36 0.44
8.35 4.81
8.37 3.71
8.37 3.71
8.37 3.71
8.37 3.72
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3.73
8.37 3 EE.j 150 393.12 295.17 4.31 7.38 5.75 176.529, Z EE.j 0.91 212.26 171.31 $\begin{array}{c} 8.36 \\ 3.57 \\ 5.37 \\ \hline 5.37 \\ \hline \mathbf{EE}(\beta_0) = 1 \\ \hline \mathbf{EB}(\beta_{12}) \\ 1.39 \\ 450.41 \\ 602.66 \\ 5.90 \\ 2.8.34 \\ 34.31 \\ \end{array}$ =10, t=7, t EE(0.5) 5.48 499.49 446.56 7.18 33.61 33.47 Table E.30: Results EE.ii 2.38 401.01 471.09 7.31 28.72 31.97 T=11 t=4, Δ₄(**EE**_iii 2.09 282.17 336.17 13.06 5.24 6.10 EE_ii 2.89 150.41 173.84 8.52 3.05 3.05 EE.i 0.08 337.11 255.54 0.24 8.52 6.38 EE.i 0.66 371.58 286.47 1.63 8.44 6.68 EE.i 0.56 239.64 190.23 8.87 5.57 4.37 EE.i 6.72 537.77 423.42 7.95 37.67 34.01 $\begin{array}{c} \mathbf{EE}(\hat{p}_{11}) \\ 1.42 \\ 1.84.11 \\ 282.47 \\ 1.86 \\ 4.02 \\ 6.54 \end{array}$ EE(\$\hat{p}_{01}\$)
4.19
460.68
642.04
6.76
30.60
41.85 0.22 249.98 379.12 0.30 6.12 9.32 EE(pt)
1.10
322.37
457.09
7.16
6.38
9.66 0.45 0.45 209.98 193.49 6.72 503.55 450.72 8.42 36.06 35.81 0.54 303.81 268.04 EE.ii 1.94 283.73 341.86 12.20 5.35 6.32 EE.ji 2.42 149.53 176.46 6.43 3.08 3.67 3.35 3.35 405.54 482.17 8.31 29.33 33.38 EE.ii 0.51 193.58 238.77 0.56 4.58 5.66 EE.i 0.48 371.55 286.90 1.55 8.88 7.04 EE.i 0.50 351.15 265.88 0.76 9.04 6.76 EE.i 1.52 238.60 190.92 EE.i 7.94 7.94 427.26 9.22 41.19 36.53 13.17 5.68 4.48 0.62 183.72 285.05 1.59 4.09 6.73 EE(pi)
5.47
463.76
645.22
7.98
32.24
46.38 EE(pi) 0.95 322.83 459.56 5.11 6.62 6EE(pi_t) 0.56 258.97 399.05 0.62 6.46 9.97 EE_h
0.13
235.79
236.35
2.60
4.49
4.47 EE_h
1.19
132.59
130.15 EE_h
1.55
327.09
325.74
2.71
22.10
22.54 EE_h 0.58 171.54 179.493.16 2.82 2.77 0.35 4.21 4.24 0.31 0.31 235.27 294.66 6.75 3.42 4.58 0.45 6.45 1.25.77 242.17 29.77 2.17 4.58 naïve 16.98 317.99 432.82 11.83 19.51 42.45 $\begin{array}{c} \operatorname{APRB}_{\Delta(\beta_0)} \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}_{\Delta(\beta_1)} \\ \operatorname{SE} \\ \operatorname{ERSE} \end{array}$ $\begin{array}{c} \operatorname{APRB}_{\Delta(\beta_0)} \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}_{\Delta(\beta_1)} \\ \operatorname{SE} \\ \operatorname{ERSE} \end{array}$ $\begin{array}{c} \operatorname{APRB}_{\Delta(\beta_0)} \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}_{\Delta(\beta_1)} \\ \operatorname{SE} \\ \operatorname{ERSE} \end{array}$ $\begin{array}{c} \operatorname{APRB}_{\Delta(\beta_0)} \\ \operatorname{SE} \\ \operatorname{ERSE} \\ \operatorname{APRB}_{\Delta(\beta_1)} \\ \operatorname{SE} \\ \operatorname{ERSE} \end{array}$

237.34 229.71 3.11 16.26 16.95