

1 **Influence of acoustics on the collective behaviour of a shoaling freshwater fish**

2

3 **Matt Short.¹, Paul R. White², Timothy G. Leighton² and Paul S. Kemp¹**

4 **Affiliations:**

5 **¹: International Centre for Ecohydraulics Research, University of Southampton, UK.**

6 **²: Institute of Sound and Vibration Research, University of Southampton, UK.**

7

8 **Correspondence address:** m.short@soton.ac.uk

9 **Keywords:** Group behaviour, anthropogenic disturbance, noise, sound, schools.

10

11 **SUMMARY**

12 1. Understanding how collective behaviour of animals is influenced by anthropogenic activity
13 is important for their conservation in an increasingly urbanised world. River infrastructure,
14 e.g. for transport and electricity generation, and associated construction and operation,
15 produce sound that can disrupt ecological processes.

16 2. Adopting a reductionist manipulative experimental approach using Eurasian minnow
17 (*Phoxinus phoxinus*) as a model shoaling species, we compared the response of individuals
18 and groups of five fish to a broadband acoustic stimulus in a tank containing still water.

19 3. Four metrics were calculated 10 min immediately before (control – sound stimulus absent)
20 and during the acoustic treatment: (1) swimming speed, (2) persistence of swim paths, (3)
21 cohesion of the group, and (4) orientation of group members.

22 4. On presentation of the stimulus, groups exhibited a consistent escape response compared to
23 individuals for which behaviour was more variable. Thereafter, individuals swam faster and
24 their swim paths were less persistent than during the control; no difference was observed for

25 groups. Conversely, group integrity became more cohesive and members were more likely to
26 orient in a common direction during the treatment compared to the control.

27 5. This study provides insight into the importance of collective behaviour of fish in relation to
28 antipredator-like response to anthropogenic noise. Short-term shifts in behaviour are context
29 specific, and depend on whether fish are members of a shoal or solitary. The results indicate
30 the potential for negative impacts of unnatural sound on the ecology of shoaling species that
31 inhabit engineered freshwater environments.

32

33 **1. Introduction**

34 Collective behaviour, in which coordinated groups are formed as a result of local interactions
35 among individuals, is widely observed in nature, e.g. in animals that form flocks, schools and
36 swarms. The benefits for individual fitness of group membership include enhanced
37 antipredator defence (e.g. in spiders; Uetz et al. 2002), foraging efficiency (e.g. in birds;
38 Sullivan 1984), thermoregulation (e.g. in huddling endotherms; Gilbert et al. 2010), and
39 information transfer (e.g. in fish; Laland & Williams 1997). Although understanding the
40 mechanisms and significance of collective behaviour has been of great interest in the fields of
41 ecology (Couzin et al. 2005), ethology (Ballerini et al. 2008) and evolution (Couzin et al.
42 2002) for decades, there has been little consideration of how it may be disrupted by
43 anthropogenic disturbance, such as noise pollution.

44 The impacts of acoustic disturbance on animal behaviour are relatively well studied
45 for terrestrial systems (Barber et al. 2010) and the marine environment (Slabberkoorn et al.
46 2010). In particular, considerable attention has been directed towards understanding the
47 response of marine mammals (usually cetaceans) (Weilgart 2007, Shannon et al. 2016) and
48 fishes (Popper et al. 2003, Hawkins & Popper 2017, Herbert-Read et al. 2017), with the focus
49 on the commercially important species for the latter. In comparison, how human-generated

50 noise affects fish in the freshwater environment has received relatively limited attention (Holt
51 & Johnston 2015, Mickle & Higgs 2017).

52 It is assumed fish perceive and respond to anthropogenic disturbances, such as those
53 caused by underwater noise, in a way that is analogous to antipredator behaviours (Frid &
54 Dill 2002). These include increased vigilance, fleeing, and hiding, all of which divert time
55 and energy from other fitness-enhancing activities such as feeding and reproduction.

56 However, the results of previous studies are contradictory, and in many cases use playback
57 recordings that may be inappropriate when viewed from the perspective of the typical habitat
58 exploited by the subject species studied. For example, under laboratory conditions, three-
59 spined stickleback (*Gasterosteus aculeatus*) and Eurasian minnow (*Phoxinus phoxinus*) are
60 more frequently startled, and exhibit lower feeding rates, when field recordings of ships
61 passing through harbours are played back (Voellmy et al. 2014a). Furthermore, in a similar
62 experiment, the sticklebacks respond more quickly to a visual predatory stimulus in the
63 presence of noise than during control conditions, while minnows exhibit no difference in
64 response (Voellmy et al. 2014b). Eurasian minnow have also recently been observed to
65 exhibit complex behavioural group response to acoustic stimuli (Currie et al. 2020).

66 Conversely, juvenile European eel (*Anguilla anguilla*) are slower and less likely to exhibit a
67 startle response to a simulated predator, increasing the probability of capture, again under
68 treatments employing the playback of shipping noise (Simpson et al. 2015). However,
69 European eel have been shown to exhibit avoidance behaviours towards underwater sound
70 (Deleau et al. 2020a & 2020b) and specifically infrasound (Piper et al. 2019). While
71 appreciating that there is likely to be interspecific variability in response to noise that may
72 partially explain the conflicting results obtained, there is a need to enhance understanding of
73 fish behaviour by adopting a more reductionist approach in which the in-tank acoustic fields

74 are accurately measured, and frequencies and intensities better defined than in previous
75 experiments, reflecting those likely to be encountered in nature.

76 Returning to considerations of collective behaviour in fish, a common tendency in
77 previous studies of response to sound is to focus on the individual, rather than the group in
78 species that commonly aggregate. Until recently, observations of group response to sound
79 was usually anecdotal, and not specifically focused on the impacts on collective behaviour
80 per se (e.g. evasive diving by schools in response to approaching motorized vessels, Gerlotto
81 & Freon 1992). However, in a recent study Herbert-Read et al. (2017) explored the response
82 of groups of sea bass (*Dicentrarchus labrax*) to playback of either ambient background
83 natural sound or pile-driving. In contradiction to expected observations of antipredator-like
84 behaviour, the schools became less cohesive and directionally oriented under the pile-driving
85 treatment. Further, these shoals became less correlated in speed and directional changes. In
86 contrast, a recent study looking at pulsed puretones on the group behaviour of Eurasian
87 minnow noted opposite impacts regarding cohesion, speed and directionality (Currie et al.
88 2020). Although such studies provide useful insights to enhance understanding of the
89 collective behaviour of fish in response to human-generated sound, more work is needed to
90 compare the response between groups and individuals to isolate the influence of collective
91 behaviour.

92 The current investigation adopted a reductionist experimental approach to quantify the
93 influence of underwater sound, a well-defined broadband random noise field (60 – 2000 Hz),
94 on the behaviour of solitary individuals and groups of five Eurasian minnow. To meet this
95 aim, four key objectives, and associated working hypotheses based on expectations of
96 response to sound being analogous to an antipredator-like response, were developed. These
97 focused on quantifying: (1) swimming speed for individuals and shoals (Hypothesis 1:
98 swimming will be faster during exposure to a sound stimulus, but less so for groups

99 compared to individuals as a result of perceived safety in numbers); (2) persistence of the
100 swim path for individuals and shoals (Hypothesis 2: paths will be less predictable and more
101 erratic under the sound treatment, but less so for groups than individuals); (3) group cohesion
102 (Hypothesis 3: shoals will be more closely grouped under the sound treatment); and (4)
103 orientation of group members (Hypothesis 4: shoals will be more polarised in the presence of
104 sound). The results of this study are valuable because they provide important information
105 relating to variation in response between individuals and groups of fish under controlled
106 experimental settings and that differ from those obtained previously for marine species.

107

108 **2. Methods**

109 **(a) The use of tank experiments and selection of the model species**

110 There has been recent debate over the validity of tank versus field studies in the investigation
111 of fish response to acoustics, with recent recognition that tank experiments are a valid
112 approach provided care is taken to accurately measure in-tank acoustic fields (Leighton et al.
113 2019). Indeed, some important field scenarios (e.g. when acoustic deterrents are placed
114 within freshwater infrastructure to deter fish from water extraction points) resemble tank
115 conditions more than they do ‘natural’ conditions (Leighton et al. 2019). We employed the
116 classical manipulative experiment, which allowed quantification using videography of fine-
117 scale behaviours exhibited by the fish in response to the manipulation of the factor of interest,
118 in this case exposure to a well-defined acoustic field (rather than the commonly used
119 playback recordings of anthropogenic activities, such as shipping noise, obtained in the field),
120 while confounding variables are controlled. This allowed quantification of fish response to
121 predefined acoustic fields to be achieved.

122 The model species was selected due to their propensity to shoal, ease of capture and
123 maintenance in captivity, so enabling their history (e.g. health) to be ascertained and

124 monitored prior to testing, and their conservation status (least concern). We exposed the fish
125 to a broadband random noise field (60 – 2000 Hz) which was selected to cover the hearing
126 range expected for the Eurasian minnow based on current understanding for other similar
127 species (e.g. fathead minnow, *Pimephales promelas*, Scholik & Yan 2001). This frequency
128 range is also representative of anthropogenic derived sound (such as boat traffic) in shallow
129 waters (Kozaczka & Grazyna 2011) that freshwater fish would be likely to experience.

130

131 **(b) Experimental set-up**

132 An experiment to investigate the behavioural response of individuals and groups of minnow
133 to sound was conducted in a transparent acrylic tank with 1 cm thick walls (30 cm wide, 30
134 cm deep, 300 cm long) holding standing water at the International Centre for Ecohydraulics
135 Research (ICER), University of Southampton, UK. An experimental arena (85 cm long) in
136 which the subject fish were introduced during trials was created in the centre of the tank by
137 installing two white partitions at either end. A speaker (Electro-Voice UW-30) was placed in
138 mid-water 10 cm behind each partition. White sheeting was placed around the tank to
139 increase contrast of the video recordings obtained from an overhead camera (Logitech c920
140 Webcam) mounted 1.5 m above the floor. Illumination was provided from lighting units
141 placed below the tank. An even distribution of lighting was achieved by using photographic
142 diffusers and by projecting light onto the white tank walls. The camera was connected to a
143 laptop running QuickTime to capture the video data at 30 Hz frame rate. Water temperature
144 was measured throughout the experimental period at 16.2 ± 1.1 °C (mean \pm SD).

145 A data acquisition (DAQ) system (National Instruments USB-6341), controlled via a
146 laptop computer, was used to generate the stimulus and measure the acoustic field. The
147 stimulus was created by constructing a signal in MATLAB by filtering pseudo-random
148 Gaussian noise using a 6th order band-pass Butterworth filter, with the pass band limits being

149 60 Hz and 2 kHz. This signal was played, via the DAQ, to a Skytronic 103.100 Mini AV
150 digital amplifier connected to the underwater speaker. The signal was pulsed on for 2 seconds
151 and off for 1 second, from both speakers simultaneously, and repeated for 10 min. The
152 loudspeakers were switched on during the control period, without playing the stimulus, to
153 control for electric field effects. The experimental area was subsequently mapped using a
154 hydrophone (Brüel and Kjaer 8103) connected to a charge amplifier (Brüel and Kjaer 2635)
155 and acquired on to the computer via the DAQ. The sound pressure level was measured over a
156 5 x 5 cm grid pattern at three depths (2 cm, 13 cm and 24 cm above tank floor) and 7
157 frequencies (80, 100, 200, 400, 800 & 1000 Hz and the broadband stimulus) to quantify the
158 acoustic field within the tank (e.g. Figure 1). The particle acceleration of the sound field was
159 computed using the same dataset and exploiting a gradient based approximation (Figure 2).
160 Equation 1 was used to calculate the particle acceleration (a), where ρ represents the ambient
161 density and P the complex pressure amplitude (Kinsler & Frey 1982).

$$162 a = -\frac{1}{\rho} \nabla P \quad (1)$$

163 Using the same acoustic equipment as used for the mapping, the Power Spectral Density
164 (PSD) of the stimulus was measured at the central location in the experimental arena. For
165 this measurement a stimulus of 60 s duration was employed (Figure 3).

166

167 **(c) Fish collection and maintenance**

168 Eurasian minnow ($n = 120$, mean \pm SD total length and mass = 56.90 ± 4.55 mm, 1.66 ± 0.47
169 g) were collected from the River Itchen (St. Catherine's Hill, Winchester, UK, 51.049783 -
170 1.311416) using a 10 m seine net on the 13 May 2016. The site of capture (mean \pm SD width
171 = 18.07 ± 2.03 m; depth = 0.46 ± 0.24 m) is typical of southern English rivers and those
172 commonly found across Europe. The bed is formed of chalk with loose clay and silt with
173 occasional flint pebbles. There is minimal submerged vegetation but a large quantity of

174 riparian vegetation during the spring and summer months. The banks are engineered with the
175 most common materials being solid concrete reinforced with metal sheeting, concrete
176 sandbags supporting wooden planking and compressed chalk. This is typical of a riverine
177 freshwater environment in the UK in that it is not a “pristine freshwater ecosystem” but it is
178 extensively anthropogenically modified and influenced (Maltby et al. 2011).

179 After capture, the fish were transported in a 100 L aerated container to the holding
180 facility at ICER where they were maintained in a tank (150 cm wide, 150 cm long, 100 cm
181 deep) with a water depth of 70 cm prior to conducting the trials. The holding tank water was
182 filtered and aerated and quality tested daily. Regular water changes (approximately 25%)
183 ensured high quality was maintained (nitrite $< 1 \text{ mg L}^{-1}$ and nitrate $< 50 \text{ mg L}^{-1}$). The mean \pm
184 SD water temperature in the holding tank remained stable throughout the study at 17.0 ± 1.6
185 °C. Fish were held for a mean of 180.4 hours (range = 189.8 hours) and fed a diet of dried
186 animal protein based pellet food until satiation at the end of each working day.

187

188 **(d) Experimental trials**

189 Forty 50 min trials were conducted between 29 and 31 May 2016, and treatments alternated
190 between using a solitary individual and a group of five fish. Fish were placed in the
191 experimental area at the start of a 30 min acclimation period. A further 10 min pre-treatment
192 (control) period followed during which the acoustic stimulus was absent, before the fish were
193 exposed to the sound (treatment) for 10 min. At the end of each trial the fish were weighed
194 and measured. No fish was used more than once.

195

196 **(e) Fish Behaviour**

197 Analysis of video recordings allowed both qualitative and quantitative measures of behaviour
198 to be determined. Behaviours observed during the acoustic treatment were compared with

199 those recorded 10 min prior (pre-treatment control). The influence of sound on behaviour was
200 quantified using the: (i) speed fish moved at, (ii) persistence of the swimming paths, (iii)
201 cohesion of the shoal, and (iv) orientation of members of the group. Qualitative descriptions
202 of initial behaviour in response to the first presentation of the stimulus were recorded, either
203 as: (1) startle, in which the test fish exhibited a sudden rapid burst and brief acceleration of
204 velocity (Andraso 1997); (2) station holding, in which a fish stopped moving and
205 momentarily maintained position in the same location; and (3) no discernible response—
206 where no change in behaviour was apparent. For shoals, the response of the largest group was
207 noted, however in practice there was no variation from this majority.

208 Swimming speed, persistence of swim paths, group cohesion, and orientation of fish
209 within the group relative to other members were quantified. Using data obtained from the
210 video recordings, 2D co-ordinates of fish position relative to the walls of the tank were
211 obtained using an automated image processing routine implemented in MATLAB 2016a
212 which provided location and orientation of the fish in each video frame. The position of the i^{th}
213 fish in the n^{th} video frame was represented as the vector $\underline{X}_i(n)$ which is defined as:

$$214 \underline{X}_i(n) = (x_i(n), y_i(n))^t \quad (2)$$

215 $x_i(n)$ representing distance along the length of the tank of the i^{th} fish in frame n and $y_i(n)$
216 corresponding distance across the width of the tank. During video processing, the position of
217 an individual fish was defined as the centre of mass of those pixels associated with it.

218 When analysing the movement of the groups of fish, location was based on the
219 shoal's centroid, $\underline{X}_c(n)$. The shoal's centroid position was calculated using:

$$220 \underline{X}_c(n) = (x_c(n), y_c(n))^t = (\underline{X}_1(n) + \underline{X}_2(n) + \underline{X}_3(n) + \underline{X}_4(n) + \underline{X}_5(n))/5 \quad (3)$$

221
222 (i) *Swimming speed* was calculated for both shoals and individuals, $v_c(n)$, based on the motion
223 of the centroid of the group or individual. It was evaluated by first computing the change in

224 position between two frames. For shoals this was $d\underline{X}(n)=\underline{X}_c(n)-\underline{X}_c(n-1)$, whereas for
 225 individuals it was $d\underline{X}(n)=\underline{X}(n)-\underline{X}(n-1)$. The speed was the length of this vector divided by the
 226 time interval between two frames (in this case $\delta=0.033$, corresponding to 30 frames per sec):
 227 $v_c(n)=d\underline{X}_c(n)/\delta$ (4)

228

229 (ii) *Persistence* of the swim path provided a measure of its predictability, low persistence
 230 corresponding to more erratic movements. Persistence described the difference between
 231 expected, based on the trajectory of prior positions, and observed location recorded for
 232 individuals or groups at each time step. Specifically, using the locations of the fish/group in
 233 two preceding frames, $n-2$ and $n-1$, then assuming the fish was swimming at constant speed
 234 along a straight line, the location in the n^{th} frame was predicted. The prediction denoted as
 235 $\underline{P}_c(n)$ was defined as:

236 $\underline{P}_c(n)=\underline{X}_c(n-1)+\underline{X}_c(n-1)-\underline{X}_c(n-2)=2\underline{X}_c(n-1)-\underline{X}_c(n-2)$ (5)

237 Persistence was based on the distance between the predicted (4) and observed location, so
 238 that:

239 $\underline{E}(n)=\underline{X}_c(n)-\underline{P}_c(n)$ (6)

240 The persistence is quantified by the norm (length) of the vector $\underline{E}(n)$.

241

242 (iii) *Cohesion* of the group was quantified by measuring the standard deviations of the
 243 locations on the x and y axis and combining them. This was defined as:

244
$$\sqrt{\frac{1}{5} \sum_{i=1}^5 (x_i(n)-x_c(n))^2} + \sqrt{\frac{1}{5} \sum_{i=1}^5 (y_i(n)-y_c(n))^2}$$
 (7)
 245

246 (iv) *Orientation* of each individual fish, ($\theta_i(n)$) was represented by an angle in the range -90°
 247 to 90° and represented the direction in which the body of the fish was aligned. This

248 orientation does not account for the heading of the fish due to an inability of the analysis
249 software to determine heading. For example the software does not recognise the difference
250 between a fish swimming horizontally to the right or left. Mean orientation for the group was
251 defined as:

252 $\theta_c(n) = (\theta_1(n) + \theta_2(n) + \theta_3(n) + \theta_4(n) + \theta_5(n))/5$ (8)

253 How dissimilarly oriented individual fish were in relation to each other was defined as the
254 standard deviation of the orientations:

255 $\theta(n)_{sd} = \sqrt{\frac{1}{5} \sum (\theta_i(n) - \theta_c(n))^2}$ (9)

256 The standard deviation of the orientation is a measure of how aligned the fish are relative to
257 each other (a low value of $\theta(n)_{sd}$ corresponding to a high degree of alignment). Note that
258 the absence of flow and use of optical screens worked to reduce anisotropic external stimulus.

259 The four metrics were calculated for every frame in the image. The data was averaged
260 for over one second (30 frames). To reduce noise and mitigate against tracking artefacts a
261 median value was calculated for every 20 s (block) for each trial. For each time block, the
262 distributions of the values arising from the 20 trials (10 control and 10 treatment) were
263 compared using a Wilcoxon Rank Sum Test (WRST). This allowed quantification of the
264 significance of an effect as a function of time, providing some information about the temporal
265 evolution of the effects. We sought an overall probability of a type I error which is 5%. Since
266 multiple tests were applied to the data a Bonferroni correction was applied, reducing the
267 threshold for significance for each individual test. Such a correction assumes that tests are
268 statistically independent, in this instance the metrics tested were likely to be dependant,
269 consequently the application of Bonferroni was expected to result in an overall likelihood of a
270 type I error which is lower than 5%. Therefore, the corrected significance threshold for
271 individual behaviours (speed and persistence) to a significance threshold of 0.025 and the
272 group behaviours tested (speed, persistence, cohesion and orientation) were corrected to a

273 significance threshold of 0.0125. Effect size was also considered by computing Cohen's d
274 where 0.8 is a large effect size and 0.5 is a medium effect size. We were not able to measure
275 small effect sizes with our sample size of $n = 20$. The tests compared data from control and
276 treatment blocks which were separated by 10 mins, where the control block represented a 20
277 s period 10 mins prior to the corresponding 20 s treatment block. This process resulted in a
278 sequence of 30 Z-values covering each of the 20 s blocks in the 10 min treatment period.
279 This time-series of Z-values allowed the temporal persistence of changes in behaviour to be
280 quantified (Figure 4).

281

282 **3. Results**

283 All groups exhibited a startle response on activation of the acoustic stimulus (Table 1),
284 whereas only 45% of individuals did so. Thirty percent of individuals held station when the
285 treatment was initiated, whereas the remainder (25%) displayed no obvious reaction.

286

287 **(a) Swimming speed**

288 Individual fish initially swam more rapidly during the treatment period than under the
289 control. For 20 s immediately after the stimulus was turned on the there was a large effect (Z
290 $= 5.11, p < 10^{-7}, d = 1.14$) (Figure 4A) which remained for the first 40 s. After the initial
291 period of rapid swimming had subsided, the swimming speed slowed. So that after 5 mins
292 there was a medium sized effect observed resulting in the swimming speed significantly
293 lower than during the pre-treatment control period for all bar a single data point. For groups,
294 there was only one time block (2 min after treatment onset) when swimming speed reduced
295 significantly below observed levels in the control period ($Z = -2.54, p < 0.01, d = 0.56$).

296

297 **(b) Persistence**

298 For individuals the swim paths were less persistent, i.e. more erratic, during the treatment
299 compared to the control. Immediately after the onset of the stimulus the differences between
300 control and treatment there was a medium effect ($Z = 3.27, p < 0.0011, d=0.73$) that remained
301 for a further 20 s (Figure 4B). From 3 min onwards a medium sized effect was once again
302 apparent, but this time because the paths were more persistent (less erratic) than during the
303 pre-treatment control, and remained so for the majority of the remainder of the trial. For
304 groups, there was generally no difference in persistence between treatment and control, with
305 only one instance where the group was less persistent during the first 20 s measurement ($Z =$
306 $2.20, p = 0.03, d = 0.49$), but reverted to a non-significant level after this period. Note that
307 this value did not drop below the significance threshold of $p = 0.0125$.

308

309 **(c) Cohesion**

310 For groups, initially there was a large effect on cohesion with more closely gathered together
311 immediately following activation of the acoustic stimulus an effect which persisted for 2 min
312 40 sec, ($Z = 3.57, p < 10^{-4}, d=0.82$) (Figure 4C).

313

314 **(d) Orientation**

315 There was a large effect on the orientation of groups, with fish being more commonly
316 oriented for 3 min 20 s after the acoustic stimulus was turned on, and the difference between
317 treatment and control was greatest during the first 20 s ($Z = 3.61, p < 0.0003, d=0.802$)
318 (Figure 4D).

319

320 **4. Discussion**

321 Previous research to investigate the response of fish to anthropogenic sound have typically
322 been biased towards solitary individuals and marine species, and as a consequence the

323 influence of collective behaviour in species that frequently form aggregations, and the
324 potential impacts in freshwater environments, has largely been ignored. Our study addressed
325 this by comparing the response of solitary individuals and groups of a common shoaling
326 freshwater species, the Eurasian minnow, to an accurately measured and well-defined
327 appropriate acoustic field, rather than using play back of human generated sounds collected in
328 unrepresentative environments. The results support the hypothesis that the response to sound
329 is akin to that exhibited in the presence of a predatory threat (Frid & Dill 2002), and that this
330 differs between groups and individuals. As predicted, solitary fish tended to swim more
331 rapidly and follow less predictable trajectories immediately after exposure to an acoustic
332 signal, during which a startle response was exhibited by 45% of individuals. For groups, the
333 startle response at the onset of the treatment was universal and fish became more closely
334 grouped and aligned, although this response declined with time. This study offers interesting
335 insight into similarities and differences between responses to acoustic disturbance and
336 predatory threat for individuals and groups of freshwater fish.

337 In this study, a startle response was common for solitary fish on exposure to the sound
338 stimulus, followed by an increase in swimming speed immediately thereafter, and then a
339 decrease over time to levels lower than the pre-treatment control. At the same time, solitary
340 minnows initially moved along less predictable paths, as evidenced by a lower persistence,
341 but then settled to exhibit more predictable movement than during the pre-treatment control.
342 In contrast, although all groups startled, presumably because of a higher probability that one
343 or more members would elicit a response that would propagate through the shoal, the
344 response was not as dramatic as for individuals, with no change in swimming speed or
345 persistence. Herbert-Read et al. (2017) observed a decrease in swimming speed of juveniles
346 of a marine species, the sea bass, during acoustic treatments, which is contrary to previous
347 observations of faster swimming reported by others (e.g. Fewtrell and McCauley 2012, for

348 several marine species). Although a lack of a change in speed appears to contradict the
349 concept of fleeing, slow speeds may bestow benefits related to the identification and greater
350 monitoring of risk, such as a chasing predator (Domenici 2010). In the case of the current
351 study, although a lack of an effect was unforeseen, a lesser influence of an acoustic signal on
352 group swimming speed and persistence compared to individuals was predicted, indicative of
353 greater security associated with being a member of a group due to antipredator benefits.
354 Alternatively, a lack of a change in these behaviours after the initial startle may have
355 indicated the maximisation of information transfer and accuracy, rather than speed of
356 response, a logical strategy in the absence of visual evidence of an imminent directional
357 threat.

358 After startling, all shoals grouped closer together under the acoustic treatment in line
359 with our hypothesis. This differs from the observations of Herbert-Read et al. (2017) who
360 found that the shoals of juvenile sea bass became less cohesive during the acoustic treatment.
361 However, our results are similar to those previously described by others in which greater
362 group cohesion is linked to an acoustic signal (e.g. Fewtrell & McCauley 2012 for several
363 species of caged marine fish; Neo et al. 2015 for zebrafish [*Danio rerio*] in a small tank; Neo
364 et al. 2014 for European sea bass enclosed in an outdoor basin). However, in our study the
365 increased shoal cohesion observed on first exposure to the stimulus was relatively short-lived,
366 with a return to the pre-treatment levels after only approximately three minutes. Although
367 fish appeared to exhibit an antipredator-like response on initial exposure to the stimulus, this
368 waned relatively quickly, presumably due a lack of reinforcing stimuli that may operate
369 through alternative modalities (e.g. mechanosensory or visual systems).

370 In the current study the aligned polarity of the shoals initially increased on exposure
371 to sound as predicted, but like group cohesion the effect was relatively short-lived, potentially
372 reflecting the lack of reinforcement associated with alternative signals (such as a visual

373 threat). Maintaining a common direction of orientation is likely to enhance the co-ordination
374 of escape, as indicated in others studies of fish response to sound (e.g. Domenici & Batty
375 1997 for schools of herring (*Clupea harengus*)). Interestingly, a recent modelling study to
376 simulate schooling predicted that a slower but more accurate response would be exhibited by
377 groups that become more commonly oriented after detecting a threat, than for those that are
378 already strongly aligned (Chicoli and Paley 2016).

379 The impact of anthropogenic noise on the marine environment has been a subject of
380 conservation concern for a number of years as evidenced by its consideration in international
381 legislation, such as the EU Marine Strategy Framework Directive (2008/56/EC). Despite
382 recent attention directed to the use of passive acoustics (Desjonquères et al. 2020a and
383 Rountree & Juanes 2020), ecoacoustics (Linke et al. 2020 and Linke & Deretic 2020) and
384 freshwater acoustic monitoring (Desjonquères et al. 2020b and Gottesman et al. 2020), the
385 particular issue of the *impact* of anthropogenic noise in freshwater environments remains
386 much less often considered than in the marine environment (Higgs and Humphrey 2020 and
387 Hanache et al. 2020). This is of particular importance when considering the potential
388 magnitude of influence likely being higher due to the extent of human activities (e.g.
389 urbanisation, industry, transportation, agriculture) and engineering that occur along the
390 world's rivers and lakes (Leighton et al. 2019). Whilst the causes and impacts of disturbance
391 over larger temporal periods are being increasingly understood, for example flooding
392 disturbance and trophic structure (Jellyman & McIntosh 2020), this study provides
393 experimental evidence of the impact of acoustic disturbance on the short-term behaviours of
394 shoals and individuals of a model species. Furthermore, it indicates that the response within a
395 species is context dependent, and varies depending on whether fish are members of a group
396 or solitary. This is especially important when considering the changes in behaviour displayed
397 over the time scales described in this study, and the ubiquitous presence of anthropogenic

398 sound in many of the worlds developed rivers. The influence of anthropogenic sound on
399 ecology should continue to be considered in addition to more commonly understood impacts,
400 such as the fragmentation and degradation of physical habitat, disruption to hydrological
401 regimes (Jellyman & McIntosh 2020), and reductions in water quality, associated with human
402 activity.

403

404 **Acknowledgements.** We thank the Engineering and Physical Sciences Research Council
405 (EPSRC) Doctoral Training Partnership (DTP), (grant reference number: DTP12
406 EP/K503150/1) for the funding required to complete this work. We also thank the
407 Environment Agency and Winchester College for the permission and advice required to
408 capture the fish required for this study.

409 **Ethics.** Ethical approval for this study was provided by the University of Southampton
410 Animal Welfare and Ethical Review Board (ERGO ethics submission no. 19783). Permission
411 to remove Eurasian minnow from the River Itchen was provided by the Environment Agency
412 (permit reference EP/EW083-L-263/5065/02).

413 **Data availability.** The datasets generated and analysed during the current study are openly
414 available from the University of Southampton repository at
415 <http://dx.doi.org/10.5258/SOTON/> [. Note to editors: The policy of the University of
416 Southampton is that they grant a link for insertion once the paper is accepted to avoid their
417 repository referring to papers that were not published].

418 **Conflict of Interest Statement.** We have no competing interests.

419

420 **References**

421

- 422 Andraso GM. A comparison of startle response in two morphs of the brook stickleback
423 (*Culaea inconstans*): further evidence for a trade-off between defensive morphology and
424 swimming ability. *Evolutionary Ecology*. 1997 Jan 1;11(1):83-90.
- 425
- 426 Ballerini M, Cabibbo N, Candelier R, Cavagna A, Cisbani E, Giardina I, Lecomte V, Orlandi
427 A, Parisi G, Procaccini A, Viale M. Interaction ruling animal collective behaviour depends on
428 topological rather than metric distance: Evidence from a field study. *Proceedings of the
429 national academy of sciences*. 2008 Jan 29;105(4):1232-7.
- 430
- 431 Barber JR, Crooks KR, Fristrup KM. The costs of chronic noise exposure for terrestrial
432 organisms. *Trends in ecology & evolution*. 2010 Mar 31;25(3):180-9.
- 433
- 434 Chicoli A, Paley DA. Probabilistic information transmission in a network of coupled
435 oscillators reveals speed-accuracy trade-off in responding to threats. *Chaos: An
436 Interdisciplinary Journal of Nonlinear Science*. 2016 Nov;26(11):116311.
- 437
- 438 Couzin ID, Krause J, Franks NR, Levin SA. Effective leadership and decision-making in
439 animal groups on the move. *Nature*. 2005 Feb 3;433(7025):513-6.
- 440
- 441 Couzin ID, Krause J, James R, Ruxton GD, Franks NR. Collective memory and spatial
442 sorting in animal groups. *Journal of theoretical biology*. 2002 Sep 7;218(1):1-1.
- 443
- 444 Currie, Helen AL, Paul R. White, Timothy G. Leighton, and Paul S. Kemp. "Group behavior
445 and tolerance of Eurasian minnow (*Phoxinus phoxinus*) in response to tones of differing

446 pulse repetition rate." *The Journal of the Acoustical Society of America* 147, no. 3 (2020):
447 1709-1718.

448

449 Deleau, Mathias JC, Paul R. White, Graeme Peirson, Timothy G. Leighton, and Paul S.
450 Kemp. "Use of acoustics to enhance the efficiency of physical screens designed to protect
451 downstream moving European eel (*Anguilla anguilla*)."*Fisheries Management and Ecology*
452 27, no. 1 (2020a): 1-9.

453

454 Deleau, Mathias JC, Paul R. White, Graeme Peirson, Timothy G. Leighton, and Paul S.
455 Kemp. "The response of anguilliform fish to underwater sound under an experimental
456 setting."*River Research and Applications* 36, no. 3 (2020b): 441-451.

457

458 Desjonquères, Camille, Toby Gifford, and Simon Linke. "Passive acoustic monitoring as a
459 potential tool to survey animal and ecosystem processes in freshwater environments."
460 *Freshwater Biology* 65, no. 1 (2020a): 7-19.

461

462 Desjonquères, Camille, Fanny Rybak, Juan Sebastian Ulloa, Alexandre Kempf, Avner Bar
463 Hen, and Jérôme Sueur. "Monitoring the acoustic activity of an aquatic insect population in
464 relation to temperature, vegetation and noise."*Freshwater Biology* 65, no. 1 (2020b): 107-
465 116.

466

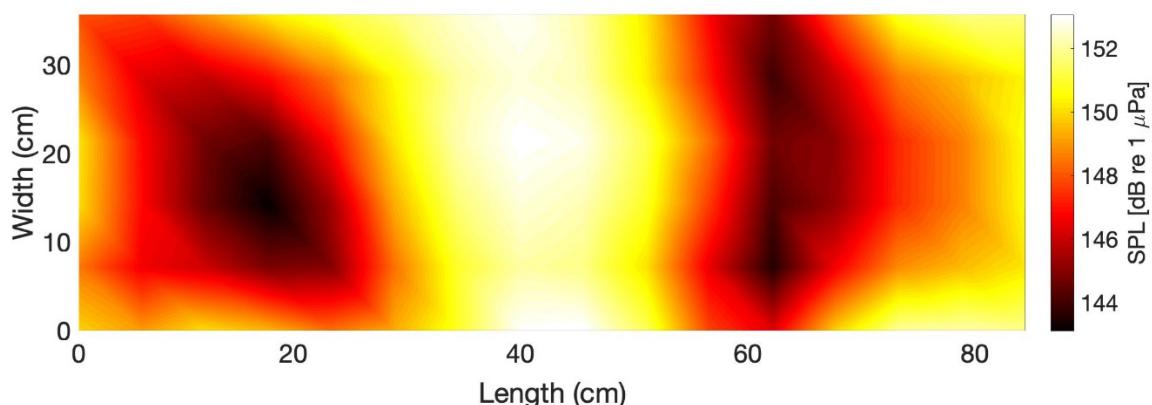
467 Domenici P, Batty RS. Escape behaviour of solitary herring (*Clupea harengus*) and
468 comparisons with schooling individuals. *Marine Biology*. 1997 Apr 1;128(1):29-38.

469

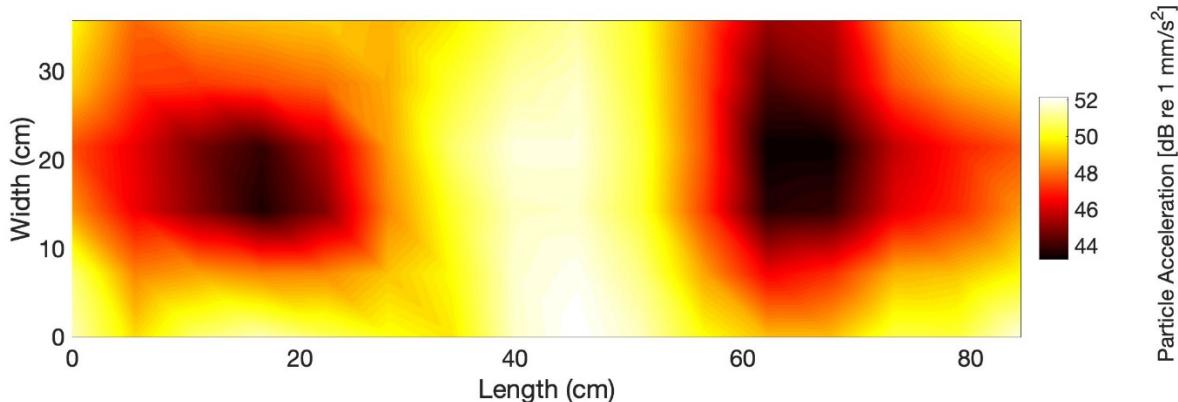
- 470 Domenici P. Context-dependent variability in the components of fish escape response:
471 integrating locomotor performance and behaviour. *Journal of Experimental Zoology Part A:*
472 *Ecological Genetics and Physiology*. 2010 Feb 1;313(2):59-79.
- 473
- 474 Fewtrell JL, McCauley RD. Impact of air gun noise on the behaviour of marine fish and
475 squid. *Marine pollution bulletin*. 2012 May 31;64(5):984-93.
- 476
- 477 Frid A, Dill L. Human-caused disturbance stimuli as a form of predation risk. *Conservation*
478 *Ecology*. 2002 May 1;6(1).
- 479
- 480 Gerlotto F, Fréon P. Some elements on vertical avoidance of fish schools to a vessel during
481 acoustic surveys. *Fisheries Research*. 1992 Sep 1;14(4):251-9.
- 482
- 483 Gilbert C, McCafferty D, Le Maho Y, Martrette JM, Giroud S, Blanc S, Ancel A. One for all
484 and all for one: the energetic benefits of huddling in endotherms. *Biological Reviews*. 2010
485 Aug 1;85(3):545-69.
- 486
- 487 Gottesman, Benjamin L., Dante Francomano, Zhao Zhao, Kristen Bellisario, Maryam
488 Ghadiri, Taylor Broadhead, Amandine Gasc, and Bryan C. Pijanowski. "Acoustic monitoring
489 reveals diversity and surprising dynamics in tropical freshwater soundscapes." *Freshwater*
490 *Biology* 65, no. 1 (2020): 117-132.
- 491
- 492 Hanache, Priscillia, Thierry Spataro, Cyril Firmat, Nicolas Boyer, Paulo Fonseca, and
493 Vincent Médoc. "Noise-induced reduction in the attack rate of a planktivorous freshwater fish
494 revealed by functional response analysis." *Freshwater Biology* 65, no. 1 (2020): 75-85.

- 495
- 496 Hawkins AD, Popper AN. A sound approach to assessing the impact of underwater noise on
- 497 marine fishes and invertebrates. *ICES Journal of Marine Science*. 2017 Mar 1;74(3):635-51.
- 498
- 499 Herbert-Read JE, Kremer L, Bruintjes R, Radford AN, Ioannou CC. Anthropogenic noise
- 500 pollution from pile-driving disrupts the structure and dynamics of fish shoals. *InProc. R. Soc.*
- 501 *B* 2017 Sep 27 (Vol. 284, No. 1863, p. 20171627). The Royal Society.
- 502
- 503 Higgs D, Humphrey S. A passive acoustic analysis of potential interactions between
- 504 anthropogenic noise and acoustic communication in the invasive round goby *Neogobius*
- 505 *melanostomus*. *Freshwater Biology*. 2020 Jan 1;65: 66– 74.
- 506
- 507 Holt DE, Johnston CE. Traffic noise masks acoustic signals of freshwater stream fish.
- 508 *Biological Conservation*. 2015 Jul 1;187:27-33.
- 509
- 510 Jellyman, Phillip G., and Angus R. McIntosh. "Disturbance-mediated consumer assemblages
- 511 determine fish community structure and moderate top-down influences through bottom-up
- 512 constraints." *Journal of Animal Ecology* 89, no. 5 (2020): 1175-1189.
- 513
- 514 Kinsler, L. E., A. R. Frey, A. B. Coppens, and J. V. Sanders. "Fundamentals of acoustics.
- 515 Wiley, New York." (1982). pp 104.
- 516
- 517 Kozaczka, Eugeniusz, and Grażyna Grelowska. "Shipping low frequency noise and its
- 518 propagation in shallow water." *Acta Physica Polonica A* 119, no. 6 (2011): 1009-1012.
- 519

- 520 Laland KN, Williams K. Shoaling generates social learning of foraging information in
521 guppies. *Animal Behaviour*. 1997 Jun 1;53(6):1161-9.
- 522
- 523 Leighton, Timothy G., Helen AL Currie, Amelia Holgate, Craig N. Dolder, Sian Lloyd Jones,
524 Paul R. White, and Paul S. Kemp. "Analogies in contextualizing human response to airborne
525 ultrasound and fish response to acoustic noise and deterrents." In *Proceedings of Meetings on*
526 *Acoustics 5ENAF*, vol. 37, no. 1, p. 010014. Acoustical Society of America, 2019.
- 527
- 528 Linke, Simon, and Jo-Anne Deretic. "Ecoacoustics can detect ecosystem responses to
529 environmental water allocations." *Freshwater Biology* 65, no. 1 (2020): 133-141.
- 530
- 531 Linke, Simon, Toby Gifford, and Camille Desjonquères. "Six steps towards operationalising
532 freshwater ecoacoustic monitoring." *Freshwater Biology* 65, no. 1 (2020): 1-6.
- 533
- 534 Maltby, Edward, Steve Ormerod, Mike Acreman, Michael Dunbar, Alan Jenkins, Stephen
535 Maberly, Jonathan Newman, Martin Blackwell, and Rob Ward. "Freshwaters: openwaters,
536 wetlands and floodplains [chapter 9]." (2011): 295-360.
- 537
- 538 Mickle MF, Higgs DM. Integrating Techniques: A Review of the Effects of Anthropogenic
539 Noise on Freshwater Fish. *Canadian Journal of Fisheries and Aquatic Sciences*. 2017 Nov
540 7(ja).
- 541
- 542 Neo YY, Parie L, Bakker F, Snelderwaard P, Tudorache C, Schaaf M, Slabbekoorn H.
543 Behavioral changes in response to sound exposure and no spatial avoidance of noisy
544 conditions in captive zebrafish. *Frontiers in behavioral neuroscience*. 2015;9.

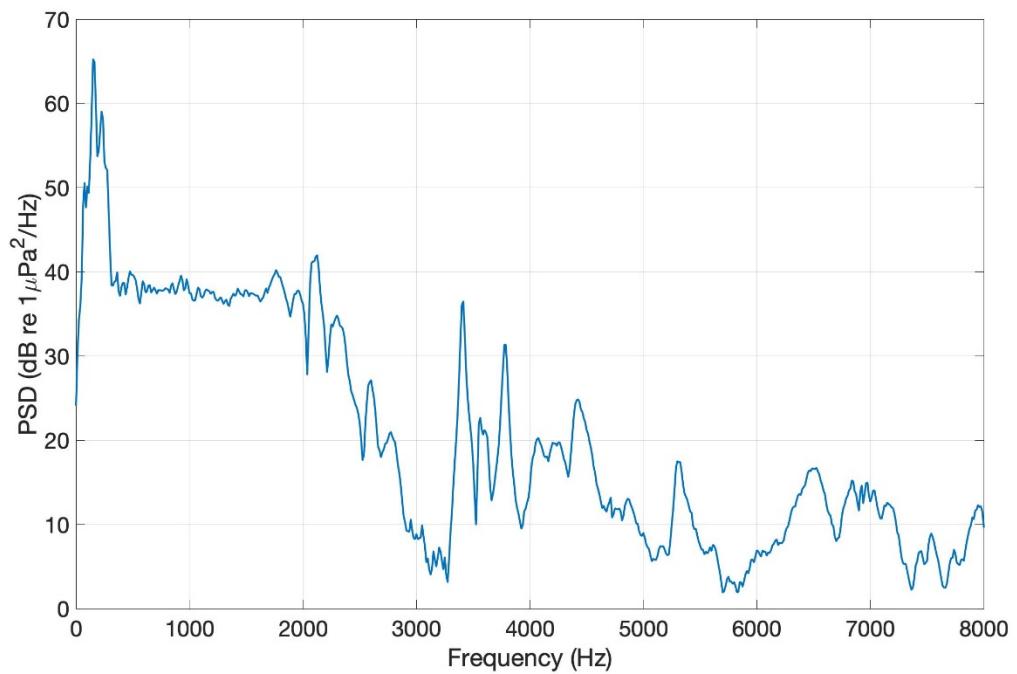

- 545
- 546 Neo YY, Seitz J, Kastelein RA, Winter HV, Ten Cate C, Slabbekoorn H. Temporal structure
547 of sound affects behavioural recovery from noise impact in European seabass. *Biological
548 Conservation*. 2014 Oct 31;178:65-73.
- 549
- 550 Piper, Adam T., Paul R. White, Rosalind M. Wright, Timothy G. Leighton, and Paul S.
551 Kemp. "Response of seaward-migrating European eel (*Anguilla anguilla*) to an infrasound
552 deterrent." *Ecological Engineering* 127 (2019): 480-486.
- 553
- 554 Popper AN, Fewtrell J, Smith ME, McCauley RD. Anthropogenic sound: effects on the
555 behaviour and physiology of fishes. *Marine Technology Society Journal*. 2003 Dec
556 1;37(4):35-40.
- 557
- 558 Rountree, Rodney A., and Francis Juanes. "Potential for use of passive acoustic monitoring of
559 piranhas in the Pacaya–Samiria National Reserve in Peru." *Freshwater Biology* 65, no. 1
560 (2020): 55-65.
- 561
- 562 Scholik AR, Yan HY. Effects of underwater noise on auditory sensitivity of a cyprinid fish.
563 *Hearing research*. 2001 Feb 28;152(1):17-24.
- 564
- 565 Shannon G, McKenna MF, Angeloni LM, Crooks KR, Fristrup KM, Brown E, Warner KA,
566 Nelson MD, White C, Briggs J, McFarland S. A synthesis of two decades of research
567 documenting the effects of noise on wildlife. *Biological Reviews*. 2016 Nov 1;91(4):982-
568 1005.
- 569

- 570 Simpson SD, Purser J, Radford AN. Anthropogenic noise compromises antipredator
571 behaviour in European eels. *Global change biology*. 2015 Feb 1;21(2):586-93.
- 572
- 573 Slabbekoorn H, Bouton N, van Opzeeland I, Coers A, ten Cate C, Popper AN. A noisy
574 spring: the impact of globally rising underwater sound levels on fish. *Trends in ecology &*
575 *evolution*. 2010 Jul 31;25(7):419-27.
- 576
- 577 Sullivan KA. The advantages of social foraging in downy woodpeckers. *Animal Behaviour*.
578 1984 Feb 29;32(1):16-22.
- 579
- 580 Uetz GW, Boyle JA, Hieber CS, Wilcox RS. Antipredator benefits of group living in colonial
581 web-building spiders: the 'early warning' effect. *Animal Behaviour*. 2002 Mar 31;63(3):445-
582 52.
- 583
- 584 Voellmy IK, Purser J, Flynn D, Kennedy P, Simpson SD, Radford AN. Acoustic noise
585 reduces foraging success in two sympatric fish species via different mechanisms. *Animal*
586 *Behaviour*. 2014 Mar 31;89:191-8.
- 587
- 588 Voellmy IK, Purser J, Simpson SD, Radford AN. Increased noise levels have different
589 impacts on the anti-predator behaviour of two sympatric fish species. *PloS One*. 2014 Jul
590 24;9(7):e102946.
- 591
- 592 Weilgart LS. The impacts of anthropogenic ocean noise on cetaceans and implications for
593 management. *Canadian journal of zoology*. 2007 Nov;85(11):1091-116.
- 594

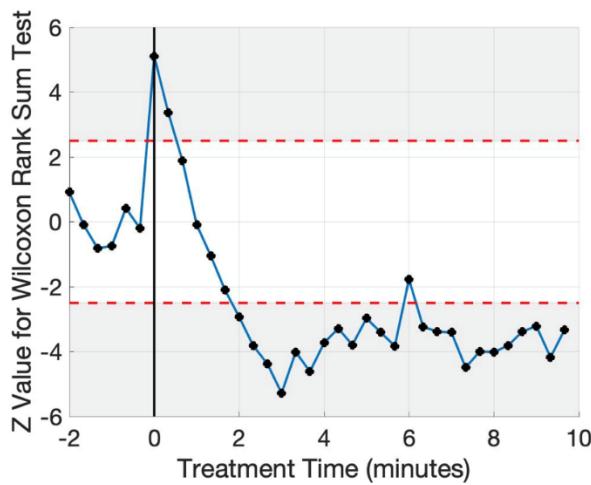

595 Table 1. Behaviours displayed by Eurasian minnow on initiation of an acoustic stimulus. One
 596 reaction type is noted per trial. The behaviours were defined as: (1) startle, in which the test
 597 fish exhibited a sudden rapid burst and brief acceleration of velocity (Andraso 1997); (2)
 598 station holding, in which a fish stopped moving and momentarily maintained position in the
 599 same location; and (3) no discernible response— where no change in behaviour was apparent.
 600 For shoals, the response of the largest group was noted. The behaviour of individual fish,
 601 maintained in the experimental tanks in isolation, was compared to groups to identify any
 602 important changes in the three reaction types.
 603

	Startle	Holding station	No discernible reaction
Group	20	0	0
Individual	9	6	5

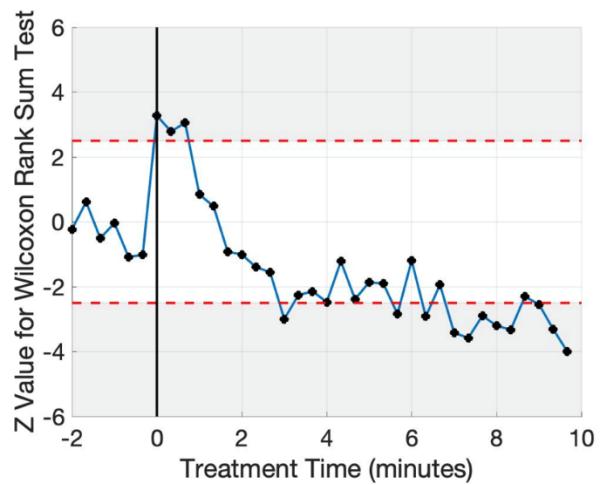
604
 605



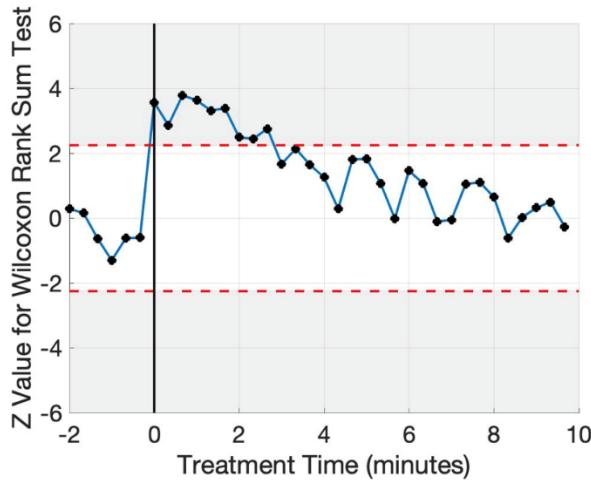
606 Figure 1. Sound Pressure Level (SPL) using a 60 – 2000 Hz broadband stimulus across an
 607 experimental water tank, measured over a 5 x 5 cm grid at a depth of 13 cm above the tank
 608 floor. The tank was used in an experiment to quantify the effects of an acoustic field on
 609 shoaling behaviour of the Eurasian minnow (*Phoxinus phoxinus*). The colour scale represents
 610 the SPL at a point, expressed in dB re 1 μ Pa, with dark shades corresponding to lower
 611 intensities than light shades.
 612

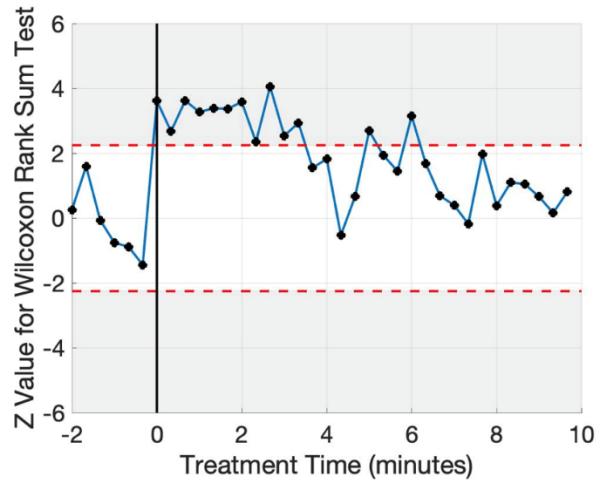

613 Figure 2. Particle acceleration as measured from a 60 – 2000 Hz broadband stimulus across
 614 an experimental water tank, measured over a 5 x 5 cm grid at a depth of 13 cm above the tank
 615 floor. The tank was used in an experiment to quantify the effects of an acoustic field on
 616 shoaling behaviour of the Eurasian minnow (*Phoxinus phoxinus*). The colour scale represents
 617 the particle acceleration at a point, expressed in dB re 1 mm/s², with dark shades
 618

619 corresponding to lower accelerations than light shades.



620
621
622 Figure 3. Power Spectral Density (PSD) frequency response as measured from the centre of
623 the tank with the stimulus playing.
624


A. - Speed


B. - Persistence

C. - Cohesion

D. - Orientation

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639

Figure 4. Z-values calculated using the Wilcoxon Rank Sum Test (WRST) of four behaviours exhibited by fish under experimental conditions. The figure above displays the swimming speed of individual fish (A), the persistence of individual fish swim paths (B), the cohesion of 20 groups of five fish (C) and the similarity of orientation of 20 groups of five fish (D). The figure displays two minutes of pre-treatment followed by 10 minutes of treatment time. The black line at 0 indicates the start of the treatment. The circles indicate the data-points with lines connecting them to show behavioural trends over time. The white area in the middle is an area where values display no significant difference from previously measured behaviour. The grey areas, marked by the dashed red line, at the top and bottom of the plots indicate where significant differences were observed. Sections A and B have this line set at 2.5 and -2.5 which reflects a significance threshold of $p = 0.0125$. Sections C and D have this line set at 2.25 and -2.25 which reflects a significance threshold of $p = 0.025$. The Y axis contains the Z values (test statistic) from the WRST where a stronger behaviour results in a more positive number, except for B where a more positive reading refers to less persistent behaviour.