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Abstract 

This thesis deals with the development of new methodology for homonuclear dipolar re­

coupling by symmetry-based radiofrequency pulse sequences in magic-angle-spinning sol­

id-state nuclear magnetic resonance. 

The first chapters of this thesis introduce NMR spectroscopy, the basic theory of NMR 

and some basic elements. After these introductory chapters, the rotor-synchronized sym­

metry-based pulse sequences are described. Each class of symmetry-based pulse sequence is 

defined, introducing their selection rules and scaling factors for the recoupling of certain 

spin interactions. 

In the second part, the main topics and subjects of the thesis are analysed more deeply. 

First, the interference of heteronuclear dipolar decoupling in the homonuclear dipolar re­

coupling by symmetry-based pulse sequences is considered. These effects are studied by ex­

periments, simulations and average Hamiltonian theory in two families of dipolar recoup-

ling sequences belonging to the CN~ and the RN~ symmetry classes. 

In the final chapter, a new recoupling concept in multiple-spin systems called truncated 

dipolar recoupling (TDR) is presented. This new concept allows the selective determination 

of internuclear distances in a wide variety of homonuclear multiple-spin systems. This 

methodology involves a symmetry-based recoupling sequence that generates: (i) Zero­

quantum (ZQ) recoupling of homonuclear dipole-dipole interactions; (ii) simultaneous re­

coupling of frequency-dispersing spin interactions that truncate the ZQ dipolar Hamiltonian. 

This truncation of the spin Hamiltonian allows the commutation of the different dipolar 

coupling in the multiple spin system. Two different implementations of this idea are dis­

cussed and demonstrated experimentally and by numerical simulations. 
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1. Introduction 

1. Introduction 

1.1. Nuclear Magnetic Resonance 

Nuclear Magnetic Resonance (NMR) is a spectroscopy in which nuclear spin levels are 

split by a strong static magnetic field and an observable signal is generated by inducing 

transitions between these levels with a modulated magnetic field. 

NMR was first discovered in 1946 independently by Purcell et al. [1] and Bloch et al. 

[2]. Both shared the Nobel Prize in Physics in 1952 for their discovery. They noticed that 

magnetic nuclei could absorb radiofrequency energy when placed in a magnetic field of a 

strength specific to the identity of the nuclei. That was the beginning of NMR spectroscopy. 

At the beginning, the technique was used and developed by physicists to study magnetic 

properties, but soon, the technique was applied in chemistry due to the strong relation of the 

NMR signal with the surrounding environment of nuclei [3], [4]. Nowadays, NMR is an es­

sential technique for studying matter, its properties and its structure, having important ap­

plications for liquid and solid samples in many fields, from inorganic materials to biological 

complex systems. Also, a technique called magnetic resonance imaging (MRI) has import­

ant application in medicine. 

1.2. Solid -State NMR 

Over the last decades the interest in solid materials has grown enormously in the sci­

entific community and in industry due to their properties. Many fields of chemistry, physics, 

biology and engineering are involved in the research, development, study, or practical ap­

plications of materials which are solids or have a behaviour close to a solid, such as glasses, 

polymers, synthetic products, ceramics or proteins. Therefore, for many researchers, it is 

important to have an insight in the structure and properties of these materials. 

Solid-state NMR is an important tool for the study of solid materials or anisotropic 

phases and it is commonly used for a wide range of applications from characterization of in­

organic materials to the study of membrane proteins, and dynamics processes in solids. Sol­

id-state NMR has been always an important technique for investigating solids, but due to the 

broad features in the spectra and the difficulty of their interpretation, solid-state NMR was 
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applied later to chemistry and biochemistry. However, with the development of techniques 

such as magic-angle-spinning (see chapter 4), cross-polarization (see chapter 4) and hetero­

nuclear decoupling (see chapter 4), the spectral resolution and resolution were increased and 

solid-state NMR entered the "world" of chemistry and biology. Additionally, new tech­

niques to recouple anisotropic interactions removed during application of MAS, and hetero­

nuclear decoupling, were introduced, recovering the structural information given by these 

interactions. Therefore, solid-state NMR is one of the most important and complete tech­

niques for solids. 
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2. Nuclear Magnetism 

Matter is made of atoms which are composed of electrons and nuclei. The nucleus has 

four important physical properties: mass, electric charge, magnetism and spin. 

The nucleus interacts with magnetic fields like a small magnet. This property is called 

nuclear magnetism. The nucleus has intrinsic angular momentum, which is known as spin. 

The properties of nuclear magnetism and spin have almost no effect on the physical and 

chemical properties of the matter. However, these two properties and their interactions rep­

resent very powerful tools for investigating the microscopic and internal structures of ob­

jects without disturbing them, being the essential principle of NMR spectroscopy. 

2.1. Nuclear Spin and Magnetic Moment 

Concepts such as angular momentum and magnetic moment are familiar from classical 

physics. Elementary particles, such electrons and photons, also have an angular momentum 

associated with the movement of the particle. However, from the application of the relativ­

istic quantum mechanics to these particles an additional property called spin is derived [5]. 

Table 2.1 Selection of nuclear spin and their properties of interest in NMR [6], [7]. 

Natural . . NMR frequency 

Isotope 
Ground state Abundance GyromagnetIc ratIO at 9.4 T 

spin 
% 

y/rad sol T-! 
(wo/2IT )IMHz 

IH Y2 -100 267.522 X 106 -400.000 

2H 1 0.015 41.066 X 106 -61.437 

l3C Y2 1.1 67.283 X 106 -100.602 

14N 99.63 19.338 X 106 -28.914 

15N Yz 0.37 -27.126 X 106 40.559 

The spin is a form of angular momentum which is an intrinsic property of the particle and is 

not related with a physical rotation. According to quantum mechanics, the spin angular mo-

mentum is quantized taking values of the form n.J s (S + 1 ), where Ii is the Planck's constant 

divided by 2IT and S is the spin quantum number. Each elementary particle has an associated 

spin quantum number that is either an integer number (0, 1, 2, ... ) or a half-integer (112, 
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The nuclear spin depends on the spin of their constituents: nucleons (protons and neut­

rons), which are made of elementary particles called quarks, held together by gluons. There­

fore, the nuclear spin quantum number can be an integer or a half-integer number [6] . NMR 

spectroscopy can only be performed on nuclei with spin not equal to 0. Table 2.1 contains 

properties for the commonest nuclei in NMR. In the context of this thesis, only 13C and IH 

are of interest. 

The nuclei with spin S,*O have an associated magnetic' moment that is proportional to 

the spin angular momentum [8] , [9]: 

(2.1) 

where}, is the gyromagnetic ratio in units of rad S·I T· I [6]. The gyromagnetic ratio has a 

positive or negative sign depending on the relative orientation between the spin angular mo­

mentum and the magnetic moment (Fig. 2.1). 

2.2. Spin Precession and Larmor Frequency 

Consider an ensemble of nuclei. In the absence of a magnetic field the spin angular mo­

mentum of each spin can point in any possible direction in space. The distribution of mag­

netic moments is completely isotropic. 

Generally, NMR spectroscopy involves a strong static magnetic field along one direc­

tion (defmed as the z-direction in the laboratory frame, see section 3.3). In this situation, the 

spin polarization starts moving around the magnetic field. The magnetic moment of the spin 
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moves on a cone defined by the imgle between the spin magnetic moment and the magnetic 

field. This movement is called precession around the axis of the magnetic field. 

The nuclear spin precesses around the external magnetic field with a frequency called 

the Larmor frequency, which is equal to: 

(2.2) 

where BO is the magnitude of the external magnetic field . The sign of y determines the sense 

of the precession (Fig. 2.2). The Larmor frequency W o is expressed in rad s" and woI2rr is 

given in Hz. Table 2.1 contains the Larmor frequencies of several nuclei at BO = 9.4 T. 

2.3. Longitudinal Magnetization and Relaxation 

Considering the proton nuclei in a sample of water in the absence of an external field, 

the spin polarization is spread in all the possible orientations and the total magnetic moment 

is close to zero. 

If a strong magnetic field along one direction is turned on, all the spins start to precess at 

the Larmor frequency. This has no effect on the total spin polarization and the isotropic dis­

tribution of magnetic moments makes no contribution to the magnetism of the sample. 

However, the 'H nuclei share the molecular environment with other magnetic particles, in­

cluding electrons and other nuclei. Because of thermal motion of these particles the local 

magnetic fields fluctuate rapidly in time. Therefore, the protons feel a total magnetic field 

that fluctuates slightly in magnitude and direction. These small fluctuations are very import-
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ant because they break the isotropy of the system and a macroscopic nuclear magnetic mo-

ment arises. 

This magnetic moment, due to the fact that an orientation with low energy is more fa­

vourable than an orientation with high energy, leads to a stable anisotropic distribution par­

allel to the external magnetic field, called thermal equilibrium. 

The anisotropy of the magnetic distribution in thermal equilibrium means that the entire 

sample acquires a small net magnetization along the field which is called longitudinal mag-

netization. 

The total nuclear magnetization is initially zero when the external magnetic field is 

turned on. However, due to the process described above, a small net magnetization grows in 

the direction of the applied magnetic field (z-direction). The build up of longitudinal mag­

netization (Fig. 2.3) follows an exponential behaviour which is given by: 

(2.3) 

where to is the time at which the external field is applied and TJ is known as a longitudinal 

relaxation time constant or spin-lattice relaxation time constant. Typically, this constant is 

in the range of milliseconds to seconds, however in some cases could be as long as days or 

even years. 

2.4. Transverse Magnetization and Relaxation 

The longitudinal magnetization has a rather small magnitude, which makes NMR spec­

troscopy a comparatively insensitive technique. In NMR, the measured magnetization is the 
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magnetization perpendicular to the strong magnetic field. The polarization of each spin is 

suddenly rotated by rr/2 radians around the x-axis (Fig. 2.4) by applying a radiofrequency 

(d.) pulse of appropriate frequency and duration. (see section 3.4.3). The pulse rotates the 

entire spin polarization of the sample, transferring the net spin polarization from the z-axis 

to the y-axis. This net magnetization is called transverse magnetization. 

After the pulse, the spins start to precess on their individual cones in the xy-plane, lead­

ing to a precession of the total magnetic moment. 

Components of the transverse magnetization after a time t have the form: 

(2.4) 

After a time of evolution in the xy-plane the nuclear precessing spins start to lose syn­

chronization because each nuclear spin feels a slightly different field. Gradually the nuclear 

spins get out of phase with each other and the transverse magnetization decays slowly be­

cause it is impossible to maintain the synchronization of the precessing nuclear magnets. 

This decay is called homogeneous decay. The time constant T2 (transverse relaxation con­

stant, coheren,ce dephasing time constant or spin-spin relaxation time constant) is used to 

describe this homogeneous decay of the precessing transverse magnetization. For liquids T2 

is in the range of several seconds but in solids or large molecules in solution this time may 

be several milliseconds. 

x~ 
LONGITUDINAL 
MAGNETIZATION 

90· ROTATION ALONG X-A..XIS 

x 

z 

PRECESSION of 
THE TRANSVERSE 
MAGNETIZATION 

y 

Fig. 2.4. The longitudinal magnetization is rotated by a 90 degree r.f. pulse along x-axis and 
converted into transverse magnetizatiO,n, which precesses in the xy-plane with a frequency equal 
to the Larmor frequency. 



2. Nuclear Magnetism 8 

2.5. NMR signal 

The rotating transverse magnetic moment generates a rotating magnetic field. Following 

Maxwell's equations [10] this rotating magnetic field is associated by an oscillating electric 

field. If a wire coil is located close to the sample, the rotating transverse magnetic field in­

duces an oscillating electric current in the coil that can be detected by using a radiofre­

quency detector. The oscillating electric current induced by the transverse magnetization is 

called the NMR signal or free-induction decay (FID). 

The NMR spectrometer is a device capable of registering an FID and by a Fourier 

transformation of the F1D to obtain the NMR spectrum. 

For an extensive description of the NMR spectrometer and Fourier transform methods 

see [6], [11], [12]. 

2.6. NMR Spectrum 

The NMR spectrum is obtained by transforming the NMR signal through a mathematical 

technique called Fourier transform [12]. The FID is amplified and processed in the NMR 

spectrometer [6] producing the quadrature-detected signal: 

s ( t ) - exp { (i fl- ~ ) t } (2.5) 

o 10 20 30 40 

time (ms) 
Fig. 2.5. NMR signal or FID of a one-pulse experiment for J3C) -alanine. 
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where i\ is a rate constant equal to T2-
1 and DO is equal to: 

(2.6) 

with Wo equal to the Larmor frequency for each spin and Wref is the spectrometer reference 

frequency. A more general signal contain,s a superposition of different signal components Sf: 

(2.7) 

The Fourier transform converts the time-dependent signal set) into a frequency function 

S(D) as follows: 

'" 
S(D)= f s(t)exp {-iDt} dt (2.8) 

o 

The time-domain signal and the frequency domain are complex functions, therefore the 

relation between the real and the imaginary parts may be depicted as follows: 

Re 
[i·---·-·-·.---.-----.---.. ----·-.-·--.-.j 
d ! 
lI fi [ 
P~iJ,' .. 1~\-i1 .. /~,lli·\;:r.:-~vv~ 
t 1 11 ~, I v : ! ~ ~ .. ; 
! r L-. _______ ~._ ... __ ~,j 

1m 

t' '1m,·· .. e·-,:, 
'" - ' 

1m 
----.. _·· ·---··· .. -.. ·-.. -T·--·· .... · .. ·-.. ·· ·-· .. ·-·i 

; I 

I ll~ i. I 
I'-~=-'~~ ...::.;:-::-"~ t r'--::h ·;:··--l 
; 1 ( { f 

i I I 
l •. _u._ ........ ~ __ ........ J .. ____ .. ~. __ ............ .: 

frequency 
.,.' 

Fig. 2.6. The relationship between the real and the imaginary parts of s(t) and S(Q). Taken 
from [6] 
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3. Theory of Solid-State NMR 

In this chapter the basics of the dynamics of nuclear spins [6] will be treated. For this 

purpose, it is necessary to solve the time-dependent Schrodinger equation for the time evol­

ution of the quantum state of a physical system: 

d A 

dt1f.JJ full (t) >=-i 1{ full1f.JJ fllU( t) > (3.1) 

where if foil is a Hermitian operator, called the Hamiltonian associated with the total energy 

of the system and I !/lfun) is the wave function that describes the quantum state of the system. 

This equation is complete but it is also quite complicated to use because of the enormous 

amount of information that it contains. 

In NMR is possible to work with a much simpler equation which only contains the nuc­

lear spin states: 

d A 

dt1f.JJ spin (t) > ~-i 1{sPinlf.JJ spin (t) > (3.2) 

in this equation I !/lspin) is the spin state of the nuclei and if spill is the nuclear spin Hamilto­

nian. This Hamiltonian only includes terms dependent on the nuclear spin. This is possible 

because the dynamics of electrons are much faster than those of the nuclei. Therefore the in­

fluence of the electrons on the magnetic and electric fields of the nuclei is a time average of 

the fields generated by the electrons. This called the spin Hamiltonian hypothesis [13]. 

The nuclear spin Hamiltonian has different terms which describe the orientation-de­

pendence of the nuclear energy. In general two terms can be described, one is called the 

el~ctric spin Hamiltonian and the second is the magnetic spin Hamiltonian: 

(3.3) 

The electric spin Hamiltonian vanishes for nuclei with spin number equal to Y2 because 

the charge distribution is spherically symmetrical. However, for nuclei with spin number 

bigger than Y2 (Quadrupolar nuclei) this distribution of charge is not spherical and the 

electric spin Hamiltonian does not vanish. Only spins-1I2 are considered in this thesis. 

The magnetic spin Hamiltonian describes the variation of the nuclear magnetic energy 

when the nucleus is rotated. The magnetic field experienced by a spin-1I2 nucleus can have 

an external or internal origin. These are referred to as external or internal spin interactions. 

In the case of quadrupolar nuclei (spin >112), an internal electric interaction is included in 
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the internal spin interactions. 

Qr Qrinr Qrext 
J\.. spin = J-L spin + J L spin (3.4) 

3.1. Spin Angular Momentum 

3.1.1. Angular Momentum Operators 

In the quantum description of the spin angular momentum operator, the three compon­

ents along the three axes, x, y and z are denoted by 1:" ly and lz. This three components of the 

spin angular momentum operator follow the cyclic commutation relationships [6], [14], 

[15], [16]: 

(3.5) 

and the total square spin angular momentum is equal to: 

(3.6) 

Since P and lz are Hermitian and commute, a common set of eigenfunctions II, m) can be 

chosen for both operators. The eigenvalues of P. for the eigenfunction II, m) are given by the 

eigenequation: 

(3.7) 

where the eigenvalues are given by li2I(1+1) with 1=0, 112, 1,3/2, .... The eigenvalues lz of 

for the same eigenfunction are given by: 

r I,m)=1im I,m) 
~ 

(3.8) 

where the eigenvalues are given by lim with m = -I, -1+1, ... , I-I, I. 

3.1.2. Zeeman Eigenbasis 

For an isolated nucleus with spin 1= Vz, the two possible eigenvalues are m = ± Vz. The 

eigenstates of the angular momentum along the z-axis are called Zeeman eigenstates and are 

denoted by: 

(3.9) 
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Therefore, the eigenstates la) and 113) follow the eigenequations: 

1 i z1a)=2/ila) 

izle )=-~/ile) 

12 

(3.10) 

(3.11) 

The matrix representations of the three components of the spin angular momentum oper­

ator in the Zeeman eigenbasis are: 

A 1 (1 1=-
z 2 0 ~) 

It is convenient to define the shift operators of the spin angular momentum: 

i+=ix+ily 
t=ix-ily 

and their matrix representations in the Zeeman eigenbasis: 

A+ (0 I = 
o 

1) . t=(O 
0' 1 ~) 

3.2. Tensors 

(3.12) 

(3.13) 

(3.14) 

The physical properties of a system can be described in terms of entities of different di­

mensionality. In general, the three classes of physical properties can be described as a 

tensors of different rank. In the NMR context, the different properties of the system can be 

described as tensors of rank-O (scalars), tensors of rank-l (vectors) and tensors of rank-2. 

Higher order rank tensors can be defined but in the context of NMR are not needed. 

Tensors of rank-O are fully described by a number, for instance, the electric charge or 

the mass of a particle. A tensor of rank-l requires the knowledge of its magnitude and direc­

tion for a full description of the physical property. Magnetic or electric fields are example of 

physical properties with rank-I. The third class, tensors of rank-2, manifest different beha­

viour in different directions and can be represented by a full matrix form. Conductivity, 

magnetic susceptibility and compressibility, for instance, belong to this class of quantities. 

Before going deeper into the concept of tensors, it is useful to introduce the next con­

cepts: Cartesian and spherical systems in three-dimensional space, Euler angles and Wigner 
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matrices. 

3.2.1. Cartesian and Spherical Bases 

Three-dimensional space is defined by a basis of three independent vectors. Each point 

is identified by three numbers which depend on the particular basis which is chosen to rep­

resent it. The commonest choice is to adopt the basis as the Cartesian vectors (ex, ey, ez) in 

the direction of the Cartesian axes as the basis. This basis is known as the canonical basis 

and it is an orthonormal basis. In this basis a point P can be expressed as (in this thesis 

"non-bold" symbols are used for the magnitudes of vectors): 

(3 ~ 15) 

where the scalar Pk are the projections of P on the Cartesian axes and the point can be iden-

In the desc~ption of NMR interactions, it is more convenient, from a mathematical point 

of view, to use the spherical basis. The covariant spherical basis vector [14] is defined as 

follows: 

(3.16) 

z 

p 

/ 

..Y 

y 

X 

Fig. 3.1. Cartesian coordinate system. 
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and contravariant spherical basis vectors are defined as: 

=-~(e -ie ) .fi x y 

The relationship between covariant and contravariant basis vectors are: 

with J1 = 0, ±1. 

3.2.2. Euler Angles and Wigner matrices 

e =e-P* 
P 

14 

(3.17) 

(3.18) 

The orientation of an object in three-dimensional space can be described by three angles 

(ex, /3, y). The best way to define these angles in the context of NMR is to use the system 

called Euler angles [17]. 

A general rotation to transform a vector or matrix from one coordinate system to another 

a) b) ,zz' 

x' 

yy' 

cJ d) 
z z ....... 

z' 

x' 

y y 
y' 

Fig. 3.2. In this figure, the frame (x, y, z) is brought into a frame (x', y', z') with an ori­
entation described by the Euler angles (01, {3, y)=(90o, 20°, 60°) by three consecutive ro­
tations. The rotations are through (a) 90° about the z-axis of the original frame; (b) 20u 

about the y-axis of the original frame, and (c) 60° about the z-axis of the Oliginal 
frame. 
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can be decomposed as the product of the three individual rotations : 

(3.19) 

where f2 is the symbol to denote Euler angles and Rz(ex)Ry (f3)RJy) are rotations around 

z-axis with an angle y, around y-axis with an angle {3 and a last rotation again around z-axis 

through ex. 

If a general rotation R ( ex , f3 , y) is applied to an object of certain rank l with m compon-

ents, Aim this rotation leads to a transformation into another object with the same rank Aim': 

(3.20) 

where D:"m ,(f2) is called a Wigner matrix element and the complete Wigner matrix is the 

matrix representation of the rotation R (ex, (3, y). The elements of the Wigner matrix depend 

on the angles ex, {3, y. The Wigner matrix elements can be decomposed into three separate 

factors, each depending on one of the Euler angles: 

D ' (n)= -imocd l (a) -im ' y 
mm' ~& e mm' JJ e (3.21) 

Fig. 3.3. This figure contains the graphical representation of sphericals tensor of rank-O (a), rank-l 
(b) and rank-2 (c) and their 2l+1 components. (From http://winter.group.shefac.uklorbitronl). 



3. Theory of Solid-State NMR 16 

The term d~m.(f3) is called a reduced Wigner matrix element. The reduced Wigner mat­

rix elements depend on the value of I. 

3.2.3. Irreducible Spherical Tensors. 

Spherical tensors have an important role in the modem description of NMR theory and 

NMR interactions. In the description of NMR phenomena, it would be convenient to use the 

more familiar Cartesian tensors in order to understand better the meaning of different 

Hamiltonian terms. However, from a mathematical point of view this is not a convenient 

choice because the Cartesian representation of a tensor is reducible and does not correspond 

to definite projection of quantum numbers, and therefore complicates the transformation un­

der a rotational operation [17]. 

The Cartesian representation of tensor of second rank (A) can be decomposed into three 

irreducible tensors, with a total of nine components (a;J. A scalar (rank-O) which is a single 

component equal to the trace of the tensor, an anti symmetric tensor (rank-I) having three 

components, and a symmetric tensor (rank-2) with trace equal to ° and five components 

(Fig. 3.3). 

The spherical representation of irreducible tensors is much more easier to deal with un­

der rotational operations. The exact form of a tensor depends on the coordinate system or 

reference frame choice. If a two reference frames F and F' related by rotations are con­

sidered, the rotations from frame F to frame F' are described by a set of Euler angles DFF" 

An irreducible spherical tensor having a rank denoted by I has 21+ 1 components denoted by 

m which takes integer numbers from -I to I (in the context of this thesis irreducible spherical 

tensors of rank-O, 1 or 2 will be considered). It is defined by its transformation under rota­

tions of the coordinate system as: 

(3.22) 

An irreducible spherical tensor operator (ISTO) may be defined as a basis set represent­

ation of 21+1 operators Jl1m with m=(-l,-l+l, ... , I) with analogous rotational properties to 

those of irreducible spherical tensors: 

(3.23) 
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3.2.4. An ISTO Representation of the Spin Hamiltonian 

The nuclear spin Hamiltonian can be written as a summation of different spin interac­

tions A: 

(3.24) 

In the Cartesian basis the spin Hamiltonian for an interaction A may be represented as 

[18]: 

(3.25) 

where X and Y are vector operators, CA is a coefficient which depends on the spin interac­

tions and AA is a rank-2 tensor that depends on the interaction A and contains the depend­

ence on spatial orientation. 

The spin Hamiltonian of an interaction A can equivalently be expressed in terms of irre­

ducible spherical tensor operators as scalar products of two irreducible spherical tensor op-

erators [19], [20]: 

(3.26) 

The spherical tensor representation of the spin Hamiltonian separates the spatial tensor [Jl~] 

and the spin-field tensor ['I~]. In appendix A, the form of the spatial and the spin-field of 

each spin interaction is given. 

The spin-field tensor is composed of a spin and a field part. Normally, the field is an 

static external magnetic field and not subject to rotations. However the spin part can be ro­

tated by external r.f. fields. Therefore, the internal Hamiltonian will no longer be written in 

terms of components ['I~] of the spin but in terms of pure irreducible spherical spin tensors 

[T~] of rank A. In this case, the rank is not the same for the spatial and spin tensors. In addi­

tion' a spatial tensor [A~] can be defined, which is related to the spatial tensor [Jl~] by nu­

merical factors. The forms of these two tensors is given in appendix A. 

At this point is useful to clarify the notation used, since this notation will be used from 

now on in the discussion of this thesis. Quantum numbers I, m, A, J1 summarize the trans­

formation of the Hamiltonian under rotations: 1 is the spatial rotational rank and A is the 

rank with respect to rotations of the spin polarization. The component indices m and J1 take 

values m = -1,-1+1, ... ,+1 and J1 = -A,A+1, ... ,+A. 
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Fig. 3.4. The different reference frames lIsed in NMR and their relative orientations 
given by the Euler angles. 

3.3. Reference Frame Transformations 

18 

The exact form of a spherical tensor depends on the reference frame chosen to express 

it. In this section the common reference frames used in solid-state NMR will be defined and 

described. 

1. PRINCIPAL AXIS SYSTEM (pAS or P"'): The principal axis system p'" of a 

spin interaction J\ is defined as the reference frame in which the tensor that de­

scribes the spin interaction is diagonal. Each interaction has its own PAS. 

2. MOLECULAR FRAME (M): This is the system used to describe the molecular 

orientation and is chosen arbitrarily. The PAS frames for each interaction is re­

lated to the common M frame by a set of Euler angles, D~M = { (X~M' f3~M ' ;Y~M }. A 

set of these Euler angles gives the orientation of a spin interaction with respect to 

the molecular structure. 
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3. ROTOR FRAME (R): This is a frame in which the z-axis direction of this frame 

coincides with the rotor axis (see section 4.1). The relative orientation between 

this frame and the molecular frame is given by a set of Euler angles 

nA A A A A 
A4MR= {lXMR ' /3MR' YMR}' In a powder sample there are many Euler angles DMR ran-

domly distributed. In a single crystal, on the other hand, all the molecules have the 

same set of Euler angles D~R if there is a single molecule in the unit cell. 

4. LABORATORY FRAME (L): The z-axis of this frame is aligned in the direction 

of the external magnetic field. The relation between rotor orientation and the 

laboratory frame is given by a set of Euler angles denoted D:L = { lX:L , f3~, Y~ }. 

In the spherical tensor description of the spin Hamiltonian, the spatial tensor is normally 

expressed in the principal axis frame pA, while the spin part is more conveniently expressed 

in the laboratory frame. Therefore it is necessary to transform the spatial part of the spin 

Hamiltonian from the pA frame to the L frame: 

(3.27) 

where .a:L is the set of Euler angles relating the P and L frames. The equation (Eq. (3.26)) 

for the spin Hamiltonian of an interaction A becomes: 

I 

L (3.28) 
m.m'=-l 

3.4. External Spin Interactions 

In general, an NMR experiment involves an external static field magnetic field and 

transverse r.f. fields that are generated by the spectrometer and controlled externally. The 

external spin Hamiltonian may be written as: 

(3.29) 

where the first term of Eq. (3.29) is the interaction of the spin system with a strong longitud­

inal static field denoted by BO and the second is the interaction with a transverse oscillating 

radio frequency (r.f.) BRF generated by a coil. 
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3.4.1. Zeeman interaction 

Considering a spin ensemble of isolated spins of the same type placed in a strong static 

magnetic field, the interaction between the spin nuclear magnetic moment and the static 

field BO is called the Zeeman interaction. The static field breaks the degeneracy of the spin 

states and induces a preferential orientation of the nuclear spin along the z-axis of the L 

frame. This situation corresponds to unequally populated energy levels. 

The strong static field along the z-direction of the laboratory frame is written as follows: 

(3.30) 

The spin Hamiltonian of the Zeeman interaction for an I-spin labelledj can be written as: 

(3.31 ) 

where )'1 is the gyromagnetic ratio, ~z is the z-component of the spin operator, BO is the mag­

netic field along the z-direction and 000 is the Larmor frequency which is equal to the differ­

ent in energy between two spin levels: 

- BO wo--y (3.32) 

The Zeeman Hamiltonian may be written in terms of ISTOs as follows: 

(3.33) 

3.4.2. High-Field Approximation 

Since the Zeeman Hamiltonian is much larger than the other spin interactions, it is pos­

sible, as a very good approximation, to ignore all the non-secular components of the spin in­

teractions. 

In terms of quantum mechanics, it is possible to treat the internal Hamiltonian as a per­

turbation of the Zeeman Hamiltonian [15]. This interaction Hamiltonian can be decomposed 

into commuting terms and non-commuting terms, with the matrix representation of this in­

teraction contains diagonal (commuting terms) and off-diagonal terms (non-commuting 

terms). In the case of the high-field approximation or secular approximation only commut­

ing terms (diagonal terms) are taken into account in order to calculate the energy levels. In 

terms of spherical tensors, this corresponds to the selection of the spin operators of the form 

[T~o]L. Non-commuting terms produce small perturbations of the NMR spectrum called dy­

namicfrequency shifts [21]. These effects are very small and they are ignored in this thesis. 
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3.4.3. Interaction with a Radio-Frequency Field 

In general, it is almost impossible to observe an NMR signal using the longitudinal spin 

magnetization along z-axis of L frame in the usual conditions (see [22] for a way of detec­

tion of longitudinal magnetization). The transverse magneti.zation is detected after a rotation 

of the magnetization of 90 degrees using a r.f pulse. The majority of modem NMR experi-

. ments involve multiple rotations and energy transitions in the spin system through r.f. 

pulses. In general the NMR spectrometer generates a d. field BRF using a r.f. coil along the 

x-axis of the laboratory frame. This r.f. field is broken down into pulses that oscillate at the 

reference frequ~ncy Wref. A perfect rectangular pulse has the form: 

during an d . pulse 

otherwise 
(3.34) 

where the amplitude of the r.f. pulse is denoted by BRF, and ¢p is the phase of the pulse. This 

oscillatory field can be decomposed into two rotating components with the same frequency 

but opposite sign of rotation. The component that rotates in the same sense as the spin pre­

cession is called the resonant component of the r.f. field. The component rotating in the op­

posite sense to the Larrnor frequency is the non-resonant r.f. field component. As an excel­

lent approximation, if Wrer""'Wo, only the resonant part has an important influence on the nuc­

lear spin. 

z z 

x x 

~(~ 
// y / y 

/ / 
x x 

'z o •• z 

4
(~rr/2 

/ ) / -'------------" '. y ~ y 

/ 
x 

J/ 
X 

Fig. 3.5. A vectorial representation of the effect of four 900 pulses with phases 0, rr/2, rr and 3rr/2. In 
the NMR jargon these four puises are known as "x-pulse", "y-pujse", "-x-pulse" and "-y-pulse", re­
spectively. 
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The Hamiltonian resulting from the interaction between the resonant component of the 

r.f. field and the nuclear spin is: 

(3.35) 

It is useful to visualize the situation in a rotating frame of reference. The description in 

this frame is useful because of the time-dependence of the Hamiltonian. The rotating frame 

is a coordinate system in which the z-axis coincides with the z-axis of laboratory frame L 

but the x-axis and y-axis rotate in the same direction and with the same frequency of the res­

onant component as the r.f. field BRF• 

The r.f. Hamiltonian expressed in the rotating frame becomes: 

.... RF_ j A A • 

1ij -Wnu1 (/ jx COS </>p + / jySm </>p) (3.36) 

where W~lIf is called nutation frequency of the r.f. field: 

(3.37) 

The r.f. pulse is characterized by aflip angle /3 and a phase CPP The flip angle is the angle 

by which the spin polarization is rotated by the pulse: 

f3 p =Wnuf T p (3.38) 

where Tp is the duration of the pulse. Short and strong pulses excite a wide range of frequen­

cies while weak and long pulses are more frequency-selective. Fig. 3.5 shows different rep-

MAGNETIC 
(all spins) 

W,IO·SPIN 

ELECTRiC 
(spin> 1/2 only) 

Fig. 3.6. The internal spin interactions and their relative 
size (From [6]). 
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resentations of an d. pulse and a vectorial representation of the effect of an rJ. pulse on the 

spin magnetization of an isolated spin in a strong static magnetic field. 

3.5. Internal Spin Interactions 

The nuclei are surrounded by magnetic and electric fields originating from the molecular 

environment. The nuclear interaction of a spin with these fields is expressed as a internal 

Hamiltonian 1c~;ill [6]. This internal Hamiltonian in diamagnetic solids contains the follow­

ing terms: chemical shift interaction, direct dipole-dipole couplings, i-couplings and the 

quadrupolar interaction. 

ifi~1 = if~s + if[)D + if!. + if'! 
J J IJ IJ J 

(3.39) 

The quadrupolar interaction, which is an interaction with an electric field, only appears for 

nuclei with spin> 112. Fig. 3.6 shows the different interactions described in this thesis and 

their relative size. 

3.5.1. Chemical Shift 

The strong static field BO induces currents in the clouds of electrons surrounding the 

nuclei. The circulation of this current produces an induced magnetic field Bindllced which is 

added to the main field to produce a local magnetic field that causes a shift in the Larmor 

frequency. The new Larmor frequency is called the chemically shifted Larmor frequency 

[6]: 

. 0 . 

B;ocal=B +B;nduced (3.40) 

The induced magnetic field depends on the electronic distribution surrounding the nucle­

us and the main magnetic field BO. 

(3.41) 

where Di is the chemical shift tensor (CS) of the spinj following the deshielding convention 

(other conventions can be used [23], [24]). This tensor is a rank-2 Cartesian tensor represen­

ted by a 3 x3 matrix. 

8j 
xx 

8j = 8 j 
yx 

(3.42) 

8~< 
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The induced magnetic field in a matrix form is: 

B j,x 
induced 8 j 

xx 
Bj, y 

induced 8;x 
B j,l 

induced 8~ 

Bj,x 
induced 

Bj ,y 
induced 

Bj ,l 
induced 

24 

8 j 
xy 8~l 0 

8;y 8~l 0 (3.43) 

8 j 8 j BO 
zy II 

(3.44) 

Since the electronic distribution is not spherical around the nuclei, the induced magnetic 

field has a component not only along the z-direction of the L frame but also along the x-dir­

ection and the y-direction. 

The CS tensor may be decomposed to three irreducible tensors: 

(3.45) 

A rank-O tensor Oiso, called the isotropic chemical shift. This tensor is equal to the 

I I · 
roo cd 

0 

• • 
2ro 

aniso 

Fig. 3.7. The figure shows simulated NMR spectrum lineshapes of a single 
!3C nucleus in a powder sample at a main magnetic field of 400 MHz. In 
the spectrum shown by the black line, the isoCS and the CSA are equal to 
o and the spectrum shows a single line at the Larmor frequency. If the 
isotropic chemical shift is introduced, the spectrum shows a single peak but 
at the chemically shifted Larmor frequency (red line). The blue line 
represents the powder spectrum when the CSA is introduced. In this case, 
the spectrum shows the characteristic powder lineshape for '7 = O. 
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trace of the CS tensor and is a scalar: 

(3.46) 

• A rank-l tensor. This tensor can be ignored under the high field approximation be­

cause it has no secular part. 

• A rank-2 tensor, called the chemical shift anisotropy (CSA). This part of the CS 

gives useful information about the geometry and the orientation of the electronic 

distribution around the nucleus. The three diagonal elements of the CSA are called 

the principal values of the CSA tensor and they are denoted by O~f' o~" o~. By con­

vention [25], the three principal values are ordered as follow: 

s:P _ s:j >-: s:P _ s:j >-: s:P - 8i 
U zz V iso :;;.-' Vxx Viso -;;..' Vyy iso (3.47) 

Two useful parameters to describe the CSA are the anisotropy of the anisotropic 

chemical shift frequency Waniso and the biaxiality parameter 1]: 

. P' ) 
waniso =WOL1~niso =wo( 8 zz - 8{so (3.48) 

(3.49) 

The CS Hamiltonian can be expressed as: 

(3.50) 

Normally the Zeeman and CS Hamiltonians are expressed together. This Hamiltonian ex­

pressed in terms of ISTOs becomes: 

i(CS=L: 
] I 

(3.51 ) 

where [51~t is the space part of the CS and ['T~nL is the spin-field part (this part contains 

information about the spin and the field) of the CS. If the high-field approximation is ap­

plied Eq. (3.51) is equal to: 

(3.52) 

The spin-field and space parts have the components shown in Appendix A, and can be re­

arranged to give the following an expression for the CS Hamiltonian: 

(3.53) 

In order to express the space part in the laboratory frame, we need a transformation from L 

to P, accomplished via the intermediate rotor frame R: 
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1]=0 

D . >0 
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Fig. 3.8. Powder patterns observed in static solid-state NMR spectra. 
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1]=1 

Oyy 

0", 

I • I I I 

15 10 5 0 -5 
kHz 

(3.54 ) 

The Hamiltonian for CS including the Zeeman interaction and taking into account the refer­

ence frame transformations is: 

where w~ is the chemically shifted Larrnor frequency and [A;;,,Y is a second-rank tensor. 

The CS is an important interaction for the application of NMR to chemistry because of 

its dependence on the electronic environment of the nucleus. It is indispensable in study of 

the spectral assignment of spin sites [26], molecular orientation [13], [27] and mobility of 

molecular groups [24], [28]. 

3.5.2. Direct Dipolar-Dipolar couplings 

A nuclear spin itself generates a magnetic field that can interact with other nuclear spins. 

Since this interaction is mutual the first spin also interacts with the magnetic field generated 

by the second spin. 

This interactions between spins is propagated through the space between them, and is 

therefore called the through-space dipole-dipole coupling. Other names are the direct di-
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pole-dipole coupling, the dipole-dipole coupling or the DD-coupling. 

In the Cartesian basis the Hamiltonian of the dipole-dipole coupling between two spins 

Ii and -0 can be expressed as: 

( 3.56) 

where]]} is an axially symmetric Cartesian tensor with zero trace [19]. This interaction is 

analogous to the interaction between two magnetic dipoles: 

(3.57) 

where eij is a unit vector parallel to the internuclear axis between the two nuclei. 

With the high-field approximation the homonuclear dipole-dipole Hamiltonian is: 

(3.58) 

where Hi; i; + 1; i~) is called the "flip-flop" term, which is of importance in the measure­

ment of distances in homonuclear multiple-spin systems (chapter 8), Bij is the angle between 

the dipolar vector and the static field and bij is the dipole-dipole coupling constant: 

110 (yJ?/i . 
b ij = ----3- for homonuclear spms 

4rr rij 

Fig. 3.9. Angle Bij betWeen the static magnetic 
field BOand the intel1lUclear vector ' eij between 
the spins Ii and~. 

(3.59) 
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where YI and ys are the gyromagnetic ratios of spins I and S and r ij is the distance between 

two spins. The interaction is scaled by the gyromagnetic ratio of the nuclei involved in the 

interaction and depends on the inverse cube of the distance. This property is extremely im­

portant for extracting distance and geometrical information from solid-state NMR experi­

ments [29]. It is important to note that the Hamiltonian of the dipolar interaction depends on 

the orientation, but the dipole-dipole coupling constant is invariant under a change of orient-

ation [6]. 

In the high-field approximation, the dipole-dipole Hamiltonian in the laboratory frame 

can be written in terms of spherical tensors operators as: 

icDD =[A DD]L [TDD]L 
jk 20 20 (3.61) 

where the first term is the spatial part, which depends on the angle e and the second term is 

the spin part (see Appendix A and [30]). 

In the case of heteronuclear spin system the Hamiltonian the flip-flop term disappears in 

the high-field approximation and the expression can be written as: 

cirDD-b (1-3 2Q)/ S _[ADDls]L[T1; ]L[Tsi]L J~ jk - ij cos IY ij iz jz - 20 IO IO (3.62) 

3.5.3. J-couplings 

In a molecule in which different atoms are chemically bonded, the nuclear spins of these 

bonded atoms are also coupled by the influence of the bonding electrons. This through-bond 

interaction is called the indirect spin-spin coupling, I-coupling, or indirect dipole-dipole 

coupling. This is an important interaction for the determination of chemical structure and 

study of bonding between two atoms [31], [32], [33]. 

The Hamiltonian for a I-coupling interaction between spins i andj is expressed as: 

(3.63) 

where.]" is a Cartesian tensor of rank-2 and Ii and I j are are the spin operators for spins i and 

j. The tensor.]" can be decomposed into irreducible tensors ofrank-O, rank-l and rank-2: 

(3.64) 

where jO) is the isotropic part of the I-coupling. The Hamiltonian of the isotropic part of the 

I-coupling is given by: 

(3.65) 



3. Theory of Solid-State NMR 29 

where J ij is the homonuclear isotropic J-coupling constant in Hz. The tensor }I) is the anti­

symmetric J-coupling which may be ignored to first order [19]. The tensor pl is a rank-2 

tensor and represents the orientation dependence of the J-coupling which is difficult to ob­

serve because the irreducible tensor for the anisotropic part of the J-coupling has the same 

form and behaviour under rotations as the usually much larger dipole-dipole coupling [6], 

[30]. 

The Hamiltonian for the isotropic J-coupling in terms of irreducible spherical tensors 

can be written as (see Appendix A): 

(3.66) 

3.5.4. Quadrupolar Interactions 

The quadrupolar interaction for spinj can be expressed as: 

(3.67) 

where Q is the quadrupolar tensor. The Hamiltonian under the high-field approximation is: 

A Q . 2 
1i j =w~(3 I jz - I j • I j ) (3.68) 

where rob is the nuclear quadrupolar frequency. In some cases, the high-field approximation 

is not applicable to the quadrupolar Hamiltonian. For further reading about NMR of quadru-

polar nuclei see [34], [35], [36] and [37]. 

3.6. Density Operators 

In section 3.1 the Zeeman eigenstates for a spin-Y2 have been defined. However the pos­

sible states for a spin-Yz are not restricted to the Zeeman eigenstates, and include superposi­

tions of the Zeeman states: 

(3.69) 

where C" and Cp are complex numbers called superposition coefficients which must satisfy 

the normalization condition: 

(3.70) 

In a sample composed by an ensemble of spins, the total magnetization is the sum of 

each small contribution of each individual spin as described above. In practice, this calcula­

tion is impossible due to the enormous number of spins contained in a real sample. 
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However, there is an alternative formalism, called the density operator, which overcomes 

this problem and provides an elegant tool to calculate an overall spin state for a spin en­

semble. 

Consider an ensemble of N spins in superposition states II/h(t). The expectation value 

of an operator Q over the spin ensemble is given by: 

(3.71) 

This expression can be written as: 

where the overbar indicates the average outcome of many measurements [6]. 

It is possible to define the density operator P (t) as : 

p (t) =1 tfJ k (t) < tfJ k (t) 1 
= N-1 

( ) (t) ) < ) (t) + 2 (t) ) < 2 (t) +- .. + N (t) < N (t) ) 
(3.73) 

where the overbar indicates an average over the ensemble of N spins. Then, the macroscopic 

observation of Q for the entire ensemble is equal to: 

<Q)=Tr{p(t)Q} (3.74) 

The density operator in the Zeeman basis can be written [30] as: 

p(t)=LPrs(t)lr )<sl 
r,S 

(3.75) 

The representation of the density operator has diagonal elements Prr (t) which are the popu­

lations and Prs(t) which are the coherences between states Ir) and Is). 

If the spin states Jr) and Is) are eigenstates of t with eigenvalues equal to Ms and M" 

then the order of the coherence between eigenstates I r) and I s) is: 

(3.76) 

Consider an ensemble of spins I which it is left undisturbed in a strong magnetic field. In 

this situation, after a time the system adopts a state called thermal equilibrium. The thermal 

equilibrium density operator of the system at temperature T expressed as: 

A exp { -Ii 1c; / k B T } 

Peq= Tr{ exp{ -1i1c; / kBT}} 
(3.77) 

where kB is the Boltzmann constant. Considering the high-temperature approximation (kBT 
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» lliwo I) the expression for the density operator can be simplified as : 

(3.78) 

where lB\ is the Boltzmann factor: 

(3.79) 

In practice, the only term to use in calculations is L since the unity operator is constant. 

3.7. Time Evolution 

The evolution of the density operator under the effect of a Hamiltonian is determined by 

the Liouville-von Neumann equation: 

~ p{t) =-i[ jc{t), p{t)] 
dt 

(3.80) 

Solving this differential equation for a known initial density operator p{to) of the spin en­

semble at time point to, the density operator p (t) at time t gives: 

where the operator [; (t, to) is known as the propagator which solves the equation: 

d A A A 

- U(t, to)=-i1-C(t) U (t, to) 
dt 

In order to determine the propagator operator, two cases can be considered: 

(3.81) 

(3.82) 

1. If the Hamiltonian if is time-independent, Eq. (3.82) can be easily integrated and 

the propagator is described by: 

(3.83) 

2. If the Hamiltonian is time-dependent the propagator can be represented as: 
t 

U(t,to)=Texp{-i f dt,jc(t')} (3.84) 

where j is the Dyson operator [30], [16], [25]. 

3.8. Average Hamiltonian Theory 

In the previous section the way to calculate propagators has been given when the 
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Hamiltonian is time-dependent. In general solving Eq. (3.82) is difficult and an analytical 

solution for fj(t, to) cannot be obtained. The Average Hamiltonian Theory (AHT) [25], 

[38] allows one to obtain an approximate solution for the propagator. 

AHT assumes that the time-dependent Hamiltonian :k (t) under the effective evolution 

during a time interval tc can be described by an effective average Hamiltonian :fe. This is 

possible if: 

• The Hamiltonian is periodic. 

• The observations are stroboscopic and synchronized with the period of the 

Hamiltonian. 

Thus, the propagator fj (t , to) can be written as: 

t 

[; (t, to)=Texp{ -i f dt' ic(t') }=exp{ -i!Kt} (3.85) 

Applying the Magnus expansion [39] to fj (t c ' to): 

[; (t
c

' to)=exp {-i (!J-C(l) + !J-C(2) + !J-C(3) + .. ) t} (3.86) 

taking into account the Baker-Campbell-HausdorjJ formula [25], the first two terms are 

equal to: 

t 

!K(I)=! f ic(t)dt 
t (0 

(3.87) 

t t' 

!K(2)=_~ f dt' f[ic(t '), ic(t)]dt 
2 t to 

(3.88) 

Each of these terms is an Hermitian operator and the truncation of the expansion leaves a 

Hermitian operator. The Magnus expansion converges rapidly if the condition give below is 

satisfied: 

(3.89) 

Additionally, it is possible to increased the speed of convergence of the Magnus expan­

sion by expressing the Hamiltonian :k (t) in an appropriate frame called the interaction 

frame or toggling frame. 

The Magnus expansion may be truncated at different points, depending on the situation. 

In many cases, just using :fc<ll is not enough and one must include higher-order terms as 

well. 

Suppose that the the total Hamiltonian can be defined as the sum of two Hamiltonians: 
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one large and easy to handle (1<:A)' another small but difficult to handle (1<:B): 

iclO1al = icA +icB (3.90) 

Generally, these two Hamiltonians do not commute and are time-dependent. In this con­

dition, a propagator V for the evolution under 1<:rowl can be defined: 

(3.91) 

where VA is a propagator that fulfills the next condition: 

(3.92) 

and VB is the propagator under interaction frame Hamiltonian and solves the equation: 

(3.93) 

The interaction frame Hamiltonian itB can be obtained by the transformation: 

- t 
~B=UA~BUA (3.94) 

It is convenient to properly choose !J{ A and !J{ B to simplify the calculations. In NMR it 
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4. Solid-State NMR Techniques 

Solid-state NMR has grown into an indispensable technique for structural determination, 

chemical analysis and study of dynamics in many systems, from biological systems such as 

proteins [40], [41], [33] to inorganic systems such as zeolites [42], [43]. However, in the be­

ginning, the application of solid-state NMR was mainly restricted to physics because of its 

low-sensitivity and lack of resolution in comparison with NMR in liquids or oriented 

phases. In this section, the experimental solid-state NMR techniques used in this thesis will 

be described. 

The resonance lines of small and isolated spin systems in single crystals (ordered 

samples) are well resolved, allowing the determination of the anisotropic spin interactions 

directly. However, it is usually quite difficult to obtain good single crystals for all samples. 

Therefore, solid-state NMR is commonly performed on powders, which are composed of 

many crystallites, each one with a random orientation with respect to the external field. 

Thus, the NMR spectrum of a powdered sample shows broad lines mainly due to the aniso­

tropic part of the spin interactions. The introduction of the MAS technique [44], [45], [46] 

allows one to average out the anisotropic interactions to first order. Nowadays, the majority 

of solid-state NMR experiments are performed under MAS. 

In general, NMR is a low-sensitivity technique because of the small population dif­

ference between energy levels and the low abundance and low gyromagnetic ratio of many 

nuclei. These features produce small signals difficult to distinguish from the spectral noise. 

To compensate for these effects, NMR uses a larger amount of sample than in other types of 

spectroscopy. The commonest method to enhance the signal in solid-state NMR is cross-po­

larisation (ep) [47]. This method is based on transferred magnetization from "abundant" 

nuclei, such protons, to "rare" low-y nuclei. 

An important issue in the solid-state NMR of biological samples is the effect of strong 

heteronuclear interactions between IH and other nuclei, like 13C. The high abundance and 

high gyromagnetic ratio of IH make the dipolar interactions between the protons and other 

nuclei quite strong and difficult to remove under MAS conditions. Usually, these heteronuc­

lear dipolar interactions broaden the NMR signal of other nuclei, such as 13C. Therefore, it is 

important to decouple these heteronuclear interactions to get a high-resolution spectrum of 

"rare" nuclei in the present of "abundant" nuclei. Strong irradiation on the "abundant" nuc-
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lei without phase or amplitude modulation, knows as continuous wave decoupling (CW) 

[48], [49], has been one of the most common solutions for this problem but more efficient 

ways of decoupling have been proposed such as the TPPM [50] and SPINAL [51] decoup­

ling schemes. 

The combination of CP and MAS techniques, plus heteronuclear decoupling, has be­

come the standard way of obtaining high resolution solid-state NMR spectra of !3C in biolo­

gical samples [52]. These techniques remove to first order the anisotropic interactions of the 

spin system which contain important information about the structure of the system. There­

fore, it is important to reintroduce these interactions by using recoupling pulse sequences to 

get this important structural information [40]. 

4.1. Magic-Angle Spinning 

The static NMR spectrum of a solid sample is dominated by broad lineshapes, with low 

resolution, due to anisotropic interactions as DO-couplings or CSA (see Fig. 4.2). The spec­

tral resolution can be increased if the anisotropic part of the spin Hamiltonian is removed. 

This can be achieved by using magic-angle spinning (MAS). The vast majority of solid-state 

NMR experiments with high resolution are performed under MAS. This technique, intro­

duced by Lowe [44] and Andrew et al [45] in the 1950's, consists of rotating the sample rap-

e 

Fig. 4.1. Fig. 5.5. Macroscopic sample rotation at the magic-angle (8) at 
a spinning frequency of W r• The axis ZL is the z-axis of the laboratory 
frame, which coincides with the direction of the main magnetic field and 
ZR is the z-axis of the rotor frame. 
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idly around an axis with an angle of eRL equal to 54.7° with respect to the main field, called 

the magic-angle (Fig. 4.1). Generally, the sample is spun at a frequency between a few hun­

dred Hz and 50 kHz. 

MAS averages out to zero all the spin interactions whose anisotropic part can be de­

scribed by second-rank irreducible spherical tensors (for example CSA, DD-coupling), if the 

spinning frequency is high enough with respect to the interaction size. This is quite an as­

tonishing result but if we consider the form of the Hamiltonian for one of these interactions 

under the secular approximation and considering the restriction to time averaging it follows 

that: 

(4.1) 

If ePL is equal to the magic-angle, this term is 0 and the secular Hamiltonian is made to van­

ish. 

hI powder samples the angle ePL takes all possible values, since each crystallite has a dif­

ferent orientation with respect to the main field. hI this case, when the sample is spun rap­

idly around a spinning axis with an angle eRL with respect to the main magnetic field BO, it 

can be shown that the average value of 3 cos2 e PL -1 for the interaction is determined by the 

angle eRL [53], [54]. If this angle is equal to 54.7° the average value of 3cos2 
e PL -1 is equal 
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Fig. 4.2. BC simulated spectra of BC3-alanine at a magnetic field of 400 MHz. The figure 
shows the static spectrum, the spectrum at MAS frequency of 1 kHz and the spectrum at 
MAS frequency of 10kHz. 
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Rotation axis 

\/ 

/3PL 

Fig. 4.3. Macroscopic sample rotation at the magic angle to the 
main magnetic field BO. The following geometrical relationships 
are shown: /3PL is the angle between the z-axis of the laboratory 
frame (L) and the z-axis of the principal axis fame of the interac­
tion (PAS), /3PR is the angle between z-axis of the PAS frame of 
the interaction and the z-axis of the rotor frame and /3RL is the 
frame between the z-axis of the L frame and z-axis of the R 
frame. The angles /3PL and /3PR are fixed for each crystallite 
orientation but /3RL is controlled externally. If the angle /3RL is 
54.7° the spatial part of the spin interaction is averaged out to 
zero. 

to 0 and the anisotropic part of the interaction is made to vanish. 

4.2. Cross-Polarisation 

37 

MAS is an essential tool in solid-state NMR in order to increase spectral resolution. 

However solid-state NMR of "rare" nuclei, such l3C, has a low sensitivity. There are three 

reasons why the sensitivity of "rare" nuclei can be low: 

1. Low gyromagnetic ratio. 

2. Low natural abundance. 

3. Usually the relaxation time T[ is quite long. 

A practical approach, in order to detect these rare spins, is to transfer magnetization 

from the abundant to the rare spins through the DD couplings [56], [19], [30]. The most 
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90 

I 
CP Decoupling -

s CP 

Fig. 4.4. The ramped cross-polarisation sequence [55]. 

popular scheme in solid-state NMR is a method called cross-polarisation (CP) [47]. The se­

quence is shown in Fig. 4.4 in which IH and l3C are the "abundant" and the "rare" species. A 

90 degree pulse on the proton channel creates IH magnetization. After this pulse, spin lock 

fields are applied on both channels. In order to transfer magnetisation, these two fields have 

to fulfil the Hartmann-Hahn condition [56]: 

Under static conditions: w~=w~ (4.2) 

Under MAS conditions: w~.=w~+nwr ~ y,B~'=YsB~+nwr (4.3) 

where B~ and B~ are the field strengths applied to each nucleus and n is an integer. The 

mechanism of CP through the DD couplings is explained in terms of thermodynamics and 

quantum mechanics in [19], [30], [24]. 

By using CP, the theoretical signal enhancement is expected to be proportional to y1/ys, 

depending on the proportions of I and S spins. An improvement in reliability and reprodu­

cibility of the CP experiment can be achieved by using the ramped-CP experiment [55]. In 

the ramped-CP experiment, the contact pulse on one of the spins (it can be either) is steadily 

increased in amplitude over the contact period. In this case, for systems l3C_ 1H, the enhance­

ment of l3C signal is usually a factor of 3. 

4.3. Heteronuclear Decoupling 

For the application of solid-state NMR to biological systems high resolution is essential. 
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However, in biological samples, strong 13C_1H heteronuclear interactions are of the order of 

20-30 kHz, which are difficult to remove by MAS. Additionally, in the present of strong 

homonuclear dipolar couplings, the non commutation with the heteronuclear dipolar coup­

lings leads to a high-order interactions, resulting in an incomplete averaging of the hetero­

nuclear interactions [57]. Therefore, rf irradiation techniques are needed to decouple these 

strong heteronuclear interactions in biological samples (Fig. 4.6). In this section, heteronuc­

lear decoupling methods used for the work in this thesis will be discussed. 

A common method used to eliminate heteronuclear couplings in solid-state NMR spec­

troscopy is a technique called continuous wave decoupling (CWJ. CW decoupling works by 

rotating the spin state of IH spins, thus, the dipolar interaction is averaged out every 2IT ro­

tation while the spin state of the 13C spins is not modified. 

Under MAS, sample rotation and CW rf irradiation can interfere with each other, if their 
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Fig. 4.5. CP-MAS experiments at different CW decoupling rf fields of: a) wnu,!2rr = 0 kHz, b) 
w nu,!2rr = 41.7 kHz, c) wnu,!2rr = 83.3 kHz, and d) wnj2rr = 113 kHz. The experiments were 
performed on a 400 MHz spectrometer using a 3.2 mm rotor at MAS of 6 kHz. The sample was 2,3-
[

13C2]-diammonium fumarate 10% diluted in natural abundance diammonium fumarate DAF (for the 
molecular structure see chapter 6). Each experiment was recorded in 4 scans and the delay between 
transients was 5 s. 
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timescales are comparable, leading to inefficient heteronuclear decoupling. Therefore, there 

are two different regimes in which CW decoupling is efficient: high power CW decoupling 

and low power CW decoupUng [57]. In the first one, high CW irradiation (50-250 kHz) is 

applied while the spinning frequency is maintained in a low-moderate regime (up to 25 

kHz). In this regime the linewidth decreases when the rf irradiation is increased (Fig. 4.6). 

The second approach is applied under high spinning frequency (>30 kHz) and the CW rf 

field is maintained under 50 kHz [57]. Similar regimes have been found in the work presen­

ted in chapter 6 for the effect of CW decoupling irradiation during application of DQ homo­

nuclear dipolar recoupling symmetry-based sequences. 

One of the limitations of CW decoupling is that off-resonance effects produce an incom­

plete heteronuclear decoupling. Residual line splittings increase with increasing MAS fre­

quency and decoupling sidebands can be observed at the rf irradiation frequency. However, 

the introduction of phase modulated decoupling sequences [50], [51] has given a significant 

improvement in both line width and line intensity. 

In the work of this thesis a phase-modulated sequen,ce called small incremental alterna­

tion (SPINAL) [51] has been used for heteronuclear decoupling during acquisition of the 

FID. The SPlNAL decoupling sequence is built of two elements, Q and Q: 

a) 

j 

o 50 100 150 200 250 300 

degrees 

b) 

1, 1 j ~ J J Ij~ 
2.8 16.7 30.6 44.5 58.4 77.44 86.2 103.44 

kHz 

Fig. 4.6. a) Optimization of the flip angle in a SPINAL-64 sequence for a rf field of 82.6 kHz nuta­
tion frequency. It can be seen that there is a maximum ofperfonnance at a value close to 165". b) Op­
timization of the rf field in a SPINAL-64 decoupling sequence. Both experiments were performed on 
a 400 MHz spectrometer using a 3.2 mm rotor at MAS of 6 kHz. The sample was 2,3-[ 13C21-diam­
monium fumarate 10% diluted in natural abundance diammonium fumarate DAF (for the molecular 
structure see chapter 6). Each experiment was recorded in 4 scans and the delay between transients 
was 5 s. 
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Fig. 4.7. a) CP-MAS experiment with SPINAL decoupling optimized for a IH nutation frequency of 
86.2 kHz. b) CP-MAS with CW decoupling at a IH nutation frequency of 86.2 kHz. Both experiment 
were performed on a 400 MHz spectrometer using a 3.2 rom rotor at MAS of 6 kHz. The sample was 
2,3-[J3C21-diammonium fumarate 10% diluted in natural abundance diammonium fumarate DAF (for 
the molecular structure see chapter 6)" Each experiment was recorded in 4 scans and the delay 
between transients was 5 s. 
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These elements can be combined into supercycles to build different SPINAL cycles: 

SPINAL-16 =QQ 
SPINAL-32 =QQQQ 
SPINAL-64 =QQQQ QQQQ 
SPINAL-128 =QQQQ QQQQ QQQQ QQQQ 

SPINAL-64 has been used in the present work for decoupling during acquisition. 

(4.4) 

(4.5) 

From Fig. 4.7, it can be seen that the SPINAL-64 decoupling sequence provides a large 

improvement in performance compared with CW decoupling. 

4.4. Dipolar Recoupling 

It is useful to reintroduce the anisotropic interactions averaged out by MAS in order to 

obtain information about the environment of the nuclei. This is called recoupling. One of 

the interactions that is averaged out by MAS is the direct dipole-dipole coupling which is 

essential in structural determination because of the dependence of this interaction on the dis­

tance between nuclei. The dipolar couplings can be reintroduced by dipolar recoupling. 

The principle of dipolar recoupling is to apply rotor-synchronized pulse sequences, 
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which are known as a recoupling sequences, in order to reintroduce the dipolar couplings 

while maintaining the high resolution achieved by MAS. In the case of dipolar recoupling, 

homonuclear and heteronuclear dipolar recoupling can be distinguished. 

Dipolar recoupling sequences have the following applications: 

Determination of Internuclear Distances: 

In the simplest case the evolution of the NMR signal intensities is measured as a func­

tion of the time interval in which the dipolar recoupling sequence is applied. The evolu­

tion of the signal depends on the distance between pairs of nuclei. 

Magnetization Exchange: 

Magnetization is transferred betweens spins through dipolar couplings. These techniques 

allows to identify spins that are bonded or close to each other. Another important applic­

ation is to enhance the sensitivity of low-y nuclei by transferring magnetization from 

high-y nuclei through heteronuclear dipolar couplings. 

Determination of Bond-Angles and Torsional Angles: 

The relative orientation of dipolar interactions can be detennined by experiments in­

volving dipolar recoupling sequences. 

Excitation of Multiple-Quantum Coherences (MQC): 

MQC can be excited by using dipolar recoupling sequences. These experiments are use­

ful in the structural determination of spin clusters. 

4.4.1. Homonuclear Dipolar Recoupling 

Homonuclear dipolar recoupling reintroduces the direct coupling between identical 

MAS 

18:.... I 
# ~ , 

Rotor-synchronized 
RF 

Fig. 4.8. Basic idea of recoupling in magic-angle spinning solid-state NMR. The 
anisotropic interactions are removed by fast MAS. Anisotropic interactions are 
reintroduced by a rotor-synchronized rf field. 
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spins. Consider a two-spin system Ii and I j. Different average Hamiltonians may be gener­

ated using a homonuclear dipolar recoupling sequence: 

• Homonuclear zero-quantum recoupling. 

The first-order average Hamiltonian is given by: 

(4.6) 

where the terms I; I; and I: Ij are called zero-quantum terms. In terms of irreducible 

spherical tensors, the Hamiltonian contains two-spin terms with a total spin compon­

ent of J1= O. The rf pulse sequence generating this Hamiltonian is called a homonuc­

lear zero-quantum recoupling sequence. This kind of Hamiltonian is perfect for ex­

change of magnetization. Additionally, it could be used for distance-measurement ex­

periments. 

• Homonuclear single-quantum recoupling. 

The first-order average Hamiltonian is given by: 

(4.7) 

In terms of irreducible spherical tensors, the Hamiltonian contains two-spin terms 

with a total spin component of J1=±1. The rf pulse sequence generating this Hamilto­

nian is called a homonuclear single-quantum recoupling sequence. 

• Homonuclear double-quantum recoupling. 

(4.8) 

In terms of irreducible spherical tensors, the Hamiltonian contains two-spin terms 

with a total spin component of J1=±2. This kind of Hamiltonian has been extensively 

used to extract internuclear distance information. The rf pulse sequence generating 

this Hamiltonian is called a homonuclear double-quantum recoupling sequence. 

In the context of this thesis, recoupling pulse sequences have been applied to produce 

ZQ Hamiltonians and DQ Hamiltonians for distance determination purposes. 

4.4.2. Heteronuclear Dipolar Recoupling 

Heteronuclear dipolar recoupling reintroduces the direct coupling between different 
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spins by a heteronuclear dipolar recoupling sequence. Consider a two-spin system Ij and Sj. 

Four different average Hamiltonians may be generated using a heteronuclear dipolar recoup­

ling sequence: 

• Longitudinal two-spin recoupling. 

The first-order average Hamiltonian is given by: 

(4.9) 

This Hamiltonian contains only terms with spin components (Il/,Ils) = O. This average 

Hamiltonian has the same form as the Hamiltonian for the direct heteronuclear di-

polar Hamiltonian of Eq.( 4.9). Under this kind of average Hamiltonian the evolution 

of a heteronuclear multi spin system is described by a superposition of the evolution 

of isolated spin pairs. This property has been exploited in distance measurement in 

heteronuclear multi spin systems. 

• Heteronuclear zero-quantum recoupling. 

The first-order average Hamiltonian is given by: 

(4.10) 

In terms of irreducible spherical tensors, the Hamiltonian contains two-spin terms 

with a total spin component of (llhJiS) = (±1,+1). The r.f. pulse sequence generating 

this Hamiltonian is called a heteronuclear zero-quantum recoupling sequence. 

• Heteronuclear single-quantum recoupling. 

The first-order average Hamiltonian is given: 

(4.11) 

In terms of irreducible spherical tensors, the Hamiltonian contains two-spin terms 

with a total spin component of (llbJiS) = (±I,O) or (llbJiS) = (O,±I).The rf pulse se­

quence generating this Hamiltonian is called a heteronuclear single-quantum recoup­

ling sequence. 

· Heteronuclear double-quantum recoupling. 

The first-order average Hamiltonian is given by: 

(4.12) 

In terms of irreducible spherical tensors, the Hamiltonian contains two-spin terms 

with a total spin component of (Ilr.Jis) = (±I,±I).The r.f. pulse sequence generating 

this Hamiltonian is called a heteronuclear double-quantum recoupling sequence. 
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In this thesis, different recoupling sequences [58], [59] have been used to minimize the 

interference of average heteronuclear Hamiltonians in homonuclear dipolar recoupling se­

quences. 

4.4.3. Dipolar Recoupling Pulse Sequences 

Solid-state NMR is based on two spin manipulations: (i) spatial manipulation by rotation 

of the sample at a frequency around an a fixed axis; and (ii) spin rotations by using applied 

r.f. pulses. For a long time both manipulations were used separately in order to decouple or 

recouple the desired spin interactions. However, at the beginning of the 1980s, the sample 

rotation and the r.f. pulse sequences were combined in a powerful way and the recoupling 

was born as it is known today. 

The first successful homonuclear dipolar recoupling sequence was DRAMA [60], [61]. 

This sequence is composed of strong 90° pulses synchronized with the sample rotation. The 

RFDR scheme by Griffin and co-workers [62], [63] and [64] was a popular alternative. This 

pulse sequence is made of rotor-synchronized 1800 pulses. While DRAMA produces a mix­

ture of zero-quantum and double-quantum Hamiltonians, the RFDR sequence generates a 

pure zero-quantum Hamiltonian. 

The next development in homonuclear dipolar recoupling was the introduction of HOR­

ROR [65]. This sequence produce an DQ Hamiltonian with high efficiency by controlling 

the angular orientation of the recoupled Hamiltonian but HORROR is only feasible for 

coupled spins with a small difference in chemical shifts. This problem was solved by the in­

troduction of C7 and its variants [66], [67] and [68]. These sequences maintain a high DQ 

excitation while the control of the orientation-dependence is maintained. 

The theory behind C7 is based on the symmetry properties of the spin interactions. An 

extension of this theory has led to the rotor-synchronized symmetry-based pulse sequences 

[58]. The symmetry classes for symmetry-based sequences have been divided into C-sym­

metries [59], [66], [69] and R-symmetries [59], [70]. These two symmetries lead to the two 

classes of symmetry-based sequences: eN; and RN;. 

In the context of heteronuclear dipolar recoupling, the most successful method is 

REDOR [13], [71], in which 180 degree pulses are applied synchronized with the rotor fre­

quency. 

The symmetry-based sequences have been used as single-channel heteronuclear recoup­

ling sequences [59], [70], [72], [73], [74]. Additionally, the concept of symmetry-based se-



4. Solid-State NMR Techniques 46 

quences can be generalized to the case of dual channel r.f. irradiation [59], [75]. These se­

quences can be used to enhance the signal of low-y nuclei [76], [74] and for dipolar recoup­

ling [73], [77] or heteronuclear decoupling [75]. 

Chapter 7 studies the effect of irradiation on the IH channel during DQ homonuclear di­

polar recoupling. Symmetry arguments and theory have been used to find conditions under 

which we obtain high DQ efficiencies for homonuclear dipolar recoupling while reducing 

the interference from heteronuclear interactions [75]. 

In chapter 8, a ZQ dipolar recoupling eN: sequence is used for dipolar recoupling in 

multiple spin systems. The sequence has been designed to recouple dipolar couplings terms 

plus chemical shift terms, which are used to truncate the dipolar Hamiltonian, allowing dif­

ferent dipolar couplings in a multiple spin system to be treated independently [78]. 
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5. Symmetry-Based Recoupling 

Rotor-synchronized recoupling pulse sequences use symmetry properties of the spin in­

teractions to generate an average Hamiltonian containing terms with the desired combina-

tions of quantum numbers I, m, ,\ and J1 (Table 5.1). 

In order to obtain this effect, the spin and spatial trajectories have to be synchronized. 

This can be accomplished by setting up periodic symmetry relationships between the mech­

anical and the r.f. rotations. Two classes of symmetry of the rotor-synchronized pulse se-

quences have been identified: CN~ and RN~ symmetry classes. 

The CN~ sequences impose the Euler angle symmetry: 

(5.1) 

where N, v and n are integers called symmetry numbers and Tr is the rotor period. The in­

teger q takes values q = 0, 1, ... , N-l. 

Table 5.1. Rotational signatures of spin interactions in systems of spin-I12. 

Space rank 
Space 

Spin rank Spin component 
Interaction component 

,\ 
m J1 

Isotropic CS 0 0 1 -1,0, 1 

CSA 2 -2, -1, 1,2 1 -1,0, 1 

Homonuclear 
0 0 0 0 isotropic J-coupling 

Homonuclear 
2 -2, -1, 1,2 2 -2, -1, 0, 1,2 

dipolar coupling 

Heteronuclear 
0 0 1 -1,0, 1 

isotropic J-coupling 

Heteronuclear 
2 -2, -1, 1,2 1 -1,0, 1 

dipolar coupling 
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In the case of RN: sequences, the Euler angle symmetry is given by: 

(5.2) 

These symmetry classes manipulate the recoupling and decoupling of different spin 

terms by defining a set of selection rules of the Average Hamiltonian. Since the third Euler 

angle {)(q is left completely free, there are many ways of implementing these two symmetry 

relationships. Two convenient possibilities will be described below. 

The eN: and RN: rotor-synchronized sequences are applied at the Larmor frequency of 
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Fig. 5.1. a) One way of implementing a C-sequence. The sequence is built up from an element cY, 
which is a rf cycle. The C-sequence is composed of N phase-shifted cycles. b) One way of 
implementing a R-sequence. The element R implements a IT rotation about x-axis. The element R' is 
equivalent to R but with a change in the sign of all phases. The R-sequence is composed of NI2 RR' 
pairs. Figures taken from [59]. 
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Fig. 5.2. a) A CRN;"vs sequence scheme. b) A CN;" v, sequence scheme. Figures taken from 
[59]. 
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one spin species, for instance 13c. However, rotor-synchronized pulse sequences can be ap­

plied simultaneously at the Larmor frequencies of two different spin species. In the case of 

applying simultaneously the CN~ and RN~ sequences at the Larmor frequencies of I and S 

spins, there are four possibilities of dual-synchronized pulse sequences: 

CN:1 is applied on I-spins and CN:s on S-spins. This type is denoted CN:" v~ . 

CN:' is applied on I-spins and RN:s on S-spins. This type is denoted CRN:" vS. 

• RN:' is applied on I-spins and CN~s on S-spins. This type is denoted RCN:" VI. 

. RN:' is applied on I-spins and RN:·I on S-spins. This type is denoted RN:" vs. 

In this chapter, the types CRN:" Vs and CN:" v, will be described in sections 6.3 and 6.4. 

In chapter 7, these types of dual channel sequence have been used to get high DQ homonuc­

lear excitation in 13C while the effects of heteronuclear interactions with IH are minimized. 

5.1. eN; Sequences 

5.1.1. Definition 

One possible implementation of the time-symmetry relationships defined in Eq. (5.1) is 
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given in Fig. 5.1. The idea is the repetition of a basic element N times over n rotor periods. 

This basic element C has to be a cycle in the sense of [79], inducing a rotation of the nuclear 

spin through an integer mUltiple of 360°. The phases of each r.f. cycle are shifted with re­

spect each other by an angle of 2rrvlN. The integers n and v are called winding numbers. 

The symmetry properties are independent of the structure of the basic element, with the 

only restriction that each cycle has to accomplishe a final rotation through an integer of 

360°. Different basic elements will be described in following chapters. 

5.1.2. Average Hamiltonian and Selection Rules. 

Consider a system of coupled spins S in a strong magnetic field and rotating at a spin­

ning frequency of W r • The internal Hamiltonian at time t is expressed as: 

(5.3) 

Because of the rotation of the system, the Hamiltonian is periodically modulated, so we can 

write: 

A A A. A 
1-C1m"O(t)=w1m exp {lmWJ} T"o (5.4) 

with complex amplitUdes equal to: 

(5.5) 

where (){~L denotes the initial position of the rotor and ~ RL is the angle between the axis of 

rotation and the main magnetic field. 

Consider a rotor synchronized pulse sequence and the definition of tq as in Fig. 5.1. Eq. 

(5.4) may be expressed: 

(5.6) 

Before applying AHT the Hamiltonian has to be transformed into the interaction frame 

of the rf field. The interaction frame Hamiltonian at time point tq can be written as: 

- -A" A .. A 
1-Cint (tq)= L 1-Clm"ll(tq)=dI1O( -~q)WlmeXp {If.1}'q +lmwrtq} T"1l (5.7) 

A,I,m,",1l 

If the Euler angle symmetry for CN: sequences applies, the interaction frame Hamiltonian 

is: 

(5.8) 

The interaction frame Hamiltonian for the CN: sequence can be analysed by using the 
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Magnus expansion [39]: 

j{=j{(1)+j{(2)+ ... = " j{A + L j{A,XA,+ ... 
L... 1m All 2;1 (5.9) A,I.m,A.1l Al 2,A,.1 

where the first-order term is given by : 

t~+T 

- A -I 
'J-CimAIl=T f j{~AIl{t) (5.10) 

t~ 

and the second-order term is: 

19+T t' 

j{2A,~lxA'=(2iT)-1 f dt,fdt X [j{A2 (t') j{A, (t)] l,m,A,Il, ' i,m,A,ll, 
(5.11) 

where the vectors 1 and 2 represents the sets of quantum numbers (l], m], A.), Jl/) and (12, m2, 

71.2, Jl2) respectively. 

From this analysis and using Eq. (4.12) the following selection rules [58] have been de­

rived: 

1. First-order selection rules: 

-A 
'J-ClmAIl=O if mn-Jlv-::f=NZ 

2. Second-order selection rules: 

m l n-J.11 v=f:.NZ, 

and 
m2n-J.12 v =f:.NZ, 

and 
(m2+ml) n-(J.12 +J.1 I ) v=f:.NZ 

where Z is any integer, including O. 

(5.12) 

(5.13) 

This equations have important consequences in the symmetry-based pulse sequence the­

ory. The selection rules permit us to know which Hamiltonian terms are symmetry-allowed 

depending upon the symmetry parameters N, n and v. 

5.1.3. Scaling Factors 

The selection rules in Eqs. (5.12) and (5.13) indicate the symmetry-allowed first- or 

second-order terms for CN~ sequences with certain values for N, n and v. However these 

selection rules do not say anything about the magnitude of the allowed terms. The mag­

nitude of the allowed terms is given by the scaling factor [58]. 

In general, a symmetry-allowed term in the first order approximation has the form: 
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(5.14) 

where KlmAp is the scaling factor of the symmetry-allowed term with quantum numbers i, m, 

A, p. The scaling factor value depends upon the symmetry numbers and the basic element 

used in the construction of the sequence. The form of the scaling factor for allowed terms in 

the first-order effective Hamiltonian for CN~ sequences is: 

t~+T 

Kim lI.f.I =T-
1 d~oU3RL) f dtod~o( -t3°)exp {i(p,/+mwrtO)} 

t~ 

(5.15) 

where to, {30 and yO refer to time points and rf Euler angles within the first pulse sequence 

element C. 

For second-order scaling factors see [80] for RN~ and CN~ sequences. A general scal­

ing factor formula for any basic element is given in [59]. A Mathematica [81] package, 

which provides scaling factors and analysis of symmetry-based pulse sequences, is available 

on the web (http://www.mhl.soton.ac.uk). 

5.2. RN: Sequences 

5.2.1. Definition 

One possible method of implementing the time-symmetry relationships defined in Eq. 

(5.2) is given in Fig. 5.1. The basic element R has to be a single rf pulse or sequence of rf ir­

radiations which induce a rotation of the nuclear spins through 1800 about the x-axis, with a 

duration equal to TE = nTr IN. The basic element R can contain rf pulses of any possible 

phase, but the overall rotation operator must obey Eq. (5.2). Additionally, we can define R' 

as second basic element identical to R but changing the sign of all rf phases. A RN~ se­

quence is constructed by concatenating NI2 pairs of elements RrpR'"" where cp is an overall 

phase shift equal to rrvlN radians. 

5.2.2. Average Hamiltonian and Selection Rules 

Following the same procedure as in section 5.1.2 and the Euler angle symmetry for a 

RN~ sequence, the Hamiltonian for an interaction A at time tq is: 
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(5.16) 

The ART can be used to analyze the interaction frame Hamiltonian, as in section 5.1.2. 

The following selection rules are obtained for first-order and second-order Hamiltonian 

terms: 

I. First-order selection rules: 

-11 N 
!J-(lmAP=O if mn-llv"*2:Z/l. 

2. Second-order selection rules: 

and 
-11 N 

!J-(lmAP=O if m2n-112 v:;CiZ,\" 

and 
N 

(m2 +m,)n-(112+11,) v:;c-Z,\ 2 2+1 

where Z/I. indicates any integer with the same parity as ?.. 

5.2.3. Scaling Factors 

(5.17) 

(5.18) 

The magnitude of the symmetry-allowed terms for a RN~ sequence is given by the scal­

ing factor, which has the form: 

(5.19) 

where to, {30 and yO refer to time points and rf Euler angles between the first pulse sequence 

element R. The scaling factor value depends upon the symmetry numbers and the basic ele-

ment used in the construction of the RN~sequence. 

5.3.1. Definition 

In a heteronuclear system, rotor-synchronized symmetry-based sequences can be applied 

simultaneously on both channels at the Larmor frequencies of the spins I and S. This type of 
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sequence is called a dual rotor-synchronized pulse sequence. There are four types of these 

dual channel sequences [59]. 

The type of mixed C and R sequence denoted as CRN:" v., is defined in Fig. 5.2. 

CRN Y
/' Y

s involves an irradiation of a CN Y sequences on channel S and a irradiation of a 
n n 

RN: on channel I, with the same number of basic elements N and total number of rotor peri­

ods n but different parameter v. The symmetries of the Euler angles under the rf fields are 

analogous to those for the single channel rotor-synchronized sequences applied on each 

channel: 

11:(t+ n;,) = 11:(t) 

y;(t+ n;,) = y:(t)_2~V q 

11:(t+ n;,) = I1g(t)±qrr 

y:(t+ n;,) = yg(t)-2~V q 

(5.20) 

(5.21) 

Dual sequences involve irradiation of two spin species. This fact allows the possible re­

coupling or no recoupling of heteronuclear terms. Therefore this kind of sequence can be 

used for either recoupling or decoupling. In chapter 7, the principles of dual sequences are 

used to explain the interference of the heteronuclear decoupling during homo nuclear re-

coupling [75]. 

5.3.2. Average Hamiltonian and Selection Rules 

Following the same procedure detailed in previous sections, new set of selection rules 

can be extracted [59]. In this case, heteronuclear terms have to be included in the Hamiltoni-

an: 

(5.22) 

A A . 
where 1-(lmA/A,,(t) IS equal to: 

ic~A/A,( t) = L W:!:' exp { i m Wr t } X T~iO T~:'o 
. A,I.m,A"A" . 

(5.23) 

After transformation of the Eq. (5.23) into the interaction reference frames at the Larmor 

frequencies of spin I and S, the Hamiltonian is given by: 
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(5.24) 

the selection rules for first- and second-order Hamiltonians are obtained': 

1. First-order selection rules: 

:fC:""rllr"slls =0 if mn- III V I - Ils V s=l= ~ Z1l.s (5.25) 

2. Second-order selection rules: 

and 

j{<\XAJ =0 lif N 
2;1 m 2n-1l12 V I -IlS2 V S*2"Z"I2+"S2' (5.26) 

and 

The first-order selection rules permit a classification of the pulse sequences on the basis 

of their recoupling and decoupling properties. 

5.3.3. Scaling Factors 

The general form of a first order symmetry-allowed term is: 

j{A =K1S [AArs]R exp {-im(ocO -w to)} XTAr TA, 
Im",lI r1l.,\'1I,\' 1m "r IIr "slls 1m RL r ° "rllr "sll,\' 

(5.27) 

where K;!"rllr"slls is the scaling factor of the symmetry allowed term, which determines the 

magnitude of the allowed term. 

For the eRN:/, Y, sequence the scaling factor has the form: 

(5.28) 

where K~"rllr"sll,is equal to [59]: 

tg+T 

Klm"rJlr"slls =T -I f dto d~:o( -/3~) d~:o( -/3~)xexp {i(1l1 y~ +Ils y~+m wrtO)} (5.29) 
t~ 

where to, /3~, y~, /3~ and y~ refer to time points and rf Euler angles within the first pulse se­

quence element Rs and C/. 
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5.4.1. Definition 

Another symmetry-based dual sequence is the type of mixed C sequence denoted as 

CN;"VS as defined in Fig. S.l. This sequence involves a CN; sequence on channel S and a 

CN; sequence on channel /, with the same number of basic elements N and total number of 

rotor periods n but a different winding number v [S9]. The symmetries of the Euler angles 

under the rf fields in both channels are analogous to those for the single channel rotor-syn-

chronized symmetry-based sequence CN; (Eq.S.I). 

5.4.2. Average Hamiltonian and Selection Rules 

Following the same procedure detailed in previous sections, new set of selection rules 

can be extracted [S9]: 

1. First-order selection rules: 

1{~A'Il'ASIlS =0 if mn- 111 v]- I1s vs*NZ 

2. Second-order selection rules: 

5.4.3. Scaling Factors 

m 1 n-I1II V[-I1SI vs*NZ, 
and 
m2n-I1[2 V[-l1s2 vs*NZ, 
and 

(m2 +m j ) n-(I112+ 11 II) V[-(l1s2 +I1S1) v s*NZ 

For the CN;/" v, sequence the scaling factor has the form: 

tg+T 

Kim A, IlA,lls =T-
J f dtod~:o( -/3~)d~::o( -/3~)xexp {i(Ji[ Y~+l1sy~+mWrtO)} 

t~ 

(S.30) 

(S.3I) 

(S.32) 

(S.33) 

where to, /3~, y~, /3~ and y~ refer to time points and rf Euler angles within the first pulse se­

quence element Rs and CT. 
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6. Methods 

6.1. Samples 

The main topic of this thesis is the development and improvement of new solid-state 

NMR techniques for studies of biological systems like proteins and peptides. In the develop­

ment of new methodology, it is important to test these new ideas on a simple, stable and 

well characterized "model compound". In the present section, the crystal structure of a se­

lection of different arninoacids and organic "model compounds" will be described. 

6.1.1. Diammoniwn Fumarate 

Diarnrnonium fumarate (DAF) (Fig. 6.1) is the salt of the organic compound fumaric 

Fig. 6.1. a) Fumarate structure showing carbon atoms numbering used in 
this work. b) Distances between different carbon atoms in the fumarate 
group. c) DAF crystal structure viewed parallel to the crystallographic b­
axis. d)DAF crystal structure viewed parallel to the crystallographic a-axis. 
e) DAF crystal structure viewed parallel to the crystallographic c-axis. 



6. Methods 58 

acid, a dicarboxylic acid, in which two ammonium groups substitute the protons of the acid 

groups. The XRD structure of diammonium fumarate (Fig. 6.l.c, d, e.)) is described in [82]. 

The structure file is available at the Cambridge Structural Data Base (www. ccdc.cam.ac.ukl) 

under the name NARDEP. 

Diammonium fumarate selectively 13C enriched in positions 2 and 3 and diluted to 10% 

in natural abundance DAF, diammonium [2,3~13C2]-fumarate (2,3-DAF), was used in the ex­

periments described in chapter 7. 

6.1.2. Glycine 

Glycine is a nonpplar amino acid that contains two carbon atoms. One is in a carboxylic 

acid group while the a-carbon is bonded to the amino group (Fig. 6.2). Glycine is the 

simplest of the 20 natural amino acids. A precision neutron diffraction structure of glycine 

(Fig. 6.2) can be found in [83]. The structure file is available at the Cambridge Structural 

Data Base (www.ccdc.cam.ac.ukl) under the name GLYCIN03. 

Some of the experiments described in chapter 7 were performed on [ISN, 13C2]-glycine 

with 99% 13C labelling. 

Fig. 6.2. a) Molecular structure of glycine. b) Intramolecular C-C 
and C-N distances in glycine. c) Crystal structure of glycine. 
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6.1.3. Alanine. 

Alanine is a common amino acid which is one of the 20 natural aminoacids. Alanine is 

one of the most widely used amino acids in protein construction, averaging about 9 percent 

of average protein composition. The molecular structure is based in a carbon chain, which is 

composed of three atoms of carbon. Cl forms part of the carboxylic group, C2 is attached to 

the amino group and a proton and C3 is a methyl group (Fig. 6.3). Precision neutron diffrac­

tion structure of L-aIanine (Fig. 6.3) can be found in [84]. The structure file is available at 

the Cambridge Structural Data Base (www.ccdc.cam..ac.ukl) under the name LALNIN12. 

The NMR experiments in chapter 7 were performed on [2,3- 13C2]-L-alanine with 99% 

13C labelling (2,3-ALA). The experiments in chapter 8 were performed on fully 13C labelled 

Fig. 6.3. a) Molecular structure of L-alanine. b) Intramolecular C-C 
distances in L-alanine. c) Crystal structure of L-alanine. 
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L-alanine ([2,3-2a, J5N, J3C3]-alanine with 99% J3C labelling). 

6.1.4. Sodium Pyruvate 

Sodium pyruvate (Fig. 6.4) is the sodium salt of the anionic form of the three-carbon al­

pha-keto acid, pyruvic acid. Pyruvate is a key compound in biological energy production be­

cause it is a key intermediate in the glycolytic and pyruvate dehydrogenase pathways. 

The crystal structure of sodium pyruvate (Fig. 6.4.c.) can be found in [85]. Sodium pyr­

uvate possesses a crystal structure formed by layers with a C-C distance between layers of 

approximately 3.67-3.77, A (Fig. 6.4.d.). Pyruvate molecules within each layer face each po-

Fig. 6.4. a) Molecular structure of sodium pyruvate. b) Intramolecular C-C 
distances in sodium pyruvate. c) Crystal structure of sodium pyruvate. d) 
Intramolecular C-C distances between layers of sodium pyruvate. 
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lar part with the sodium in between. The structure file is available at the Cambridge Struc­

tural Data Base (www.ccdc.cam.ac.ukl) under the name NAPYRUOI. 

The experiments in chapter 8 use a fully l3C labelled sample of sodium pyruvate ([ 13C3]­

pyruvate) diluted in a proportion of 1/5 by natural abundance sodium pyruvate. 

6.2. MAS Setup 

In order to obtain high resolution in the spectrum and average out the isotropic interac­

tions, the magic-angle has to be set with enough accuracy_ The set-up of the magic-angle is 

done by observing a 79Br MAS spectrum of potassium bromide (KBr) [52], [86]. 
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Fig. 6.5. A. 79Br MAS FID and spectrum of KBr at the magic-angle with a spinning frequency of 7 
kHz in a 400 MHz spectrometer using a 4 mm rotor. B. 79Br MAS FID and spectrum of KBr off 
magic-angle with a spinning frequency of 7 kHz in a 400 MHz spectrometer, using a 4 mm rotor. 
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79Br is an abundant quadrupolar nuclear spin with a half-integer spin quantum number 

(1=312), with a moderate quadrupole moment, and a gyro magnetic ratio very close to that of 

J3C. KBr has a face-centered cubic crystal structure, with a small quadrupolar coupling that 

yields a relatively narrow line in the spectrum, leading to high sensitivity. The high sensitiv­

ity and convenient gyromagnetic ratio motivate the choice of KBr to set the magic-angle. 

The 79Br MAS signal of KBr is given by a single exponential decay with a number of 

spikes, called rotational echoes (Fig. 6.5). These rotational echoes are the result of the mag­

netization being refocused upon each rotor revolution and are separated by a rotor period. 

The frequency spectrum presents a central peak, corresponding to the central transition, and 

a series of small sidebands, corresponding to the rotational echoes which come from the 

satellite transitions (Fig. 6.5). The magic-angle can be optimized by maximizing both the 

number of spikes observed and their amplitudes. If the angle is away from 54.74° the num­

ber and intensity of the rotational echoes is reduced. 

In all experiments in this thesis, the magic-angle has been adjusted by maximizing the 

number and amplitude of the rotational echoes observed in the 79Br MAS spectrum of KBr. 

6.3. Cross-Polarisation Setup 

All CP experiments in this thesis have been done by using ramped-CP for cross-polar­

isation [55]. There are three important parameters to optimize in a ramped-CP experiment 

under MAS: the Hartmann-Hahn (HH) condition, the contact time and the ramp ratio (see 

Fig. 6.6). 

To optimize the HH condition, the r.f. field intensity on the I-channel is fixed while the 

r.f. field on the S-channel is varied to maximize the signal, keeping the ramp equal to zero. 

This experiment produces a characteristic profile with bands of high polarisation separated 

by nwr • The HH condition is strongly affected by molecular motion, temperature and spin­

ning frequency. Normally, it is easier to find the condition at low spinning frequencies than 

at higher frequencies because dipolar interactions are removed by fast MAS. Additionally, 

cross-polarisation in groups with high mobility is more difficult because of the averaging of 

the DD-couplings by the motion. Once the HH condition has been optimized, the contact 

time is optimized by increasing the contact time with the ramp equal to zero until the largest 

signal is found. The last step is to array the ramp value in small steps until the signal is max­

imized. 
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Fig. 6.6. a) Optimization of the Hartmann-Hahn condition. The figure shows the central condition 
of high cross-polarisation plus the first and second conditions around 52 kHz, 62 kHz and 72 kHz 
respectively. b) Contact time optimization. c) Optimization of the ramped ratio. This is the ratio of 
the amplitude value of the chosen Hartmann-Hahn condition to the maximum and minimum 
amplitude values contain in the ramp. All experiments were performed in a sample of U-13C3-

alanine at w,l2rr =lOkHz. 

6.4. Simulation Techniques 

In the last thirty years, solid-state NMR has experienced an overwhelming development, 

involving a large repertoire of new experiments, designed to extract maximum information 

about the structure and dynamics of molecules in solid phases [87]. It is necessary to use 

numerical simulations to support the experimental design, user-specific method implement­

ation and the evaluation of spectral data. 

General programs have appeared in last years for simulation of NMR experiments: AN-

TrOPE [88], GAMMA simulation environment [89], SIMPSON [90], SPINEVOLUTION 

[91]. The simulations presented in this thesis have been performed using SIMPSON. 
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6.4.1. SIMPSON 

SIMPSON [90] is a general SIMulation Program for SOlid-state NMR spectroscopy and 

allows one to perform fast and accurate numerical simulations of solid-state NMR experi­

ments. SIMPSON is designed to work as a virtual spectrometer. SIMPSON is a relatively 

easy to use, transparent and flexible program that uses the Tel scripting language [92]. It has 

been optimised for fast calculations of multiple pulse experiments for rotating powder 

samples. It can also be used to test pulse sequences on relevant spin systems prior to spec­

trometer use. SIMPSON is available as open source software (General Public License) at 

http://nmr.imsb.au.dk. 
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7. Heteronuclear decoupling interference during symmetry-based 
homonuclear recoupling 

7.1. Introduction 

Recoupling methods reintroduce specific nuclear spin interactions that are normally av­

erage out by MAS, so that both the high spectral resolution afforded by MAS and the struc­

tural information provided by these nuclear spin interactions are preserved. An important set 

of tools to reintroduce these interactions are the symmetry-based sequences [S8]. These se­

quences permit one to recouple selectively the interaction of interest under MAS. Particu-

larly, two types of these sequences have been developed: CN~ [S9], [66], [69] and RN~ se­

quences [S9], [70]. 

Many important applications of symmetry-based sequences involve DQ homo nuclear di­

polar recoupling. These applications include two-dimensional DQ correlation spectroscopy 

[64], [68], [93], [94], [9S], [96], [97], high-order multiple-quantum excitation in solids [98], 

[99], [100], [101], and the estimation of internuclear distances [41], [102], torsional angles 

[103], [104], [lOS], and motional order parameters [106]. 

In solid organic and biological samples, most of the applications of DQ dipolar re­

coupling concern 13C nuclei introduced by isotopic labelling. In these samples, the 13C nuclei 

experience strong I3C_l3C homonuclear interactions accompanied by strong IH_I3C hetero­

nuclear interactions. These IH_ 13C heteronuclear interactions interfere with the J3C_13C 

homonuclear interactions, reducing the efficiency of the recoupling. This interference is 

suppressed normally by irradiating with a strong resonant rf field on IH while the recoupling 

is performed on the J3C channel. The usual regime in this experiment is to maintain the spin­

ning frequency low (up to 6 kHz), keeping a ratio of 2.S, or higher, between the IH rf field 

and the J3C rf field[64], [68], [107]. In solid-state NMR, there is a movement to higher spin­

ning frequencies and higher magnetic fields in order to get better resolution and sensitivity. 

The approach described above is not feasible for high MAS frequencies (around 10 kHz or 

more), since the required RF field on the IH channel would be unacceptably high. 

One approach is to use symmetry-based sequences with lower ratios of J3C nutation fre­

quency to MAS frequency [108]. The disadvantage of this approach is that the required se­

quences have relatively small scaling factors and they are less robust with respect rf in-
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homogeneity, and CSA interactions. Ishii [109] showed that for the pulse sequence fpRFDR 

(finite-pulse radio-frequency driven recoupling), it is possible to have good homonuclear di­

polar recoupling at very high spinning frequencies (from 30 kHz). However, many solid­

state NMR applications require relatively large sample volumes, for which the maximum 

available spinning frequencies are currently limited to around 15 kHz. 

Hughes et al. [11 0] demonstrated that the 13C DQ filtering efficiency obtained with a se­

quence without lH decoupling at 12 kHz spinning frequency was comparable to that ob­

tained with high power lH decoupling at 7 kHz spinning frequency. This suggests that the 

no-decoupling regime appears at conveniently low spinning frequencies for the symmetry­

based pulse sequences. This makes sense, since the symmetry-based design of these se­

quences ensures their high compensation for CSA, and by extension, for heteronuclear inter­

actions in the absence of heteronuclear decoupling. 

In this thesis, an experimental and theoretical investigation of heteronuclear interference 

during l3C homonuclear dipolar recoupling, for the case of double-quantum homonuclear re-

coupling pulse sequences of the symmetry class CN~ and RN~ is presented (results for RN~ 

have been published [75]). The effects of the spinning frequency, nutation frequency on 

both the lH and 13C channels, and the symmetry numbers, is explored in both cases. Also, a 

study of the robustness of this sequences in the regime of no lH decoupling against rf in­

homogeneity and phase transients is shown. 

The work presented in this chapter has been done in collaboration with of D. H. 

Brouwer, G. Antonioli, A. Brinkmann and M. H. Levitt. 

7.2. Heteronuclear decoupling interference during recoupling with RN: se­
quences. 

7.2.1. Pulse sequence 

The RN~ sequences (see Fig. 7.1) used for dipolar recoupling belong to a series of se­

quences with symmetry numbers RN~-1+NI2) with N being an even number greater or equal 

to 12. Sequences of the series RN~-1+NI2) have been successfully used in distance measure-

ments [102], [41], [33]. 

The basic element used in these sequences is a composite rr-pulse: 

Ro=R '0=900270180 (7.1) 
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with the flip angles and phases given in degrees. This basic element is particularly robust 

with respect to the chemical shift. The RN~-1+NI2) sequence is built of NI2 pairs of elements 

rr((NI2)-1) 
R", R '_"" where cp 

N 

RN(-I+N/2)=[R R' ]N12 

y '" '" 

(7.2) 

The nutation frequency is set so that one RN~-1+NI2) element occupies 2 rotor periods. In 

this case, the nutation frequency is exactly: 

(7.3) 

where Wr is the spinning frequency. 

A symmetry analysis of this series of sequences shows that first-order symmetry-al-

lowed terms are of the form {l, m, A, Ji}= {2, -1, 2, 2}, {l, m, A, Ji}= {2, 1,2, -2} (homonuc­

lear dipolar double-quantum terms) and {I, m, A, Ji}= {O, 0, 0, O} (homonuclear I-coupling 

terms). The scaling factors for each allowed term are indicated in Table 7.1. These scaling 

factors depend on the basic element, and symmetry numbers. However for the sequences 

RN~-I+N/2) with N greater or equal to 12, the scaling factors for the different allowed terms 

remain always equal. 

Table 7.1. Symmetry-allowed first-order Hamiltonian terms and scaling factors of the series of se­
quences RN1-I+NI2

) with N greater or equal to 12. 

Symmetry-allowed DD DD J-couplings 

first-order terms {2, -I}, {2, 2} {2, I}, {2, -2} {O,O}, {O,O} 

Scaling factors II 0.17 0.17 

Table 7.2.Number of second-order allowed terms for the sequence R20;. 

Symmetry-
allowed DD CSA isoCS rf J 

second-order 
terms 

DD 44 20 4 4 0 

CSA 20 8 0 0 12 

isoCS 4 0 2 0 3 

rf 4 0 0 2 2 

J 0 12 3 2 0 
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+=1Cv / N 

Fig. 7.1. Pulse sequence diagram for Be double-quantum homonuc1ear 

dipolar recoupling with a symmetry-based RN: recoupling sequence. 

These sequences present a relatively low number of second order symmetry-allowed 

terms, producing a double-quantum dipolar recoupling that is quite clean and without too 

much interference from CSA-DD cross terms [70] (see Table 7.2). Also, these sequences are 

well compensated against offset effects in the 13C carrier and rf imperfections [70]. 

However, these sequences are quite sensitive to the phase shift accuracy and the parameter 

cP has to be experimentally adjusted. 

These sequences are incorporated into a double-quantum filtered (DQF) experiment as 

shown in Fig. 7.1. First, the proton magnetization is converted to transverse magnetization 

by applying a rr/2 pulse of phase rr/2. The J3C transverse magnetization is enhanced by con­

ventional ramped cross-polarisation from the protons, using simultaneous fields of phase 0 

on the two channels. The ramp on 13C-spin field improves reproducibility. A strong rr/2 

pulse on the J3C channel transforms the transverse magnetization into longitudinal magnetiz­

ation parallel to the main magnetization field. For a two-spin system, a R sequence of dura­

tion T converts z-magnetization into double-quantum coherence. A second R sequence of 

duration T, reconverts the double-quantum coherence into longitudinal magnetization. 

These elements have an additional overall phase shift iP = {rr/2, rr, 3rr/2, O} in consecutive 

experiments, which selects NMR signals passing through double-quantum coherence. These 

two R sequences form the double-quantum filter. A final rr/2 pulse with phase rr/2 trans­

forms the longitudinal magnetization into transverse magnetization. Precession of the trans-
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verse magnetization induces a NMR signal, whose Fourier transform is the NMR spectrum. 

During the R sequences on the l3C channel, we applied continuous wave (CW) decoupling 

on the IH channel and SPINAL decoupling [51] during acquisition. 

The recoupling efficiency is studied as a function of the following parameters: the ma-

gic-angIe-spinning frequency w" the IH decoupling nutation frequency W;I~f during the 

homonuclear recoupling sequence, the l3C recoupling nutation frequency w;~, and the sym­

metry number N of the RN~1+NI2 recoupling sequence. The symmetry number n is held 

fixed at n=2. The synchronization of the RN~1+NI2 sequences requires the relationship 

w:~=NwJn. There are therefore three independent parameters to consider. 

7.2.2. Experimental 

For all of the results presented below, the DQ efficiencies were estimated by the follow-

. d F . RN-1+ NI2 d . . f h b f R mg proce ure. or a gIven n sequence an spmnmg requency w" t e num er 0 

elements giving the maximum DQF signal was determined. This number was held fixed 

while the efficiency was optimized by small adjustments to the l3C RF power and R element 

phase shift ¢ (see Appendix B) . Once optimized, a series of l3C DQ filtered spectra were 

obtained (with eight acquisitions each), with the strength of the IH decoupling during 13C 

homonuclear recoupling incremented from 0 to 120 kHz in increments of 3 kHz. The DQ 

filtering efficiencies were calculated by comparing the integrals of the DQ filtered spectra to 

a cross-polarization spectrum obtained under identical conditions. 

A range of MAS frequencies between 6 and 20 kHz and a series of RN~1+NI2 sequences 

with n = 2, N = 12, 14, 16 ... , 40 and v =-l+NI2 were studied. All experiments were per­

formed in a field of 9.4 Tusing 3.2 mm zirconia rotors on a Varian InfinityPlus console. 

The IH nutation frequency during the SPINAL-64 decoupling sequence applied during sig­

nal acquisition was fixed at 100 kHz. 

The experiments were performed on three of the model organic compounds described in 

chapter 6: diammonium-[2,3- l3C2]fumarate diluted to 10% in natural abundance diammoni­

urn fumarate (DAF), C5N/3~]glycine with 99% 15N and l3C labelling (Gly), and [2,3- 13C2] 

alanine with 99% l3C labelling (Ala). These compounds broadly represent typical classes of 

l3C spin systems involving CH, CH2, and CH3 groups, respectively. Fig. 7.2 shows the CP 

and DQF spectrum of each compound together with the chemical structure of each com-
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pound. 
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Fig. 7.2. Comparison of DC CP MAS NMR spectra with double quantum 

filtered spectra for: a) 10% labelled diammonium-[2,3-13Cz]fumarate (DAF), 
b) [15N, I3Cz]glycine and c) [2,3-13Cz]alanine. The CP MAS NMR spectra are 
shown on the left column while the DQF spectra are shown on the right 
column. 

7.2.3. Results 

Diammonium-[2,3-13C2]fumarate: 

In Fig. 7.3, the effect of the IH decoupling nutation frequency on the l3C DQ filtering ef­

ficiency for 2,3-DAF at spinning frequencies of 6 and 12 kHz is shown. At a spinning fre­

quency of 6 kHz (Fig. 7.3.a), sequences with low l3C nutation frequency, whose symmetry 

numbers N have smaller values, present the typical behaviour in which the best DQ filtering 
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Fig. 7.3. Plots showing 13C double-quantum filtered recoupling efficiency 

vs. IH decoupling nutation frequency for DAF at a) (0)2 'IT = 6 kHz and b) 

oo)2'IT = 12 kHz. The recoupling sequence used in each case is indicated 
above each plot. The simulated data shown by the dashed blue line, while 
the experimental data is plotted as a solid red line. Some of the experimental 
data sets are incomplete due to limitations in the total RF power that can be 
delivered to the probe. 

efficiency is achieved at a large value of the IH decoupling field. However, as the symmetry 

number N increases, and the 13C nutation frequency is increased, the DQ filtering efficiency 

increases when no IH decoupling is applied. For the sequence with the largest N values ( 

R40~9), and therefore the largest 13C nutation frequency, the DQ filtering efficiency without 

IH decoupling is 37% and is comparable to the 40% recoupling efficiency obtained with the 

lowest N and maximum IH decoupling power R12~. This result is quite important, since it 

means that it is possible to get good DQ filtering efficiency with no IH decoupling at all at 

low spinning frequencies. The regime of no decoupling is not restricted to high spinning fre­

quencies but is also available if a high enough 13C nutation frequency is chosen. 

For 00,/2 7T=12 kHz (Fig. 7.3.b), the behaviour of the 13C DQ filtering efficiency with re­

spect to the IH decoupling interference follows the same trend as the one at 6 kHz spinning 
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Fig. 7.4. Contour plots of the experimental 13C double-quantum filtering efficiency at a spinning fre­
quency of (a) 6 kHz and (b) 12 kHz for DAF, GLY, and ALA. The IH decoupling nutation frequency 
is plotted along the horizontal axis while the 13C recoupling nutation frequency is plotted along the 
vertical axis. The corresponding symmetry number N is indicated on the right-hand vertical axis. The 
black regions are inaccessible, due to technical limitations on the probe performance. 

frequency. However, the area of good decoupling is displaced to higher values of 13C nuta­

tion frequency, making inaccessible regime number 2 for mediumlhigh spinning frequencies 

(see Fig. 7.4). A respectable DQ filtering efficiency of 48% was achieved at wJ2 7T=12 kHz 

usiNg the sequence R20~ without IH decoupling. 

60. 

'$. 40 . 

6 kHz 

16 kHz 

12 kHz 14 kHz 

1~ kHz 2'Q kHz 

120.0 30. 6090 120 0 30 ' 60 90 120 

1H nutation frequency I kHz 
Fig. 7.5. Double-quantum filtering efficiencies for DAF using the re­

coupling sequence R12~ as a function of the IH decoupling nutation 
frequency, at the indicated MAS frequencies. The experimental and 
simulated data are plotted as solid and dashed lines, respectively. 
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To display all these observations in a better format for the entire series of sequences, 

two dimensional contour plots (Fig. 7.4) were constructed. The two regimes of high effi­

ciency of dipolar recoupling in the presence of IH decoupling can be clearly seen in these 

plots. Regime number one uses high IH decoupling while the 13C nutation frequency is kept 

moderate. In the other hand, regime number two uses high 13C irradiation with low or no IH 

decoupling. These two regimes are separated by an area of poor efficiency in which the 

Hartmann-Hahn match is approximately met. 

The second regime is the only one available at high spinning frequencies (12 kHz-20 

kHz). This can be seen in Fig. 7.7, in which the DQ filtering efficiency for the sequence 

R12~ with no IH decoupling increases with the spinning frequency. 

The result obtained in the experiments shown in this section confirms the conclusion of 

Hughes et al. [110] for the POSTC7 sequence, extending this result to a whole series of RN: 
sequences. These results show the existence of two .regimes for efficient DQ homonuclear 

dipolar recoupling in presence of IH decoupling, separated by an area of poor efficiency 

which is close to the Hartmann-Hahn condition. The regime without proton decoupling al­

lows good recouplin~ at moderate to high spinning frequency . This regime is quite conveni-
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Fig. 7.6. Simulations of double-quantum filtering efficiencies with 
respect to the IH nutation frequency for two models of GLY, using 
the recoupling sequence R40~9 . In the simulation represented in sol­
id red, the GLY model includes the IH_IH dipolar interactions. 
However, in the simulation shown by the dotted blue line, the GL Y 
model used in the simulation has all IH_IH dipolar interactions set to 
zero. 
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ent for bi?logical samples, and it is expected to become popular in this field. , 

[lsN,13C2]Glycine: 

The same studies were done for [,sN,13C2]glycine for the same series of sequences and 

MAS frequencies. From Fig. 7.4, it can be shown that the behaviour of the 13C DQ filtering 

efficiency in the presence of 'H decoupling is qualitatively similar to that of 2,3DAF, but 

the region of poor decoupling is much broader. This is due to the strong 13C_1H homonuclear 

coupling of the two protons in the CH2 systems but mainly to the stronger 'H-'H interactions 

as can be seen in the simulations shown in Fig. 7.6. Nonetheless, it was still possible to 

achieve a DQ filtering efficiency of 36% for glycine using the R20~ sequence with no 'H 

decoupling at 12 kHz spinning frequency and 18% using the R12~ sequence with no 'H de­

coupling at 20 kHz. 

[2,3· 13C2]alanine: 

In this case, the data is similar to the 2,3DAF data but it was possible to achieve higher 

values of DQ filtering efficiency (48% using the R20~ sequence with no 'H decoupling at 12 

kHz spinning frequency), since the 'H-'H homonuclear and IH_ 13C heteronuclear interac-
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Fig. 7.7. Double-quantum filtering efficiencies for DAF using 

the recoupling sequence R12~, without 'H decoupling. The 
spinning frequency oo,I2rr is varied along the horizontal axis. 
The corresponding 13C recoupling nutation frequency is given by 

13C 6 
00"111 = oo

T 
for all points. The experimental and simulated data 

are plotted as solid and dashed lines, respectively. 
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tions are relatively weak due to the rapid rotation of the CH3 group. 

7.2.4. Numerical Simulations 

Simulations of the effects of IH decoupling on I3C homonuclear recoupling were per­

formed using the SIMPSON platform [90] . The simulations considered the 13C nuclei and 

their directly-attached IH nuclei in a single molecule of DAF, Gly, or Ala, ignoring the pro­

tons attached to nitrogens, the 15N nucle~s (in the case of Gly} and all intermolecular inter­

actions. SIMPSON input files, containing full details of the simulated spin systems are 

provided in Appendix C. The results of these simulations are shown together with the exper­

imental data in Fig. 7.3, Fig. 7.5, Fig. 7.6 and Fig. 7.7. The full set of simulations are dis­

played as contour plots in Fig. 7.8 to facilitate comparison with the experimental data dis­

played in Fig. 7.4. 

The simulated efficiencies were typically 20-40% higher than those observed experi-

. mentally. This discrepancy may be attributed to long-range spin- spin interactions, instru­

mental imperfections (such as phase transients and RF inhomogeneity) and incoherent relax­

ation. Despite the discrepancy in the overall scale, all the main experimental trends· are re­

produced qualitatively in the simulations, including the existence of the two regimes, the 
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Fig. 7.8. Contour plots of the simulated 13C double-quantum filtering efficiency at a spinning fre­
quency of (a) 6 kHz and (b) 12 kHz for DAF, GLY, and ALA. The IH decoupling nutation frequency 
is plotted along the horizontal axis while the 13C recoupling nutation frequency is plotted along the 
vertical axis. The corresponding symmetry number N is indicated on the right-hand vertical axis. 
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differences between Gly and the other compounds, and the periodic structures in the plots of 

DQ filtering efficiency vs. IH decoupling nutation frequency observed at high spinning fre­

quency. 

It has been verified by simulation that the large homonuclear coupling between the two 

H X protons is responsible for the different behaviour of glycine, compared to DAF and Ala. 

If the IH_IH coupling is removed, the simulated glycine plot is similar to that of DAF (Fig. 

7.6). 

7.2.5. Theory 

The problem has been addressed using first-order Hamiltonian theory. The first-order 

Hamiltonian theory provides a sufficient framework to understand many of the features. In 

section 7.2.4, it is shown that the IH_IH homonuclear couplings have a significant effect on 

the l3C_l3C homonuclear dipolar recoupling. However, these effects appear as a secondary 

distortion and the main features observed in the contour plots can be explained by first-order 

Hamiltonian theory. 

According to the results obtained in previous section and the pulse sequence scheme ap­

plied, it can be supposed that the sequence is a dual-channel rotor-synchronized pulse se­

quence. In the present case, this dual sequence is composed of a symmetry-based recoupling 

sequence of type RN~ in the I3C channel and simultaneously a continuous wave (CW) de­

coupling in the IH channel synchronized with the MAS rotation. 

The RN~ sequence applied to the S-spin channel ("rare" spins) is defined by the follow­

ing time-symmetry relationships for the Euler angles of the rf propagator [58], [59]: 

f3~(t+q T R)=f3 +q IT 

S 2ITvs 
y if (t+qT R) =y 0 ---;:;--q 

(7.1) 

where q = 0, 1, ... , N-l. The duration of each element is TE = nTR/N, where TR and TE denote 

the time durations of a rotor period and a basic element respectively. N, n, v, are the sym­

metry number of the rotor-synchronized symmetry-based pulse sequence. There are no re-

strictions on the Euler angle LX~. 

The symmetry relationship angles for CW decoupling on the I-spin channel ("abundant" 

spins) need to be derived. A propagator can be described as a rotation through the Euler 

angles: 
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Also, assuming the phase of the decoupling field is equal to zero, the propagator for CW 

decoupling can be represented by: 

(7.3) 

It proves convenient to express the I-spin rotation in an analogous fonn to the S-spin ro­

tation. If an additional -TT12 rotation of the I-spin is introduced, we may write: 

(7.4) 

Combining Eq.7.3 and Eq.7.4 and applying rotation sandwich relationships [6] the 

propagator for CW decoupling is given by: 

U~(tq, t~) R~( -rr/2 )=R~(c(~) R~(j3~) R~(}'~ )=exp [ -i fi w~ (tq -t~)I J= 

eXP[i; Iy]exp[-ifiw~(tq-t~)IJexp[-i; Iy] 

From this relationship we can deduce the Euler angles: 

(7.5) 

(7.6) 

This set of Euler angles does not show any time-symmetry dependence. However im­

posing the time-symmetry relationships: t q = to + q T E and w~ n T R = 2 rr v I' the Euler 

angles assume the following time symmetry: 

(7.7) 

The time-symmetry of the Euler angles for CW decoupling is the same as for C-sym­

metry [58], [59]. The combination of the time relationships in Eq.(7.I) and Eq.(7.7) there-

fore defines a dual eRN:/O v, sequence on the IS spin system. Therefore, the effect of de­

coupling on DQ recoupling of S-spins can be investigated by following the theory de­

veloped for dual rotor-synchronized symmetry-based recoupling pulse sequences, providing 
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that the decoupling nutation frequency is w~nTR=2rrvl' and that the additional rr/2 rota­

tion given in Eq.(7.4) is included. In general, any rf field which does not fulfil Eq.(7.4) may 

be analysed by splitting the I-spin RF field term into two parts: a large part which fulfil s Eq. 

(7.4), and a smaller perturbation term which is incorporated into the average Hamiltonian. 

To avoid this complication in the analysis, we supposed rf fields with an integer number of 

The first-order selection rule for a dual rotor-synchronized sequence of the type 

CRN;"Vs is given in Eq.(S.2S). This selection rule gives the symmetry allowed first-order 

Hamiltonian terms as a function of the numbers (N, n, VI, v s) if the I-spin nutation frequency 

is an integer multiple of the spinning frequency. Additionally, the magnitude of the hetero-

nuclear dipolar .allowed-terms is given by the scaling factors K~~m , 1 , 1' ,, 1 , I's' which can be cal-

culated in our case by Eq.(S.28). In general, for each combination of (N, n, VI, v s), several 

heteronuclear dipolar terms are allowed. A heteronuclear interference factor can be defined 

by taking the root-sum-square of the symmetry-allowed scaling factors: 

(7.8) 

where the sum is taken over all symmetry-allowed combinations of quantum numbers (m, 

Ils, 111)' By calculating .the number of heteronuclear allowed-terms and the heteronuclear in­

terference factors for each combination of symmetry number (N1 n, Vr, v s), it is possible to 
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Fig. 7.9. a) Contour plot of the number of heteronuclear dipolar allowed-terms plotted as a function 

of the symmetry numbers V I and N, for the sets of sequences CRN:" v" with n = 2 and V s = -1+NI2. 

The chosen parameter space corresponds to the simulation 'conditions in Fig. 7.8. The nutation 
frequencies for S-spin and I-spin at MAS frequency of 6 kHz are indicated in the right and top edges 
of the plot, respectively. b) This figure shows the heteronuclear recoupling factors iR, as defined in 
Eq. (7.2), corresponding to the heteronuclear dipolar allowed-terms shown in Fig. 7.8.a). 
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evaluate the importance of these heteronuclear allowed-terms in the destruction of the 

homonuclear recoupling under certain conditions of CW decoupling while decoupling is ap­

plied in S-spin channel. These calculations were implemented in Mathematica 5.2 [81] run­

ning under Red Hat Linux 2.4. 

The number of heteronuclear dipolar allowed-terms for each combination of symmetry 

number (N, n, VI, vs) at w/2rr=6 kHz has been calculated and is plotted in Fig. 7.9.a). This 

plot has been produced in the same way as the contour plots shown in Fig. 7.8.a). Along the 

vertical axis, the condition n = 2 is kept fixed, while Nand Vs are varied simultaneously, ac­

cording to the value Vs = V2N-l. The horizontal axis shows the values of VI used in these cal­

culations. The top horizontal axis and the right-hand vertical axis have been labelled accord­

ing to the I-spin and S-spin nutation frequencies corresponding to the plotted values of VI 

and N, respectively, at the spinning frequency of w/2rr=6 kHz. 

Although there is a certain resemblance between the calculations shown in Fig. 7.9.a) 

and the simulations shown in Fig. 7.8.a., there are many differences that make it unsuitable 

to explain theoretically the experimental observations, considering only the number of het­

eronuclear dipolar allowed-terms. A more precise image of the problem is given if the het­

eronuclear interference factors are considered. The heteronuclear interference factor for 

each combination of (N, n, VI, vs) has been plotted in a contour plot in Fig. 7.9, following 

the same procedure as for Fig. 7.9.a), under the same conditions. Comparison of this plot 

with Fig. 7.8.a) shows a strong resemblance. Regions of high DQ filtering efficiency in Fig. 

7.8.a) correspond to regions with low values of ~ in Fig. 7.9.b), while regions of poor DQ 

filtering efficiency in Fig. 7.8.a) correspond to regions with high values of~ in Fig. 7.9.b). 

In this plot, both regimes of good DQF efficiencies appear quite clearly and display low val­

ues of~. Also, the broad diagonal region of very poor values of DQF efficiencies corres­

ponds to a similar region of high values of ~. 

This first-order theoretical analysis explains quite well many of the experiments and 

simulations. However there are some discrepancies. The analysis predicts a large change in 

the heteronuclear interference when the I-spin nutation frequency is slightly changed. In 

general, the simulations agree with this prediction but this is not observed in some regions; 

for instance, in the diagonal broad region of very low efficiency the sensitivity to these 

changes in I-spin nutation frequency is small in the simulation. Also, this first-order analysis 

is not able to explain the behaviour observed in glycine due to the 'H-'H interaction. All 

these discrepancies can be attributed to second-order effects. Additionally, in the experi-
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mental plots, the DQF efficiency could be broadened by effects such as rf inhomogeneity or 

phase imperfections. 

7.3. Heteronuclear decoupling interference during recoupling with CN Y se-
n 

quences 

7.3.1. Pulse Sequence Scheme 

ill this section, the effect of the CW heteronuclear IH decoupling on the performance of 

a group of sequences of symmetry CN~ is presented. This CN~ sequences belong to the 

series of sequences CN~, where 7 :s; N:S; 20. C7~ is a successful sequence of this series that 

has been used as for dipolar DQ recoupling sequence [66], [67], [40] and has become almost 

a standard technique in solid-state NMR [87]. 

These sequences (Fig. 7.10) consist of N repetitions over two rotor periods of the basic 

element called a POST-element that describes a 2rr rotation along x-axis in the rotating 

frame: 

(7.9) 

The phases of consecutive elements are incremented by an angle equal to cp=2rr/N. The 

nutation frequency is set so that one CN~ occupies two rotor periods. ill this case, the nuta­

tion frequency is exactly given by: 

(7.10) 

where Wc is the spinning frequency. 

The first-order average Hamiltonian has symmetry-allowed terms of the form {t, m, A, 

Jl}= {2, -1, 2, -2}, {l, m, A, Jl}= {2, 1,2, 2} (homonuclear dipolar double-quantum terms), 

{l, m, A, Jl}= {O, 0, 1, O} (isotropic chemical shift) and {t, m, A, Jl } = {O, 0, 0, O} (homonuc­

lear J-coupling terms). Scaling factors for each allowed term are indicated in Table 7.3. 

Table 7.3. Symmetry-allowed first-order Hamiltonian terms and scaling factors of the series of se­
quences CN~. 

Symmetry-allowed DD DD isoCS J-couplings 

first order terms {2, -I}, {2, -2} {2, I}, {2, 2} {O, o}, {I, O} {O, o}, {O, O} 

Scaling factors II 0.15 - 0.17 0.15 - 0.17 ° 1 
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Table 7.4. Number of second-order allowed terms for the sequence C7~. 

Symmetry-
allowed 

DD CSA isoCS . rf J 
second order 

terms 

DD 68 54 24 4 0 

CSA 54 20 8 0 12 

isoCS 24 8 6 4 3 

rf 4 0 4 2 2 

J 0 12 3 2 0 

The number of second-order symmetry-allowed terms for the sequences CN~ is higher 

than that for RN~-I+N I2 ) . This is an inconvenient property that makes more attractive the use 

of the RN~-I+NI2 ) family of sequences for dipolar recoupling (see Table 7.4). However, the 

RN~-I+NI2) sequences are more difficult to implement, and the CN~ series of sequences 

presents a more robust behaviour with respect to rf imperfections and phase transients [70], 

[29]. 

These sequences are incorporated into double-quantum filtered (DQF) experiments fol­

lowing the same procedure as for the series of RN~1+N I2 sequences (see Fig. 7.10). 

The recoupling efficiency is studied as a function of the following parameters: the ma-

gic-angIe-spinning frequency w)2 Tf , the IH decoupling nutation frequency W:I~I during the 

CW decoupling 

360 rr+q, I 270 q, I <I>=2Trv/N 

-'trnIN -

Fig. 7.10. Pulse sequence diagram for 13C double-quantum homonuclear 

dipolar recoupling with a symmetry-based CN~ recoupling sequence. 
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homonuclear recoupling sequence, the 13C recoupling nutation frequency W:I:~' and the sym-

metry number N of the CN~ recoupling sequence. The symmetry numbers n and v are held 

fixed at n=2. The synchronization requirements of the CN; sequences requires the relation­

ship w"c = 2 N wIn for the basic element. There are therefore three independent parameters 
nut r 

to consider. 

7.3.2. Experimental 

The DQ efficiencies were estimated according to the procedure described for RN~1+NJ2 

sequences in section 7.2.2. The experimental parameters ¢ can be seen in Appendix B. 

MAS frequencies of 6 and 12 kHz and a series of CN; sequences with N = 7, 8, 9, 10, 

... , 20 were studied. All experiments were performed in a field of 9.4 Tusing 3.2 mm zir­

conia rotors on a Varian InfinityPlus console. The IH nutation frequency during the SPIN­

AL-64 decoupling sequence applied during signal acquisition was fixed at 100 kHz. 

Experiments were performed on the model organic compound described in chapter 6: 

diammonium-[2,3-13C2]fumarate 10% diluted in natural abundance diammonium fumarate 

(DAF). 

7.3.3. Results 

The results obtained in these experiments confirm the no IH decoupling regime observed 

for RN~1+NI2 sequences, extending this result to the whole series of CN~ sequences. The 

same two-dimensional contour plots of Fig. 7.4 were constructed for experiments at MAS 

frequencies of6 and 12 kHz for CN~ sequences (Fig. 7.11). However, the behaviour of these 

sequences with respect the IH decoupling presents some differences with respect to the 

RN~1+NJ2 sequences. Experiments at 6 kHz spinning frequency (Fig. 7.11) show the exist­

ence of the regime of low IH decoupling irradiation for efficient DQ homonuclear dipolar 

recoupling while the efficiencies in a second regime with high IH decoupling irradiation are 

quite low (10-30%) and the area occupied by this regime in the contour plot is highly re-

duced compared with the same regime for the series RN~1+NJ2. Additionally, the restricted 

areas due to high rf power (black regions) are higher due to the nutation frequency relation­

ships of these sequences. A maximum of 40% recoupling efficiency was obtained with the 

sequence C15~ and no IH decoupling while the maximum efficiency obtained with C7~ and 



7. Heteronuclear decoupling interference during symmetry-based homo nuclear recoupling 83 

A B 
1 2 0 

1 9 
1 0 8 

N 
9 6 :::I: 

..::.::: 8 4 

1 7 

1 5 

1 3 
>0- 7 2 
<.> 
c: 

6 0 Q) 

11 

:::s 
c- 4 8 
Q) 

c o 
c: 

1 2 0 
0 

1 0 

('CI 1 0 8 

:::s 
:z 9 6 , 

7 0 8 4 
~ 

20 40 60 80 100 120 0 20 40 60 80 100 120 

lH Nutat i on frequency 1kHz 

o Q Effic iency 1 % 

Fig. 7.11. Contour plots of the experimental (left) and simulated (right) 13C double-quantum filtering 
efficiency at a spinning frequency of (A and B) 6 kHz and (C and D) 12 kHz for DAF using the fam­
ily of sequences CN~ with N bigger or equal to 7. The IH decoupling nutation frequency is plotted 

along the horizontal axis while the I3C recoupling nutation frequency is plotted along the vertical axis. 
The corresponding symmetry number N is indicated on the right-hand vertical axis. The black regions 
are inaccessible, due to technical limitations on the probe performance. 

120 kHz IH decoupling nutation frequency was 28%. 

For wJ2 Tr= 12 kHz (Fig. 7.11.C), the behaviour of the l3C DQ filtering efficiency with 

respect to the IH decoupling interference follows the same trend as the one at 6 kHz spin­

ning frequency. However, due to the higher rf field at this spinning frequency in the l3C 

channel only few sequences are available. A DQ filtering efficiency of 45% was achieved at 

wJ21!=12 kHz using the sequence C10~ withoutlH decoupling. 

These results show that in order to perform DQF experiments using CN~, sequences, the 

regime without decoupling is almost compulsory in order to get high DQF efficiency at al­

most any spinning frequency. 

7.3.4. Numerical Simulations 

Simulations of the effects of IH decoupling on i3C homonuclear recoupling were per-



7. Heteronuclear decoupling interference during symmetly -based homonuclear recoupling 84 

formed using the SIMPSON platform [90]. The simulations considered the 13C nuclei and 

their directly-attached lH nuclei in a single molecule of DAF. SIMPSON input files, con­

taining full details of the simulated spin systems are provided in Appendix C. The results of 

these simulations .are shown together with the experimental data in Fig. 7.1l. 

As in the case of RN~1+NJ2 sequences, the simulated DQF efficiencies in the case of 

CN~ show a discrepancy with respect to the experimental DQF efficiencies. The origin of 

this discrepancy has been discussed in s~ction 7.2.4. Despite the discrepancy in the overall 

scale, all the main experimental trends are reproduced qualitatively in the simulations, in­

cluding the existence of the two regimes and the periodic structures in the plots of DQ filter­

ing efficiency vs. lH decoupling nutation frequency observed at high spinning frequency. 

7.3.5. Theory 

The theory of CN;' sequences in the presence of a heteronuclear decoupling field re-

sembles that of the RN;' sequences, as described in section 6.2.5. In this case the dual chan-

nel sequence is denoted CN:'" "" where v 1 =w~ut nl wr' In this case the selection rule is given 

by Eq.5.32. 

The heteronuclear interference factor can be calculated as: 

" I 12" >fi' 
(tJnot'.f;, Ii 

o 24, 48 72 :9t;):' 120 

'1H'I ' :i 
1.71: . 
t5 f 

N 1:3; ) , "i 

i t t , ., ! 

'9 1 ' ,/ t, 
I 

7' 'j '" 
~ 
o 8 

'VI 

, 0.3 

Fig. 7.12. a) Contour plot of the heteronuclear interference factor 9{ of 
symmetry-allowed terms plotted as a function of the symmetry numbers VI 

and N, for the sets of sequences CN;"vS, with n = 2 and Vs = 1, at a spin­
ning frequency of 6kHz. 

(7.11) 



7. Heteronuclear decoupling interference during symmetry-based homonuclear recoupling 85 

For the set of sequences CN; with the basic element C = 9003601802700, a contour plot of 91 

against the symmetry numbers N and VI is given in Fig. 7.12. 

As in the case of the RN~1+NI2 sequences, this first-order theoretical analysis explains 

quite well many of the experiments and simulation features for the CN; sequences. Similar 

discrepancies can be observed in the case of the CN: sequences as in the RN: case. These 

discrepancies may have a second-order interference origin, in the same way as for the 

RN- 1+NI2 
n sequences. 

7.4. Conclusions 

The main conclusion of these studies is the existence of an experimental regime of weak 

or absent I-spin decoupling irradiation during S-spin dipolar recoupling in which the hetero­

nuclear interference is minimized, leading to high DQF efficiencies. This regime allows 

good recoupling performances at moderate to high spinning frequencies. However it is not 

restricted to low spinning frequencies if the nutation frequency on the S-channel is high 

enough. Therefore, this regime is a good match for most of the solid-state NMR experi­

ments involving DQ dipolar recoupling, where high recoupling efficiencies and high resolu­

tion are very important. The second regime of good dipolar recoupling efficiency is the tra­

ditional regime in which the I-spins have a strong rf field while the S-spin rf field is moder-

ated. This regime is available at low spinning frequencies up to 10 kHz for RN~ sequences 

and under 6 kHz for CN~ sequences. Therefore, in the case of CN~, the first regime is al­

most compulsory in order to get good dipolar recoupling efficiencies. 

These two regimes has been observed for a variety of structural groups in a variety of 

samples. Nonetheless the details of the behaviour depends on the sample. The CH2 groups 

are quite difficult for 13C recoupling experiments, due to the strong IH_I3C heteronuclear and 

IH_IH homonuclear couplings. 

The first-order analysis describes quite well almost all the simulated and experimental 

observations. An explanation of the remaining discrepancies will require the consideration 

of second-order effects, simulations with larger numbers of spins and the inclusion of ef­

fects such as rf inhomogeneity 

Additionally, these studies allow a comparison of the performance of RN~1+NI2 and CN; 

homonuclear dipolar recoupling sequences. In terms of DQF efficiencies, both sequences 
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present same results without decoupling. However, the strong restriction in rf field that can 

be applied for the CN~ sequences makes these sequences more favourable for homonuclear 

dipolar recoupling without I-spin decoupling at low to moderate spinning frequencies. For 

moderate to high spinning frequencies RN~1+NI2 sequences are the only ones available in 

the absence of decoupling [33], [75]. 
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8. Truncated Dipolar Recoupling 

8.1. Introduction 

Solid-state NMR is a useful tool to get structural information, especially in materials 

such as polymers, biomolecules and network solids. Dipolar recoupling is the most import­

ant methodology for extracting internuclear distances with high accuracy in the presence of 

MAS. The case of isolated pairs leads to particularly simple spin dynamics which has been 

extensively characterized, so distance determination in this systems is relatively simple. It is 

possible to engineer the necessary spin-pair distribution by isotopic labelling, but this is ex­

pensive and laborious. 

The use of multiply-labelled samples would be more general and cost-effective, but due 

to the complicated spin dynamics of these systems it is more difficult to interpret the data 

[111]. Typically, the dynamics of multiple-spin systems are dominated by short-range coup­

lings with a small influence from long-range couplings [112]. This property is unfavourable 

for structural studies since long-range couplings usually have more structural importance 

than short couplings. 

Several experiments permit the estimation of individual long-range couplings in the 

presence of short-range couplings, but all of them have strong limitations. REDOR experi­

ments [113] and RR experiments [112], [114], [115], [116] have been used to estimate long­

range couplings in mUltiple-spin systems: REDOR is restricted to heteronuclear systems 

while RR experiments are restricted to certain ranges of CS differences. 

This chapter describes a new recoupling concept in multiple-spin systems called trun­

cated dipolar recoupling (TDR). This new concept allows the selective determination of in­

ternuclear distances in a wide variety of homonuclear multiple-spin systems. 

The work presented in this chapter has been done in collaboration with of G. Mollica, A. 

Gansmtiller, M. Carravetta, G. Pileio, A. Bechmann, A. Sebald and M. H. Levitt. 

8.2. Theory 

The spin Hamiltonian in a homonuclear system of coupled spins-I12 is given by: 

if="'Lif.+ L if'k j ] j<k ] 
(8.1) 
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where :Hi is the individual spin-field interaction and :Hit represents the spin-spin interactions. 

The Hamiltonians of spin pairs in a multiple-spin system do not commute: 

(8.2) 

This non-commutativity makes it difficult to separate the effects of different spin-spin 

couplings. In this case, the stronger couplings dominate the spin dynamics of the system 

which makes it difficult to disentangle the weaker couplings, which are very important in 

structure determination. 

In solution NMR, the spin Hamiltonian in Eq.(8.1) may be simplified by ignoring the 

off-diagonal terms in the Zeeman basis [6]. This simplification is possible if the Larmor fre­

quency differences between all coupled spins greatly exceed the off-diagonal parts of the 

relevant coupling Hamiltonians (weak coupling approximation). The truncated coupling 

terms commute with each other and with the spin-field terms. This property is the basis of 

most solution NMR methodology. 

The weak coupling condition also applies in solid-state NMR [117], [118] . However, in 

general, the recoupled dipole-dipole interactions created by applying a recoupling pulse se­

quences do not commute, leading to strong coupling in the case of more than two coupled 

spins. 

It is possible to introduce the weak coupling approximation using truncated dipolar re­

coupling (TDR). This concept involves two essential features: 
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• zero-quantum recoupling of homonuclear dipole-dipole interactions [119]. 

• A simultaneous recoupling of spin interactions which provides a frequency-disper­

sion. These frequency dispersing interactions involve the chemical or paramagnetic 

shifts, quadrupolar couplings or heteronuclear couplings. 

The average Hamiltonian under a TDR pulse sequence may be written as: 

(8.3) 

where 1CJk and :fljk represent the parts of the recoupled dipole-dipole interaction which are 

diagonal and off-diagonal in the Zeeman basis, and ~ is the frequency- dispersing interac­

tion of spin SJ. In this work, the frequency-dispersing interactions are given by isotropic and 

anisotropic parts of the chemical shift. The average Hamiltonian terms may be written: 

with: 

-jk_ -DD J 
Wo -Wjk +rr jk 

-± - -DD 2 J 
Wjk--W jk + rr jk 

If the weak coupling approximation is satisfied for all spin pairs: 

(8.4) 

(8.5) 

(8.6) 

(8.7) 

(8.8) 

(8.9) 

then the coupling terms may be truncated leading to a weakly-coupled spin system (Fig. 

8.1). In this case couplings may be treated independently and the measurement of individual 

couplings in mUltiple spin systems may be implemented. 

Two different implementation of the TDR theory are discussed in the present chapter: 

1. Variable-time implementation 

2. Constant-time implementation 

8.3. Variable-Time Implementation 

8.3.1. Pulse Sequence Scheme 

The TDR concept has been implemented according to Fig. 8.2. This pulse sequence 

scheme is rather complex due to multiple factors that can affect the truncation of the dipolar 

couplings. 
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Fig. 8.2. TDR pulse sequence scheme implemented in a variable-time mode. 

The pulse sequence is composed of three main parts on the l3e channel: 

90 

• The zero-quantum recoupling sequence C3~, which recouples the dipole-dipole coup­

ling terms and chemical shift terms. 

• A frequency-selective rr-pulse for the selective inversion of the individual truncated 

couplings. 

• A series of rr-pulses between two C3~ sequences to improve the IH decoupling. 

The IH channel contains: 

• A decoupling sequence which is synchronized with the C3~ sequence on the l3e 

channel. 

Zero-quantum recoupliug: The sequence C3~. 

The sequence C3~ has the following form (see Fig. 8.3): 

(8.10) 

where the basic element Ccf> (double windowed POSTe-element [67]) is given by : 

C cf> =[ T,I4] - (90 )o+cf> (360 )7T+cf> (270 )o+cf> (90 )7T+cf> (360 )o+cf> (270 )7T+cf> - [ T,I4] 
- (8.11) 

T,I2 

In this basic element T, is the rotor period, and cJ> is an overall phase which takes the values 

0, 2rr/3 and4rr/3 for each element of the C3~ sequence. This sequence has a duration of 

three rotor periods and requires an rf field providing a nutation frequency of: 

(8.12) 

where W, is the spinning frequency. 

The symmetry-allowed terms of the first-order average Hamiltonian and their scaling 
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Fig. 8.3. Schematic representation of the sequence C3j using windowed 
double POSTC-element. 

factors are given in Table 8.1. 

The scaling factor for the isotropic chemical shift in the windowless double POSTC-ele­

ment vanishes. However, the introduction of windows allows the evolution of CS during 

this short period and, therefore the scaling factor is increased up to a value of 0.5 . 

Frequency-selective pulse: the Gaussian pulse. 

Regular high-power rf square pulses excite a broad region of the NMR spectrum. The 

excitation bandwidth of a pulse in the frequency domain can be evaluated by performing the 

Fourier transform of the time domain excitation function of a pulse, if a linear response ap­

proximation is assumed. The resulting excitation bandwidth is t/ , where tp is a width of the 

square pulse. In order to selectively excite a narrow region of the spectrum, the width of the 

square pulse has to be lengthened. 

Table 8.1. Symmetry-allowed first order Hamiltonian terms and scaling factors of the C3;sequence 
with the windowed double POSTC-element. 

Symmetry- DD DD DD DD J-couplings 
allowed first 
order terms {2, I}, {2, O} {2,-1}, {2, O} {2,2}, {2, 0} {2,-2}, {2, O} {O, O}, {O, O} 

Scaling 
0.14 0.14 0 0 I 

factors 

Symmetry- CSA CSA CSA CSA isoCS 
allowed first 
order terms {2, I}, {I, O} {2,-1}, {l, O} {2,2}, {I , O} {2,-2}, {I,O} {O, A}, {I, O} 

Scaling 
0.19 0.19 0 0 0.5 

factors 

This approach has an important drawback. The excitation profile of a long square pulse 

presents wiggles that can excite undesirable regions in the spectrum. This problem can be 
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Fig. 8.4. a) Time profIle of a rectangular pulse of a duration of 3 ms. b) Excitation frequency 
profIle of the square pulse in a) obtained by the power spectrum of the Fourier Transform of the 
time domain profile. c) Time profile of a gaussian pulse of 3 ms. d) Excitation profile in the 
frequency domain for the gaussian pulse in c) obtained by the power spectrum of the Fourier 
Transform of the time domain profile. 
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solved by using with a shaped-amplitude pulse. Fig. 8.4 shows that the excitation profile for 

a pulse with Gaussian shape on the amplitUde does not present lobes on either side of the 

principal excitation band. It is clear that this approach has to be employed if an accurate 

pulse shape is required [30], [120]. 

The experimental procedure, which will be described in detail in section 8.3.3, requires 

the selective excitation of either one or two sets of spins in two different experiments. The 

selective excitation of one set of spins can be done with a rf pulse if a normal Gaussian 

amplitude modulation is used. However, the selective excitation of two sets of spins needs 

two Gaussian pulses in the frequency domain. If the inverse Fourier Transform is performed 

on the frequency-domain function, the resultant function is a cosine-modulated Gaussian in 

the time domain. Therefore, in order to excite two set of spins a cosine-modulated Gaussian 

shape (Eq.(8.13» was used for the rf pulse amplitude. 

A=Aco,wnurexp (-rrcr2 t2
) (8.13) 

where cr is half of the width of the Gaussian pulse and Aco, is the cosine modulation of the 
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Gaussian pulse, which is given by: 

(8.14) 

where wmod is half of the difference in isotropic chemical shift between the selected spins. 

The cosine modulation frequency is proportional to half of the difference in isotropic 

chemical shift frequencies between the two. This cosine-modulated Gaussian pulse can be 

used to excite one spin if the cosine-modulation frequency is set to zero. 

In the scheme described in Fig. 8.2, the Gaussian pulse has a duration equal to an integer 

number of rotor periods. 

Additionally, the selective pulse is used to refocus the chemical shift interactions. The 

cosine-modulated Gaussian IT-pulse is located between the excitation and reconversion se­

quences in order to act as the IT-pulse of a echo sequence that refocusses the chemical shift. 

Since the recoupled chemical shift terms are removed by this procedure, their precise form 

and orientation-dependence is unimportant. They should simply be large enough to truncate 

the recoupled dipolar interactions. 

Proton decoupling. 

The C3~ sequence also recouples heteronuclear dipolar terms which may interfere with 

the homonuclear dipolar recoupling. In order to avoid this problem, a combination of con­

tinuous irradiation in the IH channel plus IT-pulses in the l3e channel is used. The continu­

ous irradiation is synchronized with the 13e irradiation and the rotation of the sample in or­

der to have a 2ITrotation of the IH spins. This renders the same spin state at the beginning 

a) 
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Fig. 8.5. a) Time profile of a cosine-modulated Gaussian pulse of 10 ms. b) Excitation profile of the 
Gaussian pulse shown in a) obtained by Fourier Transform of the time domain profile. 
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and at the end of the window. Two IT-pulses are located inside the C blocks with the same 

number of these blocks on each side of the IT-pulses, in order to refocus the heteronuclear 

interactions. 

8.3.2. Simulating the TDR sequence 

In order to show the validity of the TDR concept, numerical simulations were performed 

using STh1PSON [90] on a 3-spin and 2-spins models using parameters appropriate for 13Cr 

L-alanine [121], at a magnetic field of 9.39 T and a spinning frequency of wr / 2IT = 11.000 

kHz (Fig. 8.7). The powder average was calculated using 256 pairs of Euler angles (0I.,{3) , 

distributed according to the REPULSION scheme [122], with the third Euler angle (y) 

stepped through a full revolution in 20 steps. The start and detect operator in both cases is 

the Ix spin operator. In each simulation, the number of C blocks in the excitation and recon­

version parts have been arrayed from 0 to 180 in steps of 3 blocks in a symmetric way. The 

signal is acquired at the end of each step. The result is a curve that decays and oscillates at 

the frequency of the selected dipolar coupling. Therefore, the modulation of the CUrve de­

pends on the size of the dipolar coupling. For instance, if the distance between two spins is 

large, the resulting curve will be modulated by a small frequency because the dipolar coup­

ling will be quite small. On the other hand, if the distance between two spins is small, the 

resulting curve will be strongly modulated by the dipolar frequency because the dipolar 

a) b) 

o 5000 10000 

Hz 
-10000 -5000 0 5000 10000 

Hz Hz 
Hz 

Fig. 8.6. Simulations showing the selective inversion of the pairs of spins by cosine-modulated 
Gaussian pulses. a) Selective inversion of the COCD3 pair of spins of alanine. b) Selective inversion 
of the COCD pair of spins alanine. 
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coupling will be bigger. 

Fig. 8.7 shows two simulations of the variable-time implementation of the TDR se­

quence using selection of the spins by ideal doubly-selective rr-pulses. The solid line shows 

the result of a simulation selecting l3CO and l3C 2H3 and observing 13CO. The dashed line 

represents a simulation in which the ideal double-selective rr-pulses have been applied to 

l3CO and J3C 2H and !3CO is observed. The obtained curves have a different behaviour for 

long and short dipolar couplings (the distance between the !3CO and 13C2H spins is 1.530 A 

while the distance between the l3CO and l3C2H3 is 2.517 A). The short distance (dashed line) 

shows a faster decay and high frequency of oscillation but the long range (solid line) shows 

a slower decay and lower oscillation frequency. This is an indication that the dipolar coup­

lings are truncated. 

Fig. 8.7.b and Fig. 8.7.c show comparisons between 3-spin simulations (solid line) and 
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Fig. 8.7. a) Simulations of TDR experiments applying idealized doubly-selective pulses to 13CO_13C 
2H (dashed line) and !3CO_I3C 2H3 (solid line). The signal from the !3CO is observed. b) Comparison 
between idealized simulation using 3-spin system (solid line) and 2-spin system (dashed line). In both 
simulations, idealized doubly-selective pulses have been used to select the !3CO_13C 2H3 spin-pair. The 
signal from the 13CO is observed. c) Same as b) but for the J3CO_!3C 2H spin-pair. d) Comparison 
between simulation using idealized doubly-selective pulse (solid line) and simulation using a realistic 
cosine modulated gaussian pulse (dashed line). The !3CO_I3C 2H3 spin-pair has been selected in both 
simulations. The signal from the !3CO is observed. 
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2-spin simulations (dashed line) for the cases described in Fig. 8.7a. The simulation in both 

cases are almost identical, showing some discrepancies at long times in which the effect of 

other interaction terms like J-couplings and higher order terms are relevant. 

The last simulation Fig. 8.7.d shows a comparison between a simulation using a realistic 

cosine modulated gaussian pulse of a duration of 3 ms for the selective inversion and a sim­

ulation using the idealized selective pulse. 13CO and 13C 2H3 are selected and 13CO is ob­

served in both cases. The offset of the Gaussia,n pulse was put between the l3CO and l3C 2H3 

peaks and the cosine modulation of the gaussian was equal to half of the difference in iso­

tropic chemical shift between the 3CO and l3C 2H3 peaks. The two simulations are almost 

identical. The small observed differences are probably due to imperfections in the perform­

ance of the selective Gaussian and I-coupling evolution during the long gaussian pulse. 
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Fig. 8.8. This figure shows different selective inversions performed in the experiments described in 
section 8.3.3. These spectra show a very good performance of the gaussian pulses. a) The spectrum of 
[2,3-2f4, BC3, 15N]-L-alanine without applying selective rotation. b) A doubly-selective cosine 
modulated gaussian is applied on CO and CD3 sites. c) A doubly-selective cosine modulated gaussian 
is applied on CO and CD sites. c) A singly-selective cosine modulated gaussian is applied on CO site. 
d) A singly-selective cosine modulated gaussian is applied on CD site. d) A singly-selective cosine 
modulated gaussian is applied on CD3 site. 
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All these simulations show the validity of the IDR concept for the estimation of selec­

ted internuclear couplings in strongly-coupled spin systems. 

8.3.3. Experimental Results 

Experiments in [2,3-2H4, BC3, lSN]-L-alanine. 

During previous experiments on fully protonated alanine, simulations and experiments 

were not in agreement due to fast decay on the experimental data. This strong damping in 

the curves is caused by the strong heteronuclear lH_ J3C interactions. To avoid these kind of 

problems a deuterated sample of alanine or a sample without strong heteronuclear interac­

tions, such as pyruvate, were used. 

Experiments were performed on a 400 MHz Varian Spectrometer using a 3.2 mm probe. 

A spinning frequency of 11.000 kHz was used and a rf field of 88 kHz was applied in l3C 

and lH channels during the recoupling C sequence and the lH decoupling scheme. A temper­

ature of 70°C was used to minimize the heteronuciear lH_l3C interactions with protons in 

the lSNH3 group by increasing the rotational speed of this group. To a good approximation, 

if the rotation around the l3C_lSN bond is sufficiently fast, the three lH_~ 3C heteronuclear 

couplings are averaged out to a small value. 

CP was used to enhance the l3C magnetization and SPINAL-64 decoupling [51] was ap­

plied during acquisition to decouple lH. 

Selective excitation was done using a cosine-modulated Gaussian pulse with duration of 

a) b) c) 
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Fig. 8.9. a) Experimental single inversion of the CO spin. The decay has been fitted to an exponential 
decay. The time constant of the decay is T &c=1. 79 ± 0.11 ms. b) Experimental single inversion of the 
CD spin. The decay has been fitted to an exponential decay. The time constant of the decay is 
Tdec=1.22 ± 0.04 ms. c) Experimental single inversion of the CD) spin. The decay has been fitted to 
an exponential decay. The time constant of the decay is Tdcc=O.82 ± 0.03 rns. The decay rates have 
been used to correct the simulations for relaxation effects. 
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2.929 ms and (J = 6.881 x 106 S·2. The offset frequency of this selective pulse was centered 

halfway between the isotropic chemical shifts of the selected 13C spin pair. The frequency of 

the cosine modulation was equal to half of the difference in isotropic chemical shift frequen­

cies between the selected 13C spin pair. The difference in isotropic chemical shift frequen­

cies for experimental data shown in Fig. 8.10 was 6437 Hz for the I3CO_l3C 2H pair and 

7976 Hz for the l3CO_I3C 2H3 pair. 

For each experiments, the number of C blocks in the excitation and reconversion parts 

was arrayed from 0 to 180 in steps of 3 blocks in a symmetric way. The obtained curves de­

cay faster and oscillate less than the corresponding simulations. The fast damping in the ex­

perimental curves is related to the relaxation during the array of the C blocks. 

fu order to include this effect in the simulations, the relaxation decay was measured ex­

perimentally. This reference experiment was performed using the same procedure described 

above but with no cosine modulation of the Gaussian pulse and the offset frequency 

centered at the isotropic chemical shift of the selected 13C spins. fu this way only one set of 

spins is selected. Since the magnetization of the selected spins is only influenced by the re­

laxation, the signal decays exponentially without influence of the dipolar couplings. This 

reference experiment was done for each J3C spin of alanine and their relaxation decay curves 

were extracted. Each curve was fitted by an exponential decay function and the relaxation 

times were extracted. The simulated curves were corrected by this exponential decay and 
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Fig. 8.10. Figure comparing simulations (solid line) and experimental results (dotted line). A). shows 
curve obtained when a cosine-modulated Gaussian pulse is applied to the BCO_l3C 2H3 spin-pair (rjk = 
2.517 A). The decay is quite slow and the oscillations are not present because of relaxation. B). The 
strong coupling within the 13CO_13C 2H3 spin-pair (rjk = l.530 A) produces a fast decay with a small 
oscillation which is damped by relaxation. In both cases the observed signal belongs to the 13CO site. 
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compared with the experimental data. 

Fig. 8.10 shows a comparison between the experiments and accurate simulations. The 

agreement between accurate simulations and experimental measurements is acceptable both 

for short- and long-range couplings. However, there are some discrepancies, especially at 

long excitation times, that can be due to 'H relaxation effects and heteronuclear interactions, 

imperfect performance of the selective pulses and intermolecular interactions. 

Experiments in U-[13C3]pyruvate. 

The same experiments were performed on U-['3C3]pyruvate. The instrumental conditions 

were the same as for the [2,3-2IL, l3C3, '5N]-L-alanine case. The selective excitation was 

done using a cosine-modulated Gaussian pulse with duration of 2.929 ms. The frequency of 

the cosine modulation was equal to half of the difference in isotropic chemical shift frequen­

cies between the selected l3C spin pair. The difference in isotropic chemical shift frequen­

cies for experimental data shown in Fig. 8.11 was 1857.6 Hz for BCOO-BCO pair and 

7029.8 Hz for l3COO-I3C 'H3 pair. 

Fig. 8.11 shows a comparison between experiments and accurate simulations. The relax­

ation decay was evaluated following the procedure described in the section 8.3.3 and all the 

simulations shown in Fig. 8.11 were corrected for the relaxation decay. Two types of simu­

lations were performed. The first type of simulations does not take into account inter­

molecular dipolar couplings. These simulations are represented as a grey line in Fig. 8.11. It 

is clear that these simulations do not match the experimental curves. The second type of 

simulations take into account the intermolecular dipolar couplings. Considering the crystal 

structure of U-[I3C]-pyruvate shown in Fig. 6.4, in a non-diluted U-[13C]-pyruvate sample, 

each 13C nucleus has two other 13C nuclei of the same kind at a distance of -0.37 nm. In an 

isotopically diluted sample, on the other hand, the number of labelled neighbours is smaller 

and depends on the degree of isotopic dilution. The number of intermolecular dipolar coup­

lings to consider in the simulations has been estimated from the degree of isotopic dilution 

in our sample. In our case there is a 25% of probability of having a l3C nucleus close to an­

other I3C nucleus with a distance between them of -0.37 nm. The intermolecular interac­

tions contribute to in the decay curve in the singly-selective Gaussian pulse experiment, 

since one reason for this decay is the intermolecular dipolar interactions. The realistic simu­

lation (solid line) including intermolecular dipolar coupling for our sample was obtained as 

follows: 
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Fig. 8.11. A. Comparison between simulation taking into account the intramolecular interactions in 
the pyruvate system (solid black line), simulations without taking into account intermolecular 
interactions (solid grey line) and experimental results (filled circles). A). The selective Gaussian pulse 
has been applied to the I3COO-I3COO spin-pair (rjk = 0.156 nm). B). The selective Gaussian pulse has 
been applied to the I3COO-I3C 1H3 spin-pair (rjk = 0.260 nm). 

Sreal=O.75 (Sinrra XSG decay)+O.25SG decay (8.15) 

where SGdecay is the decay curve from the singly-selective Gaussian pulse experiment and 

SinIra is the three-spin simulation of the pyruvate system considering only intramolecular 

couplings. 

Accurate simulations and experimental measurements are similar for both cases, short 

and long range couplings, although there is not a perfect match. These discrepancies are 

probably due to the complicated network of couplings in this sample. In our simulations 

many couplings have been ignored which may have an small effect. Also other issues such 

as IH relaxation effects, heteronuclear interactions and imperfect performance of the select­

ive pulses could produce additional problems. 

8.4. Constant-Time Implementation 

8.4.1. Pulse Sequence Scheme 

The constant-time scheme combines the zero-quantum recoupling sequence C3~ with 

frequency selective pulses in a different way than in the variable-time scheme (Fig. 8.12). 

The approach described here involves a single radiofrequency channel. This scheme in­

cludes two shift-refocussed C3~ sequences each of a duration of T/2, and two selective­

Gaussian pulses with a rr-pulse between them. Each selective Gaussian pulse rotates the res-
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onant spins through an angle of TT/2 while leaving off-resonant spins unperturbed. The two 

strong TT-pulses in each TDR interval allow the removal of the chemical shift interactions. 

The first Gaussian pulse has zero phase, while the second Gaussian pulse (drawn in 

black) has a phase cPj which is varied between 0 and ZTT. The intervals of 3T/4 bracketing 

the selective pulses ensure that the starting point of the two C3~ sequences are one-half of a 

rotor period out of phase with each other. Since the average dipole-dipole coupling Hamilto­

nian contains only m=±1 terms (see section 8.3.1), its sign is reversed by shifting the start­

ing point {1 of the C3~ sequence by one half of a rotor period: 

(8.16) 

If the J-couplings are ignored, the transverse magnetization created by the first TT/2 rota­

tion dephases under the recoupled spin-spin interactions over the first TDR interval TIZ. 

However, since the TDR dipole-dipole Hamiltonian for the second sequence is opposite in 

sign to the first, all of these antiphase terms refocus by the end of the pulse sequence. The 

chemical shift anisotropy does not produce a net rotation over the free-evolution period be­

cause of the arrangement of T/4 and 3T/4 intervals. The TT/2 pulses after the second TDR 

interval converts the transverse magnetization into longitudinal magnetization. The last TTI2 

is phase-cycled to eliminate undesirable signals. This pulse converts the selected longitudin­

al magnetization back to longitudinal magnetization in order to be detected. 

First, we are going to consider the case in which the phase (cpJ of the second Gaussian is 

CPFTT. In this case, the rotations generated by the two Gaussian pulses cancel and the select­

ive pulses can be ignored to a first approximation. The transverse magnetization generate by 

the first TTI2 pulse evolves freely under the first quarter of a rotor period. After this interval 

the magnetization dephases under the first TDR interval. However, the second sequence is 

opposite in sign to the first due to the one-half of a rotor period of evolution between the 

two TDR blocks. All the terms generated by the first TDR interval are refocus sed at the end 

of the second TDR interval. Therefore the NMR signal for the non-selected spins for the 

case of CPFTT is not influences by the recoupled dipolar terms. 

If the phase of the second Gaussian pulse is equal to zero, the selected spins Sj experi­

ence a TT rotation which prevents the refocus sing of the SrSk dipole-dipole couplings. This TT 

rotation of only one spin changes the sign of the TDR dipole-dipole Hamiltonian. Therefore, 

the rotation due to the one-half of rotor period is cancelled and the TDR dipole-dipole 

Hamiltonian for the second sequence is not opposite in sign to the first. The transverse mag­

netization of non-selected spins Sk is therefore reduced according to the strength of the 
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Fig. 8.12. (a) C3~ pulse sequence, in which three radio-frequency cycles with overall phases {O, 2rr/3, 
4rr/3} are applied in sequence. Each cycle has a duration of one rotor period. (b) Chemical shift refo­
cussing is implemented by placing strong pulses at 114 and 3/4 of the total sequence duration. (c) The 
two TDR sequences bracket a combination of two weak rf pulses and one strong pulse, which has 
phase cJ> = O. The modulated weak pulses act as selective rr12 rotations on spins in site cJ>j and have a 
duration equal to an integer number of rotor periods. The phase of the first selective rr12 pulse is zero, 
while the phase cJ>j of the second selective pulse (shown in black) is varied from 0 to 2rr in a series of 
experiments. 

coupling W~D to the selected spins Sj, multiplied by the total recoupling interval T . 

The NMR signals from spins Sk which are not resonant with the Gaussian pulses in­

crease as cf>j is increased from 0 to IT, and then decreases again as cf>j is increased from IT to 

2IT. The depth of this phase-dependence may be used to assess the magnitude of the corres­

ponding coupling. The protocol operates in constant-time mode and hence is rather insensit­

ive to relaxation interference [111], [123]. Many internuclear distances may be estimated in 

a single set of experiments. 
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8.4.2. Simulations and theoretical calculations 

For the experiment described above the evolution of the density matrix can be evaluated 

through the different parts of the sequence. It the pulses are perfect and the chemical shift 

interactions are perfectly refocussed, the NMR signal at the end of the sequence is given by: 

Sk(T, CPj)=cOS(W;jT /2 )cos(w~jT/2 )+sin (w;j T/2)sin (w~jT/2)cosCPj (8.17) 

where W;D and W~D are given by: 

(8.18) 

where W~D and W~k are the dipolar and J-coupling frequencies. 

The signal form in Eq.(8.17) can be rearranged using simple trigonometric formulas as 

follows: 

(8.19) 

The signal contains (inside W~D) a dependence on both f3 MRand Y MR, the Euler angles 

between the molecular and the rotor frame and thus should be averaged over all the possible 

orientations. The following integral should, therefore, be evaluated: 

(8.20) 

The powder-average NMR signal of the observed spins Sk depends on the rf phase of the se­

lective pulse cpjand the recoupling interval T according to: 

( 
• 2 CPj 2 cpj) IT fi..f6 (..f6) 

Sk T, cP j) ~ sm (-)cos (IT J jk T)+ cos (- --J1I4 (-k2120 b jk T)J II4 - k2120 bjk T (821) 
2 24 4 - 4 . 

where the scaling factor k2120 is equal to 0.140 for the case considered here. J±l/4 are quarter­

integer-order Bessel functions [124]. bjk is the dipole-dipole coupling constant which is pro­

portional to the inverse cube of the internuclear distance. 

To compare with theoretical curves, simulations were performed using SIMPSON [90] 

in a 3-spin model using parameters appropriate for U-[13C3]-L-alanine [121], at a magnetic 

field of 9.39 T and a spinning frequency of Wr / 2IT = 11.000 kHz. The powder average was 

calculated using 256 pairs of Euler angles (a, {3), distributed according to the REPULSION 

scheme [122], with the third Euler angle (y) stepped through a full revolution in 20 steps. 

Fig. 8.13 contains theoretical (solid black line) and simulated curves (dashed lines). It 
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Fig. 8.13. Theoretical modulation curves using Eq.(8.21) (solid lines), and numerically simulated 
modulation curves using idealized selective pulses (thin dashed lines) or realistic selective pulses 
(dashed grey lines) for pairs of !3C nuclei in !3C3-L-alanine at a recoupling time of T = 2.182 ms and a 
spinning frequency wrl 2 = 11.000 kHz. All curves are normalized to have a value of 1 at <pj = IT. (a) 
The I3CD3 site is observed with selective pulses applied to the 13CD site (rjk = 0.152 nm). (b) The 
l3CD3 site is observed with selective pulses applied to the BCO site (rjk = 0.252 nm); (c) The BCO site 
is observed with selective pulses applied to the 13CD site (rjk = 0.153 nm). (d) The site 13CO is 
observed with selective pulses applied to the BCD3 site (rjk = 0.252 nm). 

can be observed that the depth of the modulation curves is deeper for the short internuclear 

distances (left column) than for the longer internuclear distances (right column). 

Fig. 8.13 also shows SIMPSON simulations. Simulations using idealized selective rota­

tions of zero duration on the selected spins are shown in dashed black lines while dashed 

grey lines show realistic simulations, in which the Gaussian pulse was simulated using a 

duration of 1.636 ms and an amplitude modulation function proportional to exp { -ar} where 

(]" = 6.881 X 106 
S·2, as used in the experiments. 

Simulations including idealized selective rotations (dashed black lines) agree quite well 

with theoretical calculations in both cases. This support the validity of the TDR concept. 

Realistic simulations (dashed grey lines) also agree well with the analytical formulae when 

the J3CD3 site is observed while selective rotations are applied on the 13CO or J3CD sites (up­

per row). However, the agreement is less good when the 13CO site is observed (lower row). 

This is due to the difficulty of achieving a clean discrimination between 13CD and 13CD3 

sites by selective excitation. 
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8.4.3. Experimental Results 

[2H7, i3C3, lsN]_ L-alanine was the test-sample used in our experiments. The sample was 

prepared by mixing [2JL, i3C3,
lSN]-L-alanine with 2,3-2H7,-L-alanine in a ratio 1:10 and re­

crystallizing several times from 2H20. 

Experiments were performed on a 400 MHz spectrometer and a spinning frequency of 

11.000 kHz. A 4 mm MAS rotor was used at room temperature. In all cases the recoupling 

interval was 2.182 ms. Each Gaussian pulse had a duration of 1.636 ms An interval of 120 

seconds was left between transients, to allow recovery of the l3C magnetization. To select 

individual spins the carrier was positioned in the centre of the spectrum, using a phase ramp 

to shift the selective rf field to the desired frequency. 

Fig. 8.14 shows experimental signal amplitudes (dotted line) for the selection of 13CD3 

sites (top row) and selection of l3CO sites (bottom row) compared with analytical formulae 

(solid lines) and accurate SIMPSON simulations (broken grey lines). The theoretical and 

analytical results have been adjusted to consider the natural abundance l3C signals from un-
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Fig. 8.14. Theoretical modulation curves using Eq.(8.21) (solid lines), numerically 
simulated modulation curves (dashed gray lines), and experimental measurements (filled 
circles) for a 1:10 solid solution of [2,3-2H4, J3C3, 15N]-L-alanine in 2,3-2~-L-alanine. The 
theoretical and simulated curves have been adjusted to take into account the natural 
abundance BC signals from 2,3-2~-L-alanine. All curves are normalized to have a value of 
1 at CPj = IT. (a) The 13CD site is observed with selective pulses applied to the BCD3 site (rjk = 
0.152 nm). (b) The 13CO site is observed with selective pulses applied to the 13CD3 site (rjk = 
0.252 nm). (c) The 13CD site is observed with selective pulses applied to the 13CO site (rjk = 
0.153 nm). (d) The 13CD3 site is observed with selective pulses applied to the 13CO site (rjk = 
0.252 nm). 
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labelled L-alanine matrix, which comprises about 10% of each observed peak and which is 

not modulated by the phase of the second Gaussian. 

The agreement between the experimental data and the simulations is good in both cases. 

However, some small differences can be observed in the case of strong dipolar coupling. 

These discrepancies have different contributions: a) imperfect performance of Gaussian 

pulses, b) heteronuclear I3C_2H interactions, c) 2H relaxation effects and d) i-coupling evol­

ution during the long Gaussian pulses. Imperfect performance of the Gaussian can lead to an 

imperfect refocus sing of undesired interactions and an imperfect separation of the different 

dipolar couplings. The sequences C3~ recouple the heteronuclear dipolar interactions but the 

heteronuclear 13C_2H dipolar interactions generally are quite small. However, higher order 

cross terms between heteronuclear and homonuclear dipolar interactions may be bigger. 

Therefore, experimental imperfections may induce small errors in the decoupling perform­

ance leading to imperfect l3C_I3C homonuclear dipolar recoupling. 

The agreement with the analytical curves is less good, especially when the l3CO site is 

selected. These discrepancies can be attributed to imperfect performance of the selective 

pulses. 

8.5. Discussion 

Truncated dipolar recoupling is a promising new methodology for the estimation of se­

lected internuclear distances in strongly-coupled multiple spin systems by solid-state NMR. 

However, these systems are highly complicated and several small issues remain unsolved. 

The two different experimental implementations both produced good results for the case 

of 13Cralanine, showing the validity of the TDR concept. The variable-time approach is im­

portant to prove the validity of the TDR concept and the experimental applicability of it. 

The disadvantages of this approach are the relaxation dependence of the experiment which 

makes the analysis less reliable. On the other hand, the constant-time approach is more diffi­

cult to understand. However, this approach is more reliable and has the advantage of getting 

the experimental information for many dipolar couplings in one experiments. 

Experiments and simulations agree reasonably well in both cases. The discrepancies ob­

served are mainly related to imperfect performance of the Gaussian pulses, heteronuclear in­

teractions and 2H relaxation. Additionally, the application of the sequences described above 

to protonated samples is difficult due to the strong interference from heteronuclear interac-
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tions. Therefore, more effective decoupling methods are required in this context. 

In summary, TDR has considerable potential for selective spin-spin coupling measure­

ments in multiple-spin systems in solid-state NMR. In principle, the idea is not restricted to 

nuclei with large chemical shift interactions. This idea should also be applicable to strongly­

interacting abundant nuclei such as protons if other interactions such as paramagnetic shifts 

or heteronuclear dipole-dipole couplings provide the necessary frequency dispersion. 
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9. Conclusions 

Two main goals have been discussed in this thesis: 

i. The effects of heteronuclear interferences on double-quantum dipolar recoupling us-

ing CN~ and RN~ sequences and the possibility of using these sequences without de­

coupling. 

ii. The development of methodology for the measurement of individual dipolar coup­

ling in multiple spin systems. 

The study of the effect of heteronuclear interactions was presented in chapter 7. Two ex-

perimental regimes were identified under which the heteronuclear interference with CN~ 

and RN~ recoupling sequences is minimized. One regime is the traditional one which in­

volves a high rf irradiation on the IH channel while the I3C rf field is medium or low. The 

second new regime uses no or low irradiation on the IH channel while the I3C rf field is 

high. These regimes have been fully-characterized using experiments and simulations in 

three model compounds: diammonium [2,3-13C2]-fumarate, C5N, 13C2]-glycine, and [2,3-

13C21-L-alanine. We have shown that the observed effects can be predicted by first-order av­

erage Hamiltonian theory. 

The second regime should be of interest to work with biological samples, reducing the 

risk of damage by strong IH decoupling. Additionally, this second regime extends the range 

of spinning frequencies for these sequences and improves the performance of the DQ excita­

tion, reducing the effects of the heteronuclear couplings. 

A new methodology for the estimation of individual internuclear distances in multiple 

spin systems, called truncated dipolar recoupling (TDR), is discussed in chapter 8. This new 

methodology uses a symmetry-based pulse sequence (C3~) that recouples zero-quantum di­

polar interactions as well as a frequency-dispersing interaction such as the chemical shift. 

Under these circumstances, the spin system behaves approximately as a weakly-coupled 

system if the difference between chemical shifts of the different spins are much bigger than 

the different dipolar couplings. The individual spin-spin couplings can be disentangled by 

using selective pulses. TDR has been studied by experiments and simulations on deuterated 

uniformly I3C-Iabelled alanine. Simulations and experiments show a relatively good agree­

ment between them, demonstrating the validity of the concept. However, some discrepan­

cies are found due mainly to imperfect behaviour of the selective pulses, heteronuclear in-
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teractions, relaxation effects and I-coupling evolution. Further investigations need to be 

done to understand and improve the effects of these problems. 
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Appendices 

AppendixA. 

1. The space and spin parts for a list of spin interactions: 

Space Part 
Interactions Frame 

[A~r [A:ar [A~±X [A~±2r 
Spin Part 

Zeeman L 000 T{o 

isoCS L oo06~o T{o 

CSA P 
p j 

ooo(8 zz -8zz ) 0 }g[A20Y T{o 

Homonuclear 
P {6b

jk 0 0 T jk 

DD-couplings 20 

Homonuclear 
L -fj 2rr] jk 

J-couplings Too 

Heteronuclear 
P 2b jk 0 0 I S 

DD-couplings TIOTJO 

Heteronuclear 
L 2rr] I S 

J -couplings TIOTIO 

2. Relationships between the spatial tensor components A~ and Yl~, and the spin tensor 

components T~o and the spin-field tensor components 'T~o: 

Interactions CA Space Part Spin Part 

[YloO]L=- fj [AOO]L 
L 1 0 

Zeeman -),s ['T 00] =-fj Bo Tio 
000 

[YloO]L=- fj [AOO]L 
L 1 0 

isoCS -),s ['Too] =-fj BoTio 
000 

CSA -),s [Yl2mY= ~o [A2mY L * 0 

['T20 ] = "2BoTio 

Homonuclear 
1 [Yl2I1J =[A2m Y [ L Ok 

DD-couplings 'T20 ] =T;o 

Homonuclear 
2rr [Yloo]L= 21rr [Aoo]L [ t jk 

J-couplings 'Too =Too 

Heteronuclear 
[Ylzmt =~[Azmt [t 1 ( IS I SIS) 

DD-couplings 
1 'T20 = {6 2TIOTJO+TI_ITII+TIITI_I 

Heteronuclear 
2rr [Yl ]L=_ fj [A ]L []L l(IS I SIS) 

J-couplings 00 2rr 00 
'Too =-...f3 2T IO T IO-T I_I Til-Til T I_I 
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Appendix B. 

Experimental conditions for the experiments described in chapter 7. 

All the tables employ the following notation: 

IKI = Magnitude of scaling factor for recoupled heteronuclear dipole-dipole interaction; 

w~j2 IT= N wJ N = theoretical nutation frequency for l3C field; 
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.1 s 12 IT = difference between optimized experimental 13C nutation frequency and theoretic­

al values; 

cjJ = IT V / N = theoretical phase shift for sequence; 

.1 cjJ = difference between optimized experimental phase shift and theoretical value; 

q = number ofR or C elements used for DQ excitation and reconversion; 

T = excitation and reconversion times; 

DQFo = experimental DQ filtering efficiency with no decoupling ; 

DQFl20 = eXperimental DQ filtering efficiency with a decoupling nutation frequency of 120 

kHz; 

. '. 
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1. RN; sequences. 

a) Diammonium [2,3-13C2]-Fumarate. 

oo)2rr=6.000kHz 

w!II/2rr /). s 12 rr cf>=rrvl N /).cf> DQFo DQg20 
Symmetry IKI q T/ms 

/kHz /kHz f f 1% 1% 

R125 
2 0.170 36 -1.06 75 -0.2 12 0.333 3.1 39.5 

R146 
2 0.172 42 -2.58 77.1 -0.1 14 0.333 6.8 35.5 

R167 
2 0.173 48 -3.47 78.7 -0.2 16 0.333 18.5 41.5 

R18S 
2 0.174 54 -5.63 80 -0.2 18 0.333 22.4 40.5 

R209 
2 0.174 60 -8.44 81 -0.3 20 0.333 29.4 34.2 

R2411 
2 0.175 72 -8.89 82.5 -0.3 24 0.333 34.9 

R28 13 
2 0.175 84 -12 83.5 -0.4 28 0.333 33.5 

R32 15 
2 0.176 96 -11.83 84.4 -0.3 32 0.333 36.5 

R3617 
2 0.176 108 -11.06 85 -0.4 36 0.333 36.8 

R4019 
2 0.176 120 -9.63 85.5 -0.3 40 0.333 36.6 

b) Diammonium [2,3-13C2]-Fumarate. 

00) 2 rr= 12.000 kHz 

w!u/2rr /).sl2rr cf>=rrvl N /).cf> DQFo DQFI20 
Symmetry IKI q T/ms 

/kHz /kHz f f 1% 1% 

R125 
2 0.170 72 -10.20 75 -0.6 24 0.333 26.8 22.3 

R146 
2 0.172 84 -8.50 77.1 -0.7 28 0.333 37.8 

R167 
2 0.173 96 -12.47 78.7 -0.6 32 0.333 43.0 

R18S 
2 0.174 108 -13.00 80 -0.7 36 0.333 39.5 

R209 
2 0.174 120 -13.00 81 -0.7 40 0.333 48.3 
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c) [15N,13C2]_glycine. 

w)2rr=6.000kHz 

w~u/2rr Symmetry IKI 
1kHz 

RI25 
2 0.170 36 

RI46 
2 0.172 42 

R167 
2 0.173 48 

RI8S 
2 0.174 54 

R209 
2 0.174 60 

R241l 
2 0.175 72 

R2813 
2 0.175 84 

R3i5 
2 0.176 96 

R3617 
2 0.176 108 

R4019 
2 0.176 120 

d) [15N,13C2]-glycine. 

w)2rr=12.000kHz 

w!j2rr Symmetry IKI 
1kHz 

R125 
2 0.170 72 

R146 
2 0.172 84 

R167 
2 0.173 96 

R18~ 0.174 108 

R209 
2 0.174 120 

f1s /2 rr cp=rrv/N 

1kHz /0 

-1.70 75 

-2.56 77.1 

-0.01 78.7 

-0.84 80 

-2.72 81 

-2.033 82.5 

-5.46 83.5 

-2.02 84.4 . 

-15.39 85 

-10.59 85.5 

f1s /2rr cp=rrv/N 

1kHz r 

-4.77 75 

-12.65 77.1 

-10.59 78.7 

-8.53 80 

-8.53 81 
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f1cp DQFo DQF120 
q T/ms 

r /% /% 

-0.2 18 0.500 0.4 24.1 

-0.2 20 0.476 1.7 33.5 

-0.2 24 0.500 5.3 31.5 

-0.2 26 0.481 7.0 32.8 

-0.2 28 0.467 10.6 20.6 

-0.2 34 0.472 16.7 7.0 

-0.2 40 0.476 25.9 4.6 

-0.2 46 0.479 27.2 1.4 

-0.3 52 0.481 27.5 0.3 

-0.2 56 0.467 28.2 

f1cp DQFo DQF120 

q T/ms 
r /% /% 

-0.6 36 0.500 8.6 14.3 

-0.9 42 0.500 21.2 2.7 

-0.7 48 0.500 24.4 3.0 

-0.7 54 0.500 26.8 

-0.8 60 0.500 35.9 
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e) [2,3-13C2]-alanine. 

w)2rr=6.000kHz 

w~.J2rr Symmetry IKI 
/kHz 

R125 
2 0.170 36 

Rl46 
2 0.172 42 

Ri67 
2 0.173 48 

Ri8S 
2 0.174 54 

R209 
2 0.174 60 

R2411 
2 0.175 72 

R2813 
2 0.175 84 

R3i5 
2 0.176 96 

R3617 
2 0.176 108 

R4019 
2 0.176 120 

1) [2,3-13C2]-alanine. 

w)2 rr = 12.000 kHz 

IKI w~./2rr Symmetry 
1kHz 

R125 
2 0.170 72 

Ri46 
2 0.172 84 

Ri67 
2 0.173 96 

Ri8S 
2 0.174 108 

R209 
2 0.174 120 

f)/ 12 rr ¢=rrvIN 

/kHz r 

-1.36 75 

-2.56 77.1 

-4.10 78.7 

-0.84 80 

-1.70 81 

-7.17 82.5 

-5.11 83.5 

-8.20 84.4 

-15.39 85 

-10.24 85.5 

/1 s 12 rr ¢=rrvIN 

1kHz r 

-0.32 75 

-5.11 77.1 

-6.82 78.7 

-1.68 80 

-6.82 81 
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/1¢ DQFo DQFI20 
q T/ms 

r 1% 1% 

-0.2 18 0.500 6.0 49.1 

-0.2 20 0.476 8.9 45.3 

-0.3 24 0.500 18.3 46.0 

-0.3 28 0.519 19.2 44.0 

-0.3 30 0.500 32.8 38.3 

-0.4 36 0.500 36.5 12.8 

-0.3 42 0.500 41.6 12.3 

-0.3 48 0.500 41.9 7.1 

-0.3 54 0.500 27.0 

-0.4 60 0.500 41.2 

/1¢ DQFo DQFI20 
q T/ms 

r /% 1% 

-0.6 36 0.500 26.3 27.2 

-0.6 42 0.500 34.1 4.3 

-0.7 48 0.500 48.8 2.4 

-0.7 54 0.500 33.2 

-0.8 60 0.500 47.6 
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2. eN: sequences. 

a) Diammoniwn [2,3-13C2]-Fwnarate. 

wr l2 rr=6.000 kHz 

w!/I/2rr t1 s/2rr cf>=rrvIN 
Symmetry IKI 

/kHz /kHz f 

ci 2 0.155 42 0 51.4 

C9 1 
2 0.163 54 0 40 

Cll 1 
2 0.168 66 0 32.7 

C13 1 
2 0.170 78 0 27.7 

Cl5 1 
2 0.171 90 . 0 24 

Cl71 
2 0.172 102 0 21.2 

Cl9 1 
2 0.173 1140 0 18.9 

C20 1 
2 0.174 120 0 18 

b) Diammoniwn [2,3-13C2]-Fwnarate. 

w)2rr=12.000kHz 

w;j2rr t1s 12 rr cf>=rrvIN 
Symmetry IKI 

/kHz /kHz f 

C71 

2 0.155 72 0 51.4 

C81 

2 0.160 84 0 45 

C9 1 
2 0.163 96 0 40 

ClO I 
2 0.165 108 0 36 
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t1cf> DQFo DQFJ20 
q T/ms 

f 1% 1% 

0 7 0.333 11.9 3.1 

0 14 17.5 0 

0 11 0.333 32.1 5.8 

0 13 0.333 38.7 5.9 

0 15 0.333 40.2 

0 17 0.333 38.5 

0 18 0.316 35.7 

0 18 0.367 35.5 

t1cf> DQFo DQFI20 

q T/ms 
f 1% 1% 

0 14 0.333 42.2 

0 16 0.333 40.5 

0 19 0.352 39.9 

0 22 0.360 42 
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Appendix C. 

1. SIMPSON input rdes Chapter 7 

a) RN~ sequences 

# R_nAnu sequence for homonuclear recoupling of two spin-1/2 
nuclei in the presence of two 1H 
# the 1H decoupling power is varied 
#R element is (90)0(270)180 

# define the spin system 

spinsys { 
channels 13C 1H 
nuclei 13C 13C 1H 1H 
shift 1 Op 94p 0.59 -65 -102 
shift 2 Op 94p 0.59 -65 -102 
shift 3 Op 0 0 0 0 
shift 4 Op 0 0 0 0 

dipole 1 2 -3127 0 0 

9 
9 
0 
0 

0 
dipole 1 3 -20938 0 120 
dipole 2 4 -20938 0 60 
dipole 1 4 -3057 0 153 180 
dipole 2 3 -3057 0 27 0 
dipole 3 4 -3821 0 142 180 

} 

# 

0 
180 

# define specific parameters for the calculation 
# 
# Make sure that maxHdec is an integer multiple of stepHdec 
# 

par { 
variable N 12. 
variable n 2. 
variable nu 5. 
spin_rate 6000 
variable nRexc 12 
variable nRrec 12 

variable maxHdec 120000 
variable stepHdec 3000 

sw 1000000/stepHdec 
np maxHdec/stepHdec +1 

start_operator Inz 
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} 

# 

detect_operator -I1z-12z 

gamma_angles 10 
crystal_file rep100 
proton_frequency 300e6 

method 
verbose 
use_cluster 

direct 
1111 
o 

# start the pulse program 
# 
proc pulseq {} { 

global par 
maxdt 1 

[expr 180*$par(nu)/$par(N)] set phi 
set rf 
set tR 
set pw90 
set pw270 

[expr $par(spin_rate)*$par(N)/$par(n)] 
[expr 1e6/$rf] 

# 

# 

# 

# 

[expr O. 25*$tR] 
[expr O. 75*$tR] 

matrix set 2 total coherence {-2 +2} 

for {set d O} {$d <= [expr $par(np)-l]} {incr d} { 

reset 
set Hdec [expr $d*$par(stepHdec)] 

for {set i 1} {$i <= [expr $par(nRexc)/2]} {incr i} { 

R element 
pulse $pw90 $rf [expr (+l)*$phi + 0] $Hdec 0 
pulse $pw270 $rf [expr (+l)*$phi + 180] $Hdec 0 

R' element 
pulse $pw90 $rf [expr (-l)*$phi - 0] $Hdec 0 
pulse $pw270 $rf [expr (-1) *$phi - 180] $Hdec 0 

} 

filter 2 

for {set i 1} {$i <= [expr $par(nRrec)/2]} {incr i} { 

R element 
pulse $pw90 $rf [expr (+l)*$phi + 0] $Hdec 0 
pulse $pw270 $rf [expr (+l)*$phi + 180] $Hdec 0 

R' element 
pulse $pw90 $rf [expr (-l)*$phi - 0] $Hdec 0 
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} 

} 

pulse $pw270 $rf [expr (-l)*$phi - 180] $ Hdec 0 
} 

acq 

proc main {} { 
global par 

} 

set f [fsimpson] 
fsave $f $par(name) .fid 
funload $f 

b) eN: sequences 
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# C_nAnu sequence for homonuclear recoupling of two spin-1/2 
nuclei in the presence of two 1H 
# the 1H decoupling power is varied 
# C element is (90)0(360)180(270)0 
# 

# define the spin system 

spinsys { 
channels 13C 1H 
nuclei 13C 13C 1H 1H 
shift 1 Op 94p 0.59 -65 -102 
shift 2 Op 94p 0.59 -65 -102 
shift 3 Op 0 0 0 0 
shift 4 Op 0 0 0 0 

dipole 1 2 -3127 0 0 
dipole 1 3 -20938 0 
dipole 2 4 -20938 0 
dipole 1 4 -3057 0 153 
dipole 2 3 -3057 0 27 
dipole 3 4 -3821 0 142 

} 

9 
9 
0 
0 

0 
120 0 
.60 180 

180 
0 
180 

# define specific parameters for the calculation 
# 
# Make sure that maxHdec is an integer multiple of stepHdec 
# 

par { 
variable N 
variable n 
variable nu 

2. 
1. 

14. 
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} 

# 

spin_rate 
variable nCexc 
variable nCrec 

6000 
1 
1 

variable maxHdec 120000 
variable stepHdec 3000 

sw 
np 

start_operator 
detect_operator 

1000000/stepHdec 
maxHdec/stepHdec +1 

Inz 
-I1z-12z 

gamma_angles 10 
crystal_file rep100 
proton_frequency 400e6 

method 
verbose 
use_9l uster 

direct 
1111 
o 

# start the pulse program 
# 
proc pulseq {} { 

global par 
maxdt 1 
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set rf [expr 2*$par(spin_rate)*$par(N)/$par(n)] 
set t90 [expr 0.25e6/$rf] 

# Calculate propagators 

matrix set 2 total coherence {-2 +2} 

for {set d O} {$d <= [expr $par(np)-l]} {incr d} { 

reset 
set Hdec [expr $d*$par(stepHdec)] 

set nprop [expr round ( $par (N) ) ] 

for {set i I} {$i <= $nprop} {incr i} { 

set phase [expr $i*360.0*$par(nu)/$par(N)] 
pulse $t90 $rf $phase 
pulse [expr 4.0*$t90] $rf [expr $phase+180] 

$Hdec 0 
$Hdec 0 



Appendices 

pulse [expr 3.0*$t90] $rf $phase 

} 
store 1 

reset 

for {set r 1} {$r <= [expr $par(nCexc)]} {incr r} { 

prop 1 

} 

filter 2 

for {set r 1} {$r <= [expr $par(nCrec)]} {incr r} { 

prop 1 

} 

acq 
} 

} 

proc main {} { 
global par 

} 

set f [fsimpson] 
fsave $f $par(name) .fid 
funload $f 

120 

$Hdec 0 



Appendices 121 

c) SIMPSON spin system parameters for U_!3C_1SN_glycine. 

spinsys { 
channels 13C 1H 
nuclei 13C 13C 1H 1H 
shift 1 66.6p -74.55p 0.88 -0.7 88.5 52.5 
shift 2 -66.6p -19.43p 0.98 99.4 146.0 138.9 
shift 3 Op 0 0 0 0 0 
shift 4 Op 0 0 0 0 0 

dipole 1 2 -2138.4 0 180.0 0 
dipole 1 3 -23328 0 69.5 240 
dipole 2 4 -3073.33 0 28.8 120 
dipole 1 4 -23328.4 0 71.2 120 
dipole 2 3 -2982.3 0 28.1 240 
dipole 3 4 -21368.4 0 91.0 90.2 

} 

d) SIMPSON spin system parameters for 2,3-13C2-Alanine. 

spinsys { 
channels 13C 1H 
nuclei 13C 13C 1H 1H 1H 1H 
shift 1 15.5p -11.7p 0.76 39 77 -53 
shift 2 -15.5p -0.44p 0.44 82 24 29 
shift 3 Op 0 0 0 0 0 
shift 4 Op 0 0 0 0 0 
shift 5 Op 0 0 0 0 0 
shift 6 Op 0 0 0 0 0 

dipole 1 2 -2147 0 0 0 
dipole 1 3 -23137 0 69.6 0 
dipole 2 4 390 0 0 0 
dipole 2 5 390 0 0 0 
dipole 2 6 390 0 0 0 
dipole 4 5 11118 0 90 0 
dipole 4 6 11118 0 90 0 
dipole 5 6 11118 0 90 0 
dipole 1 4 -2006 0 0 0 
dipole 1 5 -2006 0 0 0 
dipole 1 6 -2006 0 0 0 
dipole 2 3 -2985 0 152 0 
dipole 3 4 -7676 0 156 0 
dipole 3 5 -7676 0 156 0 
dipole 3 6 -7676 0 156 0 

} 
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2. SIMPSON input files Chapter 8 

a) V ariable-Time Implementation 

# C_nAnu sequence for selective homonuclear recoupling of two 
spin-1/2 nuclei in multispin systems 
# C element is (90)0(360)180(270)0 
# 

spinsys { 

channels 13C 
nuclei 13C 13C 13C 
shift 1 -7890 7148 0.837 11. 7 86.3 -53 
shift 2 4768 1980 0.437 39 77 -53 
shift 3 7890 1178 

dipole 1 2 -2117 
dipole 1 3 -476 
dipole 2 3 -2148 

} 

par { 
spin_rate 
variable tau_r 
variable delta 
variable eps 

variable Tgauss 
3.141592654) 

variable m 
variable pw_Gauss 
variable tau 

(eps) ) 
variable Gauss-pts 
variable dtG 
variable M 
variable Gauss-pts_hf 
variable sigma 
variable mGauss-pts_hf 
variable cs1 
variable angolo 
variable nCmax 
variable Cstep 
variable n 
variable nu 
variable N 
start_operator 
detect_operator 

0.761 82 

176.8 109.6 
176.8 
0 

11000 
1.0e6/spin_rate 
1000 
100 

24 29 

-16.8 
145.3 -16.8 

0 0 

1e6*(2.0/delta)*(log(eps)/ 

int(ceil(Tgauss/(3.0*tau_r») 
m*3.0*tau_r 

pW_Gauss*0.5*sqrt(3.141592654/log 

256 
pw_Gauss/Gauss-pts 
int(ceil(pw_Gauss/dtG» 
int(floor(M/2» 
l/tau 
-1*int(floor(M/2» 
7890 

2.0*3.141592654e-6 *cs1*dtG 
180 
3 
3. 
1. 
3. 
I1x+I2x+I3x 
I3x 
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} 

gamma_angles 
crystal_file 
proton_frequency 
dipole_check 
method 
verbose 
use_cluster 

np 
sw 

proc pulseq {} { 
global par 
maxdt 1 

10 
rep100 
400e6 
false 

direct 
1111 
o 

nCmax/Cstep +1 
spin_rate*(N/n)/Cstep 

set NrFullCycles [expr $par(nCmax)/$par(N)] 
set rf [expr 8*$par(spin_rate)*$par(N)/$par(n)] 
set t360 [expr 1e6/$rf] 
set t90 [expr 0.25e6/$rf] 
set t270 [expr 0.75e6/$rf] 

# Calculate propagators 

reset 
offset 0 
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for {set iG $par (mGauss-pts_hf)} {$iG < $par (Gauss-pts_hf) } 
{incr iG} { 

set C [expr cos($par(angolo)*$iG)] 
if { $C >= 0 } { 
set Amplfact $C 
set phG 0 
} elseif { $C < 0 } { 
set Amplfact [expr -l*$C] 
set phG 180 
} 

set rfG [expr $par(sigma)/(1.0e-6)] 
pulse $par(dtG) [expr $Amplfact*$rfG*exp(-3.141592654* 

$par(sigma)*$par(sigma)*$par(dtG)*$par(dtG)*$iG*$iG)] $phG 
} 

store 1000 

set nprop [expr round($par(N»] 

for {set i 1} {$i <= $nprop} {incr i} { 
reset [expr ($i-1)*«$t360*4)+(4*(le6/$rf»)] 

offset 0 
set phase [expr $i*360.0*$par(nu)/$par(N)] 
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} 

delay 
pulse 
pulse 
pulse 
pulse 
pulse 
pulse 
delay 
store 

reset 

[expr 2*(le6/$rf)] 
$t90 $rf $phase 
$t360 $rf [expr $phase+180] 
$t270 $rf $phase 
$t90 $rf [expr $phase+180] 
$t360 $rf $phase 
$t270 $rf [expr $phase+180] 
[expr 2* (le6/$rf)] 

$i 

for {set i 1} {$i <= $nprop} {incr i} { 
prop $i 

} 
store 500 

# Calculate DQ filter 

matrix set 2 totalcoherence {1 -1} 

# Use calculated propagators to calculate curve 

for {set r O} {$r <= [expr $NrFullCycles]} {incr r} { 

reset 

#for {set i 1} {$i <= [expr $r]} {incr i} { 
# prop 500 
#} 

if { $r == 1 } { 
prop 500 
store 2001 

} elseif { $r > 1 } { 
prop 2001 
prop 500 
store 2001 

} 

filter 2 

prop 1000 

filter 2 

if { $r > 0 } { 
prop 2001 
} 
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} 
} 

acq 

proc main {} { 
global par 

} 

set f [fsiropson] 
fsave $f $par(name) .fid 
fun load $f 

b) Constant-Time implementation 
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# C_nAnu sequence for selective homonuclear recoupling of two 
spin-1/2 nuclei in multispin systems 
# C element is (90)0(360)180(270)0 
# 

spinsys { 
channels 13C 
nuclei 13C 13C 
shift 1 -7890 
shift 2 4768 
shift 3 7890 

dipole 1 2 -2117 
dipole 1 3 -476 
dipole 2 3 -2148 

jcoupling 1 2 55 
jcoupling 2 3 35 

} 

par { 
spin_rate 
variable phmod 
variable phstep 
start_operator 
detect_operator 
ganuna_angles 
crystal_file 
proton_frequency 
dipole_check 
method 
verbose 
use_cluster 
np 
sw 

13C 
7148 
1980 
1178 

176.8 
176.8 
0 

0 0 0 
0 0 0 

0.837 11. 7 
0.437 39 
0.761 82 

109.6 -16.8 
145.3 
0 

0 0 
0 0 

11000.0 
360 
36 
Inx 
I1x 
20 
rep256 
400e6 
false 

direct 
1111 
o 

-16.8 
0 

(phmodlphstep) +1 
40000.0 

86.3 -53 
77 -53 
24 29 
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} 

proc pulseq {} { 
global par 
maxdt 1 
set tau_r [expr 1.0e6/$par(spin_rate)] 
set nC 3 
set n 3 
set nu 1 
set N 3 
set rf [expr 8.0*$par(spin_rate)*$N/$n] 
set t360 [expr 1. Oe6/$rf] 
set t90 [expr 0.25e6/$rf] 
set t270 [expr 0.75e6/$rf] 
set rfstrong 100000.0 
set t1802 [expr 0.5e6/$rfstrong] 
set t902 [expr 0.25e6/$rfstrong] 
set Tsync [expr $tau_r-$t902] 

# Set parameters for Gaussian pulse 
set delta 1800.0 
set eps 100.0 
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set Tgauss [expr 1.0e6*(2.0/$delta)*(log($eps)/ 
3.1416)] 

set m 
set pw_Gauss 
set tau 

($eps»] 
set Gauss-pts 
set dtG 
set M 
set Gauss-pts_hf 
set sigma 
set mGauss-pts_hf 
set rfG 

[expr int(ceil($Tgauss/($tau_r»)] 
[expr $m*$tau_r] 

[expr $pw_Gauss*0.5*sqrt(3.1416/log 

256 
[expr $pw_Gauss/$Gauss-pts] 
[expr int(ceil($pw_Gauss/$dtG»] 
[expr int(floor($M/2»] 
[expr 1. O/$tau ] 
[expr -1*int(floor($M/2»] 
[expr $sigma/2.0e-6] 

# Calculate propagators 

#Calculate ideal pi pulse 
reset $Tsync 
pulse $t1802 $rfstrong 180 
store 750 

#Calculate selective 90 Gaussian 
for {set i O} {$i < $par(np) } {incr i } { 
reset 
offset 7890.0 
for {set iG $mGauss-pts_hf} {$iG < $Gauss-pts_hf} {incr iG} { 

pulse $dtG [expr 0.5*$rfG*exp(-3.1416* 
$sigma*$sigma*$dtG*$dtG*$iG*$iG)] [expr $i*$par(phstep)] 
} 
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store [expr int(1000+$i)] 
} 

matrix set 2 tota1coherence {1 -1} 

set nprop $N 

# C Calculation for C with 3/4 tau_r shift 
reset [expr 0.75*$tau_r] 
offset 0 
for {set i O} {$i < $nprop} {incr i} { 

set phase [expr $i*360.0*$nu/$N] 
delay [expr 2.0*(1.0e6/$rf)] 
pulse $t90 $rf $phase 

} 

reset 

pulse $t360 $rf [expr $phase+180.0] 
pulse $t270 $rf $phase 
pulse $t90 $rf [expr $phase+180.0] 
pulse $t360 $rf $phase 
pulse $t270 $rf [expr $phase+180] 
delay [expr 2.0*(1.0e6/$rf)] 

store 500 
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# Calculate accumulated propagator for C block before Pi 
pulse at time 0.75*tau_r 
reset [expr 0.75*$tau_r] 
if { $nC == 3 } { 

prop 500 
store 2001 

} elseif { $nC > 3 } { 
for { set i 3 } { $i <= [ expr $nC ] } { incr i 3 } { 

prop 2001 
prop 500 
store 2001 
} 

} 
reset 

# Calculate propagator for C-Pi-C block and store in 2002 at 
time O. 75*tau_r 
reset [expr 0.75*$tau_r] 

if { $nC > 0 } { 
prop 2001 
} 
pulseid $t1802 $rfstrong 0 

if { $nC > 0 } { 
prop 2001 
} 

store 2002 
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reset 

# Calculate propagator for C-Pi-C-C-Pi-C block and store in 
2003 at t~e 0.75*tau_r 
reset [expr 0.75*$tau_r] 

prop 2002 
prop 2002 
store 2003 
reset 

# C Calculation for C with 1/4 tau_r shift 
reset [expr 0.25*$tau_r] 
offset 0 
for {set i O} {$i < $nprop} {incr i} { 

set phase [expr $i*360.0*$nu/$N] 
delay [expr 2.0*(1.0e6/$rf)] 
pulse $t90 $rf $phase 

} 

reset 

pulse $t360 $rf [expr $phase+180.0] 
pulse $t270 $rf $phase 
pulse $t90 $rf [expr $phase+180.0] 
pulse $t360 $rf $phase 
pulse $t270 $rf [expr $phase+180] 
delay [expr 2.0*(1.0e6/$rf)] 

store 600 

# Calculate accumulated propagator for C block after Pi pulse 
at time 0.25*tau_r 
reset [expr 0.25*$tau_r] 
if { $nC == 3 } { 

prop 600 
store 3001 

} elseif { $nC > 3 } { 
for { set i 3 } { $i <= [ expr $nC ] } { incr i 3 } { 

prop 3001 
prop 600 
store 3001 
} 

} 

reset 

# Calculate propagator for C-Pi-C block and store in 2002 at 
t~e O. 25*tau_r 
reset [expr 0.25*$tau_r] 

if { $nC > 0 } { 
prop 3001 
} 
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pulseid $t1802 $rfstrong 0 
if { $nC > 0 } { 

prop 3001 
} 

store 3002 
reset 
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# Calculate propagator for C-Pi-C-C-Pi-C block and store in 
2003 at time 0.25*tau_r 
reset [expr 0.25*$tau_r] 

prop 3002 
prop 3002 
store 3003 

reset 

# Use calculated propagators to calculate curve: phase loop 

for {set r O} {$r < [expr $par(np)]} {incr r } { 
reset 

delay [expr 0.75*$tau_r] 
prop 2003 
delay [expr 0.25*$tau_r] 

filter 2 
prop 1000 
delay $Tsync 
prop 750 
delay $Tsync 
prop [expr int(1000+$r)] 
filter· 2 

} 

} 

delay [expr 0.25*$tau_r] 
prop 3003 
delay [expr 0.75*$tau_r] 

acq 

proc main {} { 
global par 

} 

set f [fsimpson] 
fsave $f $par(name).fid 
fsave $f $par(name) .asc -xreim 
funload $f 
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c) SIMPSON spin system parameters for U-13C3-pyruvate. 

spinsys { 
channels 13C 
nuclei 13C 13C 13C 
shift 1 -1825.6 82p 0.5 60 0 0 
shift 2 1825.6 -110p 0.6 0 95 90 
shift 3 -12308.9 -24p 0.7 0 0 0 

dipole 1 2 -2004 0 0 0 
dipole 1 3 -430 0 0 0 
dipole 2 3 -2259 0 0 0 

jcoupling 1 2 62.1 0 0 0 0 0 
jcoupling 1 3 13.5 0 0 0 0 0 
jcoupling 2 3 39.6 0 0 0 0 0 

} 
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