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by Mia Sato Tackney

Randomized experiments are considered the gold standard of study designs. When averaged
over all possible randomizations, the treatment effect is free from bias and can also have
a causal interpretation. In experiments involving human participants, it is common for
participants to become available sequentially over time. Covariate information, such as age
and sex, is taken and a treatment is assigned soon after. In this sequential setting, there are
two main dangers of allocating treatments completely at random: replication of treatments
may be unbalanced, and replication of treatments may be unbalanced for covariates. Both
problems can lead to imprecision in the estimate of the treatment effect.

Covariate-adaptive schemes allocate treatments to patients to minimize some measure of
imbalance in treatments and covariates. Minimization is a method commonly used in
clinical trials which is appropriate for binary covariates. Alternatively, sequential optimal
design based methodology allocates treatments to minimize the variance of the treatment
effect under a specified model. We extend the optimal design based methodology to a
nonmyopic setting, where treatment allocation for the current patient depends not only on
the treatments and covariates of the patients in the study, but also the impact of possible
future treatment assignments. The number of possible future decisions considered is called
the horizon. Our simulation studies shows that there are very few examples with binary
treatment where the non-myopic approach offers benefit over the myopic approach. One
main limitation of the nonmyopic approach is that it involves computationally expensive
recursive formulae which can only be implemented in limited contexts, for example for
discrete treatments and for a horizon of no more than five. This motivated the development
of a pseudo-nonmyopic approach which has a similar aim to the nonmyopic approach, but
does not involve recursion. The horizon can be up until the end of the trial and the approach
can also be used for continuous treatments.

We apply the sequential nonmyopic and pseudo-nonmyopic framework in the setting of per-
sonalized medicine. A trial for personalized medicine aims to identify effective combinations
of treatments and biomarkers. In this context, our main result from simulations is that the
pseudo-nonmyopic approach is more efficient than the myopic approach in the logistic model
case with continuous treatment where there is a large interaction between the treatment
and biomarker. In particular, this benefit is more pronounced when the biomarker relevant
in the interaction is rare.
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Chapter 1

Introduction:
Background, Aims and Outline

1.1 Background

1.1.1 Design of Experiments

Experiments are conducted to investigate scientific research questions which can inform
decision-making. For example, clinical trials can determine whether a new treatment is
better than the current best available treatment, and for which subpopulation it is most
effective (Zhang et al., 2016). A chemicals experiment can find the optimal locations for
taking measurements to identify the source of a contaminant (Huan and Marzouk, 2016).
Tech giants such as Google and Amazon regularly conduct online experiments to determine
the layout of a website or which widget is most attractive to customers to inform business
decisions (Bakshy et al., 2014). In order to conduct such experiments, a number of oper-
ational decisions need to be made on how the data is collected: for example, how many
subjects or units to include, at which locations or time points to take measurements, and
how to decide which units receive which treatment. These decisions can have a direct impact
on the quality of the data that is obtained and the conclusions that can be drawn from the
experiment. Design of experiments provides a framework for defining what constitutes good
decisions and developing methods for making them. This thesis focuses on how treatments
should be allocated to the units of an experiment.

Assigning treatments at random or in an ad-hoc way could lead to inefficient estimates of
treatment effects. One typically wishes to choose treatments in such a way that leads to
statistical efficiency, meaning that the variance of estimators are as small as possible (Cox,
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1958, p.7). Estimating the treatment effect as precisely as possible, or testing hypotheses
about the treatment effect with high power are common ways in which designs are assessed
(Atkinson, 1982; Hu et al., 2015). There may be other considerations in the experiment
which are in conflict with the goal of making decisions for statistical efficiency (Rosenberger
and Sverdlov, 2008). For example, in clinical experiments involving human participants,
there is an ethical dimension that needs to be considered carefully. If it appears that one
treatment is more effective than another, there is an ethical incentive to give proportionately
more patients the effective treatment. If a particular treatment has harmful effects on
patients, the treatment arm or the experiment itself may be dropped altogether. How to
effectively balance multiple goals which potentially conflict with each other is a current area
of research within the community.

1.1.2 Sequential Design with Covariates

Some units in an experiment share inherent characteristics which may be of importance to
the results of an experiment. These characteristics which have the potential to explain the
variation in response are referred to as covariates. For example, in an agricultural experiment,
plots of land which are close to each other are more likely to experience similar weather
conditions rather than plots that are further apart, so the location of the unit is a covariate
(Bailey, 2008, p.55). In clinical trials, individual genetic or demographic characteristics of
the patient are examples of covariates. A common experimental design when the covariates
of all units are known is a complete block design, where units are grouped into blocks which
have the same covariate value, and treatments are randomized so that each treatment is
equally represented in each block (Atkinson et al., 2007, p.8); this leads to more precise
estimates of the treatment effect.

In experiments in the social and medical sciences, potential participants often become
available at different times throughout the recruitment period. Once a potential participant
expresses interest, formal checks on eligibility and safety are made, and covariate information
such as the participants’ age, sex and medical history are taken before they enrol in the
experiment (Pocock, 2013, p.67). In this setting, sequential design of experiments, where
treatments are allocated to participants as soon as they enrol, is a practical approach and is
also an active area of research.

The major challenge in sequential design of experiments is that, at each stage of the experi-
ment, a treatment needs to be assigned to the current participant, based only on information
about the participants already enrolled in the experiment, and the covariate information
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about the current patient. It may not be known how many more people will enrol, and
covariate information about future participants is unknown so a block design is not an
option. A simple randomization strategy might lead to unequal replication of treatments
(Efron, 1971). Further, it may lead to a situation where the replication of treatments is
unequal for particular levels of a covariate. These issues could lead to bias and/or increased
variability in estimates (Hu and Hu, 2012). The consequence is particularly pronounced in
experiments with a small number of participants, which can be common in the social and
medical sciences (Atkinson, 1982).

1.1.3 Overview of Existing Methods

Efron (1971) proposed the so-called “biased coin" that allocates treatments sequentially so
that their replication is kept balanced while at the same time keeping a stochastic element
to the allocation to mitigate selection bias. However, this does not consider the covariate
information of the patients. Minimization is an approach aimed to keep the numbers of
treatments roughly equal for each group of patients who have the same covariate combination
and is now used extensively in clinical trials (Pocock and Simon, 1975; Taves, 1974). It
has received some criticism for being based on measures of imbalance of covariates which
are not theoretically grounded (Senn et al., 2010) and methods based on minimizing the
variance of the parameter estimators in statistical models have been suggested instead by
Atkinson (1982). Atkinson’s approach aims to minimize the variance of the estimator of
the treatment effect within a linear model which describes the relationship between the
treatments, covariates and response. Both minimization and Atkinson’s approach may be
referred to as covariate-adaptive methods, as the criterion used to determine the treatment
allocation takes into account the covariates of the patients, but does not consider their
responses. We investigate these methods further in Chapter 2.

Response-adaptive approaches include methods such as the play-the-winner rule proposed
by Wei and Durham (1978) which updates the probabilities for treatment assignment based
on the response of the units only; it does not consider covariates. Some authors make
the distinction between response-adaptive randomization (RAR) and covariate-adjusted
response-adaptive (CARA) designs to distinguish between those that take covariates into
account and those which do not (Rosenberger and Sverdlov, 2008; Zhu, 2015). For some
statistical analyses which go beyond the linear model, such as generalized linear models,
generalized linear mixed models and non-linear models, the criterion used for treatment
allocation may depend on the model parameters. In this case, updating the estimates of the
model parameters as more data becomes available can lead to more precise estimators of the
treatment effect (Atkinson, 1999, p.257). CARA designs have been proposed by Atkinson
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and Biswas (2005), Bandyopadhyay and Biswas (2001) and Rosenberger et al. (2001). Zhang
et al. (2007) present a general framework for CARA designs for models including GLMs and
provide some asymptotic properties of the estimators of the unknown parameters.

Adaptive designs that incorporate covariate information and also try to maximize the number
of patients who receive the more effective treatment (once enough data has been accumulated
in the trial to be able to identify a more effective treatment) are sometimes referred to as
covariate-adjusted response-adaptive designs based on efficiency and ethics (CARAEE). Hu
et al. (2015) propose a CARAEE design which assigns treatments based on the covariates,
treatments and responses of the patients in the trial so far, and uses a tuning parameter to
balance efficiency and ethics. Further, some work has been undertaken on relating bandit
problems to clinical trials. Bandit problems are concerned with sampling sequentially from
two populations in such a way to maximize the expected utility (Rigollet and Zeevi, 2010). In
a clinical trials application, the two populations correspond to two possible treatments. A util-
ity is defined which combines the merits of having precise estimators and also of maximizing
the number of positive responses from patients, and the design aims to maximize this utility.
The conflict between the goal of having high efficiency and the goal of keeping the experiment
ethical by allowing a greater proportion of patients to receive the more effective treatment
can be placed in a decision theoretic framework (Cheng and Berry, 2007; Mueller et al., 2007).

Table 1.1 provides a summary of the allocation methods used in sequential design of
experiments and characterizes them based on the factors that the treatment assignment
depends on.

Table 1.1: Summary of the types of allocation methods for sequential design of experiments
and their features

Treatment
assignment
depends on:

Allocation method

Random
Efron’s
biased
coin

Covariate
adaptive
designs

Response
adaptive
designs

CARA CARAEE

Treatment x X X X X X
Covariates x x X x X X
Response x x x X X X
Ethics x x x X x X

1.1.4 Nonmyopic Approaches

RAR, CARA and CARAEE designs are myopic approaches, meaning that we assume that
the current patient is the last patient to enter the trial, and we choose a treatment which
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minimizes the objective function using data up until the current patient. Non-myopic
approaches, however, are able to consider the potential impact of the current treatment
decision on future possible decisions (Huan and Marzouk, 2016). This relies on the method
of dynamic programming to compute the expected value of the objective function, where
the expectation is taken over unknown quantities of future patients. Most applications of
nonmyopic approaches in clinical trials have been to achieve the goal of maximizing the
total benefit of treatment to patients, such as methods using the Gittens index (Villar and
Rosenberger, 2018). Nonmyopic approaches for a clinical trials based problem involving
covariates where the objective is related to the estimation of parameters have not been
explored explicitly in the literature. A major theme of this thesis is implementing the
non-myopic approach in existing covariate-adaptive and CARA designs and to understand
whether the non-myopic approach provides benefit in terms of efficiency. We explore this in
Chapters 3, 4 and 5.

1.2 Clinical Trials

The most prominent application of sequential design with covariates is clinical trials. Clinical
trials are experiments conducted in the biomedical or behavioural sciences which involve
patients. They aim to test the safety and effectiveness of a new treatment, such as a drug,
vaccination or dietary recommendation. The new treatment is compared to the current best
treatment, or a placebo. A clinical trial is typically structured into the following four phases
(MRC-CTU, 2014):

• Phase I: A small number of healthy individuals are recruited to test the safety of the
treatment. Side effects are identified. Dose-escalation may be conducted, where the
dose of the treatment is increased at intervals in order to measure the tolerance of the
treatment and to ascertain some bounds on an appropriate dosage.

• Phase II: Once the safety of the drug is confirmed, a larger group of individuals
(usually less than 100) who are affected by the disease or condition of interest are
recruited. The efficacy of the treatment on the condition is tested. A number of
different doses and timings are trialled to establish a treatment policy (Whitehead,
1992, p.3). The main purpose of a Phase II trial is to establish whether the new
treatment works well enough to justify studying it further in a Phase III trial. In some
Phase II trials, all patients are given the treatment of interest, while others involve
more than one treatment and randomly allocate treatments so that it is possible to, for
example, compare the treatment of interest to a placebo or the current best treatment
(Cancer Research UK, 2015, Sambucini, 2015).
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• Phase III: A trial in Phase III is much longer and typically involves hundreds or
thousands of patients, possibly across different hospitals and countries. The experiment
is randomized and the new treatment is compared to the current best treatment on
the market or a placebo. A Phase III trial should provide enough evidence to allow
drug authorities to make a decision on whether to make the treatment available on
the market.

• Phase IV: Once authorities for drug regulations approve of the treatment, more
information is gathered, such as any potential long-term side effects and effects on
particular populations through monitoring the use of the drug in clinical practice
(Whitehead, 1992, p.3).

Our interest primarily lies in Phase II and Phase III trials since they are randomized
experiments and are typically sequential.

Personalized Medicine

The methods we are interested in may be particularly applicable for clinical trials for
personalized medicine. In personalized medicine, the goal is to select treatments for patients
which are tailored to individual characteristics (Kaplan, 2015). Treatments can be targeted
at specific genetic or biological mechanisms called biomarkers, which we treat as a type of
covariate. There is a need to be able to validate effective treatment-biomarker combinations
through clinical trials (Lee and Wason, 2019). We show how an optimal design approach can
be taken to design a sequential experiment which seeks to identify effective combinations of
treatments and biomarkers. We compare myopic and non-myopic methods of finding the
optimal treatment for such a problem in Chapter 6.

1.3 Aims of the Thesis

This thesis has five aims:

1. Assess two existing methods for designing sequential experiments with covariate
information: minimization and Atkinson’s method. We compare the performance
of these two methods in a simulation study on performance measures which assess
balance in treatment, balance in covariates, and optimality.

2. Extend Atkinson’s approach so that it can be applied to a more general form of
optimality criterion and for normal as well as binary responses.

3. Extend Atkinson’s approach to a non-myopic framework for the binary response. Using
simulations, we compare the performance of the myopic and non-myopic approaches
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under a number of optimality criteria for both linear and non-linear models. We aim
to understand if the non-myopic approach provides benefit over the myopic approach
and why or why not.

4. Apply these methods to a problem in personalized medicine concerning the identification
of effective treatment-biomarker combinations in a sequential setting.

5. Develop an R package with functions to construct designs using the above methods.

1.4 Outline of Thesis

In Chapter 2, we illustrate two naive approaches to the design problem to motivate the
need for more sophisticated tools. We then describe minimization and the method by
Atkinson (1982). We provide results from simulations comparing the two covariate-adaptive
approaches to the naive approaches for a number of different scenarios. Chapter 3 gives a
summary of the literature on the use of non-myopic approaches in clinical trials. We then
describe how a non-myopic version of Atkinson’s algorithm can be implemented in Chapter 4
and provide some simulation results comparing the myopic and non-myopic approaches. We
also extend the non-myopic algorithm to allow for binary response and provide simulations
to compare the myopic and non-myopic approaches when the response is binary. We then
develop the idea of a pseudo-nonmyopic approach in Chapter 5 and again provide simulation
results for the linear and logistic model cases. In Chapter 6, we introduce personalized
medicine and the problem of identifying effective treatment-biomarker combinations. We
show how the sequential design based on an optimal design approach can be used in this
setting, and compare performances of myopic, non-myopic and pseudo-nonmyopic versions
of the allocation scheme in some simulation studies in Chapter 7. Chapter 8 is a vignette of
the R package. In Chapter 9, we outline the limitations of our current work and provide
plans for future work.
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Chapter 2

Myopic Approaches

In this thesis, we consider methods for treatment allocation in experimental settings where
units become available sequentially and covariate information about units can be measured.
Clinical trials are a prominent example of such a setting. We begin this chapter by describing
some practical aspects of clinical trials to illustrate key ideas such as the need to balance
treatment levels for covariates. We then describe some methods for sequential treatment
allocation. Randomization and Efron’s biased coin are two simple approaches. We describe
their potential problems to motivate the need for covariate-adaptive approaches which
include minimization and an optimal design approach. We illustrate the classic form of
minimization used in clinical trials for binary covariates, as well as how it can be extended
for continuous covariates. These approaches all make decisions about the current patient
assuming that it is the last patient to be allocated in the trial; it does not take into account
future patients. We refer to this approach as a myopic approach. We run simulations
to compare the characteristics of designs produced by these myopic treatment allocation
methods.

2.1 Sequential trials

For Phase II and Phase III trials, recruitment efforts are made in order to obtain volunteers
over a specified period of time. When a volunteer expresses interest in participating, a
number of covariates of the volunteer are noted, such as age, sex and hospital identification
(Kendall, 2003). Covariates may also be referred to as prognostic information or baseline
characteristics. Some of the covariates are used to check whether the volunteer meets the
eligibility criteria for the trial, since there are exclusion criteria determined by the target
population of the drug and any known information on subpopulations for which the treatment
may have adverse effects. Subjects who do not meet the eligibility criteria, or cannot provide
informed consent, are excluded from the trial (Kendall, 2003). Covariates are also included

9
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so that analyses on subgroups can be conducted to see whether treatments are more effective
for patients in combination with certain characteristics (Assmann et al., 2000).

Treatments are allocated to the patient soon after they are enrolled in the study. Since
patients become available for the trial sequentially over time, their covariate information
is also unknown until they enrol for the study. If there are only a few discrete covariates,
permuted block designs can be used to allocate treatments, where patients who have the
same combination of covariate values are grouped into a block. Suppose each block has l× t
patients, where l is some positive integer and t is the number of treatments. A permutation
of of size l × t is selected so that l replications of each treatment are allocated in each
block. Since the patients in each block are more homogeneous than patients between blocks,
the variance of the treatment effect should be reduced (Wu, 1985, p.51). However, block
designs are not a feasible option if there are many covariates. Even with a few covariates,
this method can be problematic since it is not guaranteed that enough patients for each
covariate combination will arrive. Further, as the number of covariates increases, the number
of required blocks increases exponentially.

A further consideration for sequential trials is that the total sample size may not be fixed; it
may not be known how many available subjects can be recruited. Further, due to ethical
considerations, there are stopping rules which determine when the trial should be terminated
as a result of the responses of the patients enrolled so far. If the current treatment appears
to be unsafe or ineffective, the trial may be stopped on the grounds that it is putting patients
inadvertently at risk or wasting resources. If the treatment is deemed to be safe and effective,
it may be unethical to withhold it from the control group, so the trial may also be justifiably
terminated. The targeted value for treatment replication may be unknown since the sample
size may be unknown. More information on stopping rules can be found in Stallard et al.
(2001).

We consider treatment allocation approaches which are appropriate for the situation where
patients, and their covariate information, become available sequentially and the sample size
is unknown. Methods which take into account the covariate information of the patient are
referred to as covariate adaptive methods, or covariate adaptive randomization (Rosenberger
and Sverdlov, 2008). They can also be referred to as dynamic allocation schemes (Senn
et al., 2010). Some sequential allocation strategies allow responses from the patients to
be incorporated; these are usually called response adaptive or covariate adjusted response
adaptive methods (Rosenberger and Sverdlov, 2008) and they will be considered in Chapters
4 and 6.
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2.2 Notation

We first set up some notation that we will use throughout this thesis. We denote by n, the
potentially unknown total number of patients in the trial. At a particular point in time,
there are i − 1 patients already enrolled in the trial, and we consider the best choice of
treatment for patient i, i ∈ {1, 2, ..., n}. We assume that the treatment factor is binary with
levels coded by 1 (e.g. new treatment) and −1 (e.g. control). It is typical in clinical trials
to have a binary treatment structure, although treatment structures with three or more
treatment levels occur occasionally. We denote by ti ∈ {−1, 1} the treatment given to the
ith patient and define the following vectors:

ti =
(
t1, t2, ..., ti

)ᵀ
, (2.1)

associated with the treatments given to the i patients in the trial so far.

We denote by zi,j the value of covariate j for patient i, for 1 ≤ j ≤ k, and define the vector
zi:

zi =
(
zi,1, zi,2, ..., zi,k

)ᵀ
, (2.2)

associated with the covariates values of the ith patient. The i× k matrix Zi consists of the
all covariates values of patients 1 up to patient i:

Zi =


zᵀ1
zᵀ2
...
zᵀi

 . (2.3)

Finally, we denote the response of patient i by yi and the following vectors are the responses
for the i patients in the trial so far:

yi =
(
y1, y2, ..., yi

)ᵀ
. (2.4)

2.3 Randomization

The simplest approach to treatment allocation is complete randomization. Let us suppose
that there are two treatments. For complete randomization, essentially, a coin is tossed
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to decide the whether the new patient receives the treatment or the control, so we have
that P(ti = 1) = 0.5 for all i. In an experimental setting, treatments are ideally assigned
to experimental units randomly; the randomized controlled trial is deemed to be the gold
standard of study designs (Rubin, 1978). Randomization achieves the following three aims
(Cox and Reid, 2000, p.32):

1. It removes bias. Randomization ensures that treatment assignment is unconfounded
with other variables. Confounding bias can occur when there is an extraneous variable
that is highly correlated with the treatment assignment, as well as the response
(Cox and Reid, 2000, p. 34). This would cause treatment effect to be under or
over-estimated.

2. It makes causal inference possible. Randomization allows the ignorability assumption
to be plausible, which means that the assignment mechanism is independent of the
observed outcomes (Rubin, 1978). Any observed difference in response between the
treatment and control groups can be attributed to the treatment effect, and not due
to confounders.

3. It makes it possible to estimate variances and confidence intervals of treatment contrasts
based on randomization-based inference under the assumption of unit-treatment
additivity. There is no need to construct a probabilistic model for the response in
order to obtain confidence intervals for the treatment effect.

In the context of clinical trials, there are adverse consequences of allocating treatments
completely at random. For a sequence of treatment allocations obtained by randomization,
it is possible that the replication of treatments is uneven across treatment groups. For small
sample sizes, this can be particularly problematic. Further, the first aim of randomization
listed above is only true in theory; over all possible randomizations, treatment assignment is
completely uncorrelated with any other variable and there is no possibility of bias (Senn,
2004). For a given realization of randomized treatment assignment in an experiment, there
is the possibility that treatment assignment is not ideal. It may be that, by chance, it
highly correlated with an extraneous or prognostic variable. The permuted block method,
by ensuring that treatments are equally replicated within each block, can alleviate both
issues, and it is a method often used in the pharmaceutical industry (Senn, 2004). However,
this approach is impractical when there is a large number of covariates.

2.4 Efron’s biased coin

Efron’s biased coin is an alternative approach to the permuted block design that is designed
to promote balance in the replication of treatments (Efron, 1971). Efron’s method states
that, for the ith patient, the under-represented treatment so far in the trial should be
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allocated with probability p, where 1
2 < p ≤ 1. Complete randomization is equivalent to

p = 1
2 , and p = 1 would be a deterministic approach, based purely on keeping replication

balanced.

Efron recommended choosing p = 2
3 . The main reasons for this choice are as follows:

• With p = 2
3 , the experiment has asymptotic probability 1

2 of having equal treatment
replication for an even number of patients, and probability 3

4 of being as close to
possible to having equal replication for an odd number of patients.

• A comparison of treatment allocations using p = 2
3 with a permuted block design with

5 patients per block show that the two designs have similar treatment replication,
particularly for small sample sizes.

• Efron defines a measure, “excess selection bias,” based on how well one can predict
the treatment allocation of the new patient, given the treatment allocations of the
previous patients. He shows that, asymptotically, this is low for p = 2

3 .

• One may wish to make randomization-based inference on the treatment effect (Imbens
and Rubin, 2015, Chapter 5). Efron states that, for p = 2

3 , the standard deviation of
the treatment effect cannot exceed 1.044 times its value under a completely randomized
treatment allocation method.

Efron’s biased coin is more practical than the permuted block approach since there is no
need to wait for a certain number of patients to become available, and is also shown to
have desirable properties when p = 2

3 . However, the risk of confounding between treatment
allocation and covariates is still present. We now consider two main strands of covariate-
adaptive approaches. We first describe minimization, which is used in clinical trials. Then,
we provide background information on optimal design and introduce the method proposed
by Atkinson (1982). Lastly, we briefly mention some other methods.

2.5 Minimization

Minimization is a collection of methods aimed to ensure that treatment levels are balanced
with respect to the number of patients and also predefined covariates (see review article by
Scott et al., 2002). Minimization was initially independently developed in the context of
clinical trials by Taves (1974) and Pocock and Simon (1975). It is the most commonly used
alternative to permuted block methods of randomization and is used by organizations such
as the European Organization for Research and Treatment of Cancer (EORTC) and the
Medical Research Council in the United Kingdom (Senn et al., 2010).
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2.5.1 Binary covariates

The classic form of minimization is appropriate for binary covariates. Assuming that i− 1
patients have already been assigned a treatment, we compare the effect of assigning patient
i to treatment 1 and −1 on an imbalance measure. For covariate s, we calculate n1(zi,s),
which is the number of patients already in the study who have the same value of covariate s
as patient i, and have been given treatment 1:

n1(zi,s) =
i−1∑
j=1

I(zj,s = zi,s)I(tj = 1). (2.5)

Then, the score for treatment 1, S(1), is defined as the sum of n1(zi,s) across all covariates:

S(1) =
k∑
s=1

n1(zi,s). (2.6)

We calculate the score for treatment −1, S(−1), in an analogous way:

n−1(zi+1,s) =
i−1∑
j=1

I(zj,s = zi,s)I(tj = −1) (2.7)

S(−1) =
k∑
s=1

n−1(zi,s) (2.8)

We wish to allocate the treatment to patient i in way such that the score is minimized. Thus
we use the following rule to assign patients to treatments:

• if S(1) < S(−1), assign patient i to treatment 1 with probability p,

• if S(1) > S(−1), assign patient i to treatment 1 with probability 1− p,

• if S(1) = S(−1), assign patient i to treatment 1 with probability 1
2 ,

for 1
2 < p < 1. The value p = 2

3 is often used in practice. Pseudocode for the minimization
algorithm is given in Algorithm 1. Since there are several imbalance measures that may
be used to calculate the score (such as alternatives for continuous covariates in Section
2.5.2), a function which calculates imbalance, imb, has been included as an argument of the
algorithm.
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Algorithm 1 Minimization: function returns a design matrix given covariate values for
n patients, Zn, imbalance measure imb, and probability p, where 1

2 < p < 1. By default,
p = 2

3 .
1: function Minimize(Zn, imb, p)
2: n ← length of vector z1 . Number of patients
3: t← empty vector
4: Z = [z1...zs...zk]
5: t1 ← randomly select 1 or -1

6: for i in 2:n do
7: Calculate S(1) = imb(Z[1 : i, ], t)
8: Calculate S(−1) = imb(Z[1 : i, ], t)

9: if S(1) > S(−1) then
10: ti = 1 with probability p
11: else if S(1) < S(−1) then
12: ti = 1 with probability 1− p
13: else
14: Assign ti = 1 with probability 1

2
15: end if
16: Append ti to t
17: end for

18: X = [1 Z t] . Design matrix

19: return X

20: end function

2.5.2 Continuous covariates

The method of computing the scores defined in Equations (2.6) and (2.8) is appropriate
only when covariates are binary. It can be easily generalized for discrete covariates with
more than two levels. For continuous covariates, one can discretize each covariate by using a
pre-defined threshold. This is usually what happens in practice in social and biomedical
experiments (Hu and Hu, 2012). Another option is to discretize the covariate into two
sets dynamically, where for each i in 2 ≤ i ≤ n, one chooses the median of the covariate
values observed so far as the threshold. However, one can argue that discretization results
in the loss of information, and, further, choosing the threshold in an arbitrary way can
introduce bias. For this reason, Hu and Hu (2012) suggested alternative approaches to
calculating Score(1) and Score(−1) based on imbalance measures that are appropriate for
the continuous case. Their two suggestions, K-S and Max.Imb, can be used when there is a
single continuous covariate.
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Kolmogorov-Smirnov (K-S) distance

The first suggestion by Hu and Hu (2012) was an imbalance measure based on the Kolmogorov-
Smirnov (K-S) distance between two distribution functions. Suppose that patient i receives
treatment t, for t ∈ {−1, 1}. We define by F̂ t1 the empirical distribution function of the
covariate values for patients 1 up to i that received treatment 1, assuming that patient i
received treatment t. Similarly, we define F̂ t−1 as the empirical distribution function of the
covariate values for patients that received treatment −1. Let us denote the range of the
covariate by Z. The value of Score(1) is given by the K-S distance between F̂ 1

1 and F̂ 1
−1:

Score(1) = sup
z∈Z

∣∣∣F̂ 1
1 (z)− F̂ 1

−1(z)
∣∣∣ . (2.9)

Analogously, Score(−1) is given by:

Score(−1) = sup
z∈Z

∣∣∣F̂−1
1 (z)− F̂−1

−1 (z)
∣∣∣ . (2.10)

This is the largest vertical distance between the two distribution functions. In Figure 2.1,
we illustrate how the K-S distance is obtained. This imbalance measure focuses on the
distributions of the covariates only.

Figure 2.1: To obtain the Kolmogorov-Smirnov distance, the cumulative distribution
functions F̂ t1 and F̂ t−1 are plotted, and the largest vertical distance between them is measured.
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Maximum imbalance (Max.imb)

A second suggestion by Hu and Hu (2012) was called Maximum imbalance (Max.imb).
Suppose we have an interval I in the range of the covariate values Z. Let us denote by U
the set for the indicies for the patients in I. We denote by ∆(I, t) the absolute difference in
the number of patients in the two treatment groups with covariate values in I:

∆(I, t) =

∣∣∣∣∣∣
∑
j∈U

I(tj = 1)− I(tj = −1)

∣∣∣∣∣∣ . (2.11)

We illustrate in Figure 2.2 how ∆(I, t) is obtained for a small example. Now, given that we
have allocated treatments to i− 1 patients so ti−1 is known, suppose that we assign ti = 1.
Then, we define Score(1) for patient i as:

Score(1) = sup
I∈Z
{∆(I, ti)} . (2.12)

We define Score(−1) analogously, where we assume ti = −1. The score is essentially the
maximum absolute difference over all possible intervals after i units have been assigned
a treatment. Hu and Hu (2012) demonstrated that this is a compromise between Efron’s
biased coin, which is concerned purely with treatment replication, and the K-S measure,
which is concerned with the shape of the distribution. The Max.imb approach depends only
on the ranks of the covariate values.

Figure 2.2: This small example illustrates how the value ∆(I, t) is obtained. Here, there
are six patients enrolled and their ordered covariate values along the range Z are indicated.
The treatment assigned to each patient is also indicated. The grey shaded area is an interval
I, and associated with it is the set U = {1, 3, 5} of indices for the patients in I. We obtain
∆(I, t) by finding the absolute difference in the number of patients assigned to treatment 1
versus treatment -1, which in this case is 1.

Scott et al. (2002) stated that advantages of minimization are that it helps investigators to
carefully think about prognostic factors before the study begins, and it can include more
covariates than in a permuted block approach. There is also no need to split the sample
into a large number of strata. One disadvantage is that the added complexity in the design
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may harm recruitment. Further, two main criticisms of minimization, by Atkinson (1999)
and Senn et al. (2010), are that, firstly, minimization considers only the marginal balance
of covariates and any interdependence between them are ignored, and secondly, that the
imbalance measures are somewhat ad-hoc and not theoretically grounded.

2.6 Optimal design

A different perspective on sequential treatment allocation using covariate information is
given by Atkinson (1999), using optimal design theory. We introduce some of the main
ideas in this section. Initially, in order to introduce the notion of D- and DA-optimality,
we assume that we wish to allocate treatments in a non-sequential setting. For simplicity,
we omit subscripts and write zs, t and y to mean zs,n, tn and yn, respectively. Thus the
vectors zs are known for all s = 1, ..., k, and we wish to determine the best choice of t.

The relationship between the treatments, covariates and the responses can be framed as
a statistical model. The goal of an experiment is often to estimate one or more unknown
parameters of this model as accurately as possible. Optimal design methodology provides
ways to select a design of an experiment that achieves this goal.

It is often plausible that, perhaps after some transformation, the responses, given some fixed
factors, are approximately normally distributed. We specify the following linear model for
the response, where we assume for simplicity that there are no interactions:

y = Xβ + ε (2.13)

= Zγ + tα+ ε (2.14)

= 1γ0 + z1γ1 + z2γ2 + ...+ zkγk + tα+ ε, (2.15)

where the n-vector ε contains mutually uncorrelated, normally distributed errors with con-
stant variance σ2. The n × q matrix X is the design matrix which can be partitioned as
X =

(
Z t

)
where Z = (1 Z). The q-vector β contains the unknown parameters that

we wish to study, and it can be partitioned into parameters that are not associated with
treatments, γ, and the treatment parameter α, such that β = (γ α)ᵀ. We focus here on the
case of the additive model where there are no interactions; however, in later chapters, we
consider examples where there are treatment-covariate interactions.
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The best linear unbiased estimator for our q unknown parameters β is given from the
Gauss-Markov Theorem (Casella and Berger, 2002, p. 548),

β̂ = (XᵀX)−1Xᵀy.

Now, we denote the information matrix of the design by M , where M = XᵀX. The
information matrix is linked to both the variance of the least squares estimator β̂ and the
variance of the predicted response ŷ(x) of a patient with covariate values z and assigned
treatment t such that x = (1 zᵀ t)ᵀ:

Var β̂ = σ2M−1, (2.16)

and,
Var ŷ(x) = σ2xᵀM−1x. (2.17)

By choosing treatments in a way that optimizes some function of the design matrix Ψ(X),
we can minimize the variances given in either Equations (2.16) and (2.17).

2.6.1 Optimality criteria

D-optimum designs minimize the generalized variance of the estimator of β̂. That is, the
volume of the confidence ellipsoid for β is minimized (Atkinson, 1999). Such a design is
constructed by minimizing the objective function:

ΨD (X) =
∣∣∣(XᵀX)−1

∣∣∣ (2.18)

=
∣∣∣M−1

∣∣∣ . (2.19)

Equivalently, one can maximize |M |.

Using the partitioning of X into the treatment and covariate parts, the matrix M can be
expressed as follows:

M = (XᵀX)−1 =
(
Z

ᵀ
Z Z

ᵀ
t

tᵀZ tᵀt

)
. (2.20)

Using standard results on the inverse of partitioned matrices, we obtain:
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M−1 = (XᵀX)−1 =
(
Z

ᵀ
Z Z

ᵀ
t

tᵀZ tᵀt

)−1

(2.21)

= (XᵀX)−1 =
(
Z

ᵀ
Z Z

ᵀ
t

tᵀZ n

)−1

(2.22)

=

(Zᵀ
Z −Zᵀ

t(Zᵀ
Z)−1tᵀZ

)−1
−(Zᵀ

Z)−1Z
ᵀ
tF−1

−F−1tᵀZ(Zᵀ
Z)−1) F−1

 , (2.23)

where F−1 =
(
n− tᵀZ(Zᵀ

Z)−1Z
ᵀ
t
)−1

.

A D-optimal design minimizes the determinant of the above matrix. Such a design can be
constructed using the exchange algorithm (Goos and Jones, 2011, p.36). In this algorithm,
one wishes to find the optimal treatment allocation for column t of the design matrix
X. The algorithm starts by selecting treatment levels for t at random. Then, working
through each entry i of this column for i ∈ {1, 2, ..., n} the algorithm calculates |M−1|
when ti = 1 and ti = −1. The treatment level which leads to the minimum value of
|M−1| is selected. This produces a new design matrix with improved treatment allocation.
Then, starting again at the top of the column t, we calculate |M−1| for treatment 1 and
−1, and the optimal treatment is chosen. This procedure is repeated until no change is
observed between passes of this loop. Finally, the whole procedure needs to be repeated
a number of times with different random starting values, so it is more likely that the opti-
mum found is global rather than local. Pseudo-code for this algorithm is given in Algorithm 2.

In assessing a particular design matrix X, it can be helpful to compare it to another design
X∗. We define the relative D-efficiency of a design X relative to X∗as

EffD =
{ΨD (X∗)

ΨD (X)

}1/p
=


∣∣∣(XᵀX)−1

∣∣∣∣∣∣(X∗ᵀX∗)−1
∣∣∣


1/p

, (2.24)

where we take the pth root so that the efficiency measure has the dimensions of a variance
(Atkinson et al., 2007, p. 151).
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Algorithm 2 Exchange Algorithm: function returns the design matrix where the treat-
ments are allocated nonsequentially based on the D-optimality criterion. The arguments are
the covariate values for the n patients, Zn and m, the number of repetitions from different
starting designs.

1: function Coord.ex(Zn,m)
2: n← number of rows of Zn . number of units
3: for j in 1 to m do
4: t← an n-vector of a random sequence of 1s and -1s
5: Construct Xj according to the model
6:
7: for i in 1 to n do
8: X ←Xj
9: Set ti in X to 1

10: mplus ← |XᵀX|
11: Set ti in X to -1
12: mminus ← |XᵀX|
13:
14: if mplus > mminus then
15: Set ti in X to 1
16: else
17: Set ti in X to -1
18: end if
19: end for
20:
21: if X == Xj then
22: Break
23: else
24: Xj ←X
25: store Xj in a list Xlist
26: end if
27: end for
28: return the matrix in Xlist with largest value of |XᵀX|
29: end function

The criterion of D-optimality assumes that one wishes to estimate all parameters as precisely
as possible. However, one may have interest only in a subset of the parameters, or in
some linear combination of them. In this case, the DA-optimality criterion may be more
appropriate, which is designed to be optimal for estimating m linear combinations in β,
which can be expressed as Aᵀβ, where A is a q ×m matrix with m < q (Atkinson et al.,
2007, p.137). Each column of A gives the coefficients of a linear combination of interest.
The criterion of DA-optimality requires that ΨDA(X) is minimized (Atkinson, 1999):

ΨDA(X) = |AᵀM−1A|. (2.25)
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Relative DA-efficiency of a design X relative to another design X∗ is defined as

EffDA =
{ΨDA (X∗)

ΨDA (X)

}1/b
, (2.26)

where b is the number of non-zero rows in A.

A special case of DA-optimality is Ds-optimality, where interest lies in a subset of the
parameters β (Cox and Reid, 2000, p.177). In this case, the matrix A is a q × q diago-
nal matrix were the diagonal entry is set to 1 if the parameter is of interest and zero otherwise.

In our setting, we wish to precisely estimate the treatment effect α. We focus only on the
treatment effect and regard the parameters associated with the intercept and covariates
γ1, ..., γk as nuisance parameters, so Aᵀ is a vector containing 1 in the last entry for the
treatment effect, and k + 1 preceding zeros: Aᵀ = (0 0 0 ... 1) . For our choice of A, the
DA-optimality criterion of minimizing

∣∣AᵀM−1A
∣∣ reduces to minimizing the bottom right

entry of the matrix given in Equation (2.23):

∣∣∣AᵀM−1A
∣∣∣ = 1

n− tᵀZ(Zᵀ
Z)−1Z

ᵀ
t
. (2.27)

Minimizing the above quantity also minimizes the variance of the estimator of α, which is
given by:

Var α̂ = σ2

n− tᵀZ(Zᵀ
Z)−1Z

ᵀ
t
. (2.28)

We note that Atkinson (1999) referred to the following scalar as the loss after n patients, Ln:

Ln = tᵀZ(Zᵀ
Z)−1Z

ᵀ
t, (2.29)

which is a measure of the confounding of the treatment with the covariates (through the
measure of orthogonality given by the inner product tᵀZ), and is also a measure of the
interdependence between the covariates (through Zᵀ

Z). A DA-optimal design minimizes
the loss after n patients, and we will see in Section 2.6.2 that the loss can be used as an
imbalance measure of a design. The co-ordinate exchange algorithm (Algorithm 2) can be
modified to construct a DA-optimal design (Goos and Jones, 2011, p.205).
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Two other common criteria for optimality are A- and G-optimality. The A-optimal objective
function aims to minimize the average variance of the parameter estimates:

ΨA(X) = tr
(
M−1

)
. (2.30)

We define relative A-efficiency of a design X relative to another design X∗ as

EffA = ΨA(X∗)
ΨA(X) . (2.31)

The G-optimal objective function is appropriate if the goal of the experiment is to find a
good prediction model. It seeks to minimize the maximum prediction variance over a given
set of design points x by minimizing the objective function:

ΨG(X) = max
x
{Var ŷ(x)} . (2.32)

Relative G-efficiency is defined analogously to relative A-efficiency:

EffG = ΨG(X∗)
ΨG(X) . (2.33)

There is a close link between D- and G-optimal designs; the General Equivalence Theorem
by Kiefer and Wolfowitz (1960) states that a design ξ which is D-optimal, is also G-optimal
(Atkinson et al., 2007, p.122). We consider A- and G-optimal designs in more detail in, for
example, Section 3.2.

2.6.2 Sequential optimal design approach

Atkinson (1982) proposed a method to construct DA-optimal designs sequentially. Let us
denote byMi the information matrix for a design when patients {1, ..., i} have been included
in the experiment. We can express the determinant of the information matrix |Mi| using an
updating formula (Rao, 1973, p.32), where xi = (1 zᵀi ti)ᵀ is the ith row of Xi:

|Mi| = |Xᵀ
iXi|

=
∣∣∣Xᵀ

i−1Xi−1 + xixᵀ
i

∣∣∣
=
∣∣∣Xᵀ

i−1Xi−1
∣∣∣ (1 + xi

(
Xᵀ
i−1Xi−1

)−1
xᵀ
i

)
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= |Mi−1|
(
1 + xi(Mi−1)−1xᵀ

i

)
= |Mi−1|

(
1 + 1

σ2 Var ŷ(xi)
)
.

Given a design for the first i− 1 patients, the ith treatment should be chosen such that the
prediction variance, Var ŷ(xi), is maximized (see Algorithm 2).

Now, in order to construct a DA-optimal design sequentially, Atkinson (1982) proposed
an objective function d(zi, ti) which is analogous to this prediction variance. We first rely
on the result that, for the objective function given by ΨDA (Mi) = log

∣∣∣AᵀM−1
i A

∣∣∣ , the
derivative with respect to the information matrix is given by:

∂ΨDA

∂Mi
= M−1

i A
(
AᵀM−1

i A
)−1

AᵀM−1
i . (2.34)

Note that we have written it as a function of the information matrix Mi, rather than the
design matrix as we have done previously, in order to ease notation. We use the logarithm
of the criterion for DA-optimality as the logarithm is a monotone function which does not
affect the location of the extrema and also eases calculation. Further, the log-determinant
is a convex function and has only one minimum. The proof of this result is provided in
Appendix A. Now, Atkinson (1982) denotes by d(zi, t) the following quantity related to the
derivative of ΨDA :

d(zi, t) = xᵀ
i

∂ΨDA

∂Mi−1
xi

= xᵀ
iM

−1
i−1A

(
AᵀM−1

i−1A
)−1

AᵀM−1
i−1xi (2.35)

=
(
1 zᵀi t

)
M−1

i−1A
(
AᵀM−1

i−1A
)−1

AᵀM−1
i−1

(
1 zᵀi t

)ᵀ
. (2.36)

We wish to choose t for patient i to maximize the objective function d(zi, t). It can be
shown that, for the case where interest lies in estimating the treatment effect α precisely
so that Aᵀ = (0 0 0 ... 1), maximizing d(zi, t) is equivalent to minimizing the loss after
i trials, tᵀZi(Z

ᵀ
iZi)−1Z

ᵀ
i t. The claim by Senn et al. (2010) that the sequential optimal

design approach is equivalent to minimizing Li (see Equation (2.29)) is proven in Appendix B.

Now, the treatment allocation method advocated by Atkinson (1982) states that, for patient
i, the quantities d(zi, 1) and d(zi,−1) should be calculated, and treatment 1 is assigned
with probability given by:
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d(zi, 1)
d(zi, 1) + d(zi,−1) . (2.37)

This allows us to add a component of randomness to the allocation scheme, which reduces
the possibility of introducing selection bias. Pseudocode for the algorithm is provided in
Algorithm 3. We note that, for the initial stages of this algorithm where i < k + 2, it is not
possible to compute the inversions of Mi−1 required in Equation (2.36). Regularization may
be used to resolve this; we replace Mi−1 by (Mi−1 + εIj×j) . By adding a negligible amount
of noise to the diagonal, we can ensure that the matrix is invertible without noticeably
affecting the results. In our simulations, we choose ε = 0.0001.

Algorithm 3 Atkinson’s sequential D-optimal design: function returns a design matrix
given covariate values for n patients, Zn, and a matrix A indicating the linear combinations
of the parameters of interest.

1: function Atkinson(Zn,A)
2: n ← number of row in Zn . Number of patients
3: t← empty vector
4: t1 ← randomly select 1 or -1

5: for i in 2:n do
6: X ← [1 Zi t]
7: M ←XᵀX
8: x← [1 zi 1]ᵀ

9: d(zi, 1)← xᵀ
iM

−1A
(
AᵀM−1A

)−1
AᵀM−1xi

10: x← [1 zi − 1]ᵀ

11: d(zi,−1)← xᵀ
iM

−1A
(
AᵀM−1A

)−1
AᵀM−1xi

12: p← d(zi,1)
d(zi,1)+d(zi,−1)

13: Assign ti = 1 with probability p and ti = −1 with probability 1− p
14: Append ti to t
15: end for

16: X = [1 Z t] . Design matrix

17: return X

18: end function

2.7 Other methods

Re-randomization is an additional method that is used to try to achieve covariate imbalance
in non-sequential settings. Treatments are randomly allocated to units and if it appears that
covariate balance is not acceptable according to a predefined measure, it is necessary to re-do
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the randomization. When covariate balance is at an acceptable level, the experiment is con-
ducted (Morgan and Rubin, 2015). This method is, however, controversial; re-randomization
can change the distribution of the test statistic and make common statistical procedures
such as the t-test conservative or invalid (Morgan and Rubin, 2012).

Klotz (1978) outlined an approach to create a compromise between two conflicting goals
of treatment assignment in clinical trials: firstly, the aim to make the assignment random
and unpredictable, and secondly, the need for balance across strata. He defines an entropy
measure, which quantifies the uncertainty pertaining to the probabilities for treatment
assignment, and defines a measure of expected balance of treatments across strata. The
construction of the design is framed as optimization problem, where one wishes to maximize
the entropy, subject to a linear constraint on the expected balance.

Titterington (1983) further developed the work of Klotz (1978) and reformulated the problem
as the minimization of the Kullback-Leibler distance between the vector of assignment
probabilities and the equiprobable assignment vector.

2.8 Simulations

We wish to compare the performances of randomization, Efron’s biased coin, minimization
and the sequential optimal design approach. We run simulations to investigate how the
methods compare in terms of balance in treatment, balance in covariates, and loss. We
define the following three performance measures:

1. Treatment balance: we assess to what extent the methods are able to achieve equal
replication of treatments. Since we assume that our treatment factor is binary, we
define our performance measure as the proportion of patients who have been allocated
treatment 1. More formally, we define by 1ti an indicator vector for ti which has jth
entry equal to 1 when tj = 1 and 0 otherwise. The treatment balance measure, denoted
Ψt, is defined as:

Ψt = 1
i
‖1ti‖ , (2.38)

where ‖·‖ denotes the 1-norm.

2. Treatment-covariate balance: we consider the extent to which the allocation methods
lead to a design where the treatment is orthogonal to each of the covariates. We define
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the covariate balance measure Ψz as:

Ψz = 1
i
‖tᵀiZi‖, (2.39)

where we divide by i so that we can make comparisons across different samples. Note
that for a single covariate, we simply have:

Ψz = 1
i
‖tᵀi zi‖

= 1
i
| tᵀi zi | .

(2.40)

3. Loss: We consider loss as a measure of optimality of the design, as established by
Atkinson (1999). We define this performance measure Ψloss as:

Ψloss = 1
i
Li

= 1
i
tᵀiZi(Z

ᵀ
iZi)−1Z

ᵀ
i ti,

(2.41)

where we again divide by i so that we can make comparisons across different samples.

Our simulations have the following basic structure:

I (a) 100 patients are assumed and their covariates are generated from a specified
distribution.

(b) Treatment allocation methods are used to generate designs sequentially.

(c) Designs are evaluated using the performance measures Ψt,Ψz,Ψloss at each sample
size.

II (a)-(c) is repeated above 100 times to obtain a distribution of the performance measure
for each sample size.

2.8.1 Binary covariates

Firstly, we consider five covariates which are independent realizations from Bernoulli(p = 0.5)
distributions. We use the following allocation methods which are appropriate for multiple
binary covariates:

1. Randomization
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2. Efron’s biased coin with p = 2
3

3. Classic minimization with p = 2
3

4. Sequential optimal design approach

Figure 2.3 displays show the performance of the four allocation methods. We have the
distribution of the performance measures Ψt,Ψz and Ψloss for sample sizes between 1 and
100. The black line indicates the median, the dark grey is for the 40%− 60% region of the
distribution and the light grey is the 10%− 90% region.

For the balance in treatment Ψt, we see in the first row of Figure 2.3 that the variability
of the performance measure is reduced dramatically when Efron’s biased coin is used in-
stead of randomization. Since Efron’s method is designed specifically to keep treatment
replication balanced, this result is expected. The classic minimization approach appears
to result in a greater variability than Efron’s biased coin; this is also expected, since
minimization aims to balance covariates as well as treatment replication. The sequential
optimal design method results in greater variability than minimization or Efron’s biased coin.

For treatment-covariate balance, as measured by Ψz, we observe in the second row of Figure
2.3 that randomization, Efron’s biased coin and minimization perform similarly. For larger
sample sizes, minimization appears to have a slight advantage over randomization and
Efron’s method. As minimization is designed to achieve treatment-covariate balance and
not just balance in treatments, this is expected. Interestingly, we see that the sequential
optimal design approach provides an even better performance, especially for small samples.

Senn et al. (2010) presented results from simulation studies for the loss. They produced
plots to display the loss versus sample size for five binary covariates that are generated from
the geometric distribution, with four different values of the success probability: 0.0001, 0.01,
0.5, and 0.8. They compared the randomized, minimization and sequential optimal design
methods, and showed that the sequential optimal design method results in minimal loss. In
our simulations, we additionally consider Efron’s biased coin as an allocation method and
show results of Ψt and Ψz as performance measures.

For our simulation study, we first consider five binary independent covariates. The results in
the third row of Figure 2.3 indicate that the performance of the four methods are similar to
that of covariate balance. It is clear that the sequential optimal design method outperforms
the other methods. One can consider loss as measuring two components of treatment
allocation: firstly, it is a measure of orthogonality between treatments and covariates, and
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secondly, it measures the interdependence between the covariates. Since our covariates in
this case have been generated independently, we expect the loss to behave similarly to the
orthogonality measure for covariate balance: Ψz = 1

i ‖t
ᵀZi‖. Figure 2.4 displays the medians

of the distributions of Ψz for all four methods on the left panel and the medians of the
distributions of Ψloss on the right panel to ease comparison.
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Figure 2.3: Distributions of Ψt,Ψz and Ψloss as sample size increases for five independent
Bernoulli(p = 0.5) covariates, based on 100 simulations. Four allocation methods are
considered: Randomization, Efron’s biased coin, the classic form of minimization, and the
sequential optimal design method. The black line indicates the median, the dark grey
indicates the 40th to 60th percentile, and the light grey indicates the 10th to 90th percentile
of the distribution.
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Figure 2.4: Medians of the distributions of Ψz and Ψloss as sample size increases for
five independent Bernoulli(p = 0.5) covariates, based on 100 simulations. Four allocation
methods are considered: Randomization (black), Efron’s biased coin (brown), the classic
form of minimization (green), and the sequential optimal design method (yellow).

Additionally, we consider how the the performance of minimization and the sequential
optimal design approach compare for covariate balance when the five covariates are highly
correlated. We consider the same simulation procedure which produced Figure 2.3, but we
generate the five covariates from Bernoulli(p = 0.5) distributions with pairwise Pearson
correlation 0.8, where the marginal probability that covariate s takes value one is equal to 0.5
for s ∈ {1, 2, ..., 5}. This is achieved by using the R package bindata. The results are shown
in Figure 2.5. We find that minimization and the sequential optimal design approaches have
very similar performance, both in terms of the variability and medians of the performance
measure. This demonstrates the fact that the sequential optimal design approach is able
to take into account the inter-dependence between the covariates; when covariates are
highly correlated, the sequential optimal design and minimization methods perform similarly.
However, when the covariates are independent, the sequential optimal design approach has
an improved performance. Figure 2.6 displays the medians of the distributions of Ψz for all
four methods on the left panel and the medians of the distributions of Ψloss on the right panel.
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Figure 2.5: Distributions of Ψt,Ψz and Ψloss as sample size increases for five Bernoulli(p =
0.5) covariates which have correlation 0.8, based on 100 simulations. Four allocation methods
are considered: Randomization, Efron’s biased coin, the classic form of minimization, and
the sequential optimal design method. The black line indicates the median, the dark grey
indicates the 40th to 60th percentile, and the light grey indicates the 10th to 90th percentile
of the distribution.
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Figure 2.6: Medians of the distributions of Ψz and Ψloss as sample size increases for five
Bernoulli(p = 0.5) covariates which have correlation 0.8, based on 100 simulations. Four
allocation methods are considered: Randomization (black), Efron’s biased coin (brown), the
classic form of minimization (green), and the sequential optimal design method (yellow).

The the two previous simulations, we have assumed that all covariates are generated with
p = 0.5. In Figure C.1 in Appendix C, we consider the case where five covariates from
Bernoulli(p = 0.8) distributions are generated with correlation 0.8. The results are similar
to that of Figure 2.5.

2.8.2 A single continuous covariate

We now consider the following six allocation methods which are appropriate for a single
continuous covariate. We generate a single continuous covariate with distribution given by
Unif(a = −

√
3, b =

√
3):

1. Randomization

2. Efron’s biased coin with p = 2
3

3. Classic minimization with dynamic discretization at the median and p = 2
3

4. Minimization with K-S measure of imbalance and p = 2
3
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5. Minimization with Max.imb measure of imbalance and p = 2
3

6. Sequential optimal design approach

Figure 2.7 shows the results. For treatment balance, we see in the first row that the perfor-
mance of the methods applicable to binary covariates appear similar to that in Figure 2.3.
We note that the K-S minimization method appears to perform similarly to randomization;
the variance is quite large and it takes longer than other approaches for the median to
appear to converge to a 50-50 split. The Max.imb procedure appears to perform similarly
to the classic minimization method, and finally, for a continuous covariate, the advantage
of using the sequential optimal design method for small sample sizes is more obvious. The
variability when sample size is less than 20 is reduced for the sequential optimal design
method, compared to other methods.

For treatment-covariate balance, we observe in the second row of Figure 2.7 that the mini-
mization approach of discretizing the covariate dynamically at the median appears not to
improve Ψz compared to Efron’s approach. This is likely to be because the performance
measure is calculated using the continuous values of the covariate, and not in the discretized
form. The Max.imb method performs similarly to the classic form of minimization. The
K-S approach has poor performance and appears not to show much improvement over
simple randomization. This is likely due to the fact that the Kolmogorov-Smirnov statistic
is based only on the vertical distance between two distributions, which is perhaps too
coarse of a summary statistic for our purposes. However, simulation studies by Hu and
Hu (2012) show that if the K-S distance between the covariate distributions of the two
treatment groups is used as the performance measure (which we have not done), the K-S
form of minimization outperforms the classic and Max.imb forms of minimization, as well as
Efron’s biased coin. We note that the sequential optimal design method again shows effective-
ness in ensuring treatment-covariate balance, with a particular improvement in small samples.

The third row of Figure 2.7 shows the distributions of Ψloss for a single continuous covariate.
Again, the results are similar to that of covariate balance. We display the medians of Ψz

and Ψloss of all six allocation methods in Figure 2.8.
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Figure 2.7: Distributions of Ψt,Ψz and Ψloss as sample size increases for 1 continuous
Unif(a = −1.73, b = 1.73) covariate, based on 100 simulations. Six allocation methods
are considered: Randomization, Efron’s biased coin, the classic form of minimization,
minimization using the K-S measure, minimization using the Max.imb measure, and the
sequential optimal design method. The black line indicates the median, the dark grey
indicates the 40th to 60th percentile, and the light grey indicates the 10th to 90th percentile
of the distribution.
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Figure 2.8: Medians of the distributions of Ψz and Ψloss as sample size increases for one
Unif(a = −1.73, b = 1.73) covariate, based on 100 simulations. Six allocation methods
are considered: Randomization (black), Efron’s biased coin (brown), the classic form of
minimization (green), and the sequential optimal design method (yellow), the K-S form of
minimization (blue) and the Max.imb form of minimization (pink).

In Figure C.3 in Appendix C, we consider the case of a skewed continuous covariate. We
generate 100 observations from a Beta(α = 5, β = 1) distribution. The results are similar to
that of Figure 2.7.

2.9 Conclusion

In this chapter, we described the setting of clinical trials then reviewed existing literature on
sequential design of experiments with covariate information. We described simple approaches
such as randomization and Efron’s biased coin, and motivated the need for covariate adap-
tive approaches such as minimization and optimal design based methods. The methods we
considered are myopic in the sense that decisions are made in order to optimize some kind
of imbalance function or objective function at the current stage of the experiment.

Our contributions from this chapter are the proof of the claim by Senn et al. (2010) that
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the optimal design approach is equivalent to minimizing Li, given in Appendix B. While
Atkinson (1999) provided simulations comparing the performances in terms of the loss for
randomization, Efron’s biased coin, minimization and the sequential optimal design approach,
we consider two other performance measures in our simulations: treatment balance and
treatment-covariate balance. We also run simulations comparing these four approaches in
the case of a continuous covariate, which has not been undertaken before.

We have seen from the simulation studies that, for both the binary and continuous cases,
Efron’s biased coin significantly improves balance in treatment over the randomization
approach. Minimization does not appear to offer gain over Efron’s approach. However, the
sequential optimal design method appears to be more effective than Efron’s biased coin for
balancing treatment levels for sample sizes that are less than 20.

For the binary case, we observe that minimization is better than Efron’s biased coin and ran-
domization for treatment-covariate balance and loss. The sequential optimal design method
provides a further improvement in both performance measures, especially for small samples.
Further, we demonstrated that the sequential optimal design method shows improvement
over the classic form of minimization when binary covariates are independently generated;
when there are multiple binary covariates that are highly correlated, the performance of
these two methods for treatment-covariate balance are very similar.

For the continuous case, the classic and Max.imb forms of minimization perform similarly to
Efron’s biased coin for covariate balance and loss. The K-S form of minimization overall
shows poor performance, with results that appear worse than the Efron method for both
performance measures. Finally, we note that the optimal design method appears to be
the most effective of the approaches; again, this is most prominent for small sample sizes.
Further, the optimal design method has the advantage that it is flexible in its requirements
for the covariates; it can handle any number of continuous and discrete covariates, as well as
interactions.

We note that we did not consider any interactions in this chapter, as minimization is not an
approach that is able to take into account interactions. Later in this thesis, particularly in
Chapter 6 and Chapter 7, treatment-covariate interactions play a crucial role. We propose
extensions of the sequential optimal design approach in Chapter 4.



Chapter 3

Introduction to nonmyopic
approaches

In the previous chapter, we assessed the impact on the performance of a design of applying a
particular treatment to the current patient in the trial. This assumes that the current patient
is the last patient in the experiment. We do not consider how the selected treatment may
impact the objective function at a later point in time, when more patients have entered the
trial. When taking a myopic or greedy approach, we make decisions that are optimal for the
objective function at the current time without taking future decisions into acccount. Now,
when taking a nonmyopic approach, one no longer assumes that the current patient is the last
patient, and takes into account decisions that may be made about future possible patients
in the trial. The number of future patients in the trial considered is called the horizon. It is
possible that a decision is taken at point i which may be suboptimal for time i, but later
leads to a more efficient result. We provide an overview of nonmyopic approaches in the
literature and provide simulations which illustrate the potential for nonmyopic approaches
in sequential design which we discuss in Chapters 4 and 5.

3.1 Nonmyopic methods in the literature

Having a nonmyopic approach to the treatment allocation problem means that the opti-
mization involves multiple stages. Not only is it important to consider the impact of the
decision at the time of patient i, but we consider future patients, possibly up to patient n.
The state at stage i comprises the information that is known at that stage, which in our
example includes the covariates of patients 1 up to i, as well as the treatments and responses
of patients 1 up to i− 1. The decision about the treatment ti at stage i is made based on
the state Si+1 = (Zi+1, ti,yi). Based on that decision, there is a transition function fi that

37
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outputs the state of the next stage, Si = fi(Si−1, ti). In our case, this transition function
involves a linear or logistic model linking the responses to the treatments and covariates.
There is a need to balance two conflicting aims in the decision making:

1. The aim to explore and to make decisions which may not be optimal given the current
state, but may lead to gain of information which can inform future decision making.

2. The aim to exploit in order to make the best decision given the current state.

In this thesis, we will look at problems in which our objective function Ψ depends on the
parameters β of the model for the response. Selecting a treatment for patient i which
minimizes Ψ given our current estimate of β would be an exploitative decision; selecting
a treatment for patient i which leads to gaining more information about β would be an
exploratory decision. In CARAEE for clinical trials, one wishes to balance the aim of
estimating the parameters (exploration) with the aim of giving patients the best possible
treatment (exploitation).

In this section, we begin by providing an overview of dynamic programming, which is
an approach to tackling multistage optimization problems such as nonmyopic methods.
Nonmyopic approaches have been studied in a number of diverse contexts; we provide an
overview of their use in control theory, clinical trials and also longitudinal studies.

3.1.1 Dynamic programming

Dynamic programming is an approach for solving multistage optimization problems (see,
for example, Powell, 2009). The overall problem is broken into different stages, which often
correspond to points in time, and each stage of the problem can be optimized. The key
idea is that the overall sequence of decisions will be optimal for the entire problem (Bradley
et al., 1977, p. 320). The subproblem at different stages may have similar structures; these
similarities are leveraged to make the overall problem more tractable. The optimal design
can be obtained by forward or backward induction. We focus on backward induction since it
is the approach that is usually most appropriate in problems involving uncertainties (Bradley
et al., 1977, p. 328). In backward induction, we start by finding the optimal decision at the
end of the sequence of decisions, taking into account all possible treatments and covariates
that may have been observed up until that point. Then, one can work backwards and obtain
the optimal policy taking expectations of unknown quantities (Bradley et al., 1977, p.330).

There is no single formulation of a backward dynamic programming solution; we illustrate
the overall approach with a simple generic example. Let us suppose that, at a particular
stage i, we have the state Si = (Zi, ti−1,yi−1) and we consider the decision ti for ti ∈ {−1, 1}.
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We denote here the objective function for selecting ti as

Ψ(Si, ti), (3.1)

which we want to minimize. In previous chapters, Ψ was written as a function of the design
matrix. Given that a treatment ti has been selected, there is a transition function fi which
outputs the state of the following stage:

Si+1 = fi(Si, ti). (3.2)

Now, suppose we wish to find the optimal treatment for a patient at some future stage N ,
for N > i. The optimal treatment t∗N (SN ), is given by

t∗N (SN ) = argmin
tN∈{−1,1}

{E (Ψ (SN , tN ))} , (3.3)

subject to

Sm = fm(Sm−1, t
∗
m (Sm)), (3.4)

t∗m (Sm) ∈ {−1, 1} , (3.5)

for m ∈ {i, ..., N}. In Equation (3.3), we take expectations over the unknown quanti-
ties in the state. Thus, considering all the possible configurations of the state SN , one
can work backwards using the recursion, which eventually provides us with an optimal de-
cision for patient i, taking into consideration the future possible decisions for up to patient N .

Dynamic programming is computationally expensive when the number of stages is large, or
the states are multidimensional due to the nested optimizations and expectations given in
Equation (3.3). Further, when the response is continuous, Equation (3.3) requires nested
evaluation of typically analytically intractable integrals which further adds computational
complexity. Approximate dynamic programming refers to strategies aimed to reduce dimen-
sionality and to make multistage optimization problems feasible in the face of these challenges
(Powell, 2009). Common strategies include reducing the number of states via aggregation,
using a sufficient statistic to summarize multidimensional states, and approximating the
expectation via Monte-Carlo simulation.

Huan and Marzouk (2016) provided a recent overview of approximate dynamic programming
in the context of Bayesian experimental design. A probabilistic model is given to describe the
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relationship between the treatments and response. The state is comprised of the parameters
of the model, and the posterior distributions of the parameters are updated at each stage
using Bayes’ rule. The model may be non-linear, so a response-adaptive approach is
necessary to update current knowledge of the parameters. The state is multidimensional and
is approximated by a grid representation to make dynamic programming computationally
feasible. In this case, the utility function is the Kullback-Leiber divergence between the
final posterior distribution to the prior. They provided an illustrative numerical example, as
well as an example of the use of this methodology in an environmental experiment. In this
second example, a chemical contaminant is exposed to the air unexpectedly. The chemical
diffuses in the air and is also carried by the wind. A car or an aerial vehicle is sent to
search for the source of the contaminant. The optimization problem at hand is choosing a
series of locations for each time point that the vehicle should go to, in order to maximize
expected information gain. We can see the analogy to our set-up: the selection of locations
is the treatment that needs to be assigned for each time point. When the treatment is a
location, it is continuous and potentially multi-dimensional, which makes calculating the
expected values of the objective function more computationally involved. Knowledge about
the wind current can be seen as a covariate; knowing the direction of the wind, or having
a distribution for it for a few time points in advance can improve efficiency of the design.
This is analogous to our problem where we have information about the covariates of a few
future patients. Huan and Marzouk (2016) showed the advantage of taking a nonmyopic
approach in this example; the nonmyopic approach is able to take into account the fact that
wind will move the plume over time, whereas the greedy approach does not. We return to
this example later in the thesis in light of our findings.

3.1.2 Clinical trials

In clinical trials applications, the need to consider both ethics and efficiency have moti-
vated authors to consider a nonmyopic approach. For example, Cheng and Berry (2007)
constructed an optimal adaptive design for a sequential randomized clinical trial, where one
wishes to maximize the number of patients who have been treated effectively. This design
initially starts with equal allocation for each of k possible treatment arms. As the trial
continues and responses of treated patients become available, a larger proportion of patients
are allocated to the better treatment. Dynamic programming with backward induction is
utilized to make a decision on which treatment to give to the current patient, by defining a
loss function that incorporates the responses of the trial so far, and the expected response
of the current patient. Dynamic programming was also implemented recently in a clinical
trials setting by Ondra et al. (2019) who consider Bayesian adaptive two-stage designs which
consider utility functions for the total revenue earned and also the total societal health benefit.
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A nonmyopic approach can also be beneficial for dose-finding in clinical trials. A problem
proposed by Mueller et al. (2007) involves an experiment where, after observing the response
of the current patient, a decision is made to terminate the trial, continue with dose-finding,
or switch to a trial intended to provide evidence of efficacy for drug authorities. A utility
function is defined in terms of the responses of the trial so far, the decisions made in the trial
so far, the parameters of the probability model of the responses, and costs for each decision.
Backward induction is used to find the optimal decision at every step by alternating between
taking the expectation to find the posterior expected utility and maximizing to find the
optimal decision. They use a low-dimensional summary statistic of the previous decisions
and data to reduce computational complexity. Bartroff and Lai (2010) look at the use of
approximate dynamic programming methods for dose-response problems. These applications
of dynamic programming for clinical trials, however, do not consider covariates.

3.1.3 The bandit problem

A considerable amount of work has been undertaken on the bandit problem, which is relevant
to response-adaptive treatment allocation in clinical trials. In the original bandit problem,
there are several slot machines. One wishes to obtain an optimal strategy for which levers
to pull, and in which order, to maximize gains. Suppose that there are t slot machines,
which correspond to t treatments. At time i, for i ∈ {1, ..., n}, the slot machine m(i) is
chosen and a reward ym(i) is observed. The goal is to maximize the sum of the rewards,∑n
i=1 ym(i)(i). On the one hand, it is necessary to make decisions that aid in understanding

how the machines behave, but on the other hand, it is important to make decisions that
lead to higher gains. Similarly, in clinical trials, one wishes to choose treatments to gain
understanding of how patients respond, but one also wishes to assign patients to a treatment
that will benefit them most. The multi-armed bandits as a sequential optimization problem
was first introduced by Robbins (1952). Let us denote by ym(i) the response from the truly
optimal treatment for patient i. One wishes to find a strategy for choosing the machine
which minimizes the regret R(i):

R(i) = max
m∈{1,...,t}

E
(

n∑
i=1

ym(i)
)
− E

(
n∑
i=1

ym(i)(i)
)
. (3.6)

Lai and Robbins (1985) proved a lower bound for R(i). From a frequentist perspective, the
bound is achieved by the Upper Confidence Bound (UCB) algorithm, which selects at time i
the machine with the maximal upper confidence bound for the expected reward (Agrawal,
1995). Depending on the choice of the confidence level, this approach can favor exploration
(for low confidence level) or exploitation (for high confidence level). Some work has also been
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done on Upper Confidence Bounds from a Bayesian perspective; see, for example, Kaufmann
et al. (2012).

Thompson (1933) proposed a Bayesian approach for balancing exploration and exploitation.
Applicable for the case where the rewards ym(i)(i) are binary, we denote by θm the probability
of success of each machine m. Independent prior distributions over each θm are specified.
As the arms are pulled and rewards are observed, the distribution is updated by Bayes’ rule.
Often, a beta prior is used due to the convenience of the conjugacy property. The algorithm
then randomly samples from the posterior distribution to obtain an estimate of the success
probability θ̂m for each m, and pulls the arm with the largest estimate. Thus, compared to
a greedy algorithm which would simply select the arm with the highest expected posterior
mean, by randomly sampling from the posterior to obtain an estimate, the algorithm also
incorporates exploration.

While the bandit problem probes into the conflict between exploration and exploitation, and
the potential for exploration allows for decisions to be made that can be more beneficial
for future patients, the solutions to the bandit problems that we have explained so far do
not have an explicitly nonmyopic framework. However, there is a specific class of bandit
problems in which using dynamic programming with forward induction is optimal. The
following conditions are required (Mahajan, 2008):

1. Only one bandit is being operated on at one time.

2. Bandits other than the one being operated on are “frozen”: they are not affected
and do not contribute reward (this is not true for contextual bandits where there are
covariates, as we describe later in this section).

3. Bandits are independent.

4. There is no time-dependence and the horizon is infinite.

5. Rewards are discounted geometrically, so for some 0 < α < 1, the cumulative sum of
rewards is given by

∑n
i=1 α

iym(i)(i). This discount is needed for reasons of tractability
(Villar et al., 2015).

It was shown by Gittins and Jones (1979) that the optimal design could be found by a
forward induction algorithm. If the response y is binary, allocation can be performed based
on an index which takes into account the posterior distribution, given the current state.
The Gittens index is difficult to compute exactly, so Brezzi and Lai (2000) developed an
approximate Gittens index based on a Gaussian approximation of the posterior distribution.
Further work on the Gittens index has been conducted by Williamson et al. (2017), Coad
(1991) and Wang (1991) for binary responses and Smith and Villar (2017) for continuous
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responses. Villar and Rosenberger (2018) considered such approaches in contexts involving
covariates for binary outcomes. The major limitations of the Gittens index are that it only
works with a geometric discount reward, it requires the horizon to be infinite, and further,
Scott (2010) criticizes the Gittens index for being an inconsistent estimator of the optimal
arm. It is also not optimal when there are covariates involved.

Bandits with Covariates

Bandits which include covariate information are often called contextual bandits; some au-
thors refer to them as restless bandits since their state, Si = (Zi, ti−1,yi−1), can change
from one stage to the next due to the covariates, regardless of the choice of treatment
(Mahajan, 2008). The first look into the one-armed bandit problem with one covariate was
by Woodroofe (1979). When the horizon is infinite and there is a geometric discount, they
showed that the myopic algorithm is asymptotically optimal. Non-parametric approaches to
bandits with covariates have been considered by Yang and Zhu (2002), Rigollet and Zeevi
(2010) and Perchet and Rigollet (2013). The applicability of contextual bandits for online
decision-making has made them a popular research topic. Recent work includes considering
some nonlinearity in the model assumptions for the contextual bandits (Greenewald et al.,
2017), and considering adversial bandits, where no statistical assumptions are made on how
rewards are generated (Agrawal and Goyal, 2013).

Villar and Rosenberger (2018) proposed a reformulation of the bandit problem with covariates
where each treatment-covariate combination is treated as an arm. However, the allocation
rule is deterministic with no element of randomization, and there is the need to assume an
infinite number of patients in the trial.

Longitudinal studies

We consider in this project clinical trials in which each patient is treated only once and their
response is measured only once. In some studies involving chronic conditions, longitudinal
data may be obtained where patients undergo multiple treatments over time (Clairon et al.,
2017); an experimental unit in this context is a patient-timepoint combination. Dynamic
treatment regimes consider, at each stage, the optimal treatment based on information about
the covariates, treatments and responses up until that state for a particular patient. It is
necessary to consider the effect in the long-run that the current treatment may have on
the choice of future treatments and the subsequent responses (Murphy, 2003). Dynamic
programming and backwards induction are useful in these settings in order to find the
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optimal treatment strategy over a time period in the sense that it results in the highest
average response at the end of the time period (Murphy, 2003). Chakraborty and Moodie
(2013) provided an overview of dynamic treatment regimes and the two main strategies for
obtaining optimal designs. The first is Q-learning, or quality learning, in which the condi-
tional expectation of the response given the previous states and treatments (Q-functions)
is modeled, potentially in a non-parametric way (Watkins, 1992). The second method is
A-learning, or advantage learning, which models just part of the Q-function, the regret
function, given by Equation (3.6), which is the difference in outcomes between the given and
optimal treatments (Chakraborty and Moodie, 2013, p. 39). Robins (2004) demonstrated
two A-learning methods for high dimensional data. An example of an A-learning approach
to a problem in control theory is provided by Clairon et al. (2017). There are many other
methods for dynamic treatment regimes, such as g-estimation and outcome weighted learning
(Chakraborty and Moodie, 2013).

3.2 Simulations to motivate the potential of the nonmyopic
approach

Before we explicitly introduce nonmyopic approaches to design of sequential experiments
with covariates in Chapters 4 and 5, we first run some simulations to compare the design
performance, at each sample size, of two methods of constructing a design:

1. A sequential approach where, for patient i, the optimal treatment for patient i is
assigned. The covariates for patients 1 up to i are assumed when the decision for
patient i is made.

2. A non-sequential approach where treatments are allocated for all patients using the
exchange algorithm, so treatments are assigned in order to achieve an optimal design
for all n patients. The covariate values for all patients from 1 up to n are assumed.

By comparing the performance at each value of sample size between 1 and n, we can obtain
an indication of the settings in which a nonmyopic approach may be more efficient than a
myopic approach. When evaluating the optimality for patient i, the decision made by the
first approach is based on a myopic outlook and the decision made by the second approach
is nonmyopic since it considers all patients up until the end of the experiment. If we find
that the design constructed with the exchange algorithm, where we assume full knowledge
about the covariates, is more efficient than the sequential design, this would indicate that
there is potential for nonmyopic and pseudo-nonmyopic approaches, where we assume some
knowledge about the covariates, to be beneficial over the myopic approach. The features of
the simulations in this chapter are summarized in Table 3.1, and the simulations have the
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following structure:

I (a) 100 patients are assumed and their covariates are generated from a specified
distribution. The run order of the design is fixed by these covariates.

(b) Two designs for the patients generated in part (a) are constructed using:

• A point sequential design using the sequential optimal design approach for the
linear model with the D-optimal objective function (see Algorithm 3).

• A batch design design using the exchange algorithm the linear model with
the D-optimal objective function (see Algorithm 2) with 10 repetitions from
different starting designs.

(c) Designs are evaluated using the performance measure ΨD, given by Equation
(2.18), at each sample size.

II (a)-(c) above is repeated 1000 times to obtain a distribution of the performance measure
for each sample size, and to assess the impact of different orderings of the covariates
(as the batch design does not account for run order).

We run the above simulation also using the performance measures ΨA and ΨG, given by
Equations (2.30) and (2.32), for design selection. We consider only the case of a continuous
response.

Table 3.1: Settings for simulations in Chapter 3

Example Model Covariates
1 E(y) = β0 + β1z + β2t Binary: P(zi = 1) = 0.5
2 E(y) = β0 + β1z + β2t Continuous: zi ∼ Unif(0, 1)

3 E(y) = β0 + β1z1 + β2z2 + β3t
Two binary covariates:
P(z1,i = 1) = 0.01i
P(z2,i = 1) = 0.3

4 E(y) = β0 + β1z1 + β2z2 + β3t+ β4z1t+ β5z2t
Two binary covariates:
P(z1,i = 1) = 0.01i
P(z2,i = 1) = 0.3

Example 1

We assume a linear model with one covariate and one binary treatment. The covariate z is
binary and we have that P(zi = 1) = P(zi = −1) = 0.5. We say that this covariate is static,
since the probability P(zi = 1) is constant for all i.

In Figure 3.1, we show, at each sample size, the relative efficiencies of the sequential design
versus the batch design (see Equations (2.24), (2.31), (2.33) for D-, A-, and G-efficiency,
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respectively). For D-efficiency, we plot the ratio of the objective function ΨD taken to the
power of 1

3 as there are three parameters in the model, in order to have a quantity on the
same scale as the variance. Values above the red line indicate that the design obtained
using the exchange algorithm is more efficient; values below the red line indicate that the
sequential design is more efficient. We observe that, initially, when the sample size is small,
the sequential approach has better performance. However, as the number of patients becomes
larger, the two approaches become similar in performance. With sample size greater than 60,
we can see that, on average, the batch design and sequential designs perform very similarly
with the batch design having a very slight advantage in D- and A-efficiencies. In the case
of G-efficiency, the batch design becomes more efficient as sample size increases; at sample
size of 100, on average, the batch design has an efficiency of around 1.08 times that of the
sequential design.
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Figure 3.1: Example 1: Distributions of relative efficiencies of the sequential design vs
the exchange algorithm design. We show D-efficiency (left), A-efficiency (middle) and
G-efficiency (right). The black line indicates the median, the dark grey indicates the 40th to
60th percentile, and the light grey indicates the 10th to 90th percentile of the distribution.
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Example 2

In the second simulation, we use the same model but generate the covariate from a continuous
uniform distribution such that zi ∼ Unif(0, 1). Figure 3.2 shows that the conclusions are
similar to that of the first simulation. For sample sizes that are small (less than around
30), the sequential design is more efficient, but for sample sizes greater than 60, the two
approaches perform relatively similarly. There appears to be a very slight advantage for the
batch designs at this larger sample size.
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Figure 3.2: Example 2: Distributions of relative efficiencies of the sequential design vs the
batch design. We show D-efficiency (left), A-efficiency (middle) and G-efficiency (right).

Example 3

Next, we consider examples with two covariates. We assume that our model includes terms
for the two covariates, the treatment, and no interactions. In the fourth simulation, we
include the covariate-treatment interaction terms. In both simulations, we have the same
settings for the covariates. The first covariate is dynamic in the sense that its distribution
changes over time; we have that P(zi,1 = 1) = 0.01i. The second covariate is static as the
probability of its value being equal to 1 is constant for all i: we have that P(zi,2 = 1) = 0.3.
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Figure 3.3: Example 3: Distributions of relative efficiencies of the sequential design vs
the batch design. We show the results for D-efficiency (left), A-efficiency (middle) and
G-efficiency (right).

Similarly to the cases with one covariate, we find in the example with two covariates where
one is static and one is dynamic, that there is potential for the nonmyopic approach to be
beneficial over the myopic when the sample size is large. In Figure 3.3, we find that, even
with sample size of 40, it appears that the G-optimal batch designs are more efficient than
the G-optimal sequential designs.

Example 4

Our fourth example has the same set-up as the previous example, except treatment-covariate
interactions are included in the model. In Figure 3.4, we find that initially, the sequential
design is much more efficient than the design obtained with the exchange algorithm. However,
with sample size above 80, the exchange algorithm designs have a clear advantage, especially
in the case of D- and G-optimality.
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Figure 3.4: Example 4: Distributions of relative efficiencies of the sequential design vs batch
design. We show the results for D-efficiency (left), A-efficiency (middle) and G-efficiency
(right).

In examples with the linear model, the sequential approach initially leads to more efficient
designs. As sample size increases, the two methods appear to have similar values of the
objective function. With sample size greater than 60, it appears that the exchange algorithm
designs are slightly more efficient in the simulations considered above. This indicates that
there is a potential for the nonmyopic approach to be more beneficial than the myopic
approach after a certain sample size, at least for the linear model. In further chapters, we
also consider the case of a binary response, as well as other optimality criteria.

3.3 Conclusion

This chapter introduced nonmyopic approaches from the literature, focusing on dynamic
programming and the bandit problem as two common approaches to problem solving where
one wishes to make optimal decisions considering future possible decisions. We showed
how they are used in the setting of clinical trials, for example in the context of the bandit
problem and also for dynamic treatment regimes. We note that nonmyopic approaches are
also used in areas such as control theory, though with a slightly different nomenclature; see,
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for example, Gautier and Pronzato (1998) and Bertsekas (1976).

In Section 3.2, we demonstrated, through simulations where we compare the efficiency of
designs constructed using the exchange algorithm and the sequential approach, the potential
benefit of using nonmyopic approaches. In the context of the linear model, we find that
the efficiency of designs constructed using the exchange algorithm is improved for sample
sizes above 60. It appears that this improvement is particularly pronounced for G-optimal
designs. In Chapter 4, we introduce the nonmyopic approach applied to our setting for both
linear and logistic models.



Chapter 4

Nonmyopic approach

Chapter 3 provided an overview and examples from the literature of the nonmyopic approach
to treatment allocation. We also provided a simulation study to motivate this approach for
the linear model in the context of sequential design with covariates. In this chapter, we set
up notation for the nonmyopic approach which unifies the notation for the sequential optimal
design methods in Chapter 2 and also the notation for the pseudo-nonmyopic approach
which we introduce in Chapter 5. Essentially, we extend the work of Atkinson (1982) so
that it can be applied to any optimality criterion and also for a nonmyopic outlook.

Firstly, we describe an approach for selecting the treatment for unit i in a way that takes into
account future possible decisions which may be made for the treatment of unit i+1. Secondly,
we generalize this method so that we can consider the effect of the current decision on the
next N possible future decisions. Thirdly, we generalize the method so it can be applied to
a wider class of covariates such as having multiple discrete covariates with more than two
levels and multiple continuous covariates. We show some simulation results comparing the
myopic algorithm to the nonmyopic algorithm for a number of settings. We then introduce
the logistic model and experiments for binary data, and extend the nonmyopic algorithm for
this setting. We provide some simulation results comparing the myopic algorithm to the
nonmyopic algorithm for the binary response case.

51
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4.1 Linear model

4.1.1 The nonmyopic algorithm looking one patient ahead

We wish to extend the myopic algorithm so that decisions on the allocation of treatments for
unit i are made based on the expected loss after i+ 1 units, rather than the loss after i units.
Firstly, for the sake of simplicity, we assume that we have only one binary covariate. We also
assume that we know the true distribution of this covariate; that is, we know P(zi = 1) and
P(zi = −1) and they in fact do not depend on i. When the true distribution is unknown, it
can be estimated by the empirical distribution of the covariates of the first i patients. The
covariate distribution remains the same regardless of how many patients have enrolled in
the experiment so far. As before, our treatment structure is binary and we assume that a
linear model for the response, such as Equation (2.13), is appropriate.

Let us denote the objective function after i units when treatment ti is assigned to patient i
as

Ψ(ti | zi, ti−1), (4.1)

where we emphasize the dependence on the vector of previous treatments ti−1 = (t1, t2, ..., ti−1)ᵀ

and previous and current covariates zi = (z1, z2, ..., zi)ᵀ. The function Ψ could be, for exam-
ple, the D-, DA-, A- or G-optimal objective functions (see Equations (2.18), (2.25), (2.30)
and (2.32)).

Now, we wish to consider the impact of assigning treatment ti on the objective function
after i+ 1 patients. We consider the final decision that we are going to make: the choice
of treatment i+ 1 for the future patient. For each combination of values that ti and zi+1

may take, we compute the optimal choice of treatment for patient i + 1. We denote by
t∗i+1(zi+1, ti | zi, ti−1) the optimal choice of treatment for patient i+1, for a particular choice
of zi+1 and ti, given all previous treatments and covariates:

t∗i+1(zi+1, ti | zi, ti−1) = argmin
ti+1

Ψ (ti+1 | zi+1, ti) .

The star in the notation indicates that the optimal decision concerns a future patient. We
suppress the conditioning in the notation and simply write t∗i+1(zi+1, ti). We wish to choose
a treatment ti which is optimal given the information about the patients up until patient
i, and also given possible decisions which could be made for patient i + 1. The quantity
t∗i+1(zi+1, ti) is known if both zi+1 and ti are known. However, since zi+1 is unknown, we
need to find the expectation of the objective function after patient i+ 1 over the two possible
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covariate values, assuming that the optimal treatment has been chosen for the (i + 1)th
patient:

Ezi+1

[
Ψ
(
t∗i+1(zi+1, ti) | zi, ti

)]
= P(zi+1 = 1)Ψ

(
t∗i+1(zi+1 = 1, ti) | zi, ti

)
+ P(zi+1 = −1)Ψ

(
t∗i+1(zi+1 = −1, ti) | zi, ti

)
.

(4.2)

We denote the expected value of the objective function after one patient in the future as
Φ1(ti | zi, ti−1):

Φ1(ti | zi, ti−1) = Ezi+1

[
Ψ
(
t∗i+1(zi+1, ti) | zi, ti

)]
. (4.3)

The optimal decision is given by argminti Φ1(ti | zi, ti−1). For a sequential implementation
of a nonmyopic algorithm, at stage i, Φ1(ti = 1 | zi, ti−1) and Φ1(ti = −1 | zi, ti−1) are
computed, and treatment 1 is given to patient i with probability given by:

Φ1(ti = 1 | zi, ti−1)−1

Φ1(ti = 1 | zi, ti−1)−1 + Φ1(ti = −1 | zi, ti−1)−1 . (4.4)

In Appendix H, we provide a simple example to illustrate the myopic approach and nonmyopic
approach for the linear model case, as well as the pseudo-nonmyopic approach which we
describe in Chapter 5.

4.1.2 Extension one: Longer Horizon

We refer to the number of future decisions considered as the horizon, denoted N . The
assignment of the ith treatment then becomes a multistage optimization problem with N
stages, as it becomes necessary to consider whether the decision is optimal for the objective
function at each stage for patient i+ 2, i+ 3, ..., i+N . A decision-theoretic framework is
used in order to provide a formal structure to the problem (Parmigiani, 2002).

We extend the notion of the expected loss in Equation (4.2) so that it can be generalized
for a larger number of steps into the future. Suppose that we wish to assign a treatment
to unit ν, considering the impact one step ahead into the future, for ν = {1, 2, ..., n− 1}.
Given that we know zν and tν−1, the expected objective function is given by:

Φ1(tν | zν , tν−1) =Ezν+1

[
Ψ
(
t∗ν+1(zν+1, tν) | zν+1, tν

)]
, (4.5)

where the subscript for Φ indicates the horizon. Now, we consider the impact of the decision
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to assign tν on the loss after N additional unseen units. The following recursive relationship
can be used to find the expected objective function after ν +N units, when treatment tν
has been assigned:

For N > 0:

ΦN (tν | zν , tν−1) =Ezν+1

[
ΦN−1

(
t∗ν+1(zν+1, tν) | zν+1, tν

)]
=P(zv+1 = 1)

[
ΦN−1

(
t∗ν+1(zν+1 = 1, tν) | zν , zν+1 = 1, tν

)]
+ P(zv+1 = −1)

[
ΦN−1

(
t∗ν+1(zν+1 = −1, tν) | zν , zν+1 = −1, tν

)]
,

(4.6)

and for N = 0, we have:

Φ0(tν | zν , tν−1) = Ψ(tν | zν , tν−1), (4.7)

which is simply the myopic loss after ν units; the subscript 0 indicates that we are considering
no steps into the future. Thus, treatment 1 is assigned to patient tν with the probability
given by

ΦN (tν = 1 | zν , tν−1)−1

ΦN (tν = 1 | zν , tν−1)−1 + ΦN (tν = −1 | zν , tν−1)−1 . (4.8)

We are using backward induction since the recursion in Equation (4.6) requires that one
finds the optimal treatment which minimizes the expected objective function for the Nth
unit in the horizon, then the optimal treatment for the N − 1 unit, and so on until one
reaches the current unit.

It is possible to see that our myopic algorithm is a special case of this nonmyopic set-up; it is
an allocation scheme based on Φ0(ti | zi, ti−1) as an objective function. Equation (4.2) is also
a special case where we look one step ahead in the future and use Φ1

(
t∗i+1(zi+1, ti) | zi+1, ti

)
as an objective function.

4.1.3 Extension two: more complex covariates

So far, we have assumed that we have one binary covariate. Let us now extend the problem
statement so that the covariate values are discrete and take values from a sample space
S. We denote by P(zi = z) the probability that the ith patient takes covariate value z, for
z ∈ S. We assume that these probabilities do not depend on the number of patients in the
trial so far. In this setting, ΦN (tν | zν , tν−1) for N > 0, originally defined in Equation (4.6)
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for a single binary covariate, is restated as follows:

ΦN (tν | zν , tν−1) =Ezν+1

[
ΦN−1

(
t∗ν+1(zν+1, tν) | zν+1, tν

)]
=
∑
z∈S

P(zν+1 = z)ΦN−1
(
t∗ν+1(z, tν) | zν , z, tν

)
, (4.9)

and Φ0(tν | zν , tν−1) is defined as in Equation (4.7). We note that this can be easily extended
further to the case where there are k covariates observed for each unit. In this case, the
probability mass function gives a probability for each possible combination of the k covariates.

For a further extension, suppose we have k continuous covariates, and the covariate values
for unit i is given by the k-vector zi. Its joint probability distribution function is denoted
f(zi). For N > 0, we redefine ΦN (tν | zν , tν−1) as follows:

ΦN (tν | zν , tν−1) =Ezν+1

[
ΦN−1

(
t∗ν+1(zν+1, tν) | zν+1, tν

)]
=
∫

ΦN−1
(
t∗ν+1(zν+1, tν) | zν+1, tν

)
f(zν+1)dzν+1,

(4.10)

and Φ0(tν | zν , tν−1) is defined as in Equation (4.7).

4.1.4 Simulations

We wish to compare DA-, D- and G-optimal designs that are constructed sequentially using
myopic and nonmyopic methods. Further, we wish to compare the nonmyopic approach
where we assume the true distribution for the covariates, and the nonmyopic approach where
we use the empirical distribution. In our binary covariate case, we obtain an approximation
of the empirical distribution of the covariate by finding the proportion of observed patients
with each covariate value. Our simulations have the following structure, which allows us to
compare seven ways of constructing sequential designs:

I (a) 100 patients are assumed and their covariates are generated from a specified
distribution.

(b) Seven designs for the patients in part (a) are constructed using:

• A myopic DA-optimal design.

• A nonmyopicDA-optimal design with horizonN = 1, with the correct covariate
distribution assumed.

• A nonmyopic DA-optimal design with horizon N = 1, with the empirical
covariate distribution assumed.
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• A nonmyopicDA-optimal design with horizonN = 2, with the correct covariate
distribution assumed.

• A nonmyopic DA-optimal design with horizon N = 2, with the empirical
covariate distribution assumed.

• A nonmyopicDA-optimal design with horizonN = 5, with the correct covariate
distribution assumed.

• A nonmyopic DA-optimal design with horizon N = 5, with the empirical
covariate distribution assumed.

(c) Designs are evaluated using the performance measure ΨDA , given by Equation
(2.25), at each sample size between 5 and 100, inclusive.

II (a)-(c) above is repeated 20 times to obtain a distribution of the performance measure
for each sample size.

We run the above simulation also using the performance measures ΨD and ΨG from D- and
G-optimality, given by Equations (2.18) and (2.32), for design selection .

Results for one covariate

Firstly, we run a simulation in which 100 covariates are generated from the Bernoulli(p = 0.5)
distribution. We assume the relationship between the response, covariate and treatment is
given by the linear model E (y) = β0 + β1z + β2t. We observe in Figure 4.1 that the plots
showing the distribution of ΨDA are similar across the seven methods. When the correct
covariate distribution is known, the results for the myopic designs look almost identical
to the nonmyopic designs. When the correct covariate distribution is unknown and the
empirical distribution is assumed, it appears that the variability of ΨDA is higher for the
nonmyopic designs compared to the case where the correct covariate is distribution known.
In Figure D.1 in the Appendix, we plot the relative efficiencies of the nonmyopic designs
against the myopic design. It appears that, in the early stages of the experiment, the myopic
approach is more efficient. However, the two approaches soon converge to the same efficiency.
When the correct covariate distribution is assumed, the nonmyopic approach has the same
efficiency as the myopic approach.
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Figure 4.1: Distributions of ΨDA for DA-optimal designs for the linear model are plotted
against sample size. We show the myopic approach (N = 0), as well as the nonmyopic
approach to constructing DA-optimal designs with horizon N = 1, 2 and 5. For the
nonmyopic approach, we consider both the case where the correct covariate distribution is
known (left panel), and when it is unknown so the empirical covariate distribution is used
(right panel). The black line indicates the median, the dark grey indicates the 40th to 60th
percentile, and the light grey indicates the 10th to 90th percentile of the distribution.

Under D-optimality, in Figure 4.2, we observe that the distribution of ΨD appears fairly
similar for all seven methods; Figure D.2 in the appendix shows that, similarly to the case
of DA-optimality, the myopic approach is initially more efficient, but then the myopic and
nonmyopic approaches become equally efficient.
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Figure 4.2: Distributions of ΨD for D-optimal designs for the linear model are plotted
against sample size. We show the myopic approach (N = 0), as well as the nonmyopic
approach to constructing D-optimal designs with horizon N = 1, 2 and 5. For the nonmyopic
approach, we consider both the case where the correct covariate distribution is known (left
panel), and when it is unknown so the empirical covariate distribution is used (right panel).
The black line indicates the median, the dark grey indicates the 40th to 60th percentile, and
the light grey indicates the 10th to 90th percentile of the distribution.

Similarly, for designs constructed to be G-optimal, we observe in Figure 4.3 that the
distribution of ΨG is extremely similar for all seven methods. We observe greater variability
in the plots for G-optimality, compared to D- and DA-optimality. Figure D.3 in the appendix
shows a similar pattern in the efficiency plots to the previous two simulations.
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Figure 4.3: Distributions of ΨG for G-optimal designs for the linear model are plotted
against sample size. We show the myopic approach (N = 0), as well as the nonmyopic
approach to constructing G-optimal designs with horizon N = 1, 2 and 5. For the nonmyopic
approach, we consider both the case where the correct covariate distribution is known (left
panel), and when it is unknown so the empirical covariate distribution is used (right panel).

We conclude that for the case where we have one covariate only, there is no benefit to using
the nonmyopic approach over the myopic approach. We repeated the simulation where there
are two covariates, both generated from a Bernoulli(0.5) distribution. Let us denote by z.1
and z.2 the vectors containing values of the first and second covariates, respectively:

z.1 =
(
z1,1, z2,1, ..., zn,1

)ᵀ
, (4.11)

z.2 =
(
z1,2, z2,2, ..., zn,2

)ᵀ
, (4.12)

The relationship between the covariates, treatment and response are given by the model
E(y) = β0 + β1z.1 + β2z.2 + β3t. The results are shown in Appendix D.2 and we draw the
same conclusion that there appears to be no benefit to using the nonmyopic approach over
the myopic approach.
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Dynamic covariates

We now investigate what happens when the covariates are generated in a non-uniform way.
We consider a case where there is one binary covariate z generated from a Bernoulli(pi)
distribution, where pi is the ith element of p:

p =

0.1, ..., 0.1︸ ︷︷ ︸
25 times

, 0.9, ..., 0.9︸ ︷︷ ︸
25 times

, 0.1, ..., 0.1︸ ︷︷ ︸
25 times

, 0.9, ..., 0.9︸ ︷︷ ︸
25 times

 . (4.13)

We run a simulation similar to that described in Section 4.1.4, but the covariate is generated
dynamically. In the case where we assume that we know the correct distribution, we assume
complete knowledge of the future pi. Figures 4.4 and 4.5 show the distributions of ΨDA and
the relative efficiencies, respectively. We observe that, assuming the correct distribution,
the myopic and nonmyopic approaches appear equally efficient. If the true distribution is
unknown and the empirical distribution is assumed, the myopic approach is initially more
efficient.
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Figure 4.4: Distributions of ΨDA for designs for the linear model for one covariate generated
dynamically are plotted against sample size. We show the myopic approach (N = 0), as
well as the nonmyopic approach to constructing DA-optimal designs with horizon N = 1, 2
and 5. For the nonmyopic approach, we consider both the case where the correct covariate
distribution is known, and when it is unknown so the empirical covariate distribution is
used.
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Figure 4.5: Distributions of DA-efficiencies of nonmyopic designs for the linear model from
Figure 4.4 are shown, relative to the myopic design. Values of the efficiency under 1 indicate
that the non-myopic design is more efficient than the myopic.

In Figures 4.6 and 4.7, which show relative efficiencies, we see that for the case of D-
optimality, when the correct distribution of the covariates is known, the nonmyopic approach
appears to be very slightly more efficient than the myopic approach for sample sizes less
than 30. When the empirical distribution is assumed, the myopic approach appears to be
more efficient initially.
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Figure 4.6: Distributions of ΨD for designs for the linear model for one covariate generated
dynamically are plotted against sample size. We show the myopic approach (N = 0), as
well as the nonmyopic approach to constructing D-optimal designs with horizon N = 1, 2
and 5. For the nonmyopic approach, we consider both the case where the correct covariate
distribution is known, and when it is unknown so the empirical covariate distribution is
used.



4.1. Linear model 63

0.
0

1.
0

2.
0 N=1

Sample Size
E

ff D
A

N=1

Sample Size

E
ff D

A

0.
0

1.
0

2.
0 N=2

Sample Size

E
ff D

A
N=2

Sample Size

E
ff D

A

0 20 40 60 80 100

0.
0

1.
0

2.
0 N=5

Sample Size

E
ff D

A

0 20 40 60 80 100

N=5

Sample Size
E

ff D
A

Sample Size

E
ff D

Correct Distribution Empirical Distribution

Figure 4.7: Distributions of Defficiencies of nonmyopic designs for the linear model from
Figure 4.6 are shown, relative to the myopic design.

Finally, in the case of G-optimal designs, the plots in Figures 4.8 and 4.9 show that
the nonmyopic approach appears to be slightly more efficient than the myopic approach,
regardless of whether the correct or empirical distributions are used.
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Figure 4.8: Distributions of ΨG for designs for the linear model for one covariate generated
dynamically are plotted against sample size. We show the myopic approach (N = 0), as
well as the nonmyopic approach to constructing G-optimal designs with horizon N = 1, 2
and 5. For the nonmyopic approach, we consider both the case where the correct covariate
distribution is known, and when it is unknown so the empirical covariate distribution is
used.
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Figure 4.9: Distributions of G-efficiencies of nonmyopic designs for the linear model from
Figure 4.8 are shown, relative to the myopic design.

Again, we observe some potential benefits to using a nonmyopic approach in these simulations
involving a single dynamic covariate in the case of a linear model; we see that for the D-
optimal case when the true covariate distribution is known and in the G-optimal case, there
is a very slight improvement in efficiency for the nonmyopic approach. For all other settings,
including the case where we have a single static covariate, it appears that the myopic
approach is more efficient at the start of the experiment and the myopic and nonmyopic
approaches achieve similar levels of efficiency.

4.2 Logistic model

In the previous section, we found that the nonmyopic approach provides a slight benefit
over the myopic approach under a linear model when there is a dynamic covariate. We now
consider the case of a binary response. A logistic GLM is used to model the response, and
in our particular set-up, the information matrix is now contingent on the responses through
estimated parameter values, as well as the covariates and treatments in the experiment so
far. This added complexity may mean that the nonmyopic approach is better able to make
decisions for the overall experiment. We provide an overview of the literature on design
of experiments for binary data, then we describe the set-up for the design for the binary
response case. Then, we demonstrate how the nonmyopic approach described in Section
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4.1.1 can be modified to allow for a binary response. We then conduct simulations to test
whether there is any benefit to using the nonmyopic approach over the myopic approach in
the binary response setting.

4.2.1 Design of experiments for binary data

Early work on design of experiments for binary response focused on problems where a single
continuous treatment is applied to a unit, and a binary response is observed. Such problems
are common in experiments on bioassays, explosives, and drug dosage; the goal is to obtain
the threshold value of the treatment that determines which of the two outcomes will occur
(Abdelbasit and Plackett, 1983). Dixon and Mood (1948) developed what is known as the
Bruceton analysis, or up-and-down method, to obtain a confidence interval for this threshold.
It is a non-parametric method which sequentially determines the treatment value in the
next run. Robbins and Monro (1951) developed a more general method involving a recursive
updating rule which can estimate not only the threshold value, but any quantile of the
response curve.

The non-parametric methods by Dixon and Mood (1948) and Robbins and Monro (1951)
are easy to implement, but require large sample sizes and good starting values. Moreover,
the Robbins-Monro method may be inaccurate in estimating extreme quantiles, even with
large sample sizes. Wu (1985) criticized these procedures for not using the accruing data
from the experiment in an efficient way and instead suggested that sequential designs with
binary data should involve an updating rule that depends on a parametric model which
captures all the data obtained in the experiment up to that point. Such a model could be
a logistic model with two parameters: an intercept and coefficient for the treatment; the
maximum likelihood estimates of the parameters are utilized to choose the next level of
treatment. Wu (1985) proved properties of asymptotic efficiency of the MLEs and showed
that they are optimal in the sense that they achieve the smallest asymptotic variance
among a class of designs. A related method by Neyer (1994) is better able to handle the
problem of biased maximum likelihood estimates when sample sizes are small. It involves,
firstly, an initial search to approximate an interval of the treatment that leads to good
estimates of quantiles of the response curve. Secondly, an updating rule based on a para-
metric model is used to obtain successive treatment levels using the D-optimality criterion.
The estimates are refined in a third stage. Further, Joseph (2004) adapted the Robbins-
Munro procedure to improve its performance on estimating extreme quantiles by allowing
for a distributional form for the quantile curve whose parameters can have prior distributions.

From a broader modelling framework, designs for logistic regression allow for more than one
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treatment factor and presence of covariates. Overviews of the theory of logistic regression,
Generalized Linear Models and design issues related to them are provided by Khuri et al.
(2006) and Woods and Atkinson (2015). Approaches to design of experiments for GLMs are
not necessarily sequential. For GLMs, the information matrix, and through it, the objective
function, depend on values of the model parameters. The paradox is that estimates of param-
eters are needed in order to design the experiment aimed to estimate these parameters in the
first place. There are several strategies for overcoming this. Firstly, if an initial guess can be
made from the results of a previous experiment, one can construct a locally optimal design,
which assumes this initial guess as the parameter values when computing the optimality
criterion. Work on locally optimal designs for binary data and one treatment was undertaken
by Abdelbasit and Plackett (1983). Locally D-optimal designs for 2k factorial experiments
were developed by Yang and Zhu (2002). One disadvantage is that locally optimal designs
may be inefficient if the initial guess is poor (Chaloner and Larntz, 1989). If a range for the
parameter values is known, a method by King and Wong (2000) for minimax D-optimal
designs for logistic regression may be appropriate. In situations where one does not have
enough knowledge to make good initial estimates, Sitter and Wu (1999) suggested a two-stage
optimal design where the second stage is intended to counteract the effect of inaccurate
initial estimates in the first stage. Another strategy to deal with the problem of parameter
dependence is to run the experiment sequentially, starting with an initial guess of the pa-
rameter values, and then updating the estimates after each run of the experiment (Atkinson,
1999, p.257). Thirdly, a Bayesian approach can also handle the parameter dependence
issue. Chaloner and Larntz (1989) describe a non-sequential Bayesian approach to logistic
regression, which requires prior distributions for all parameters, as well as their relative
importance. Their work was extended by Woods et al. (2006) as well as Dror and Steinberg
(2008) in a framework for GLMs which account for uncertainty in the link function and
the linear predictor, and additionally allows sequential and batch-sequential implementations.

Work on sequential design of experiments on binary response has mostly focused on achieving
optimality in a myopic sense. Nonmyopic approaches to design have been taken for bandit
problems (as described in Section 3.1.2). The aim in the context of bandit problems is
to obtain a strategy for making decisions sequentially for achieving a balance between
exploration and exploitation; for example, in experiments involving human participants, one
wishes to gain knowledge about the treatment effects, but at the same time, it is necessary
to allocate patients to the treatment that is known to be most effective (Villar et al., 2015).
The original two-arm bandit problem for Bernoulli responses was considered by Thompson
(1933) from a Bayesian perspective, as well as Robbins (1952) from a frequentist point of
view. Agrawal and Goyal (2012) produced theoretical results on the expected regret of
Thompson’s approach. Modifications of the bandit problem with Bernoulli response have
been made by Bradt et al. (1956), Berry and Fristedt (1979) and Berry and Viscusi (1981).
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There has been recent interest in the application of bandit-type problems for clinical trials.
Villar et al. (2015) described bandits with Bernoulli outcomes and provided a simulation
study comparing their performance to a purely randomized design. They considered both
the finite-horizon case, where a finite total number of patients is assumed, as well as the
infinite-horizon case (where N →∞). They showed that the nonmyopic approach allows a
greater proportion of patients to receive the better treatment, but it suffers from having
low statistical power to detect differences in treatment effect. They proposed a version of
the bandit-type allocation scheme which aims to keep a stable number of patients for both
treatments to keep power at a reasonable level. Work by Williamson et al. (2017) developed
a bandit approach to treatment allocation for binary response for clinical trials for rare
diseases. They proposed a Bayesian adaptive design that aims to maximize the total number
of successes in the trial and induces a penalty if each treatment is not given to a minimum
number of patients.

No work so far has explicitly mentioned how covariates should be dealt to design experiments
with a binary response. In particular, the way in which covariates are incorporated into the
construction of the design in a sequential setting can have a large impact on its efficiency.

4.2.2 Preliminaries

We now set up a notation for logistic regression which we then extend to the nonmyopic
approach. Assuming a logistic regression for the response, we have

yi ∼ Bernoulli(πi), (4.14)

and the probability πi is given by

πi = exp ηi
1 + exp ηi

, (4.15)

where ηi is the linear predictor. For now, assume the following form for the linear predictor,
where we have one binary covariate zi and one binary treatment ti:

ηi = β0 + β1zi + β2ti, (4.16)

where β0 is the intercept, β1 is the effect of the covariate and β2 is the effect of the treatment.
We also have
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ηi = log πi
1− πi

. (4.17)

The log-likelihood is given by

l(β0, β1, β2 | y1, ..., yn) =
n∑
i=1

(
yi log

(
πi

1− πi

)
+ log(1− πi)

)

=
n∑
i=1

(yiηi − log(1 + exp ηi))

=
n∑
i=1

(
yi (β0 + β1zi + β2ti)− log(1 + exp (β0 + β1zi + β2ti))

)
.

The score U is given by the first derivatives of the log-likelihood, with respect to the
parameters:

U =


dl
dβ0
dl
dβ1
dl
dβ2

 , (4.18)

where we have

dl

dβ0
=

n∑
i=1

(
yi −

exp(β0 + β1zi + β2ti)
1 + exp(β0 + β1zi + β2ti)

)
(4.19)

=
n∑
i=1

(yi − πi) , (4.20)

dl

dβ1
=

n∑
i=1

(
yizi −

zi exp(β0 + β1zi + β2ti)
1 + exp(β0 + β1zi + β2ti)

)
(4.21)

=
n∑
i=1

zi (yi − πi) , (4.22)

dl

dβ2
=

n∑
i=1

(
yiti −

ti exp(β0 + β1zi + β2ti)
1 + exp(β0 + β1zi + β2ti)

)
(4.23)
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=
n∑
i=1

ti (yi − πi) . (4.24)

The Hessian, denoted H, is the matrix of second derivatives:

H =


d2l
d2β2

0

d2l
dβ0dβ1

d2l
dβ0dβ2

d2l
dβ1dβ0

d2l
dβ2

1

d2l
dβ1dβ2

d2l
dβ2dβ0

d2l
dβ2dβ1

d2l
dβ2

2

 (4.25)

=


∑
πi(πi − 1)

∑
ziπi(πi − 1)

∑
tiπi(πi − 1)∑

ziπi(πi − 1)
∑
z2
i πi(πi − 1)

∑
tiziπi(πi − 1)∑

tiπi(πi − 1)
∑
tiziπi(πi − 1)

∑
t2iπi(πi − 1)

 . (4.26)

Now, the expected information matrix I is given by

I = −E (H) (4.27)

=


∑
πi(1− πi)

∑
ziπi(1− πi)

∑
tiπi(1− πi)∑

ziπi(1− πi)
∑
z2
i πi(1− πi)

∑
tiziπi(1− πi)∑

tiπi(1− πi)
∑
tiziπi(1− πi)

∑
t2iπi(1− πi)

 . (4.28)

We can write the information matrix above as I = XᵀWX, where W is a diagonal matrix
with entries πi(1− πi). The following iterative equation provides a scheme for obtaining the
maximum likelihood estimates for the parameters β =

(
β0 β1 β2

)ᵀ
above:

I(m−1)βm = I(m−1)β(m−1) +U (m−1). (4.29)

The information matrix now depends, through W , on the values of the model parameters,
which was not the case for the linear model in Section 2.6.1. When the true values of the
model parameters are unknown, the MLEs can be substituted. The information matrix
depends on the values of the model parameters and if estimated parameters are used, it
then also depends on the responses. Given a design matrix X and values for the parameters
β, we can compute the matrix W and our D-, DA-, A- and G-optimal objective functions
then become

ΨD(X,β) =
∣∣∣(XᵀWX)−1

∣∣∣ , (4.30)



4.2. Logistic model 71

ΨDA(X,β) =
∣∣∣Aᵀ (XᵀWX)−1A

∣∣∣ , (4.31)

ΨA(X,β) = tr (XᵀWX)−1 , (4.32)

ΨG(X,β) = max
x∈χG

{
xᵀ (XᵀWX)−1 x

}
. (4.33)

We can also define D-, DA-, A- and G-efficiencies of a design X relative to another design
X∗ with parameter values β in the logistic model case as

EffD =
{ΨD (X∗, β)

ΨD (X,β)

}1/p
, (4.34)

EffDA =
{ΨDA (X∗, β)

ΨDA (X,β)

}1/b
, (4.35)

EffA =
{ΨA (X∗, β)

ΨA (X,β)

}
, (4.36)

EffG =
{ΨG (X∗, β)

ΨG (X,β)

}
, (4.37)

where p is the number of parameters in the model and b is the number of non-zero rows in
the matrix A. We note that, in our simulations in this thesis, efficiencies are evaluated using
the true parameter values to compute the objective function Ψ. In this way, we are able
to compare the designs in terms of their performance with respect to the true parameter
values, rather than their respective estimated parameter values.

In a sequential setting, it becomes necessary to observe the response yi after the treatment
for patient i is applied so that the objective function can be calculated. We denote a generic
objective function when treatment i is assigned to patient i as

Ψ(ti | zi, ti−1,yi−1), (4.38)

to emphasize the dependence on the vector of previous responses yi−1 = (y1, y2, ..., yi−1)ᵀ.
We adapt the sequential approach provided in Section 2.6.2 so that the probability that
patient i receives treatment 1, which was previously given in Equation (2.37), is changed to
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Ψi(ti = 1 | zi, ti−1,yi−1)−1

Ψi(ti = 1 | zi, ti−1,yi−1)−1 + Ψi(ti = −1 | zi, ti−1,yi−1)−1 . (4.39)

In Algorithm 4, we provide pseudo-code for constructing a myopic sequential design for the
binary response case.

Algorithm 4 Myopic sequential optimal design for binary response: function returns a
design matrix given covariate values for n patients, Zn, and the number of patients in initial
design, n0

1: function SeqOptL(Zn, n0)

2: Initialization
3: Construct initial design Xn0 using the exchange algorithm for the first n0 patients

assuming β = 0.
4: Observe responses yn0 = y1, y2, ..., yn0

5: Fit the model yn0 ∼ glm(Xn0 , link = logit) to obtain the MLE β̂0.

6: for i in n0 + 1 to n do
7: Observe zi,1, ..., zi,k
8: Calculate Ψ(ti | zi, ti−1,yi−1) for each treatment.
9: Sample treatment for patient i where probability of treatment 1 is given by

Equation (4.39).
10: Observe response yi.
11: Refit model yi ∼ glm(Xi, link = logit) and update the parameter estimates β̂i.
12: end for

13: return X

14: end function

4.2.3 Separation

One issue that is important to be aware of with logistic regression is separation. Separation
occurs when a linear combination of predictors perfectly predicts the response. It often
occurs when predictors are binary (Gelman et al., 2008). Separation can result in the
likelihood function becoming monotonic and maximum likelihood estimates of the regression
coefficients tending to plus or minus infinity (Rainey, 2016).

There are a number of ways to deal with the problem of separation. Firth (1993) proposed
a procedure where maximum likelihood estimates are penalized to reduce bias. Another
common approach to stabilizing MLEs is to introduce a prior distribution for the regression
coefficients which shrink parameter estimates, particularly large ones, to zero. Gelman
et al. (2008) recommended a default prior model to be independent Cauchy distributions
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where the intercept has location parameter set to zero and scale parameter set to ten, and
for the slope coefficients, the location parameter is set to zero and scale parameter set to
two. Other common choices are Jeffry’s prior, but Gelman et al. (2008) argue that it is
difficult to interpret and computation can be difficult for small datasets. They also show,
through cross-validation in three different applications, that Cauchy’s prior leads to better
predictions than Gaussian or Laplace prior distributions.

We use the function bayesglm from the R package arm (Gelman and Su, 2016) to obtain
posterior modes from designs that are built sequentially for Bernoulli GLMs with the use of
prior distributions.

To check whether separation is likely to occur in simulations that we will conduct in Section
4.2.5, we look at the posterior modes when designs are fitted sequentially for a logistic GLM
where yi ∼ Bernoulli(πi) with the linear predictor:

logit(πi) = 1 + zi + ti. (4.40)

We generate 100 covariate values zi, for 1 ≤ i ≤ 100, from a Bernoulli(0.5) distribution.
Instead of observing yi as described in Algorithm 4, we generate it from a Bernoulli
distribution with parameter πi given by:

πi = exp (1 + zi + ti)
1 + exp (1 + zi + ti)

. (4.41)

We generate a sequential design using the MLE to estimate the coefficients of the GLM, as
well as a sequential design using the Bayesian approach with Cauchy prior distributions to
estimate the coefficients. We compare the parameter estimates from both methods. The
initial random design has 10 units. We repeat this simulation 100 times. The boxplots in
Figure 4.10 show the distribution of the estimates for the intercept β0 = 1, coefficient for
the covariate β1 = 1 and and coefficient for the treatment β = 1 for the two methods at
four different stages of the design: after 15 patients, after 30 patients, after 60 patients and
finally, after all 100 patients have entered the trial. Note that the vertical axis changes
for each row so that the boxplots corresponding to the MLE approach and the boxplots
corresponding to the Bayesian appraoch can be can be compared easily.
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Figure 4.10: Boxplots to show the distribution of the parameter estimates when the MLE
is used for model fitting (left panel) versus when a Bayesian approach with a Cauchy prior
distribution is used (right panel). The first row displays boxplots of the estimates after 15
patients are treated in the simulation, the second row is after 30 patients, the third after 60
patients and the last row is after all 100 patients have been treated. Note that the vertical
axis changes for each row so that the pairs of boxplots can be compared easily.

We observe that there is some evidence of separation occurring at the initial stages of the
design: when n = 15, we observe that the Bayesian method leads to much more accurate
and stable estimates than using the MLE. The advantage of using the Bayesian approach is
also evident when n = 30. For the plots when n = 60 and n = 100, it appears that both
methods lead to parameter estimates that are close to the true value of 1. The two sets of
boxplots appear to be almost identical when n = 100. Thus we observe that separation is
likely to be a problem for the early stages of the trial, but for the final parameter estimates
at the end of the trials, the estimates provided by the two methods are extremely similar.
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4.2.4 Nonmyopic approach for the binary response

We now describe the nonmyopic approach for the binary response. The objective function
Ψ(ti | zi, ti−1,yi−1) now depends on the previous covariates zi, the previous treatments
ti−1 and also the previous responses yi−1 through the parameter estimates. For the sake
of simplicity in notation, we assume without loss of generality that we have one covariate.
In the nonmyopic approach, we wish to consider the impact of assigning treatment ti on
decisions on future possible patients. For example, for horizon N = 1, we consider the
expected value of the objective function after i+ 1 patients. Suppose treatment ti is assigned
to patient i. There are two possible values that may be observed for the response yi. Since
Ψ depends on yi, we need to consider the two possible responses that yi may take, and then
consider the possible values that zi+1 can take. For a given covariate value zi+1 for patient
i+ 1, we denote by t∗i+1(zi+1, ti, yi | zi, ti−1,yi−1) the optimal choice of treatment for patient
i+ 1 given zi+1 and ti:

t∗i+1(zi+1, ti, yi | zi, ti−1,yi−1) = argmin
ti+1

Ψ(ti+1 | zi+1, ti,yi). (4.42)

From here on, we suppress the conditioning and write t∗i+1(zi+1, ti, yi) for simplicity. Now,
we take the expectation of the objective function over two possible responses which may be
obtained to find an expected value of the objective function over the unknown response:

EyiΨ(ti+1 | zi+1, ti,yi) =P(yi = 0 | zi, ti,yi−1)Ψ(ti+1 | zi+1, ti,yi−1, y)

+ P(yi = 1 | zi, ti,yi−1)Ψ(ti+1 | zi+1, ti,yi−1, y),

where yi ∼ Bernoulli(πi) with πi given by:

πi =
exp

(
β̂i−1 (1 zᵀi ti)

ᵀ
)

1 + exp
(
β̂i−1 (1 zᵀi ti)

ᵀ
) . (4.43)

Now, we denote by P(zi = z) the probability that the ith patient has covariate value z. We
assume that these probabilities do not depend on i. We denote by Ψ1(ti | zi, ti−1,yi−1) the
expected value of the objective function when treatment ti is assigned to patient i, taking
into account the impact of the decision on one further decision in the future. We obtain an
expectation over the possible covariate combinations of the optimality criterion:

Ψ1(ti | zi, ti−1,yi−1) =Ezi+1EyiΨ(t∗i+1(zi+1, ti, yi) | zi+1, ti,yi) (4.44)
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=
∑
z

P(zi+1 = z)EyiΨ(t∗i+1(zi+1, ti, yi) | zi, zi+1, ti,yi). (4.45)

For a horizon greater than 1, we can use the following recursive relationship to find the
optimal treatment for patient ν. The expected value of the objective function after ν +N

patients, when treatment tν has been assigned, is given as follows:

For N > 0:

ΨN (tν | zν , tν−1,yν−1) =Ezν+1EyνΨN−1(t∗ν+1(zν+1, tν , yν) | zν+1, tν ,yν)

=
∑
z

P(zν+1 = z)EyνΨN−1(t∗ν+1(zν+1, tν ,yν) | zν , zν+1, tν ,yν),

(4.46)

and for N = 0, we have

Ψ0(tν | zν , tν−1,yν−1) = Ψ(tν | zν , tν−1,yν−1), (4.47)

which is simply the myopic loss after ν patients.

We note that the nonmyopic approach for the logistic model case is considerably more
computationally intensive than the myopic approach; Table 4.1 compares the running time
in seconds for constructing a 100-patient design with one covariate for the linear and logistic
case for a range of values for the horizon.

Table 4.1: Running time in seconds for constructing a design with one covariate and 100
patients. the initial design is one patient for the linear model case, and 10 patients for the
logistic model case. We compare the myopic approach (horizon= 0) against the nonmyopic
approach with horizon set to 1, 2, 3, 4, 5, and 10. Simulations were performed on a machine
with a 2GHz processor and 64 GB of memory.

Horizon Linear Model Logistic Model
Static Dynamic Static Dynamic

0 0.045 0.05 0.84 0.749
1 0.313 0.435 4.926 4.7
2 1.297 1.867 30.116 31.054
3 5.433 7.701 264.138 253.888
4 22.234 31.254 1916.986 2090.021
5 89.258 123.703 13929.6 16761.77
10 84671.05 120538.3 >60 hours >60 hours
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4.2.5 Simulations

Initial design

For the binary response case, there are a few details in the construction of the simulations
that we did not have to consider in the linear model case. First, as we explained in Section
4.2.1, for the logistic model, the information matrix and the objective function depend on
values of the model parameters. Therefore, estimates of parameters are needed in order
to design the experiment aimed to estimate these parameters in the first place. We begin
with an initial design where we use the exchange algorithm to allocate treatments to 10
units, under the assumption that β is a vector of zeros. We then generate the responses
for the first 10 patients and fit the model to obtain the first estimate β̂0. The R function
bayesglm is used to fit the model for our simulations involving logistic regression to avoid
problems in estimation due to separation. The prior used is a Cauchy distribution with
mean zero and scale set to two for both the treatment and covariate parameters. When
we compare sequential designs for the same set of covariates constructed with the same
objective function, we make sure that the designs have the same initial design. Since our
purpose is to compare myopic and nonmyopic approaches to decision making, we wish to
control as many other factors as possible which can potentially add variability to the results.

Generating Responses

Another source of variability is the generation of the responses. Unlike the linear model
case, for the logistic model, we need responses in order to generate the estimates of the
model parameters and subsequently to evaluate the design under the objective function.
When comparing sequential designs for the same set of covariates constructed with the same
objective function, we generate the responses in the following way:

1. Generate a deviate ui from the Unif(0, 1) distribution.

2. Set

yi =

1 if ui ≥ πi
0 if ui < πi

. (4.48)

The deviates ui are the same for simulations which compare the same objective function,
so that we can ensure that the data generating mechanism is the same. In this way, we
try to make sure that the only difference across two simulations is the approach to decision
making: taking either a myopic approach or a nonmyopic approach.
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Set up

We compare DA-, D- and G-optimal designs for logistic regression that are constructed
sequentially using myopic and nonmyopic methods. We run a simulation study in which 100
units of a covariate z are generated. The covariate has support {−1, 1} and is generated
such that P(zi = 1) = 0.5 and P(zi = −1) = 0.5 for all i. We assume the true model for the
response is yi ∼ Bernoulli(πi) with logit(πi) = zi + ti, and generate responses according to
this model. We use this structure for the simulations:

I (a) 100 patients are assumed and their covariates are generated from a specified
distribution.

(b) 100 deviates from a Unif(0, 1) distribution are generated for the response.

(c) An initial design with 10 units is constructed using the exchange algorithm with
DA optimality as the objective function.

(d) Seven sequential designs using the covariates, random deviates for the responses,
and initial design in part (a) are constructed using:

• A myopic DA-optimal design.

• A nonmyopicDA-optimal design with horizonN = 1, with the correct covariate
distribution assumed.

• A nonmyopic DA-optimal design with horizon N = 1, with the empirical
covariate distribution assumed.

• A nonmyopicDA-optimal design with horizonN = 2, with the correct covariate
distribution assumed.

• A nonmyopic DA-optimal design with horizon N = 2, with the empirical
covariate distribution assumed.

• A nonmyopicDA-optimal design with horizonN = 3, with the correct covariate
distribution assumed.

• A nonmyopic DA-optimal design with horizon N = 3, with the empirical
covariate distribution assumed.

(e) Designs are evaluated using the performance measure ΨDA , given by Equation
(4.31), at each sample size between 10 and 100, inclusive. The true values of the
parameters are used to calculate ΨDA .

II (a)-(e) above is above 20 times to obtain a distribution of the performance measure for
each sample size.
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We run the simulation above using performance measures ΨD and ΨG, given by Equations
(4.30) and (4.33), respectively.

Results for one covariate

We first consider the estimates of β produced by the seven different designs. Figure 4.11
shows the distributions of β̂ at each sample size between 11 and 100. The estimates appear
to be centered around their true value, β = (0, 1, 1)ᵀ, and the plots appear to be very similar
across the seven methods.
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Figure 4.11: Distributions of β̂ for designs for the logistic model for one covariate are
plotted against sample size. We show the myopic approach (N = 0), as well as the nonmyopic
approach to constructing DA-optimal designs with horizon N = 1 and 3. For the nonmyopic
approach, we consider both the case where the correct covariate distribution is known (left
panel), and when it is unknown so the empirical covariate distribution is used (right panel).
The black line indicates the median, the dark grey indicates the 40th to 60th percentile, and
the light grey indicates the 10th to 90th percentile of the distribution.

In Figure 4.12, we plot the distribution of ΨDA for each sample size between 11 and 100.
We observe that the value of this objective function decreases as sample size increases, as
expected. We note that the plots look extremely similar across the seven methods. There
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is is no noticeable difference between having horizon equal to one or three. In Figure 4.13,
we plot the relative efficiencies of the nonmyopic designs against the myopic design, which
again confirms that there is no observable difference across the methods in ΨDA ; the myopic
approach is slightly more efficient for when sample size is below 30.
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Figure 4.12: Distributions of ΨDA for designs for the logistic model for one covariate
are plotted against sample size. We show the myopic approach (N = 0), as well as the
nonmyopic approach to constructing DA-optimal designs with horizon N = 1 and 3. For
the nonmyopic approach, we consider both the case where the correct covariate distribution
is known (left panel), and when it is unknown so the empirical covariate distribution is used
(right panel).
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Figure 4.13: Distributions of the relative efficiencies of the nonmyopic DA-optimal designs
against the myopic DA-optimal designs for the logistic model for one covariate are plotted
against sample size. We consider the efficiencies of the non-myopic approach with horizons
1 and 3, with the correct and empirical distributions, against the myopic approach as the
baseline.

For the case with D-optimality, we see in Figure 4.14 that there appears to be more
variability in the estimates for the nonmyopic approach, particularly in for the intercept and
the treatment effect.
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Figure 4.14: Distributions of β̂ for designs for the logistic model for one covariate are
plotted against sample size. We consider the myopic approach (N = 0), as well as the
nonmyopic approach to constructing D-optimal designs with horizon N = 1 and 3. For the
nonmyopic approach, we consider both the case where the correct covariate distribution is
known (left panel), and when it is unknown so the empirical covariate distribution is used
(right panel).

In Figure 4.15, it appears that the plots of the distributions of ΨD look extremely similar
across the seven methods with very little variability across the 20 simulations. However, in
Figure 4.16, we plot the relative efficiencies of the nonmyopic designs against the myopic
design, which then shows that the myopic approach is more efficient than the nonmyopic
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approaches for all sample sizes. For D-optimality, we are interested in not only the treatment
effect but also the intercept and the effect of the covariate; since there is greater variability
in the estimates of the intercept for the nonmyopic approach, this explains why the plot for
D-efficiency is much more variable than that of DA-efficiency.
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Figure 4.15: Distributions of ΨD for designs for the logistic model for one covariate are
plotted against sample size. We consider the myopic approach (N = 0), as well as the
nonmyopic approach to constructing D-optimal designs with horizon N = 1 and 3. For the
nonmyopic approach, we consider both the case where the correct covariate distribution is
known (left panel), and when it is unknown so the empirical covariate distribution is used
(right panel).
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Figure 4.16: Distributions of the relative efficiencies of the nonmyopic D-optimal designs
against the myopic D-optimal designs for the logistic model for one covariate are plotted
against sample size. We consider the efficiencies of the non-myopic approach with horizons
1 and 3, with the correct and empirical distributions, against the myopic approach as the
baseline.

For the G-optimal designs, we observe in Figure 4.17 that the distributions of β̂ are similar
across the seven methods.
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Figure 4.17: Distributions of β̂ for designs for the logistic model for one covariate are
plotted against sample size. We show the myopic approach (N = 0), as well as the nonmyopic
approach to constructing G-optimal designs with horizon N = 1 and 3. For the nonmyopic
approach, we consider both the case where the correct covariate distribution is known (left
panel), and when it is unknown so the empirical covariate distribution is used (right panel).

In Figure 4.18, we plot the distribution of ΨG for each sample size between 11 and 100. We
observe that there is greater variability in the plots for the G-optimal designs compared
to the DA- and D-optimal designs. In Figure 4.19, we plot the relative efficiencies of the
nonmyopic designs against the myopic design, which confirms again that the myopic approach
is more efficient than the nonmyopic approaches.
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Figure 4.18: Distributions of ΨG for designs for the logistic model for one covariate are
plotted against sample size. We show the myopic approach (N = 0), as well as the nonmyopic
approach to constructing G-optimal designs with horizon N = 1 and 3. For the nonmyopic
approach, we consider both the case where the correct covariate distribution is known (left
panel), and when it is unknown so the empirical covariate distribution is used (right panel).
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Figure 4.19: Distributions of the relative efficiencies of the nonmyopic G-optimal designs
against the myopic G-optimal designs for the logistic model for one covariate are plotted
against sample size. We show the efficiencies of the non-myopic approach with horizons 1
and 3, with the correct and empirical distributions, against the myopic approach as the
baseline. The black line indicates the median, the dark grey is for the 40%− 60% region of
the distribution and the light grey is the 10%− 90% region.

We considered two further cases: one involves a single dynamic covariate, and the second
involves two static covariates with treatment-covariate interactions assumed. The results
are in Appendix E. In all cases, we found that the myopic approach is the most efficient.

In Chapter 9, we provide an overview of simulation results from all parts of the thesis and
the overall conclusions that we draw from them.

4.3 Conclusion

In this chapter, we extended the work of Atkinson (1982) so that it can be applied to any
optimality criterion under the linear and logistic model. We further developed it under a
nonmyopic framework which can be applied to the linear model or the logistic model.
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Based on simulations investigating the linear model case and the D-, DA- and G-optimality
criteria where we have one or two covariates and we consider a horizon of one up to five, there
appears to be little to no benefit to using the nonmyopic approach over the myopic approach
when there are static covariates, and slight benefit when there is a dynamic covariate.

For the logistic model case, we found that there is some evidence of separation occurring
at the early stages of the trial and there is a benefit to putting prior distributions on the
model parameters and taking a Bayesian approach to model fitting. Our set of simulation
studies for the binary response shows that there is no evidence of an advantage for using the
nonmyopic approach when the horizon is set to one, two, or three.

It is possible that, in the cases that we have considered, the horizon is too low for any benefit
to be observed. It appears that the nonmyopic approach can lead to greater variability in
the objective function because some information about future patients are considered and
ends up being less efficient than the myopic approach. Further, the nested expectations and
optimizations make it a computationally expensive approach and higher values of horizons
would be difficult to implement. In Table 4.1, we see that the running times to construct a
design with 100 patients grow quickly as the horizon increases. These results motivate us to
develop an approximation to the nonmyopic approach which we introduce in Chapter 5.
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Chapter 5

Pseudo-nonmyopic Approach

In Chapter 4, we considered the nonmyopic approach for allocating treatments to patients,
where we compute the expected loss afterN future patients are enrolled in the trial. One main
limitation of this approach is that computing the nested expectations and minimizations over
unknown quantities, such as in Equation (4.6) or Equation (4.46), requires recursive formulae
which are computationally expensive. The number of calculations increases exponentially
with each additional future patient in the horizon and, as a result, our simulations considered
examples with horizon no more than five. We now explore a pseudo-nonmyopic approach
which involves evaluating a related objective function with a similar aim without the use of
recursion. The computational burden is reduced as nested expectations and minimizations
are not necessary but we are still able to incorporate information about future possible
decisions. We describe this novel approach for both the linear and logistic model cases,
providing simulations to show how it compares to the myopic approach.

5.1 Linear Model

In this section, we use the notation ti:j to indicate a vector of treatments allocated from the
ith to the jth patient:

ti:j = (ti, ti+1, ti+2, ..., tj)ᵀ . (5.1)

Similarly, for a matrix of covariate values from the ith to the jth patient, we write:

91
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Zi:j =


zᵀi
zᵀi+1
...
zᵀj

 , (5.2)

where, as before, zm = (zm,1, ..., zm,k)ᵀ is a vector containing the k covariate values for
patient m, for m ∈ {i, ..., j}.

In the pseudo-nonmyopic approach, in order to make a decision about the treatment of
the ith patient, we generate M possible trajectories of covariate values for patient i + 1
until patient n. We assume, as for the non-myopic approach, that we have a distribution fz
for the covariate z. This may be the true distribution in the population (if it is known),
or an empirical approximation based on the patients in the trial up until the ith patient.
The covariate distribution may depend on time, in which case we refer to it as a dynamic
covariate. For each of the M trajectories, we construct a pseudo-design in which we have
the i patients and (n− i− 1) patients in the trajectory, and treatments allocated using an
approach that we describe below. We look at the average losses of the M pseudo-designs
where we assign ti = 1, and compare it to the average loss of the M pseudo-designs when
ti = −1; we select ti according to a probability that is weighted by these average losses.

This approach takes averages over simulated values of the covariates for patients i+ 1 up
to n. Optimization based on Monte Carlo simulations of unknown quantities is typically
conducted in a Bayesian setting for design of experiments (Woods et al., 2017), where values
of the unknown parameters may be simulated from a prior distribution. See Gentle (2003)
for an overview of Monte Carlo methods and Ryan (2003) for an application to Bayesian
design of experiments.

We now describe the procedure in more detail. To allocate a treatment for patient i, for
i ∈ {1, 2, ..., n− 1}, we observe zi, and assume that we allocate treatment ti, for ti ∈ {−1, 1}.
Based on the assumed covariate distribution fz, we generate M trajectories of covariate
values for patient i+ 1 up to patient n. Let us denote by zMj the vector of covariate values
for patient j, for j ∈ {i+ 1, ..., n}, in the mth trajectory, where m ∈ {1, ...,M}. We denote
the matrix of covariate values in the mth trajectory as Zm

(i+1):n:

Zm
(i+1):n =


zmᵀ
i+1
...
zmᵀ
n

 . (5.3)
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Then, we allocate treatments for the mth trajectory sequentially from the i+ 1th patient to
the nth patient. Given the covariates of the first patient in the trajectory, zmi+1, we choose
the treatment t∗mi+1 which minimizes the objective function Ψ given ti, and the treatments
and covariates of previous patients:

t∗
m

i+1(zmi+1, ti | Zi, ti−1) = argmin
ti+1

Ψ
(
ti+1 | Zi, zmi+1, ti−1, ti

)
. (5.4)

To allocate a treatment for the jth patient in the trajectory, j ∈ {i+ 2, i+ 3, i+ 4, ..., n},
we assume that t∗m(i+1):(j−1) have been allocated to patients i+ 1 up to j − 1 and choose the
treatment t∗mj :

t∗
m

j

(
zmj , t

∗
j−1 | Zi,Zm

(i+1):(j−1), ti−1, ti, t
∗
(i+1):(j−2)

)
(5.5)

= argmin
tj

Ψ
(
tj | Zi,Zm

(i+1):(j), ti−1, ti, t
∗
(i+1):(j−1)

)
. (5.6)

For the mth trajectory, we obtain a pseudo-design which includes patient 1 up to i, as well
as future patients i+ 1 up to n, assuming that the ith treatment is 1. Analogously, we can
obtain the design where the ith patient receives treatment −1. We denote the objective
function of the two designs as follows:

Ψ
(
ti | Zi,Zm

(i+1):n, ti−1, ti = 1, t∗m(i+1):(n−1)

)
, (5.7)

Ψ
(
ti | Zi,Zm

(i+1):n, ti−1, ti = −1, t∗m(i+1):(n−1)

)
. (5.8)

We define the average objective function across the M designs, assuming, firstly, that ti = 1,
and secondly, that ti = −1, for i = 1, ..., n− 1:

Ψ(ti = 1) = 1
M

M∑
m=1

Ψ
(
ti | Zi,Zm

(i+1):n, ti−1, ti = 1, t∗m(i+1):(n−1)

)
, (5.9)

Ψ(ti = −1) = 1
M

M∑
m=1

Ψ
(
ti | Zi,Zm

(i+1):n, ti−1, ti = −1, t∗m(i+1):(n−1)

)
. (5.10)

To select the treatment for patient n, we do not generate any future covariates. We simply
compute the objective function:

Ψ(tn = t) = Ψ (tn = t | Zn, tn−1) . (5.11)
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We sample ti from the set {−1, 1} where the probability of selecting 1 is given by

Ψ(ti = 1)−1

Ψ(ti = 1)−1 + Ψ(ti = −1)−1 . (5.12)

This is the treatment that we allocate to patient i, for i ∈ {1, 2, ..., n− 1}. Pseudocode is
provided in Algorithm 5.
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Algorithm 5 Sequential pseudo-nonmyopic design for continuous response: function returns
a design matrix given covariate values for n patients, Zn ,and the distributions of the k
covariates, fz1 , ..., fzk

1: function Pseudononmy( Zn, fz1 , ..., fzk)

2: for i in 1 to n do
3: Observe zi = (zi,1, zi,2, ..., zi,k)ᵀ

4: for ti in {−1, 1} do

5: for m in 1 to M do
6: Generate Zm

(i+1):n using the assumed covariate distributions fz1 , ..., fzk .

7: Allocate treatments t∗mi+1, t
∗m
i+2, ..., t

∗m
n along the trajectory:

8:

t∗
m

i+1(zmi+1, ti | Zi, ti−1)
= argmin

ti+1
Ψ
(
ti+1 | Zi, zmi+1, ti−1, ti

)
. (5.13)

For j ∈ {i+ 2, i+ 4, ..., n} :
t∗
m

j (zmj , t∗j−1 | Zi,Zm
(i+1):(j−1), ti−1, ti, t

∗
(i+1):(j−2))

= argmin
tj

Ψ
(
tj | Zi,Zm

(i+1):(j), ti−1, ti, t
∗
(i+1):(j−1)

)
. (5.14)

9: end for
10: Define Ψ(ti) = 1

M

∑
1

Ψ
(
tn | Zi,Zm

(i+1):n, ti−1, ti, t
∗m
(i+1):(n−1)

)
11: end for

12: Sample ti from the set {−1, 1} where the probability of selecting 1 is given by:

Ψ(ti = 1)−1

Ψ(ti = 1)−1 + Ψ(ti = −1)−1 . (5.15)

13: end for
14: t = (t1, t2, ..., tn)ᵀ
15: X = [1 Z t] . Design matrix

16: return X

17: end function

In Appendix H, we provide a simple example to illustrate the three model-based approaches
for the linear model we consider in this thesis: the myopic approach, the nonmyopic approach
and the pseudo-nonmyopic approach.
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5.1.1 Simulations

We run two simulations to compare the myopic approach to the pseudo-nonmyopic approach.
In this chapter, we focus on D-optimality as our objective function, but in Chapter 7, we
look into other criteria that focus on specific combinations of covariates and treatments
of interest. We would like to observe whether there is any benefit to using the pseudo-
nonmyopic approach for the linear model case, and we would like to assess the role of M in
the variability of the results. In the first simulation, we consider the case of a single binary
covariate with no interaction assumed between treatment and covariate. The model is given
by:

E (y) = β0 + β1z + β2t. (5.16)

In the second simulation, we consider a more complex case where there are two covariates,
one static and one dynamic, and treatment-covariate interactions.

Our simulations have the following structure:

I (a) 100 patients are assumed and their covariates are generated from a specified
distribution.

(b) We consider the following five designs for the patients in part (a):

• A myopic D-optimal design.

• A pseudo-nonmyopic D-optimal design with M = 10.

• A pseudo-nonmyopic D-optimal design with M = 50.

• A pseudo-nonmyopic D-optimal design with M = 100.

• A pseudo-nonmyopic D-optimal design with M = 200.

(c) Designs are evaluated using the performance measure ΨD, given by Equation
(2.18), at each sample size between 2 and 100, inclusive.

II (a)-(c) above is repeated 100 times to obtain a distribution of the performance measure
for each sample size.

Example 1

In the first example, we generate the covariates from a Bernoulli(0.5) distribution. In the
top row of Figure 5.1, we plot the distributions of ΨD evaluated at each sample size between
2 and 100 for each of the five different approaches. We observe that they appear to be
similar across the five approaches. In the top row of Figure 5.1, we plot the distributions of
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ΨD against sample size. The values of the objective function drop dramatically within 20
patients and appears to reach a stable value after that. We see very little variation across the
five plots here, largely due to the scaling of the plot. In the bottom row of Figure 5.1, we plot
the distributions of relative D-efficiencies (see Equation (2.24)) for the pseudo-nonmyopic
approaches against the myopic approach. Initially, the myopic approach is more efficient
than the pseudo-nonmyopic approach, but this difference becomes smaller as the sample size
increases. It seems that, in this example, M does not appear to influence the variability
of the plots in any way; there seems to be no reduction in performance when M = 10 as
opposed to having M = 200.
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Figure 5.1: Top row: D-optimality against sample size for designs for a linear model with
one static covariate. Bottom row: relative D-efficiency against sample size for designs for a
linear model with one static covariate. Values below 1 indicate that the pseudononmyopic
approach is more beneficial than the myopic approach. The black line indicates the median,
the dark grey indicates the 40th to 60th percentile, and the light grey indicates the 10th to
90th percentile of the distribution.

Example 2

Next, we consider an example with two covariates and treatment-covariate interactions to see
whether we draw the same conclusion. We generate covariate values for 100 patients. There
are two covariates; the first covariate is dynamic and is generated such that P(z1,i = 1) = 0.01i.
The second covariate is static as the probability of its value being equal to 1 is constant for
all i; we have that P(z2,i = 1) = 0.3.
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The model is given by:

E (y) = β0 + β1z.1 + β2z.2 + β3t+ β4z.1t+ β5z.2t. (5.17)

We see in the top row of Figure 5.2 that, again, the values of ΨD evaluated at each sample
size appears to be similar across all methods. The value of the objective function is initially
very large but it drops dramatically by sample size of around 30 and reaches a stable value
after that. The bottom row of Figure 5.2 are plots of the relative efficiencies and they reveals
that, on average, the myopic approach is still more efficient than the pseudo-nonmyopic
approach. In particular, there is a very noticeable improvement in the myopic approach
compared to the pseudo-nonmyopic approach when sample size is between 1 and 50.
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Figure 5.2: Top row: D-optimality against sample size for designs for a linear model with
one static covariate. Bottom row: relative D-efficiency against sample size for designs for a
linear model with one static covariate. Values below 1 indicate that the pseudo-nonmyopic
approach is more beneficial than the myopic approach.

Similarly to what we found in Section 4.1.4 for the nonmyopic approach, we see that the
myopic approach is generally more efficient than the pseudo-nonmyopic approach for the
case of the linear model. We also observe that the choice of M does not make a noticeable
impact on the values of ΨD.

5.2 Logistic Model

In the logistic model case, the objective function Ψ(ti | Zi, ti−1,yi−1) is dependent on
the previous covariates Zi, the previous treatments ti−1 and also the previous responses
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yi−1, since we are using estimated parameter values. In order to create a design using the
pseudo-nonmyopic approach for the logistic model, we begin by constructing an initial design
Xn0 with n0 patients using the exchange algorithm. We assume β = 0 as an initial guess
for evaluating the objective function in the construction of Xn0 . We then generate responses
for the first n0 patients, yn0 , and fit the model to obtain the initial maximum likelihood
estimates of the model parameters, β̂0.

Then, to select a treatment for patient i, for i ∈ {1, 2, ..., n}, we observe zi. Similarly to the
pseudo-nonmyopic approach for the linear model, we generate M possible trajectories for
the covariates, Z1

(i+1):n,Z
2
(i+1):n, ...,Z

m
(i+1):n and we allocate treatments sequentially along

each trajectory. Given the first patient in the trajectory, zmi+1, we choose the treatment t∗mi+1
which minimizes the objective function Ψ given ti, and the treatments and covariates of
previous patients and the estimate of β based on the responses of the previous patients,
yi−1:

t∗
m

i+1
(
zmi+1, ti | Zi, ti−1,yi−1

)
= argmin

ti+1
Ψ
(
ti+1 | Zi, zmi+1, ti−1, ti,yi−1

)
. (5.18)

To allocate a treatment for the next patient in the trajectory with covariate values zmi+2,
we then assume that t∗mi+1 has been allocated to patient zmi+1 and choose the treatment t∗mi+2
which minimizes the objective function. We make the assumption that the future decisions
are independent of the future responses. This means that we assume the same estimate for
β as in the Equation (5.18) and do not update it. We continue in this way until all patients
in the trajectory have been allocated a treatment:

For each j in {i+ 2, i+ 4, ..., n}, we define:

t∗
m

j

(
zmj , t

∗
j−1 | Zi,Zm

(i+1):(j−1), ti−1, ti, t
∗
(i+1):(j−2),yi−1

)
= argmin

tj
Ψ
(
tj | Zi,Zm

(i+1):(j), ti−1, ti, t
∗
(i+1):(j−1),yi−1

)
. (5.19)

For the mth trajectory, we obtain a pseudo-design with n patients where the ith treatment
is 1, as well as a pseudo-design where the ith patient receives treatment −1. We denote the
objective function of the two designs as follows:

Ψ
(
tn | Zi,Zm

(i+1):n, ti−1, ti = 1, t∗m(i+1):(n−1),yi−1
)
, (5.20)

Ψ
(
tn | Zi,Zm

(i+1):n, ti−1, ti = −1, t∗m(i+1):(n−1),yi−1
)
. (5.21)

We define the average objective function for i = n0 + 1, ..., n − 1 across the M designs,
assuming, firstly, that ti = 1, and secondly, that ti = −1, as:
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Ψ(ti = 1) = 1
M

M∑
m=1

Ψ
(
tn | Zi,Zm

(i+1):n, ti−1, ti = 1, t∗m(i+1):(n−1),yi−1
)
, (5.22)

Ψ(ti = −1) = 1
M

M∑
m=1

Ψ
(
tn | Zi,Zm

(i+1):n, ti−1, ti = −1, t∗m(i+1):(n−1),yi−1
)
. (5.23)

For i = n, we do not generate any future covariates so we have:

Ψ(ti = t) = Ψ (tn = t | Zn, tn−1,yn−1) , (5.24)

for t ∈ {−1, 1}.

We sample ti from the set {−1, 1} where the probability of selecting 1 is given by

Ψ(ti = 1)−1

Ψ(ti = 1)−1 + Ψ(ti = −1)−1 . (5.25)

We then observe the response yi and refit the model to obtain β̂i.

Pseudocode is provided in Algorithm 6.
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Algorithm 6 Pseudo-nonmyopic sequential design for binary response: function returns a
design matrix given covariate values for n patients, Zn, the distributions of the covariates
fz1 , ..., fzk and size of initial design n0

1: function Pseudononmy( Zn, fz1 , ..., fzk , n0)

2: Initialization
3: Construct initial design Xn0 : using the exchange algorithm assuming that β = 0.
4: Observe responses yn0 = {y1, y2, ..., yn0}.
5: Fit the model yn0 ∼ glm(Xn0 , link = logit) to obtain the MLE β̂0.

6: for i in 1 to n do
7: Observe zi = (zi,1, zi,2, ..., zi,k)ᵀ

8: for ti in {−1, 1} do

9: for m in 1 to M do
10: Generate Zm

(i+1):n using the assumed covariate distributions fz1 , ..., fzk .

11: Allocate treatments t∗mi+1, t
∗m
i+2, ..., t

∗m
n along the trajectory:

12:

t∗
m

i+1(zmi+1, ti | Zi, ti−1,yi−1)
= argmin

ti+1
Ψ
(
ti+1 | Zi, zmi+1, ti−1, ti,yi−1

)
. (5.26)

For j ∈ {i+ 2, i+ 4, ..., n} :
t∗
m

j (zmj , t∗j−1 | Zi,Zm
(i+1):(j−1), ti−1, ti, t

∗
(i+1):(j−2),yi−1)

= argmin
tj

Ψ
(
tj | Zi,Zm

(i+1):(j), ti−1, ti, t
∗
(i+1):(j−1),yi−1

)
. (5.27)

13: end for

14: Define Ψ(ti) = 1
M

M∑
m=1

Ψ
(
tn | Zi,Zm

(i+1):n, ti−1, ti, t
∗m
(i+1):(n−1),yi−1

)
15: end for
16: Sample ti from {−1, 1} where probability of selecting 1 is given by

Ψ(ti = 1)−1

Ψ(ti = 1)−1 + Ψ(ti = −1)−1 . (5.28)

17: Observe response yi.
18: Xi = [1 Zi ti]
19: Refit the model yi ∼ glm(Xi, link = logit) to obtain the MLE β̂i.
20: end for
21: return Xn

22: end function
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5.2.1 Simulations

We run two simulations to compare the myopic approach to the pseudo-nonmyopic approach
in the case of the logistic model, for different values of M . Similarly to Section 5.1.1, in
the first simulation, we consider the case of a single dynamic covariate with no interaction
between treatment and covariate. In the second simulation, we have two covariates, one
static and one dynamic and we assume that there are treatment-covariate interactions.

Reducing variability

Similarly to Section 4.2.5, we need to make sure that sources of variability are controlled
as much as possible for the logistic model case, where the incorporation of responses adds
a greater amount of variability than for the linear model. We wish to take measures so
that differences between the results for the myopic and pseudo-nonmyopic approaches are
likely to be attributable to the differences in the treatment allocation approach. We make
sure that simulations have the same initial design; the initial design is constructed with
the exchange algorithm to allocate treatments to 10 units, under the assumption that β
is a vector of zeros. We fit the models using the R function bayesglm, with Cauchy prior
distribution with center zero and scale given by 2.5 for both the treatment and covariate
parameters.

In order to generate responses, we generate deviates ui from the Unif(0, 1) distribution and
set the response yi as

yi =

1 if ui ≥ πi
0 if ui < πi

, (5.29)

for i ∈ 1, ..., n. We keep the deviates ui the same for simulations which compare the same
objective function, so that we can ensure that the data generating mechanism is the same.

Choice of β

We choose values of β which lead to values of πi which are close to zero or one. This allows
for more clear-cut choices for treatment allocation. If we choose β such that πi are close
to 0.5, we would introduce more noise in the results. Tables 5.1 and 5.2 show the possible
values that πi can take for the two simulations that we consider.

We note that, in practice, in cases where πi is close to zero or one, the treatment groups are
very well separated and a simple design would suffice to establish which treatment is more
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effective. However, supposing that we wish to estimate the effects of all parameters with
minimum possible variance there may be merit in taking an optimal design approach, and
perhaps with a pseudo-nonmyopic outlook.

Set-up

The structure of the simulations are as follows:

I (a) 100 patients are assumed and their covariates are generated from a specified
distribution.

(b) 100 deviates from a Unif(0, 1) distribution are generated for the response.

(c) An initial design with 10 units is constructed using the exchange algorithm with
D-optimality as the objective function.

(d) The three following sequential designs are constructed using the covariates, random
deviates for the responses, and initial design in part (a):

• A myopic D-optimal design.

• A pseudo-nonmyopic D-optimal design withM = 10, and the correct covariate
distribution assumed.

• A pseudo-nonmyopicD-optimal design withM = 100, and the correct covariate
distribution assumed.

(e) Designs are evaluated using the performance measure ΨD at each sample size
between 10 and 100, inclusive. The true values of the parameters are used to
calculate ΨD.

II (a)-(e) above is repeated 20 times to obtain a distribution of the performance measure
for each sample size.

Example 1

In the first example, we have one binary covariate z. It is dynamic with a distribution given
by P(zi = 1) = 0.01i. The model is given by yi ∼ Bernoulli(πi) where

logit
(

πi
1− πi

)
= β0 + β1zi + β2ti. (5.30)

We set β =
(
0, 1, 2

)ᵀ
which leads to possible values of π given in Table 5.1. We note that

the probabilities are not close to 0.5.
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Table 5.1: Possible values of πi when β =
(
0, 1, 2

)ᵀ
πi when β =

(
0, 1, 2

)ᵀ
zi ti πi
−1 −1 0.047
1 −1 0.2689
−1 1 0.7311
1 1 0.9526

In Figure 5.3, we see the estimates of β for the myopic approach, the pseudo-nonmyopic
approach with M = 10 and with M = 100. We observe that the plots looks very similar
across the three methods. The variability of the estimates reduces with sample size for the
intercept and the coefficient of treatment. The median of the distributions converge to their
true value after a sample size of approximately 40.
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Figure 5.3: Parameter estimates given by the myopic approach, pseudo-nonmyopic approach
with M = 10 and pseudo-nonmyopic approach with M = 100 for a logistic model with one
dynamic covariate. The black line indicates the median, the dark grey indicates the 40th to
60th percentile, and the light grey indicates the 10th to 90th percentile of the distribution
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In Figure 5.4, the top row displays the values of ΨD evaluated at each sample size. This
appears to be similar across all methods with slightly higher variation observed for the
pseudo-nonmyopic approach with M = 10. In all three cases, the value of the objective
function drops after a few initial patients and stabilizes after around 30 patients. The
bottom row shows the relative D-efficiencies (see Equation (4.34)) of the pseudo-nonmyopic
approaches, compared to the myopic approach. We see that, initially, they have equal
efficiency, but then the myopic approach appears to be slightly more efficient. We note that
the distributions of efficiencies are skewed; there appears to be a number of extreme points
where the myopic approach is much more efficient than the pseudo-nonmyopic approach.
This is partly due to the fact that the efficiency is bounded below by zero, but unbounded
above.
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Figure 5.4: Top row: D-optimality against sample size for designs for a logistic model
with one dynamic covariate. Bottom row: relative D-optimality against sample size for
designs for a logistic model with one dynamic covariate. Values below 1 indicate that the
pseudononmyopic approach is more beneficial than the myopic approach.
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Example 3 Two covariates plus interactions

In the second example, we include interactions. In Chapters 6 and 7 which focus on
personalized medicine, interactions will play a central role. This example has two binary
covariates. The first is dynamic with distribution given by P(zi,1 = 1) = 0.01i, and the
second is static with distribution given by P(zi,2 = 1) = 0.3. The model is given by yi ∼
Bernoulli(πi) where:

logit
(

πi
1− πi

)
= β0 + zi,1β1 + zi,2β2 + tiβ3 + zi,1tiβ4 + zi,2tiβ5. (5.31)

We set β =
(
1, 2, 1,−2, 5,−4

)ᵀ
. The possible values of π are given in Table 5.2; we observe

that most are close to zero or one.

Table 5.2: Possible values of πi when β =
(
1, 2, 1,−2, 5,−4

)ᵀ
πi when β = (1, 2, 1,−2, 5,−4)ᵀ

z1,i z2,i ti πi
−1 −1 −1 0.7311
1 −1 −1 0.0067
−1 1 −1 1.0000
1 1 −1 0.9933
−1 −1 1 0.0067
1 −1 1 0.9999
−1 1 1 0.0000
1 1 1 0.9526

Figure 5.5 shows the estimates of β for the three approaches. Again, the the estimates are
similar across the three approaches. We observe that the larger values of β are not estimated
as well as the smaller values. The two interaction terms, with values 5 and −4, are both
underestimated. This shrinkage effect is attributable to the fact that we are using bayesglm

with prior distributions.



5.2. Logistic Model 109

−
4

−
2

0
2

4

Intercept

Sample Size

Ψ
D

A

z.1

Sample Size

Ψ
D

A

z.2

Sample Size

Ψ
D

A

t

Sample Size

Ψ
D

A

z.1t

Sample Size

Ψ
D

A

z.2t

Sample Size

Ψ
D

A

−
4

−
2

0
2

4

Sample Size

Ψ
D

A

Sample Size

Ψ
D

A

Sample Size

Ψ
D

A

Sample Size
Ψ

D
A

Sample Size

Ψ
D

A

Sample Size

Ψ
D

A

20 80

−
4

−
2

0
2

4

Sample Size

Ψ
D

A

20 80

Sample Size

Ψ
D

A

20 80

Sample Size

Ψ
D

A

20 80

Sample Size

Ψ
D

A

20 80

Sample Size

Ψ
D

A

20 80

Sample Size
Ψ

D
A

Sample size 

β̂

Myopic

Pseudo−nonmyopic, M=10

Pseudo−nonmyopic, M=100

Figure 5.5: Parameter estimates given by the myopic approach, pseudo-nonmyopic approach
with M = 10 and pseudo-nonmyopic approach with M = 100 for a logistic model with two
covariates.

In Figure 5.6, we see in the top row displays that the values of ΨD evaluated at each sample
size are similar across all methods. There is slightly lower variability in the plot for the
myopic approach compared to the pseudo-nonmyopic approach. In the bottom row, we
observe that, initially, the pseudo-nonmyopic approach and myopic approach have equal
efficiency, but then the myopic approach becomes more efficient. After around sample size
of 40, the two approaches appear to perform similarly. It appears that M does not affect
the results in any noticeable way.
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Figure 5.6: Top row: D-optimality against sample size for designs for a logistic model
with two covariates. Bottom row: relative D-optimality against sample size for designs for
a logistic model with two covariates. Values below 1 indicate that the pseudononmyopic
approach is more beneficial than the myopic approach.

The conclusions we draw for the pseudo-nonmyopic approach for the logistic model are
similar to those of the linear model; we find that the myopic approach is more efficient,
and M does not appear to affect the performance of the pseudo-nonmyopic approach in
the examples we have considered. As shown in Table 5.3, a larger value of M results in
longer computational time, so we choose a small value of M = 20 in simulations using
the pseudo-nonmyopic approach in Sections 5.3.3 and 7.2.1. We also see that there is
more variability in the values of the objective function for the pseudo-nonmyopic approach
compared to the myopic approach, which is expected as the pseudo-nonmyopic approach
takes into account future possible patients.
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Table 5.3: Running time in seconds for constructing a design with one covariate and 100
patients. Initial design is one patient for the linear model case, and 10 patients for the logistic
model case. We compare the myopic approach (M = 0) against the pseudo-nonmyopic
approach with M set to 10, 50, and 100. Simulations were performed on a machine with a
2GHz processor and 64 GB of memory.

M
Linear Model
Binary Treatment

Logistic Model
Binary Treatment

Logistic Model
Continuous Treatment

Static Dynamic Static Dynamic Static Dynamic
0 0.041 0.034 0.849 0.97 0.744 0.78
10 22.989 28.25 273.56 286.144 506.462 > 60 hours
50 114.905 140.59 1335.804 1387.487 2441.124 > 60 hours
100 229.303 282.716 2630.497 2738.561 4334.633 > 60 hours

5.3 Continuous treatment

So far in this thesis, we have only considered the case of a binary treatment where we
compare a new treatment with a control. However, extending this to a continuous treatment
has important applications in clinical trials; dose-finding is an essential part of phase I
trials where it is important to find an acceptable drug dosage which does not cause serious
side-effects (Pocock, 2013, p.3). For the nonmyopic approach, computations involving
recursive formulae such as Equations (4.6) or (4.46) are time consuming when the treatment
is simply binary. To extend this for a continuous treatment, we would need to use Monte
Carlo approximations which would further add computational complexity to the problem;
we do not explore this problem in this thesis. However, for the pseudo-nonmyopic approach,
extension to a continuous treatment case is relatively straightforward.

We note that, in dose-finding, continuous treatments effects are typically not modeled in a
linear fashion in practice. There is a need to balance the two aims of having a high enough
dose for a desired response, and a low enough dose so avoid adverse effects, so a nonlinear
approach is needed (Yu et al., 2016). This is outside of the scope of this thesis.

5.3.1 Optimal design for continuous treatments

We assume without loss of generality that the treatments take values in the constrained
region [−1, 1] ∈ R. To allocate a continuous treatment sequentially using optimal design with
a myopic outlook, we need to select a treatment ti for the ith patient to minimize some objec-
tive function Ψ (ti | Zi−1, zi, ti−1) for the linear model case or Ψ (ti | Zi−1, zi, ti−1,yi−1) for
the logistic model case. This is a one-dimensional optimization problem which we solve using
a search algorithm. We use Brent’s method which is a hybrid between Newton and bisec-
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tion; this can be implemented in R using the function optim() with option method="Brent".

For a non-sequential approach where all n treatments are allocated simultaneously, the
optimal treatment vector t =

(
t1, ..., tn

)ᵀ
is found to minimize the objective function Ψ (X)

where X is a design matrix with t as its treatment column. For this multi-parameter
optimization problem, we use the limited-memory quasi-Newton code for bound-constrained
optimization which is implemented using optim() with option method="L-BFGS-B".

In Chapter 2, we allocate treatments according to a probability such as Equation (2.37) to
make a decision that is optimal but also mitigates the chance of selection bias. Here, in the
case of a continuous treatment, we allocate the treatment deterministically.

5.3.2 Pseudo-nonmyopic approach for continuous treatments

We describe the pseudo-nonmyopic approach when there is a continuous treatment. We
describe only the case for the logistic model; the linear model is analogous to the logistic
model case, but the responses yi do not enter the equations below as they are not needed to
compute the objective function.

Logistic model

To allocate a treatment for patient i for i ∈ {1, 2, ..., n− 1}, we observe zi. As before, we
generate M possible trajectories, Z1

(i+1):n,Z
2
(i+1):n, ...,Z

m
(i+1):n. Then, for the mth trajectory,

m ∈ {1, ...,M}, we need to perform a nested optimization; given some treatment ti, we
find the vector of optimal treatments t∗m(i+1):n for the patients in the trajectory; this is a
multi-parameter optimization which requires a search algorithm:

t∗
m

(i+1):n

(
zm(i+1):n, ti | Zi, ti−1,yi

)
= argmin
t(i+1):n∈[−1,1]n−i−1

Ψ
(
t(i+1):n | Zi, zm(i+1):n, ti−1, ti,yi

)
.

(5.32)

We denote the quantity in Equation (5.32) by t∗m(i+1):n to simplify notation. We then need to
search over the space [−1, 1] to find the optimal choice of treatment tmi for the objective
function at the end of the experiment:



5.3. Continuous treatment 113

ti
m
(
zm(i+1):n, t

∗m
(i+1):n | Zi, ti−1,yi

)
= argmin

ti∈[−1,1]
Ψ
(
ti | Zi, zm(i+1):n, ti−1, t

∗m
(i+1):n,yi

)
. (5.33)

We compute the average of the M optimal treatments for patient i, and this is the treatment
value that we assign:

ti = 1
M

M∑
m=1

ti
m. (5.34)

To allocate a treatment for patient n, there is no need to generate future patients in the
trajectory; the assigned treatment is given by

tn = argmin
tn∈[−1,1]

Ψ (tn | Zn, tn−1) . (5.35)

We note that, choosing the treatment which minimizes the average of the objective functions
across the M pseudo-designs is computationally too expensive; thus we opt to select the
treatment which the average of the optimal treatments as in Equation (5.34). Further, we
note that the average is not the only summary statistic that could be chosen in Equation
(5.34); this is discussed further in Section 5.4.

5.3.3 Simulations

We conduct the same two simulation studies as in Section 5.2.1 for logistic regression but
we now assume a single continuous treatment in both cases. We also reduce the number of
patients in each experiment; we consider only 50 patients instead of 100. Searching over a
continuous space is more computationally intensive than the binary treatment case that we
considered previously.

Example 1

In the first simulation, we have one dynamic covariate such that P(zi = 1) = 0.02i. For the
pseudo-nonmyopic approach, we set M = 20. All other settings are kept the same as in the
logistic model case.

In Figure 5.7, we plot the estimates of β for the case where we have one dynamic covariate.
We observe that the estimates of β are similar for the myopic and pseudo-nonmyopic



114 Chapter 5. Pseudo-nonmyopic approach

approach with M = 20 for the continuous treatment case. We observe greater variability
than in the binary treatment case in Figure 5.3.
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Figure 5.7: Parameter estimates given by the myopic approach and pseudo-nonmyopic
approach with M = 20 for a logistic model with one dynamic covariate and a continuous
treatment.

In Figure 5.8, we display boxplots to show the distribution of the treatment selected across
the 20 simulations at each value of sample size between 1 and 50. The boxplots are the
same for the first 10 patients for the myopic and pseudo-nonmyopic cases since the initial
10-patient designs are the same for the two methods. In the initial design, we assume that
the true value of the parameters are zero, so the treatments selected are either -1 or 1. After
the initial design, the selected treatments are spread across the interval [−1, 1]. We observe
greater variability in the myopic case. This may be explained by the fact that the parameter
estimates are less variable for the myopic approach, leading to choices of treatment that are
closer to the extremes. The medians of the boxplots appear to be scattered in a random
way for the myopic approach. In the pseudo-nonmyopic approach, the medians are generally
greater than zero. In the final 10 patients, we observe that more treatments below zero are
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allocated.
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Figure 5.8: Boxplots display the distribution of the allocated treatments at each sample
size for the myopic approach and pseudo-nonmyopic approach with M = 20 for a logistic
model with one dynamic covariate and a continuous treatment.

The plots displaying the D-optimal objective function and relative D-efficiency for the
continuous case below in Figure 5.9 are similar to that of the binary case in Figure 5.4. We
observe that the the myopic approach is slightly more efficient than the pseudo-nonmyopic
approach.
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Figure 5.9: Optimality and D-efficiency given by the myopic approach and pseudo-
nonmyopic approach with M = 20 for a logistic model with one dynamic covariate and a
continuous treatment.

Example 2

In the second simulation study, we have two covariates with distributions given by P(zi,1 =
1) = 0.2i and P(zi,2 = 1) = 0.3. Figure 5.10 displays the distribution of the estimates of β.
The distributions appear similar for the two approaches. In particular, the two interactions
terms are shrunk towards zero in both cases. The shrinkage is slightly more extreme in the
pseudo-nonmyopic case.
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Figure 5.10: Parameter estimates given by the myopic approach, pseudo-nonmyopic
approach with M = 10 and pseudo-nonmyopic approach with M = 100 for a logistic model
with two covariates.

Figure 5.11 the distributions of the treatment selected across the 20 simulations at each
value of sample size. Similarly to the case with one covariate, we observe that the boxplots
are the same for the initial designs for the myopic and pseudo-nonmyopic cases, and after
the initial design, we observe greater variability in the myopic case. We do not observe any
clear patterns in the allocation of treatments in this example.
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Figure 5.11: Boxplots display the distribution of the allocated treatments at each sample
size for the myopic approach and pseudo-nonmyopic approach with M = 20 for a logistic
model with two covariates.

Figure 5.12 displays the distributions of the D-optimal objective function of the two ap-
proaches, as well as the relative D-efficiency of the pseudo-nonmyopic approach against
the myopic approach. We see that, initially, for sample size smaller than 20, the pseudo-
nonmyopic approach is slightly more efficient than the myopic approach. If sample size
increases beyond that, the myopic approach appears to be increasingly more efficient. This
is likely to be caused by the fact that the myopic approach is able to achieve estimates
of the interactions that are closer to the true value than the pseudo-nonmyopic approach.
Since the objective function is computed using the true values of the parameters, the myopic
approach will have more efficient values of objective function.
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Figure 5.12: Top row: D-optimality against sample size for designs for a logistic model
with two covariates. Bottom row: relative D-efficiency against sample size for designs for
a logistic model with two covariates. Values below 1 indicate that the pseudononmyopic
approach is more beneficial than the myopic approach.

In Chapter 9, we provide an overview of simulation results from all parts of the thesis and
the overall conclusions that we draw from them.

5.4 Conclusion

In this chapter, we introduced a novel approach to sequential treatment allocation which can
take into account the impact of future possible decisions without the need for computationally
expensive recursive formulae that are an integral part of the fully nonmyopic approach. The
pseudo-nonmyopic approach essentially approximates a criterion that is similar to that of
the nonmyopic approach. Further, it can be fairly straightforwardly applied to the case of a
continuous treatment, which is more difficult to do for the for the nonmyopic approach.
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Results from our simulations show that, in the case of a linear model, the myopic and
pseudo-nonmyopic approaches appear to produce fairly similar estimates of the parameters
in both the one-covariate and also the two-covariate case. The myopic approach is slightly
more efficient. We did not see any difference in results when the number of trajectories M
in the pseudo-nonmyopic approach is set to 10, 50, or 100.

In the case of a logistic model, we find that the myopic and pseudo-nonmyopic approaches
perform similarly if there is one covariate, and the myopic approach is more efficient when
there are two covariates.

Extending the logistic model case for a continuous treatment, our main finding is that, in
the case with two covariates and large interactions, the myopic approach is better able to
estimate the interactions. This means that the myopic approach appears to be more efficient,
especially for larger sample sizes.

We described in this chapter how to allocate treatments i + 1 to n in the pseudo-design
sequentially. However, we note that it is also possible to allocate these treatments using the
exchange algorithm instead. This means that a random allocation of treatments is decided
for the future patients, and the best treatment is selected patient-by-patient from patient
i+ 1 up to n, repeating until two passes result in identical designs. This is then repeated a
number of times using different starting designs; see Algorithm 2. Using this approach, the
quantity that we wish to approximate is the the minimum value of the following integral:

∫
Ψ
(
t(i+1):n | z1:i, z(i+1):n, t1:i

)
fz(i+1):ndz(i+1):n, (5.36)

where we define fz(i+1):n as the joint distribution function of the covariates zi+1 up to zn.

Our simulations showed no noticeable difference in efficiency when the treatments were
selected sequentially vs via the exchange algorithm, so we chose to focus on the sequential
approach as this is less computationally expensive.

Lastly, we note one extension that may be interesting further work. In the continuous
treatment approach, we allocate the treatment which is the average of the optimal treat-
ments for the pseudo-designs, as computed in Equation (5.34). By taking the average, we
assign a treatment which is what we would typically expect out of the optimal decisions
made for the pseudo-designs. It is possible to use some other summary statistic here; for
example, a minimax decision rule would mean that treatments are assigned which minimize
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the loss for potential worst-case pseudo-design. It may be interesting to compare differ-
ences in the pseudo-nonmyopic designs that are constructed with different summary statistics.
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Chapter 6

An application in personalized
medicine

In this chapter, we consider how to adapt the sequential treatment allocation methods intro-
duced in Chapter 2 based on optimal design theory to design trials for personalized medicine.
Personalized medicine, also referred to as stratified or precision medicine, is concerned with
treatments that are tailored to patients’ genetic information (Senn, 2016). For example, some
cancers can now be characterized at the molecular level, and treatments can be targeted at
biomarkers, which are specific genetic or biological mechanisms (Kaplan, 2015). There is
a need for clinical trials to be able to identify and validate effective treatment-biomarker
combinations. This can lead to a large number of interaction effects that need to be estimated.

Lee and Wason (2019) propose how data from a Phase II trial can be used to design a
Phase III trial which seeks to estimate parameters associated with the effective treatment-
biomarker combinations as precisely as possible. The proposed design for Phase III trial is
a weighted L-optimal design, where the weights are calculated using data from a Phase II trial.

We adapt this problem for a sequential setting where we wish to obtain an adaptive
treatment allocation scheme based on the weighted L-optimality criterion which seeks to
estimate important treatment-biomarker interactions with low variance. The weights are
not constructed using data from a previous trial; instead, they are learned from the current
trial sequentially. We begin with an overview of personalized medicine, we then illustrate
the methodology and show some simulation results.

123
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6.1 Clinical trials for Personalized Medicine

We provide an overview of the types of designs that are used in clinical trials, and particularly,
those relevant for personalized medicine. A classical design refers to an experiment which
does not consider biomarkers and tests the effect of one treatment factor in the general
population. This has been the setting that we have considered up until this chapter. Multi-
arm multi-stage (MAMS) trials allow for multiple treatments to be tested at the same
time, as well as for treatments to be dropped during the trial if interim analysis shows that
they are ineffective (Royston et al., 2003). A MAMS trial which is currently ongoing in
the UK is the STAMPEDE trial for treatments for prostate cancer, which began in 2005
(Kaplan, 2015). In a stratified or personalized design, patients are recruited from the general
population, and they are subsequently stratified into biomarker-defined subgroups. Each
biomarker has a linked treatment and the effect of that treatment is tested within that
subgroup. We will consider this type of trial in this chapter. Finally, an enrichment design
refers to an experiment where patients’ biomarker status are first established and only those
who are biomarker positive participate in the trial (Ondra et al., 2016b). The motivation
behind enrichment trials is usually to validate that the biomarker has a significant impact
on the treatment effectiveness. They may also be used if it is unethical to test the treatment
on biomarker-negative patients due to, for example, potential side effects (Antoniou et al.,
2016). We display the four types of trial designs visually in Figure 6.1.

Figure 6.1: Types of designs for clinical trials: (a) a classical design testing one treatment
against a control, (b) a MAMS design with multiple treatments, (c) a stratified/personalized
design where patients are stratified into biomarker-defined groups and biomarker-linked
treatments are tested, (d) an enrichment group where only biomarker-positive patients are
entered in the trial.
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Further, there are two types of clinical trials which incorporate genetic characteristics:
umbrella trials and basket trials. An umbrella trial is a stratified design for cancer character-
ized by the same types of cells (histology) where independent randomized controlled trials
are run for each biomarker-treatment subgroup; an example is the FOCUS4 clinical trial
investigating treatments for colon cancer which began in the UK in 2004 and is ongoing
(Kaplan, 2015). Basket trials test a single treatment in several different groups of people who
have the same biomarker, but have different histologies (Renfro and Sargent, 2017). It is
possible that the presence of the genetic biomarker is a stronger predictor of the effectiveness
of the drug, rather than the histology of the tumour; the basket trial is designed with this
in mind. Umbrella and basket trials are illustrated in Figure 6.2.

+

+

+

Same Histology 
(a) Umbrella Trial

Different Histologies
(b) Basket trials 

Figure 6.2: More designs for clinical trials: (a) an umbrella trial where patients have
the same histology and independent trials are carried out for each biomarker-treatment
combination, (b) a basket trial where patients have different histologies, but have the same
biomarker and the same treatment is tested.

Antoniou et al. (2016) carried out a literature review of non-adaptive biomarker-linked de-
signs for clinical trials and listed the main types, their advantages and limitations. Antoniou
et al. (2017) undertook a similar review of the literature for adaptive biomarker-linked trials,
where accumulating information is used to change part of the study. Usually, this means
that treatment arms are dropped, or the probability of treatment assignment changes over
time. Antoniou et al. (2017) listed both classical and Bayesian approaches which have been
used. Renfro and Sargent (2017) and Parmar et al. (2017) provided overviews of umbrella,
basket and multi-stage trials. Freidlin et al. (2010) provided a summary of issues related
to designing personalized trials, including compliance issues and the case where biomarker
status may be missing.

Minimization has been used in some personalized trials, such as the STAMPEDE trial, as a
treatment allocation scheme (Sydes et al., 2012). The play-the-winner rule is a response-
adaptive treatment allocation scheme that has also been used in clinical trials, though it
does not in general include covariates (Yao and Wei, 1996). The play-the-winner rule is
appropriate for binary treatments and works by sampling treatments from an “urn”. Suppose



126 Chapter 6. Personalized medicine

that, at the start of the trial, the urn contains one of each treatment, and one of them is
randomly selected for the first patient. Then, assuming a binary response, if the patient
responds well to the given treatment, then n1 more of the same treatment are added to the
urn. If the patient does not respond well, then n2 of the other treatment are added to the
urn. This is repeated for each patient. Bandyopadhyay and Biswas (1999) and Zhang et al.
(2016) consider modified versions of the play-the-winner rule which incorporate prognostic
factors.

Bayesian adaptive randomization is an approach gaining popularity in research for clinical
trial methodology (Zhang et al., 2016). Originally presented by Thall and Wathen (2007),
this approach is able to incorporate a physician’s preference for one treatment over another
based on previous data or experience. Treatment allocation probabilities are updated accord-
ing to accruing data in the trial. The method has been extended to allow for the presence of
biomarkers and other covariates by Zhang et al. (2016) and Wason et al. (2015).

Recently, some work has been undertaken on approaching personalized clinical trials from
an optimal design framework. Ondra et al. (2016b) used a decision theoretic framework,
where utility functions are constructed to find optimal sample sizes and also to determine
whether testing should be performed in a particular subgroup or in the general population.
These utility functions incorporated such factors as the costs of running the trial and the
expected effect of the treatment. Zhang et al. (2007) were the first to consider optimal
response-adaptive designs for survival trials, focusing on how to minimize the total hazard.
Sverdlov et al. (2011) proposed a DA-optimal approach to estimate most precisely the treat-
ment effect under power constraints, as well as a method of treatment allocation involving
non-linear programming which is designed to maximize power. Ethical constraints were also
incorporated, such as minimizing the expected total hazard, or minimizing the number of
patients who receive sub-optimal treatments.

Lee and Wason (2019) proposed an optimal design approach to designing Phase III biomarker-
driven trials. The idea is that data from a Phase II trial can be used to inform which
hypotheses should be tested in a Phase III trial. They proposed a treatment allocation
scheme for the Phase III trial based on a weighted L-optimal design. They showed that the
design helps to ensure that false null hypotheses are rejected with high power.

We discuss two important statistical topics that arise in sequential trials for personalized
medicine: the issue of multiplicity, and the the issue of subgroup selection. Although these
topics are outside the scope of what we investigate in our simulations, we mention briefly
some key findings in the literature.



6.1. Clinical trials for Personalized Medicine 127

6.1.1 Multiplicity

In the setting of sequential clinical trials, multiple hypothesis tests are conducted. The
first source of multiplicity comes from repeatedly testing data which accumulates over time
(Pocock, 1982). For ethical reasons, it is desirable to stop a trial once there is sufficient
evidence of treatment difference or lack thereof, so it is necessary to conduct intermittent
analyses. The second source of multiplicity comes from testing hypotheses for different
subgroups. Both aspects result in a need to adjust significance levels of the tests.

Repeated hypothesis testing as data accumulates can be conducted either after each patient
response or after a batch of patients respond to treatment. This results in the problem
that, even if the null hypothesis is true, running the trial for a sufficiently long time can
result in a test statistic which appears significant (Armitage et al., 2001, p.496). One
common solution is to choose a nominal significance level for each test which is stricter
than the overall significance level; the nominal significance level can be found by numerical
integration given a specified overall significance level and power of the test. Pocock (1982)
investigated batch sequential designs where stricter nominal significance levels are used.
Results from simulations show that for the case of a continuous response and two treatments,
it is unlikely that having more than five batches will lead to a smaller expected sample
size if the alternative hypothesis is true. One exception is if there is an extremely large
treatment effect. In this case, frequent testing can lead to early stopping of the trial. They
also considered approaches where the nominal significance level is allowed to vary. In an
approach described by O’Brien and Fleming (1979), nominal significance levels were set to
be monotonically increasing with the significance level of the final test set to the overall
significance level. Pocock (1982) found from simulations with two and five batches where
high power is required, that there is little advantage to having varying significance levels
as opposed to having a constant nominal significance level. Armitage et al. (1969) showed
simulation results for the probability of the trial stopping at or before the nth observation,
for given constant nominal significance levels and assuming that tests are conducted after
each response. They looked at cases where the response is normal, binomial and exponential.

Hypothesis testing within subgroups also results in multiplicity; in particular, Tanniou et al.
(2016) described how subgroup analysis is often conducted in a way which can be misleading,
and their results are sometimes mistakenly interpreted as being confirmatory rather than
exploratory. Moyé and Deswal (2001) described methodology of selecting type I error rates
in advance in order to calculate treatment effect within a prespecified subgroup which has a
confirmatory interpretation.
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6.1.2 Subgroup selection

A major challenge in personalized clinical trials is developing methodologies to select
appropriate biomarker subgroups (Maitland and Schilsky, 2011). Sargent et al. (2005)
remarked that there is a lack of systematic methodology for validating suitability of biomarker
subgroups for clinical trials, which can lead to biomarkers being included without evidence
of being predictive of treatment effect, or effective biomarkers being introduced slowly into
clinical settings. A number of clinical trial designs have been developed specifically to
validate the biomarker’s effectiveness in predicting treatment effect (Sargent et al., 2005). A
literature review on methods for confirming targeted subgroups for clinical trials is provided
by Ondra et al. (2016a). Zhang et al. (2018) proposed methodology for enrichment designs
where subgroups are selected based on accruing data in the trial.

6.2 Method

We now describe the method for treatment allocation for when there is interest in estimating
effects of treatment-biomarker interactions in the context of personalized medicine.

6.2.1 Model and set-up

In previous chapters, we assumed that there was one binary treatment. We now generalize
this and assume there are t binary treatments, which have levels coded by 1 (new treatment)
and 0 (control), as this is the conventional form of coding treatment in medical statistics.
Biomarkers are represented by binary covariates, and they are assumed to be independent.
The biomarkers also have levels coded by 1 (patient has the biomarker) and 0 (patient does
not have the biomarker). For k biomarkers and t treatments, there are R = 2k subgroups in
total and 2k × t hypotheses to test. In the case of treatment-linked biomarkers, treatments
are usually assigned only to specific subgroups for whom the treatment is suspected to be
more effective for. For the moment, we ignore this aspect and assume that all treatments
may be applied to all subgroups.

We consider the case where the response is continuous. We assume a linear model for the
response:

Y = Xβ + ε, (6.1)

where X includes a column for the intercept, columns for each biomarker, columns for each
treatment, and columns for each treatment - biomarker interaction; there are 1 + k + t+ tk
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columns. The vector β has length q and we assume that ε ∼ N(0, Inσ2).

We follow the notation by Lee and Wason (2019). In each of the R = 2k subgroups, we wish to
test the null hypothesis, cᵀrβ ≥ τr, against the alternative hypothesis, cᵀrβ < τr, where τr ≤ 0
is the minimum uninteresting threshold. A negative parameter value is deemed interesting
since it is interpreted as reducing the symptoms of the disease. The vector cr is an indicator
vector for the linear combination of parameters of interest in subgroup r, for r ∈ {1, ..., R}.
Typically, cr will have value one for the entry corresponding to the treatment effect in β and
potentially also for entries corresponding to interaction effects of interest, and zeros otherwise.

We define the probability Pr as

Pr = P (cᵀr β̂ < τr) for all r ∈ {1, ..., R}. (6.2)

In order to compute Pr, we note that, under the model in Equation (6.1), if σ2 is known,
cᵀrβ̂ has distribution given by N

(
cᵀrβ, σ2cᵀr (XᵀX)−1 cr

)
. If σ2 is unknown, cᵀrβ̂ has a

t-distribution with degrees of freedom n− q, with location and scale parameters given by
cᵀrβ and σ2cᵀr (XᵀX)−1 cr, respectively: tn−q

(
cᵀrβ, σ2cᵀr (XᵀX)−1 cr

)
.

Lee and Wason (2019) define weights wr as

wr =

Pr if Pr ≥ κ0 otherwise
for all r ∈ {1, ..., R}, (6.3)

where κ is a chosen threshold. In our simulations, we set κ to zero, so we have wr = Pr.

As we are interested in minimizing the variance of linear combinations of parameters of the
model, the L-optimal objective function is an appropriate choice for an optimality criterion
(Atkinson et al., 2007, p. 142). Further, since some linear combinations are deemed more
important than others, we consider weighting this criterion (Morgan and Wang, 2010). Given
a design matrix X and vectors cr, 1 ≤ r ≤ R, we define the weighted L-optimal objective
function:

ΨL(X, cr) =
R∑
r=1

wrc
ᵀ
r(XᵀX)−1cr. (6.4)

We wish to construct X to minimize ΨL(X, cr).
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As a comparison, in our simulations in Section 6.3.3, we also consider the DA-optimal design:

ΨDA(X) = det
(
Aᵀ(XᵀX)−1A

)
, (6.5)

where the matrix A contains vectors cr as columns for some values of r ∈ {1, ..., R} so
that A has full column rank (Atkinson et al., 2007, p.137). We denote by b the number of
columns in A. The objective function for a weighted DA-optimal design is as follows:

ΨDAw(X,cr) =
R∏
r=1

(
cᵀr(XᵀX)−1cr

)wr
. (6.6)

The weighted DA-optimal criterion can be thought of as a geometric mean of the variances of
the linear combinations of interest, whereas the weighted L-optimal criterion can be thought
of as an arithmetic mean. In addition, we also show in our simulations in Section 6.3.3 how
minimization fares against these optimal design approaches.

We can also define weighted L- and DA-efficiencies of a design X relative to another design
X∗ as

EffL = ΨL (X∗, cr)
ΨL (X, cr)

, (6.7)

EffDA =
{ΨDA (X∗, cr)

ΨDA (X, cr)

}1/b
, (6.8)

where b is the number of rows in matrix A.

6.2.2 The sequential implementation

In Section 2.6.2, we discussed a method proposed by Atkinson (1982) for allocating treat-
ments sequentially to patients in order to construct an approximately DA-optimal design.
We adapt this method to obtain a weighted L-optimal design sequentially. For the moment,
we focus on a myopic approach, which we will then extend to a nonmyopic approach in
Chapter 7. We assume that we have one binary treatment.

We begin with an initial design with n0 patients, which is constructed using an exchange
algorithm with the L-optimal objective function with equal weights. We need n0 to be
sufficiently large to be relatively confident that parameter values can be estimated. Problems
with estimation can occur if n0 < q, if there is exact collinearity in the columns of the
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design matrix, or if not all combinations of treatments and covariates are represented by
the sample in the initial design. To avoid problems with estimation when fitting the model
even with a small sample size, we choose to use a Bayesian linear model with a diffuse
normal-inverse-gamma prior. We assume that responses are observed immediately after
treatments are assigned. From the initial treatments and responses, we obtain estimates of
β̂, σ̂ and we can also estimate the weights wr. In Section 6.2.3, we describe a fully Bayesian
approach to constructing the design.

We denote by Ti−1 the (i− 1)× k matrix where each column is the vector ti−1:

Ti−1 =

ti−1 ... ti−1︸ ︷︷ ︸
k times

 . (6.9)

Given that the treatments ti−1 have been assigned, the responses for the previous patients
yi−1 have been observed and the biomarkers for all patients up until the current patient Zi
have been observed, we define the design matrix as follows:

X(ti) =
[
1 Zi−1 ti−1 Zi−1 ◦ Ti−1

1 zᵀi ti tiz
ᵀ
i

]
, (6.10)

where ◦ denotes the Hadamard product. We express the weighted L-optimal design criterion
defined previously for a static design matrix in Equation (6.4) as

ΨL(ti | zi, ti−1,yi−1) =
R∑
r=1

wr,i−1
(
cᵀr (X(ti)ᵀX(ti))−1 cr

)
. (6.11)

A treatment is chosen by sampling from all of the possible treatments, where the sampling
weight for treatment m, for m ∈ {1, 2, ..., t}, is given by

ΨL(ti = j | zi, ti−1,yi−1)−1∑t
m=1 ΨL(ti = m | zi, ti−1,yi−1)−1 . (6.12)

Once the treatment is chosen, the design matrix is updated, a new response is observed, and
we update β̂, σ̂ and wr. The pseudocode is provided in Algorithm 7.
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Algorithm 7 Sequential weighted L-optimal design: function returns a design matrix given
covariate values for n patients, Zn, and the number of patients in initial design n0

1: function seqWL(Zn, n0)

2: Initialization
3: Construct initial design Xn0 : use the exchange algorithm with L-optimality with

equal weights.
4: Observe responses y1, y2, ..., yn0

5: Fit the model yn0 ∼ lm(Xn0) to obtain β̂0 and σ̂0.
6: Calculate wr0 = P (cᵀr β̂0 < τr) for all r.

7: for i in n0 + 1 to n do
8: Observe zi,1, ..., zi,k
9: Calculate ΨL(ti | zi, ti−1,yi−1) for each treatment.

10: Sample treatment for patient i where probability of treatment j is given in
Equation (6.12).

11: Append new row containing covariates for patient i, ti and their interactions to
the design matrix to form Xi.

12: Observe response yi.
13: Refit model and yi ∼ lm(Xi) update the parameter estimates β̂i and σ̂i.
14: Update weights wri for all r.
15: end for

16: return X

17: end function

6.2.3 A Bayesian approach

It is helpful in the case where we have a small initial sample size or when we have rare
biomarkers, to use the Bayesian linear model so that we do not have problems with estimation.
In this section we describe a fully Bayesian approach where we choose a prior distribution
for (β, σ2), e.g. normal inverse gamma distribution, and calculate the posterior probability
wr = P (cᵀrβ < τr|y).

Suppose we have a normal inverse gamma distribution for (β, σ2). Using notation similar to
O’Hagan (1994, p.307), we have:

β | σ2,m,V −1 ∼ N(m, σ2V −1), (6.13)

σ2 | a, d ∼ Γ−1(a, d), (6.14)



6.3. Simulations 133

with hyperparameters a, d, m, and V . The q-vector m is the prior mean of β given σ2, and
the n× n matrix V is the prior precision of β given σ2. The joint prior is given by:

f(β, σ2 |m,V , a, d)

= | V |−1 (2π)−q/2 da

Γ(a)

( 1
σ2

)k/2+a+1
exp

(
−2d+ (β −m)ᵀV −1(β −m)

2σ2

)
.

The posterior distribution of (β, σ2) is a normal inverse gamma distribution,
NIG(a∗, d∗,m,∗ ,V ∗), where the parameter values are given below (O’Hagan, 1994, p.308):

a∗ = a+mᵀV −1m+ yᵀy − (m∗)ᵀ(V ∗)−1m∗,

d∗ = d+ n,

V ∗ = (V −1 +XᵀX)−1,

m∗ = (V −1 +XᵀX)−1(V −1m+Xᵀy).

We estimate the parameters under the Bayesian approach by taking the posterior mode of
the marginal distributions. The marginal distribution of β is given by the multivariate t
distribution with degrees of freedom d∗ and posterior location parameter m∗ and posterior
shape parameter a∗V ∗. The posterior mode is given by m∗. The marginal distribution of
σ2 is an inverse gamma distribution with hyperparameters a∗ and d∗. The posterior mode
is given by

√
a∗

d∗−2 .

In the Bayesian setting, obtaining an estimate for wr or Pr as defined by Equations (6.3)
and (6.2) is more cumbersome. The marginal distribution of β a multivariate t distribution,
and linear combinations of t distributions do not have a simple analytic form. Thus, it is
necessary to generate h simulations of β and compute the proportion of those h deviates for
which we have cᵀrβ < τr, where we set h = 100. Given this estimate of wr, the weighted L-
and DA-optimal objective functions are defined in the Bayesian approach as in Equations
(6.4) and (6.6).

6.3 Simulations

We wish to construct weighted L-optimal designs sequentially for some simple scenarios
so that we can observe how well the parameters are being estimated and examine some
characteristics of the designs. At each sample size between n0 and n, we consider the
following performance measures:

1. The estimates β̂.



134 Chapter 6. Personalized medicine

2. The estimates σ̂.

3. The weights wr.

4. The proportion of patients assigned to the new treatment (ti = 1).

5. The weighted L-optimality of the design.

In addition, we are interested in the following measures which we explain below:

6. The theoretical value of the power of the hypothesis test in each subgroup.

7. The empirical value of the power of the hypothesis test in each subgroup.

8. The empirical value of 1-specificity of the hypothesis test in each subgroup.

We are interested in the power of the hypothesis test. If the true value of σ2 is known, cᵀrβ̂
has distribution given by N

(
cᵀrβ, σ2cᵀr (XᵀX)−1 cr

)
. Assuming that σ2 is unknown, we

have

cᵀrβ̂ ∼ tn−q
(
cᵀrβ, σ

2cᵀr (XᵀX)−1 cr
)
. (6.15)

Our test statistic is given by

cᵀrβ̂ − τr√
σ̂2cᵀr (XᵀX)−1 cr

, (6.16)

and the p-value of the hypothesis test is given by the probability that the test statistic is in
the critical region:

P

 cᵀrβ̂ − τr√
σ̂2cᵀr (XᵀX)−1 cr

< tn−q,α


= P

 cᵀrβ̂ − cᵀrβ√
σ̂2cᵀr (XᵀX)−1 cr

< tn−q,α + τr − cᵀrβ√
σ̂2cᵀr (XᵀX)−1 cr


= P

tn−q < tn−q,α + τr − cᵀrβ√
σ̂2cᵀr (XᵀX)−1 cr


= Tn−q

tn−q,α + τr − cᵀrβ√
σ̂2cᵀr (XᵀX)−1 cr

 ,
where Tn−q is the cumulative distribution function of the tn−q-distribution and tn−q,α is
the α quantile of the tn−q-distribution. We calculate this quantity in subgroups in which
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the alternative hypothesis is true; this gives us a theoretical quantity of the power of the
hypothesis test. We also find the proportion of simulations in which the test statistic in
Equation (6.16) is smaller than the critical value tn−q,α. In subgroups in which the null
hypothesis is true, this proportion is equivalent to 1−specificity, and in subgroups in which
the alternative hypothesis is true, this proportion is equivalent to an empirical value of the
power of the hypotheses test.

We note that, in a Bayesian framework, power is equivalent to sensitivity (Sharma et al.,
2009).

6.3.1 An example with one biomarker

We consider the case where there is one binary biomarker z, with levels coded by 0 and
1. This defines two subgroups: the subgroup with zi = 0 and the subgroup with zi = 1.
We assume there is one binary treatment, and we wish to test its effectiveness in the two
subgroups. The ith row of the design matrix for patient i is {1 zi ti ziti}.

The vectors cr are as follows,

c1 = (0, 0, 1, 0) (6.17)

c2 = (0, 0, 1, 1) , (6.18)

where c1 corresponds to the effectiveness of the treatment for the subgroup where zi = 0,
and c2 is that of the subgroup where zi = 1.

We consider a simple simulation with the sequential weighted L-optimal design described
in Section 6.2.2 with pseudocode given by Algorithm 7 where we choose a normal-inverse-
gamma prior m = 0, V = 1

100I4, a = 2, d = 2. This means that we have set the prior
distribution of β given σ2 to be centered around zero with a high variance, and the prior
distribution of σ2 is relatively flat. Essentially, our prior is diffuse. Other settings for the
simulation are given below:
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Table 6.1: Settings for a simulation in a personalized medicine setting with one biomarker

Biomarkers z ∼ Bernoulli(0.3)
True β all entries (for intercept, t, z, tz) are zero
True σ 1.5
τr −1 for all r
κ 0
Initial sample size 15
Number of simulations 100

The structure of our simulations are as follows:

I (a) 100 patients are assumed and their covariates are generated from a specified
distribution.

(b) The weighted L-optimal criterion, given by Equation (6.4), is used to generate
designs sequentially with settings given in Table 6.1.

(c) Designs are evaluated using the performance measures given at the start of Section
6.3 at each sample size.

II (a)-(c) above is repeated 100 times to obtain a distribution of the performance measure
for each sample size.

Figures 6.3 to 6.8 display how the distribution of a number of performance measures change
as sample size increases. The performance measures considered include the parameter
estimates β̂, σ̂, the weights wr, the power of the hypothesis tests, the proportion of patients
assigned to the new treatment (ti = 1) and the weighted L-optimality of the design.

We observe in Figure 6.3 that the distribution of the estimates of the coefficients are all
centered around zero. The variance appears to be highest for the interaction term, and
lowest for the intercept. Figure 6.4 shows that the estimates of σ are also distributed around
the true value. Overall, it seems that the design is estimating the parameters in a way that
we expect.
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Figure 6.3: Distribution of β̂ vs sample size for the weighted L-optimal design for the
linear model case with one biomarker. The black line indicates the median, the dark grey
indicates the 40th to 60th percentile, and the light grey indicates the 10th to 90th percentile
of the distribution.
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Figure 6.4: Distribution of σ̂ vs sample size for the weighted L-optimal design for the
linear model case with one biomarker.

In Figure 6.5, we plot the distribution of the weights for the two subgroups. Since the
treatment is not effective in either subgroup, we expect the true value of the weights to
be zero for both subgroups. We observe that as sample size increases, the estimates of
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the weights do appear to converge to zero. This convergence occurs more quickly with the
subgroup where z takes the value zero, since our simulation settings are such that more
patients with this profile are generated.
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Figure 6.5: Distribution of wr vs sample size for the weighted L-optimal design for the
linear model case with one biomarker. This is shown for subgroups (z = 0) and (z = 1).

In Figure 6.6, we find the proportion of patients allocated to treatment t = 1 in each
subgroup at each sample size, and we plot the distribution of these proportions against the
total sample size. We observe that the distributions are centered around 0.5, so the weighted
L-optimal design leads to a balanced design under the settings chosen in the simulations.
There is greater variance in the subgroup where z = 1 since this biomarker profile is more
rare.
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Figure 6.6: Distribution of the proportion of new treatment in each subgroup vs total
sample size for the weighted L-optimal design for the linear model case with one biomarker.

In our example, the treatment is not effective so the null hypothesis is true. We plot
1-specificity for the test for each sample size in Figure 6.7 for both subgroups.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

0.
00

0.
02

0.
04

z=0

Index

n.
p0

.e
m

p

●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80

z=1

IndexSample Size

1−
sp

ec
ifi

ci
ty

Figure 6.7: 1-specificity for the hypothesis test vs sample size for subgroups (z = 0) (left
panel) and (z = 1) (right panel) for the weighted L-optimal design for the linear model case
with one biomarker. The proportion of correct null hypotheses that have been rejected is
given for each sample size.

We plot the distribution of ΨL calculated at each value of sample size. We observe the
values of the objective functions decrease as sample size increases; as our objective function
is weighted, this decreasing trend is due to a combination of more information accruing as
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well as weights becoming smaller.
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Figure 6.8: Distribution of ΨL vs sample size for the weighted L-optimal design for the
linear model case with one biomarker.

In Appendix F, we provide plots for simulations that we ran for two more cases, where
settings for the simulation are as in Table 6.1, except for the following changes:

1. The coefficient of t is set to -3. This means that the treatment is effective in both
subgroups so instead of plotting 1-specificity in the two subgroups, we plot the power
of the hypotheses tests instead. The plots are given in Appendix F.1

2. The coefficients of t and tz are both set to -3. This means that the treatment is
effective overall, but is particularly effective for patients who have a positive biomarker
status. For the first subgroup, we plot 1-specificity for the hypothesis tests and for the
second subgroup, we plot the power. The plots are given in Appendix F.2

6.3.2 Comparing the normal inverse gamma prior, the Cauchy prior, and
the fully Bayesian approach

Now, we run a simulation to compare three approaches of constructing the weighted L-
optimal design: using the normal inverse gamma prior, using the Cauchy prior, and using
the fully Bayesian approach. We now consider a slightly more interesting case where there
are two binary biomarkers. Subgroups are denoted by two-tuples of the form (z.1, z.2), where
z.1 is the level of the first biomarker, and z.2 is the level of the second biomarker. There are
four subgroups:
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Subgroup 1: (0, 0)

Subgroup 2: (1, 0)

Subgroup 3: (0, 1)

Subgroup 4: (1, 1).

We assume one treatment, and we wish to test its effectiveness in each of the four subgroups.

For patient i with biomarker values (zi,1, zi,2) and assigned treatment ti, the corresponding
row of the design matrix X is given by:

xi =
(
1 zi,1 zi,2 ti zi,1ti zi,2ti

)ᵀ
. (6.19)

We are interested in testing the effectiveness of treatment in each of the four subgroups.
The vectors cr are as follows:

c1 = (0, 0, 0, 1, 0, 0) (6.20)

c2 = (0, 0, 0, 1, 1, 0) (6.21)

c3 = (0, 0, 0, 1, 0, 1) (6.22)

c4 = (0, 0, 0, 1, 1, 1) , (6.23)

and correspond to testing the effectiveness of treatment in subgroups 1, 2, 3 and 4, respec-
tively.

For the treatment allocation methods, we first consider the sequential weighted L-optimal
design described in Section 6.2.2 with pseudocode given by Algorithm 7. We choose a diffuse
normal-inverse-gamma prior, as in the previous simulation in Section 6.3.1, with m = 0,
V = 1

100I6, a = 2, d = 2. Secondly, we use this method with a Cauchy prior with center zero
and scale 2.5. Thirdly, we use the fully Bayesian approach with the normal-inverse-gamma
distribution with parameters m = 0, V = 1

100I6, a = 2, d = 2, as described in Section 6.2.3.
In the fully Bayesian approach, the weights wr are computed using the posterior distribution.
Other settings for the simulation are given in Table 6.2:
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Table 6.2: Settings for a simulation comparing weighted L-optimal designs constructed
with the NIG prior, Cauchy prior, and the fully Bayesian approach

Biomarkers zi,1 ∼Bernoulli(0.5), zi,2 ∼Bernoulli(0.7)
True β all zero except for the entry corresponding to z.1t, which is -2
True σ 1.5
τr -1 for all r
κ 0
Initial sample size 15
Number of simulations 1000

In Figure 6.9, we display the distribution of β̂ under the NIG prior and Cauchy prior, and
for the fully Bayesian approach, we display the posterior mode of β. The plots appear
similar for the three methods. For the estimates of the coefficients for the intercept, t and
z.2t, the variability is slightly reduced for small sample sizes under the Cauchy prior.
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Figure 6.9: Distribution of β̂ (m∗ for the Bayesian case). The top row is when the normal-
inverse-gamma prior is used, the middle row is when the Cauchy prior is used, and the
bottom row is when the fully Bayesian approach is used with a normal-inverse-gamma prior.
The black line indicates the median, the dark grey indicates the 40th to 60th percentile, and
the light grey indicates the 10th to 90th percentile of the distribution.

The distribution of estimates of σ for the first two methods and the posterior mode,
√

a∗

d∗−2 ,
for the Bayesian method, are given in Figure 6.10. There seems to be no noticeable difference
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between the normal-inverse-gamma prior and the Cauchy prior. The Bayesian approach
seems to lead to estimates that are biased downwards for small sample sizes.
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Figure 6.10: Distribution of σ̂. The top row is when the normal-inverse-gamma prior is
used, the middle row is when the Cauchy prior is used, and the bottom row is when the
fully Bayesian approach is used with a normal-inverse-gamma prior.

We observe in Figure 6.11 that the Bayesian method results in the weights reaching their
true value much faster than the other two methods. It appears that constructing the weights
using the posterior distribution, as in the Bayesian method, can be more effective than
computing the weights as in Equation (6.3), but leads to greater variability.
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Figure 6.11: Distribution of wr. The top row is when the normal-inverse-gamma prior is
used, the middle row is when the Cauchy prior is used, and the bottom row is when the
fully Bayesian approach is used with a normal-inverse-gamma prior.

We consider the treatment balance in Figure 6.12. It appears that subgroups (0, 0) and (1, 0)
are more imbalanced than the other two groups under all three approaches, particularly for
small sample sizes. This is due to the fact that the biomarker z.2 takes the value zero in
these subgroups, which is rarer. The three approaches produce similar results.



6.3. Simulations 145

0.
0

0.
6

Subgroup (0, 0) Subgroup (1, 0) Subgroup (0, 1) Subgroup (1,1)

0.
0

0.
6

20 60 100

0.
0

0.
6

20 60 100 20 60 100 20 60 100

Sample Size

P
(t

=
1)

Normal−Inverse−Gamma Prior

Cauchy Prior

Fully Bayesian Approach with Normal−Inverse−Gamma Prior

Figure 6.12: Distribution of the proportion of new treatment in each subgroup. The top
row is when the normal-inverse-gamma prior is used, the middle row is when the Cauchy
prior is used, and the bottom row is when the fully Bayesian approach is used with a
normal-inverse-gamma prior.

We plot the distribution of the theoretical value of the power (sensitivity in the Bayesian
case) in Figure 6.13. We display the power for all three methods for subgroups (1, 0) and (1,
1) in which the null hypothesis is false. We observe that the slope of the curve is higher
for the subgroup (1, 1) which is due to the fact that the second biomarker takes the more
common value of one. In the subgroup (1, 0), it takes the rare value of zero so the sample
size is smaller and power is reduced. The empirical values of the power of the hypothesis
tests for all three methods are shown in Figure 6.14, which roughly appear to lie along the
median of the theoretical distribution plots.
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Figure 6.13: Distribution of the theoretical value of the power of the hypothesis test, or
sensitivity in the Bayesian case. The top row is when the normal-inverse-gamma prior is
used, the middle row is when the Cauchy prior is used, and the bottom row is when the
fully Bayesian approach is used with a normal-inverse-gamma prior.
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Figure 6.14: Plots of the empirical value of the power of the hypothesis test for subgroups
(1,0) and (1,1), or 1− specificity in the Bayesian case. The top row is when the normal-
inverse-gamma prior is used, the middle row is when the Cauchy prior is used, and the
bottom row is when the fully Bayesian approach is used with a normal-inverse-gamma prior.

In Figure 6.15, we plot 1-specificity for the subgroups (0, 0) and (1, 1). We observe that it
decreases as sample size increases.
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Figure 6.15: 1-specificity for subgroups (0,0) and (0,1). The top row is when the normal-
inverse-gamma prior is used, the middle row is when the Cauchy prior is used, and the
bottom row is when the fully Bayesian approach is used with a normal-inverse-gamma prior.

In Figure 6.16, we observe that the value of the weighted L-optimal objective function is
lower for the design constructed using the Bayesian approach. This is likely to be due to the
fact that the weights reach their true value more quickly under the Bayesian approach, as
shown in Figure 6.11.
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Figure 6.16: Distribution of ΨL sample size for subgroups (1,0) and (1,1). The top
row is when the normal-inverse-gamma prior is used, the middle row is when the Cauchy
prior is used, and the bottom row is when the fully Bayesian approach is used with a
normal-inverse-gamma prior.

Overall, this simulation demonstrates that the two priors lead to very similar results. We
note that the fully Bayesian approach allows weights to reach their true value more quickly,
and, as a consequence, lower values of the weighted L-optimal objective function can be
achieved.

6.3.3 Comparing minimization, DA-optimality, weighted DA-optimality,
weighted L-optimality

We now compare the weighted L-optimal design against other common approaches: the
classic form of minimization with p = 2

3 (see Section 2.5), DA-optimality (see Equation 6.5),
and weighted DA-optimality (Equation 6.6). For the DA-optimality criterion, the matrix A
is given by A =

(
cᵀ1 c

ᵀ
2 c

ᵀ
3

)
. Since c4 is a linear combination of the vectors c1, c2, and c3, it

cannot be included in A because A needs to have full column rank. We use the Cauchy prior
with center zero and scale 2.5 for the weighted L-optimal approach. The settings for this
simulation are as in Table 6.2. The weighted L-optimal design uses an exchange algorithm
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with the L-optimality criterion with equal weights to construct the initial design with 15
patients. The DA- and weighted DA-optimal designs use an exchange algorithm with the
DA-optimality criterion to construct the initial design.

It appears in Figures 6.17, 6.18 and 6.19 that the four approaches lead to similar estimates
of β̂, σ̂ and similar values of wr. The variability of the estimates also appears to be very
similar.
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Figure 6.17: Distribution of β̂ for minimization (top row), DA-optimal design (second
row), weighted DA-optimal design (third row) and weighted L-optimal design (bottom row).
The black line indicates the median, the dark grey indicates the 40th to 60th percentile, and
the light grey indicates the 10th to 90th percentile of the distribution.
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Figure 6.19: Distribution of wr for minimization (top row), DA-optimal design (second
row), weighted DA-optimal design (third row) and weighted L-optimal design (bottom row).

Further, we observe in Figure 6.20 that the distribution of the theoretical value of the power
of the hypothesis test for the two subgroups (1, 0) and (1, 1) is extremely similar for all
four methods. This is also true for the plots of the empirical value of the power for these
subgroups, as well as 1-specificity for the two subgroups (0, 0) and (0, 1), as shown in Figures
6.21 and 6.22.
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Figure 6.20: Distribution of the theoretical value of the power of the hypothesis test for
subgroups (1,0) and (1,1) for minimization (top row), DA-optimal design (second row),
weighted DA-optimal design (third row) and weighted L-optimal design (bottom row).
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Figure 6.21: The empirical value of the power of the hypothesis test for subgroups (1,0)
and (1,1) for minimization (top row), DA-optimal design (second row), weighted DA-optimal
design (third row) and weighted L-optimal design (bottom row).
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Figure 6.22: 1-specificity for the hypothesis test for subgroups (1,0) and (1,1) for mini-
mization (top row), DA-optimal design (second row), weighted DA-optimal design (third
row) and weighted L-optimal design (bottom row).

We observe in Figure 6.23 that, overall, the treatment balance is better for the weighted
L-optimal design rather than the other designs. This is particularly true for small sample
sizes. For large sample sizes, surprisingly, it seems that minimization leads to better treat-
ment balance in the four subgroups.
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Figure 6.23: Distribution of the proportion of new treatment in each subgroup for mini-
mization (top row), DA-optimal design (second row), weighted DA-optimal design (third
row) and weighted L-optimal design (bottom row)

In Figure 6.24 we consider three measures of optimality: DA-optimality, weighted DA-
optimality and weighted L-optimality. We observe that the three optimal design-based
designs have very similar performance. It is slightly surprising that the weighted L-optimal
design performs slightly less well than the DA-optimal and the weighted DA-optimal design
under weighted L-optimality; further, the weighted L-optimal design performs slightly better
than the DA-optimal and the weighted DA-optimal designs under weighted D-optimality.
Perhaps unsurprisingly, minimization performs less well than the three optimal design-based
approaches, with much higher values of the objective function initially and also greater
variability.
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Figure 6.24: Distribution of optimality for minimization (top row), DA-optimal design
(second row), weighted DA-optimal design (third row) and weighted L-optimal design
(bottom row)

Overall, we observe that under the settings of this simulation, the four approaches lead to
similar parameter estimates and we note that the optimal design based approaches lead to
more efficient designs than minimization.

6.4 Conclusion

In this chapter, we considered how to design Phase III clinical trials using a sequential optimal
design approach where the aim is to estimate specific linear combinations of parameters within
the model. A weighted L-optimal design is used to identify effective treatment-biomarker
combinations. Since separation is an issue for early stages of the design, we examined two
options to deal with this: firstly, by simply putting prior distributions on the model parame-
ters and secondly, by using a fully Bayesian approach where the posterior distribution of the
parameters is used to define the weights. Simulations demonstrated that the fully Bayesian
approach has a slight advantage in that weights appear to reach their true value more quickly.
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We ran simulations to compare the weighted L-optimal design against minimization, DA-
and weighted DA-optimal designs. We found that all four methods lead to similar parameter
estimates, but the optimal design based approaches lead to more efficient designs than
minimization. In the next chapter, we investigate whether the nonmyopic approach is
beneficial in this context of personalized medicine.



Chapter 7

Nonmyopic approaches in
personalized medicine

In Chapter 6, we introduced the notion of personalized medicine and demonstrated method-
ology for designing experiments where interest lies in estimating important interactions
between treatments and biomarkers with low variance. In this chapter, we show how the
nonmyopic approach introduced in Chapter 4 and the pseudo-nonmyopic approach described
in Chapter 5 can be applied in the context of personalized medicine. In our simulations, we
focus on the logistic model case; for the nonmyopic approach, we look at the case of a binary
treatment, and in the pseudo-nonmyopic approach, we consider the case of a continuous
treatment.

7.1 Nonmyopic approach for personalized medicine

As described in Section 4.2.2, if the response is binary rather than continuous, the information
matrix is XᵀWX where W is a matrix contingent on the parameters of the model. For
a binary GLM with the logistic link function, W is a diagonal matrix with the ith entry
equal to π̂i(1 − π̂i) where π̂i = exp ηi

1+exp ηi , where ηi is the linear predictor. The weights for
the optimality criterion are generated as for the case of a continuous response in Equation
(6.3); we are using an asymptotic result on the approximate normality of cᵀr β̂. Given a
design matrix X, vectors cr, 1 ≤ r ≤ R, and values for the parameters β, we have that the
weighted L-optimal objective function in the case of a binary response is

ΨL(X, cr,β) =
R∑
r=1

wrc
ᵀ
r(XᵀWX)−1cr. (7.1)

The relative weighted L-efficiency of a design X relative to another design X∗, with
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parameter values β in the case of a binary response, is

EffL = ΨL (X∗, cr,β)
ΨL (X, cr,β) . (7.2)

We note that, in our simulations, we use the true parameter values to compute ΨL in order
to evaluate EffL.

The sequential nonmyopic approach for personalized medicine is equivalent to that described
in Section 4.2.4, where the optimality criterion Ψ is the weighted L-optimality criterion.
In calculating ΨL(ti | zi, ti−1,yi−1), there is an extra step of calculating the weights wri−1

which depend on yi−1 through β̂.

In the current literature, there is some work where dynamic programming has been used in
designing personalized trials. Zhang et al. (2016) considered a problem where treatments
are allocated sequentially using optimal Bayesian adaptive randomization for the first m
patients. Then, based on the results of this trial, future patients are given the treatment
that is deemed best for their biomarker subgroup. Backwards induction is used to solve this
problem. This approach is nonmyopic in the sense that the design of the first m patients is
constructed with the anticipation that future patients after the trial will be given treatments
based on the results. So far, no work has been done on designing personalized clinical trials
where each step of the construction of sequential trial with n patients involves a nonmyopic
optimization.

7.1.1 Simulations

We run a simulation to compare the performance of the nonmyopic approach with horizon 1
and horizon 3 against the myopic approach. We wish to see whether there is an advantage
to using the nonmyopic algorithm over the myopic algorithm. We consider an example
where two biomarkers are independently generated from Bernoulli(0.5) distributions. We use
the Cauchy prior which is recommended by Gelman et al. (2008) as it effectively alleviates
problems related to separation when the response is binary. We assume the true model for
the response is yi ∼ Bernoulli(πi) with logit(πi) = −2zi,1ti. The settings of the simulation
are given in Table 7.1. We assume the true distribution of the biomarkers is known in the
nonmyopic case. Our simulation has the following structure:

I (a) 100 patients are assumed and their covariates are generated from a specified
distribution.

(b) 100 deviates from a Unif(0, 1) distribution are generated for the response.



7.1. Nonmyopic approach for personalized medicine 161

(c) An initial design with 15 units is constructed using the exchange algorithm with
weighted L-optimality as the objective function, given by Equation (7.1).

(d) The following three sequential designs are constructed using the covariates, random
deviates for the responses, and initial design:

• A myopic weighted L-optimal design.

• A nonmyopic weighted L-optimal design with horizon N = 1.

• A nonmyopic weighted L-optimal design with horizon N = 3.

(e) Designs are evaluated using the performance measure ΨL, given by Equation
(7.1), at each sample size between 15 and 100, inclusive. The true values of the
parameters are used to calculate ΨL.

II (a)-(e) above is repeated 20 times to obtain a distribution of the performance measure
for each sample size.

Table 7.1: Settings for a simulation comparing myopic and nonmyopic approaches for the
weighted L-optimal approach

Biomarkers z.1 ∼ Bernoulli(0.3),
z.2 ∼ Bernoulli(0.5)

True β all zero except for the entry corresponding to z.1t, which is −2
τr −1 for all r
κ 0
Initial sample size 15
Number of simulations 100
Design Criterion Weighted L-optimality
Prior Cauchy with center 0 and scale 2.5

In Figures 7.1 and 7.2, we compare the estimates across the three methods for the parameters
and the weights, respectively. We observe that there is very little difference in the distributions
of the estimates of β. The weights for the subgroups where zi,1 = 1 go to one, and the
weights for the subgroups where zi,1 = 0 go to zero, as expected. There appears to be little
difference between the weights for the nonmyopic and myopic approaches.



162 Chapter 7. Nonmyopic approaches in personalized medicine

−
4

0
4

Intercept z.1 z.2 t z.1t z.2t
−

4
0

4

20 60

−
4

0
4

20 60 20 60 20 60 20 60 20 60

Sample size 

β̂
Myopic

Nonmyopic, N=1

Nonmyopic, N=3

Figure 7.1: Distributions of β̂ for weighted L-optimal designs for the logistic model under
the Cauchy prior are plotted against sample size. We show the myopic approach (top row),
nonmyopic approach with horizon 1 (middle row) and nonmyopic approach with horizon 3
(bottom row). The black line indicates the median, the dark grey indicates the 40th to 60th
percentile, and the light grey indicates the 10th to 90th percentile of the distribution.
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Figure 7.2: Distribution of wr vs sample size under the Cauchy prior for the myopic
approach (top row), nonmyopic approach with horizon 1 (middle row) and nonmyopic
approach with horizon 2 (bottom row).

We plot the distribution of ΨL against sample size for the myopic and nonmyopic approaches
in Figure 7.3. We observe that there appears to be very little difference between the plots of
ΨL in the three approaches, and further, the plots of relative efficiency suggest that they
perform similarly.
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Figure 7.3: In the top row, we have the distribution of ΨL vs sample size under the Cauchy
prior for the myopic approach (left column), nonmyopic approach with horizon 1 (middle
column) and nonmyopic approach with horizon 2 (right column). In the bottom row, we
have the relative efficiencies of the nonmyopic approach with horizon 1 against the myopic
approach (left) and the nonmyopic approach with horizon 3 against the myopic approach
(right).

We repeat this simulation with the same settings as in Table 7.1, except we use a normal-
inverse-gamma prior with m = 0, V = 1

100I6, a = 2, and d = 2 is used instead of a
Cauchy prior. The results are shown in Appendix G. In both the simulation with the
Cauchy prior and the normal-inverse-gamma prior, we observe that there is no benefit to
using the nonmyopic approach over the myopic approach, even when we know the true
distribution of the biomarkers. We note that the plots show greater variability when the
normal-inverse-gamma prior is used.

7.2 Pseudo-nonmyopic approach for personalized medicine

We now turn our attention to the pseudo-nonmyopic approach for personalized medicine.
The algorithm for the logistic model case is as described in Section 6 where the optimality
criterion Ψ is the weighted L-optimality criterion and there is an extra step of updating
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the weights after refitting the model in the algorithm. In the case of a binary treatment,
simulations revealed that, much like for the nonmyopic approach, the pseudo-nonmyopic
approach performs very similarly to the myopic approach. This is true even in cases where
we have dynamic covariates. We therefore focus on results in the continuous treatment case
in the following section.

7.2.1 Simulations

Example 1

In this simulation, we compare the performance of the pseudo-nonmyopic approach with
M = 20, the myopic approach and a non-sequential design where the true values of the
parameters are assumed to be known. This allows us to see whether there is any relative
advantage of the pseudo-nonmyopic approach over the myopic approach, and we can also
compare these two types of designs against a design where we have perfect knowledge of all
covariate values and parameter values. We consider an example where two biomarkers are
independently generated from a Bernoulli(0.5) and Bernoulli(0.7) distributions, respectively.
We assume the true model for the response is yi ∼ Bernoulli(πi) with logit(πi) = −2zi,1ti.
The settings of the simulation are given in Table 7.2. We assume true distribution of the
biomarkers is known in the pseudo-nonmyopic case, and the structure of the simulation is
analogous to that shown in Section 7.1.1.

Table 7.2: Comparing myopic and pseudo-nonmyopic approaches for the weighted L-optimal
approach

Biomarkers z.1 ∼Bernoulli(0.5), z.2 ∼Bernoulli(0.7)
True β all zero except for the entry corresponding to z.1t, which is -2
True σ 1.5
τr −1 for all r
κ 0
Initial sample size 5
Total sample size 50
M 20
Number of simulations 100

In Figure 7.4, we observe that the myopic and pseudo-nonmyopic approaches lead to estimates
of the parameter values that are close to the true value. We note that there is more variability
in the estimates produced by the pseudo-nonmyopic approach for the intercept, the coefficient
of t and the coefficient of z.1t.
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Figure 7.4: Distributions of β̂ for designs for the logistic model with a continuous treatment
are plotted against sample size for the myopic and pseudo-nonmyopic approaches. The black
line indicates the median, the dark grey indicates the 40th to 60th percentile, and the light
grey indicates the 10th to 90th percentile of the distribution.

We observe in Figure 7.5 that the myopic approach leads estimates of the weights that are
closer, on average, to the true values than the pseudo-nonmyopic approach.
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Figure 7.5: Distributions of wr for designs for the logistic model with a continuous
treatment are plotted against sample size for the myopic and pseudo-nonmyopic approaches.

In Figure 7.6, we display boxplots of the allocated treatment at each sample size for the
three allocation methods: the nonsequential design, the myopic approach and the pseudo-
nonmyopic approach. For the nonsequential design, the boxplots have a peculiar appearance
because all treatments lie at the extremes of one or zero. Proportionately more patients
are given the treatment value of one. For the myopic approach, all allocated treatments
are again either zero or one, but there appears to be more zeros than for the nonsequential
design. The fact that the assigned treatments are at the extremes is likely to be due to
the fact that all but one of the parameters are set to zero (Atkinson and Woods, 2015).
In contrast, for the pseudo-nonmyopic approach, apart from the initial design in which
treatments are zero or one, we find that most treatment values lie between 0.4 and 0.6.



168 Chapter 7. Nonmyopic approaches in personalized medicine

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Sample Size

Tr
ea

tm
en

t a
llo

ca
tio

n
Exchange

Myopic

Pseudo−nonmyopic

Figure 7.6: Boxplots display the distribution of the allocated treatments at each sample
size for the exchange, myopic and pseudo-nonmyopic approaches for the logistic model case
with a continuous treatment.

In Figure 7.7, we compare the distributions of the weighted L-optimality of the three
approaches in the top row. The nonsequential designs have more variable values of weighted
L-optimality compared to the myopic approach initially, but they later appear to have similar
performance. We also see that the myopic approach has much lower variability and has a
sharper downward slope than the pseudo-nonmyopic approach; it is better able to reach more
efficient designs. The bottom row shows the relative efficiency of the nonsequential designs
against the myopic designs, as well the relative optimality of the pseudo-nonmyopic designs
against the myopic desigsn. We observe that the myopic designs and the nonsequential
designs have similar values of efficiency after sample size of 10. When sample size is greater
than 10, the myopic approach is two to three times more efficient than the pseudo-nonmyopic
approach.
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Figure 7.7: Distribution of weighted L-optimality is plotted against sample size for the
exchange algorithm (top left), myopic approach (top middle) and the pseudo-nonmyopic
approach (top right) for the logistic model case with a continuous treatment. The relative
weighted L-efficiency of the exchange algorithm vs the myopic approach is plotted against
sample size on the bottom left, and the pseudo-nonmyopic approach vs the myopic approach
is on the bottom right.

Example 2

We now consider a simulation study where all settings are the same as the previous one, except
for two changes. Firstly, we assume the true model for the response is yi ∼ Bernoulli(πi)
with logit(πi) = −3zi,1 + 5zi,2 + ti − 20zi,1ti + 3zi,2ti. Secondly, z.1 has a Bernoulli(0.1)
distribution and z.2 has a Bernoulli(0.5) distribution. We purposefully selected an example
with a large interaction effect and chose the biomarker associated with that interaction to
be rare. The simulation settings are shown in Table 7.3.
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Table 7.3: Comparing myopic and pseudo-nonmyopic approaches for the weighted L-optimal
approach with a larger interaction

Biomarkers z.1 ∼Bernoulli(0.1), z.2 ∼Bernoulli(0.5)
True β (0,−3, 5, 1,−20, 3)
True σ 1.5
τr −1 for all r
κ 0
Initial sample size 5
Total sample size 50
M 20
Number of simulations 100

We see very clearly in Figure 7.8 that the median of the estimates of the coefficient for
z.1t is much closer to the true value for the pseudo-nonmyopic approach than the myopic
approach. In both approaches, the estimates are shrunk towards zero, but it is more extreme
for the myopic approach. We observe, again, more variability in the estimates for the
pseudo-nonmyopic approach.
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Figure 7.8: Distributions of β̂ for designs for the logistic model with a continuous treatment
and large interaction and rare biomarker are plotted against sample size for the myopic and
pseudo-nonmyopic approaches. The black line indicates the median, the dark grey indicates
the 40th to 60th percentile, and the light grey indicates the 10th to 90th percentile of the
distribution.

In Figure 7.9, we see much greater variability in the estimates of the weights for the pseudo-
nonmyopic approach than the myopic approach; this is particularly true for the subgroups
(1, 0) and (1, 1). This is likely to be due to the fact that the covariate value zi,1 = 1 is rare.



172 Chapter 7. Nonmyopic approaches in personalized medicine

0.
0

0.
4

0.
8

Subgroup (0,0) Subgroup (0,1) Subgroup (1,0) Subgroup (1,1)

10 30 50

0.
0

0.
4

0.
8

10 30 50 10 30 50 10 30 50

Sample Size

w
ei

gh
ts

Myopic

Pseudo−nonmyopic, M=20

Figure 7.9: Distributions of wr for designs for the logistic model with a continuous
treatment and large interaction and rare biomarker are plotted against sample size for the
myopic and pseudo-nonmyopic approaches.

In Figure 7.10, we see that the allocated treatments in the nonsequential design are mostly
centered around 0.3, which is quite different from what we observed in the previous example
in Figure 7.10; this is due to the values of the true parameters being far from zero in
this example. For the myopic approach, we observe again that most treatments are zeros
and ones, whereas for the pseudo-nonmyopic approach, the treatments can lie between the
extremes and most are centered around 0.5.
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Figure 7.10: Boxplots display the distribution of the allocated treatments at each sample
size for exchange, myopic and pseudo-nonmyopic approaches for the logistic model with a
continuous treatment and large interaction and rare biomarker.

In Figure 7.11, we observe that the designs constructed using the exchange algorithm are
the most efficient. Since we assume the true values of the parameters in the exchange
algorithm, and for the other approaches, the estimates are biased towards zero, we expect
the nonsequential designs to be most efficient. We observe also that the pseudo-nonmyopic
approach is more efficient than the myopic approach for most of the distribution, for all
values of sample size considered in this simulation.
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Figure 7.11: Distribution of weighted L-optimality is plotted against sample size for the
exchange algorithm (top left) myopic approach (top middle) and the pseudo-nonmyopic
approach (top right) for the logistic model case with a continuous treatment and large
interaction and rare biomarker. The relative weighted L-efficiency of the exchange algorithm
against the myopic approach is plotted against sample size on the bottom left and we have
the pseudo-nonmyopic approach vs the myopic approach on the bottom right.

We observed in this example that, in the case where we have a large interaction and the
biomarker associated with that interaction is rare, the pseudo-nonmyopic approach offers
benefit compared to the myopic approach. It is better able to estimate the large interaction
and the resulting designs are more efficient. In Appendix I, we look at the same example as
above, but the biomarkers are not rare; z1 has a Bernoulli(0.5) distribution and z2 has a
Bernoulli(0.7) distribution; the pseudo-nonmyopic approach still offers a slight benefit over
the myopic approach, but the difference is not as pronounced.
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7.3 Conclusions

In this chapter, we looked into how the three model-based approaches to treatment allocation
considered in this thesis compare in the context of personalized medicine: the myopic
approach, the non-myopic approach and the pseudo-nonmyopic approach. Our simulation
studies show that the nonmyopic approach performs very similarly to the myopic approach
for the binary response and binary treatment case. For the pseudo-nonmyopic approach, we
found that:

• the myopic approach is more efficient than the pseudo-nonmyopic approach in general
for the binary treatment case.

• the myopic approach is more efficient than the pseudo-nonmyopic approach for the
continuous treatment case if interactions are not large.

• the pseudo-nonmyopic approach is more efficient than the myopic approach for the
continuous treatment case if there is a large interaction term. This is even more
pronounced when the biomarker associated with the large interaction is rare.

We observe in the second simulation study of the pseudo-nonmyopic approach in this chapter
that the parameter estimates are biased towards zero for both the myopic and pseudo-
nonmyopic approaches. In order to investigate this further, we did some preliminary work
on designs which are optimal for mean-squared error. However, when the true coefficients
are unknown, such as in a real experiment, it is difficult to obtain an accurate estimate of
the bias matrix. This is an area which requires further investigation and may be appropriate
for future work.
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Chapter 8

Vignette of R package

This chapter is a vignette of the R package created as part of this thesis, which can be accessed
here: https://github.com/mst1g15/biasedcoin. The package contains functions which
implement the sequential treatment allocation algorithms described in the thesis. We provide
simple examples with small sample sizes to illustrate how the functions work.

8.1 Myopic approaches

To illustrate the functions in the package to implement myopic approaches to treatment
allocation, we begin by generating binary covariate values for 10 patients, and storing them
in a dataframe. We then create a design where the treatments are randomly allocated using
rand():

covar <- as.data.frame(sample(c(-1,1), 10, replace=T))

colnames(covar) <- "covar"

rand.D <- rand(covar)

rand.D

#> 1 covar tmt

#> 1 1 1 1

#> 2 1 -1 -1

#> 3 1 1 -1

#> 4 1 1 1

#> 5 1 -1 1

#> 6 1 1 1

#> 7 1 -1 -1

#> 8 1 -1 1

#> 9 1 -1 1
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#> 10 1 -1 1

We can also create a design based on Efron’s biased coin with efron(), or the classic form
of minimization with min.classic(). We set p = 2

3 :

efron.D <- efron(covar, p=2/3)

min.D <- min.classic(covar, p=2/3)

For a single continuous convariate, we generate designs using minimization with the Efron,
K-S or Max.imb imbalance measures:

cont.covar <- as.data.frame(runif(10))

efron.cont.D <- min.gen(cont.covar, imb="efron", p=2/3)

ks.D <- min.gen(cont.covar, imb="ks", p=2/3)

maximb.D <- min.gen(cont.covar, imb="max.imb", p=2/3)

maximb.D

#> 1 covar tmt

#> 1 1 0.57712495 -1

#> 2 1 0.17155262 1

#> 3 1 0.04256604 1

#> 4 1 0.13985023 -1

#> 5 1 0.97035001 1

#> 6 1 0.06374479 1

#> 7 1 0.03342408 1

#> 8 1 0.68122202 -1

#> 9 1 0.75750067 1

#> 10 1 0.88481663 -1

We now look at functions that construct optimal design-based designs. Here, we construct
a D-optimal design using the exchange algorithm. We set the number of repetitions from
different starting designs k to 2 and we do not assume any covariate-treatment interactions
(int=NULL).

coord.D <- coordex(covar, k=2, lossfunc=calc.D, int=NULL)

The function calc.D is used here to construct a D-optimal design here, but we can also use
calc.DA for an DA-optimal design, where an extra argument A is included to indicate the
subsets of parameters of interest. The functions calc.A and calc.G are used for A- and
G-optimal designs, respectively.

We can also construct an approximately D-optimal designs sequentially with atkins(). We
choose not to begin with a pre-constructed initial design by setting the number of patients
in the initial design init to 1 and setting same.start=NULL. Having a pre-constructed
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initial design can be useful when comparing different designs. We allocate treatments with a
probability based on a ratio of values from objective functions such as in Equation (2.37)
(stoc=T), rather than deterministically (stoc=F):

seq.D <- atkins(covar, lossfunc=calc.D, int=NULL, init=1,

same.start=NULL, stoc=T)

seq.D

#> $D

#> 1 covar tmt

#> 1 1 1 1

#> 2 1 -1 1

#> 3 1 1 -1

#> 4 1 1 -1

#> 5 1 -1 1

#> 6 1 1 -1

#> 7 1 -1 -1

#> 8 1 -1 -1

#> 9 1 -1 1

#> 10 1 -1 -1

#>

#> $opt

#> [1] 1.249991e+04 6.249906e-02 3.124961e-02 1.562484e-02 1.041657e-02

#> [6] 3.676452e-03 2.232134e-03 1.602558e-03 1.157404e-03

#>

#> $loss.m

#> [1] 1.249991e+04 6.249906e-02 3.124961e-02 8.928514e-03 1.041657e-02

#> [6] 3.676452e-03 2.232134e-03 1.602558e-03 1.157404e-03

#>

#> $loss.p

#> [1] 1.249991e+04 6.249965e+03 3.124961e-02 1.562484e-02 7.812441e-03

#> [6] 6.944387e-03 2.604155e-03 1.602558e-03 1.249996e-03

The output of atkins() has more than just the design matrix; the value of the objective
function for each sample size is given, as well as the value of the objective function evaluated
when ti = 1 and ti = −1 at each point in the design.

We can evaluate this design based on other optimality criteria:

calc.D(rand.D)

#> [1] 0.001249996

calc.DA(rand.D, A=t(c(0, 0, 1)))
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#> [1] 0.1199998

calc.A(rand.D)

#> [1] 0.3499995

calc.G(rand.D)

#> [1] 0.5199991

8.2 Nonmyopic approach

8.2.1 Linear model

We now show how to implement the non-myopic algorithm for the linear model case. We
use the same set of binary covariates as above. We set the number of patients in the initial
design init=1. The argument z.probs is the assumed distribution of the covariate:

• If z.probs is a scalar, this means that there is one static covariate and the scalar is
the probability that the covariate takes value 1.

• If z.probs is a vector, this means that there is one dynamic covariate where the ith
element is the probability that the ith value of the covariate is equal to 1.

• If z.probs is a matrix, this means that there is two or more dynamic covariates. The
(i, j)th element is the probability that the ith value of covariate j is equal to 1.

The argument k is the number of repetitions from different starting designs for constructing
the initial design, and N is set to an integer value for the horizon. An optimality criterion
is specified in lossfunc; we choose D-optimality in this example. Similarly to the myopic
algorithms, the treatments can be allocated deterministically (stoc=F) or with a stochastic
element (stoc=T). The output is the design matrix and the optimality at each point of the
design between init and n:

z.probs=0.5

linear.nonmyop(covar, init=1, z.probs=z.probs, k=NULL,

N=1, int=NULL, lossfunc=calc.D, stoc=F)

#> $D

#> intercept covar tmt

#> 1 1 1 -1

#> 2 1 -1 1

#> 3 1 1 1

#> 4 1 1 -1

#> 5 1 -1 -1

#> 6 1 1 1
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#> 7 1 -1 -1

#> 8 1 -1 1

#> 9 1 -1 -1

#>

#> $opt

#> [1] 1.249991e+04 6.249906e-02 3.124961e-02 8.928514e-03 5.208305e-03

#> [6] 3.124986e-03 1.953118e-03 1.420450e-03

If the distribution of the covariate is unknown, an empirical approximation can be used at
every step of the algorithm. This is done with the option z.probs="learn". If one wishes
to use DA-optimality as the criterion, the vector A can be added as an extra argument:

linear.nonmyop(covar, init=1, z.probs="learn", k=NULL,

N=1, int=NULL, lossfunc=calc.DA, stoc=F,

A=t(c(0, 0, 1)))

8.2.2 Logistic model

We now consider the case of logistic regression. When comparing across different designs,
it can be helpful to start with the same initial design and to generate responses using
Equation (4.48). We show how an initial D-optimal design with five units can be constructed
using the exchange algorithm assuming that all parameters are set to zero and assuming no
treatment-covariate interactions:

Des <-logit.coord(covar[1:5, ], beta=c(0, 0, 0), k=2,

int=NULL, lossfunc=calc.y.D)

We have used the function calc.y.D to construct a D-optimal design in the logistic regression
case. Alternatively, calc.y.DA, calc.y.A or calc.y.G could be used for DA-, A- or G-
optimal designs, respectively.

Now, we can construct a myopic D-optimal design for the logistic regression case using
the initial design Des. We also generate random uniform numbers u in order to simulate
responses. For logistic regression, there are a few additional required arguments; we need
to include the true parameter values true.beta, whether the objective function should be
computed using the true value of the parameters (true.bvcov=T) or using the estimates
at the current point in the algorithm (true.bvcov=F), and whether the model fitting is
performed with priors (bayes=T) or not (bayes=F):

u <- runif(10,0,1)

desD0 <- logit.des(covar, true.beta=c(0,1,1), init=5, int=NULL,
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lossfunc=calc.y.D, same.start=Des,

stoc=F, bayes=T, u=u, true.bvcov=T)

desD0

#> $D

#> rep.1..n. covar tmt

#> 1 1 1 -1

#> 2 1 -1 -1

#> 3 1 1 -1

#> 4 1 1 1

#> 5 1 -1 1

#> 6 1 1 1

#> 7 1 -1 1

#> 8 1 -1 -1

#> 9 1 -1 1

#> 10 1 -1 -1

#>

#> $y

#> [1] 0 0 1 1 1 1 0 0 1 0

#>

#> $all.beta

#> (Intercept) D[, -1]covar D[, -1]tmt

#> all.beta 9.412891e-01 0.3871869 1.5706776

#> beta 1.047621e+00 0.4182632 1.6851147

#> beta 1.001289e-01 0.8115854 0.9811492

#> beta 1.667600e-17 0.9413737 1.1198958

#> beta 2.406404e-01 0.8062223 1.2919086

#> beta 1.812436e-01 0.9055358 1.4080177

#>

#> $beta

#> (Intercept) D[, -1]covar D[, -1]tmt

#> 0.1812436 0.9055358 1.4080177

#>

#> $all.probs

#> [1] 0.4740768 0.4591522 0.5057856 0.4814327 0.5030691

#>

#> $yprop.tot

#> [1] 0.6666667 0.5714286 0.5000000 0.5555556 0.5000000

#>

#> $opt
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#> [1] 1.1178682 0.6200678 0.4192049 0.2939608 0.2235769

#>

#> $loss.p

#> [1] 1.1178682 0.6200678 0.4290200 0.2939608 0.2263386

#>

#> $loss.m

#> [1] 1.2401214 0.7303947 0.4192049 0.3166351 0.2235769

The output shows the design matrix, and the generated responses. Further, at each point
of the design between the initial design and the final patient the following quantities are
computed:

• Estimate of model parameters.

• Probability of treatment assignment.

• Proportion of units with response 1.

• Objective function.

• Objective function if unit i is assigned treatment 1.

• Objective function if unti i is assigned treatment −1.

For the nonmyopic approach for logistic regression, two additional arguments are needed,
z.probs and N:

desD1 <-logit.nonmy(covar, true.beta=c(0,1,1), init=5, z.probs=0.5,

N=1, int=NULL, lossfunc=calc.y.D, same.start=Des,

stoc=F, bayes=T, u=u, true.bvcov=T)

8.3 Pseudononmyopic approach

For the pseudo-nonmyopic approach for the linear model, we specify the number of trajectories
to simulate in the future with the argument sim.

pseudo.sim10 <- simfuture(covar, sim=10, z.probs=z.probs, int=NULL,

lossfunc=calc.D)

pseudo.sim10

#> $design

#> [,1] [,2] [,3]

#> [1,] 1 1 1

#> [2,] 1 -1 -1

#> [3,] 1 1 1
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#> [4,] 1 1 -1

#> [5,] 1 -1 1

#> [6,] 1 1 1

#> [7,] 1 -1 1

#> [8,] 1 -1 1

#> [9,] 1 -1 1

#> [10,] 1 -1 -1

#>

#> $opt

#> [1] 3.333322e+09 1.249991e+04 6.249965e+03 3.124961e-02 8.928514e-03

#> [6] 6.249963e-03 3.676452e-03 2.604155e-03 2.016120e-03 1.249996e-03

#>

#> $loss.m

#> [1] 0.001177079 0.001114580 0.001062497 0.001114580 0.001104163

#> [6] 0.001166663 0.001094904 0.001076385 0.001087959 0.001249996

#>

#> $loss.p

#> [1] 0.001083330 0.001083330 0.001174475 0.001392356 0.001104163

#> [6] 0.001094904 0.001083330 0.001099534 0.001249996 0.001644730

For the pseudo-nonmyopic approach for the logistic model, there are additional arguments
that have already been introduced: the true model parameters true.beta, the number of
repetitions from different starting designs for the exchange algorithm to generate an initial
design k, whether an initial design is already specified same.start, whether the treatment is
assigned with a stochastic element stoc, whether priors are used in the model fitting bayes, a
vector of random uniform numbers for generating the response u and whether the optimality
criterion is computed using the true parameter values or the estimates true.bvcov:

true.beta <- c(0, 1, 1)

init=5

design.sim.10 <- simfuture.logis(covar, true.beta, init, k=2, sim=10,

z.probs=z.probs, int=NULL,

lossfunc=calc.y.D, same.start=NULL,

stoc=T, bayes=T, u=u,

true.bvcov=T)

8.3.1 Continuous treatment

We now consider the case of the logistic model with continuous treatment. Suppose that we
wish to have an initial design with five units. We select the treatments using the optimization
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routine optim() as follows, where we assume that the parameter values are all set to zero.
The function is selecting treatments in the interval [−1, 1] which minimize the D-optimality
function written for the case when multiple treatment values are simultaneously optimized,
Dopt.y.t.init(). We then append the selected treatments to a column for the intercept
and a column for the covariates to construct the design matrix:

t <-optim(runif(init, min = -1, max = 1), Dopt.y.t.init,

method="L-BFGS-B", lower=-1, upper=1,

z=as.numeric(covar[1:init,]), int=NULL, beta=c(0, 0, 0),

epsilon=0.00001)$par

cont.des <-cbind(1, V1=covar[1:5,], tmt=t)

Using the initial design cont.des, we construct a myopic D-optimal design and a pseudo-
nonmyopic D-optimal design with the number of trajectories set to 10. Here, the optimality
function Dopt.y.t() is for the continuous treatment case when only one treatment is
optimized at a time:

myop.cont <-logit.cont(covar, true.beta, init, int=NULL,

lossfunc=Dopt.y.t, same.start=cont.des,

bayes=T, u=u, true.bvcov=NULL)

myop.cont

#> $D

#> V1 V1.1 tmt

#> 1 1 1 1

#> 2 1 1 -1

#> 3 1 -1 -1

#> 4 1 -1 1

#> 5 1 -1 -1

#> 6 1 -1 1

#> 7 1 -1 -1

#> 8 1 -1 1

#> 9 1 -1 -1

#> 10 1 1 1

#>

#> $y

#> [1] 0 0 0 1 0 1 0 0 0 1

#>

#> $all.beta

#> (Intercept) D[, -1]V1 D[, -1]tmt

#> all.beta -1.581620 -0.6714105 0.9461478



186 Chapter 8. Vignette of R package

#> beta -1.354708 -0.9417476 1.3052552

#> beta -1.545341 -0.9205978 1.5006143

#> beta -1.745482 -0.6371323 1.0833715

#> beta -1.864677 -0.6238266 1.2020117

#> beta -1.274832 -0.1114414 1.3959728

#>

#> $beta

#> (Intercept) D[, -1]V1 D[, -1]tmt

#> -1.2748322 -0.1114414 1.3959728

#>

#> $yprop.tot

#> [1] 0.3333333 0.2857143 0.2500000 0.2222222 0.3000000

#>

#> $opt

#> [1] 2.1839737 1.5744443 1.4840709 1.0571803 0.7062811

pseudnon.cont <- simfuture.logis.cont(covar, true.beta, init=5,

k=2, sim=20, z.probs, int=NULL,

lossfunc=Dopt.y.t, same.start=cont.des,

bayes=T, u=u, true.bvcov=NULL)

pseudnon.cont

#> $D

#> V1 tmt

#> [1,] 1 1 1.0000000

#> [2,] 1 1 -1.0000000

#> [3,] 1 -1 -1.0000000

#> [4,] 1 -1 1.0000000

#> [5,] 1 -1 -1.0000000

#> [6,] 1 -1 0.5278612

#> [7,] 1 -1 0.9293569

#> [8,] 1 -1 -0.2360708

#> [9,] 1 -1 -0.2260180

#> [10,] 1 1 -0.2370483

#>

#> $y

#> [1] 0 0 0 1 0 0 0 0 0 1

#>

#> $beta

#> (Intercept) as.matrix(D[, -1])V1 as.matrix(D[, -1])tmt

#> -1.2896394 0.3504995 0.5079986
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#>

#> $all.betas

#> (Intercept) as.matrix(D[, -1])V1 as.matrix(D[, -1])tmt

#> all.betas -1.581620 -0.6714105 0.9461478

#> beta -1.912799 -0.5044194 0.8313030

#> beta -2.145080 -0.4014743 0.6719523

#> beta -2.327405 -0.3750006 0.8198003

#> beta -2.489750 -0.3587483 0.9670611

#> beta -1.289639 0.3504995 0.5079986

#>

#> $yprop.tot

#> [1] 0.1666667 0.1428571 0.1250000 0.1111111 0.2000000

#>

#> $opt

#> [1] 2.608524 2.819743 3.587260 4.357316 4.340369

8.4 Personalized medicine

To design experiments for personalized medicine, a number of settings have to be chosen,
as described in Section 6.2. In the example below, we have two static covariates. The
first covariate has a Bernoulli(0.3) distribution and the second covariate has Bernoulli(0.5)
distribution. We set the threshold to be -1 for all four linear combinations of interest and κ
is set to 0. The prior scale is set to 100. We choose the true parameter values to be zero
except for the interaction between the first covariate and treatment. We use the weighted
L-optimal criterion to select the treatment; this is the function calc.logit.wL. We generate
the data for 10 patients using the function gencov(), where the argument code=T indicates
that we are using the (0, 1) coding instead of (−1, 1) coding for binary treatments.

z.probs <- c(0.3, 0.5)

init=5

threshold <- rep(-1, 4)

kappa=0

true.beta <- c(0, 0, 0, 0, -2, 0)

prior.scale=100

cr.lossfunc=calc.logit.wL

#generate data

covar <- gencov(z.probs, n.r=10, code=T)
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We construct an intial design using the exchange algorithm with the number of random
starts set to two and assuming that all parameters values are equal to zero. We then obtain
10 random numbers for generating the responses and construct a myopic design:

k=2

#initial design

med.D <-cr.logit.coord(as.data.frame(covar[1:init,]), beta=rep(0,6),

threshold, kappa, cr.lossfunc=calc.logit.wL,

k, wt=NULL)

u <- runif(10)

#myopic design

myop <- cr.logit.des(covar, true.beta, threshold, kappa, init,

cr.lossfunc, k, wt=T, int=T, prior.scale=100,

same.start=med.D, rand.start=NULL, stoc=F,

bayes=T, u=u, prior.default=T,

true.bvcov=T)

myop

#> $D

#> rep.1..n. covar.V1 covar.V2 tmt covar.V1.1 covar.V2.1

#> 1 1 1 1 1 1 1

#> 2 1 0 1 1 0 1

#> 3 1 1 1 0 0 0

#> 4 1 0 1 0 0 0

#> 5 1 0 0 1 0 0

#> 6 1 1 0 0 0 0

#> 7 1 0 1 1 0 1

#> 8 1 0 0 0 0 0

#> 9 1 0 1 0 0 0

#> 10 1 0 1 1 0 1

#>

#> $y

#> 1 2 3 4 5

#> 0 0 0 1 0 0 0 1 1 0

#>

#> $all.beta

#> (Intercept) D[, -1]covar.V1 D[, -1]covar.V2 D[, -1]tmt

#> all.beta -0.4516261 -1.384843 0.610366049 -1.514374

#> beta -0.7985549 -1.614261 0.894124105 -1.354218

#> beta -0.8056438 -1.561382 0.827834903 -1.524451

#> beta 0.8068893 -2.460256 0.004850823 -2.457159
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#> beta 1.1814783 -2.941211 0.232304326 -2.907058

#> beta 1.2105222 -2.941316 0.189504449 -3.086601

#> D[, -1]covar.V1 D[, -1]covar.V2

#> all.beta -0.121243035 -0.6822250

#> beta -0.103877132 -0.7087699

#> beta -0.067543821 -0.8951602

#> beta -0.018807396 -0.8109399

#> beta -0.012971166 -0.8910774

#> beta -0.004244081 -1.0039260

#>

#> $all.wr

#> [,1] [,2] [,3] [,4]

#> [1,] 0.5383291 0.5331493 0.6375480 0.5940264

#> [2,] 0.5329429 0.5266102 0.6245403 0.5799878

#> [3,] 0.5479203 0.5321682 0.6799909 0.5924758

#> [4,] 0.6851391 0.5711845 0.7698418 0.6131536

#> [5,] 0.7303195 0.5865671 0.8335958 0.6293927

#> [6,] 0.7425796 0.5904409 0.8682042 0.6364270

#>

#> $beta

#> (Intercept) D[, -1]covar.V1 D[, -1]covar.V2 D[, -1]tmt

#> 1.210522211 -2.941315561 0.189504449 -3.086600919

#> D[, -1]covar.V1 D[, -1]covar.V2

#> -0.004244081 -1.003926010

#>

#> $yprop

#> [1] 0.2000000 0.1666667 0.1428571 0.2500000 0.3333333 0.3000000

#>

#> $tmtprop

#> [1] 0.6000000 0.5000000 0.5714286 0.5000000 0.4444444 0.5000000

#>

#> $all.lopt

#> [1] 42.88224 23.89727 22.35003 19.01539 18.31301 17.79933

#>

#> $loss.p

#> [1] 42.23968 24.81373 23.96394 23.14424 22.88740

#>

#> $loss.m

#> [1] 26.97869 24.97893 21.73986 22.73942 23.16425
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The ouput provides the design matrix, the responses, and the following quantities for each
unit between init and n:

• Estimates of the model parameters.

• Estimates of the weights.

• Proportion of units with response 1.

• Probability of treatment assignment.

• Optimality.

• Optimality if unit i is assigned treatment 1.

• Optimality if unti i is assigned treatment -1.

For a nonmyopic design for personalized medicine, we specify additional arguments z.probs

and N, and for a pseudo-nonmyopic design, we specify additional arguments z.probs and
sim:

nonmy1 <- logit.Lbnon(covar, true.beta, threshold,kappa, init,

z.probs, N=1, prior.scale, same.start=med.D,

stoc=T, bayes=T, u=u, true.bvcov=T)

nonmy1

#> $D

#> rep.1..n. covar.V1 covar.V2 tmt covar.V1.1 covar.V2.1

#> 1 1 1 1 1 1 1

#> 2 1 0 1 1 0 1

#> 3 1 0 1 0 0 0

#> 4 1 0 0 1 0 0

#> 5 1 1 0 0 0 0

#> 6 1 0 1 0 0 0

#> 7 1 1 0 0 0 0

#> 8 1 0 1 1 0 1

#> 9 1 1 1 1 1 1

#> 10 1 0 0 1 0 0

#>

#> $y

#> [1] 1 1 1 0 1 0 1 0 0 1

#>

#> $all.beta

#> (Intercept) design[, -1]covar.V1 design[, -1]covar.V2

#> all.beta 0.8027954 0.9537492 1.4980099

#> beta -0.2878227 1.5435617 0.5337140
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#> beta -0.1126728 1.9688283 0.4075259

#> beta -0.1423335 2.1703495 0.2591197

#> beta 0.3680976 1.1699257 -0.1191595

#> beta 0.8931736 0.8702034 -0.5898950

#> design[, -1]tmt design[, -1]covar.V1 design[, -1]covar.V2

#> all.beta -1.2882865 0.2100298 0.88443941

#> beta -0.4019993 0.2213949 1.48615757

#> beta -0.4956859 0.1618019 1.46970546

#> beta -0.7667745 0.4016875 0.55193107

#> beta -1.1061759 -0.5201627 0.43076536

#> beta -0.5898950 -0.4486288 0.05831601

#>

#> $all.wr

#> [,1] [,2] [,3] [,4]

#> [1,] 0.5250915 0.5054764 0.4421918 0.4485065

#> [2,] 0.4465471 0.4410512 0.2197166 0.3459816

#> [3,] 0.4548373 0.4544799 0.2297898 0.3627202

#> [4,] 0.4790369 0.4456447 0.3439974 0.4118782

#> [5,] 0.5096669 0.5751461 0.4348516 0.5170890

#> [6,] 0.4617505 0.5050592 0.4058917 0.4982697

#>

#> $beta

#> (Intercept) design[, -1]covar.V1 design[, -1]covar.V2

#> 0.89317356 0.87020340 -0.58989501

#> design[, -1]tmt design[, -1]covar.V1 design[, -1]covar.V2

#> -0.58989501 -0.44862877 0.05831601

#>

#> $yprop

#> [1] 0.8000000 0.6666667 0.7142857 0.6250000 0.5555556 0.6000000

#>

#> $tmtprop

#> [1] 0.6000000 0.5000000 0.4285714 0.5000000 0.5555556 0.6000000

#>

#> $all.lopt

#> [1] 36.33154 34.84562 33.37969 32.30242 28.95182 27.51782

pseudnon <-cr.simfuture.logis(covar, true.beta, threshold, kappa,

init, int=T, cr.lossfunc=calc.logit.wL,

k, wt=T, sim=10, z.probs,

same.start=med.D, stoc=F, bayes=T, u=u,
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prior.default=T, true.bvcov=T)

pseudnon

#> $D

#> rep(1, n) covar.V1 covar.V2 tmt covar.V1 covar.V2

#> 1 1 1 1 1 1 1

#> 2 1 0 1 1 0 1

#> 3 1 0 1 0 0 0

#> 4 1 0 0 1 0 0

#> 5 1 1 0 0 0 0

#> new.d 1 0 1 1 0 1

#> new.d 1 1 0 1 1 0

#> new.d 1 0 1 0 0 0

#> new.d 1 1 1 0 0 0

#> new.d 1 0 0 0 0 0

#>

#> $y

#> 1 2 3 4 5

#> 1 1 1 0 1 1 1 0 0 0

#>

#> $all.betas

#> (Intercept) D[, -1]covar.V1 D[, -1]covar.V2 D[, -1]tmt

#> all.betas 0.80279536 0.9537492 1.4980099 -1.28828652

#> beta 0.81130405 0.9120125 1.6722489 -1.21738697

#> beta 0.81158628 1.3338382 1.5442393 -0.93740698

#> beta -0.30673664 1.8838579 0.5806413 -0.10397307

#> beta 0.04560457 0.3623769 -0.3328009 -0.06345723

#> beta -0.73795372 0.7282190 0.1559534 0.33605659

#> D[, -1]covar.V1 D[, -1]covar.V2

#> all.betas 0.2100298 0.8844394

#> beta 0.1463624 1.0686841

#> beta 0.6887546 0.9211908

#> beta 0.6065763 1.6931354

#> beta 1.1558203 2.1888505

#> beta 1.1401543 2.0750946

#>

#> $all.wr

#> [,1] [,2] [,3] [,4]

#> [1,] 0.5250915 0.5054764 0.44219184 0.44850648

#> [2,] 0.5187983 0.5047251 0.41692698 0.43982405
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#> [3,] 0.4944715 0.4256129 0.40192020 0.38813517

#> [4,] 0.4185510 0.3451212 0.14236028 0.27543233

#> [5,] 0.3819065 0.2421883 0.09244249 0.10683454

#> [6,] 0.2915271 0.1923016 0.07202091 0.09731824

#>

#> $beta

#> (Intercept) D[, -1]covar.V1 D[, -1]covar.V2 D[, -1]tmt

#> -0.7379537 0.7282190 0.1559534 0.3360566

#> D[, -1]covar.V1 D[, -1]covar.V2

#> 1.1401543 2.0750946

#>

#> $yprop

#> [1] 0.8000000 0.8333333 0.8571429 0.7500000 0.6666667 0.6000000

#>

#> $tmtprop

#> [1] 0.6000000 0.6666667 0.7142857 0.6250000 0.5555556 0.5000000

#>

#> $all.lopt

#> [1] 36.68298 35.26751 29.01025 27.70550 15.62064 13.09603

#>

#> $all.dawopt

#> [1] 253.36673 215.92678 148.82077 121.81010 52.50876 36.08903

#>

#> $allt.lopt

#> [1] 36.68298 35.26751 29.01025 27.70550 15.62064 13.09603

#>

#> $not.lopt

#> [1] 52.275105 55.143863 36.667052 21.596137 7.658392 4.877878

#>

#> $loss.p

#> [1] 15.754118 15.806702 15.514552 12.871152 6.554679

#>

#> $loss.m

#> [1] 16.42159 16.49943 15.35843 8.58600 5.20490
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Chapter 9

Conclusion

In this thesis, we reviewed methods in the literature for sequential design of experiments
with covariates. We focused in particular on model-based approaches where decisions for
allocating treatment are made based on optimal design criteria and developed a novel
pseudo-nonmyopic approach for optimal design taking into account the covariate values of
future possible patients. We also considered how these approaches apply in the context of
personalized medicine. In this chapter, we summarize the results in Section 9.1, outline the
limitations of our work in Section 9.2 and provide scope for future work in Section 9.3.

9.1 Discussion

In Chapter 2, we introduced myopic covariate-adaptive approaches to treatment allocation
and compared them using simulations. We found that the sequential optimal design method
offers improvement in efficiency over other approaches such as randomization, Efron’s biased
coin and minimization for covariate balance and loss, particularly when sample sizes are
small. This was demonstrated for both continuous and binary responses. Further, the
Atkinson approach is able to take into account dependence between covariates while other
approaches are not able to, and it is flexible in the sense that both discrete and continuous
covariates can be considered simultaneously; for minimization, separate approaches have
been developed for discrete and continuous covariates.

We then extended Atkinson’s method in two ways in Chapter 4: firstly, it was placed in
a nonmyopic framework for linear responses where any optimality criterion can be used.
We focused in particular on D, DA and G-optimality. Secondly, we allowed for binary
responses which we again placed in a nonmyopic framework. In our simulations, we observed
that for the linear model case, there appears to a slight benefit in using the nonmyopic
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method for the D-optimality case when there are one or two binary covariates and the true
covariate distribution is known. We also observed a slight benefit in the G-optimal case. We
consider only horizon up to five due to the computational complexity of the problem. For
the logistic model case, we observed no benefit to using the nonmyopic approach over the
myopic approach.

We developed a novel methodology called the pseudo-nonmyopic approach in Chapter 5
which is still able to take into account future possible patients, but is less computationally
expensive than the nonmyopic approach. We further extended this method to be applicable
for a continuous treatment, which is too computationally intensive to be considered at
this moment for the nonmyopic approach. Simulations in this chapter showed that the
pseudo-nonmyopic approach performs similarly to the myopic approach for the linear and
logistic model case with a binary treatment. For a continuous treatment, we found one case
with a large interaction term where the pseudo-nonmyopic approach is more efficient than
the myopic approach for small sample sizes, but not for sample sizes greater than 20.

In Chapter 6, we introduced the idea of personalized medicine and how the optimal design
approach can be taken to construct designs which aim to estimate the effects of important
treatment-biomarker combinations. We compared the performance of the myopic weighted
L-optimal design under three different settings: using the normal-inverse-gamma prior
distribution, using the Cauchy prior distribution, and using the fully Bayesian approach
with a normal-inverse-gamma distribution. We found that the fully Bayesian approach has
a slight advantage in that the weights reach their true value quicker and leads to slightly
more efficient designs. We then considered how the weighted L-optimal design fares against
minimization, DA-optimal and weighted DA-optimal designs. We found that they provide
surprisingly similar results in terms of estimates of the parameters, the weights, and the
power and 1-specificity of the hypothesis tests. Minimization is slightly less efficient than
the three optimal design-based approaches, particularly for small sample sizes.

The main themes of the thesis are culminated in Chapter 7 where we apply the nonmyopic
and pseudo-nonmyopic approaches to personalized medicine. Our simulation results echo
the results of Chapter 4 in showing that the non-myopic approach is not more efficient than
the myopic approach in the context of personalized medicine. In our simulations comparing
the pseudo-nonmyopic approach with the myopic approach for personalized medicine, we
see that, given a large interaction term and particularly when that interaction term involves
a rare covariate, the pseudo-nonmyopic approach can offer the potential to be more efficient
than the myopic approach.
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Finally, Chapter 8 is a vignette of the R package with functions that implement the approaches
to sequential allocation of treatment described in this thesis.

9.2 Limitations

9.2.1 Computational time

A major limitation of our implementation of the nonmyopic approach is that it is extremely
computationally expensive. We conducted simulations with horizon up to five for the linear
model case, and horizon up to three for the logistic model case. We found that the nonmyopic
approach does not offer improvement compared to the myopic case, but this may be because
we were not able to make the horizon large enough to see any substantive improvements.
The pseudo-nonmyopic approach was also time-consuming and we chose the total sample
size to be smaller than in other simulations (n = 50) in Chapter 7. By writing some of the
code in C instead of R, the myopic and pseudo-nonmyopic approaches would have faster
running times. They would be more convenient to use and we would be able to explore
larger values for the horizon and sample size in simulations.

9.2.2 Applicability to clinical trials

There are a number of limitations to our work in its ability to be directly applicable to
clinical trials. Firstly, we assume responses are measured immediately after treatments are
given to patients. This is not a realistic assumption so some method to allow for a delay
between treatment allocation and response could be useful. One modification would be to
allow for the method to be batch sequential; instead of allocating treatments to one patient
at a time, a group of patients may be given optimal treatments by using the exchange
algorithm. It is also possible to incorporate delay in adaptive designs. Hardwick et al.
(2006) achieve this by assuming that patients arrive according to a Poisson process, and
they consider three types of designs: a two-armed bandit rule which incorporates delay, a
delayed play-the-winner rule and an adaptive hyperopic rule which makes decisions based on
the number of patients yet to be treated in the trial, as well as the observed responses and
covariates so far. Their key conclusion is that the performance of the bandit rule with delay
is nearly as efficient as the case where responses are observed immediately after treatment,
unless the delay rate is many orders of magnitude greater than the arrival rate of the patients.

Secondly, we do not consider toxicity in our work. We assume that the treatment which leads
to a better response is the more desirable treatment, but it is possible that such a treatment
has unsafe toxicity levels (Rosenberger, 1999). In our algorithms for treatment assignment,
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if the optimality criterion is equal for treatment ti = 1 and ti = 0, we would assign the
treatment at random. In clinical trials, this is less likely to happen as relative efficiency of
the treatments need to be considered in conjunction with relative toxicity (Simon, 1977). In
general, Rosenberger (1999) recommended that adaptive designs should be considered after
previous experiments have been able to establish low toxicity of the treatments.

A further limitation of our work is that we arbitrarily assume in all of our simulations
that we have 100 patients in the trial. In clinical trials, there are stopping rules that
determine when the trial should terminate (Stallard et al., 2001). See Whitehead (1993)
for a frequentist perspective and Berry (1989) and Freedman and Spiegelhalter (1989) for
a Bayesian perspective on stopping rules in interim analysis. Including this element into
our designs would mean that our methodology is more generally applicable to clinical trials.
Further, we may be able to make statements about relative numbers of patients and costs
required in order to detect a significant difference in treatment effect for each method.

9.3 Future work

In this section, we describe a number of ways in which our current work can be extended.
We then consider how the nonmyopic approach can be adopted for CARAEE designs.

9.3.1 Extending current work

Our optimality criteria have been chosen with parameter estimation as our primary goal. In
the example of personalized medicine, we assume that we wish to estimate certain linear
combinations of parameters as precisely as possible so that we can identify the effective
treatment-biomarker combinations. However, this problem of identifying the treatment-
biomarker combinations can be framed as a model selection problem. With this outlook,
the T -optimal objective function may be appropriate since it is designed to discriminate
between competing models (Atkinson and Fedorov, 1975).

The non-myopic algorithm considers only the case where the response and treatments are
binary. Natural extensions include allowing for more complex treatment structures, such as
factorial designs, or allowing for a continuous response. Computing the expected objective
function for a continuous response would require Monte-Carlo simulation. As explained in
Section 9.2.1, extending our framework for the non-myopic approach to allow for a more
general response will require greater computational efficiency in our algorithms. This is also
true of the pseudo-nonmyopic approach.
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9.3.2 CARAEE designs

In the optimality criteria that we have considered in the thesis, the response of the patient
is either not included (minimization, optimal design methods for the linear model case), or
they are included in order to update parameter estimates (optimal design methods for the
logistic model case, weighted L-optimal design). The response has not been used in order
to inform treatment allocation based on the efficacy of the treatment. Covariate adjusted
response-adaptive designs based on efficiency and ethics (CARAEE) aim to optimize a utility
function which takes into account the number of patients who receive the more effective
treatment. We did some preliminary work on CARAEE designs. Here, our optimality
criterion is a function which has a component for efficiency and a component for ethics,
as well as a tuning parameter which allows the practitioner to decide which aim is more
important. The CARA (covariate adjusted response adaptive) design and RAR (response
adaptive randomization) design are special cases of the CARAEE design.

In Appendix J, we describe in more detail the CARAEE designs that we implemented. Some
simulation results showed that the CARAEE designs, as expected, produce designs that
are less efficient but more ethical than myopic D-optimal designs. Investigation is needed
to verify suitable choices of the tuning parameter, and to check whether our choices of
measuring efficiency and ethics are suitable. In particular, one concern is that they are not
measured on different scales. An interesting area of future work is extending the CARAEE
design for a nonmyopic or pseudo-nonmyopic framework; we have seen in Chapters 4 and
5 how to calculate the expected objective for the efficiency, di(t), from a nonmyopic and
pseudo-nonmyopic framework, respectively. How to incorporate future possible responses
into the ethics component and combine it with the efficiency component into a sensible
objective function is a question worth investigating and would further make the work more
applicable to clinical trials.
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Appendix A

Proof of Result 1

We show that, for the optimality criterion Ψ = log
∣∣AᵀM−1A

∣∣ , the derivative with respect
to the information matrix ∂Ψ

∂M is given by M−1A
(
AᵀM−1A

)−1
AᵀM−1. The proof of this

result relies on a number of definitions and results that we outline below.

Suppose that M1 and M2 are information matrices. The Frechet derivative of Ψ at M1 in
the direction of M2 is given by:

FΨ(M1,M2) = lim
ε→0+

1
ε

[Ψ ((1− ε)M1 + εM2))−Ψ(M1)] . (A.1)

Intuitively, this derivative measures how much the design criterion Ψ changes when the
design matrixM1 is nudged slightly in the direction ofM2. In order to compute the Frechet
derivative, it is often easier to first derive the Gateaux derivative of Ψ atM1 in the direction
of M2, given by:

GΨ(M1,M2) = lim
ε→0+

1
ε

[Ψ(M1 + εM2)−Ψ(M1)] , (A.2)

and to use the relationship between the two derivatives:

FΨ(M1,M2) = GΨ(M1,M2 −M1). (A.3)

Now, the derivative ∂Ψ
∂M that we wish to obtain can be observed after noting that the Frechet

derivative with M1 = M and M2 = xxᵀ can be written the form (Atkinson et al., 2007,
p.136):

FΨ(M ,xxᵀ) = − trM ∂Ψ
∂M

+ xᵀ ∂Ψ
∂M

x. (A.4)

201



202 Appendix A. Proof of Result 1

Finally, we also rely on two matrix identities. The first is the Woodbury matrix identity,
where we have, for conformable matrices A,U ,C,V :

(A+UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1. (A.5)

The second is a property of the determinant. For conformable matrices I and H:

|I + εH| = 1 + ε tr(H) +O(ε2), (A.6)

where O(ε2) indicates that the quantity is bounded above by some constant on the order of
ε2, for small ε, which does not depend on H.

We now have the necessary tools to prove the following result:
Result 1. For the optimality criterion Ψ = log

∣∣AᵀM−1A
∣∣ , we have that the derivative

with respect to the information matrix is given by: ∂Ψ
∂M = M−1A

(
AᵀM−1A

)−1
AᵀM−1.

Proof. The Gateau derivative of Ψ = log
∣∣AᵀM−1A

∣∣ at M in the direction of xxᵀ is given
by:

GΨ(M ,xxᵀ) = lim
ε→0+

1
ε

[Ψ(M + εxxᵀ)−Ψ(M)]

= lim
ε→0+

1
ε

[
log

∣∣∣Aᵀ(M + εxxᵀ)−1A
∣∣∣− log

∣∣∣AᵀM−1A
∣∣∣]

= lim
ε→0+

1
ε

log
(∣∣Aᵀ(M + εxxᵀ)−1A

∣∣
|AᵀM−1A|

)

= lim
ε→0+

1
ε

log
∣∣∣Aᵀ(M + εxxᵀ)−1A

∣∣∣ ∣∣∣AᵀM−1A
∣∣∣−1

.

By the Woodbury identity (Equation A.5), we have:

GΨ(M ,xxᵀ) = lim
ε→0+

1
ε

log
∣∣∣∣Aᵀ

(
M−1 −M−1εx

(
I−1 + xᵀM−1εx

)−1
xᵀM−1

)
A

∣∣∣∣ ∣∣∣AᵀM−1A
∣∣∣−1

= lim
ε→0+

1
ε

log
∣∣∣∣Is − εAᵀM−1x

(
I−1
s + xᵀM−1εx

)−1
xᵀM−1A

(
AᵀM−1

1 A
)−1

∣∣∣∣
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By the property of determinants given in Equation (A.6), we have:

GΨ(M ,xxᵀ) = lim
ε→0+

1
ε

log
(
Is − ε tr

(
AᵀM−1x

(
I−1
s + xᵀM−1εx

)−1
xᵀM−1A

(
AᵀM−1A

)−1

+O(ε2)
))

= s− tr
(
AᵀM−1xxᵀM−1

1 A
(
AᵀM−1

1 A
)−1

)
∝ − tr

(
AᵀM−1xxᵀM−1

1 A
(
AᵀM−1

1 A
)−1

)
.

The Frechet derivative of Ψ = log
∣∣AᵀM−1A

∣∣ at M in the direction of xxᵀ is given by the
relation to the Gateaux derivative in Equation (A.3):

FΨ(M ,xxᵀ) = GΨ (M ,xxᵀ −M)

= − tr
(
AᵀM−1 (xxᵀ −M)M−1A

(
AᵀM−1

1 A
)−1

)
= − tr

(
AᵀM−1 (xxᵀ)M−1A

(
AᵀM−1

1 A
)−1

)
+ tr

(
AᵀM−1MM−1A

(
AᵀM−1

1 A
)−1

)
= tr(MM−1A

(
AᵀM−1A

)−1
AᵀM−1)− xᵀM−1A

(
AᵀM−1A

)−1
AᵀM−1x

∝ − tr
(
M

∂Ψ
∂M

)
+ xᵀ ∂Ψ

∂M
x.

Thus by Equation (A.4), we have that ∂Ψ
∂M = M−1A

(
AᵀM−1A

)−1
AᵀM−1.
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Appendix B

Proof of Result 2

Result 2. Senn et al. (2010) claim that the Atkinson approach is equivalent to minimizing
Li.

Proof. We wish to show that there is a correspondence between d(zi, t) given in Equation
(2.36) and the quantity Li such that maximizing the first implies minimizing the second and
vice versa.

We first show that Fi−1 ≥ 0 where Fi−1 = i− 1− Li−1. We can write Li−1 as

Li−1 = tᵀi−1Pi−1ti−1,

where Pi−1 is the symmetric matrix Zi−1(Zᵀ
i−1Zi−1)−1Z

ᵀ
i−1. We denote the largest eigen-

value of Pi−1 by λmax. Since Pi−1 is a projection matrix, its eigenvalues are zero or one.
Therefore, we have:

Li−1 < λmaxt
ᵀ
i−1ti−1 < t

ᵀ
i−1ti−1 < i− 1,

and we conclude that Fi−1 is positive.

Next, we consider d(zi, t). Below, the information matrix Mi−1 is based on the design with
the i− 1 patients in the study so far, and x = (1 zᵀi t)ᵀ. We assume that interest lies only
in the treatment effect α, so we have that A = (0 0 0 ... 1)ᵀ . We denote by zi the vector
(1 zᵀi )ᵀ and we denote by Zi the matrix

(
1 zi,1, zi,2, ...,zi,k

)
.

d(zi, t) = xᵀM−1
i−1A

(
AᵀM−1

i−1A
)−1

AᵀM−1
i−1x

205



206 Appendix B. Proof of Result 2

= xᵀM−1
i−1A (i− 1− Li−1)AᵀM−1

i−1x

= Fi−1x
ᵀM−1

i−1AA
ᵀM−1

i−1x

= Fi−1x
ᵀ


(
Z

ᵀ
i−1Zi−1 − Li−1

)−1
−(Zᵀ

i−1Zi−1)−1Z
ᵀ
i−1ti−1F

−1
i−1

−F−1
i−1t

ᵀ
i−1Zi−1(Zᵀ

i−1Zi−1)−1 F−1
i−1


(

0 0
0 1

)
M−1

i−1x

= Fi−1x
ᵀ

(
0 −(Zᵀ

i−1Zi−1)−1Z
ᵀ
i−1ti−1F

−1
i−1

0 F−1
i−1

)
M−1

i−1x

= xᵀ

(
0 −(Zᵀ

i−1Zi−1)−1Z
ᵀ
i−1ti−1

0 1

)
M−1

i−1x

= F−1
i−1x

ᵀ

(
(Zᵀ

i−1Zi−1)−1Z
ᵀ
i−1ti−1t

ᵀ
i−1Zi−1(Zᵀ

i−1Zi−1)−1 −(Zᵀ
i−1Zi−1)−1Z

ᵀ
i−1ti−1

−tᵀi−1Zi−1(Zᵀ
i−1Zi−1)−1 1

)
x

= F−1
i−1

(
zᵀi (Zᵀ

i−1Zi−1)−1Z
ᵀ
i−1ti−1t

ᵀ
i−1Zi−1(Zᵀ

i−1Zi−1)−1 − ttᵀi−1Zi−1(Zᵀ
i−1Zi−1)−1

−zᵀi (Z
ᵀ
i−1Zi−1)−1Z

ᵀ
i−1ti−1 + t

)ᵀ

x

= F−1
i−1

{
zᵀi (Z

ᵀ
i−1Zi−1)−1Z

ᵀ
i−1ti−1t

ᵀ
i−1Zi−1(Zᵀ

i−1Zi−1)−1zi

+−ttᵀi−1Zi−1(Zᵀ
i−1Zj)−1zi − tzᵀi (Z

ᵀ
i−1Zi−1)−1Z

ᵀ
i−1ti−1 + 1

}

= F−1
i−1

{
1− 2ttᵀi−1Zi−1(Zi−1ᵀZi−1)−1zi+

zᵀi (Z
ᵀ
i−1Zi−1)−1Z

ᵀ
i−1ti−1t

ᵀ
i−1Zi−1(Zᵀ

i−1Zi−1)−1zi
}

Since we are interested in the choice of t which maximizes this quantity, we can disregard
the terms that do not involve t. Since F−1

i−1 is positive, we wish to maximize:

− 2ttᵀi−1Zi−1(Zᵀ
i−1Zi−1)−1zi. (B.1)

Next, we consider Li. The loss after i trials can be obtained by updating the loss after i− 1
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trials, as given in the formula below (Senn et al., 2010).

Li =
(
tᵀi−1Zi−1 + tzi

)(Zᵀ
i−1Zi−1

)−1
−

(
Z

ᵀ
i−1Zi−1

)−1
ziz

ᵀ
i

(
Z

ᵀ
i−1Zi−1

)−1

1 + zᵀi
(
Z

ᵀ
i−1Zi−1

)−1
zi

(Zᵀ
i−1ti−1 + zit

)
(B.2)

Expanding the right hand side, we obtain:

Li = tᵀi−1Zi−1
(
Z

ᵀ
i−1Zi−1

)−1
Z

ᵀ
i−1ti−1 + tᵀi−1Zi−1

(
Z

ᵀ
i−1Zi−1

)−1
zit

− tᵀZi−1

(
Z

ᵀ
i−1Zi−1

)−1
ziz

ᵀ
i

(
Z

ᵀ
i−1Zi−1

)−1

1 + zᵀi
(
Z

ᵀ
i−1Zi−1

)−1
zi

Z
ᵀ
i−1ti−1

− tᵀi−1Zi−1

(
Z

ᵀ
i−1Zi−1

)−1
ziz

ᵀ
i

(
Z

ᵀ
i−1Zi−1

)−1

1 + zᵀi
(
Z

ᵀ
i−1Zi−1

)−1
zi

zit

+ tzi
(
Z

ᵀ
i−1Zi−1

)−1
Z

ᵀ
i−1ti−1 + tzi

(
Z

ᵀ
i−1Zi−1

)−1
zit

− tzi

(
Z

ᵀ
i−1Zi−1

)−1
ziz

ᵀ
i

(
Z

ᵀ
i−1Zi−1

)−1

1 + zᵀi
(
Z

ᵀ
i−1Zi−1

)−1
zi

zit

− tzi

(
Z

ᵀ
i−1Zi−1

)−1
ziz

ᵀ
i

(
Z

ᵀ
i−1Zi−1

)−1

1 + zᵀi
(
Z

ᵀ
i−1Zi−1

)−1
zi

Z
ᵀ
i−1ti−1

= tᵀi−1Zi−1
(
Z

ᵀ
i−1Zi−1

)−1
Z

ᵀ
i−1ti−1 + 2ttᵀi−1Zi−1

(
Z

ᵀ
i−1Zi−1

)−1
zi

− tᵀi−1Zi−1

(
Z

ᵀ
i−1Zi−1

)−1
ziz

ᵀ
i

(
Z

ᵀ
i−1Zi−1

)−1

1 + zᵀi
(
Z

ᵀ
i−1Zi−1

)−1
zi

Z
ᵀ
i−1ti−1

− 2tᵀi−1Zi−1

(
Z

ᵀ
i−1Zi−1

)−1
ziz

ᵀ
i

(
Z

ᵀ
i−1Zi−1

)−1

1 + zᵀi
(
Z

ᵀ
i−1Zi−1

)−1
zi

zit+ zi
(
Z

ᵀ
i−1Zi−1

)−1
zi

− zi

(
Z

ᵀ
i−1Zi−1

)−1
ziz

ᵀ
i

(
Z

ᵀ
i−1Zi−1

)−1

1 + zᵀi
(
Z

ᵀ
i−1Zi−1

)−1
zi

zi

Again, since we are only interested in the choice of t which minimizes the above quantity,
the terms which we focus on are:
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2ttᵀi−1Zi−1
(
Z

ᵀ
i−1Zi−1

)−1
zi − 2ttᵀi−1Zi−1

(
Z

ᵀ
i−1Zi−1

)−1
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We use partial fractions to re-write the second term:
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(B.4)

This simplifies to ive us the following term. We see that the choice of t which minimizes
the expression below maximizes the expression −2ttᵀi−1Zi−1(Zᵀ

i−1Zi−1)−1zi from Equation
(B.1).
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Simulations for covariate-adaptive
approaches
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Figure C.1: Distributions of Ψt,Ψz and Ψloss as sample size increases for five Bernoulli(p =
0.8) covariates which have correlation 0.8, based on 100 simulations. Four allocation methods
are considered: Randomization, Efron’s biased coin, the classic form of minimization, and
the sequential optimal design method. The black line indicates the median, the dark grey
indicates the 40th to 60th percentile, and the light grey indicates the 10th to 90th percentile
of the distribution.
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Figure C.2: Medians of the distributions of Ψz and Ψloss as sample size increases for five
Bernoulli(p = 0.8) covariates which have correlation 0.8, based on 100 simulations. Four
allocation methods are considered: Randomization (black), Efron’s biased coin (brown), the
classic form of minimization (green), and the sequential optimal design method (yellow).
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Figure C.3: Distributions of Ψt,Ψz and Ψloss as sample size increases for one Beta(α =
5, β = 1) covariate, based on 100 simulations. Six allocation methods are considered:
Randomization, Efron’s biased coin, the classic form of minimization, minimization using
the K-S measure, minimization using the Max.imb measure, and the sequential optimal
design method. The black line indicates the median, the dark grey indicates the 40th to
60th percentile, and the light grey indicates the 10th to 90th percentile of the distribution.
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Figure C.4: Medians of the distributions of Ψz and Ψloss as sample size increases for one
Beta(α = 5, β = 1) covariate, based on 100 simulations.Six allocation methods are considered:
Randomization (black), Efron’s biased coin (brown), the classic form of minimization (green),
and the sequential optimal design method (yellow), the K-S form of minimization (blue)
and the Max.imb form of minimization (pink).



Appendix D

Nonmyopic approach for linear
model

D.1 Efficiencies for the one covariate case
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Figure D.1: Distributions of the efficiencies of nonmyopic DA-optimal designs for the linear
model from Figure 4.1 are shown, relative to the myopic design. Values of the efficiency
under 1 indicate that the non-myopic design is more efficient than the myopic. The black
line indicates the median, the dark grey indicates the 40th to 60th percentile, and the light
grey indicates the 10th to 90th percentile of the distribution.
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Figure D.2: Distributions of the efficiencies of nonmyopic D-optimal designs for the linear
model from Figure 4.2 are shown, relative to the myopic design. Values of the efficiency
under 1 indicate that the non-myopic design is more efficient than the myopic.
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Figure D.3: Distributions of the efficiencies of nonmyopic G-optimal designs for the linear
model from Figure 4.3 are shown, relative to the myopic design. Values of the efficiency
under 1 indicate that the non-myopic design is more efficient than the myopic.
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D.2 Results for two covariates

This simulation investigates the efficiency of the myopic and non-myopic approaches when
two covariates are recorded in the experiment and included in the model. We follow the
same structure for the simulation study as described in section 4.1.4, but we generate two
independent covariates, both with Bernoulli(0.5) distribution.
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Figure D.4: Distributions of ΨDA for designs for the linear model for two covariates are
plotted against sample size, based on 20 simulations. We consider the myopic approach
(N = 0), as well as the non-myopic approach to constructing DA-optimal designs with
horizon N = 1, 2 and 3. For the non-myopic approach, we consider both the case where the
correct covariate distribution is known, and when it is unknown so the empirical covariate
distribution is used.



216 Appendix D. Nonmyopic approach for linear model

0
2

4
6

8
N=1

Sample Size

E
ff D

A

N=1

Sample Size

E
ff D

A

0
2

4
6

8

N=2

Sample Size

E
ff D

A

N=2

Sample Size

E
ff D

A

20 40 60 80 100

0
2

4
6

8

N=3

Sample Size

E
ff D

A

20 40 60 80 100

N=3

Sample Size

E
ff D

A

Sample Size

E
ff D

A
Correct Distribution Empirical Distribution

Figure D.5: Distributions of the efficiencies of nonmyopic DA-optimal designs for the linear
model for two covariates from Figure D.4 are shown, relative to the myopic design. Values of
the efficiency under 1 indicate that the non-myopic design is more efficient than the myopic.
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Figure D.6: Distributions of ΨD for designs for the linear model for two covariates are
plotted against sample size, based on 20 simulations. We consider the myopic approach
(N = 0), as well as the non-myopic approach to constructing D-optimal designs with horizon
N = 1, 2 and 3. For the non-myopic approach, we consider both the case where the
correct covariate distribution is known, and when it is unknown so the empirical covariate
distribution is used.
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Figure D.7: Distributions of the efficiencies of nonmyopic D-optimal designs for the linear
model for two covariates from Figure D.6 are shown, relative to the myopic design. Values of
the efficiency under 1 indicate that the non-myopic design is more efficient than the myopic.
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Figure D.8: Distributions of ΨG for designs for the linear model for two covariates are
plotted against sample size, based on 20 simulations. We consider the myopic approach
(N = 0), as well as the non-myopic approach to constructing G-optimal designs with horizon
N = 1, 2 and 3. For the non-myopic approach, we consider both the case where the
correct covariate distribution is known, and when it is unknown so the empirical covariate
distribution is used.
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Figure D.9: Distributions of the efficiencies of nonmyopic G-optimal designs for the linear
model for two covariates from Figure D.8 are shown, relative to the myopic design. Values of
the efficiency under 1 indicate that the non-myopic design is more efficient than the myopic.



Appendix E

Nonmyopic approach for the
logistic model

E.1 One dynamic covariate

We compare myopic and non-myopic designs for logistic regression where we have one
dynamic covariate in this simulation. We generate the covariate z from a Bernoulli(pi)
distribution, where pi is the ith element of p:

p =

0.1, ..., 0.1︸ ︷︷ ︸
25 times

, 0.9, ..., 0.9︸ ︷︷ ︸
25 times

, 0.1, ..., 0.1︸ ︷︷ ︸
25 times

, 0.9, ..., 0.9︸ ︷︷ ︸
25 times

 . (E.1)

All other settings for the simulations are as stated in Section 4.2.5.
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Figure E.1: Distributions of β̂ for designs for the logistic model for one dynamic covariate
are plotted against sample size, based on 20 simulations. We consider the myopic approach
(N = 0), as well as the nonmyopic approach to constructing DA-optimal designs with
horizon N = 1 and 3. For the nonmyopic approach, we consider both the case where the
correct covariate distribution is known (left panel), and when it is unknown so the empirical
covariate distribution is used (right panel). The black line indicates the median, the dark
grey indicates the 40th to 60th percentile, and the light grey indicates the 10th to 90th
percentile of the distribution.
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Figure E.2: Distributions of ΨDA for designs for the logistic model for one dynamic
covariate are plotted against sample size, based on 20 simulations. We consider the myopic
approach (N = 0), as well as the nonmyopic approach to constructing DA-optimal designs
with horizon N = 1 and 3. For the nonmyopic approach, we consider both the case where the
correct covariate distribution is known (left panel), and when it is unknown so the empirical
covariate distribution is used (right panel).
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Figure E.3: Distributions of the efficiencies of the nonmyopic DA-optimal designs against
the myopic DA-optimal designs for the logistic model for one dynamic covariate are plotted
against sample size, based on 20 simulations. We consider the efficiencies of the non-myopic
approach with horizons 1 and 3, with the correct and empirical distributions, against the
myopic approach as the baseline.
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Figure E.4: Distributions of β̂ for designs for the logistic model for one dynamic covariate
are plotted against sample size, based on 20 simulations. We consider the myopic approach
(N = 0), as well as the nonmyopic approach to constructing D-optimal designs with horizon
N = 1 and 3. For the nonmyopic approach, we consider both the case where the correct
covariate distribution is known (left panel), and when it is unknown so the empirical covariate
distribution is used (right panel).
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Figure E.5: Distributions of ΨD for designs for the logistic model for one dynamic covariate
are plotted against sample size, based on 20 simulations. We consider the myopic approach
(N = 0), as well as the nonmyopic approach to constructing D-optimal designs with horizon
N = 1 and 3. For the nonmyopic approach, we consider both the case where the correct
covariate distribution is known (left panel), and when it is unknown so the empirical covariate
distribution is used (right panel).
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Figure E.6: Distributions of the efficiencies of the nonmyopic D-optimal designs against
the myopic D-optimal designs for the logistic model for one dynamic covariate are plotted
against sample size, based on 20 simulations. We consider the efficiencies of the non-myopic
approach with horizons 1 and 3, with the correct and empirical distributions, against the
myopic approach as the baseline.
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Figure E.7: Distributions of β̂ for designs for the logistic model for one dynamic covariate
are plotted against sample size, based on 20 simulations. We consider the myopic approach
(N = 0), as well as the nonmyopic approach to constructing G-optimal designs with horizon
N = 1 and 3. For the nonmyopic approach, we consider both the case where the correct
covariate distribution is known (left panel), and when it is unknown so the empirical covariate
distribution is used (right panel).
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Figure E.8: Distributions of ΨG for designs for the logistic model for one dynamic covariate
are plotted against sample size, based on 20 simulations. We consider the myopic approach
(N = 0), as well as the nonmyopic approach to constructing G-optimal designs with horizon
N = 1 and 3. For the nonmyopic approach, we consider both the case where the correct
covariate distribution is known (left panel), and when it is unknown so the empirical covariate
distribution is used (right panel).
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Figure E.9: Distributions of the efficiencies of the nonmyopic G-optimal designs against
the myopic G-optimal designs for the logistic model for one dynamic covariate are plotted
against sample size, based on 20 simulations. We consider the efficiencies of the non-myopic
approach with horizons 1 and 3, with the correct and empirical distributions, against the
myopic approach as the baseline.

E.2 Two covariates

In this simulation, we compare myopic and non-myopic designs for logistic regression where
we have two static covariates and interactions between treatments and covariates are assumed.
The model is given by y = β

(
1 z.1 z.2 t z.1t z.2t

)
where the true values of the parameters

are β =
(
1, 2, 1,−2, 5,−4

)ᵀ
. The first covariate is generated such that P(z1,i = 1) = 0.5 and

the second covariate is generated such that P(zi,2 = 1) = 0.3 for all i. All other settings for
the simulations are as stated in Section 4.2.5.
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Figure E.10: Distributions of β̂ for designs for the logistic model for two static covariates
are plotted against sample size, based on 20 simulations. We consider the myopic approach
(N = 0), as well as the nonmyopic approach to constructing DA-optimal designs with
horizon N = 1 and 3. For the nonmyopic approach, we consider both the case where the
correct covariate distribution is known (left panel), and when it is unknown so the empirical
covariate distribution is used (right panel). The black line indicates the median, the dark
grey indicates the 40th to 60th percentile, and the light grey indicates the 10th to 90th
percentile of the distribution.
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Figure E.11: Distributions of ΨDA for designs for the logistic model for two static covariates
are plotted against sample size, based on 20 simulations. We consider the myopic approach
(N = 0), as well as the nonmyopic approach to constructing DA-optimal designs with
horizon N = 1 and 3. For the nonmyopic approach, we consider both the case where the
correct covariate distribution is known (left panel), and when it is unknown so the empirical
covariate distribution is used (right panel).
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Figure E.12: Distributions of the efficiencies of the nonmyopic DA-optimal designs against
the myopic DA-optimal designs for the logistic model for two static covariates are plotted
against sample size, based on 20 simulations. We consider the efficiencies of the non-myopic
approach with horizons 1 and 3, with the correct and empirical distributions, against the
myopic approach as the baseline.
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Figure E.13: Distributions of β̂ for designs for the logistic model for two static covariates
are plotted against sample size, based on 20 simulations. We consider the myopic approach
(N = 0), as well as the nonmyopic approach to constructing D-optimal designs with horizon
N = 1 and 3. For the nonmyopic approach, we consider both the case where the correct
covariate distribution is known (left panel), and when it is unknown so the empirical covariate
distribution is used (right panel). The black line indicates the median, the dark grey indicates
the 40th to 60th percentile, and the light grey indicates the 10th to 90th percentile of the
distribution.
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Figure E.14: Distributions of ΨD for designs for the logistic model for two static covariates
are plotted against sample size, based on 20 simulations. We consider the myopic approach
(N = 0), as well as the nonmyopic approach to constructing D-optimal designs with horizon
N = 1 and 3. For the nonmyopic approach, we consider both the case where the correct
covariate distribution is known (left panel), and when it is unknown so the empirical covariate
distribution is used (right panel).
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Figure E.15: Distributions of the efficiencies of the nonmyopic D-optimal designs against
the myopic D-optimal designs for the logistic model for two static covariates are plotted
against sample size, based on 20 simulations. We consider the efficiencies of the non-myopic
approach with horizons 1 and 3, with the correct and empirical distributions, against the
myopic approach as the baseline.
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Figure E.16: Distributions of β̂ for designs for the logistic model for two static covariates
are plotted against sample size, based on 20 simulations. We consider the myopic approach
(N = 0), as well as the nonmyopic approach to constructing G-optimal designs with horizon
N = 1 and 3. For the nonmyopic approach, we consider both the case where the correct
covariate distribution is known (left panel), and when it is unknown so the empirical covariate
distribution is used (right panel).
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Figure E.17: Distributions of ΨG for designs for the logistic model for two static covariates
are plotted against sample size, based on 20 simulations. We consider the myopic approach
(N = 0), as well as the nonmyopic approach to constructing G-optimal designs with horizon
N = 1 and 3. For the nonmyopic approach, we consider both the case where the correct
covariate distribution is known (left panel), and when it is unknown so the empirical covariate
distribution is used (right panel).
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Figure E.18: Distributions of the efficiencies of the nonmyopic G-optimal designs against
the myopic G-optimal designs for the logistic model for two static covariates are plotted
against sample size, based on 20 simulations. We consider the efficiencies of the non-myopic
approach with horizons 1, 2, and 3, with the correct and empirical distributions, against the
myopic approach as the baseline.
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Appendix F

Simulations for the weighted
L-optimal designs

F.1 Effective Treatment
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Figure F.1: Distribution of β̂ vs sample size for the weighted L-optimal design for the
linear model case with effective treatment. The black line indicates the median, the dark
grey indicates the 40th to 60th percentile, and the light grey indicates the 10th to 90th
percentile of the distribution.
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Figure F.2: Distribution of σ̂ vs sample size for the weighted L-optimal design for the
linear model case with effective treatment.

20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z=0

20 40 60 80 100

z=1

Sample Size

W
ei

gh
t

Figure F.3: Distribution of wr vs sample size for subgroups (z = 0) and (z = 1) for the
weighted L-optimal design for the linear model case with effective treatment.
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Figure F.4: Distribution of theoretical values of the the power of the hypothesis test vs
sample size for subgroups (z = 0) and (z = 1) for the weighted L-optimal design for the
linear model case with effective treatment.
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Figure F.5: Empirical values of the the power of the hypothesis test vs sample size for
subgroups (z = 0) and (z = 1). Each point is the proportion of simulations in which the
null hypothesis is correctly rejected.
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Figure F.6: Distribution of the proportion of new treatment in each subgroup vs total
sample size for the weighted L-optimal design for the linear model case with effective
treatment.
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Figure F.7: Distribution of ΨL vs sample size for the weighted L-optimal design for the
linear model case with effective treatment.
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Figure F.8: Distribution of β̂ vs sample size for the weighted L-optimal design for the
linear model case with non-zero interaction.



246 Appendix F. Simulations for the weighted L-optimal designs

20 40 60 80 100

0.
0

1.
0

2.
0

3.
0

Sample SizeSample Size

σ̂

Figure F.9: Distribution of σ̂ vs sample size for the weighted L-optimal design for the
linear model case with non-zero interaction.
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Figure F.10: Distribution of wr vs sample size for subgroups (z = 0) and (z = 1) for the
weighted L-optimal design for the linear model case with non-zero interaction.
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Figure F.11: 1-specificity for the hypothesis test vs sample size for subgroup (z = 0) for
the weighted L-optimal design for the linear model case with non-zero interaction. The
proportion of correct null hypotheses that have been rejected is given for each sample size.
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Figure F.12: Distribution of theoretical values of the the power of the hypothesis test
vs sample size (left panel) and empirical values of the the power of the hypothesis test vs
sample size (right panel) for the weighted L-optimal design for the linear model case with
non-zero interaction.
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Figure F.13: Distribution of the proportion of new treatment in each subgroup vs total
sample size for the weighted L-optimal design for the linear model case with non-zero
interaction.
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Figure F.14: Distribution of ΨL vs sample size for the weighted L-optimal design for the
linear model case with non-zero interaction.
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Figure G.1: Distribution of β̂ vs sample size under the normal-inverse-gamma prior for
the myopic approach (top row), non-myopic approach with horizon 1 (middle row) and
non-myopic approach with horizon 2 (bottom row). The black line indicates the median,
the dark grey indicates the 40th to 60th percentile, and the light grey indicates the 10th to
90th percentile of the distribution.
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Figure G.2: Distribution of wr vs sample size under the normal-inverse-gamma prior for
the myopic approach (top row), non-myopic approach with horizon 1 (middle row) and
non-myopic approach with horizon 2 (bottom row).
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prior for the myopic approach (top row), non-myopic approach with horizon 1 (middle row)
and non-myopic approach with horizon 2 (bottom row).
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the myopic approach (top row), non-myopic approach with horizon 1 (middle row) and
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Appendix H

Simple illustrative example

In this example, suppose that we have one binary covariate z generated by the distribution
given by: P(z = 1) = 0.3 and P(z = −1) = 0.7. The response is binary and we assume a
linear model where we have an intercept and effects for the treatment and covariate:

E(y) = β0 + β1z + β2t. (H.1)

We do not assume treatment-covariate interactions.

Suppose that we already have three patients in our design with covariate values z1 = 1, z2 =
−1 and z3 = 1, respectively. Their treatments are t1 = −1, t2 = −1 and t3 = 1. The design
matrix is as follows:


[r]1 1 −1
1 −1 −1
1 1 1

 (H.2)

Suppose we observe that z4 = −1. We illustrate three methods of assigning treatment t4:

H.1 Myopic approach

Figure H.1
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As illustrated in Figure H.1, we only consider patients one up to four when we make the
decision about the fourth patient. There are two possible options for the design matrix after
four patients, Xa where t4 = 1 and Xb where t4 = −1 :

Xa =


1 1 −1
1 −1 −1
1 1 1
1 −1 1

 ,Xb =


1 1 −1
1 −1 −1
1 1 1
1 −1 −1

 (H.3)

We have that ΨD(Xa) = 0.03125 and ΨD(Xb) = 0.015625. If we select treatments determin-
istically, we select -1 to be the treatment for patient 4 since ΨD(Xb) < ΨD(Xa) . If we wish
to select treatments with a stochastic element, we assign t4 = 1 with probability given by:

1
0.03125

1
0.03125 + 1

0.015625
= 0.3333. (H.4)

H.2 Nonmyopic approach

With this approach, we consider what the expected loss would be after one patient in the
horizon if t4 = 1 versus t4 = −1. As shown in Figure H.2, there are four possibilities
to consider: t4 could either be 1 or −1, and for each of these possibilities, there are two
covariate values that we could potentially observe for z5. For each of these four possible
options, we determine the best choice of treatment for t5 and note the value of D-optimality
if the optimal treatment is assigned. This expected D-optimality is shown on the right hand
side of Figure H.2.

Figure H.2

Next, we compute the expected loss with one patient in the horizon for t4 = 1 and t4 = −1,
using Equation (4.2):
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Φ1(t4 = 1 | z4, t3) = 0.3 (0.00893) + 0.7 (0.00893) = 0.00893 (H.5)

Φ1(t4 = −1 | z4, t3) = 0.3 (0.0156) + 0.7 (0.00893) = 0.010931 (H.6)

We find that Φ1(t4 = 1 | z4, t3) < Φ1(t4 = −1 | z4, t3), so we would select t4 = 1 if treatment
is to be chosen deterministically. If we are adding a stochastic element to the treatment
allocation procedure, we select t4 = 1 with probability given by:

1
0.00893

1
0.00893 + 1

0.010931
= 0.5503751. (H.7)

H.3 Pseudo-nonmyopic approach

To illustrate the pseudo-nonmyopic approach, we consider what the expected loss would be
after all patients up until the end of the experiment if t4 = 1 versus t4 = −1. Let us suppose
there is a total of n = 7 patients in the trial, and we choose the number of trajectories, M ,
to be 3. As shown in Figure H.3, supposing that t4 = 1, we generate three trajectories,
each with three possible covariate values for future patients. We select treatments for those
three patients using the exchange algorithm, and note the value of D-optimality after seven
patients for each of those three trajectories. The values of the D-optimality are given on the
right hand side of Figure H.3. We then suppose that t4 = −1 and repeat the same process.

Figure H.3

Next, we compute the average objective function across the M designs, assuming t4 = 1 and
t4 = −1, using Equation (5.9):

Ψ̄(t4 = 1) = 1
3 (0.00312 + 0.00312 + 0.00367) = 0.00330, (H.8)
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Ψ̄(t4 = −1) = 1
3 (0.00367 + 0.00367 + 0.00312) = 0.00349. (H.9)

Since Ψ̄(t4 = 1) < Ψ̄(t4 = −1), so we would select t4 = 1 if treatment is to be chosen
deterministically. If treatment is allocated stochastically, we would allocate t4 = 1 with
probability given by:

1
0.00330

1
0.00330 + 1

0.00349
= 0.514. (H.10)

We observe that, for this small example, the decisions for treatment assignment for patient
4 do not necessarily coincide for the three methods.



259



260 Appendix I. Pseudo-nonmyopic approach for personalized medicine

Appendix I
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Figure I.1: Distributions of β̂ for designs for the logistic model with a continuous treatment
and large interaction are plotted against sample size for the myopic and pseudo-nonmyopic
approaches. The black line indicates the median, the dark grey indicates the 40th to 60th
percentile, and the light grey indicates the 10th to 90th percentile of the distribution.
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approaches.
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Appendix J

Preliminary work on CARAEE
designs

In this appendix, we describe some of the preliminary work that we did on CARAEE designs.
Here, there is a need to consider both the efficiency and ethics components in making the
decision about treatment allocation. We denote the efficiency and ethics measurements
as dt(zi, β̂i) and et(zi, β̂i), respectively. In a CARAEE design, the ith patient is assigned
treatment 1 with probability given by:

e1(zi, β̂i)
(
d1(zi, β̂i)

)γ
e1(zi, β̂i)

(
d1(zi, β̂i)

)γ
+ e−1(zi, β̂i)

(
d−1(zi, β̂i)

)γ , (J.1)

where γ ≥ is a tuning parameter. With γ = 0, you have a CARA (covariate adjusted response
adaptive) design. With e1(zi, β̂i) = 1, you have a RAR (response adaptive randomization)
design. We chose D-optimality as the efficiency measure for the ith patient when they are
assigned treatment t, for t ∈ {−1, 1}:

dt(zi, β̂i) = ΨD(t|z̃i, t̃i−1, ỹi−1), (J.2)

which we wish to minimize. We set the ethics measure as the expected response for patient
i, given their covariate values and assuming that they receive treatment t:

et(zi, β̂i) = E
(
yi|z̃i, t̃i−1, ti = t

)
, (J.3)

which we wish to maximize, following the proposal by Hu et al. (2015). The probability of
assigning treatment 1 to patient i is given by:
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e1(zi,β̂i)γ
d1(zi,β̂i)

e1(zi,β̂i)γ
d1(zi,β̂i)

+ e−1(zi,β̂i)γ
d−1(zi,β̂i)

, (J.4)

where 0 ≤ γ ≤ 1. We note that 0 ≤ et(zi, β̂i) ≤ 1 and dt(zi, β̂i) ≥ 0 for all i and t ∈ {−1, 1} .
Some simulation results showed that the CARAEE designs for the binary response, produce
designs that are less efficient but more ethical than myopic D-optimal designs, as expected.
Investigation is needed to verify suitable choices of the tuning parameter, γ, and to check
whether our choices of dt(zi, β̂i) and et(zi, β̂i) are suitable. A major concern is that they
are not measured on different scales. An interesting area of future work is extending the
CARAEE design for a nonmyopic or pseudo-nonmyopic framework.
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