
Current Opinion in Infectious Diseases
 

Clinical Application of Non-coding RNAs in Sepsis
--Manuscript Draft--

 
Manuscript Number: QCO330606

Full Title: Clinical Application of Non-coding RNAs in Sepsis

Article Type: Review Article

Corresponding Author: Mildred Iro

Southampton, UNITED KINGDOM

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author: Mildred Iro

First Author Secondary Information:

Order of Authors: Mildred Iro

Sudha Priya Soundara Pandi

Order of Authors Secondary Information:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



 1 

Clinical Application of Non-coding RNAs in Sepsis 

Mildred A Iro1,2 and  Sudha Priya Soundara Pandi1 

1 Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, 

Southampton, United Kingdom; 2Department of Paediatric Immunology and Infectious 

Diseases, Southampton Children’s Hospital, University Hospital Southampton NHS 

Foundation Trust, Southampton, UK  

 

Correspondence: Dr Mildred Iro, Clinical and Experimental Sciences, Faculty of Medicine, 

University of Southampton, MP825. Tremona Road, Southampton, SO16 6YD, United 

Kingdom 

 

Telephone: +44(0)2381208560 

 

Email: m.a.iro@soton.ac.uk 

 

Funding: None 

 

Key words: lncRNAs, microRNA, sepsis induced organ dysfunction, sepsis biomarker 

 

 

 

 

 

 

 

 

 

 

 

Manuscript (incl Abstract and Keywords)

mailto:m.a.iro@soton.ac.uk


 2 

Abstract 

 

Purpose of review 

Studies indicating that non-coding RNAs (ncRNAs) play a regulatory role in sepsis are 

increasing rapidly. This present review summarises recent publications on the role of 

microRNAs and long non-coding RNAs (lncRNAs) in sepsis. 

 

Recent findings 

MicroRNAs and lncRNAs are being identified as potential sepsis biomarkers and therapeutic 

targets. Experimental studies have examined the biological mechanisms that might underpin 

the regulatory role of these ncRNAs in sepsis.  

 

Summary 

Clinical applications of miRNAs and lncRNAs in sepsis are on the horizon. These data could 

lead to the identification of novel treatments or indeed support the repurposing of existing 

drugs for sepsis. Validation of the findings from these preliminary studies and crucially 

integration of multi-omics datasets will undoubtedly revolutionise the clinical management of 

sepsis. 
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Introduction 

Sepsis is characterised by a dysregulated immune response to infection, leading to organ 

dysfunction. Globally, sepsis affects 30 million people and 6 million deaths annually (1). 

Sepsis diagnosis is challenging due to non-specificity of the clinical presentation, lack of a 

gold standard diagnostic test, and variations in case definition. Thus, there is the need to 

identify robust biomarkers to facilitate timely diagnosis. Additionally, with the rapidly 

increasing prevalence of antimicrobial resistance, new therapeutic strategies for sepsis are 

warranted. Increasing evidence suggest that non-coding RNAs (ncRNA) could bridge these 

gaps. Here, we summarise the current state of research on microRNAs and long ncRNAs as 

biomarkers and therapeutic targets in sepsis.  

 

Pathophysiology of sepsis 

The discovery of toll-like receptors (TLRs) led to a significant breakthrough in the 

understanding of the pathophysiology of sepsis. TLRs act as primary sensors to detect a 

variety of pathogen associated molecular patterns (PAMPS) which triggers activation of 

complex downstream intracellular signalling pathways, predominantly involving 

transcription factor nuclear factor-kappa B (NF-κB), leading to the expression of an array of 

proinflammatory cytokines and inflammatory mediators. This process results in 

inflammation, dysregulation of complement, coagulation and endothelial activation, 

cytopaenias, immunosuppression, and if unchecked, hyperinflammation, apoptosis and 

multiple organ dysfunction. The pathophysiology of sepsis is a large subject and has been 

comprehensively reviewed elsewhere (2) 
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Overview of ncRNAs  

NcRNAs are regulatory ribonucleic acid (RNA) molecules that regulate gene expression at 

transcriptional and translational levels. Three main groups of ncRNAs exist: (i) short ncRNA 

(<30 nucleotides e.g. microRNA, small interfering RNA and piwi-interacting RNA), (ii) 

intermediate-sized ncRNAs (30-200 nucleotides e.g. snoRNAs),  and (iii) lncRNA 

(>200nucleotides). This review focuses on miRNAs and lncRNAs since these are arguably 

the most studied ncRNAs in sepsis. 

 

MicroRNAs (miRNAs) regulate translation of >50% of human protein coding genes. They 

bind complementary sequences in messenger RNA (mRNA) molecules to elicit gene 

silencing by inhibiting translation or degrading mRNA to fine tune protein expression. 

MiRNAs form an important link between the innate and adaptive immune systems, function 

as fine tuners of the inflammatory response primarily through regulating TLR signalling and 

thus have a role in the resolution of inflammation (3, 4).   

 

The role of lncRNAs in gene regulation is less well understood. Current understanding is that 

lncRNAs are fundamental regulators of transcription (5). LncRNAs modulate the effect of 

miRNAs on gene expression by triggering RNA decay, competing with miRNAs for the 

same mRNA target, or acting as decoys or ‘sponges’ for miRNAs (6). The biogenesis of 

miRNAs and lncRNAs is extensively discussed elsewhere (7, 8) and is beyond the scope of 

this review.  
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Clinical utility of miRNAs 

Circulating miRNAs as biomarkers of sepsis  

A significant number of miRNAs exist in the extracellular space. The stability of miRNAs in 

body fluids (e.g. blood, urine, and saliva) and the ease of access to these body fluids using 

non-invasive methods make miRNAs well suited as biomarkers. To identify potential 

miRNA biomarkers for sepsis, clinical studies have typically focused on comparing miRNA 

expression between sepsis patients and healthy controls with varying results (Table 1). This 

variation in the subsets of differentially expressed microRNAs might reflect reporting bias in 

these studies which have predominantly used candidate miRNA selection approach. 

Moreover, the miRNA biomarker profile differences between children and adults might 

suggest that miRNA regulatory mechanism differs between both populations. 

 

MiRNA expression varies by sepsis severity. For example, miR-126  and -223 were 

significantly higher in adult sepsis non-survivors than survivors (19, 20).  Both microRNAs 

target mammalian target rapamycin (mTOR) signalling which regulates cell survival, growth 

and metabolism (26-29). In vitro, miR-223 regulates the innate immune response by targeting 

NLRP3 inflammasome (30, 31), and NF-κB signalling (32, 33). NF-κB is a crucial mediator 

of inflammation, and regulates the survival, activation, and differentiation of innate immune 

cells and inflammatory T cells (34). NF-κB plays a central role in modulating the expression 

of several immunoregulatory mediators involved in sepsis and increased levels are associated 

with higher rates of mortality and worse clinical outcomes (35). 

 

MiRNA expression differs by sepsis phenotype. Using TaqMan Low Density Array analysis 

(TLDA), Lin et al showed an upregulation of plasma levels of 11 miRNAs (miR-210, -494, -

23a, -26a, -29a, -10a-5p, -122, -143, -214, -223, -497) and downregulation of 11 miRNAs 
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(miR-205, -146a, -182-5p, -16, -21, -145, -203, -204, -290, -320, -590) in adults with sepsis 

induced acute kidney injury (S-AKI) than in healthy controls (36).  

 

Recent studies have evaluated the diagnostic accuracy of miRNAs in sepsis (Table 2). In 

children, miR-181a, -101, and -187 performed well (area under the receiver operating 

characteristic curve, AUC: 0.893, 0.908, 0.789 respectively) (11, 13). In adults, miR-495 

performed well (0.915)  (16, 19, 20) whereas miR-126 and -223 performed less well (0.726, 

0.754 respectively) (19, 20). Elsewhere, miR-21 had a reasonable diagnostic accuracy (AUC: 

0.793, 95% confidence interval (CI): 0.644-0.942) in differentiating adult sepsis survivors 

from non-survivors whereas miR-223 (AUC 0.6, 95% CI: 0.505-0.695) and miR-126 (AUC 

0.619, 0.533-0.705) did not. Additionally, miR-495 distinguished adult sepsis shock from 

non-shock patients (AUC=0.885) (16) whereas miR-7110-5p and miR-223-3p discriminated 

adult patients with pneumonia only from those with sepsis secondary to pneumonia (AUC: 

0.883 and 0.964 respectively) (25).  

 

These studies highlight the promising prospects of miRNAs as sepsis biomarkers . 

Nonetheless, the inter-study differences (e.g. heterogeneity in studied miRNAs, differences in 

sample type studied) and small sample sizes in some studies are limitations. Crucially, 

validation of these findings in large independent cohorts is needed. Furthermore, most studies 

compared miRNA levels between sepsis patients and healthy, not disease controls. It is 

therefore not known whether these miRNAs are sepsis specific. Assessment of the utility of 

miRNAs in distinguishing sepsis from SIRS and indeed other non-infectious, inflammatory 

conditions e.g. Kawasaki disease that could present similarly would be a clinically relevant 

application.  

 



 7 

miRNAs as indicators of organ damage in sepsis 

Sepsis induced organ damage (SIOD) is associated with high rates of morbidity and mortality 

(39, 40). Current research indicates that excessive apoptosis drives organ damage in sepsis 

whereas autophagy is protective (41, 42). NcRNAs regulate apoptosis and autophagy by 

directly modulating related genes or signalling pathways that initiate both processes (41, 43). 

 

The role of miRNAs in SIOD has been explored in several experimental studies (Table 3). 

Guo and colleagues showed that overexpression of miR-495 in a rat sepsis model abrogated 

sepsis induced myocardial dysfunction (SIMD) (16). MiR-495 genes downregulate mTOR 

signalling (44, 45) which is critical for the regulation cell metabolism, growth, proliferation, 

and survival and regulates cardiomyocyte metabolism (46, 47). Also, miR-495 improved 

cardiac microvascular endothelial cell injury and inflammation by suppressing the NOD-, 

LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome signalling pathway 

(48), a critical component of the innate immune system that leads to caspase 1-dependent 

activation and the secretion of proinflammatory cytokines in response to microbial infection 

and cellular damage (49). Chen et al (42) observed higher levels of phosphorylated ribosome 

S6 protein kinase (downstream target of mTOR pathway) in SMID patients. Elsewhere, 

upregulation of miR-23b suppressed apoptosis of cardiomyocytes and improved sepsis-

induced cardiomyopathy (50). This was suggested to be due to inhibition of NF-κB 

(downstream of mTOR)  activated inflammatory response through its direct targets tumour 

necrosis factor (TNF) receptor associated factor 6 and IκκB. Furthermore, miR-98 prevented 

myocardial damage in septic mice by inhibiting NFk-B signalling (51).  

 

MiRNAs are implicated in sepsis induced acute lung injury (S-ALI). For example, miR-145 

was downregulated in lung tissues of sepsis mice (23) and inhibited S-ALI by inactivating 
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transforming growth factor-beta receptor type 2 (TGFBR2)/Smad3 signalling, a pathway that 

promotes tissue fibrosis (52). MiR-539-5p was downregulated in mice following caecal 

ligature puncture (CLP) induced sepsis (53) and its overexpression in vitro abrogated CLP 

induced lung injury by suppressing Rho associated protein kinase 1, a critical mediator of 

fibrosis. In another study (54), upregulation of miR-326 suppressed LPS-induced 

inflammation in murine lungs by inhibiting TLR4, a critical for the resolution of acute and 

chronic inflammation and pulmonary fibrosis. In vitro, miR-574-5p alleviated S-ALI by 

regulating TRAF6/NF-κB pathway (55). Elsewhere (56),  miR-494 inhibition alleviated acute 

lung injury in sepsis -associated ARDS through NQO1-mediated inactivation of Nrf2 a 

transcription factor involved in the regulation of anti-oxidants and cytokine gene expression.  

 

Recent evidence suggest that metabolic reprogramming is one of the fundamental processes 

in S-AKI (57). Accordingly, in vitro, miR-21-3p altered tubular epithelial cell metabolism 

through AKT/CDK2 mediated upregulation of Forkhead box protein O1 (58), a transcription 

factor involved in energy metabolism (59) and regulation of  cell proliferation. 

 

Thus, targeting these candidate miRNAs and/or their target genes could be a therapeutic 

approach to limit, or indeed prevent sepsis induced organ injury. Indeed, several human trials 

of miRNA-based therapies for other conditions are underway (60), providing some 

confidence in the clinical translatability of these experimental findings. 

 

miRNAs and sepsis susceptibility  

Polymorphisms in miRNA genes can influence gene transcription, alter the processing of pri- 

or pre-miRNA, and affect miRNA–mRNA interactions. Zhang et al showed that single 

nucleotide polymorphisms of miR-187 (rs12605436), miR-21 (rs13137), and miR-145 
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(rs353291) were associated with the development of sepsis (18). Although the underlying 

biological mechanisms are unclear, such observations could be utilised for patient 

stratification and to support a precision-based approach to treatment. 

 

 

Clinical utility of lncRNAs in sepsis  

Although previously considered as ‘transcriptional noise’, it is becoming evident that 

lncRNAs play a key role in sepsis and their dysregulation has been reported in several studies 

(Table 4a). One of such lncRNAs is metastasis-associated lung adenocarcinoma transcript 1 

(MALAT1), a conserved lncRNA that is abundantly expressed in almost all normal human 

tissues. MALAT1 was upregulated in sepsis patients compared with healthy controls (65-67) 

and differentiated sepsis survivors from non-survivors, albeit with varying diagnostic 

accuracy . MALAT1 was higher in sepsis ARDS than non-ARDS patients (68) and its 

knockdown was protective against LPS induced ALI (69, 70) by sponging miR-146a (69) and 

inhibiting p38 MAPK/p65 NF-κB signalling (70). Data from experimental studies suggest 

that MALAT1 has a proinflammatory role in sepsis and SIOD and its knockdown is 

protective through suppression of NF-κB signalling (65, 69, 71, 72). This protective 

knockdown effect was mediated via miR-125b/p38 MAPK axis (rat sepsis model) (65), miR-

149/MyD88 axis and miR-146a (acute lung injury sepsis model) (69, 70), and miR-146a 

(acute kidney injury sepsis model) (71).  

 

Like MALAT1, nuclear paraspeckle assembly transcript 1(NEAT1) was also upregulated in 

adult sepsis patients compared with healthy controls and in sepsis AKI versus non-AKI 

patients. (73-75).  
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However, it showed only an acceptable to suboptimal accuracy at distinguishing sepsis 

patients from healthy controls (AUC range: 0.730-0.785) and sepsis non-survivors from 

survivors (AUC range: 0.641-0.726) (74, 76). Knockdown of NEAT1 suppressed LPS 

induced inflammation by inhibiting TLR signalling (73, 75, 77) and respectively, 

upregulating and suppressing miR-204 and NF-κB signalling respectively (73). In another 

study NEAT1 promoted apoptosis in human kidney cells by regulating miR-27a-3p (78). 

Elsewhere, NEAT1 promoted liver injury in LPS treated Kupffer cells and Raw264.7 (mouse 

monocyte/macrophage) cell line, by competitively inhibiting miRNA Let-7a and activating 

TLR4 (79). 

 

LncRNA TUG1 was downregulated in serum samples of S-AKI patients and its 

overexpression ameliorated LPS induced injury in rat mesangial cells by regulating miR-142-

3p/SIRT1/NF-κB signalling (80). This finding supports earlier work (81) although in the 

previous study, the effect of TUG1 on NF-κB signalling was mediated by miR-223.  

 

In vitro data on the role of lncRNA colorectal neoplasia differentially expressed (CRNDE) in 

S-AKI are inconsistent. In two studies, CRNDE was upregulated and promoted inflammation 

and apoptosis in kidney cells following LPS stimulation (37, 82). However, in another study, 

CRNDE was significantly lower in renal tissue of urogenic sepsis rats compared with 

controls and its overexpression was protective against S-AKI (83). Similar to the previous 

two studies, the effect of CRNDE was mediated through TLR/NF-κB pathway, albeit by 

targeting a different miRNA. Elsewhere, overexpression of CRNDE in sepsis rats improved 

myocardial injury by ‘sponging’ miR-29a to promote SIRT1 mediated downregulation of 

NF-κB/PARP1 signalling (84).  
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Transcript Predicting Survival in AKI (TapSAKI) and HOTAIR were upregulated in kidney 

tissues from sepsis rats and in human kidney (HK2) cells following LPS treatment. 

Respectively, both lncRNAs promoted apoptosis in HK2 cells through miR-122 dependent 

regulation of TLR4/NF-κB pathway (85), and miR-22 dependent regulation of HMGBI, a 

negative regulator of apoptosis. Contrarily, in another study, overexpression of HOTAIR 

reversed AKI in sepsis rats by downregulating miR-34a and upregulating B-cell 

leukaemia/lymphoma 2 (Bcl-2) - an inhibitor of apoptosis (86).  

The diagnostic performance of lncRNAs in sepsis is summarised in Table 4b. Similar to 

miRNAs, this varies across studies and supports the need for these preliminary findings to be 

robustly validated. Perhaps, integrating multiple ncRNA biomarker candidates or their 

inclusion as part of a clinical score could increase their diagnostic and prognostic 

performance. 

 

Altogether, these data demonstrate that NF-κB signalling, and apoptosis are crucial in the 

pathogenesis of SIOD and that these processes are regulated by lncRNAs and miRNAs. 

Indeed, NF-κB regulates the transcription of several immunomodulatory mediators and 

activation of NF-κB signalling is associated with higher rates of mortality and worse clinical 

outcomes in sepsis patients. Thus, regulation of NF-κB signalling through targeting 

individual lncRNAs and/or their target miRNAs is a promising therapeutic approach and 

could improve outcomes in SIOD. 

 

Conclusion  

There is an exponential increase in research studies investigating the role of miRNAs and 

lncRNAs in sepsis. Indeed, data presented here indicate that miRNAs and lncRNAs could 

serve as biomarkers and therapeutic targets for sepsis. Also, some insight into potential 
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mechanisms by which these ncRNAs might play a role in the pathogenesis of sepsis has been 

highlighted. Interestingly all these differentially regulated miRNAs and lncRNAs play an 

important role in regulating the cell cycle and inflammation, the mechanism altered in sepsis. 

However, there are still fundamental gaps that need to be bridged before these findings can 

be translated into clinical practice. It is anticipated that future work will now be centered on 

addressing the interstudy heterogeneities and validation of these results in independent 

cohorts. Ultimately, integration of these preliminary data with those from other multi-omics 

platforms e.g. proteomics, and incorporation of robust bioinformatic pipelines for analyses 

would undoubtedly accelerate the pathway to the discovery of ncRNA-based biomarkers and 

therapies for sepsis. 

 

Key points 

 MicroRNAs and long non-coding RNAs are abnormally expressed and have been 

shown to play a regulatory role in sepsis 

 Experimental studies have provided valuable insight into the mechanisms through 

which microRNAs and long non-coding RNAs play a regulatory role in sepsis  

 MicroRNAs and long non-coding RNAs provide some promise to be utilised as novel 

biomarkers and therapeutic targets for sepsis. 
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miRNA Study 

population  

Sample size (n) Sample type Up or down 

regulated 

Comparison Ref 

miR-132 Neonates  EOS (25); HC (25) Plasma downregulated Sepsis vs. HC (9) 

miR-223  downregulated Sepsis vs. HC 

       

miR-26a Neonates Sepsis (28); HC (32) Blood 

mononuclear cells 

and Serum 

downregulated Sepsis vs. HC (10) 

       

miR-181a Neonates Sepsis (102), HC (50) Serum downregulated Sepsis vs. HC (11) 

miR-146a Children  Sepsis (55), HC (60) Serum downregulated Sepsis vs HC (12) 

miR-187 Children  Sepsis (50); SIRS (30), HC 

(20) 

Whole blood upregulated Sepsis and SIRS vs HC (13) 

miR-101 upregulated Sepsis vs. HC 

miR-21 upregulated Sepsis and SIRS vs HC 

       

miR-26b Adults  Sepsis (21), HC (21) Platelets downregulated Sepsis vs. HC (14) 

miR-126 Adults  Sepsis (60); HC (25) Plasma upregulated Sepsis vs. HC (15) 

miR-495 Adults  Sepsis (105); HC  (100) Serum downregulated Sepsis vs. HC (16) 

miR-9 Adult  Sepsis (28); HC (23) Whole blood upregulated Sepsis vs. HC (17) 

       

miR-187 Adult  Sepsis (180); HC (180) Plasma downregulated Sepsis vs. HC (18) 

miR-21  upregulated Sepsis vs. HC  

       

miR-126 Adult  Sepsis (208); HC (210) Plasma upregulated Sepsis vs. HC and non-

survivors vs. survivors 

(19) 

miR-223 Adults  Sepsis (187); HC (186) Plasma Upregulated Sepsis vs. HC and non-

survivors versus 

survivors 

(20) 

Table



       

miR-92a Adults  Sepsis (13); ARDS (36); HC 

(15) 

Serum Upregulated Sepsis vs. HC and 

Sepsis induced ARDS 

vs. HC 

(21) 

miR-29a Not 

specified 

Sepsis (8), Control (8) Blood Upregulated Sepsis vs. controls (22) 

miR-145 Not 

specified 

Sepsis (33); HC (22)  Exosomes Downregulated  Sepsis vs. HC (23) 

miR-103 Adults ARDS sepsis (28); Non-

ARDS sepsis (168) 

Plasma Downregulated Sepsis vs. HC and 

ARDS vs. non-ARDS 

(24) 

miR-107 Downregulated Sepsis vs. HC and 

ARDS vs. non-ARDS 

       

miR-7110-5p Adults Pneumonia only (52); sepsis 

secondary to pneumonia 

(44) 

Plasma Upregulated Pneumonia only versus 

Sepsis secondary to 

pneumonia 

(25) 

miR-223-3p Upregulated Pneumonia only versus 

Sepsis secondary to 

pneumonia 

miR-940 Downregulated Pneumonia only versus 

Sepsis secondary to 

pneumonia 

Table 1:  Summary of selected recent clinical  studies showing patterns of differential expression of  circulating miRNAs in sepsis. Unless stated 

otherwise, comparison made was between sepsis patients and healthy controls. miRNA=microRNA, EOS= early onset sepsis, miRNA=micro 

RNA, ICU=intensive care unit, SS=septic shock, SIRS=systemic inflammatory response syndrome, HC=healthy control, ARDS=acute 

respiratory distress syndrome, Ref=reference 

 

 

 

 



 

 

miRNA Comparison Cohort Sample size (n) AUC (95% CI, where 

provided) 

Sensitivity 

(%) 

Specifi

city 

(%) 

Cut off 

value 

Ref 

miR-181a Sepsis vs. HC Neonates Sepsis (102), HC (50) 0.893 83.3 84 0.625 (11) 

miRNA-

495 

Sepsis vs. HC Adults Sepsis (105), HC (100) 0.915 89.5 83 0.655 (16) 

 

miRNA-

495 

Shock vs. non shock Adults SS (34), non-SS (71) 0.885 85.3 87.3 0.475 

miR-101 Sepsis vs. HC Neonates Sepsis (50), HC (20) 0.908 (0.847-0.97) 84 84 0.936 (13) 

 miR-187 Sepsis vs. HC Neonates Sepsis (50), HC (20) 0.789 (0.698 - 0.88) 72 76 0.319 

miR-21 Survivors vs. non-

survivors 

Neonates Survivors (34), non-

survivors (16) 

0.793 (0.644-0.942) 62.5 88.2 3.48 

miR-146-a Sepsis vs. HC Children Sepsis (55), HC (60) 0.803 (0.723-0.883) 86.6 56.6 <0.5 (12) 

 miR-146-a Non-survivors vs. 

survivors 

Children N/A 0.76 (0.618-0.909) 67 80 0.4 

miR-126-

3p 

Sepsis vs. non sepsis Children Sepsis (60), Non sepsis (25) 0.735 (0.618-0.852) N/A N/A N/A (15) 

miR-126 Sepsis vs. HC Adults Sepsis (208), HC (210) 0.726 (0.678-0.774) N/A N/A N/A (19) 

 miR-126 Survivors vs. non-

survivors 

Adults Survivors (139); non-

survivors (69) 

0.619 (0.533-0.705) N/A N/A N/A 

miR-223 Sepsis vs. HC Adults Sepsis (187), HC (186) 0.754 (0.706-0.803) 56.6 86.6 N/A (20) 

 miR-223 Survivors vs. non-

survivors 

Adults N/A 0.600 (0.505 - 0.695) 83.5 38.9 N/A 

miR-7110-

5p 

Pneumonia only vs. 

pneumonia and sepsis 

Adults Pneumonia only (52),                                

sepsis due to pneumonia 

(44) 

0.883 84.2 90.5 4.41 (25) 

 

miR-223-

3p 

Pneumonia only vs. 

pneumonia and sepsis 

Adults Pneumonia only (52),                                

sepsis due to pneumonia 

(44) 

0.964 82.9 100 2.759 



miR-103 ARDS sepsis vs non 

ARDS sepsis 

Adults ARDS sepsis  ( 28 ),                       

Non-ARDS sepsis (168) 

0.727 (0.577 - 0.811) 64.3 78.6 0.178 (24) 

miR-107 ARDS sepsis vs non 

ARDS sepsis 

Adults ARDS sepsis  ( 28 ),                       

Non-ARDS sepsis (168) 

0.694 (0.577-0.811) 85.7 51.2 0.295 (24) 

miR-107 Survivors vs. non-

survivors 

Adults Survivor (134), non-

survivors (62) 

0.649 (0.569-0.729) N/A N/A N/A 

miR-103 Survivors vs. non-

survivors 

Adults Survivor (134), non-

survivors (62) 

0.704 (0.626-0.782) N/A N/A N/A 

miR-328 Sepsis vs. HC Adults Sepsis (110), HC (89) 0.926 87.6 86.36 0.305 (37) 

miR-26b AKI sepsis vs. non-

AKI sepsis 

Adults AKI sepsis (68), non-AKI 

sepsis (87) 

0.886 (0.831-0.942) 90.8 75 0.124 (38) 

 

miR-26b Sepsis vs. SIRS Adults Sepsis (155), SIRS (56) 0.816 (0.758-0.874) 60 89.3 0.062 

miR-210 AKI sepsis survivor 

vs. non-survivor 

Adults AKI sepsis (110), HC (110) 0.852 (0.777-0.928) 81 80.9 6.995 (36) 

 

miR-494 AKI sepsis survivor 

vs. non-survivor 

Adults AKI sepsis (110), HC (110) 0.847 (0.772-0.922) 80.9 72.1 7.005 

miR-205 AKI sepsis survivor 

vs. non-survivor 

Adults AKI sepsis (110), HC (110) 0.860 (0.792-0.927) 78.6 90.5 3.245 

Table 2: Summary of selected recent studies investigating the diagnostic accuracy of miRNAs in sepsis. miRNA=microRNA, HC=healthy 

controls, SS=septic shock, AUC=area under receiver operating characteristics curve, ARDS=acute respiratory distress syndrome, AKI = acute 

kidney injury, N/A=not available, Ref=reference 

 

 

 

 

 

 

 

 

 



 

miRNA Body fluid/tissue of expression Result Target gene/Pathway Reference 

S-ALI/ARDS 

miR-574 Human bronchial epithelial cells stimulated with LPS  Downregulated Complement 3 (61) 

miR-92a LPS stimulated human pulmonary microvascular 

endothelial cells and alveolar epithelial cells 

Upregulated Akt/mTOR signaling (21) 

miR-539-5p LPS stimulated murine pulmonary microvascular 

endothelial cells 

Downregulated ROCK 1.  (53) 

miR-326 LPS stimulated murine lungs and macrophages Downregulated TLR4  (54) 

miR-29a LPS induced murine pulmonary endothelial cells,  Upregulated STAT3  (22) 

miR-181a-5p LPS stimulated murine macrophage cell line RAW 264.7 Upregulated SIRT1 (62) 

miR-574-5p Murine lung tissues Downregulated TRAF6/NF-κB (55) 

miR-483-5p Murine lung tissues and PMVECs Upregulated PIAS1 (63) 

miR-145 LPS treated human normal lung epithelial cells Downregulated  TGFBR2  (23) 

SIMD  

mir-146a Myocardial tissue of LPS treated rats Upregulated TLR-4/NF-κB (64) 

miR-98 Murine myocardial tissue  following CLP Downregulated HMGA2/NF-κB (51) 

miR-328 Rat myocardial tissue following CLP Upregulated N/A (37) 

miR-23b LPS stimulated rat cardiomyocytes   Upregulated TRAF6/IKKB/NF-κB (50) 

Table 3 Summary of selected experimental studies of miRNAs in sepsis induced organ injury. miRNA=microRNA, LPS=lipopolysaccharide, mTOR= 

mammalian target to rapamycin  ROCK1= Rho-associated protein kinase 1; TLR= toll like receptor; PIAS1=protein inhibitor of activated signal transducer 

and activator transcription  (STAT) 1; TGFBR2= transforming growth factor-beta (TGF-β) receptor type 2; NF-κB= Nuclear Factor kappa-light-chain-

enhancer of activated B cells; HGMA2= High-mobility group AT-hook; TRAF6 =Tumor necrosis factor receptor associated factor 6; SIRT1=Sirtuin 1; 

N/A=not available , Ref=reference



Table 4a: Summary of selected recent clinical  studies showing patterns of differential expression of  lncRNAs in sepsis. LncRNA=long non-coding RNA, 

HC=healthy controls; AKI=acute kidney injury; ARDS= acute respiratory distress syndrome, ITSN1=Intersectin 1; NEAT1= nuclear paraspeckle assembly 

transcript 1; TUG1= taurine upregulated gene 1; ZFAS1= ZNFX1 antisense RNA 1; CRNDE= Colorectal Neoplasia Differentially Expressed; THRIL= TNF‐
related and HNRNPL‐ related immunoregulatory lncRNA; MALAT1=Metastasis Associated Lung Adenocarcinoma Transcript 1, Ref=reference 

lncRNA Population Sample size (n) Sample type Result Comparison Reference 

ITSN1-2 Adults Sepsis (309); HC (300) Plasma Increased Sepsis vs. HC (87) 

 Non-survivors (94); survivors (215) Increased Non-survivors vs. survivors 

       

MALAT1 Adults Sepsis (120); HC (60) Plasma Increased Sepsis vs. HC (65) 

 N/A Increased Non-survivors vs. survivors 

       

MALAT1 Adults Sepsis (190); HC (190) Plasma Increased Sepsis vs. HC (66) 

 Survivors (132); Non-survivors (58) Increased Non-survivors vs. survivors 

       

NEAT1 Adults Sepsis (68); HC (32) Serum Increased Sepsis vs. HC (75) 

 N/A Increased Non-survivors vs. survivors 

       

NEAT1 Adults Sepsis (150); HC (150) Plasma Increased Sepsis vs. HC (74) 

 Survivors (107); non-survivors (45) Increased Non-survivors vs. non-survivors 

       

NEAT1 Adults AKI sepsis(13); Non-AKI  sepsis (39) Serum Increased AKI vs. non-AKI sepsis (73) 

       

NEAT1 Adults Sepsis (25); HC (25) Serum Increased Sepsis vs HC (88) 

       

TUG1 Adults S-AKI (28); HC (28) Serum Decreased S-AKI vs. HC (80) 

       

ZFAS1 Adults Sepsis (202); HC (200) Plasma Decreased Sepsis vs. HC (89) 

 Decreased Survivors vs. non-survivors 

       

CRNDE Adults Sepsis (136) ; HC (151) N/A Increased Sepsis vs. HC (90) 

       

THRIL Adults ARDS sepsis (32); non-ARDS  sepsis 

(77) 

Serum and 

plasma 

Increased ARDS vs non ARDS (91) 

 Increased Non-survivors vs survivors 



lncRNA Comparison AUC (95% CI) Sensitivity Specificity NPV PPV 

Best cut off 

point Reference 

MALAT1/miR-

125a Sepsis vs. HC 

0.931 (0.908-

0.954) 91.3 78.6 90.1 81.0 

N/A (66) 

MALAT1 Sepsis vs. HC 

0.866 (0.830-

0.901) 73.0 88.3 76.5 86.1 

MALAT1/miR-

125a 

Survivors vs. non 

survivors 

0.678 (0.603-

0.754) 94.6 40.0 94.9 38.7 

MALAT1 

Survivors vs. non 

survivors 

0.977 (0.595-

0.758) 35.7 92.1 78.2 64.5 

         

MALAT1 

Sepsis vs. HC 

0.823 (0.783-

0.864) 

N/A 

 (67) 

Survivors vs. non 

survivors 

0.755 (0.682-

0.828) 

         

MALAT1 

Sepsis vs. HC 0.91(N/A) 

N/A (65) 

Septic shock vs. no shock 0.836 (N/A) 

Survivors vs. non 

survivors 0.886 (N/A) 

         

MALAT1 

sepsis ARDS (41) vs. 

sepsis non-ARDS (111) 

0.674 (0.581-

0.766) 

N/A (68) 

Survivor (105) vs. non-

survivor (47) 

0.651 (0.555-

0.747) 

         

 

 

Sepsis (152) vs. HC 

(150) 

0.730 (0.740-

0.861) N/A 

(74) 

 



 

 

 

 

NEAT1 

 

Survivors (45) vs. non 

survivors (107) 

0.641 (0.536-

0.746) 

 

         

NEAT1 

Sepsis (82) vs. HC (82) 

0.785 (0.716-

0.853) 

N/A 

 (76) 

Survivors (54) vs. non 

survivors (28) 

0.726 (0.615-

0.837) 

         

ITSN1-2 

Sepsis(309) vs. HC (300) 

0.777 (0.740-

0.813) 59.5 86.3 

N/A 

1.82 

(87) 

Survivors vs. non 

survivors 

0.654(0.581-

0.726) 92.1 40.4 4.059 

         

ZFAS1 

Sepsis (200) vs. HC 

(200) 

0.814 (0.771-

0.857) 92.1 63.5 

N/A (89) 

Survivors (62)vs. non 

survivors(140) 

0.628 (0.538-

0.717) 92.1 35.5 

         

THRIL 

Sepsis ARDS(32) vs. 

Sepsis non-ARDS (77) 

0.706 (0.602-

0.809) 68.7 71.4 

N/A 

2.583 

(91) 

Survivors(76) vs. non 

survivors(33) 

0.780 (0.683-

0.876) 88.2 54.5 3.671 
Table 4b: Summary of recent studies investigating the diagnostic accuracy of lncRNAs in sepsis. LncRNA=long non-coding RNA, HC=healthy controls, AUC=area under 

receiver operating characteristics curve, CI=confidence intervals, provided where available; NPV=negative predictive value; PPV=positive predictive value; ARDS=acute 

respiratory distress syndrome, N/A=not available; ITSN1=Intersectin 1; NEAT1= nuclear paraspeckle assembly transcript 1; TUG1= taurine upregulated gene 1; ZFAS1= 

ZNFX1 antisense RNA 1; CRNDE= Colorectal Neoplasia Differentially Expressed; THRIL= TNF‐ related and HNRNPL‐ related immunoregulatory lncRNA; 

MALAT1=Metastasis Associated Lung Adenocarcinoma Transcript 1, Ref=reference 


