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Abstract: We consider the problem of routing a team of unmanned aerial vehicles
(drones) being used to take surveillance observations of target locations, where
the value of information at each location is different and not all locations need be
visited. As a result, this problem can be described as a stochastic team orienteering
problem (STOP), in which travel times are modeled as random variables following
generic probability distributions. The orienteering problem is a vehicle-routing
problem in which each of a set of customers can be visited either just once or
not at all within a limited time period. In order to solve this STOP, a simheuristic
algorithm based on an original and fast heuristic is developed. This heuristic
is then extended into a variable neighbourhood search (VNS) metaheuristic.
Finally, simulation is incorporated into the VNS framework to transform it into a
simheuristic algorithm, which is then employed to solve the STOP.
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1 Introduction

The team orienteering problem (TOP) aims to maximize the reward from a team of vehicles
visiting a selection of nodes, where there is a constraint on either the distance each vehicle
can travel or the time that they are traveling. A solution to the problem will identify which
nodes to visit and the order in which to visit them. It was initially proposed by Chao et al.
(1996a), and is one realistic variation of the well-known orienteering problem (Caceres-
Cruz et al., 2015). While the team orienteering problem was introduced initially to describe
the home fuel delivery problem (Chao et al., 1996a) and the recruiting of college football
players (Butt and Ryan, 1999), its applications now extend to the routing of technicians to
service customers at geographically distributed locations (Tang and Miller-Hooks, 2005b)
and, in more recent years, the routing of unmanned aerial vehicles or drones to carry out
observation tasks (Juan et al., 2014). Incorporating stochasticity into the travel and service
times, the stochastic team orienteering problem (STOP), allows for uncertainty in journey
times due to traffic conditions for conventional vehicles or weather conditions for unmanned
aerial vehicles (UAVs) and randomness in the time spent servicing a customer.

We focus here on the problem of collecting as much reward as possible from visiting
nodes using a fleet of drones with driving ranges limited by the time-duration of their
batteries. Drones are used to take surveillance observations of different locations after a
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Figure 1 The team orienteering problem with stochastic travel times

natural disaster, a terrorist attack, or a humanitarian crisis. Notice that each observation can
provide valuable information that can help to improve the conditions of the people affected
by the event or even to save their lives by making informed decisions on the more reliable
evacuation paths.

Consider the following elements: (i) a set of customer nodes, each of them with an
associated reward score that can be collected the first time a customer is visited by any
vehicle; and (ii) a team of m vehicles with limited driving-range capabilities. Then, the
goal is to determine a set of m open routes (each of them connecting an origin depot with
a destination depot), which maximizes the total collected reward by visiting a subset of
available customers without violating the driving-range or working time constraint. This
constraint can be expressed in terms of the total distance travelled or the total time spent
in travelling or service, where the former perhaps better expresses the challenge of routing
drones and the latter the routing of technicians. Notice that each customer can either be
visited once or not visited at all. Also, due to the driving-range limitation, it is possible that
not all customers can be visited.

Being an extension of the vehicle routing problem in which a subset of customers have to
be selected and a set of routes covering them constructed, the TOP is also a NP-hard problem.
Accordingly, different metaheuristic approaches have been proposed in recent years to
deal with large-scale instances of the deterministic version of the problem. However, the
stochastic counterpart, which considers real-life uncertainty in the form of random service
and travel times, has received much less attention. This paper contributes to close this gap
in the literature by analyzing a stochastic TOP variant in which travel times are modeled as
random variables (Figure 1). It extends Panadero et al. (2017) by providing a significantly
enhanced heuristic and simulation-optimization algorithm, as well as by adapting them to
the practical example of optimizing surveillance. We also carry out a thorough test of its
solutions on a selection of test instances adapted from those for the deterministic version
of the TOP given in Chao et al. (1996a).

The main goal of the deterministic problem is to find a solution, in the form of a set
of open routes, that maximizes the total reward. This carries over to the stochastic version
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where the key objective is the expected reward. Nonetheless, since solutions to the STOP
are applied in a stochastic environment it is important to also consider the robustness of
solutions by taking into account statistics such as the probability of violating the driving-
range threshold. As part of the methodology we introduce here, simulation is used to perform
a risk analysis on a subset of elite solutions proposed by the metaheuristic component.

This paper introduces and tests a novel simulation-optimization algorithm, which uses
heuristics to find near-optimal solutions to the STOP. First, an original and fast heuristic
is proposed, which is extended into a variable neighborhood search (VNS) metaheuristic
(Hansen and Mladenović, 2001), enabling it to obtain state-of-the-art solutions for the
deterministic TOP. Simulation is then incorporated into the VNS framework to transform
it into a simheuristic algorithm (Juan et al., 2015). Incorporating the simulation allows for
the estimation of the expected total reward and also provides feedback to the metaheuristic
component, allowing it to take account of the inherent uncertainty in the problem which is
used to help guide the search process.

Due to their effectiveness, simheuristic algorithms are increasingly being used for
solving stochastic variants of common vehicle routing problems. For example, the stochastic
inventory routing problem (Gruler et al., 2018), the stochastic waste collection problem
(Gruler et al., 2017), or the stochastic arc routing problem (Gonzalez-Martin et al., 2018).
This article will add to that literature, widening the range of the stochastic vehicle routing
problems that simheuristics can address.

Hence, the main contributions of this paper are: (i) a novel and fast constructive heuristic
to solve the deterministic TOP; (ii) a state-of-the-art VNS metaheuristic that extends this
constructive heuristic to improve efficiency in solving the TOP; and (iii) the integration
of the VNS framework with Monte Carlo simulation to efficiently deal with the STOP,
including the completion of a reliability analysis on the elite solutions.

The remaining sections of this paper are structured as follows: Section 2 reviews related
work on the TOP. Details of the particular problem analyzed in this paper are given in
Section 3. Section 4 describes our savings-based heuristic and its extension into a VNS-based
metaheuristic for solving the deterministic TOP. A first round of computational experiments
is provided in Section 5, which shows the efficiency of our metaheuristic for solving the TOP.
Section 6 describes our extension of the metaheuristic to a simheuristic to solve the STOP.
A second round of computational experiments, this time regarding the STOP, are described
in Section 7. Finally, Section 8 summarizes the highlights of this paper and proposes some
future research lines.

2 Literature Review

The orienteering problem takes its name from the sport of orienteering, one variation of
which involves a single runner choosing a selection of points to navigate between within
a specified time limit. It was introduced to the Operations Research literature in 1987 by
Golden et al. (1987), who showed that it is NP hard. Early work considered the deterministic
version of the problem, setting it within the context of vehicle routing, in which one vehicle
chooses the set of nodes to visit, as well as the visiting order, during a pre-defined time
interval. Studies of the stochastic orienteering problem are much more recent; and Ilhan et al.
(2008) were the first to incorporate stochasticity into the single vehicle orienteering problem.
Allowing for uncertainty in rewards, travel and/or service times widens the applicability
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of the problem. Gunawan et al. (2016) provides an excellent review of the orienteering
problem and its variants.

The team orienteering problem, our focus in this paper, was first introduced in Chao
et al. (1996a) who extended their methodology from the single vehicle problem to consider
multiple vehicles aiming to maximize their combined reward from visiting a selection of
points within a given time interval. As is the case with many of the more recent authors,
Chao et al. (1996a) set up the problem as a multilevel optimization, with three levels: select
which points to visit; assign points to each member of the team; and finally, determine the
shortest path for each team member around the points they have been assigned.

Exact solutions to the deterministic team orienteering problem have been obtained for
mid-sized problems (up to 100 vertices) using an efficient column-generation algorithm
(Butt and Ryan, 1999) but the vast majority of methods are based on heuristics as we discuss
in what follows.

Archetti et al. (2007) propose two variants of a generalized tabu search algorithm and a
variable neighborhood search algorithm to solve the deterministic TOP. The first tabu search
algorithm follows a strategy which relies on exploring the set of feasible solutions, while the
strategy followed by the second tabu search algorithm visits admissible, but not necessarily
feasible, solutions. Their results show that, on average, the strategy that only explores
feasible solutions yields higher quality results. The last algorithm proposed in Archetti et al.
(2007) is a general ascending schema of a variable neighborhood search algorithm which
uses the above mentioned tabu search algorithm as the local search component.

The particle swarm optimization (PSO) algorithm that Dang et al. (2013) propose
consists of a swarm intelligence algorithm, which is based on the idea of simulating the
collective behavior of wild animals (Kennedy and Eberhart, 1995). The proposed approach
works with a population of particles – the swarm – and uses giant tours to indirectly encode
particle positions. Each particle memorizes its current position, which is a representation
of a solution and its best known position. The quality of a position is determined by an
evaluation process based on an interval graph model. This enables more iterations of the
PSO without increasing the global computational time. In each iteration of the algorithm,
the position of each particle in the swarm is updated in order to find a better solution.

The multi-start simulated annealing (SA) algorithm that Lin (2013) introduces integrates
an SA stage inside a multi-start procedure to reduce the possibility of getting trapped in
a local optimum. The algorithm begins with a randomly-generated initial solution before
going into the iterative procedure. In each iteration, the algorithm selects a new solution
from the neighborhood of the current one. If the objective-function value of the new solution
is better than that of the current one, the new solution replaces the current solution and the
searching process is resumed. As in any other SA structure, there is also a small probability
that a new solution, with a worse objective-function value, may be accepted as the new
current solution.

Ferreira et al. (2014) introduce a genetic algorithm (GA) to solve the deterministic TOP,
while Ke et al. (2016) describe a Pareto mimic algorithm, which uses a mimic operator to
generate a new solution by imitating an incumbent solution. The method also includes a
swallow operator in order to insert an infeasible node and then repair the resulting solution.
In each step, the algorithm starts from the incumbent solution and a new solution is generated
by the mimic operator; subsequently, a local search and the swallow operator are employed
to improve it; and finally, the newly-generated solutions and the old incumbent solutions
are compared to update the set of incumbent solutions according to the Pareto concept of
dominance.
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Despite its practical relevance, the stochastic version of the orienteering problem has
only received attention relatively recently and, to the best of our knowledge, previous work
has only considered the single-tour problem rather than the team orienteering problem that
we describe here. Even within the single-tour problem, there is some variation in which of
the three main characteristics (travel times, service times and rewards) are assumed to be
stochastic, and how to deal with tours that exceed the time limit.

The original paper on the stochastic orienteering problem assumes that only the scores
associated with each node are stochastic (Ilhan et al., 2008), whereas Campbell et al. (2011);
Papapanagiotou et al. (2014); Verbeeck et al. (2016); Evers et al. (2014) study the case we
describe here in which service times and travel times are stochastic. Service times are often
incorporated into travel times rather than treated separately, a model that we follow here.

In the sport of orienteering, exceeding the time limit typically incurs a penalty
proportional to the amount by which it has been exceeded. This assumption has some
practical appeal in situations where a delivery driver or repair person will earn overtime
payments for any delay in their return to the depot and is used in both Teng et al. (2004) and
Lau et al. (2012). An alternative concept is presented in Tang and Miller-Hooks (2005a),
who instead constrain the probability of exceeding the time limit to be below a threshold
value. In contrast, Campbell et al. (2011) do not force the vehicle to return to a set of depots
but, instead, allow it to stop at any location once the time limit is reached. Penalties are
incurred if a vehicle does not manage to visit a scheduled node within the time limit. A
stricter version of the constraint is employed by Evers et al. (2014) who keep the hard
constraint on the tour length used in the deterministic version of the problem and abort the
route if the expected return time to the depot is equal to the remaining time. A drone that
exceeds its driving range before returning to the end depot can be assumed to be lost, along
with all of its rewards. As a result, we use a strict policy in our algorithms whereby drones
that exceed the driving range lose all of their rewards.

Whilst this work considers the stochastic team orienteering problem, methodologies for
solving the stochastic orienteering problem have included a branch and bound algorithm
combined with local search (Campbell et al., 2011) and simulation with local search (Lau
et al., 2012). In particular, the latter use simulation to evaluate the values of tours. However,
their simulation component is only used for evaluation purposes, without providing any
feedback to the optimization component as we do. Also, they do not filter out solutions
provided by the optimization component as our methodology does. Both articles make use
of measures that combine the reward and the probability that the deadline is exceeded.
Campbell et al. (2011) denote this as the utility whereas Lau et al. (2012) use it in a similar
way to the ratios of reward and weight in a knapsack problem. Both of these works have
been refined and improved, with Varakantham and Kumar (2013) using a Mixed Integer
Linear Program Sample Average Approximation technique (MILP-SAA) to improve upon
the results of Lau et al. (2012) and Zhang et al. (2014) extend the method of Campbell et al.
(2011) to incorporate time windows for arriving at nodes.

3 Problem Description

We assume that the team is composed of m vehicles, and there is a maximum time, t0,
for completing each open route (from the origin depot to the designated end depot). The
set of possible points to visit can be described by an undirected graph G = (N,A), where
N = {0, 1, 2, . . . , n+ 1} is the set of nodes, including n customers, an origin depot 0, and
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a destination depot n+ 1; and A = {(i, j)/i, j ∈ N, i < j} is the set of edges connecting
them. Each node i ∈ N has a constant reward ui ≥ 0 (typically, these rewards are zero for
the origin and destination depots, while they are strictly positive for the customers). Rewards
can only be collected on the first visit to a node. Edges have a random travel time associated
with them, Tij and we assume that Tij

D
= Tji, where D= means equality in distribution.

We define a solution to the STOP to be a set M of m open routes, where each route is
defined by an array of nodes starting from the origin depot and ending at the destination
depot. The objective function is given by the maximization of total expected reward,

max
∑
m∈M

E[Um], (1)

whereUm is a random variable representing the total reward associated with routem. Since
travel times are stochastic, a route failure might occur whenever a vehicle cannot reach the
destination depot before the driving-range threshold, t0. For our example in which drones
are being used to conduct surveillance, no reward is realised if the drone does not return to
the end depot before its battery life runs out. As a result, we assume that if a vehicle does
not reach the end depot before the driving-range threshold is met, all of its rewards will
be lost. There will be examples where this assumption does not hold. For example, when
rewards can be transmitted in real time from each depot, or in the more traditional example
of carrying out repairs or sales at each node, the reward will have been collected at the end
of the service rather than when the vehicle returns to the end depot.

Thus, if we consider xijm as a binary decision variable which equals 1 if the edge
(i, j) ∈ A is in the route m, and 0 otherwise, the total reward accumulated in route m is
computed as:

Um =

{ ∑
(i,j)∈A

ui · xijm if
∑

(i,j)∈A
Tij · xijm ≤ t0

0 otherwise

}
, ∀m ∈M (2)

We now describe the constraints, the first being that each node is visited at most once
by any route:∑

m∈M

∑
i∈N

xijm ≤ 1, ∀j ∈ N \ {0, n+ 1} (3)

A route always starts at the origin depot (node 0) and ends at the destination depot (node
n+ 1):∑

j∈N
x0jm = 1, ∀m ∈M (4)

∑
i∈N

xi(n+1)m = 1, ∀m ∈M (5)

Finally, the vehicle always leaves each node it visits, except in the case of the origin and
destination depots:∑

i∈N
xihm −

∑
j∈N

xhjm = 0, ∀h ∈ N \ {0, n+ 1},∀m ∈M (6)
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Algorithm 1 Savings-based heuristic for the TOP
1: sol← generateDummySolution(Inputs)
2: savingsList← computeSortedSavingsList(Inputs, α)
3: while (savingsList is not empty) do
4: arc← selectNextArc(savingsList)
5: iRoute← getStartingRoute(arc)
6: jRoute← getClosingRoute(arc)
7: newRoute← mergeRoutes(iRoute, jRoute)
8: travelTimeNewRoute← calcRouteTravelTime(newRoute)
9: isMergeValid← validateMergeDrivingConstraints(travelTimeNewRoute, drivingRange)
10: if (isMergeValid) then
11: sol← updateSolution(newRoute, iRoute, jRoute, sol)
12: end if
13: deleteEdgeFromSavingList(arc)
14: end while
15: sortRoutesByProfit(sol)
16: deleteRoutesByProfit(sol, maxVehicles)
17: return sol

4 From a Fast Heuristic to a VNS Metaheuristic

While the main goal of this paper is to develop a simheuristic algorithm to solve the STOP,
we first develop a metaheuristic able to efficiently solve the deterministic version of the
problem (TOP). This forms the first part of the simheuristic. The metaheuristic, which
we describe in this section, consists of a novel constructive heuristic embedded within a
VNS-metaheuristic.

4.1 A novel savings-based heuristic for the TOP

Our heuristic is inspired by the well-known savings heuristic for the vehicle routing problem
(Clarke and Wright, 1964), but adapted to consider the particular characteristics of the TOP:
(i) the origin and destination depots may be different; (ii) not all of the customers need to
be visited; and (iii) the reward collected by visiting nodes must be considered during the
construction of the routing plan. The goal was to design a new savings-based heuristic able
to outperform the traditional one employed for solving the TOP (Tang and Miller-Hooks,
2005b).

Algorithm 1 provides a high-level description of the constructive heuristic. It starts by
generating an initial dummy solution (line 1), in which one route per customer is considered
so that for each customer i ∈ A, a vehicle departs from the origin depot (node 0), visits
i, and then resumes its trip towards the destination depot (node n+ 1) (Figure 2a). If any
route in this dummy solution does not satisfy the driving-range constraint, the associated
customer is discarded from the problem, since it cannot be reached with the current fleet
of vehicles. Next, we compute the ‘savings’ associated with each edge connecting two
different customers (line 2), i.e. the benefits obtained by visiting both customers in the same
route instead of using two distinct routes.

In order to compute the savings associated with an edge, one has to consider both the
travel time required to traverse that edge as well as the aggregated reward generated by
visiting both customers. The savings associated with an edge ij, s′ij are defined as

s′ij = α · sij + (1− α) · (ui + uj) (7)
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Figure 2 Dummy solution (left) and time-based savings (right).

to account for the trade-off between time-based savings sij = ti(n+1) + t0j − tij
(Figure 2b), and the aggregated reward, ui + uj , where α ∈ (0, 1) is a tuning parameter,
which is dependent on the heterogeneity of customers in terms of rewards. The specific
value of α needs to be empirically tuned, since it will depend on the heterogeneity of the
customers in terms of rewards. Thus, in a scenario with high heterogeneity, α will be close
to zero. On the contrary, α will be close to one for homogeneous scenarios. Notice that for
each edge there are two associated savings, depending on the actual direction in which the
edge is traversed. Thus, each edge generates two different arcs. After computing all savings,
the list of arcs can be sorted from higher to lower savings. Then, a route-merging process,
based on this sorted savings list, is started. In each iteration, the arc at the top of the sorted
list is selected (line 4). This arc connects two routes, which are merged into a new route as
far as this new route does not violate the driving-range constraint (line 9). Finally, the list
of routes are sorted according to the total reward provided (line 15) to select as many routes
from this list as possible taking into account the restricted number of vehicles in the fleet.

4.2 A VNS-based Metaheuristic for the TOP

The VNS framework has been chosen to extend the previously described heuristic into a
complete metaheuristic. As discussed in Hansen and Mladenović (2014), VNS approaches
are relatively easy-to-implement, do not contain a large number of parameters (thus avoiding
time-consuming setting processes), and offer an excellent trade-off between simplicity and
performance, both in terms of solutions quality as well as in terms of computing times.

Algorithm 2 describes the full simheuristic algorithm for the STOP. We describe the
simulation elements of this heuristic in Section 6, focusing on the underlying metaheuristic
here. First, a feasible initial solution (initSol) is generated using the constructive savings
heuristic described in the previous section. A line search of the α value, for calculating the
savings scores, is performed. In order to do this, we embed the saving heuristic in a fast
iterative multistart process, varying α from 0.1 to 0.9. We select as initSol the solution in
whichαmaximizes the reward, and thisα is held fixed throughout the remainder of the VNS
algorithm. As shown in Algorithm 2, the initSol is copied into a baseSol and bestSol while the
size of the neighborhood, k, is set to one. Then, a new solution, newSol, is created by shaking
the current one. The shaking procedure consists of randomly deleting a percentage k of
routes from baseSol. Next, new routes are generated using the constructive savings heuristic,
and merged with the current routes of baseSol. During the generation of these new routes,
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the constructive heuristic is combined with biased randomization techniques, which relax
somewhat the greedy behavior of the heuristic (Grasas et al., 2017). In particular, biased-
randomised techniques use skewed probability distributions to induce an ‘oriented’ (non-
uniform) random behaviour. This process turns a deterministic heuristic into a randomized
algorithm whilst preserving the logic behind the original greedy heuristic. In our case,
this biased randomization process is introduced by employing a Geometric probability
distribution with a parameter β (0 < β < 1) which controls the relative level of greediness
present in the randomized behaviour of the algorithm. Following a tuning process, we
observed a good performance for β = 0.3 and this was used in the numerical experiments.

The algorithm sequentially executes three local searches, which are described below, to
find the local minimum within the defined neighbourhood structure of newSol.The sequence
of local searches was established through experimentation during a tuning phase.

In the first local search, a traditional 2-opt local search is performed. After that, a
cache memory mechanism that records best-found-so-far routes is used to achieve a faster
convergence. This mechanism is implemented using a hash map data structure, which is
constantly updated whenever a better route is found by the algorithm.

The second local search removes a subset of nodes from each route. The number of
nodes to delete is selected randomly between 5 and 10 percent of the total number of
nodes in the route. There are three different mechanisms to choose which nodes should be
removed: (i) completely random; (ii) nodes with the highest rewards and; (iii) nodes with
the lowest rewards. The specific mechanism used is selected randomly in each iteration of
the algorithm.

The last local search is a biased insertion algorithm, similar to those proposed by Tang
and Miller-Hooks (2005a) and Dang et al. (2013). It tries to improve the routes obtained in
the previous local search. Iteratively, starting with the first node of the route, the next node
is selected from the list of non-served nodes and inserted into the route (assuming this does
not violate the driving-range constraint). In order to select the node to insert, the algorithm
takes into account the ratio between the added duration and the additional reward, as given
in Equation 8 (in this equation, it is assumed that a node i is being inserted between nodes
j and h in a route).

(tji + tih − tjh)/ui (8)

As the algorithm uses a biased-randomized selection process, instead of selecting the
node which minimizes this evaluation function at each step, the list of candidate nodes is
sorted according to the previously defined ratio and, as before, the Geometric distribution
is used to select the next node. The heuristic finishes when no more improvements are
achieved, and the newSol is returned. The lines referring to the simulation component are
used to deal with the stochastic version of the problem, and they will be explained in more
detail in Section 6.

With the objective of reducing the odds of getting trapped in a local minimum, the
algorithm can occasionally accept non-improving solutions according to an acceptance
criterion. We use a classical version of simulated annealing in the algorithm to serve as the
acceptance criterion. This method follows a cooling schedule with a decaying probability
that is regulated with a temperature parameter (T ), adjusted at each iteration by a factor
of λ. The temperature T is updated in each iteration of the algorithm using Equation 9.
Thus, baseSol can be updated with newSol even if newSol does not outperform baseSol.
As the temperature decreases, the probability of updating baseSol with an inferior newSol
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Algorithm 2 VNS-based Simheuristic
1: initSol← genInitSol(Inputs) . Initial solution stage (Savings-based heuristic)
2: baseSol← initSol
3: fastSimulation(baseSol) . Monte Carlo simulation
4: bestSol← baseSol
5: T ← 1000; λ← 0.999
6: while (time ≤ maxTime) do . VNS stage
7: k ← 1
8: while (k ≤ Kmax) do
9: newSol← shaking(baseSol, k) . biased-randomized heuristic

10: newSol← localSearch1(newSol)
11: newSol← localSearch2(newSol)
12: newSol← localSearch3(newSol)
13: if ((detProfit(newSol)− detProfit(baseSol)) > 0) then
14: fastSimulation(newSol) . Monte Carlo simulation
15: if ((stochProfit(newSol)− stochProfit(baseSol)) > 0) then
16: baseSol← newSol
17: if ((stochProfit(newSol)− stochProfit(bestSol)) > 0) then
18: bestSol← newSol
19: insert(poolBestSols, bestSol)
20: end if
21: k ← 1
22: end if
23: else . SA - based acceptance criterion
24: updateProb← probOfUpdating(detProfit(newSol), detProfit(baseSol), T )
25: if (updateProb ≥ Rand(0, 1)) then
26: baseSol← newSol
27: k ← 1
28: else
29: k ← k + 1
30: end if
31: end if
32: T ← T ∗ λ
33: end while
34: end while
35: for (sol ∈ poolBestSols) do . Refinement stage - Monte Carlo simulation
36: deepSimulation(sol)
37: if (stochProfit(sol) > stochProfit(bestSol)) then
38: bestSol← sol
39: end if
40: end for
41: return bestSol
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Table 1 Total number of nodes in each Benchmark Chao set.

Set #Nodes
1 32
2 21
3 33
4 100
5 66
6 64
7 102

decreases. Following a tuning process we use an initial temperature of T0 = 1000 and set
λ = 0.999 .

updateProb = e((detProfit(newSol)−detProfit(baseSol))/T ) (9)

5 Testing the Efficiency of our VNS Metaheuristic

Our VNS-based algorithm has been implemented using Java SE 8.0, and tested on a
workstation with an Intel Xeon E5-2650 v4 with 32GB RAM. We use the benchmark
instances proposed in Chao et al. (1996a) as a test set in our computational experiments.
These instances have been widely used in previous work to test the performance of
algorithms aimed at solving the deterministic TOP. This benchmark set is composed of a
total of 320 instances, which are divided into seven different sets. Table 1 shows the total
number of nodes in each of the sets, including the origin and destination nodes. The node
locations and rewards are identical for all of the instances within a set but the driving range
and the number of vehicles vary between the instances. Each instance in a set is characterized
by following the nomenclature px.y.z, where x denotes the set; y is the number of vehicles
(drones), which varies between 2 and 4 dependent on the instance; and z indicates the
maximum driving-range.

As is common in the TOP literature, all instances have been executed 5 times using
different initial seeds for the solution algorithm, and the best solution found in these runs has
been reported as our best solution (OBS). This is compared against the best known solution
(BKS) from the literature. In particular, we measure the performance of our algorithm using
the current BKS reported by Ke et al. (2016). The BKS were obtained using a PC with core
i5, 3.2 GHz, and 4 GB RAM.

Figure 3 shows the average percentage gap between OBS and BKS. Notice that we reach
the BKS for all of the instances in classes 1, 2, and 3, obtaining a 0.0% gap. Regarding the
remaining classes, we obtain average gaps of less than 0.5% in very short computing times,
which proves that our VNS-based metaheuristic is highly competitive for the deterministic
version of the TOP.

The average computation times of our algorithm for each set of instances are given by
the black bars in Figure 4. Notice that for classes 1, 2, and 3, less than 20 seconds are
required. In the case of classes 5 and 6, average times are less than 40 seconds. Finally, for
classes 4 and 7 average times are less than 225 and 160 seconds, respectively. Each circle
in this figure shows the maximum computing time required to reach the OBS value for
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Figure 3 Percentage gap between OBS and BKS.

Table 2 Percentage gap between OBS and other competitive approaches. (Positive GAPS)

Set Ke et al. (2016) (BKS) Dang et al. (2013) Dang et al. (2011)
set1 0.00 0.00 0.00
set2 0.00 0.00 0.00
set3 0.00 0.00 0.00
set4 0.30 0.20 0.00
set5 0.00 0.00 0.00
set6 0.10 0.10 0.10
set7 0.40 0.40 0.30
Average: 0.11 0.10 0.06

any instance in the set. Although classes 4 and 7 require higher CPU times than the other
classes to reach the OBS value, we obtain an average time of about 65 seconds. These times
are competitive in comparison with the average times required to obtain the BKS, which is
about 58 seconds.

Tables 5 to 11 provide detailed information regarding computing times and OBS values
for each deterministic instance (OBS-D), as well as the gap to the BKS. Moreover, we have
compared our approach with two other approaches (Dang et al. (2013), and Dang et al.
(2011)). Table 2 provides the percentage average gap for each set of instances.
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Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7
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Figure 4 Average running time to obtain the OBS for each class.

6 Extending the VNS Metaheuristic into a Simheuristic

Algorithm 2 provides an overview of our multi-stage simheuristic approach, which extends
the VNS metaheuristic to the STOP. In the first stage, a feasible initial solution is constructed
using the savings-based heuristic described in Algorithm 1. During the second stage, the
adaptive VNS metaheuristic enhances the initial feasible solution by iteratively exploring
the search space and conducting a ‘reduced’ number of simulation runs that allow us to: (i)
obtain observations on the total length of the tour defined by the current solution (from which
the expected time and other statistics can be estimated); and (ii) provide feedback that can
be used by the metaheuristic to better guide the search (e.g., by updating the base solution
according to the estimated statistics). From this stage, a reduced set of ‘elite’ solutions is
obtained. By limiting the size of this ‘elite’ solutions, we ensure we only keep track of the
’elite’ solutions as the algorithm evolves.

Notice that during the second stage, whenever a newSol is ‘promising’, it is subject
to a fast Monte Carlo Simulation (MCS) process to test how it deals with the stochastic
nature of the proposed problem. This fast simulation process consists of a small number
of simulation runs accounting for travel time variability between nodes, to estimate the
following values: (i) the expected return; and (ii) its reliability, measured in terms of the
percentage of routes that are completed without violating the driving-range constraint. Also,
whenever the stochastic value of the newSol outperforms that of the baseSol and / or that
of some elite solution, these solutions are updated to newSol.

Once the second stage of the algorithm is finished, a deep MCS process is launched to
better assess the elite solutions pool before reporting the final results. This process carries
out a large number of MCS runs, to refine the estimated values of the ’elite’ solutions
obtained in the previous step. Since the number of generated solutions during the search
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can be large and the simulation process is time-consuming, we limit the number of MCS
iterations to be executed. For our approach, the number of iterations for the fast and deep
MCS stages were set to 1,000 and 50,000, respectively.

7 Computational Experiments for the Stochastic TOP

To the best of our knowledge, previous work in the literature has only considered the
deterministic TOP or the stochastic single-tour orienteering problem. Thus, we have
compared our approach with the method proposed by Campbell et al. (2011) for solving
the stochastic orienteering problem. Within our algorithm we set the number of vehicles
in the team, m = 1 for a fair comparison. We chose to compare with Campbell’s method
because it solves the most closely related problem to our work. The authors use the instances
proposed in Chao et al. (1996b). These sets contain 66 (set 5), and 64 customers (set 6),
respectively, and 26, and 14 different maximum travel times, respectively. They assume
that the customers are fully connected and that the travel times on the arcs are gamma
distributed. We have adapted our algorithm using the same parameters and conditions than
described in Campbell et al. (2011), to compute the instances. Tables 3 and 4 show for each
set: (i) the maximum travel time (Tmax); (ii) the the best-found stochastic solution obtained
in Campbell et al. (2011) approach; (iii) the best-found stochastic solution obtained using
our approach (OBSS); and (iv) the gap between both approaches. As can been seen, our
approach is highly competitive, improving the previous results by an average of 1.59% for
set 5, and 1.68% for set 6.

Once we have validated the quality of our approach, we have extended the deterministic
instances introduced by Chao et al. (1996a) for the TOP, and described previously in
Section 5, to incorporate stochastic travel times.

We assume in the computational experiments that the travel times Tij follow Log-
Normal probability distributions. In a real-world application, historical data could be used
to determine the most appropriate distribution for each of the Tij but, as discussed in Juan
et al. (2011), the Log-Normal distribution is a natural choice for describing non-negative
random variables, such as travel times. The Log-Normal distribution has two parameters,
namely: the location parameter, µ, and the scale parameter, σ, which relate to the expected
value E[Tij ] and the variance V ar[Tij ] as follows:

µij = ln(E[Tij ])−
1

2
ln

(
1 +

V ar[Tij ]

E[Tij ]2

)
(10)

σij =

∣∣∣∣∣
√
ln

(
1 +

V ar[Tij ]

E[Tij ]2

)∣∣∣∣∣ (11)

In setting up the stochastic instances, we assume that E[Tij ] = tij (∀i, j ∈ N ), where
tij the travel time for the corresponding deterministic instance. We set the variability in
the travel times with reference to the deterministic travel time such that V ar[Tij ] = c · tij
and c ≥ 0. Notice that the deterministic instances correspond to stochastic instances with
c = 0. In our experiments, we have used the value c = 0.05.

The classic deterministic benchmark dataset consists of 7 different classes. Tables 5
to 11 show, for each class: (i) the maximum travel time (Tmax) for each drone, (ii) the
best-known solution for the deterministic variant of the problem, obtained from the existing
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Tmax Campbell et al. 2011 [1] OBS_S [3] GAP (%)[2-1]
20 294.95 312.50 5.95
25 378.91 393.65 3.89
30 463.40 481.10 3.82
35 548.13 586.40 6.98
40 630.54 647.40 2.67
45 717.67 730.30 1.76
50 799.85 809.70 1.23
55 878.77 891.45 1.44
60 954.15 967.50 1.40
65 1026.11 1030.70 0.45
70 1094.11 1094.40 0.03
75 1156.66 1167.05 0.90
80 1224.79 1228.85 0.33
85 1285.42 1284.59 -0.06
90 1340.92 1343.00 0.16
95 1396.09 1399.95 0.28

100 1438.59 1447.15 0.60
105 1483.26 1504.90 1.46
110 1522.61 1530.95 0.55
115 1555.89 1565.20 0.60
120 1584.68 1585.85 0.07
130 1627.53 1666.65 2.40

Average: 1063.77 1075.87 1.68
Table 3 Comparison between our approach and Campbell et al. (2011) approach for dataset 5 of

Chao’s instances.

Tmax Campbell et al 2011 [1] OBS_S [2] GAP(%)[2-1]
15 264.46 273.53 3.43
20 363.93 388.80 6.83
25 452.88 471.60 4.13
30 561.32 564.30 0.53
35 666.27 680.06 2.07
40 766.36 775.50 1.19
45 853.50 853.79 0.03
55 1011.81 1014.88 0.30
60 1073.23 1079.14 0.55
65 1135.31 1138.72 0.30
70 1179.92 1190.56 0.90
75 1230.45 1230.36 -0.01
80 1264.52 1269.02 0.36

Average: 832.61 840.79 1.59
Table 4 Comparison between our approach and Campbell et al. (2011) approach for dataset 6 of

Chao’s instances.
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Table 5 Results for class 1 benchmark instances.
Deterministic execution Stochastic execution

BKS OBS_D Time (s) GAP(%) OBS_D_S Reliability OBS_S Reliability Time (s)
Instance Tmax Reward [1] Reward [2] [3] [4] (1-2) E[Reward] [5] [6] E[Reward] [7] [8] [9]
p1.2.b 5.0 15 15 0 0.0 14.3 0.86 14.3 0.86 4
p1.2.c 7.5 20 20 0 0.0 18.2 0.75 18.2 0.75 4
p1.2.d 10.0 30 30 0 0.0 26.0 0.74 26.3 0.75 4
p1.2.e 12.5 45 45 0 0.0 41.7 0.87 42.2 0.89 4
p1.2.f 15.0 80 80 0 0.0 64.6 0.60 70.5 0.90 5
p1.2.g 17.5 90 90 0 0.0 75.8 0.62 83.7 0.97 4
p1.2.h 20.0 110 110 0 0.0 97.5 0.76 103.6 0.89 17
p1.2.i 23.0 135 135 0 0.0 94.5 0.48 122.9 0.97 4
p1.2.j 25.0 155 155 0 0.0 123.1 0.64 141.0 0.88 5
p1.2.k 27.5 175 175 0 0.0 124.2 0.49 163.3 0.98 7
p1.2.l 30.0 195 195 5 0.0 125.8 0.39 179.5 0.99 9
p1.2.m 32.5 215 215 9 0.0 170.2 0.64 201.4 0.97 16
p1.2.n 35.0 235 235 0 0.0 152.9 0.43 218.8 0.99 5
p1.2.o 36.5 240 240 4 0.0 204.4 0.74 230.7 0.97 7
p1.2.p 37.5 250 250 0 0.0 167.3 0.45 230.9 0.96 5
p1.2.q 40.0 265 265 1 0.0 205.4 0.55 247.8 0.94 7
p1.2.r 42.5 280 280 21 0.0 168.9 0.37 259.9 1.00 4
p1.3.c 5.0 15 15 0 0.0 14.3 0.86 14.3 0.86 6
p1.3.d 6.7 15 15 0 0.0 15.0 1.00 15.0 1.00 6
p1.3.e 8.3 30 30 0 0.0 24.9 0.62 27.0 0.70 6
p1.3.f 10.0 40 40 0 0.0 31.8 0.43 32.6 0.47 23
p1.3.g 11.7 50 50 0 0.0 44.2 0.84 48.4 0.86 6
p1.3.h 13.3 70 70 1 0.0 66.3 0.83 66.3 0.83 11
p1.3.i 15.3 105 105 0 0.0 87.2 0.47 94.1 0.83 6
p1.3.j 16.7 115 115 0 0.0 90.7 0.45 102.2 0.74 6
p1.3.k 18.3 135 135 0 0.0 109.2 0.52 121.4 0.90 17
p1.3.l 20.0 155 155 0 0.0 124.0 0.48 138.8 0.89 13
p1.3.m 21.7 175 175 16 0.0 127.7 0.39 159.5 0.91 9
p1.3.n 23.3 190 190 1 0.0 152.2 0.49 175.1 0.93 15
p1.3.o 24.3 205 205 0 0.0 163.5 0.51 183.0 0.90 11
p1.3.p 25.0 220 220 1 0.0 177.5 0.53 199.0 0.78 32
p1.3.q 26.7 230 230 1 0.0 190.0 0.49 218.0 0.97 6
p1.3.r 28.3 250 250 17 0.0 207.2 0.54 233.5 0.87 27
p1.4.d 5.0 15 15 0 0.0 14.3 0.86 14.3 0.85 8
p1.4.e 6.2 15 15 0 0.0 15.0 1.00 15.0 1.00 8
p1.4.f 7.5 25 25 0 0.0 23.2 0.74 23.2 0.74 8
p1.4.g 8.8 35 35 0 0.0 30.1 0.72 34.3 0.88 8
p1.4.h 10.0 45 45 0 0.0 37.9 0.44 40.8 0.60 9
p1.4.i 11.5 60 60 0 0.0 48.5 0.53 55.0 0.70 8
p1.4.j 12.5 75 75 8 0.0 63.1 0.41 67.2 0.61 8
p1.4.k 13.8 100 100 27 0.0 86.3 0.55 86.3 0.74 8
p1.4.l 15.0 120 120 0 0.0 107.1 0.64 116.0 0.86 9
p1.4.m 16.2 130 130 0 0.0 112.0 0.71 124.9 0.81 10
p1.4.n 17.5 155 155 0 0.0 121.4 0.30 135.7 0.88 8
p1.4.o 18.2 165 165 0 0.0 129.6 0.38 149.0 0.84 28
p1.4.p 18.8 175 175 6 0.0 152.2 0.58 159.1 0.87 16
p1.4.q 20.0 190 190 6 0.0 167.1 0.59 171.9 0.84 8
p1.4.r 21.2 210 210 0 0.0 170.8 0.44 191.1 0.83 9

Average: 126 126 3 0.0 99.6 0.60 116.0 0.86 10

TOP literature; (iii) our best solution for the deterministic variant of the problem (OBS-
D); (iv) the expected reward of OBS-D when it is applied as a solution of the stochastic
variant of the problem (OBS-D-S); (v) the reliability of the OBS-D-S (i.e., the percentage
of routes that are effectively completed without violating the driving-range constraint in a
stochastic environment); (vi) the expected reward for our best solution for the stochastic
variant of the problem (OBS-S); and (vii) the reliability associated with OBS-S. To compute
the OBD-D we have executed just the VNS stage of the metaheuristic, disabling the sim
parts (fastSimulation process). Notice that the refinement stage, where a deep simulation
process is carried out, is not required for a deterministic scenario.

Figure 5 shows, for each class, the percentage gaps between: (i) the best-found
deterministic solution when applied into stochastic conditions (OBS-D-S) and itself when
applied in a deterministic environment (OBS-D); and (ii) the best-found stochastic solution
when applied into stochastic conditions (OBS-S) and the best-found solution for the
deterministic version (OBS-D). Notice that, for each class, the OBS-S boxplot is always
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Table 6 Results for class 2 benchmark instances.
Deterministic execution Stochastic execution

BKS OBS_D Time (s) GAP(%) OBS_D_S Reliability OBS_S Reliability Time (s)
Instance Tmax Reward [1] Reward [2] [3] [4] (1-2) E[Reward] [5] [6] E[Reward] [7] [8] [9]
p2.2.a 7.5 90 90 0 0.0 78.0 0.76 81.0 0.80 4
p2.2.b 10.0 120 120 0 0.0 108.5 0.81 116.5 0.93 4
p2.2.c 11.5 140 140 0 0.0 112.0 0.65 122.0 0.76 5
p2.2.d 12.5 160 160 0 0.0 126.4 0.59 134.6 0.69 6
p2.2.e 13.5 190 190 0 0.0 133.6 0.49 165.8 0.85 10
p2.2.f 15.0 200 200 0 0.0 193.3 0.97 197.7 0.98 7
p2.2.g 16.0 200 200 0 0.0 200.0 1.00 200.0 1.00 10
p2.2.h 17.5 230 230 0 0.0 191.8 0.65 219.3 0.89 10
p2.2.i 19.0 230 230 0 0.0 224.8 0.96 229.6 1.00 6
p2.2.j 20.0 260 260 0 0.0 217.3 0.70 220.3 0.69 4
p2.2.k 22.5 275 275 0 0.0 207.4 0.54 260.0 1.00 4
p2.3.a 5.0 70 70 0 0.0 54.0 0.54 59.4 0.52 10
p2.3.b 6.7 70 70 0 0.0 64.8 0.89 67.0 0.93 10
p2.3.c 7.7 105 105 0 0.0 78.9 0.48 97.9 0.74 18
p2.3.d 8.3 105 105 0 0.0 74.6 0.49 104.5 0.98 11
p2.3.e 9.0 120 120 0 0.0 110.6 0.80 117.1 0.90 13
p2.3.f 10.0 120 120 0 0.0 109.2 0.79 116.2 0.92 10
p2.3.g 10.7 145 145 0 0.0 103.7 0.28 137.8 0.91 9
p2.3.h 11.7 165 165 0 0.0 131.8 0.48 155.7 0.92 31
p2.3.i 12.7 200 200 0 0.0 148.9 0.35 171.7 0.87 7
p2.3.j 13.3 200 200 1 0.0 125.0 0.32 196.3 0.93 14
p2.3.k 15.0 200 200 3 0.0 187.9 0.85 198.6 0.99 15
p2.4.a 3.8 10 10 0 0.0 10.0 1.00 10.0 1.00 9
p2.4.b 5.0 70 70 0 0.0 70.0 1.00 70.0 1.00 9
p2.4.c 5.8 70 70 0 0.0 68.7 0.96 68.8 0.97 11
p2.4.d 6.2 70 70 0 0.0 58.4 0.74 69.9 0.99 10
p2.4.e 6.8 70 70 0 0.0 61.5 0.92 67.6 0.95 14
p2.4.f 7.5 105 105 0 0.0 72.0 0.29 78.3 0.45 13
p2.4.g 8.0 105 105 0 0.0 92.6 0.75 102.7 0.91 27
p2.4.h 8.8 120 120 0 0.0 103.0 0.64 112.0 0.93 8
p2.4.i 9.5 120 120 0 0.0 110.0 0.87 112.0 0.93 9
p2.4.j 10.0 120 120 0 0.0 110.0 0.87 112.0 0.93 8
p2.4.k 11.2 180 180 0 0.0 138.7 0.37 157.0 0.91 19

Average: 140 140 0 0.0 117.5 0.69 131.2 0.88 11

closer to the OBS-D value than the OBS-D-S boxplot. In other words, employing the best-
found deterministic plan into a stochastic environment usually leads to suboptimal solutions.
Notice also that the OBS-D value can be seen as a reference reward value in a scenario
with perfect information (i.e., without uncertainty) for the expected reward under stochastic
conditions.
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Table 7 Results for class 3 benchmark instances.
Deterministic execution Stochastic execution

BKS OBS_D Time (s) GAP(%) OBS_D_S Reliability OBS_S Reliability Time (s)
Instance Tmax Reward [1] Reward [2] [3] [4] (1-2) E[Reward] [5] [6] E[Reward] [7] [8] [9]
p3.2.a 7.5 90 90 0 0.0 68.8 0.59 81.3 0.85 5
p3.2.b 10.0 150 150 0 0.0 143.7 0.91 143.8 0.91 5
p3.2.c 12.5 180 180 0 0.0 171.5 0.90 179.5 1.00 4
p3.2.d 15.0 220 220 0 0.0 181.7 0.75 207.1 0.96 4
p3.2.e 17.5 260 260 26 0.0 187.3 0.49 251.9 0.98 18
p3.2.f 20.0 300 300 0 0.0 186.6 0.38 285.9 0.97 4
p3.2.g 22.5 360 360 10 0.0 222.2 0.39 327.4 0.98 6
p3.2.h 25.0 410 410 2 0.0 233.2 0.34 375.9 0.92 19
p3.2.i 27.5 460 460 13 0.0 360.7 0.59 412.8 0.91 4
p3.2.j 30.0 510 510 2 0.0 351.2 0.47 466.3 0.92 21
p3.2.k 32.5 550 550 0 0.0 473.6 0.75 511.4 0.88 5
p3.2.l 35.0 590 590 0 0.0 393.4 0.48 544.4 0.95 19
p3.2.m 37.5 620 620 17 0.0 546.7 0.68 599.9 0.97 6
p3.2.n 40.0 660 660 10 0.0 541.6 0.54 614.1 0.93 18
p3.2.o 42.5 690 690 11 0.0 556.6 0.57 655.8 0.96 15
p3.2.p 45.0 720 720 1 0.0 459.9 0.43 691.9 0.98 8
p3.2.q 47.5 760 760 4 0.0 500.2 0.41 728.5 1.00 5
p3.2.r 50.0 790 790 2 0.0 492.9 0.39 741.1 0.97 4
p3.2.s 52.5 800 800 3 0.0 782.5 0.94 791.9 0.98 6
p3.2.t 55.0 800 800 0 0.0 730.5 0.86 799.5 1.00 4
p3.3.a 5.0 30 30 0 0.0 22.6 0.75 29.0 0.95 6
p3.3.b 6.7 90 90 0 0.0 89.9 0.99 89.9 0.98 6
p3.3.c 8.3 120 120 0 0.0 101.1 0.62 111.4 0.72 6
p3.3.d 10.0 170 170 0 0.0 162.7 0.90 163.9 0.90 7
p3.3.e 11.7 200 200 0 0.0 190.1 0.68 197.6 0.96 6
p3.3.f 13.3 230 230 0 0.0 177.4 0.38 208.4 0.71 25
p3.3.g 15.0 270 270 0 0.0 234.8 0.65 255.3 0.93 19
p3.3.h 16.7 300 300 1 0.0 288.2 0.85 295.2 0.94 7
p3.3.i 18.3 330 330 0 0.0 311.9 0.77 319.4 0.99 6
p3.3.j 20.0 380 380 0 0.0 261.9 0.28 356.7 0.96 7
p3.3.k 21.7 440 440 5 0.0 324.8 0.46 414.2 0.90 18
p3.3.l 23.3 480 480 11 0.0 431.8 0.75 456.8 0.92 9
p3.3.m 25.0 520 520 17 0.0 400.8 0.46 488.4 0.99 10
p3.3.n 26.7 570 570 0 0.0 514.1 0.70 514.6 0.70 25
p3.3.o 28.3 590 590 11 0.0 477.4 0.50 568.0 0.93 6
p3.3.p 35.0 640 640 4 0.0 543.8 0.58 586.7 0.94 15
p3.3.q 31.7 680 680 22 0.0 467.9 0.37 648.9 0.99 13
p3.3.r 33.3 710 710 5 0.0 580.5 0.51 665.1 0.79 7
p3.3.s 35.0 720 720 3 0.0 606.0 0.62 693.2 0.95 9
p3.3.t 36.7 760 760 23 0.0 549.4 0.39 699.3 0.89 19
p3.4.a 3.8 20 20 0 0.0 15.7 0.79 15.9 0.79 8
p3.4.b 5.0 30 30 0 0.0 22.2 0.74 28.6 0.93 8
p3.4.c 6.2 90 90 0 0.0 86.3 0.77 86.3 0.74 8
p3.4.d 7.5 100 100 0 0.0 79.7 0.59 97.6 0.76 14
p3.4.e 8.5 140 140 0 0.0 129.0 0.59 132.6 0.64 8
p3.4.f 10.0 190 190 0 0.0 181.6 0.88 183.5 0.88 24
p3.4.g 11.2 220 220 0 0.0 193.3 0.63 204.7 0.76 32
p3.4.h 12.5 240 240 0 0.0 228.6 0.63 228.8 0.65 8
p3.4.i 13.8 270 270 0 0.0 211.7 0.38 247.3 0.96 36
p3.4.j 15.0 310 310 0 0.0 262.6 0.47 291.5 0.87 8
p3.4.k 16.2 350 350 0 0.0 292.1 0.34 300.3 0.39 8
p3.4.l 17.5 380 380 0 0.0 344.3 0.56 361.0 0.87 8
p3.4.m 18.8 390 390 21 0.0 337.9 0.58 381.4 0.89 9
p3.4.n 20.0 440 440 10 0.0 365.9 0.38 411.6 0.88 8
p3.4.o 21.2 500 500 22 0.0 419.5 0.50 465.5 0.87 22
p3.4.p 22.5 560 560 1 0.0 456.8 0.48 511.9 0.92 34
p3.4.q 23.8 560 560 18 0.0 522.5 0.71 555.3 0.96 14
p3.4.r 25.0 600 600 18 0.0 446.7 0.36 562.8 0.89 10
p3.4.s 26.2 670 670 0 0.0 501.7 0.23 586.3 0.75 22
p3.4.t 27.5 670 670 0 0.0 593.9 0.59 664.9 0.97 10

Average: 415 415 5 0.0 333.6 0.59 391.5 0.89 12
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Table 8 Results for class 4 benchmark instances.
Deterministic execution Stochastic execution

BKS OBS_D Time (s) GAP(%) OBS_D_S Reliability OBS_S Reliability Time (s)
Instance Tmax Reward [1] Reward [2] [3] [4] (1-2) E[Reward] [5] [6] E[Reward] [7] [8] [9]
p4.2.a 25.0 206 206 2 0.0 133.8 0.42 164.4 0.81 11
p4.2.b 30.0 341 341 1 0.0 232.2 0.46 298.3 0.95 19
p4.2.c 35.0 452 452 39 0.0 251.9 0.31 377.5 0.82 25
p4.2.d 40.0 531 531 50 0.0 325.3 0.38 476.7 0.90 60
p4.2.e 45.0 618 618 33 0.0 391.5 0.39 539.6 0.83 88
p4.2.f 50.0 687 687 278 0.0 379.9 0.30 601.5 0.95 264
p4.2.g 55.0 757 756 470 0.1 47.8 0.41 653.0 0.94 431
p4.2.h 60.0 835 827 169 1.0 441.5 0.29 726.0 0.96 220
p4.2.i 65.0 918 918 522 0.0 500.2 0.30 744.2 0.94 427
p4.2.j 70.0 965 962 185 0.3 632.6 0.43 790.6 0.97 199
p4.2.k 75.0 1022 1020 240 0.2 560.4 0.31 849.1 0.92 254
p4.2.l 80.0 1074 1068 247 0.6 590.5 0.31 894.4 0.94 453
p4.2.m 85.0 1132 1124 192 0.7 572.2 0.29 927.0 0.82 120
p4.2.n 90.0 1174 1166 181 0.7 587.6 0.25 1027.2 0.95 187
p4.2.o 95.0 1218 1211 479 0.6 700.9 0.34 1098.5 0.93 327
p4.2.p 100.0 1242 1225 475 1.4 739.1 0.36 1126.0 0.91 394
p4.2.q 105.0 1268 1262 137 0.5 699.1 0.31 1135.1 0.94 294
p4.2.r 110.0 1292 1281 504 0.9 705.4 0.30 1098.8 0.90 391
p4.2.s 115.0 1304 1302 444 0.2 853.2 0.42 1119.1 0.91 330
p4.2.t 120.0 1306 1306 100 0.0 914.8 0.49 1096.8 0.86 241
p4.3.b 20.0 38 38 0 0.0 24.5 0.38 21.3 0.34 7
p4.3.c 23.3 193 193 0 0.0 144.5 0.35 177.0 0.82 129
p4.3.d 26.7 335 335 1 0.0 188.0 0.17 298.5 0.95 179
p4.3.e 30.0 468 468 11 0.0 301.0 0.25 416.7 0.94 261
p4.3.f 33.3 579 579 7 0.0 326.2 0.18 491.9 0.81 40
p4.3.g 36.7 653 651 134 0.3 441.3 0.31 544.8 0.86 313
p4.3.h 40.0 729 723 522 0.8 422.8 0.19 643.1 0.95 193
p4.3.i 43.3 809 797 407 1.5 512.8 0.26 689.1 0.90 182
p4.3.j 46.7 861 853 333 0.9 478.9 0.18 773.0 0.96 327
p4.3.k 50.0 919 918 27 0.1 572.3 0.22 846.0 0.98 280
p4.3.l 53.3 979 976 296 0.3 538.6 0.17 898.9 0.96 141
p4.3.m 56.7 1063 1063 292 0.0 625.7 0.20 925.7 0.99 320
p4.3.n 60.0 1121 1118 345 0.3 669.4 0.22 969.6 0.81 102
p4.3.o 63.3 1172 1165 491 0.6 654.7 0.18 1027.7 0.86 496
p4.3.p 63.7 1222 1220 320 0.2 690.3 0.18 1040.3 0.86 212
p4.3.q 70.0 1253 1240 121 1.0 897.8 0.36 1126.0 0.88 141
p4.3.r 73.3 1273 1270 324 0.2 782.4 0.23 1199.7 0.92 496
p4.3.s 76.7 1295 1290 450 0.4 842.2 0.26 1173.9 0.92 123
p4.3.t 80.0 1305 1304 595 0.1 1046.7 0.52 1254.3 0.94 388
p4.4.d 20.0 38 38 0 0.0 21.3 0.34 26.0 0.64 10
p4.4.e 22.5 183 183 4 0.0 141.2 0.22 160.7 0.76 345
p4.4.f 25.0 324 324 348 0.0 213.6 0.17 287.8 0.90 278
p4.4.g 27.5 461 461 5 0.0 269.0 0.12 372.7 0.65 116
p4.4.h 30.0 571 571.0 5 0.0 360.5 0.16 499.5 0.89 577
p4.4.i 32.5 657 657 3 0.0 372.1 0.10 558.4 0.92 551
p4.4.j 35.0 732 732 177 0.0 485.0 0.20 632.9 0.81 164
p4.4.k 37.5 821 821 117 0.0 447.6 0.24 680.0 0.89 134
p4.4.l 40.0 880 879 43 0.1 492.4 0.09 782.7 0.77 490
p4.4.m 42.5 919 916 590 0.3 572.0 0.15 786.0 0.72 459
p4.4.n 45.0 977 970 7 0.7 611.2 0.15 870.9 0.78 288
p4.4.o 47.5 1061 1061 149 0.0 565.2 0.08 893.8 0.83 192
p4.4.p 50.0 1124 1124 543 0.0 666.1 0.12 955.3 0.78 327
p4.4.q 47.5 1161 1161 160 0.0 676.5 0.12 1006.5 0.87 338
p4.4.r 55.0 1216 1213 464 0.2 727.0 0.12 1018.7 0.83 333
p4.4.s 57.5 1260 1256 456 0.3 720.2 0.11 1087.8 0.86 316
p4.4.t 60.0 1285 1281 65 0.3 708.7 0.10 1178.6 0.84 503

Average: 862 859 224 0.3 508.4 0.26 751.1 0.87 259
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Table 9 Results for class 5 benchmark instances.
Deterministic execution Stochastic execution

BKS OBS_D Time (s) GAP(%) OBS_D_S Reliability OBS_S Reliability Time (s)
Instance Tmax Reward [1] Reward [2] [3] [4] (1-2) E[Reward] [5] [6] E[Reward] [7] [8] [9]
p5.2.b 5.0 20 20 0 0.0 16.4 0.86 19.4 0.94 5
p5.2.c 7.5 50 50 0 0.0 41.4 0.69 45.3 0.85 20
p5.2.d 10.0 80 80 0 0.0 76.0 0.95 80.0 1.00 5
p5.2.e 12.5 180 180 0 0.0 120.9 0.47 142.3 0.72 65
p5.2.f 15.0 240 240 0 0.0 121.1 0.25 180.0 1.00 6
p5.2.g 17.5 320 320 20 0.0 309.3 0.93 310.6 0.94 27
p5.2.h 20.0 410 410 38 0.0 248.5 0.37 352.4 0.82 52
p5.2.i 22.5 480 480 6 0.0 244.3 0.26 434.4 1.00 16
p5.2.j 25.0 580 580 0 0.0 334.1 0.33 467.0 0.87 13
p5.2.k 27.5 670 670 1 0.0 466.3 0.48 631.2 0.94 55
p5.2.l 30.0 800 800 49 0.0 472.4 0.35 723.7 0.96 35
p5.2.m 32.5 860 860 1 0.0 524.2 0.37 746.9 0.93 54
p5.2.n 35.0 925 925 14 0.0 600.1 0.40 819.6 0.92 16
p5.2.o 37.5 1020 1020 14 0.0 532.0 0.27 862.6 0.93 57
p5.2.p 40.0 1150 1150 0 0.0 672.2 0.34 857.3 0.57 6
p5.2.q 42.5 1195 1195 34 0.0 656.0 0.30 1146.8 0.98 39
p5.2.r 45.0 1260 1260 4 0.0 972.1 0.60 1184.1 0.99 9
p5.2.s 47.5 1340 1330 1 0.7 748.9 0.32 1229.5 0.98 21
p5.2.t 50.0 1400 1400 75 0.0 818.2 0.34 1304.8 0.93 50
p5.2.u 52.5 1460 1460 65 0.0 833.7 0.33 1236.3 0.99 76
p5.2.v 55.0 1505 1505 87 0.0 954.7 0.39 1336.0 0.95 50
p5.2.w 57.5 1565 1560 57 0.3 983.5 0.40 1411.0 0.93 43
p5.2.x 60.0 1610 1610 16 0.0 927.4 0.33 1389.8 0.93 65
p5.2.y 60.5 1645 1645 97 0.0 905.5 0.30 1456.2 0.87 16
p5.2.z 65.0 1680 1680 124 0.0 906.4 0.23 1453.5 0.92 157
p5.3.b 3.3 15 15 0 0.0 13.2 0.67 13.8 0.72 97
p5.3.c 5.0 20 20 0 0.0 19.4 0.94 19.4 0.94 7
p5.3.d 6.7 60 60 0 0.0 40.8 0.33 44.3 0.40 20
p5.3.e 8.3 95 95 0 0.0 60.4 0.32 66.8 0.37 8
p5.3.f 10.0 110 110 0 0.0 110.0 1.00 110.0 1.00 7
p5.3.g 11.7 185 185 0 0.0 163.4 0.69 164.6 0.70 18
p5.3.h 13.3 260 260 1 0.0 249.5 0.88 251.3 0.90 25
p5.3.i 15.0 335 335 55 0.0 177.3 0.15 267.2 0.92 11
p5.3.j 16.7 470 470 1 0.0 354.4 0.43 356.3 0.44 15
p5.3.k 18.3 495 495 13 0.0 322.6 0.28 463.6 0.96 53
p5.3.l 20.0 595 595 133 0.0 421.1 0.35 518.7 0.73 50
p5.3.m 21.7 650 650 2 0.0 630.8 0.91 630.8 0.91 10
p5.3.n 23.3 755 755 23 0.0 457.1 0.22 616.8 0.66 17
p5.3.o 25.0 870 870 0 0.0 487.5 0.18 678.5 0.68 48
p5.3.p 26.7 990 990 0 0.0 614.8 0.24 798.6 0.61 30
p5.3.q 28.3 1070 1070 3 0.0 637.8 0.21 972.7 0.99 7
p5.3.r 30.0 1125 1125 110 0.0 629.8 0.18 983.3 0.73 10
p5.3.s 31.7 1190 1190 96 0.0 668.1 0.18 1067.7 0.88 38
p5.3.t 33.3 1260 1260 11 0.0 1094.1 0.65 1089.8 0.87 24
p5.3.u 35.0 1345 1345 130 0.0 805.5 0.21 1148.7 0.86 21
p5.3.v 36.7 1425 1425 167 0.0 854.5 0.21 1207.3 0.85 94
p5.3.w 38.3 1485 1485 48 0.0 826.9 0.17 1253.7 0.99 7
p5.3.x 40.0 1555 1545 146 0.6 1025.6 0.28 1335.2 0.89 31
p5.3.y 41.7 1595 1590 50 0.3 1361.1 0.62 1484.7 0.95 15
p5.3.z 43.3 1635 1635 24 0.0 1011.0 0.23 1420.6 0.84 10
p5.4.b 2.5 15 15 0 0.0 0.0 1.00 0.0 1.00 10
p5.4.c 3.8 20 20 0 0.0 19.9 0.97 19.9 0.97 10
p5.4.d 5.0 20 20 0 0.0 19.3 0.93 19.4 0.94 10
p5.4.e 6.2 20 20 0 0.0 20.0 1.00 20.0 1.00 10
p5.4.f 7.5 80 80 0 0.0 79.3 0.96 79.5 0.98 10
p5.4.g 8.8 140 140 0 0.0 121.7 0.58 122.3 0.58 13
p5.4.h 10.0 140 140 1 0.0 140.0 1.00 140.0 1.00 10
p5.4.i 11.2 240 240 0 0.0 138.5 0.11 178.1 0.58 23
p5.4.j 12.5 340 340 0 0.0 225.3 0.19 272 0.84 195
p5.4.k 13.8 340 340 30 0.0 323.2 0.91 338.6 0.98 16
p5.4.l 15.0 430 430 0 0.0 224.6 0.07 335.4 0.80 36
p5.4.m 16.2 555 555 8 0.0 322.3 0.11 447.6 0.86 27
p5.4.n 17.5 620 620 17 0.0 551.3 0.59 600.0 0.88 28
p5.4.o 18.8 690 690 12 0.0 430.7 0.15 608.7 0.93 20
p5.4.p 20.0 765 765 194 0.0 511.6 0.18 690.2 0.84 85
p5.4.q 21.2 860 860 31 0.0 720.6 0.47 759.1 0.71 87
p5.4.r 22.5 960 960 27 0.0 504.2 0.08 822.6 0.83 85
p5.4.s 23.8 1030 1025 16 0.5 559.3 0.09 893.6 0.87 79
p5.4.t 25.0 1160 1160 0 0.0 650.5 0.10 854.1 0.84 140
p5.4.u 26.2 1300 1300 0 0.0 769.3 0.12 1087.3 0.89 219
p5.4.v 27.5 1320 1320 8 0.0 1184.7 0.65 1274.1 0.91 96
p5.4.w 28.8 1390 1390 19 0.0 886.4 0.15 1299.4 1.00 35
p5.4.x 30.0 1450 1450 40 0.0 894.1 0.14 1300.0 1.00 93
p5.4.y 31.2 1520 1520 5 0.0 831.7 0.09 1402.9 0.86 202
p5.4.z 32.5 1620 1620 25 0.0 962.4 0.12 1481.7 0.85 179

Average: 787 787 29 0.0 501.5 0.43 691.1 0.86 45
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Table 10 Results for class 6 benchmark instances.
Deterministic execution Stochastic execution

BKS OBS_D Time (s) GAP(%) OBS_D_S Reliability OBS_S Reliability Time (s)
Instance Tmax Reward [1] Reward [2] [3] [4] (1-2) E[Reward] [5] [6] E[Reward] [7] [8] [9]
p6.2.d 15 192 192 1 0.0 114.4 0.36 143.3 0.68 5
p6.2.e 17.5 360 360 0 0.0 217.6 0.37 276.6 0.73 11
p6.2.f 20 588 588 0 0.0 363.4 0.38 445.7 0.84 5
p6.2.g 22.5 660 660 8 0.0 528.0 0.64 531.0 0.78 5
p6.2.h 25 780 780 30 0.0 512.9 0.43 648.0 1.00 9
p6.2.i 27.5 888 888 10 0.0 477.7 0.29 725.8 0.86 97
p6.2.j 30 948 942 64 0.6 599.6 0.40 900.9 0.93 8
p6.2.k 32.5 1032 1032 96 0.0 586.7 0.32 911.3 0.84 12
p6.2.l 37.5 1116 1104 40 1.1 908.5 0.68 1001.2 0.92 18
p6.2.m 37.5 1188 1188 80 0.0 865.5 0.53 1037.3 0.86 13
p6.2.n 40 1260 1248 167 1.0 794.4 0.41 1042.5 0.81 12
p6.3.g 15 282 282 0 0.0 169.3 0.21 196.6 0.45 54
p6.3.h 16.7 444 444 2 0.0 279.8 0.25 331.9 0.51 8
p6.3.i 18.3 642 642 0 0.0 379.0 0.21 448.1 0.40 36
p6.3.j 20 828 828 0 0.0 501.0 0.22 612.4 0.58 15
p6.3.k 21.7 894 894 8 0.0 573.0 0.27 781.8 0.86 43
p6.3.l 23.3 1002 1002 43 0.0 708.2 0.31 829.1 0.91 33
p6.3.m 25 1080 1080 38 0.0 673.3 0.23 858.0 1.00 24
p6.3.n 26.7 1170 1170 193 0.0 925.2 0.43 1028.5 0.82 230
p6.4.j 15 366 366 0 0.0 215.7 0.12 276.3 0.64 83
p6.4.k 16.2 528 528 5 0.0 314.6 0.13 367.4 0.52 207
p6.4.l 17.5 696 696 37 0.0 471.1 0.21 514.4 0.74 259
p6.4.m 18.8 912 912 0 0.0 629.4 0.32 836.3 0.78 45
p6.4.n 20 1068 1068 184 0.0 634.7 0.36 816.2 0.81 272

Average: 789 787 42 0.1 518.5 0.34 648.3 0.76 63

Figure 5 Boxplot comparison of gaps OBS-D-S and OBS-S w.r.t. OBS-D.
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Table 11 Results for class 7 benchmark instances.
Deterministic execution Stochastic execution

BKS OBS_D Time (s) GAP(%) OBS_D_S Reliability OBS_S Reliability Time (s)
Instance Tmax Reward [1] Reward [2] [3] [4] (1-2) E[Reward] [5] [6] E[Reward] [7] [8] [9]
p7.2.a 10.0 30 30 0 0.0 22.0 0.50 22.1 0.50 4
p7.2.b 20.0 64 64 0 0.0 64.0 1.00 64.0 1.00 4
p7.2.c 30.0 101 101 0 0.0 92.0 0.74 98.0 1.00 4
p7.2.d 40.0 190 190 0 0.0 162.9 0.75 173.0 0.93 4
p7.2.e 50.0 290 290 1 0.0 233.8 0.69 267.9 0.95 5
p7.2.f 60.0 387 387 1 0.0 233.8 0.69 366.8 0.96 6
p7.2.g 70.0 459 459 31 0.0 316.4 0.49 440.8 0.99 38
p7.2.h 80.0 521 521 57 0.0 437.8 0.70 514.0 1.00 133
p7.2.i 90.0 580 580 35 0.0 414.5 0.52 550.5 0.99 118
p7.2.j 100.0 646 639 87 1.1 502.4 0.64 574.1 0.88 86
p7.2.k 110.0 705 698 27 1.0 412.5 0.34 654.3 1.00 192
p7.2.l 120.0 767 758 579 1.2 543.7 0.49 721.8 0.98 287
p7.2.m 130.0 827 824 487 0.4 555.6 0.44 782.5 0.98 347
p7.2.n 140.0 888 871 410 1.9 583.3 0.44 826.1 0.98 552
p7.2.o 150.0 945 928 114 1.8 858.0 0.89 879.5 1.00 394
p7.2.p 160.0 1002 989 260 1.3 436.4 0.24 894.2 0.98 561
p7.2.q 170.0 1044 1026 208 1.7 758.3 0.42 1009.4 1.00 514
p7.2.r 180.0 1094 1082 104 1.1 657.3 0.56 1009.2 0.98 197
p7.2.s 190.0 1136 1116 58 1.8 695.3 0.40 976.1 0.85 88
p7.2.t 200.0 1179 1162 216 1.4 563.6 0.56 1023.1 0.96 167
p7.3.b 13.3 46 46 0 0.0 45.7 0.98 46.0 0.98 6
p7.3.c 20.0 79 79 0 0.0 79.0 1.00 79.0 1.00 6
p7.3.d 26.7 117 117 0 0.0 103.8 0.66 106.7 0.82 56
p7.3.e 33.3 175 175 0 0.0 173.6 0.97 174.3 0.99 6
p7.3.f 40.0 247 247 0 0.0 229.7 0.81 231.1 0.94 6
p7.3.g 46.7 344 344 0 0.0 239.4 0.29 310.5 0.98 11
p7.3.h 53.3 425 425 5 0.0 354.7 0.52 401.4 0.88 20
p7.3.i 60.0 487 487 29 0.0 372.7 0.49 464.9 0.97 253
p7.3.j 66.7 564 562 233 0.4 459.5 0.54 541.4 0.92 248
p7.3.k 73.3 633 633 483 0.0 478.4 0.45 614.9 0.99 165
p7.3.l 80.0 684 681 28 0.4 548.6 0.43 666.9 0.99 58
p7.3.m 86.7 762 762 185 0.0 486.8 0.25 724.7 1.00 426
p7.3.n 93.3 820 812 517 1.0 662.3 0.55 774.3 0.97 289
p7.3.o 100.0 874 874 231 0.0 651.4 0.42 824.7 0.97 432
p7.3.p 106.7 929 919 491 1.1 836.1 0.75 884.7 0.99 597
p7.3.q 113.3 987 978 242 0.9 633.8 0.27 918.4 0.98 495
p7.3.r 120.0 1026 1016 521 1.0 701.1 0.31 962.0 0.99 454
p7.3.s 126.7 1081 1063 449 1.7 916.6 0.60 1009.5 1.00 341
p7.3.t 133.3 1120 1111 445 0.8 945.7 0.55 1056.9 0.98 292
p7.4.b 10.0 30 30 0 0.0 22.0 0.50 22.1 0.50 11
p7.4.c 15.0 46 46 0 0.0 46.0 1.00 46.0 1.00 11
p7.4.d 20.0 79 79 1 0.0 79.0 0.78 79.0 1.00 11
p7.4.e 25.0 123 123 5 0.0 119.5 0.92 120.3 0.93 12
p7.4.f 30.0 164 164 60 0.0 153.7 0.77 158.2 0.83 89
p7.4.g 35.0 217 217 60 0.0 192.9 0.60 209.2 0.95 121
p7.4.h 40.0 285 285 60 0.0 255.0 0.57 281.2 0.95 96
p7.4.i 45.0 366 366 60 0.0 309.3 0.50 348.7 0.99 69
p7.4.j 50.0 462 462 8 0.0 368.6 0.43 441.5 0.95 50
p7.4.k 55.0 520 520 22 0.0 349.3 0.21 502.7 0.99 34
p7.4.l 60.0 590 590 2 0.0 409.6 0.22 557.9 0.95 27
p7.4.m 65.0 646 646 75 0.0 501.5 0.32 637.3 0.99 234
p7.4.n 70.0 730 726 289 0.5 534.2 0.33 681.7 0.97 364
p7.4.o 75.0 781 780 208 0.1 468.5 0.14 753.9 0.97 193
p7.4.p 80.0 846 846 54 0.0 721.4 0.49 792.5 0.92 210
p7.4.q 85.0 909 909 437 0.0 773.8 0.56 887.0 0.97 359
p7.4.r 90.0 970 966 512 0.4 783.2 0.44 912.0 0.94 382
p7.4.s 95.0 1022 1022 207 0.0 813.7 0.39 985.1 0.99 283
p7.4.t 100.0 1077 1067 582 0.9 846.5 0.38 980.5 0.92 391

Average: 588 584 158 0.4 434.7 0.55 552.4 0.95 186
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Figure 6 Boxplot comparison of reliabilities associated with OBS-D-S and OBS-S, where the
reliability is defined as the percentage of routes that are effectively completed without
violating the driving-range constraint.

Finally, Figure 6 shows, a boxplot comparison of reliability values associated with OBS-
D-S and OBS-S, for each of the problem instances. Notice that the OBS-S also outperforms
the OBS-D-S in terms of reliability, i.e. while near-optimal solutions for the deterministic
TOP might be unreliable for the STOP, the proposed simheuristic is able to provide solutions
with a superior performance in this key indicator.

8 Conclusions

Developing algorithms to guide the behavior of drones or other autonomous vehicles is
becoming increasingly important as their usage becomes more widespread. In this article we
consider the particular problem of surveillance, where different nodes or locations within a
space provide differing rewards in terms of the quality of information that they provide. This
problem can be viewed as a version of the stochastic team orienteering problem (STOP), a
variant of the TOP that incorporates stochastic travel times.

To the best of our knowledge, previous work in the literature has only considered
the deterministic TOP or the stochastic single-tour orienteering problem. Incorporating



A Simheuristic Approach to the Stochastic Team Orienteering Problem 25

uncertainty is particularly important when modelling surveillance drones as it allows
the optimization to account for variations in travel time due to weather but it is also
important in more conventional vehicle routing problems where traffic conditions can affect
journey durations. As discussed previously, different authors have treated violations of the
driving range constraint in different ways and we use an especially strict condition here.
Investigating how our method works for other interpretations of the constraint could be
interesting; for example, the use of a penalty function for exceeding the driving-range.

We propose a novel savings-based heuristic approach to solve the deterministic TOP.
This heuristic is then embedded into a variable neighborhood search (VNS) framework to
build a competitive metaheuristic. The algorithm uses components inspired by simulated
annealing and biased-randomization techniques. A series of computational experiments
allow us to validate the quality of the VNS metaheuristic for solving the deterministic TOP.
Finally, this VNS is extended into a simheuristic to cope with stochastic travel times. Our
algorithm integrates Monte Carlo simulation inside the VNS framework.

The experimental results show that the best solutions for the deterministic TOP are likely
to be suboptimal solutions when stochasticity is taken into account, both in terms of total
expected rewards and reliability. In contrast, the solutions generated using our simheuristic
offer a much better performance in the presence of uncertainty. The level of uncertainty
used in the experiments considered here is relatively low, as befits the practical application
we are considering. With higher levels of variability, we expect the difference between the
simheuristic algorithm and the deterministic algorithm to be even greater.

The proposed methodology does not rely on any structural properties of the particular
travel time distributions and will work for any travel time distributions. In this work we
consider benchmark test instances with log-normal travel times distributions and also test
instances with gamma travel time distributions, in both cases the proposed algorithm finds
new best-known solutions.

As future research lines, one can consider the following ones: (i) consider a multi-
objective version of the STOP; and (ii) to use distributed and parallel computing techniques
to extend our approach to include a more complex simulation model, for example an agent-
based simulation. The ideas we describe here also have the potential to be adapted for use
in dynamic routing – updating the set of nodes to visit and/or the order of the nodes within
the tour based on the current status of the vehicles. This ability to reroute vehicles during
the tour could be an effective way of accounting for the stochasticity in the travel times.

There are also several aspects of the problem that we would like to consider in future
work to make the work more practically applicable. The first concerns the affect of weather
and particularly wind on the behavior of the drones, and the second the effect of ascent
and descent on the rate of battery usage. To a certain extent, these are taken into account
through assuming stochastic travel times between nodes, but there are refinements that we
could make to the modelling of the problem that would better describe these issues.

References

Archetti, C., Hertz, A., and Speranza, M. G. (2007). Metaheuristics for the team orienteering
problem. Journal of Heuristics, 13(1):49–76.

Butt, S. and Ryan, D. (1999). An optimal solution procedure for the multiple tour maximum
collection problem using column generation. Computers and Operations Research,
26:427–441.



26 J. Panadero, C. Currie, A. Juan and C. Bayliss

Caceres-Cruz, J., Arias, P., Guimarans, D., Riera, D., and Juan, A. A. (2015). Rich vehicle
routing problem: Survey. ACM Computing Surveys (CSUR), 47(2):32.

Campbell, A., Gendreau, M., and Thomas, B. (2011). The orienteering problem with
stochastic travel and service times. Annals of Operations Research, 186:61–81.

Chao, I.-M., Golden, B., and Wasil, E. (1996a). The team orienteering problem. European
Journal of Operational Research, 88:464–474.

Chao, I.-M., Golden, B. L., and Wasil, E. A. (1996b). A fast and effective heuristic for the
orienteering problem. European Journal of Operational Research, 88(3):475 – 489.

Clarke, G. and Wright, J. (1964). Scheduling of vehicles from a central depot to a number
of delivery points. Operations Research, 12:pp. 568–581.

Dang, D.-C., Guibadj, R. N., and Moukrim, A. (2011). A pso-based memetic algorithm for
the team orienteering problem. In Di Chio, C., Brabazon, A., Di Caro, G. A., Drechsler,
R., Farooq, M., Grahl, J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino, E.,
Tettamanzi, A. G. B., Urquhart, N., and Uyar, A. Ş., editors, Applications of Evolutionary
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