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Abstract—Distributed parameter detection is conceived for band, the time-bandwidth resources required in such arsyste
massive multiple-input multiple-output (MIMO) wireless sen-  are independent of the number of sensors, thus making the
sor networks (WSNSs), where multiple sensors collaborate to proposed technique attractive for practical implemeotatn

detect the presence/ absence of a spatially correlated para . . . .
eter. Neyman-Pearson (NP) and generalized likelihood ragi WSNs. A brief review of the related literature pertaining to

test (GLRT)-based detectors are developed at the fusion cer Parameter sensing in WSNs is presented next.
(FC) for known and unknown parameter detection scenarios,

respectively. More explicitly, the GLRT detector also has ®

estimate the unknown parameter value. Closed-form expresmns A. State-of-the-Art Review

are derived for the probabilities of detection (Pp) and false alarm : . . . _—
(Pr.) in order to characterize the performance of the proposed Li and Dai [9] investigate the performance of a distributed

schemes. Furthermore, the optimal sensor transmit gains arde- detection scheme, wherein correlated sensor observatiens
termined for maximising the detection performance attainal. An  transmitted over a MAC. As a further advance, Tepedelen-
asymptotic performance analysis is carried out for determhing [ioglu and Dasarathan [10] proposed a distributed detectio
the gain scaling laws for the massive MIMO WSN considered, scheme for constant modulus sensor transmissions over a

when the number of antennas tends to infinity. The proposed . .
framework is also extended to the realistic imperfect chanal Gaussian MAC and compared its performance to other detect-

knowledge scenario at the FC, followed by the development afie  @nd-forward as well as amplify-and-forward schemes.
associated fusion rules and analytical results to charactize the However, these early contributions relied on a single an-
fpe(rjf.ormance. Our simulation results closely tally the theeetical  tenna, whilst [11], [12] used multiple antennas at the FC for
Inaings. : H :

Ind?ex Terms— Wireless sensor networks (WSNSs), massive improving the performance. In particular, Banaehil. [111 .
multiple-input multiple-output (MIMO), generalized like lihood employed an ampllfy-.and-forward scheme forltransmlt.tlng
ratio test (GLRT), Neyman-Pearson (NP) criterion. the sensory observations to the FC over fading multiple-

access MIMO channels. The performance of their system is
characterized in terms of the error probability exponemt fo
. INTRODUCTION transmission over additive white Gaussian noise (AWGN),

WSNSs, relying on miniature sensors, have attracted signff@yléigh and Rician fading channels. The analysis of [11]
icant research interest in environmental and habitat rapnitWas then further extended in [12] for determining the optima
ing, surveillance, disaster management, medical andtatalc S€NSOr gains minimizing the error exponents, considerisy a
monitoring, industrial applications etc. [1], [2]. Accteade- different levels of CSI a\{allablllty at _the |nd|\{|QUaI SEms.
tection of the parameters of interest is of pivotal impocean 1hen Nevatet al. [13] derived the optimal decision rules for
in many WSNs to reliably establish the presence or abserﬂ:écenarlo_wherem the sensors transmit their observatmns
of a phenomenon of interest [3]-[8]. A popular model fof"€ FC using the amplify-and-forward scheme over MIMO
the implementation of a WSN is the coherent multiple acce§8annels, followed by the characterization of the restitan
channel (MAC) based architecture, where the various sen§§tection and false alarm probabilities, considering afe
observations are amplified followed by their transmissipm t €@listic scenarios of having unknown CSI between the sourc
fusion center (FC). Subsequently, using a suitably design@nd the sensors as well as the sensors and the FC. On the
rule, the FC makes a decision regarding the presence 9§per hand, Ciuonzet al. [14] designed near optimal fusion
absence of the signal of interest [5]. Naturally, since tHalles for MIMO WSNSss, considering the transmission of local

simultaneous sensor transmissions are in the same fregudfigary decisions at the sensors over a coherent MAC. ARBarr
et al. [15] have proposed and analyzed the performance of
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to the FC. Due to the bandwidth and power constraints, tkellaborative wideband spectrum sensing system, whehein t
sensor measurements are generally compressed prior 8 tr@+C is equipped with a massive antenna array. While the
mission over a rate-constrained channel [17]. Typicalyg t benefit of massive antenna arrays is widely recognized in
local binary decisions of the individual sensors are trdtisth general communication systems, there is a paucity of con-
and subsequently processed at the FC in order to arrivetrédbutions analyzing their benefits in the context of WSNs,
a global decision. Nevertheless, this leads to performanegpecially when the sensors employ an amplify-and-forward
degradation as the FC does not receive all the informati8h [Lscheme for measurement transmission, followed by paramete
Furthermore, the local detection rules have to be optimizeddetection. Furthermore, none of the existing contribigibave
order to achieve the minimum detection error. As demoredfratconsidered maximal ratio combining (MRC) at the FC in an
in [19], [20], the optimal detection rule for a binary hype#lis amplify-and-forward based measurement transmissiomsehe
testing problem, derived using the Neyman-Pearson (NP) &iod fully exploiting the benefits of a massive MIMO system,
Bayesian criteria, reduces to the likelihood ratio test LR followed by the design of the optimal detectors, which can
However, the optimal local thresholds at the individualsea significantly reduce the complexity of parameter sensirg. T
are generally non-identical and have to be jointly evaldatdill this gap in the literature, this paper analyzes the bémnéfi
along with that of the global fusion rule for reliable sensoemploying a massive antenna array at the FC, wherein low-
decisions. Therefore, the search for optimal local detsctawomplexity linear processing based fusion rules are dérive
can potentially be of exponentially growing complexity [21 for detecting the presence/ absence of a spatially coedtlat
Recently, several researchers have studied the benefitkmdéwn/ unknown parameter, employing the NP criterion and
employing a massive antenna array at the base station (B®heralized likelihood ratio test (GLRT) paradigms, r&spe
for meeting the ever-growing demand for higher data ratdszely, considering both perfect and imperfect CSI at the FC
In such a massive MIMO system, the BS has a very largdie main contributions of this work for spatially correldte
antenna array, typically comprising hundreds of antenfwas, parameter detection in a massive MIMO WSN are summarized
simultaneously serving a large number of single-antenna deelow.
vices/ sensors, using the same time-frequency resour2gs [2
This in turn leads to a high spectral efficiency in such system
Additionally, linear receiver techniques can be adopted Bt
the massive MIMO BS without impacting the performance « This work considers a sensor network wherein multiple

Main Contributions

[23], thereby leading to appealingly low complexity of sidn
processing. Furthermore, massive MIMOs facilitate a $igni
icant transmit power reduction for the devices, proposdion

sensors transmit their amplified analog observations to the
FC for the detection of a spatially correlated parameter.
This is in contrast to [30]—[33], which consider the trans-

to the number of antennas at the BS, without compromising mission of local sensor decisions to the FC. The proposed
the asymptotic rate of the users [24]-[26]. Hence, there has framework considers the effects of parameter correlation,
been a growing interest in employing massive MIMOs in  which naturally exists due to the spatial proximity of the
WSNs [27]-[33]. In this context, Jiang al. [27] investigated sensor nodes.

the estimation and detection performance of a WSN using a. The NP criterion and the GLRT frameworks are sub-
massive antenna array, wherein the sensors communicate ove sequently exploited for designing fusion rules for the
a coherent MAC, followed by the performance characteiizati detection of known and unknown spatially correlated pa-
of the NP and energy detectors, and the associated linear rameters, respectively, with perfect CSI. This is différen
minimum mean squared error (LMMSE) estimator. Shirazinia from [32], [33] that derive only the NP criterion based
et al. [28] investigated the problem of decentralized estimation  fusion rules using the local sensor decisions.

of a correlated random parameter vector in a massive MIMO.« To enhance the detection performance at the FC, an
network using the MMSE estimator. The impact of transceiver optimization framework is also developed for deriving the
hardware impairments, both at the single-antenna senadrs a  optimal sensor gains, which is absent in [13], [14], [30],
at the massive-antenna FC, on the detection performance of [32] that are based on equal sensor power allocation.
massive MIMO-based distributed detection systems, has bee « Closed-form analytical expressions are derived for char-

explored in [29]. Ciuonzoet al. [30] have proposed low
complexity sub-optimal detection rules, such as the défiect
maximizer widely linear (WL) and linear-filter fusion rules
for large antenna-array based WSNs. Ciuostzal. [31] have

acterizing the performance of the proposed detectors in
terms of the resultanPp and Pr4 at the FC.

The above schemes and analysis are also extended to
practical scenarios having imperfect CSlI, which includes

developed sub-optimal fusion rules for massive antennadas
WSNs, wherein the channel is modeled by Rician fading.
The authors of [32], [33] have analyzed the performance of [12], [14] only consider the idealized scenario of perfect

the NP criterion based simplified fusion rules for low-SNR  CSI at the FC.

distributed detection in massive MIMO WSNSs, incorporating « The asymptotic performance of the fusion rules is ex-

also the reliabilities of the local sensor decisions. Fenrtiore, amined in the large antenna regime and the pertinent
Dey et al. [34] propose and analyze the performance of scaling laws are derived for both uniform and optimized

sub-optimum decision fusion techniques conceived for an gain allocation schemes in the massive MIMO WSN

orthogonal frequency division multiplexing (OFDM) based  scenarios, whereas [30], [33] characterize the asymptotic

determining the requisite detectors and characterizing
their analytical detection performance. By contrast, [11]
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performance only for uniform power allocation. It is Il. SYSTEM MODEL

explicitly demonstrated t_hat the trfinsmlt gain of each Let us consider a WSN whereil sensors monitor a
sensor can be reduced in proportion to the number of

antennas at the FC, which is key to maximizing th?gngl of m_ter_est belonging to the sét < {0’9} € R

lifetime of the battery operated sensor nodes. or differentiating between the events characterlze(_j by th

set of hypothese${ = {Ho,H1}. The null hypothesisH,

C. Organization corresponding t® = 0, repre;ents the ab;ence of the signal
) of interest and the alternative hypothegis denotes the
The rest of the paper is organized as follows. Section ftesence of the signal, i.e9 = 6. Each sensor node has

describes the system model for spatially correlated pae@me, single antenna and communicates with a FC equipped with

sensing and distributed detection in massive MIMO WSNS, |arge antenna array comprising df antennas, where we
where the sensors transmit their amplified observationséo f1ave 1/ > K. Note that most existing contributions on

FC over a MAC. Section Il presents the log likelihood ratignassive MIMO [24], [26], [30], [33] consider single antenna

(LLR) based fusion rule for the detection of a known paramyeyices and sensors to limit the device complexity. Theasns

eter, followed by its detection performance characteiorat {ansmit their suitably preprocessed correlated measemesm

Subsequently we also develop the optimization framework gf the FC over a coherent MAC, as illustrated in Fig. 1. The

deriving the optimal sensor gains. This framework is then eeasurement process at thigh sensor,l < j < K, can

tended to an unknown parameter detection scenario in ®ectipz modeled as;; = a,;0 + v;, wherev; is the complex

IV, wherein a GLRT-based detector is derived. Our asymptoiaussian observation noise at thth sensor that is distributed

performance analysis and our gain scaling laws are derivggvj ~ CN(0,02) anda; are observation constants, similar

in Section V for the massive MIMO detectors proposed ify the models in [35]. Thej-th sensor measurement; is

Section Ill and Section IV. Our imperfect CSI framework ighereafter precoded using a complex g#jrand forwarded to

presented in Section VI, followed by the fusion rules coneei ne FC for a global decision. The signale CM*! received

both for known and unknown parameter detection in Sectigjy the FC under the two hypotheses can be expressed as

VI-A and Section VI-B, respectively. Our simulation result

are provided in Section VII, followed by our conclusions in Ho:y=GFv+n

: 1
Section VIII. Hy:y = GFaf + GFv + n, @)
D. Notations wheren € CMx1 js the AWGN vector at the FC that is

it 2 _ T Kx1
The notation used throughout the paper is summarized djgtributed a1 ~ CN'(0, 07 1nr), 2 = [ay, ..., ax] € T~

follows. Uppercase boldfaceX) and lowercase boldfacex) andv € CX*! denotes a similar stacking of the observation
represent matrices and vectors, respectively, wixlg,,, and ;Ofedsamplewj of the (é; XSE”?OVSB Thed dl;agolna! ma:]nx
x, denote the(m,n)th and nth element of the matrixX = diag(f1,...,fx) € is obtained by placing the

and vectorx, respectively. Furthermord) denotes a vector Fr?]mplﬁx gallnsfj, _1 § J< K,I%Iong Its prlnglprz]il (élgg_onal.
with all its elements being zero arldrepresents an identity e channel matrix between tiie¢ sensors and the IS Tep-

matrix. The operator& {-}, ®R{-}, ()7, (-)¥, exp{-}, (-)~1, resented byG = [g1,- - 8] E,CMXK and.itsj-th column
|| and| - || represent the expectation, real part, transposV@Ctor' which corresponds to theth sensor, is represented by

, Mx1 ] ,
Hermitian, exponential, inverse, absolute value and weih 81 € €7 - Them-th, 1 <m < M, element ofg;, denoted
= [G],; can be modeled ag,,; = \/5;hm;, Where

norm, respectively and the symbél is used for defining an bY gm; ) )
approximate distribution of a random variable. The quynti{lmﬂ' denotes the small-sca!e fading coefficient betweemth_e

() represents the probability density function (PDF) an aannna at the FC and tli¢h sensor. The Iarge-gcalefadlng
p(A; B) represents the PDF whert is parameterized byB. coefficient3; that models the geometric attenuation and log-

The notationx ~ CA/(x,C) is used to define the CompleXnormal shadowing is invariant oven, and it is assumed to
Gaussian distribution 012 the random vectorwith mean be constant over multiple coherence time intervals. Tloeeef

and covariance matri€. The term@ represents the Gaussianthe channel matrix; can be decomposed as
Q-function and is defined aQ(z) = \/LQTT e exp(—%) dy. G = HD'/?, @)
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distribution under both the hypotheses, which is given as

Fig. 1. System model of the massive MIMO WSN, wherairsingle-antenna N
sensors communicate with & receive antenna array based FC. { CN(0,C) , under#,

CN(GFaf,C) , underH,
whereH = [hy,...,hg] andD = diag(f1,...,0k). The
diagonal matrixD € CX*X represents the large-scale fadin
matrix andH € CM*X denotes the small-scale fading matri
comprising the fast fading channel coefficients betweenithe
sensors and the FC. The elementdhfdenoted byh,,;, are exp(—(y — GFae)HC—l(y — GFaf))
assumed to be independent identically distributed ().ias. T(y) = 1“{ :

= ®)
_ HC—l
CN(0,1). Consequently, under favorable propagation condi- ) exp(-y y) .
tions, the elements of can also be modeled as independer’® FC can directly employ the LLR test in (5) for the

random variables that are distributed @s; ~ CA(0, 3;) detection of the signal of interest. However, the above test
J v 237" . . . . L.
Moreover, the channel vectors corresponding to distinnt se> E?mpuj'\[;:lggfnally.cor_’nplex as it requires the matrix inie@s
sors are assumed to be mutually independent. This holds tfde g C » which imposes a corrllputatllonal comple>.<|ty of
as a result of the assumption that the sensors are spatiallly ’ (M~ /) that depends off. Interestingly, it has been widely

separated in a typical WSN. Therefore, from the law of lar ploited in the existing literature on massive MIMO system
numbers, this leads to the property hat linear processing employing MRC achieves good perfor-

mance in the large antenna regime, i.e., wiiérns> K [26].
Exploiting this property, a two-step procedure is devetbpe
now for efficiently computing the fusion rules with reduced

Hence, as M becomes large, under favorable propagatﬁmnpumtionfal complexities, which are _suitable for picati
conditions, the channel vectors of different sensors becofff’Plementation. Fig. 2 shows a block diagram of the system.
pairwise orthogonal. This is a widely exploited property of? the first step, the received signal is processed using the
massive MIMO systems, which has been exploited in num IRC at the FC. Subsequently, the processed measurements
ous contributions [24], [36]. For the above system, therogti of the individual sensors are combined in the second step to

decision rules and the resultant performance at the FC &f¥ain & global decision. , , _
determined for various scenarios. Upon applying the MRC to the received signal in (1), the

filter outputy € CX*! corresponding to the hypothesgf,
and#,, respectively, can be expressed as

hereC = 02GFFYG* + 521 denotes the covariance of
he effective noise at the output. Substituting the PDFef t
observationy, the LLR test in (4) can be expressed as

1 H'H
MGHG = Dl/QTDl/Q ~D, for M > K. (3)

IlIl. FUSION RULE FOR A KNOWN SIGNAL 6 WITH

1 GHG 1
PERFECTCSI v —QHy _ L H
_ _ _ - - Ho:y MG y % Fv + MG n
This section derives the fusion rule for the detection of a } 1 felile! elife] 1
known deterministic parametérwith perfect CSI. The more Hi:y = MG y= TFaG + % Fv + MG n.
challenging scenarios with unknowhand imperfect CSI are (6)

considered later in Section IV and Section VI, respectivellynder the favorable propagation conditions described )n (3
Using the popular NP criterion [37], which aims for maximizthe filter output in (6) can be closely approximated for a
ing the probability of detection subject to a given probiodf massive MIMO scenario as

false alarm, the LLR test formulated for the binary hypothies Ho:y ~n
testing problem in (1) can be expressed as H, - § ~ DFa + i, )
T(y) =In {M} g 5, (4) Where the noise vectoh = DFv + ;G"n € CK*! is
p(y|Ho) ¥ #0, distributed ag (0, C) with C = agDFFHDH—i-%D. The

wherep(y|Ho) and p(y|H,) denote the likelihood functions distribution ofy under both the hypotheses can be equivalently
corresponding to the null and alternative hypotheses emspWwritten as o

tively, while ~ represents the detection threshold. It can be Ho:y ~CN(0,C) 8)
observed that the received signal in (1) follows the Gaussia H1:y ~ CN(DFab,C).



TABLE Il

COMPUTATIONAL COMPLEXITY OF FUSION RULES variance of Tkp(y), yielding:
[ Fusion Rules] Complzexity | ol Ho = 0, (13)
Tkp(y) OM?K) K
TKpEy; 0<M(K2+1)<5> i, = MB; |a;* | £51* 6 (14)
Tup(y O(M*K kp|H1 — 2
TSS(N) OME + K7) o o MBI fil” +od
Tkip(y) O(M?K + M7K) K
Tw() | OOFF TR, S 1( MB; |a | £ ) (15)
T OOVPK + MK Tup = 3 :
Tors) OOK T K% TS MBS+
The LLR for the binary hypothesis testing problem in (7) can  Proof: Given in Appendix A. u
now be expressed as
~ p(FH1) A. Sensor Gain Optimization
TKp(y) =In |:~7i|, (9) . . L. .
p(¥|Ho) This subsection formulates our optimization framework for

which can be further simplified using the PDFs determined fiftermining the optimal sensor gaifs|*, 1 < j < K, similar
(8) under both hypotheses as to the approach in [27]. Our goal is that of further enhancing

~ o1 the detection performance of the test proposed in (11) \ga th
Tkp(y) =In [eXp(i(y — DFaf)"C” (y — DFaG))} optimal sharing of the total sensor powEr The deflection
exp(—(y#C~ly)) coefficient defined in [39] for characterizing the detection
=R (a"FD"Cy). (10) performance of the test in (11) can be expressed as

An alternative derivation of the test statistic using annagy
totic simplification of the LRT is given in the technical rapo
in [38]. It is worth noting that the above test, in contrast to o ) )
the LLR test in (5), is numerically stable and has a low comy!POn substituting the expressionsof |, e |, aNdo,,
putational complexity because of the diagonal structurtnef 1OmM (13), (14) and (15), respectively, into (16), the déitee
covariance matrixC € CKX*K . The computational complexity coefficient expression above can be further simplified to
of evaluatingC~" is O(K®), which does not depend a, K 90028, |a, 2 |, 2
in contrast to the complexity required to evaluaie® as dep = Z J 32 = 200707, - a7
. . . — 2Mﬂ |f| + o2

mentioned above. Furthermore, the computational comylexi j=1 90 B51Jj n
?r: thfﬁtp:ogosetd Stlfnpi“flzd&?Ctagg(wv\llﬂ”(mt)ﬁ ba?ietijnoln Thus, maximizing g, Will also maximize the deflec-

e filtered outputy, is O + K7, € the original coefficient, which in turn maximizes the detection per-

testT'(y) in (5) has a computational complexity 6f( M2 K). . 2 e
. ) " formance. Definingp; = |f;|°, the optimization problem
Table Il summarizes the computational complexities of the 9p; /3] P b

. . I . constructed for maximizing the deflection coefficient can be
various fusion rules. Upon substituting the matridées D, 9
- . : formulated as
C and the vectorg, a in the above expression (10), the
closed-form expression for the simplified test statistio ba XK: —Mp; |aj|2pj

_ 2
(NTKP|H1 MTKP\HO) . (16)

2
TTve

d? =

expressed as mn-2_ 52 MB,p; + 02 (18)
j:l v n
K ~
M(I*f*y] Hi K
To(y) =Y R(5—7—) 27, @Y | _
JZ:; MG 1 402/ subject tozlpj =P
=
wherey’ denotes the detection threshold. As seen, the above p; >0,

detector is a simple linear filter, which is well suited for ]
practical implementation due to its low complexity. For th¥here P denotes the total sensor transmit power. The result

specific scenario where all the sensor transmit gains &t@low determines the optimal sensor gains
assumed to be same, i.ff;|* = pu, Vj, the above test statistic | emma 1. The optimal values of p; that are the solution of

further reduces tdke,(y) = 1, R (%) . The the optimization problem in (18) are given as

probabilities of detectiofPp) and false alarn{Pr4) of this TS ) n
test Tkp(y) are given by the result below. i = onla;l*  oq (19)
’ AMBjoy  MpBjoy)

Theorem 1. For a given threshold +/, the probabilities of
detection and false alarm of the test statistic Tkp(y) in (11), where ()™ = z for 2 > 0 and 0 otherwise. The dual variable
denoted by Pp and Pr4, respectively, can be formulated as )\ > 0 is evaluated using the constraint Zf: \pj=P.

’_ r_ . .
Pp = QU HTKplﬂl), Ppy = Q(V MTKP\HU), (12) Proof: See Appendix B. ]

OTkp OTke
wh h h der th I 11t is a normalized squared distance between the centroidkieoDFs
ere the terms (i 4, Hrye|n, aréthe meansunaer the null o 7, (5) under both hypotheses, with the normalization factor betrey

and alternative hypotheses, respectively, and J%KP denotes the  variance.



The lower and upper bounds oh denoted by)\l, w

respectively, can be represented\as- m|n {%}
]

where " represents the detection threshold. The quantities
Wy, 4o Iy, denote the means under the pair of hypothe-
ses Ho and Hl, respectively and aT, is the variance under

and\, = max{—=H- Mﬁ]"”' }. The value of>\ is obtained by the poth the hypotheses, which are given'as
classic bisection search oveX;, \,]. The next section con- . —0 (25)
siders a scenario where the signal is unknown. The pertinent TéplHo ’
fusion rule and the corresponding performance analysischas 5 MB; a7 |17 6
on the aforementioned framework for massive MIMO WSNs Hrtel s = Z o2MB; | f;|1* + 02’ (26)
are discussed next. j;l e ) " )

v o2, :Z}( M, |a;|” 1] ) 27)

. FUSION RULE FOR UNKNOWN 6 WITH PERFECTCSI T = 2 o2 M B, |ij2 + o2
In this section, a GLRT based hypothesis testing framework Proof: See Appendix C. -

[37] is presented for the detection of an unknown signal.
Let § denote the maximum likelihood (ML) estimate of

the parametef) under the alternative hypothesig; that is
obtained by maximizing the pdf of the MRC outpgtunder
the alternative hypothesis, i.ex(y; 8|#1), which is given as

[40]
p(¥;0/H1) = WK;ICI exp[—(y — DFad)? C~!(y — DFaf)].
The value off is determined as

j_ R@"F'D’Cy) (20)

aHFEDHC-1DFa’

The PDFs of the filter output vectgrunder both the hypothe-

ses can be obtained as

~ 1 . (22)
p(¥[Ho) = pYsTel] exp(—=y"C™y).

Using (21), the GLRT statisti@yp(y) for the massive MIMO
WSN can be simplified to
. p(¥;01H1)
Torts) = |2y
. {w%m exp(— (y DFaf)”’C~!(y — DFaf))
o exp(—y7 C1y)
= R(0a"FIDIC1y).

(22)

Upon substituting the value df obtained in (20) into (22),
the test statistic can be further simplified to obtain the tes

TP(S’):‘i%( MJj a8
V B = oM B;|f51? + o7,

— T/ ~ }él 1"
=| UP(Y)| <7 -
Ho

(23)

. Sensor Gain Optimization

Similar to the known parameter case, the detection perfor-
mance for the unknown parameter scenario can be maximized
by maximizing the deflection coefficient of the t&&ip(y) in
(23). Using (24), the detection threshell can be represented
in terms of thePry asy” = [Q 7' (Pra/2)] ory,. Upon
substitutingy” in (24), the probability of detectio®®p for
the test can be recast & = Q(Q Y (Pra/2) — \/dEp) +
Q(Q ™' (Ppa/2)++/d3p), Where d?p denotes the deflection
coefficient correspondlng to the test statistige(y) in (23)
that can be expressed as

2
(Hryoia,)
2 = 29‘LLTL/JP‘,H1'
UT/
upP

Using (28), the optimization problem determining the ojatim

valuesp; = | f;|? for improving the detection performance can
be formulated as
K
-M
mm Z ﬁ]|aJ| Py (29)
o2MBjp; + o2
K
subject to) _p; = P
j=1
p; = 0.

As seen, the above optimization problem is similar to that
for the known parameter scenario of (18) and the solution is
therefore once again given by (19). The asymptotic perfor-
mance analysis and the pertinent gain scaling laws for the
massive MIMO WSN for various scenarios are determined in
the subsequent section.

V. ASYMPTOTIC PERFORMANCEANALYSIS

The detection performance of the test above is given by theThjs section analyzes the asymptotic performance of the

result below.

Theorem 2. The Pp and Pr4 corresponding to the test
statistic Tup(y) in (23) for the detection of an unknown
deterministic parameter in a massive MIMO WSN are given

as
1 1
- / 1 + ) 1
Pp — Q(V UMTUPW )+ Q(V UMTUP\H ),
T T,

,Y” uP uP (24)
Pra=2Q(-—),

oT

proposed detectors for the deterministic known and unknown
parameter scenarios of (11) and (23), respectively, in the
large antenna regime, i.e. whed — oo, considering both
identical and optimized sensor gains. The asymptotic perfo
mance corresponding to a large number of antennas at the FC
demonstrates the rate at which the transmit gain of the s&nso
can be decreased upon increasing the number of antennas at
the FC. This in turn has a significant implication for the WSN,
since the reduced transmit power can lead to improved patter
life of the sensors.



A. Known Parameter B. Unknown Parameter

This subsection presents the asymptotic performance ofConsider the scaling g, = % The next result presents
the test statistic in (11) for both identical and optimalrgaithe asymptotic performance of the test in (23) for the d&nct

allocation. of an unknown parameter in a massive MIMO WSN.

1) Uniformly Distributed Gain Allocation: Under this rorem 5. The asymptotic probabilities of detection P and

scheme, (Qequal power is allocated to .aII the Sensors, | fycs alarm P, of the detector in (23), are given below for
pu = |f;I” = P/K, V j. Let us consider the scaling of; entical gain allocation,

p. = &%, wherep, denotes the average gain of each sensor.
Using this scaling, the asymptotic performance of the detec P} = Q(v" — fiy 12,) + QHY' + [ﬁu’plﬂl)’ PE,y=2Q(v"),
in (11) in the large antenna regime can be derived as shown (35)
below. where " represents the detection threshold and /7., 7, isthe

Theorem 3. The asymptotic probabilities of detection and normalized mean for the hypothesis #4;, which is obtained as

false alarm, represented by P}, and P} ,, respectively, are K o5 B;]a;]262
given below for the test statistic Tkp(y) of (11), as M — oo, 30 = 4| D “Puli 1417 (36)
. . . . . MTUP|H1 0-2 ﬁ +0-2
and using identical gain allocation, j=1 PoPuli n
Py = Q(y — it a0 )s Pia= Q¢ (30) Proof: Follows lines similar to those of Theorem 3.1
kp|H1/7? ’

Finally, following a procedure similar to that of Theorem
where the quantity iy, represents the normalized mean 5 above, the corresponding performance metrics, Rg.and
corresponding to the alternative hypothesis and is givenas ~ pg, ,, for the detection of an unknown parameter in the massive

= . MIMO WSN with perfect CSI and optimal gain allocation can
Z 2puBj |a;j|” 62 (31) be derived by substituting; = | f;|* = % in place ofp, =
U%f)uﬂj + 0'721 .

~U —_ ~
Hielra |fi|> = B£. The closed-form expression of the normalized

j=1 . . . .
mean for this framework is explicitly given below:-
Proof: See Appendix D. ]

2) Optimal Gain Allocation: To derive the asymptotic o K 20;la;|?p;6>
bounds onPp and Pr4 with optimal gain allocation as Prgeimn = Z o2B;p; + 02
described in Section IlI-A, a modified KKT multiplieX’ is
defined as\’ = % Incorporating)\’, the solution in (19) can A common feature of all the tests for a massive antenna array

(37)

Jj=1

be rewritten as at the FC having perfect CSl, as it becomes evident from the
s 5\ + above investigation, is that the transmit gain of each senso

p; = i( 1 > — if,_ (32) can be reduced proportionally t/A/ without degrading the
T M\ NBjol B2 M Pp, Pr4 performance. This is indeed one of the key benefits

K o ) _ of a massive MIMO WSN, which can be exploited to achieve
where}_;_, p; = P. Similar to the previous analysia; can  sjgnjficant power savings, without compromising the semsin
be found via bisection search oviey, \], wher_e)\; and X, performance. The next section presents the proposed detect
denote the lower and upper bounds)dnrespectively, and are gjong with their analysis for scenarios having imperfect CS
given as\ = min{ 271} and , = max{“%- 1. in a massive MIMO WSN.

Following similar lines to those of the identical gain atiion,
the asymptotic bounds on the correspondifig and Pr VI. FRAMEWORK FORIMPERFECTCSI

H H H _ 2 _ Pj
values be obtained by using the scalipg = [f;|° = 37 Let 7 pilot symbols be transmitted in each channel coher-
as described by the result below.

ence interval of duratiorr., for channel estimation in the
Theorem 4. The asymptotic probabilities of detection and Massive MIMO WSN. The remainingr. — 7) symbols are
false alarm, P2 and P ,, respectively, are determined below used for data transmission. All the sensors are assumed to
for the test Tip(y) in (11), as M — oo, in conjunction with simultaneously transmit orthogonal pilot sequences djtlen

optimal gain allocation, so that the resultant pilot matri € C™*¥ is orthogonal, and
satisfies the propert” ® = Ix. The received signal matrix
Pp= QY — i) Pra=Q(Y), (33) Y, € CM*7 at the FC corresponding to the transmitted pilot

. . matrix can be expressed as
where the normalized mean for #;, denoted by (o3, 0 18 P

given as Y, = /p,G®" + W, (38)
K 958 a2 62 i ; MxT
T _ Z piBj la;] (34) wherep, = 7p, is the pilot power, andV, € C denotes
Tie[H = oibiBj+ o the noise matrix with i.i.d. elements distributed ag; ; ~

CN(0,02). From (38), the MMSE estimate @& is [24]
The proof of the above theorem follows similar lines to those

- - R 2 -1
of Theorem 3 with the scaling, = & replaced byp; = £ G = LYI,@*(U—“JD—1 + IK) ) (39)
VPp Pp
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Let the corresponding estimation error matrix be defined agere the parameters;, §; are defined as;; = ——4— and

& = G —G. Thej-th columns ofG and€ denoted byg; and 6a3 115202 _ e

e;, respectively, follow the complex Gaussian distributides % = 7t respectively. The test statistic in (44) can
termined asg; ~ CA(0, B3, 1w), 85,5 2 ppB3 /(0% +pyB;) € further simplified as

and Ej ~ CN(Oa'YE-,jIM>a76-,j £ Ji}ﬂj/(o—fu +ppﬂj>' For the . K 5 5 I Hi
imperfect CSI scenario, the signal in (1) received at the FC Tap(y) = Zajlyj +4F=yray =275, (45
under both the hypotheses can be modified as j=1 Tmpv(-gj) Ho

Hory = G:’FV —EFv+ ) (40) where the vectory, € CX*! and the matrixa € CK*¥
H,:y = GFaf — EFaf + GFv — EFv + n. are defined ay = (11 + 01),--., Wk + 0x)]T anda =

Furthermore, upon performing MRC processing with the esfliagai. ..., ax), respectively. From (45), the PDFs of the

mated channel matri& at the receiver and using the propertfOmponent test statisti¢iqp(y;) under both the hypotheses

+GHG ~ Dg, whereDg = diag(3y.1, - .., 8;,x) [26], the are givenas

output signals corresponding to both the hypotheses in (40) . . ajo‘?ﬂ’j i + 0;]2 B M o,

reduce to Ho = Tiae(9;) = = o2 2 T g (&,0)s
w,j

,HO : S’ ~ W, (46)

o i + 617 _ N
. 1 . (41) Ha: Tap (i) = —5 2Ll = SRl (g y),
Hi 1y~ DgFal — — G EFa0 + w, 2 2 02,/2 2 %2 (&
wherew = D;Fv — ﬁGH‘gFVJr ﬁéHn c CKx1 denotes vv_herex’f(gj_,o), X’f(g_j_yl) denote non-central chi-squared dis-
the equivalent noise vector that has the covariance matrixtBbUtedQ;Qandom vz;r;ables W'Eh two degrees of freedom and
2 2 < a:fiBs + . .
Cw = 0, DgFF'D[ 4—%(2?11%,j|fj|2)Dg + OW"D,Q' . &o= ﬁ 1= % denote the non-centrality
The imperfect CSI analysis is inspired by other contributioparameters, respectively, with;, = ajo‘?ﬂj and \j; =
on massive MIMO, especially by [26], which demonstrateéjgf],j, Using (46), the test statisti€kp(¥) can be equiva-
the SINR and power scaling laws. Their analysis shows thahtly represented as the weighted sum of chi-squared rando
the implications for imperfect CSI and the pertinent anialysvariables with two degrees of freedom as shown below:-
is significantly different from that of the perfect CSI case.

K K
. . . . by
Now the detectors having CSI uncertainty for the known and 4, . 7, o(3) = ZTKIP(yj) - Z 20032 (¢; ),
unknown parameter scenarios are derived below. = = 2 47)
47
K K
A. Fusion Rule for Known 6 with Imperfect CS g v Ai1 2
) Hi T = T )= —x5 (&1).
The distributions of the output corresponding to both the 1+ Te () ; e (75) ; 2 2 (&)
h h for thi i i -
ypotheses, for this scaenano, can be derived as The test statisticTkp(y) under both the hypotheses can be
Ho:y ~CN(0,Cw), (42) closely approximated as the non-central chi-squared rando
Hi:y ~ CN(DgFab, C,), variables 5
Y (Dg . " . . Ho : Tair(¥) = X (€xF);
whereC,, = Cs+C,, denotes the equivalent noise covariance (48)

: ; : KXK i _ Hy : Tap(¥) =~ X2 (¢kp),
matrix under hypothesi; with C5 € C given asCg = KD
ﬁ(szl ~4la;[?|f;|*)Dg. The LLR testTp(y) for the where the degrees of freedom, i.écr, o and the non-
filtered output in (41) for the detection of the parametém a  centrality parameters, i.&xr, {kp, Of the chi-squared random

massive MIMO WSN with imperfect CSI can be formulatedtariables are obtained from the first four cumulantdigh(y)

s using the result in [41]. Employing (48), the closed-form
Taip(¥) = In {P(S’Wl)} expression_s of’p and Pr,4 for the test statistic in (45) can
p(¥1Ho) be determined as
= VHC‘;l}U’ - ()V’ - DgFaQ)HC:’l(}U’ - DgFaG) Pp ~ Pr (Xﬁo (fKD) > ,3/) _ QXQiD (gKD)(’S/), (49)
=y (Cy' — C, )y +2R(0a" F'DIC'y).  (43) Pra = Pr(xie (&) > 7) = Qe g7 (80)

Upon substituting all the matrices and vectors in the aboyge exnressions in (49) and (50) can be further simplified by
expression, the test statistic in (43) reduces to exploiting the asymptotic property of the chi-squared mnd
2 variable [37] as described in the theorem below.
|

K 2 |y K * Lk kN~
y o5 5 a3 f78; ;U5
TKIP(y):Z e +2§R(27J R j)

01 wi%ng = O Theorem 6. For a given threshold 4, the probabilities of
P detection Pp and false alarm Pr 4 for the proposed detector
=3 [ozj|3?j|2 + 2%(9ajajfj gﬁvjau’vjyj)] in (45), can be approximated as seen below for a massive
= 05,5 MIMO setup with a large number of antennas M at the FC
K and imperfect CH,
- jz:;aj[(gj+5j)*(gj+6j) - &7, (44) Py~ Q(W — HKD|H, )7 Poa ~ Q(W - MKF\HO) (51)
OKD|H1 OKF|Ho



where the moments of the test statistic 7k;p(y) under the two  where the quantities lyr, lup and {ue, &up represent the degree
hypotheses can be derived as of freedom and the non-centrality parameter of the chi-squared
random variables x;2 (éur) and x}2 (éup), respectively, as

E{Tkip(¥); Ho} = pxria, = IkF + &k, (52)  4escribed in Appendix F.
E{Tup(y); Hi} = MKD\Hl = lkp + &ko, (53)
var{Tkip(y); Ho} = UKF\HU = 2l + 4&kF; (54) VII. SIMULATION RESULTS

var{T, = =2l 4 55 . . . .
{Tiap(¥): 2} = JKD‘”l kD + 48k (55) In this section our simulation results are presented for

Proof: See Appendix E. B characterizing the performance of the proposed schemes for
correlated parameter detection in massive MIMO WSNs op-
B. Fusion Rule for Unknown 6 with Imperfect CSI erating in different scenarios. For our simulations, a ltota

f K = 12 sensors are deployed randomly with a uniform

This section considers a general scenario for the detectlémsmbutlon around the EC in a disc-shaped region detezchin
of an unknown parameter with imperfect CSI at the FC. Trb X - .
the maximum and minimum radii of,, = 1000 meters

corresponding GLRT based test statistic can be formulated 3’ .
= 100 meters, respectively. Such a system can

(“-9|’H ) be deployed in practice for environmental and agricultural
Tup(y) = In p\y; 91t (56) o L . .
uPlY) = (¥ Ho) monitoring applications, to sense various parameterstefest
. such as temperature, pressure, humidity, soil moisture etc
Tgfarizgasrig;dhs f'lf;noaflfxu:‘:SesrezygstheseHO and#, Consequently, the sensor decisions are potentially ciet]
P y. P since the sensors are densely located and observe the same
o 1 CH—1y henomenon. The large-scale fading mafidxis generated
p(¥Ho) = —=—— exp(-¥7CLy) phe 1€ ferg g m gen
7K |Cw| (57) similar to [26], i.e. the large-scale fading coefficiente ar
modeled as3; = z;/(r;/rn)”, where z; is a log-normal
random variable with a mean pf = 3 and standard deviation
of os = 8 dB, r; denotes the distance of theth sensor from
th FC andv represents the path-loss exponent that is chosen
. asv = 3.8. The correlation coefficient;, 1 < j < K,
Tup(y) =37 (Cx' — C, ") ¥ + 2R(y" C, ' DgFal) is assumed to be uniformly distributed betwefns, 0.9].
_ éQaHFHDgCT—IlDAFa (58) Moreover, the parameters such as the observati_on noise powe
K receiver noise power, total sensor transmit gain and number
where 0 represents the ML estimate of the paramefer of FC antennas are set a§ = 0.2, 02 = 0.7, P = 1 and
under hypothesi${;, which can be obtained by maximizingM = 50, respectively. Hence, the SNR¥ 02 and P/c2 are
p(§:0/H1) asd = g:};g;%;?g? [40]. Substitutingd in et as 6.99 dB, 1.55 dB, respectively. In the following plots
2 g om Terd T each point is obtained as a result of averaging dwer, 000
(58), the test statisti@yp(y) can be simplified as trials
RE@IFIDIC-1¥)]? H, Fig. 3a compares the receiver operating characteristi€)RO
g “n o g p p 9
aHFHD{{C:IngFa ;0 v bf the proposed dete(_:tor in(11) td that of the d_etector psedo
& (59) in [11]. The authors in [11] consider an amplify and forward
_ _ scheme for transmitting the sensor observations to the FC,
The above test can now be used directly for detection pusposghich is assumed to be equipped with multiple antennas,
HOWeVer, the characterization of its detection perforrﬁﬁm but not a massive MIMO antenna array. Furthermore, the
mathematically intractable. Therefore, in order to evedube \ork therein does not consider a correlated parameter but an
performance, the test statistic in (59) can be approximasedigentical parametef across all the sensors. Hence, for a fair
C;'D;Faa’ FIDYC !, comparisen with the scheme in [11], the sparial correlation
HFADIC-1D.Fa |° vector a is set asa = 1. It is also worth noting that the
a g ~m Uera analysis therein is limited only to the error exponent, bogsl
=y"Xy, (60) not consider the actual probabilities of detection or faligem.
The number of FC antennas for the detector in [11] is set
1 i Dfc, ! to M = {3,10,50} and the other parameters are kept the
(Co'=Cy )+ aHFHDHC D Fa ° The performance same. It |s observed that the proposed low- complexrty sehem
below. similar performance as the detector in [11] usrmg = 50.

Theorem 7. The probabilities of detection Pp and false This illustrates the advantage of employing a large antenna
alarm Py for the test statistic in (60), corresponding to the ~ &rray. Moreover, the performance of the proposed scheme

detection of an unknown parameter at the FC for imperfect further improves upon utilizing the optimal sensor gains
CS, are given as derived in Section IlI-A. Similarly, Fig. 3b demonstratdset

» » performance of the detector proposed in (23) for the uniform
Pp ~ Qx;ﬁD(suo)(7 ), Pra = ngﬁp(gw)(’r ), (61) and optimal gain allocation schemes. The performance of the

p(¥:0H1) = exp(—[[¥ — DgFad]%_.).

_
| Cy]
Substituting the above PDFs in (56), the desired test 8tatis
Tur(y) can be determined as

Tur(¥)=y" (C'—C, ")y +

w

Tue(y) ~ v (C;vl*C;l)ﬂL

where the matrix X (;,Ian be defined asX =
C D FaallF
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Fig. 3. ROC plot for comparing (a) the detectBiep(y) in (11) usingM = 50 with the detectors in [11] using/ = {3, 10,50} for K = 12, 02 = 0.2,
02 = 0.7 and P = 1. (b) the detectorTyp(¥) in (23) using M = 50 with GLRT detectors using = {3, 10,50} for K = 12, 02 = 0.2, ag =0.7
and P = 1. (c) the simulated plots of the detectors in (11) and (23jhwiiteir theoretical results in Theorem 1 and Theorem 2, wtispdy, for K = 12,
M =100, 02 =0.2,02 =0.7andP = 1.

3N
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0 Tkp(Sim.),M = 1000,Uni. o T[’vp(SimA)JW — 1000 Uni. —0— Unknown 6, Opt. Power
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Prob. of False alarm (PFA) Prob. of False alarm (PFA) No. of antennas at FC (M)
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a§ 0.2, % = 0.7, P =10 and M = {20, 100, 1000}. (b) large antenna performance analysis for the detefiip(y) in (23) for a WSN WithK =12,
o; =0.2, =0.7, P =10 and M = {20, 100 1000}. (c) Pp vs. M for the detectorsTkp(¥) in (11) andTup(y) in (23), with K = 12, 62 = 0.2,
2
o5, =0.7

. 4. For uniform and optimized gain allocation schema})drge antenna performance analysis for the detéGip(y) in (11) for a WSN withK = 12,
= and pP=1.

GLRT directly usingy in (1), without employing linear pre-
processing at the FC is also shown. For this plot, the number

of antennas at the FC is set fd € {3,10,50}. It can be -8

concluded from the figure that a similar detection perforogan =

can be achieved by the proposed low-complexity detector as 2 06r

that of the GLRT based MIMO detector fa¢ = 50 antennas. §

This demonstrates the efficiency of using the low-compjexit 5 04

MRC pre-filtering at the massive MIMO FC in the large § s o s

antenna regime. Fig. 3c compares the analytical values of 02 —eo— Unknown 0 Opt. Power
the probabilities of detection and false alarm, obtainddgis S om0 Lul, Pover
the expressions derived in Theorem 1 and Theorem 2 for the 0 .

detectors in (11) and (23), respectively, with their sintiola 107 10t 10° 10* 10?

. . Sum Ti ission Gain (P
counterparts. As the processing step in (6) assumes a large um Transmission Gain (P)

number of antennas at the massive MIMO FC, the simulated. 5. p;, vs. sum transmission gaift for a WSN with K = 12, M = 50,
and analytical results coincide for large valuesidf~ 100), o7 = 0.2, o = 0.7 and Pr4 = 0.05.

as it can be seen from the figure.
inferred from the figures that the simulated ROC plots of

Fig. 4a and 4b demonstrate the large array performange proposed detectors approach their respective arallytic
for the detectors in (11) and (23), respectively, for perfeplots, obtained using the expressions derived in SectioasV,
CSI. For the system using identical power allocation, th®/ becomes large. The parameters used for generating these
gains are scaled ag, = %%, while the scaling is chosenplots are set ag® = 10, M = {20,100,1000} and the rest
asp; = pJ for optimal gain allocation. It can be readilyof the parameters are kept unchanged Fig. 4c demonstrates
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the performance improvement in terms of the probability of APPENDIXA
detection(Pp) both for identical and optimal gain allocation PROOF OFTHEOREM 1

for an increasing number of antenna$ at the FC, with  The mean of the test statistifkp(y) in (11) under the
the sum of transmission gains set Bs= 1. A significant ajternative hypothesi#(;, i.€., lire ., IS given by
improvement can be observed for the optimal gain allocation

scheme in comparison to the identical gain allocation seéhem = Ma} f7y;
for both the detection schemes. Wty = { Z (ggMﬁj PP+ U%)‘ }

Fig. 5 shows the variation of the probability of detection x BT
(Pp) vs. the total sensor transmit pow@?) for Pp4 = 0.05. _ Z %( Maj fiE{y;|[H1} ) (62)
Itis evident from the figure that faP = 10 dB, the probability = 02 MB; |ij2 g )

of detection is higher tha0.9 and it is close to unity for h h o .
P = 20 dB. This demonstrates the significant performan(% ere the quantitif{y;[#.} can be derived as
gfn} = ﬂjfjajﬁ.

improvement that can be achieved by optimal gain allocationy (- HY=ELB f.a.0 U
when utilized for the detection of both known and unknown {5} {ﬂjfjaj B+ M

parameters. Fig. 6a plots the ROC of the proposed detectabstituting the above equation into (62), the meaf, 4,
in (11) and the original detector in (5) to characterize thean be expressed as

performance. Moreover, it demonstrates a similar perfocea K 21,42

, A B MpBj |ag|” | f;1" 6
comparison for the unknown parameter scenario. Fig. 6Is plot Wil H, = E R 5 5 5 )
the probability of detectionPp ) versus the probability of false o1 NoeMBs 1T+ R

alarm (Pr4) for the detectors in (45) and (59) correspondingjhich results in the expression given in (14). Following
to the known and unknown parameter detection scenariggjlar steps, the meapy,. 3, under the null hypothesis

in the presence of imperfect CSI, respectively. It can Bg (13) can also be determined. The variangg, is given
observed from the figure that the simulated plots are in cI059 o2 = E{T%(§)|Ho} — (E{Tke () #0})2, where

agreement with the theor_etic_al results obtgined_ in_ Thedsemy, o unantityIE {T2 () [Ho} in the above expression can be

and Theorem 7, thus, validating the analytical findings f& t otarmined as

equal power allocation scheme. Fig. 6¢ plots the probgbilit K Ma* F*5 )

?;rdtehtgc;[jigtne(ggr)g\:ersgs tlhe probability of false alar(ﬂ?pA) E{T2(5)|Ho} = E{ {Z %( . aj ijyj . )} ‘”Ho}
kip(¥) in (45), Tkip(y) corresponding to = NoeMBjlfT +on

the known parameter scenario, and the dete@igs(y) in K Ma* £ g )

(59), as well as its simplification in (60) for the unknown _ E{Z {%( a; f5 (B fivi + 778; n))] }

parameter scenario with imperfect CSlI. It can be observad th } Mo ;| f;* +oF

the performance of the teip(y) coincides withTkp(y) K 2.2

for large values ofM (~= 50). Furthermore, the plot also _ Zl( MBj|a;|” | f;] ) (63)

demonstrates the closeness of the rdligs(y) and Tup(y). = 2\ Mo2p; |fj|2 + o2

Substituting (63) and the value @iz, 3, in U%KP, one can
VIII. CONCLUSIONS obtain the final expression of the variam:ﬁp in (15).

Jj=1

Powerful detectors were proposed for correlated parameter APPENDIX B
detection in a massive MIMO WSN. The NP criterion and PROOF OFTHEOREM 1

GLRT based fusion rules were initially determined for the The optimization problem in (18) can be efficiently solved

detection of known and unknown deterministic parameters, lusing the Karush-Kuhn-Tucker (KKT) framework [42]. The
spectively, for perfect CSI at the FC. Closed-form exp@assi corresponding Lagrangian can be formulated as
of probabilities of detectioiPp) and false alarniPr 4) were

determined for characterizing the performance of the psedo Lo A )= —Mp,; |aj|2pj N K _p K .
detectors. Furthermore, the optimal sensor transmit gyeéme (pj A 1g)= Z MBjp;jo2 + o2 + (ZPJ ) + ZMJPJ’
derived utilizing the deflection coefficient framework tather =t =t =t
enhance the detection performance of the proposed tests. #1d the KKT conditions can be expressed as

K

asymptotic detection performance and pertinent gain regali —Mp; |aj|2 o2

laws were also derived for both uniform and optimal gain (MB,p,02 + 02)2 +A—pu; =0, (64)
allocation for a large antenna array at the massive MIMO FC. e X

The framework was further extended to a scenario having CSI )\( Zp’ _ P) —0 (65)
uncertainty. Simulation results were presented to vadidae o ’ ’

theoretical findings and to demonstrate the improved detect K

performance of the proposed schemes. I_n fut.ure resgansh, th ij —P=0, (66)
framework can be extended to a scenario with multiple FCs, =

each equipped with a very large antenna array, to present the =0 67)
fusion rules and pertinent analysis considering the effe€t Hibi ’

pilot contamination. Hs Pjs A 2 0. (68)
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Fig. 6. ROC plot for comparing (a) detect®kp(y) with the detectoflkp(y) and the detectofyp(y) with the detectoflp(y) usingM = 50 for K = 12,
02 =0.2,02 = 0.7 and P = 1. (b) detectorsTkip(y) and Tup(¥) in (45) and (60), respectively, for imperfect CSI with thaimalytical counterparts for a
WSN with K = 12, M = 50, 02 = 0.2, 02 = 0.7 and P = 1. (c) detectorsTkp(¥) in (45) with the detectoflikp(y) and the detectoyp(3) in (59)
with the detector in (60) and the detec@ip(y), for a WSN with K = 12, M = 50, 02 = 0.2, 02 = 0.7 and P = 1.

Using the above KKT conditions followed by straightforwardrr,,, given in (14) and (15), respectively, and usipg =
manipulations yields the closed-form solution in (19). |f;|%, the scaled meapz, 4, for the alternative hypothesis
H, can be simplified as

APPENDIXC % 5
PROOF OFTHEOREM 2 B = |3 2pu M B; |a;|” 02
SN . . L PTe|H, = 0‘2]) MB; +o2°
TUp(y) in (23) is Gaussian distributed under both the j=1 JvPwE R

hypotheses, which can be described as

Mf a; Yj
T 8%( i
UP z_: UUMﬂJ|f]|2 +o02

N(MTL/JP‘HU,O'%SP) under H,
N(prymss07,,)  under Hy’

Using the above expression, the probability of detection
corresponding to the detectdikp(y) can be expressed as
) Pp = Qv — Ao 34, ). The asymptotic probability of de-
tection P in the large antenna regime, given by (30), can be
determined by evaluating the normalized mean. This can be
simplified for hypothesi${; by taking the limit as\/ — oo of
along with the scaling,, = p” , and can be expressed

(69)

o1y
where the quantitiegzy . iy, %, and UT' in (25), (26) a?"'”l

and (27), respectlvely, are obtained using the same proeedu

. a . PTeH
as described in Appendix A. Using the statistics in (69), the ATie|#, = A}Efl uTKPlHl‘pu:%:]\}L} JKP : _ B
oo 0 Tkp 'Pu=TFr
probability of detectionP, can be formulated as
_ . 2B M B |a|” 0
PD = Pr{|Tl/JP( )| > 7/I|H1} - ]\/}1—I>noo Z o‘JfL]\f]ﬁ| 10‘2 ’
= F’r{Tup( ) > " [Ha} + Pr{T{p(y) < ="M} =t ’
" iy —" = which on further simplification reduces to (31). The asyntipto
= Q( po = 1) 1 Q( p— = 1) (70)  probability of false alarmPy, in (30) can be derived along
uP VP similar lines.
Using the relation@ (—z) = 1 — @ (x), (70) can be further
simplified to obtain the final expression &f, in (24). The APPENDIXE
closed-form expression of the probability of false alafa, PROOF OFTHEOREM 6

in (24) can be derived along similar lines. The k-th cumulant of Txp(y) for hypothesis?;, where

1=0,1, is given by

APPENDIXD K
PROOF OFTHEOREM 3 B | Wi = 2Rk — 1)!2 (Q(M) +I<:( ) & ) (71)
Under both the hypotheses, the test stati#lig(y) in (11) — 2

for the detection of a known parameter, is distributed aﬁ1e mean, standard deviation, skewness and kurtosis afshe t

2
N (M_TKP\H“UTKP) where: = 0,1. The equwaIeAntTi(:(syt) Statlsncstat|st|cTK|p( ) under both the hypotheses can be evaluated
obtained after appropriate scaling, i8ie(y) = <722, also using the expression (71). Using (47), (48) and (71), the
follows the Gaussian distribution under both tne: F‘ypomes‘f)robability of detectiorPp can be determined as shown below.

which can be expressed &p(y),Hi ~ N (% 1g0.51
_ KP*- i K Xj1 2(¢. -
Furthermore, the scaled meatt;, ,, can be defined as P _p Dim1 FE (§) — B = iy
A Mgl D =Fr >

. Substituting the quantitiep.r,,|%, and oy oy

u
Plelm; = OTp



2 ~
XfKD (ko) — HKD|H1 > Y — HKD|#H1
OKD|H,

~ Pr( (72)

)

OKD|H1

(7]

wherey,, o, denote the mean and standard deviation of thé
weighted sum ofK chi-square distributed random variables

K

D=

i

1

2L x5 (&5,1). The above expression (72), for large num-[g)

ber of antennas at the FC, can be further simplified to obtain

the

represent the mean and standard deviation of the chi-square
random variabley;? (ékp) and are defined in (53) and (55),

expression in (51). The quantitiegp|, and okp|x,

[10]

respectively. The expression fdtz4 in (51) can be derived [11]
on similar lines.

APPENDIX F
PROOF OFTHEOREM 7

For the detector in (60), the probability of detecti®p is

give

n by

Pp =Pr(y" Xy > 7'[H1). (73)

[12]

(23]

[14]

To evaluate Pp, the above expression can be equivalently
written as Pp = Pr(y'"Zy’ > 7'), where the vectory’
1

and

the matrixZ are defined ag’ = C,%*y and Z =

C,%,XC,%,, respectively. Under hypothesi$;, y is distributed
asy ~ CN(DgFaf, C,)). Hencey’ also follows the complex [1¢]

Gaussian distribution, i.ey’ ~ CN(C;%DgFaH, Ix). Using

the

eigenvalue decomposition (EVD), the matéxcan be

defined asZ = UXUY. On substituting the EVD ofZ,

the
i
Yu
Yu
Pp

~

expression ofp reduces toPp = Priy’#UXU y’ >
Py Xy, > 7'), where the vectoy, is defined as
Uy, Theltransformed vectoy, is distributed as
CN(UHC, *DgFal,Ix). Hence, the expression of
further simplifies toPp = Pr(Zleon’f(fj) > 7,

whereo; is the j-th element of the eigenvalue mat3 and
X% (&) is the non-central chi-squared random variable Wit[tEO]

two

degrees of freedom and non-centrality parameteg;as

[15]

[17]

(18]

[29]

Following the procedure in Appendix E, the probability of
detection P, can be determined aBp ~ Pr(x;2 (§up) >

Y) = Qyz2_(cup)(¥'), Which is given in (61). The expression
ub

for t

(1]

(2]

(31

(4

(5]

(6]

he Pr 4 in (61) can be derived similarly.
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