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Abstract—Distributed parameter detection is conceived for
massive multiple-input multiple-output (MIMO) wireless sen-
sor networks (WSNs), where multiple sensors collaborate to
detect the presence/ absence of a spatially correlated param-
eter. Neyman-Pearson (NP) and generalized likelihood ratio
test (GLRT)-based detectors are developed at the fusion center
(FC) for known and unknown parameter detection scenarios,
respectively. More explicitly, the GLRT detector also has to
estimate the unknown parameter value. Closed-form expressions
are derived for the probabilities of detection(PD) and false alarm
(PFA) in order to characterize the performance of the proposed
schemes. Furthermore, the optimal sensor transmit gains are de-
termined for maximising the detection performance attained. An
asymptotic performance analysis is carried out for determining
the gain scaling laws for the massive MIMO WSN considered,
when the number of antennas tends to infinity. The proposed
framework is also extended to the realistic imperfect channel
knowledge scenario at the FC, followed by the development ofthe
associated fusion rules and analytical results to characterize the
performance. Our simulation results closely tally the theoretical
findings.

Index Terms— Wireless sensor networks (WSNs), massive
multiple-input multiple-output (MIMO), generalized like lihood
ratio test (GLRT), Neyman-Pearson (NP) criterion.

I. I NTRODUCTION

WSNs, relying on miniature sensors, have attracted signif-
icant research interest in environmental and habitat monitor-
ing, surveillance, disaster management, medical and structural
monitoring, industrial applications etc. [1], [2]. Accurate de-
tection of the parameters of interest is of pivotal importance
in many WSNs to reliably establish the presence or absence
of a phenomenon of interest [3]–[8]. A popular model for
the implementation of a WSN is the coherent multiple access
channel (MAC) based architecture, where the various sensor
observations are amplified followed by their transmission to a
fusion center (FC). Subsequently, using a suitably designed
rule, the FC makes a decision regarding the presence or
absence of the signal of interest [5]. Naturally, since the
simultaneous sensor transmissions are in the same frequency
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band, the time-bandwidth resources required in such a system
are independent of the number of sensors, thus making the
proposed technique attractive for practical implementation in
WSNs. A brief review of the related literature pertaining to
parameter sensing in WSNs is presented next.

A. State-of-the-Art Review

Li and Dai [9] investigate the performance of a distributed
detection scheme, wherein correlated sensor observationsare
transmitted over a MAC. As a further advance, Tepedelen-
lioglu and Dasarathan [10] proposed a distributed detection
scheme for constant modulus sensor transmissions over a
Gaussian MAC and compared its performance to other detect-
and-forward as well as amplify-and-forward schemes.

However, these early contributions relied on a single an-
tenna, whilst [11], [12] used multiple antennas at the FC for
improving the performance. In particular, Banavaret al. [11]
employed an amplify-and-forward scheme for transmitting
the sensory observations to the FC over fading multiple-
access MIMO channels. The performance of their system is
characterized in terms of the error probability exponent for
transmission over additive white Gaussian noise (AWGN),
Rayleigh and Rician fading channels. The analysis of [11]
was then further extended in [12] for determining the optimal
sensor gains minimizing the error exponents, considering also
different levels of CSI availability at the individual sensors.
Then Nevatet al. [13] derived the optimal decision rules for
a scenario wherein the sensors transmit their observationsto
the FC using the amplify-and-forward scheme over MIMO
channels, followed by the characterization of the resultant
detection and false alarm probabilities, considering alsothe
realistic scenarios of having unknown CSI between the source
and the sensors as well as the sensors and the FC. On the
other hand, Ciuonzoet al. [14] designed near optimal fusion
rules for MIMO WSNs, considering the transmission of local
binary decisions at the sensors over a coherent MAC. Al-Jarrah
et al. [15] have proposed and analyzed the performance of
a novel algorithm for decision fusion in Internet of Things
(IoT)-based clustered WSN. Decision rules based on local
sensor decisions transmitted over an orthogonal parallel access
channel (PAC) are derived for cooperative spectrum sensing
in multiuser MIMO cognitive radio networks in [16]. Sensors
designed for parameter detection may either employ analog
or digital transmission for relaying the sensor observations
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to the FC. Due to the bandwidth and power constraints, the
sensor measurements are generally compressed prior to trans-
mission over a rate-constrained channel [17]. Typically, the
local binary decisions of the individual sensors are transmitted
and subsequently processed at the FC in order to arrive at
a global decision. Nevertheless, this leads to performance
degradation as the FC does not receive all the information [18].
Furthermore, the local detection rules have to be optimizedin
order to achieve the minimum detection error. As demonstrated
in [19], [20], the optimal detection rule for a binary hypothesis
testing problem, derived using the Neyman-Pearson (NP) and
Bayesian criteria, reduces to the likelihood ratio test (LRT).
However, the optimal local thresholds at the individual sensors
are generally non-identical and have to be jointly evaluated
along with that of the global fusion rule for reliable sensor
decisions. Therefore, the search for optimal local detectors
can potentially be of exponentially growing complexity [21].

Recently, several researchers have studied the benefits of
employing a massive antenna array at the base station (BS)
for meeting the ever-growing demand for higher data rates.
In such a massive MIMO system, the BS has a very large
antenna array, typically comprising hundreds of antennas,for
simultaneously serving a large number of single-antenna de-
vices/ sensors, using the same time-frequency resources [22].
This in turn leads to a high spectral efficiency in such systems.
Additionally, linear receiver techniques can be adopted at
the massive MIMO BS without impacting the performance
[23], thereby leading to appealingly low complexity of signal
processing. Furthermore, massive MIMOs facilitate a signif-
icant transmit power reduction for the devices, proportional
to the number of antennas at the BS, without compromising
the asymptotic rate of the users [24]–[26]. Hence, there has
been a growing interest in employing massive MIMOs in
WSNs [27]–[33]. In this context, Jianget al. [27] investigated
the estimation and detection performance of a WSN using a
massive antenna array, wherein the sensors communicate over
a coherent MAC, followed by the performance characterization
of the NP and energy detectors, and the associated linear
minimum mean squared error (LMMSE) estimator. Shirazinia
et al. [28] investigated the problem of decentralized estimation
of a correlated random parameter vector in a massive MIMO
network using the MMSE estimator. The impact of transceiver
hardware impairments, both at the single-antenna sensors and
at the massive-antenna FC, on the detection performance of
massive MIMO-based distributed detection systems, has been
explored in [29]. Ciuonzoet al. [30] have proposed low
complexity sub-optimal detection rules, such as the deflection-
maximizer widely linear (WL) and linear-filter fusion rules,
for large antenna-array based WSNs. Ciuonzoet al. [31] have
developed sub-optimal fusion rules for massive antenna based
WSNs, wherein the channel is modeled by Rician fading.
The authors of [32], [33] have analyzed the performance of
the NP criterion based simplified fusion rules for low-SNR
distributed detection in massive MIMO WSNs, incorporating
also the reliabilities of the local sensor decisions. Furthermore,
Dey et al. [34] propose and analyze the performance of
sub-optimum decision fusion techniques conceived for an
orthogonal frequency division multiplexing (OFDM) based

collaborative wideband spectrum sensing system, wherein the
DFC is equipped with a massive antenna array. While the
benefit of massive antenna arrays is widely recognized in
general communication systems, there is a paucity of con-
tributions analyzing their benefits in the context of WSNs,
especially when the sensors employ an amplify-and-forward
scheme for measurement transmission, followed by parameter
detection. Furthermore, none of the existing contributions have
considered maximal ratio combining (MRC) at the FC in an
amplify-and-forward based measurement transmission scheme
for fully exploiting the benefits of a massive MIMO system,
followed by the design of the optimal detectors, which can
significantly reduce the complexity of parameter sensing. To
fill this gap in the literature, this paper analyzes the benefit of
employing a massive antenna array at the FC, wherein low-
complexity linear processing based fusion rules are derived
for detecting the presence/ absence of a spatially correlated
known/ unknown parameter, employing the NP criterion and
generalized likelihood ratio test (GLRT) paradigms, respec-
tively, considering both perfect and imperfect CSI at the FC.
The main contributions of this work for spatially correlated
parameter detection in a massive MIMO WSN are summarized
below.

B. Main Contributions

• This work considers a sensor network wherein multiple
sensors transmit their amplified analog observations to the
FC for the detection of a spatially correlated parameter.
This is in contrast to [30]–[33], which consider the trans-
mission of local sensor decisions to the FC. The proposed
framework considers the effects of parameter correlation,
which naturally exists due to the spatial proximity of the
sensor nodes.

• The NP criterion and the GLRT frameworks are sub-
sequently exploited for designing fusion rules for the
detection of known and unknown spatially correlated pa-
rameters, respectively, with perfect CSI. This is different
from [32], [33] that derive only the NP criterion based
fusion rules using the local sensor decisions.

• To enhance the detection performance at the FC, an
optimization framework is also developed for deriving the
optimal sensor gains, which is absent in [13], [14], [30],
[32] that are based on equal sensor power allocation.

• Closed-form analytical expressions are derived for char-
acterizing the performance of the proposed detectors in
terms of the resultantPD andPFA at the FC.

• The above schemes and analysis are also extended to
practical scenarios having imperfect CSI, which includes
determining the requisite detectors and characterizing
their analytical detection performance. By contrast, [11],
[12], [14] only consider the idealized scenario of perfect
CSI at the FC.

• The asymptotic performance of the fusion rules is ex-
amined in the large antenna regime and the pertinent
scaling laws are derived for both uniform and optimized
gain allocation schemes in the massive MIMO WSN
scenarios, whereas [30], [33] characterize the asymptotic
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TABLE I
A BRIEF COMPARISON WITH EXISTING L ITERATURE

[11] [12] [13] [14] [27] [28] [29] [30] [31] [32] [33] Proposed Work

Massive MIMO Architecture X X X X X X X X
Local Sensor Decisions X X X X X

Amplify & Forward Scheme X X X X X X X
Optimal Gain/ Power Allocation X X X X X
Single-Antenna Sensors/Users X X X X X X X X X X X X
Signaling Matrix Optimization X

Gain/ Power Scaling X X X X X X
Spatially Correlated Parameter X X

Linear Filtering Architecture at FC X X X X
Multiple Observation Vector Model X X X

Low SNR Approximation X X

performance only for uniform power allocation. It is
explicitly demonstrated that the transmit gain of each
sensor can be reduced in proportion to the number of
antennas at the FC, which is key to maximizing the
lifetime of the battery operated sensor nodes.

C. Organization

The rest of the paper is organized as follows. Section II
describes the system model for spatially correlated parameter
sensing and distributed detection in massive MIMO WSNs,
where the sensors transmit their amplified observations to the
FC over a MAC. Section III presents the log likelihood ratio
(LLR) based fusion rule for the detection of a known param-
eter, followed by its detection performance characterization.
Subsequently we also develop the optimization framework of
deriving the optimal sensor gains. This framework is then ex-
tended to an unknown parameter detection scenario in Section
IV, wherein a GLRT-based detector is derived. Our asymptotic
performance analysis and our gain scaling laws are derived
in Section V for the massive MIMO detectors proposed in
Section III and Section IV. Our imperfect CSI framework is
presented in Section VI, followed by the fusion rules conceived
both for known and unknown parameter detection in Section
VI-A and Section VI-B, respectively. Our simulation results
are provided in Section VII, followed by our conclusions in
Section VIII.

D. Notations

The notation used throughout the paper is summarized as
follows. Uppercase boldface(X) and lowercase boldface(x)
represent matrices and vectors, respectively, while[X]mn and
xn denote the(m,n)th and nth element of the matrixX
and vectorx, respectively. Furthermore,0 denotes a vector
with all its elements being zero andI represents an identity
matrix. The operatorsE {·}, ℜ{·}, (·)T , (·)H , exp{·}, (·)−1,
| · | and‖ · ‖A represent the expectation, real part, transpose,
Hermitian, exponential, inverse, absolute value and weighted
norm, respectively and the symbol

a∼ is used for defining an
approximate distribution of a random variable. The quantity
p(·) represents the probability density function (PDF) and
p(A;B) represents the PDF whereA is parameterized byB.
The notationx ∼ CN (µ,C) is used to define the complex
Gaussian distribution of the random vectorx with meanµ
and covariance matrixC. The termQ represents the Gaussian
Q-function and is defined asQ(x) = 1√

2π

∫∞
x

exp
(

− y2

2

)

dy.

II. SYSTEM MODEL

Let us consider a WSN whereinK sensors monitor a
signal of interest belonging to the setΘ ∈ {0, θ} ∈ R

for differentiating between the events characterized by the
set of hypothesesH = {H0,H1}. The null hypothesisH0

corresponding toΘ = 0, represents the absence of the signal
of interest and the alternative hypothesisH1 denotes the
presence of the signal, i.e.,Θ = θ. Each sensor node has
a single antenna and communicates with a FC equipped with
a large antenna array comprising ofM antennas, where we
have M ≫ K. Note that most existing contributions on
massive MIMO [24], [26], [30], [33] consider single antenna
devices and sensors to limit the device complexity. The sensors
transmit their suitably preprocessed correlated measurements
to the FC over a coherent MAC, as illustrated in Fig. 1. The
measurement process at thej-th sensor,1 ≤ j ≤ K, can
be modeled asxj = ajΘ + vj , where vj is the complex
Gaussian observation noise at thej-th sensor that is distributed
as vj ∼ CN (0, σ2

v) andaj are observation constants, similar
to the models in [35]. Thej-th sensor measurementxj is
thereafter precoded using a complex gainfj and forwarded to
the FC for a global decision. The signaly ∈ C

M×1 received
by the FC under the two hypotheses can be expressed as

H0 : y = GFv + n

H1 : y = GFaθ +GFv + n,
(1)

where n ∈ CM×1 is the AWGN vector at the FC that is
distributed asn ∼ CN (0, σ2

nIM ), a = [a1, . . . , aK ]
T ∈ CK×1

andv ∈ CK×1 denotes a similar stacking of the observation
noise samplesvj of the K sensors. The diagonal matrix
F = diag(f1, . . . , fK) ∈ C

K×K is obtained by placing the
complex gainsfj , 1 ≤ j ≤ K, along its principal diagonal.
The channel matrix between theK sensors and the FC is rep-
resented byG = [g1, . . . ,gK ] ∈ CM×K and itsj-th column
vector, which corresponds to thej-th sensor, is represented by
gj ∈ CM×1. Them-th, 1 ≤ m ≤ M , element ofgj, denoted
by gmj = [G]mj can be modeled asgmj =

√
βjhmj , where

hmj denotes the small-scale fading coefficient between them-
th antenna at the FC and thej-th sensor. The large-scale fading
coefficientβj that models the geometric attenuation and log-
normal shadowing is invariant overm, and it is assumed to
be constant over multiple coherence time intervals. Therefore,
the channel matrixG can be decomposed as

G = HD1/2, (2)
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Fig. 1. System model of the massive MIMO WSN, whereinK single-antenna
sensors communicate with aM receive antenna array based FC.

whereH = [h1, . . . ,hK ] and D = diag(β1, . . . , βK) . The
diagonal matrixD ∈ CK×K represents the large-scale fading
matrix andH ∈ C

M×K denotes the small-scale fading matrix
comprising the fast fading channel coefficients between theK
sensors and the FC. The elements ofH, denoted byhmj , are
assumed to be independent identically distributed (i.i.d.) as
CN (0, 1). Consequently, under favorable propagation condi-
tions, the elements ofG can also be modeled as independent
random variables that are distributed asgmj ∼ CN (0, βj).
Moreover, the channel vectors corresponding to distinct sen-
sors are assumed to be mutually independent. This holds true
as a result of the assumption that the sensors are spatially well
separated in a typical WSN. Therefore, from the law of large
numbers, this leads to the property

1

M
GHG = D1/2H

HH

M
D1/2 ≈ D, for M ≫ K. (3)

Hence, as M becomes large, under favorable propagation
conditions, the channel vectors of different sensors become
pairwise orthogonal. This is a widely exploited property of
massive MIMO systems, which has been exploited in numer-
ous contributions [24], [36]. For the above system, the optimal
decision rules and the resultant performance at the FC are
determined for various scenarios.

III. F USION RULE FOR A KNOWN SIGNAL θ WITH

PERFECTCSI

This section derives the fusion rule for the detection of a
known deterministic parameterθ with perfect CSI. The more
challenging scenarios with unknownθ and imperfect CSI are
considered later in Section IV and Section VI, respectively.
Using the popular NP criterion [37], which aims for maximiz-
ing the probability of detection subject to a given probability of
false alarm, the LLR test formulated for the binary hypothesis
testing problem in (1) can be expressed as

T (y) = ln
[p(y|H1)

p(y|H0)

] H1

≷
H0

γ, (4)

wherep(y|H0) and p(y|H1) denote the likelihood functions
corresponding to the null and alternative hypotheses, respec-
tively, while γ represents the detection threshold. It can be
observed that the received signal in (1) follows the Gaussian

Fig. 2. Two-step architecture at the FC.

distribution under both the hypotheses, which is given as

y ∼
{

CN (0, C̃) , underH0

CN (GFaθ, C̃) , underH1

where C̃ = σ2
vGFFHGH + σ2

nI denotes the covariance of
the effective noise at the output. Substituting the PDFs of the
observationy, the LLR test in (4) can be expressed as

T (y) = ln
[exp(−(y −GFaθ)HC̃−1(y −GFaθ))

exp(−yHC̃−1y)

]

. (5)

The FC can directly employ the LLR test in (5) for the
detection of the signal of interest. However, the above test
is computationally complex as it requires the matrix inversion
C̃−1 ∈ CM×M , which imposes a computational complexity of
O(M2K) that depends onM . Interestingly, it has been widely
exploited in the existing literature on massive MIMO systems
that linear processing employing MRC achieves good perfor-
mance in the large antenna regime, i.e., whenM ≫ K [26].
Exploiting this property, a two-step procedure is developed
now for efficiently computing the fusion rules with reduced
computational complexities, which are suitable for practical
implementation. Fig. 2 shows a block diagram of the system.
In the first step, the received signal is processed using the
MRC at the FC. Subsequently, the processed measurements
of the individual sensors are combined in the second step to
obtain a global decision.

Upon applying the MRC to the received signal in (1), the
filter output ỹ ∈ CK×1 corresponding to the hypothesesH0

andH1, respectively, can be expressed as

H0 : ỹ =
1

M
GHy =

GHG

M
Fv +

1

M
GHn

H1 : ỹ =
1

M
GHy =

GHG

M
Faθ +

GHG

M
Fv +

1

M
GHn.

(6)
Under the favorable propagation conditions described in (3),
the filter output in (6) can be closely approximated for a
massive MIMO scenario as

H0 : ỹ ≈ ñ

H1 : ỹ ≈ DFaθ + ñ,
(7)

where the noise vector̃n = DFv + 1
MGHn ∈ CK×1 is

distributed asCN (0,C) with C = σ2
vDFFHDH+

σ2

n

M D. The
distribution ofỹ under both the hypotheses can be equivalently
written as

H0 : ỹ
a∼ CN (0,C)

H1 : ỹ
a∼ CN (DFaθ,C).

(8)
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TABLE II
COMPUTATIONAL COMPLEXITY OF FUSION RULES

Fusion Rules Complexity

TKP(y) O(M2K)
TKP(ỹ) O(MK +K3)
TUP(y) O(M2K)
TUP(ỹ) O(MK +K3)
TKIP(y) O(M2K +MτK)
TKIP(y̆) O(MτK +K3)
TUIP(y) O(M2K +MτK)
TUIP(y̆) O(MτK +K3)

The LLR for the binary hypothesis testing problem in (7) can
now be expressed as

TKP(ỹ) = ln
[p(ỹ|H1)

p(ỹ|H0)

]

, (9)

which can be further simplified using the PDFs determined in
(8) under both hypotheses as

TKP(ỹ) ≡ ln
[exp(−(ỹ −DFaθ)HC−1(ỹ −DFaθ))

exp(−(ỹHC−1ỹ))

]

≡ ℜ
(
aHFHDHC−1ỹ

)
. (10)

An alternative derivation of the test statistic using an asymp-
totic simplification of the LRT is given in the technical report
in [38]. It is worth noting that the above test, in contrast to
the LLR test in (5), is numerically stable and has a low com-
putational complexity because of the diagonal structure ofthe
covariance matrixC ∈ CK×K . The computational complexity
of evaluatingC−1 is O(K3), which does not depend onM ,
in contrast to the complexity required to evaluateC̃−1 as
mentioned above. Furthermore, the computational complexity
of the proposed simplified detectorTKP(ỹ) in (10), based on
the filtered output̃y, is O(MK + K3), while the original
testT (y) in (5) has a computational complexity ofO(M2K).
Table II summarizes the computational complexities of the
various fusion rules. Upon substituting the matricesF, D,
C and the vectors̃y, a in the above expression (10), the
closed-form expression for the simplified test statistic can be
expressed as

TKP(ỹ) ≡
K∑

j=1

ℜ
( Ma∗jf

∗
j ỹj

σ2
vMβj |fj|2 + σ2

n

) H1

≷
H0

γ′, (11)

whereγ′ denotes the detection threshold. As seen, the above
detector is a simple linear filter, which is well suited for
practical implementation due to its low complexity. For the
specific scenario where all the sensor transmit gains are
assumed to be same, i.e.,|fj|2 = pu, ∀j, the above test statistic

further reduces toTKP,I(ỹ) ≡ ∑K
j=1 ℜ

( √
puMa∗

j ỹj

σ2
vpuMβj+σ2

n

)

. The

probabilities of detection(PD) and false alarm(PFA) of this
testTKP(ỹ) are given by the result below.

Theorem 1. For a given threshold γ′, the probabilities of
detection and false alarm of the test statistic TKP(ỹ) in (11),
denoted by PD and PFA, respectively, can be formulated as

PD = Q
(γ′ − µTKP|H1

σTKP

)

, PFA = Q
(γ′ − µTKP|H0

σTKP

)

, (12)

where the terms µTKP|H0
, µTKP|H1

are the means under the null
and alternative hypotheses, respectively, and σ2

TKP
denotes the

variance of TKP(ỹ), yielding:

µTKP|H0
= 0, (13)

µTKP|H1
=

K∑

j=1

Mβj |aj |2 |fj |2 θ
σ2
vMβj |fj |2 + σ2

n

, (14)

σ2
TKP

=

K∑

j=1

1

2

( Mβj |aj|2 |fj|2

σ2
vMβj |fj |2 + σ2

n

)

, (15)

Proof: Given in Appendix A.

A. Sensor Gain Optimization

This subsection formulates our optimization framework for
determining the optimal sensor gains|fj |2, 1 ≤ j ≤ K, similar
to the approach in [27]. Our goal is that of further enhancing
the detection performance of the test proposed in (11) via the
optimal sharing of the total sensor powerP . The deflection
coefficient1 defined in [39] for characterizing the detection
performance of the test in (11) can be expressed as

d2 =
(µTKP|H1

− µTKP|H0
)2

σ2
TKP

. (16)

Upon substituting the expressions ofµTKP|H0
, µTKP|H1

andσ2
TKP

from (13), (14) and (15), respectively, into (16), the deflection
coefficient expression above can be further simplified to

d2KP =

K∑

j=1

2Mθ2βj |aj |2 |fj |2

σ2
vMβj |fj |2 + σ2

n

= 2θµTKP|H1
. (17)

Thus, maximizingµTKP|H1
will also maximize the deflec-

tion coefficient, which in turn maximizes the detection per-
formance. Definingpj = |fj |2, the optimization problem
constructed for maximizing the deflection coefficient can be
formulated as

min.
pj

K∑

j=1

−Mβj |aj |2 pj
σ2
vMβjpj + σ2

n

(18)

subject to
K∑

j=1

pj = P

pj ≥ 0,

whereP denotes the total sensor transmit power. The result
below determines the optimal sensor gainspj.

Lemma 1. The optimal values of pj that are the solution of
the optimization problem in (18) are given as

pj =

(
√

σ2
n|aj |2

λMβjσ4
v

− σ2
n

Mβjσ2
v

)+

, (19)

where (x)+ = x for x ≥ 0 and 0 otherwise. The dual variable
λ > 0 is evaluated using the constraint

∑K
j=1 pj = P .

Proof: See Appendix B.

1It is a normalized squared distance between the centroids ofthe PDFs
of TKP(ỹ) under both hypotheses, with the normalization factor beingthe
variance.
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The lower and upper bounds onλ denoted byλl, λu,

respectively, can be represented asλl = min.
j

{ σ2

nMβj |aj |2
(σ2

vPMβj+σ2
n)

2

}

andλu = max.
j

{Mβj |aj|2
σ2
n

}
. The value ofλ is obtained by the

classic bisection search over[λl, λu]. The next section con-
siders a scenario where the signal is unknown. The pertinent
fusion rule and the corresponding performance analysis based
on the aforementioned framework for massive MIMO WSNs
are discussed next.

IV. FUSION RULE FOR UNKNOWN θ WITH PERFECTCSI

In this section, a GLRT based hypothesis testing framework
[37] is presented for the detection of an unknown signal.
Let θ̂ denote the maximum likelihood (ML) estimate of
the parameterθ under the alternative hypothesisH1 that is
obtained by maximizing the pdf of the MRC outputỹ under
the alternative hypothesis, i.e.,p(ỹ; θ|H1), which is given as
[40]

p(ỹ; θ|H1) =
1

πK |C| exp[−(ỹ −DFaθ)HC−1(ỹ −DFaθ)].

The value ofθ̂ is determined as

θ̂ =
ℜ(aHFHDHC−1ỹ)

aHFHDHC−1DFa
. (20)

The PDFs of the filter output vector̃y under both the hypothe-
ses can be obtained as

p(ỹ; θ̂|H1) =
1

πK |C| exp(−‖ỹ−DFaθ̂‖2C−1)

p(ỹ|H0) =
1

πK |C| exp(−ỹHC−1ỹ).
(21)

Using (21), the GLRT statisticTUP(ỹ) for the massive MIMO
WSN can be simplified to

TUP(ỹ) = ln
[p(ỹ; θ̂|H1)

p(ỹ|H0)

]

≡ ln

[ 1
πK |C| exp(−(ỹ −DFaθ̂)HC−1(ỹ −DFaθ̂))

1
πK |C| exp(−ỹHC−1ỹ)

]

≡ ℜ(θ̂aHFHDHC−1ỹ). (22)

Upon substituting the value of̂θ obtained in (20) into (22),
the test statistic can be further simplified to obtain the test

TUP(ỹ) ≡
∣
∣
∣

K∑

j=1

ℜ
( Mf∗

j a
∗
j ỹj

σ2
vMβj |fj |2 + σ2

n

)∣
∣
∣ ≡ |T ′

UP(ỹ)|
H1

≷
H0

γ′′.

(23)

The detection performance of the test above is given by the
result below.

Theorem 2. The PD and PFA corresponding to the test
statistic TUP(ỹ) in (23) for the detection of an unknown
deterministic parameter in a massive MIMO WSN are given
as

PD = Q
(γ′′ − µT ′

UP|H1

σT ′
UP

)

+Q
(γ′′ + µT ′

UP|H1

σT ′
UP

)

,

PFA = 2Q
( γ′′

σT ′
UP

)

,

(24)

where γ′′ represents the detection threshold. The quantities
µT ′

UP|H0
, µT ′

UP|H1
denote the means under the pair of hypothe-

ses H0 and H1, respectively and σ2
T ′

UP
is the variance under

both the hypotheses, which are given as

µT ′
UP|H0

= 0, (25)

µT ′
UP|H1

=

K∑

j=1

Mβj |aj |2 |fj |2 θ
σ2
vMβj |fj |2 + σ2

n

, (26)

σ2
T ′

UP
=

K∑

j=1

1

2

( Mβj |aj |2 |fj|2

σ2
vMβj |fj|2 + σ2

n

)

. (27)

Proof: See Appendix C.

A. Sensor Gain Optimization

Similar to the known parameter case, the detection perfor-
mance for the unknown parameter scenario can be maximized
by maximizing the deflection coefficient of the testTUP(ỹ) in
(23). Using (24), the detection thresholdγ′′ can be represented
in terms of thePFA as γ′′ =

[
Q−1 (PFA/2)

]
σT ′

UP
. Upon

substitutingγ′′ in (24), the probability of detectionPD for
the test can be recast asPD = Q(Q−1(PFA/2) −

√

d2UP) +
Q(Q−1(PFA/2)+

√

d2UP), where d2UP denotes the deflection
coefficient corresponding to the test statisticTUP(ỹ) in (23)
that can be expressed as

d2UP =
(µT ′

UP|H1
)2

σ2
T ′

UP

= 2θµT ′
UP|H1

. (28)

Using (28), the optimization problem determining the optimal
valuespj = |fj |2 for improving the detection performance can
be formulated as

min.
pj

K∑

j=1

−Mβj|aj |2pj
σ2
vMβjpj + σ2

n

(29)

subject to
K∑

j=1

pj = P

pj ≥ 0.

As seen, the above optimization problem is similar to that
for the known parameter scenario of (18) and the solution is
therefore once again given by (19). The asymptotic perfor-
mance analysis and the pertinent gain scaling laws for the
massive MIMO WSN for various scenarios are determined in
the subsequent section.

V. A SYMPTOTIC PERFORMANCEANALYSIS

This section analyzes the asymptotic performance of the
proposed detectors for the deterministic known and unknown
parameter scenarios of (11) and (23), respectively, in the
large antenna regime, i.e. whenM → ∞, considering both
identical and optimized sensor gains. The asymptotic perfor-
mance corresponding to a large number of antennas at the FC
demonstrates the rate at which the transmit gain of the sensors
can be decreased upon increasing the number of antennas at
the FC. This in turn has a significant implication for the WSN,
since the reduced transmit power can lead to improved battery
life of the sensors.
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A. Known Parameter

This subsection presents the asymptotic performance of
the test statistic in (11) for both identical and optimal gain
allocation.

1) Uniformly Distributed Gain Allocation: Under this
scheme, equal power is allocated to all the sensors, i.e.,
pu = |fj|2 = P/K, ∀ j. Let us consider the scaling of
pu = p̃u

M , wherep̃u denotes the average gain of each sensor.
Using this scaling, the asymptotic performance of the detector
in (11) in the large antenna regime can be derived as shown
below.

Theorem 3. The asymptotic probabilities of detection and
false alarm, represented by Pu

D and Pu
FA, respectively, are

given below for the test statistic TKP(ỹ) of (11), as M → ∞,
and using identical gain allocation,

Pu
D = Q(γ′ − µ̃u

TKP|H1
), Pu

FA = Q(γ′), (30)

where the quantity µ̃u
TKP|H1

represents the normalized mean
corresponding to the alternative hypothesis and is given as

µ̃u
TKP|H1

=

√
√
√
√

K∑

j=1

2p̃uβj |aj |2 θ2
σ2
v p̃uβj + σ2

n

. (31)

Proof: See Appendix D.
2) Optimal Gain Allocation: To derive the asymptotic

bounds onPD and PFA with optimal gain allocation as
described in Section III-A, a modified KKT multiplierλ′ is
defined asλ′ = λ

M . Incorporatingλ′, the solution in (19) can
be rewritten as

pj =
1

M

(
√

σ2
n|aj |2
λ′βjσ4

v

− σ2
n

βjσ2
v

)+

=
1

M
p̃j , (32)

where
∑K

j=1 p̃j = P . Similar to the previous analysis,λ′ can
be found via bisection search over[λ′

l, λ
′
u], whereλ′

l andλ′
u

denote the lower and upper bounds onλ′, respectively, and are
given asλ′

l = min.
j

{ βjσ
2

n|aj|2
(βjσ2

vP+σ2
n)

2

}
andλ′

u = max.
j

{βj |aj |2
σ2
n

}
.

Following similar lines to those of the identical gain allocation,
the asymptotic bounds on the correspondingPD and PFA

values be obtained by using the scalingpj = |fj |2 =
p̃j

M
as described by the result below.

Theorem 4. The asymptotic probabilities of detection and
false alarm, P o

D and P o
FA, respectively, are determined below

for the test TKP(ỹ) in (11), as M → ∞, in conjunction with
optimal gain allocation,

P o
D = Q(γ′ − µ̃o

TKP|H1
), P o

FA = Q(γ′), (33)

where the normalized mean for H1, denoted by µ̃o
TKP|H1

, is
given as

µ̃o
TKP|H1

=

√
√
√
√

K∑

j=1

2p̃jβj |aj |2 θ2
σ2
v p̃jβj + σ2

n

. (34)

The proof of the above theorem follows similar lines to those
of Theorem 3 with the scalingpu = p̃u

M replaced bypj =
p̃j

M
.

B. Unknown Parameter

Consider the scaling ofpu = p̃u

M . The next result presents
the asymptotic performance of the test in (23) for the detection
of an unknown parameter in a massive MIMO WSN.

Theorem 5. The asymptotic probabilities of detection Pu
D and

false alarm Pu
FA of the detector in (23), are given below for

identical gain allocation,

Pu
D = Q(γ′′ − µ̃u

T ′
UP|H1

) +Q(γ′′ + µ̃u
T ′

UP|H1
), Pu

FA = 2Q(γ′′),
(35)

where γ′′ represents the detection threshold and µ̃u
T ′

UP|H1
is the

normalized mean for the hypothesis H1, which is obtained as

µ̃u
T ′

UP|H1
=

√
√
√
√

K∑

j=1

2p̃uβj |aj|2θ2
σ2
v p̃uβj + σ2

n

. (36)

Proof: Follows lines similar to those of Theorem 3.
Finally, following a procedure similar to that of Theorem

5 above, the corresponding performance metrics, i.e.,P o
D and

P o
FA, for the detection of an unknown parameter in the massive

MIMO WSN with perfect CSI and optimal gain allocation can
be derived by substitutingpj = |fj|2 =

p̃j

M in place ofpu =

|fj |2 = p̃u

M . The closed-form expression of the normalized
mean for this framework is explicitly given below:-

µ̃o
T ′

UP|H1
=

√
√
√
√

K∑

j=1

2βj|aj |2p̃jθ2
σ2
vβj p̃j + σ2

n

. (37)

A common feature of all the tests for a massive antenna array
at the FC having perfect CSI, as it becomes evident from the
above investigation, is that the transmit gain of each sensor
can be reduced proportionally to1/M without degrading the
PD, PFA performance. This is indeed one of the key benefits
of a massive MIMO WSN, which can be exploited to achieve
significant power savings, without compromising the sensing
performance. The next section presents the proposed detectors
along with their analysis for scenarios having imperfect CSI
in a massive MIMO WSN.

VI. FRAMEWORK FOR IMPERFECTCSI

Let τ pilot symbols be transmitted in each channel coher-
ence interval of durationτc, for channel estimation in the
massive MIMO WSN. The remaining(τc − τ) symbols are
used for data transmission. All the sensors are assumed to
simultaneously transmit orthogonal pilot sequences of length τ
so that the resultant pilot matrixΦ ∈ Cτ×K is orthogonal, and
satisfies the propertyΦHΦ = IK . The received signal matrix
Yp ∈ CM×τ at the FC corresponding to the transmitted pilot
matrix can be expressed as

Yp =
√
ppGΦT +Wp, (38)

wherepp = τpu is the pilot power, andWp ∈ CM×τ denotes
the noise matrix with i.i.d. elements distributed aswp,i,j ∼
CN (0, σ2

w). From (38), the MMSE estimate ofG is [24]

Ĝ =
1

√
pp

YpΦ
∗
(σ2

w

pp
D−1 + IK

)−1

. (39)
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Let the corresponding estimation error matrix be defined as
E = Ĝ−G. Thej-th columns ofĜ andE denoted bŷgj and
εj , respectively, follow the complex Gaussian distributionsde-
termined aŝgj ∼ CN (0, βĝ,jIM ), βĝ,j , ppβ

2
j /(σ

2
w + ppβj)

andεj ∼ CN (0, γε,jIM ), γε,j , σ2
wβj/(σ

2
w + ppβj). For the

imperfect CSI scenario, the signal in (1) received at the FC
under both the hypotheses can be modified as

H0 : y = ĜFv − EFv + n,

H1 : y = ĜFaθ − EFaθ + ĜFv − EFv + n.
(40)

Furthermore, upon performing MRC processing with the esti-
mated channel matrix̂G at the receiver and using the property
1
M ĜHĜ ≈ Dĝ, whereDĝ = diag(βĝ,1, . . . , βĝ,K) [26], the
output signals corresponding to both the hypotheses in (40)
reduce to

H0 : y̆ ≈ w,

H1 : y̆ ≈ DĝFaθ −
1

M
ĜH

EFaθ +w,
(41)

wherew = DĝFv− 1
M ĜH

EFv+ 1
M ĜHn ∈ C

K×1 denotes
the equivalent noise vector that has the covariance matrix of
Cw = σ2

vDĝFF
HDH

ĝ +
σ2

v

M

(∑K
j=1 γε,j |fj |2

)
Dĝ +

σ2

n

M Dĝ.
The imperfect CSI analysis is inspired by other contribution
on massive MIMO, especially by [26], which demonstrates
the SINR and power scaling laws. Their analysis shows that
the implications for imperfect CSI and the pertinent analysis
is significantly different from that of the perfect CSI case.
Now the detectors having CSI uncertainty for the known and
unknown parameter scenarios are derived below.

A. Fusion Rule for Known θ with Imperfect CSI

The distributions of the output̆y corresponding to both the
hypotheses, for this scenario, can be derived as

H0 : y̆
a∼ CN (0,Cw),

H1 : y̆
a∼ CN (DĝFaθ,Cη),

(42)

whereCη = Cs+Cw denotes the equivalent noise covariance
matrix under hypothesisH1 with Cs ∈ C

K×K given asCs =
1
M

(∑K
j=1 γε,j |aj |2|fj |2

)
Dĝ. The LLR testTKIP(y̆) for the

filtered output in (41) for the detection of the parameterθ in a
massive MIMO WSN with imperfect CSI can be formulated
as

TKIP(y̆) = ln
[p(y̆|H1)

p(y̆|H0)

]

= y̆HC−1
w y̆ − (y̆ −DĝFaθ)

HC−1
η

(y̆ −DĝFaθ)

= y̆H(C−1
w −C−1

η
)y̆ + 2ℜ(θaHFHDH

ĝ C−1
η

y̆). (43)

Upon substituting all the matrices and vectors in the above
expression, the test statistic in (43) reduces to

TKIP(y̆) =

K∑

j=1

σ2
s,j |y̆j |2

σ2
w,jσ

2
η,j

+ 2ℜ
( K∑

j=1

θa∗jf
∗
j β

∗
ĝ,j y̆j

σ2
η,j

)

=
K∑

j=1

[

αj |y̆j |2 + 2ℜ
(θαja

∗
jf

∗
j β

∗
ĝ,jσ

2
w,j y̆j

σ2
s,j

)]

=

K∑

j=1

αj [(y̆j+δj)
∗(y̆j+δj)− δ2j ], (44)

where the parametersαj , δj are defined asαj =
σ2

s,j

σ2

w,j
σ2

η,j

and

δj =
θa∗

jf
∗
j β

∗
ĝ,jσ

2

w,j

σ2

s,j

, respectively. The test statistic in (44) can
be further simplified as

TKIP(y̆) =

K∑

j=1

αj |y̆j + δj |2
︸ ︷︷ ︸

TKIP(y̆j)

= yH
I αyI

H1

≷
H0

γ̃, (45)

where the vectoryI ∈ CK×1 and the matrixα ∈ CK×K

are defined asyI = [(y̆1 + δ1), . . . , (y̆K + δK)]T and α =
diag(α1, . . . , αK), respectively. From (45), the PDFs of the
component test statisticTKIP(y̆j) under both the hypotheses
are given as

H0 : TKIP(y̆j) =
αjσ

2
w,j

2

|y̆j + δj |2
σ2
w,j/2

=
λj,0

2
χ′2
2 (ξj,0),

H1 : TKIP(y̆j) =
αjσ

2
η,j

2

|y̆j + δj |2
σ2
η,j/2

=
λj,1

2
χ′2
2 (ξj,1),

(46)

whereχ′2
2 (ξj,0), χ

′2
2 (ξj,1) denote non-central chi-squared dis-

tributed random variables with two degrees of freedom and

ξj,0 =
2δ2j
σ2

w,j

, ξj,1 =
2(θajfjβĝ,j+δj)

2

σ2

η,j

denote the non-centrality

parameters, respectively, withλj,0 = αjσ
2
w,j and λj,1 =

αjσ
2
η,j . Using (46), the test statisticTKIP(y̆) can be equiva-

lently represented as the weighted sum of chi-squared random
variables with two degrees of freedom as shown below:-

H0 : TKIP(y̆) =
K∑

j=1

TKIP(y̆j) ≡
K∑

j=1

λj,0

2
χ′2
2 (ξj,0),

H1 : TKIP(y̆) =

K∑

j=1

TKIP(y̆j) ≡
K∑

j=1

λj,1

2
χ′2
2 (ξj,1).

(47)

The test statisticTKIP(y̆) under both the hypotheses can be
closely approximated as the non-central chi-squared random
variables

H0 : TKIP(y̆) ≈ χ′2
lKF
(ξKF),

H1 : TKIP(y̆) ≈ χ′2
lKD

(ξKD),
(48)

where the degrees of freedom, i.e.,lKF, lKD and the non-
centrality parameters, i.e.,ξKF, ξKD , of the chi-squared random
variables are obtained from the first four cumulants ofTKIP(y̆)
using the result in [41]. Employing (48), the closed-form
expressions ofPD andPFA for the test statistic in (45) can
be determined as

PD ≈ Pr
(
χ′2
lKD

(ξKD) > γ̃
)
= Qχ′2

lKD
(ξKD)(γ̃), (49)

PFA ≈ Pr
(
χ′2
lKF
(ξKF) > γ̃

)
= Qχ′2

lKF
(ξKF)(γ̃). (50)

The expressions in (49) and (50) can be further simplified by
exploiting the asymptotic property of the chi-squared random
variable [37] as described in the theorem below.

Theorem 6. For a given threshold γ̃, the probabilities of
detection PD and false alarm PFA for the proposed detector
in (45), can be approximated as seen below for a massive
MIMO setup with a large number of antennas M at the FC
and imperfect CSI,

PD ≈ Q
( γ̃ − µKD|H1

σKD|H1

)

, PFA ≈ Q
( γ̃ − µKF|H0

σKF|H0

)

, (51)
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where the moments of the test statistic TKIP(y̆) under the two
hypotheses can be derived as

E{TKIP(y̆);H0} = µKF|H0
= lKF + ξKF, (52)

E{TKIP(y̆);H1} = µKD|H1
= lKD + ξKD, (53)

var{TKIP(y̆);H0} = σ2
KF|H0

= 2lKF + 4ξKF, (54)

var{TKIP(y̆);H1} = σ2
KD|H1

= 2lKD + 4ξKD, (55)

Proof: See Appendix E.

B. Fusion Rule for Unknown θ with Imperfect CSI

This section considers a general scenario for the detection
of an unknown parameter with imperfect CSI at the FC. The
corresponding GLRT based test statistic can be formulated as

TUIP(y̆) = ln
[p(y̆; θ̂|H1)

p(y̆|H0)

]

. (56)

The PDFs of the filter output̆y under hypothesesH0 andH1,
parameterized bŷθ, can be expressed as

p(y̆|H0) =
1

πK |Cw|
exp(−y̆HC−1

w y̆),

p(y̆; θ̂|H1) =
1

πK |Cη|
exp(−‖y̆ −DĝFaθ̂‖2C−1

η

).
(57)

Substituting the above PDFs in (56), the desired test statistic
TUIP(y̆) can be determined as

TUIP(y̆) = y̆H
(
C−1

w −C−1
η

)
y̆ + 2ℜ(y̆HC−1

η
DĝFaθ̂)

− θ̂2aHFHDH
ĝ C−1

η
DĝFa, (58)

where θ̂ represents the ML estimate of the parameterθ
under hypothesisH1, which can be obtained by maximizing

p(y̆; θ|H1) as θ̂ =
ℜ(aHFHDH

ĝ
C−1

η
y̆)

aHFHDH
ĝ
C

−1
η DĝFa

[40]. Substitutingθ̂ in

(58), the test statisticTUIP(y̆) can be simplified as

TUIP(y̆)=y̆H(C−1
w −C−1

η
)y̆+

[ℜ(aHFHDH
ĝ C−1

η
y̆)]2

aHFHDH
ĝ C−1

η DĝFa

H1

≷
H0

γ̃′.

(59)

The above test can now be used directly for detection purposes.
However, the characterization of its detection performance is
mathematically intractable. Therefore, in order to evaluate the
performance, the test statistic in (59) can be approximatedas

TUIP(y̆) ≈ y̆H
[

(C−1
w −C−1

η
)+

C−1
η

DĝFaa
HFHDH

ĝ C−1
η

aHFHDH
ĝ C−1

η DĝFa

]

y̆

= y̆HXy̆, (60)

where the matrix X can be defined asX =

(C−1
w −C−1

η
)+

C−1

η
DĝFaa

HFHDH
ĝ
C−1

η

aHFHDH
ĝ
C

−1

η DĝFa
. The performance

of the test statistic above is described in the theorem given
below.

Theorem 7. The probabilities of detection PD and false
alarm PFA for the test statistic in (60), corresponding to the
detection of an unknown parameter at the FC for imperfect
CSI, are given as

PD ≈ Qχ′2
lUD

(ξUD)(γ̃
′), PFA ≈ Qχ′2

lUF
(ξUF)(γ̃

′), (61)

where the quantities lUF, lUD and ξUF, ξUD represent the degree
of freedom and the non-centrality parameter of the chi-squared
random variables χ′2

lUF
(ξUF) and χ′2

lUD
(ξUD), respectively, as

described in Appendix F.

VII. S IMULATION RESULTS

In this section our simulation results are presented for
characterizing the performance of the proposed schemes for
correlated parameter detection in massive MIMO WSNs op-
erating in different scenarios. For our simulations, a total
of K = 12 sensors are deployed randomly with a uniform
distribution around the FC in a disc-shaped region determined
by the maximum and minimum radii ofrm = 1000 meters
and rh = 100 meters, respectively. Such a system can
be deployed in practice for environmental and agricultural
monitoring applications, to sense various parameters of interest
such as temperature, pressure, humidity, soil moisture etc.
Consequently, the sensor decisions are potentially correlated,
since the sensors are densely located and observe the same
phenomenon. The large-scale fading matrixD is generated
similar to [26], i.e. the large-scale fading coefficients are
modeled asβj = zj/ (rj/rh)

ν , where zj is a log-normal
random variable with a mean ofµs = 3 and standard deviation
of σs = 8 dB, rj denotes the distance of thej-th sensor from
the FC andν represents the path-loss exponent that is chosen
as ν = 3.8. The correlation coefficientaj , 1 ≤ j ≤ K,
is assumed to be uniformly distributed between[0.5, 0.9].
Moreover, the parameters such as the observation noise power,
receiver noise power, total sensor transmit gain and number
of FC antennas are set asσ2

v = 0.2, σ2
n = 0.7, P = 1 and

M = 50, respectively. Hence, the SNRsP/σ2
v andP/σ2

n are
set as 6.99 dB, 1.55 dB, respectively. In the following plots,
each point is obtained as a result of averaging over100, 000
trials.

Fig. 3a compares the receiver operating characteristic (ROC)
of the proposed detector in (11) to that of the detector proposed
in [11]. The authors in [11] consider an amplify and forward
scheme for transmitting the sensor observations to the FC,
which is assumed to be equipped with multiple antennas,
but not a massive MIMO antenna array. Furthermore, the
work therein does not consider a correlated parameter but an
identical parameterθ across all the sensors. Hence, for a fair
comparison with the scheme in [11], the spatial correlation
vector a is set asa = 1. It is also worth noting that the
analysis therein is limited only to the error exponent, but does
not consider the actual probabilities of detection or falsealarm.
The number of FC antennas for the detector in [11] is set
to M = {3, 10, 50} and the other parameters are kept the
same. It is observed that the proposed low-complexity scheme
is only suitable for a massive MIMO system, which has a
similar performance as the detector in [11] usingM = 50.
This illustrates the advantage of employing a large antenna
array. Moreover, the performance of the proposed scheme
further improves upon utilizing the optimal sensor gains
derived in Section III-A. Similarly, Fig. 3b demonstrates the
performance of the detector proposed in (23) for the uniform
and optimal gain allocation schemes. The performance of the
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Fig. 3. ROC plot for comparing (a) the detectorTKP(ỹ) in (11) usingM = 50 with the detectors in [11] usingM = {3, 10, 50} for K = 12, σ2
v = 0.2,

σ2
n = 0.7 andP = 1. (b) the detectorTUP(ỹ) in (23) usingM = 50 with GLRT detectors usingM = {3, 10, 50} for K = 12, σ2

v = 0.2, σ2
n = 0.7

andP = 1. (c) the simulated plots of the detectors in (11) and (23) with their theoretical results in Theorem 1 and Theorem 2, respectively, for K = 12,
M = 100, σ2

v = 0.2, σ2
n = 0.7 andP = 1.

Prob. of False alarm (P
FA

)
0 0.2 0.4 0.6

P
ro

b.
 o

f D
et

ec
tio

n 
(P

D
)

0.2

0.4

0.6

0.8

1

TKP (Asym.),Opt.
TKP (Sim.),M = 1000,Opt.
TKP (Sim.),M = 100,Opt.
TKP (Sim.),M = 20,Opt.
TKP (Asym.),Uni.
TKP (Sim.),M = 1000,Uni.
TKP (Sim.),M = 100,Uni.
TKP (Sim.),M = 20,Uni.

(a)

Prob. of False alarm (P
FA

)
0 0.2 0.4 0.6 0.8

P
ro

b.
 o

f D
et

ec
tio

n 
(P

D
)

0.2

0.4

0.6

0.8

1

TUP (Asym.) Opt.
TUP (Sim.),M = 1000 Opt.
TUP (Sim.),M = 100 Opt.
TUP (Sim.),M = 20 Opt.
TUP (Asym.) Uni.
TUP (Sim.),M = 1000 Uni.
TUP (Sim.),M = 100 Uni.
TUP (Sim.),M = 20 Uni.

(b)

No. of antennas at FC (M)
50 100 150 200 250 300

P
ro

b.
 o

f D
et

ec
tio

n 
(P

D
)

0.2

0.4

0.6

0.8

1

Known θ, Opt. Power
Unknown θ, Opt. Power
Known θ, Uni. Power
Unknown θ, Uni. Power

(c)

Fig. 4. For uniform and optimized gain allocation schemes, (a) large antenna performance analysis for the detectorTKP(ỹ) in (11) for a WSN withK = 12,
σ2
v = 0.2, σ2

n = 0.7, P = 10 andM = {20, 100, 1000}. (b) large antenna performance analysis for the detectorTUP(ỹ) in (23) for a WSN withK = 12,
σ2
v = 0.2, σ2

n = 0.7, P = 10 andM = {20, 100, 1000}. (c) PD vs. M for the detectorsTKP(ỹ) in (11) andTUP(ỹ) in (23), with K = 12, σ2
v = 0.2,

σ2
n = 0.7 andP = 1.

GLRT directly usingy in (1), without employing linear pre-
processing at the FC is also shown. For this plot, the number
of antennas at the FC is set toM ∈ {3, 10, 50}. It can be
concluded from the figure that a similar detection performance
can be achieved by the proposed low-complexity detector as
that of the GLRT based MIMO detector forM = 50 antennas.
This demonstrates the efficiency of using the low-complexity
MRC pre-filtering at the massive MIMO FC in the large
antenna regime. Fig. 3c compares the analytical values of
the probabilities of detection and false alarm, obtained using
the expressions derived in Theorem 1 and Theorem 2 for the
detectors in (11) and (23), respectively, with their simulation
counterparts. As the processing step in (6) assumes a large
number of antennas at the massive MIMO FC, the simulated
and analytical results coincide for large values ofM(∼ 100),
as it can be seen from the figure.

Fig. 4a and 4b demonstrate the large array performance
for the detectors in (11) and (23), respectively, for perfect
CSI. For the system using identical power allocation, the
gains are scaled aspu = p̃u

M , while the scaling is chosen
as pj =

p̃j

M for optimal gain allocation. It can be readily
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Fig. 5. PD vs. sum transmission gainP for a WSN withK = 12, M = 50,
σ2
v = 0.2, σ2

n = 0.7 andPFA = 0.05.

inferred from the figures that the simulated ROC plots of
the proposed detectors approach their respective analytical
plots, obtained using the expressions derived in Section V,as
M becomes large. The parameters used for generating these
plots are set asP = 10, M = {20, 100, 1000} and the rest
of the parameters are kept unchanged. Fig. 4c demonstrates
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the performance improvement in terms of the probability of
detection(PD) both for identical and optimal gain allocation
for an increasing number of antennasM at the FC, with
the sum of transmission gains set asP = 1. A significant
improvement can be observed for the optimal gain allocation
scheme in comparison to the identical gain allocation scheme
for both the detection schemes.

Fig. 5 shows the variation of the probability of detection
(PD) vs. the total sensor transmit power(P ) for PFA = 0.05.
It is evident from the figure that forP = 10 dB, the probability
of detection is higher than0.9 and it is close to unity for
P = 20 dB. This demonstrates the significant performance
improvement that can be achieved by optimal gain allocation,
when utilized for the detection of both known and unknown
parameters. Fig. 6a plots the ROC of the proposed detector
in (11) and the original detector in (5) to characterize the
performance. Moreover, it demonstrates a similar performance
comparison for the unknown parameter scenario. Fig. 6b plots
the probability of detection(PD) versus the probability of false
alarm(PFA) for the detectors in (45) and (59) corresponding
to the known and unknown parameter detection scenarios
in the presence of imperfect CSI, respectively. It can be
observed from the figure that the simulated plots are in close
agreement with the theoretical results obtained in Theorem6
and Theorem 7, thus, validating the analytical findings for the
equal power allocation scheme. Fig. 6c plots the probability
of detection(PD) versus the probability of false alarm(PFA)
for the detectorsTKIP(y̆) in (45), TKIP(y) corresponding to
the known parameter scenario, and the detectorTUIP(y̆) in
(59), as well as its simplification in (60) for the unknown
parameter scenario with imperfect CSI. It can be observed that
the performance of the testTKIP(y̆) coincides withTKIP(y)
for large values ofM(∼= 50). Furthermore, the plot also
demonstrates the closeness of the rulesTUIP(y̆) andTUIP(y).

VIII. C ONCLUSIONS

Powerful detectors were proposed for correlated parameter
detection in a massive MIMO WSN. The NP criterion and
GLRT based fusion rules were initially determined for the
detection of known and unknown deterministic parameters, re-
spectively, for perfect CSI at the FC. Closed-form expressions
of probabilities of detection(PD) and false alarm(PFA) were
determined for characterizing the performance of the proposed
detectors. Furthermore, the optimal sensor transmit gainswere
derived utilizing the deflection coefficient framework to further
enhance the detection performance of the proposed tests. The
asymptotic detection performance and pertinent gain scaling
laws were also derived for both uniform and optimal gain
allocation for a large antenna array at the massive MIMO FC.
The framework was further extended to a scenario having CSI
uncertainty. Simulation results were presented to validate the
theoretical findings and to demonstrate the improved detection
performance of the proposed schemes. In future research, this
framework can be extended to a scenario with multiple FCs,
each equipped with a very large antenna array, to present the
fusion rules and pertinent analysis considering the effects of
pilot contamination.

APPENDIX A
PROOF OFTHEOREM 1

The mean of the test statisticTKP(ỹ) in (11) under the
alternative hypothesisH1, i.e.,µTKP|H1

, is given by

µTKP|H1
= E

{ K∑

j=1

ℜ
( Ma∗jf

∗
j ỹj

σ2
vMβj |fj |2 + σ2

n

)∣
∣
∣H1

}

=

K∑

j=1

ℜ
( Ma∗jf

∗
j E{ỹj |H1}

σ2
vMβj |fj|2 + σ2

n

)

, (62)

where the quantityE{ỹj|H1} can be derived as

E{ỹj|H1} = E

{

βjfjajθ + βjfjvj +
1

M
gH
j n

}

= βjfjajθ.

Substituting the above equation into (62), the meanµTKP|H1

can be expressed as

µTKP|H1
=

K∑

j=1

ℜ
( Mβj |aj |2 |fj |2 θ
σ2
vMβj |fj|2 + σ2

n

)

,

which results in the expression given in (14). Following
similar steps, the meanµTKP|H0

under the null hypothesis
in (13) can also be determined. The varianceσ2

TKP
is given

by σ2
TKP

= E
{
T 2

KP (ỹ) |H0

}
− (E {TKP (ỹ) |H0})2, where

the quantityE
{
T 2

KP (ỹ) |H0

}
in the above expression can be

determined as

E{T 2
KP(ỹ)|H0} = E

{[ K∑

j=1

ℜ
( Ma∗jf

∗
j ỹj

σ2
vMβj |fj|2 + σ2

n

)]2∣
∣
∣H0

}

= E

{ K∑

j=1

[

ℜ
(Ma∗jf

∗
j (βjfjvj +

1
M gH

j n)

Mσ2
vβj |fj |2 + σ2

n

)]2}

=

K∑

j=1

1

2

( Mβj |aj |2 |fj|2

Mσ2
vβj |fj|2 + σ2

n

)

. (63)

Substituting (63) and the value ofµTKP|H0
in σ2

TKP
, one can

obtain the final expression of the varianceσ2
TKP

in (15).

APPENDIX B
PROOF OFTHEOREM 1

The optimization problem in (18) can be efficiently solved
using the Karush-Kuhn-Tucker (KKT) framework [42]. The
corresponding Lagrangian can be formulated as

L(pj , λ, µj)=

K∑

j=1

−Mβj |aj |2 pj
Mβjpjσ2

v + σ2
n

+ λ
( K∑

j=1

pj − P
)

+

K∑

j=1

µjpj ,

and the KKT conditions can be expressed as

−Mβj |aj |2 σ2
n

(Mβjpjσ2
v + σ2

n)
2 + λ− µj = 0, (64)

λ
( K∑

j=1

pj − P
)

= 0, (65)

K∑

j=1

pj − P = 0, (66)

µjpj = 0, (67)

µj , pj, λ ≥ 0. (68)
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Fig. 6. ROC plot for comparing (a) detectorTKP(ỹ) with the detectorTKP(y) and the detectorTUP(ỹ) with the detectorTUP(y) usingM = 50 for K = 12,
σ2
v = 0.2, σ2

n = 0.7 andP = 1. (b) detectorsTKIP(y̆) andTUIP(y̆) in (45) and (60), respectively, for imperfect CSI with theiranalytical counterparts for a
WSN with K = 12, M = 50, σ2

v = 0.2, σ2
n = 0.7 andP = 1. (c) detectorsTKIP(y̆) in (45) with the detectorTKIP(y) and the detectorTUIP(y̆) in (59)

with the detector in (60) and the detectorTUIP(y), for a WSN withK = 12, M = 50, σ2
v = 0.2, σ2

n = 0.7 andP = 1.

Using the above KKT conditions followed by straightforward
manipulations yields the closed-form solution in (19).

APPENDIX C
PROOF OFTHEOREM 2

T ′
UP(ỹ) in (23) is Gaussian distributed under both the

hypotheses, which can be described as

T ′
UP(ỹ) =

K∑

j=1

ℜ
( Mf∗

j a
∗
j ỹj

σ2
vMβj |fj|2 + σ2

n

)

∼
{N (µT ′

UP|H0
, σ2

T ′
UP
) under H0

N (µT ′
UP|H1

, σ2
T ′

UP
) under H1

, (69)

where the quantitiesµT ′
UP|H0

, µT ′
UP|H1

andσ2
T ′

UP
in (25), (26)

and (27), respectively, are obtained using the same procedure
as described in Appendix A. Using the statistics in (69), the
probability of detectionPD can be formulated as

PD = Pr{|T ′
UP(ỹ)| > γ′′|H1}

= Pr{T ′
UP(ỹ) > γ′′|H1}+ Pr{T ′

UP(ỹ) < −γ′′|H1}

= Q
(γ′′ − µT ′

UP|H1

σT ′
UP

)

+ 1−Q
(−γ′′ − µT ′

UP|H1

σT ′
UP

)

. (70)

Using the relationQ (−x) = 1 − Q (x), (70) can be further
simplified to obtain the final expression ofPD in (24). The
closed-form expression of the probability of false alarmPFA

in (24) can be derived along similar lines.

APPENDIX D
PROOF OFTHEOREM 3

Under both the hypotheses, the test statisticTKP(ỹ) in (11)
for the detection of a known parameter, is distributed as
N (µTKP|Hi

, σ2
TKP

), wherei = 0, 1. The equivalent test statistic
obtained after appropriate scaling, i.e.,T̄KP(ỹ) ,

TKP(ỹ)
σTKP

, also
follows the Gaussian distribution under both the hypotheses,
which can be expressed as̄TKP(ỹ),Hi ∼ N (µ̄u

TKP|Hi
, 1).

Furthermore, the scaled mean̄µu
TKP|Hi

can be defined as

µ̄u
TKP|Hi

,
µTKP|Hi

σTKP
. Substituting the quantitiesµTKP|H1

and

σTKP, given in (14) and (15), respectively, and usingpu =
|fj |2, the scaled mean̄µu

TKP|H1
for the alternative hypothesis

H1 can be simplified as

µ̄u
TKP|H1

=

√
√
√
√

K∑

j=1

2puMβj |aj |2 θ2
σ2
vpuMβj + σ2

n

.

Using the above expression, the probability of detectionP̄D

corresponding to the detector̄TKP(ỹ) can be expressed as
P̄D = Q(γ′ − µ̄u

TKP|H1
). The asymptotic probability of de-

tectionPu
D in the large antenna regime, given by (30), can be

determined by evaluating the normalized mean. This can be
simplified for hypothesisH1 by taking the limit asM → ∞ of
µ̄u
TKP|H1

, along with the scalingpu = p̃u

M , and can be expressed
as

µ̃u
TKP|H1

= lim
M→∞

µ̄u
TKP|H1

∣
∣
pu=

p̃u
M

= lim
M→∞

µTKP|H1

σTKP

∣
∣
∣
pu=

p̃u
M

= lim
M→∞

√
√
√
√

K∑

j=1

2 p̃u

M Mβj |aj |2 θ2
σ2
v
p̃u

M Mβj + σ2
n

,

which on further simplification reduces to (31). The asymptotic
probability of false alarmPu

FA in (30) can be derived along
similar lines.

APPENDIX E
PROOF OFTHEOREM 6

The k-th cumulant ofTKIP(y̆) for hypothesisHi, where
i = 0, 1, is given by

κi
k = 2k−1(k − 1)!

K∑

j=1

(

2
(λj,i

2

)k

+ k
(λj,i

2

)k

ξj,i

)

. (71)

The mean, standard deviation, skewness and kurtosis of the test
statisticTKIP(y̆) under both the hypotheses can be evaluated
using the expression (71). Using (47), (48) and (71), the
probability of detectionPD can be determined as shown below.

PD = Pr
(
∑K

j=1
λj,1

2 χ′2
2 (ξj,1)− µχ′

σχ′

>
γ̃ − µχ′

σχ′

)
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≈ Pr
(χ′2

lKD
(ξKD)− µKD|H1

σKD|H1

>
γ̃ − µKD|H1

σKD|H1

)

, (72)

whereµχ′ , σχ′ denote the mean and standard deviation of the
weighted sum ofK chi-square distributed random variables
∑K

j=1
λj,1

2 χ′2
2 (ξj,1). The above expression (72), for large num-

ber of antennas at the FC, can be further simplified to obtain
the expression in (51). The quantitiesµKD|H1

and σKD|H1

represent the mean and standard deviation of the chi-square
random variableχ′2

lKD
(δKD) and are defined in (53) and (55),

respectively. The expression forPFA in (51) can be derived
on similar lines.

APPENDIX F
PROOF OFTHEOREM 7

For the detector in (60), the probability of detectionPD is
given by

PD = Pr(y̆HXy̆ > γ̃′|H1). (73)

To evaluatePD, the above expression can be equivalently
written asPD = Pr(y̆′HZy̆′ > γ̃′), where the vector̆y′

and the matrixZ are defined as̆y′ = C
− 1

2

η y̆ and Z =

C
1

2

ηXC
1

2

η , respectively. Under hypothesisH1, y̆ is distributed
asy̆ ∼ CN (DĝFaθ,Cη). Hence,̆y′ also follows the complex

Gaussian distribution, i.e.,̆y′ ∼ CN (C
− 1

2

η DĝFaθ, IK). Using
the eigenvalue decomposition (EVD), the matrixZ can be
defined asZ = UΣUH . On substituting the EVD ofZ,
the expression ofPD reduces toPD = Pr(y̆′HUΣUH y̆′ >
γ̃′) = Pr(y̆H

u Σy̆u > γ̃′), where the vector̆yu is defined as
y̆u = UH y̆′. The transformed vector̆yu is distributed as
y̆u ∼ CN (UHC

− 1

2

η DĝFaθ, IK). Hence, the expression of
PD further simplifies toPD = Pr(

∑K
j=1 σjχ

′2
2 (ξj) > γ̃′),

whereσj is the j-th element of the eigenvalue matrixΣ and
χ′2
2 (ξj) is the non-central chi-squared random variable with

two degrees of freedom and non-centrality parameter asξj .
Following the procedure in Appendix E, the probability of
detectionPD can be determined asPD ≈ Pr(χ′2

lUD
(ξUD) >

γ̃′) = Qχ′2
lUD

(ξUD)(γ̃
′), which is given in (61). The expression

for thePFA in (61) can be derived similarly.
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