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Metabolic modeling and machine learning are key components in the
emerging next generation of systems and synthetic biology tools,
targeting the genotype-phenotype-environment relationship. Rather
than being used in isolation, it is becoming clear that their value is
maximized when they are combined. However, the potential of inte-
grating these two frameworks for omic data augmentation and inte-
gration is largely unexplored.
We propose, rigorously assess, and compare machine learning-
based data integration techniques, combining gene expression pro-
files with computationally generated metabolic flux data to predict
yeast cell growth. To this end, we create strain-specific metabolic
models for 1143 Saccharomyces cerevisiae mutants and we test 27
machine learning methods, incorporating state-of-the-art feature se-
lection and multiview learning approaches. We propose a multiview
neural network using fluxomic and transcriptomic data, showing that
the former increases the predictive accuracy of the latter, and re-
veals functional patterns that are not directly deducible from gene
expression alone. We test the proposed neural network on further
86 strains generated in a different experiment, therefore verifying its
robustness to a new independent dataset. Finally, we show that in-
troducing mechanistic flux features improves the predictions also for
knockout strains whose genes were not modeled in the metabolic re-
construction.
Our results thus demonstrate that fusing experimental cues with in
silico models, based on known biochemistry, can contribute with dis-
joint information towards biologically-informed and interpretable ma-
chine learning. Overall, this study provides new tools for understand-
ing and manipulating complex phenotypes, increasing both the pre-
diction accuracy and the extent of discernible mechanistic biological
insights.

Systems biology | Metabolic modeling | Machine learning | Flux balance
analysis | Multimodal learning

The analysis of complex, high-dimensional biological data
from heterogeneous sources is currently one of the main

bottlenecks in molecular biology. Such data is generated
by a range of high-throughput devices that target specific
biomolecules or biological processes, and is collectively known
as omic data. Representative examples are the global genetic
composition of an organism - the genome - and the overall ac-
tivation level of its genes at a certain time - the transcriptome.

Popular technologies permit the monitoring of various phe-
nomena on a genetic and epigenetic level. However, in several
applications, information on genes may have limited relevance
to the task at hand, describing only a part of the processes
taking place in biological organisms. Metabolic data are closer
to the cellular phenotype but, despite recent innovations in
omic technologies, sampling metabolic activity on a large scale
is still challenging (1). Machine learning provides tools to
identify and exploit patterns within this metabolic informa-

tion, which can aid in our understanding of the underlying
biological mechanisms (2). In this context, the heterogeneity
of omic data has fostered the development and application of
multimodal learning methods (3).

Machine learning techniques generally ignore previous bio-
logical knowledge in driving the pattern analysis, limiting the
trustworthiness and interpretability of any obtained model.
To fill these gaps, constraint-based modeling (CBM) can be
used to simulate steady-state metabolism on a cellular scale.
Metabolic flux profiles generated in silico have been previously
used to inform specific machine learning models (4–9), in some
cases providing predictive advantages, as recently reviewed
(10). However, an integrative approach that fully exploits
the multimodal learning potential to integrate such models
with experimental omics, and therefore able to incorporate
mechanistic biological knowledge in the learning process, is
still lacking.

In this work, we propose a novel multimodal learning
framework that leverages both transcriptomic data and strain-
specific metabolic models to predict phenotypic traits of in-
terest. We use this framework to predict the cellular growth
for 1143 strains of Saccharomyces cerevisiae, one of the main
eukaryotic platforms in basic research as well as in biotechnol-
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ogy and, more recently, used for characterizing the processes
associated with human diseases (11).

Cellular growth and gene expression are closely related in
unicellular organisms, as they co-participate in mutual regula-
tion. On the one hand, growth is sustained by genes implicated
in ribosomal and translational functions. In parallel, the ex-
pression of genes is affected by global and unspecific regulation
originating from the physiological state of the cell (12). This
relationship has yet to be fully understood, and therefore pre-
dicting cellular growth following genetic manipulations is still
challenging. Understanding and controlling cellular growth
have important applications in disease modeling, biotechnol-
ogy, and for the development of efficient cell factories (13).
CRISPR-Cas9-enabled genetic engineering now gives the abil-
ity to modify yeast DNA with single-nucleotide precision in
vivo (14), achieving engineered strains that maximize a desired
output. However, the identification of such strains is a complex
issue (15). For instance, streamlining yeast metabolism for the
production of valuable compounds often requires the deletion
of multiple genes and efficient diversion of resources towards
production pathways (16).

In an attempt to fully elucidate relationships between cel-
lular growth and other processes, mathematical models have
been developed, particularly in bacteria and yeast (17–19).
For instance, coarse-grained models were designed to describe
the global relationship between the allocation of resources
toward protein synthesis and growth (20). Further, extensive
models of metabolic networks are commonly used to simulate
cellular metabolism under different growth conditions (21, 22).
These models offer quantitative mechanistic representations
of molecular processes, but often require detailed knowledge
about uptake rates from the environment to achieve precise
estimates.

On the other hand, accurate and flexible models connecting
gene expression and cell growth can be obtained by data-driven
statistical and machine learning methods. As gene expression
maintains a steady-state during the log phase (23), it is possible
to predict the growth rate even in cases where experimental
measurements are not feasible. This is particularly relevant
in the development of synthetic systems, where phenotypic
traits have to be tightly controlled. Previous research has
focused on building linear predictive models for yeast growth
(24), and more recently machine learning for both E. coli and
S. cerevisiae (25). While both studies used gene expression
profiles alone, metabolic activity is also tightly bound to cell
growth (26).

Our idea is that reconnecting metabolic activity to cell
growth with a data-driven and multiview approach should
support more accurate machine learning predictions, while in-
corporating biological mechanisms within the learning process.
To the best of our knowledge, this is the first time that an
approach of this kind is proposed. To investigate this idea, we
used a compendium of 1143 single-gene knockout S. cerevisiae
strains, with their genome-wide expression profiles as training
data to build models that predict cell doubling times. We
augmented the array of biological predictors by incorporating
a metabolic modeling phase, wherein we use CBM transcrip-
tomic profile integration to simulate strain-specific metabolism
using parsimonious flux balance analysis (pFBA). From these
simulations, we extracted reaction fluxes as additional features
(fluxomic data). We then applied machine learning methods us-

ing the transcriptomic and fluxomic datasets combined across
27 data-method combinations, testing different approaches
for their multiview integration. When the integration of the
two omics is performed within a neural network architecture,
we found a significant improvement compared to using tran-
scriptomic data alone. Upon finding that a newly proposed
model, a multimodal artificial neural network, achieves the
best performance, we tested it on further 86 “unseen” strains
generated in a different experiment and not used in the train-
ing phase, verifying its robustness to this new independent
dataset.

Our contributions thus focus on two aspects: (i) an investi-
gation into the viability of building predictive models using
transcriptomic and fluxomic information through a compari-
son of machine learning, feature selection, and multiview data
integration approaches; and (ii) an examination of the benefits
of using metabolic modeling in building multimodal machine
learning predictive models, evaluating to what extent this
mechanistic data is used to drive the learning process.

Results

Our goal was to develop and evaluate a multiomic mechanism-
aware pipeline for predicting S. cerevisiae growth rate. To
this end, we developed the workflow summarized in Figure
1. In brief, we used constraint-based modeling (CBM) of
metabolism to estimate the metabolic activity of each yeast
mutant in the exponential growth phase, starting from their
transcriptional activity. Then, we built and cross-compared 27
machine learning models of yeast growth from a combination
of transcript abundance and metabolic flux information. These
steps and their output are described in detail in the following.

Strain-specific metabolic modeling of yeast mutants.
Genome-scale metabolic models (GSMMs) aim to capture
and simulate the entire metabolic activity within a cell. Since
different transcription rates lead to alterations of cell behavior,
we used gene expression data to create 1229 strain-specific
models that emulate the corresponding metabolism. Through
these simulations, we extracted a measure of this metabolic
activity in the form of reaction fluxes for each strain (fluxomic
data).

In particular, we focused on a transcriptomic dataset with
1143 single deletion strains of S. cerevisiae (27), and a second
dataset comprising 86 single and double mutants (28), for
a total of 1229 strains. The former was used as the main
resource for model training, optimization and testing, while
the latter served as an experimentally-independent test set
in the predictive modeling stage. We used a recently refined
GSMM of yeast metabolism (29) in conjunction with Eq. 2
in Materials and Methods to build the corresponding 1229
strain-specific models. This was achieved through a set of 908
genes involved in metabolism, represented within the yeast
GSMM and put in relation to the biochemical reactions they
control. In the following, we will refer to the full transcriptomic
profiles as “gene expression” (GE) data, and to the reduced
transcript information from these 908 genes as “metabolic
gene expression” (MGE), as depicted in Figure 1.

To create the strain-specific metabolic models, we altered
the reaction bounds within the yeast GSMM based on expres-
sion fold change levels in the MGE dataset. To reproduce
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Fig. 1. Our multiomic integration and prediction framework, including all the datasets and machine learning methods used in this study. The input is a gene expression screen
of 1143 single-knockout yeast strains (plus 86 single- and double-knockout strains used for independent validation), coupled with their relative growth rate and a genome-scale
metabolic model (GSMM) of S. cerevisiae (A). Our methodology divides into two main stages. In the metabolic modeling stage (B), we extracted the gene expression (GE) data
for the genes involved in metabolism (MGE), and used it to tailor the flux constraints of the GSMM in a strain-specific manner. Next, we applied parsimonious flux balance
analysis (pFBA) to such strain-specific GSMMs to obtain the associated metabolic fluxes (MF). In the machine learning stage (C), we used the GE, MGE, and MF data to
construct machine learning models of yeast growth. This was achieved through: (i) single-view learning - using only GE, MGE, or MF; (ii) concatenation, feature selection, and
single-view learning - reducing the number of GE and MF predictors; and (iii) multiview learning - integrating the multiomic data with algorithms designed for multiple data
sources (also referred to as data modes or data views). In total, 27 dataset-model combinations were tested in this stage, including a custom multimodal neural network
(MMANN).

nutritional conditions, we set the uptake rates according to
the feed composition used in the original study (see Materials
and Methods). We then used pFBA to determine the reaction
fluxes for the entire network by maximizing the biomass ac-
cumulation rate subject to model constraints. In this setting,
we ensure that metabolic activity is coupled with gene ex-
pression and independent of environmental conditions, which
are homogeneous across all strains (Figure 2a). Figure 2b-c
shows the relationship between the pFBA-predicted biomass
accumulation rate and the experimentally measured relative
cell doubling time in the two sets of mutants. As expected, we
obtained a clear negative correlation between the two quan-
tities, with a Pearson’s correlation coefficient PCC = −0.66,
p < 10−15 in the first set, and PCC = −0.76, p < 10−15 in
the second set.

Metabolic modeling of the yeast mutant populations also
allowed us to identify pathways of biological interest that are
highly correlated with growth, therefore providing means to
assess the mechanistic knowledge supporting the machine learn-
ing models we developed in the next stage. Figure 2d shows
the mean absolute correlation of fluxes inside each pathway
with the relative doubling time. Among those pathways that
correlate most strongly with growth (|PCC| ≥ 0.6) we found
amino acid and aminoacyl-tRNA metabolism, as well as path-
ways involved in producing the fuel for growth such as starch,
sucrose, riboflavin and fructose metabolism, in keeping with
previous experimental results (30). Other highly-correlated
pathways act as intermediaries between processes that are
important for cell growth, such as C5-Branched dibasic acid

and galactose metabolism. Furthermore, we identified: purine
metabolism, which has been found to regulate cell growth
(31); RNA degradation, which has been shown to be strongly
correlated with yeast growth rates (32); sulfur metabolism,
which can actively promote initial cell division (33). Finally,
the fact that growth rate is also correlated with pyrimidine
supports recent research suggesting that its limitation causes
the depletion of UTP and CTP, which in turn limits RNA
biosynthesis, a limiting factor for cell growth (34).

Prediction of cellular growth based on transcriptomic and
fluxomic profiles. Starting from gene expression (GE) and
metabolic flux (MF) profiles of yeast mutants as two data
views, we used the associated relative growth rate as a target
to train our predictive machine learning models. As the nu-
tritional conditions are fixed for all the strains, we assumed
that variation on the level of gene regulation and expression is
the main contributor to metabolism and growth. In this stage,
we adopted the workflow depicted on the right-hand side of
Figure 1.

Firstly, we explored three traditional machine learning
techniques, each one with previous encouraging results in
biological predictive tasks: (i) support vector regression (SVR)
– often the learning tool of choice in computational biology due
to its non-linear decision boundary and ability to handle high
dimensional datasets (35, 36); (ii) random forest (RF) – able
to handle heterogeneous data types in high dimensions and to
account for both correlation and interaction among features,
which has led to success in predictive modeling in multiple
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Fig. 2. Results of strain-specific metabolic modeling of yeast knockouts. (a) Relationship between cell growth and the main biological processes. While most models consider
either gene expression or metabolism, here we seek to integrate both views within a unified computational framework. In our study, environmental conditions are fixed, hence
cellular growth and metabolism are mainly driven by the influence of varying gene regulation and expression conditions. (b-c) Yeast mutant experimental relative doubling time
plotted against their biomass accumulation rate, computationally estimated by strain-specific pFBA, both for the initial set (panel b) and for the experimentally-independent test
set (panel c). The negative correlation suggests that our strain-specific constraint-based modeling approach recapitulates the measured yeast growth. (d) Mean absolute
correlation between experimental relative doubling time and strain-specific GSMM reaction fluxes within each metabolic pathway. High correlations were identified for meiosis,
amino acids, and carbohydrates metabolism.

biological domains (37); and (iii) artificial neural networks
(ANNs) – extremely effective in learning and modeling complex
systems, with recent research reconstructing cell functionality
(38) and predicting phenotypes from multiomic data (39). We
applied these methods to GE, MGE, and MF data separately,
in a single-view fashion, to obtain a baseline performance for
the following steps.

In a second stage, we studied the integration of base omic
datasets. Because our combined data represents two distinct
views on the same biological systems, in order to thoroughly
investigate the use of complementary information we explored
three data strategies: (i) early integration – where GE and MF
are concatenated and treated as a single dataset denoted as
GE-MF; (ii) intermediate integration – where model building
is carried out on a combined transformation of the input views;
and (iii) late integration – where a model is separately built
within each view and then the models are fused (3).

For intermediate and late integration, we used three mul-
tiview methods based on those employed in the single-view
scenario. First, we considered Bayesian Efficient Multiple Ker-
nel Learning (BEMKL) (40), applying separate radial basis
kernels to the MF and GE datasets. Second, we used bagged
random forest (BRF) with distinct forests learned on transcrip-
tomic and fluxomic profiles. Finally, we designed and built a
multimodal artificial neural network (MMANN) in order to
independently extract latent information from the two omic
views and then fuse it together via additional neural layers
(see SI Appendix for details).

The multiomic datasets considered in our predictive frame-
work have a large number of features, which in general can con-
tribute to various extents towards the predicted growth value.
Non-contributing features add noise to the data, therefore
giving potentially weaker predictive models whilst increasing
the training effort. To overcome this ‘curse of dimensionality’,
feature selection and regularization techniques were incorpo-
rated with the aim of isolating the most predictive features.
Also in this task, we explored three state-of-the-art approaches:
(i) sparse group lasso (SGL) (41) – due to its ability to take
into account the correlated and modular nature of biologi-
cal functions; (ii) non-dominated sorting genetic algorithm

II (NSGA-II) (42) – for its ability to optimize multiple ob-
jectives; and (iii) iterative random forests (iRF) (43) – for
its ability in capturing non-linear interactions among features
(see SI Appendix). Each of these techniques offers a different
perspective on feature selection and is applied to GE-MF as
an additional step of early integration. We thereby created
three further datasets (SGL data, NSGA-II data, and iRF
data, respectively) comprising the features identified by each
of these approaches.

Comparison of 27 multiomic machine learning models of
yeast growth. The methods outlined in the previous section
globally constitute a wide and diversified collection of state-of-
the-art data-driven prediction tools, applicable to different sets
of omic data. In order to identify the most effective approach,
we performed a systematic comparison of their predictive accu-
racy, covering 27 dataset-method combinations. We evaluated
each combination by training and optimizing a model with
80% of the 1143 samples in our primary dataset, and testing it
with the remaining 20%. The hyperparameters were selected
by grid search as described in Materials and Methods. The
entire procedure was repeated 100 times to capture the ran-
dom variation in training and validation, while maintaining
the same final test set.

Table 1 and Figure 3 give a breakdown of the predictive
modeling results. Firstly, we found highly variable scores for
single-omic predictions, depending on whether they referred
to transcriptomic or fluxomic data. In fact, both GE and
MGE consistently achieved higher accuracy than MF profiles.
Analogously, the complete GE performs better than the MGE
subset, therefore highlighting the importance of metabolic or
non-metabolic genes that are not currently used by the yeast
GSMM. Secondly, our results suggest that early- and late-
integration approaches on average do not improve single-omic
accuracy, although also this trend is associated with large
variation depending on the specific data-method combination.
Conversely, a small but tangible improvement was observed
for intermediate integration approaches. Thirdly, SVR- and
ANN-based approaches generally tend to be more accurate
than tree-based approaches. It is interesting to observe that,
overall, the most accurate dataset-method combination is the
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MMANN model using both GE and MF, immediately followed
by SVR trained on GE alone, with statistically significant
MDAE differences between the two (see Figure 3d).

By examining the predictive scores achieved by single-view
and multiview ANNs, we notice a clear improvement of multi-
omic models against the stand-alone GE- and MGE-based mod-
els, in contrast to other multiview methods. It thus emerges
that ANNs constitute the most suitable framework for the
integration of transcriptomic and fluxomic data in terms of
predictive benefits, among those considered here. Our results
also suggest that, despite the relatively weak performance of
the fluxes alone, their useful information cannot be discerned
from GE and is therefore complementary to it. This is sup-
ported by examining the prediction output correlations shown
in Figure 3d, where the models produced using the fluxomic
data have a prediction set that largely differs from the other
models. MMANNs seem thus to use the metabolic modeling
to gain information that can not be acquired from the gene ex-
pression alone. Additionally, using fluxes as additional features
improves the ability to mechanistically explain the predictions
from ANNs, making them biologically-interpretable.

Furthermore, data condensation through feature selection
(SGL, NSGA-II and iRF data) increases the predictive capabil-
ity of SVR and occasionally RF, but our results indicate that
this is not the case with ANNs. Since our ANNs include at
least two hidden layers, this suggests that ANNs can identify
predictive non-linear relationships among genes and metabolic
reactions that involve a larger set of features.

Table 1. Full set of accuracy scores across all 27 dataset-algorithm
combinations, shown in Figure 3: root mean squared error (RMSE),
mean absolute error (MAE), median absolute error (MDAE), Pearson’s
correlation coefficient (PCC) and fluxomic features representation
(FFR, the percentage of metabolic flux features over the total number
of features). Values in bold represent the best scores for each data
integration scenario, while the best global performance for each mea-
sure is highlighted by an asterisk. The MMANN model consistently
outperforms all other models and, with 36% of the features being flux-
omic, demonstrates the utility of the additional metabolic modeling
stage in our pipeline.

Dataset(s) Method RMSE MAE MDAE PCC FFR

Single omics
GE SVR 0.102 ± 3e-04* 0.067 ± 0.001* 0.045 ± 0.004 .902 ± .001 0%
GE RF 0.127 ± 0.001 0.077 ± 4e-04 0.049 ± 0.001 .864 ± .002 0%
GE ANN 0.122 ± 0.007 0.079 ± 0.008 0.053 ± 0.010 .876 ± .004 0%
MGE SVR 0.115 ± 0.003 0.070 ± 4e-04 0.046 ± 2e-04 .872 ± .006 0%
MGE RF 0.130 ± 0.001 0.079 ± 4e-04 0.050 ± 0.001 .855 ± .002 0%
MGE ANN 0.139 ± 0.008 0.091 ± 0.008 0.065 ± 0.011 .838 ± .005 0%
MF SVR 0.203 ± 0.006 0.117 ± 0.003 0.065 ± 3e-04 .504 ± .033 100%
MF RF 0.185 ± 0.002 0.109 ± 0.001 0.065 ± 0.002 .611 ± .009 100%
MF ANN 0.196 ± 0.009 0.125 ± 0.016 0.083 ± 0.021 .588 ± .003 100%
Early integration
GE-MF SVR 0.132 ± 0.009 0.079 ± 0.004 0.048 ± 0.004 .828 ± .029 36%
GE-MF RF 0.126 ± 0.001 0.077 ± 0.001 0.048 ± 0.001 .866 ± .003 36%
GE-MF ANN 0.132 ± 0.007 0.085 ± 0.009 0.057 ± 0.011 .847 ± .006 36%
SGL data SVR 0.117 ± 0.001 0.082 ± 3e-04 0.058 ± 0.001 .867 ± .002 34%
SGL data RF 0.130 ± 0.001 0.082 ± 5e-04 0.053 ± 0.001 .844 ± .003 34%
SGL data ANN 0.163 ± 0.011 0.105 ± 0.013 0.072 ± 0.019 .805 ± .005 34%
NSGA-II data SVR 0.178 ± 0.014 0.103 ± 0.005 0.063 ± 0.002 .653 ± .069 24%
NSGA-II data RF 0.179 ± 0.020 0.110 ± 0.010 0.067 ± 0.004 .653 ± .077 24%
NSGA-II data ANN 0.154 ± 0.011 0.100 ± 0.014 0.067 ± 0.017 .804 ± .013 24%
iRF data SVR 0.108 ± 0.002 0.072 ± 0.001 0.050 ± 0.001 .891 ± .002 0%
iRF data RF 0.120 ± 0.001 0.074 ± 3e-04 0.049 ± 0.001 .870 ± .002 0%
iRF data ANN 0.136 ± 0.008 0.090 ± 0.010 0.065 ± 0.014 .854 ± .003 0%
Intermediate and late integration
GE and MF BEMKL 0.182 ± 1e-04 0.110 ± 2e-04 0.066 ± 1e-04 .626 ± .001 36%
GE and MF BRF 0.145 ± 0.001 0.086 ± 3e-04 0.053 ± 0.001 .810 ± .003 36%
GE and MF MMANN 0.102 ± 0.001* 0.067 ± 0.001* 0.043 ± 0.002* .906 ± .002* 36%
MGE and MF BEMKL 0.182 ± 7e-05 0.110 ± 1e-04 0.067 ± 2e-04 .625 ± 3e-04 79%
MGE and MF BRF 0.147 ± 0.001 0.087 ± 4e-04 0.054 ± 0.001 .803 ± .003 79%
MGE and MF MMANN 0.112 ± 0.001 0.073 ± 0.001 0.047 ± 0.002 .882 ± .003 79%

Generalization to an experimentally-independent dataset. For
a machine learning model to be considered generalizable and
of high utility, performance stability is paramount. Especially
in those settings where new data is collected in environments
that differ from those of the training data, it is imperative that
the prediction accuracy does not degrade under this new and
“unseen” setting. However, this can be challenging to achieve
when all the training, validation and test data originates from
a single experiment (44). To verify the ability of our MMANN
model to generalize to experimentally-independent data, we
applied it to a different set of yeast mutants cultivated in the
same nutritional conditions. Importantly, the new mutants
not only comprise single knockout strains, but also double
knockouts, exposing our model to epistatic effects on which
it was not trained (28). This analysis therefore allowed us to
investigate the additional question of whether our multiomic
MMANN model, trained only on single mutants, could also
generate reasonable predictions for double mutants (further
details can be found in Materials and Methods).

Figure 3c shows the results on the experimentally-
independent test set. In the single knockout case, MAE and
MDAE increase, but RMSE and PCC improve compared to
the first test case. This might be caused by potential batch
effects across experiments that represent a source of systematic
error, often particularly visible on the level of MDAE (45).
However, the key patterns are captured as RMSE and PCC
are consistent with previous tests. Double knockouts were not
present in the training dataset and therefore, expectedly, the
model performs less well in this scenario. We note also that,
even in this out-of-distribution double-gene knockout setting,
the correlation with target growth rates is particularly strong.
This suggests that, if a relative rather than absolute strain
identification is required, then training on single knockouts
and testing on double knockouts using the MMANN approach
would give a setting from which strains could be compared
with confidence. Taken together, assuming an appropriate
training environment and batch effect corrections, these results
support the use of MMANN as a strong predictive method
for this task, and demonstrate robust generalization across
experiments.

Functional classification of relevant multiomic predictors. As
described above, the application of feature selection methods
allowed us to reduce the number of biological variables to
facilitate model learning. At the same time, it provided us
with concise sets of predictors that hold a strong association
with the cellular growth from a data-driven point of view. We
found that SGL yields 71 GE and 36 MF features as most
relevant, while iRF identifies 68 unique GE features. Thirdly,
with the NSGA-II feature selection, nine variable sets are
selected as members of the Pareto front of possible optimal
solutions (see SI Appendix), which include 218 GE and 51
MF unique features. Figure 4a shows the metabolic pathways
associated with the GSMM reactions selected by each of these
algorithms, while Figure 4b illustrates the main functional
categories for the selected genes, obtained by querying the
PANTHER classification system (46).

Among all biological processes, metabolic processes are the
most prominent class for all three feature selection algorithms.
By examining the organic metabolic processes, we found that
a large proportion of reactions and pathways correspond to the
biosynthesis and metabolism of macromolecules and organic
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Fig. 3. Machine learning yeast growth prediction results. (a) Comparison of model predictive performance across data integration strategy and machine learning model type.
Intermediate integration is overall the most effective approach, and notably better than single-omic models. Concomitantly, ANN- and SVR-based techniques appear generally
more effective than tree-based techniques. (b) Comparison of model accuracy for all dataset-learning algorithm combinations, corresponding to numeric results shown in Table
1. The MMANN using both GE and MF profiles is overall the most accurate model, followed by GE-based SVR. (c) Error scores on the experimentally-independent test set.
Dashed red lines represent the corresponding error score on the main test set, while shading areas represent their associated standard deviation. (d) In blue, Pearson’s
correlation between error score vectors on the test set, for each pair of data-method combination. In red, p-values of Wilcoxon rank-sum tests assessing the significance of
MDAE differences, for each pair of data-method combination. One, two, and three stars represent significance at thresholds of 0.05, 0.01, and 0.001 respectively, rescaled by
Bonferroni correction.
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compounds, such as factors for transcription, translational ini-
tiation, and elongation (Figure 4c). This is consistent with the
role in protein synthesis played by the translational machinery,
which is critical for cell growth (47). No functional class was
found statistically enriched, indicating that the joint contri-
bution of multiple processes determines the actual growth
rate. As regards MF features, SGL selected reactions largely
involved in the metabolism of glycerolipids, glycerophospho-
lipids and secondary metabolites, whereas reactions selected
by NSGA-II encapsulate a more diverse variety of functions
(see Figure 4a), ranging from the biosynthesis of amino acids
and secondary metabolites to the metabolism of fatty acids,
glycerophospholipids, and nucleotides.

The gene YDR472W (also known as TRS31) was selected
by all three feature selection methods and encodes a core com-
ponent of a subunit present in TRAPP complexes, which are
responsible for Rab-mediated vesicle trafficking (48). All other
selected genes and metabolic reactions are exclusive to one or
two methods. Among the nine features selected by both iRF
and NSGA-II, there are genes encoding binding proteins and
transporters (see Supplementary Data 1). Similarly, the genes
selected by SGL and NSGA-II also coded for mitochondrial
transport and mRNA binding. The selection of genes linked to
tRNA and cellular amino acid-related metabolic processes is
consistent with the process of translational elongation during
the assembly of amino acids into proteins, which consequently
affects cellular growth and maximization of biomass. Despite
the limited overlap among the features selected by the three
methods (Figure 4d), their high-level functional classification
is statistically coherent (χ2 tests of independence, null hypoth-
esis retained, p = 0.72 for biological processes and p = 0.18
for metabolic processes). This is consistent with the nature of
cell systems, based on functional modularity and redundancy,
and characterized by widespread cross-correlated omic cues.

For metabolic genes or reactions, their contribution to cell
growth could be inferred also through CBM-only approaches,
e.g. by simulating the effect of their artificial alterations. To
compare a CBM-only approach with our multimodal machine
learning approach, we performed a sensitivity analysis through
in silico single-gene knockdown directly within the metabolic
model, examining the impact on the biomass accumulation
rate (SI Appendix). The genes and pathways that have the
greatest effect on the biomass are listed in Supplementary Data
1, among which we found some overlap with the features selec-
tion algorithms. The downregulation of genes related to tRNA
metabolic processes and the biosynthesis of amino acids such
as arginine and phenylalanine resulted in zero biomass flux,
consistently with the features identified by SGL and NSGA-II.
From the perspective of individual algorithms, overlapping
iRF-selected genes are related to pyrimidine and phospho-
lipid biosynthesis, and to the pentose phosphate pathway.
The NSGA-II genes whose deletion resulted in zero biomass
are related to the metabolism of vitamin D and sphingolipid
biosynthesis.

Analogously, we carried out a flux-coupling analysis to iden-
tify reaction fluxes on which growth rate is mutually dependent
(fully coupled) or unilaterally dependent (directionally coupled)
(49) (see SI Appendix for details). A total of 234 reactions were
classified in either one of the two categories (Supplementary
Data 1). Also in this case, we observed an overlap between
some features that were selected by SGL or NSGA-II. Out of

the 36 reactions selected by SGL, only three reactions are cou-
pled with the biomass pseudo-reaction (with one fully coupled
and two directionally coupled reactions), whereas 19 out of the
51 reactions selected by NSGA-II were found to be coupled
(with one fully coupled and 18 directionally coupled reactions).
However, it should be noted that CBM approaches are limited
to the enzymes included in the genome-scale metabolic model
and overlook the role of external biological factors. Thus, we
argue that our integrative framework can be complementary
to more traditional CBM approaches, and capture cross-omic
relationships missed by them.

Interestingly, when examining rules within the GSMM that
dictate the gene-protein-reaction associations, some of the
reactions selected uncover formerly overlooked connections.
For instance, the reactions involved in glycerophospholipid
metabolism are selected by SGL but the corresponding genes
are not. In fact, a closer inspection of these results revealed
that the functionality of the selected gene and reaction fea-
tures hardly overlap. Five reactions that constitute part of
the glycerophospholipid metabolic pathway are controlled ei-
ther exclusively or partially by the gene YPR140W, which is
essential for maintaining the phospholipid content of the mito-
chondrial membrane. Indeed, S. cerevisiae is a popular choice
of organism for studying glycerophospholipid homeostasis in
eukaryotes, owing to tolerance with respect to its membrane
lipid composition (50). These results support the case for the
inclusion of both flux and gene features in order to augment
the machine learning model with more data, while improving
our mechanistic understanding of the role that each omic plays
in the wider biological context.

Finally, given the high prediction accuracy of MMANN
models, we sought to determine their most contributing fea-
tures. To this end, we exploited recent advances in ANN
interpretation via the SHapley Additive exPlanations (SHAP)
method (51), a general approach for determining the contri-
bution (called SHAP value) of individual features to model
outputs. We applied SHAP to a randomly selected model from
the set of MMANN models, selecting features with absolute
mean SHAP values in the top percentile as highly-relevant,
and obtaining 71 belonging to the transcriptomic domain
and 10 to GSMM reaction fluxes (Supplementary Data 1).
MMANN-associated GE features yield statistically-significant
differences from those selected by the feature selection methods
in terms of functional classification (χ2 tests of independence,
null hypothesis rejected, p = 6.3 · 10−4 for biological processes
and p = 2.2 · 10−3 for metabolic processes). The information
extracted by these models thus seems notably distinct, which
may explain the higher performance of MMANNs. Among the
top-contributing genes in MMANNs, many produce proteins
binding to RNA, with several genes acting as mRNA splicing
factors involved in pre-processing via the spliceosome. Some
genes encode proteins that bind to DNA to repair mismatched
nucleotides, as well as proteins responsible for dephosphory-
lation and protein/tRNA modification. This, along with the
presence of an amino acid transporter gene, reaffirms the role
of protein synthesis in relation to growth. Among the top con-
tributing reactions, the main pathways (glycerophospholipid
and inositol metabolism) are very closely linked, since inositol
signaling is responsible for homeostasis and regulation of lipid
metabolism (52).
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Fig. 4. Contribution of the omic features to the learning process. (a) Pathway classification of the metabolic features selected by SGL, NSGA-II, and MMANN. (b-c) Functional
classification of the genes selected either by SGL, NSGA-II, iRF, or MMANN, based on GO biological processes and metabolic molecular functions, respectively. The number of
features per functional class is independent of the selection method for SGL, NSGA-II, and iRF (χ2 test of independence, null hypothesis H0 retained, p = 0.72 > 0.05
for biological processes and p = 0.18 > 0.05 for metabolic processes), but dependent for MMANN (null hypothesis H0 rejected, p = 6.3 · 10−4 < 0.05 for biological
processes and p = 2.2 · 10−3 < 0.05 for metabolic processes). (d) Overlap in the individual features selected by SGL, NSGA-II, and iRF. A single feature is shared among
iRF, NSGA-II, and SGL, represented by the expression of gene YDR472W. This suggests that individual features are used interchangeably by the feature selection methods
(e.g., highly correlated gene expression values, or reactions with similar flux in a linear pathway) while, at a higher functional level, the pathway-level selected signal is consistent
across all methods (as shown in panel b). (e) Distribution of feature importance in the MMANNs. These distributions are extracted from the MF and GE components of the
MMANN models. Although the GE SHAP values have an overall higher contribution, the MF has a small number of features determined as highly contributing, demonstrating
their predictive utility. (f) Metabolic flux through the citric acid cycle in two mutants: PET112 (left) and ATG10 (right), illustrating how condition-specific CBM can capture
metabolic perturbations generated by the knockout of two genes not present in the GSMM, whose fluxes are exploited downstream by the machine-learning approaches. The
color scale from grey (low) to red (high) indicates the amount of flux carried by each reaction in the pathway.
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Contribution of fluxomic information in multiomic machine
learning models. Although from the single-omic results it is
clear that a large contribution in the most accurate multimodal
learning model (MMANN) comes from the transcriptomic data,
we showed that a significant and complementary amount of
relevant signal is present in the metabolic view. Thus, we
further investigated the extent to which this method exploits
the information in MF rather than in GE. The variable im-
portance distribution for each data source, estimated through
SHAP, is plotted in Figure 4e. Although transcriptomic fea-
tures have a higher mean absolute SHAP value and constitute
the majority of the information used, fluxomic features also
contribute a subset with high SHAP values. This shows that
the predictive improvement obtained by the addition of MF
profiles is directly attributable to active information sourcing
from this data view.

Finally, in order to ascertain how the addition of MF af-
fected the predictive accuracy on individual knockout strains,
we compared the absolute error differences between ANNs
(using only GE) and MMANNs (using both GE and MF). The
knockout strains that recorded the highest differences between
the mean errors were regarded as providing a more accurate
prediction of growth rate due to the addition of MF to the
model. The full list of strains for this analysis can be found in
Supplementary Data 2. Among the 20 highest differences were
many gene knockouts that played a role in DNA transcription
or RNA processing, as well as enzymes involved in the sorting
and modification of proteins. Interestingly, only two of these
20 genes are present within the GSMM. This shows that MF
and machine learning can jointly contribute towards extracting
more accurate and biologically-interpretable predictions by
indirectly propagating perturbations on biological components
into a GSMM, even when such components are not explicitly
included in the GSMM. As an example, Figure 4f displays the
difference in metabolic flux in the citric acid cycle between two
different mutants, illustrating how our condition-specific CBM
approach can capture metabolic perturbations generated by
the knockout of genes not present in the GSMM (PET112
and ATG10), which in turn can be exploited by a data-driven
model used downstream. This advocates the use of metabolic
reactions as features for machine learning methods, using
ad-hoc feature selections techniques for any given application.

Discussion

This work investigates the application of multiview and mul-
tistage learning to integrating experimental and in silico-
generated omic data for the prediction of yeast cellular growth.
To the best of our knowledge, this is the first time that such
a framework is proposed and systematically evaluated across
several machine learning approaches. The wide spectrum of
models and data integration techniques considered here pro-
vides a useful starting point for future benchmarking. We
verified that combining experimental transcriptomic and arti-
ficial fluxomic data can increase the prediction strength over
individual omics, although the improvement is subject to the
predictive model choice. In our study, the largest improvement
was obtained through artificial neural networks, with multi-
modal neural networks being the strongest predictive model
overall. Additionally, we demonstrated that the advantages
in terms of prediction accuracy and biological insights can
reach beyond what is directly captured mechanistically by

the metabolic reconstruction used to generate the fluxomic
profiles.

Although transcriptomic-constrained flux balance analysis
is widely used in genome-scale metabolic modeling, there are
additional methods that can inject further constraints in flux
simulations (53–55). Similarly, additional information may lie
in the solution space of strain-specific models. For instance,
additional features could be extracted from a metabolic model,
e.g. from the results of flux variability analysis or sampling.
While in this work we focused on cross-comparing machine
learning methods, an analogous survey could be performed
on the level of constraint-based modeling techniques to gen-
erate reaction-level fluxes, as well as on the level of different
base metabolic reconstructions. Furthermore, in this work,
we adopted transcriptomic data as a benchmark, given their
widespread use across biology and biotechnology studies. In
the cases where further omic data are available, they could be
implemented to perform predictions across different biological
layers (5). Similarly, our framework could be extended to
investigating varying environmental conditions.

It is interesting to note that multimodal artificial neu-
ral networks achieve higher accuracy compared to single-
view neural networks, and to other methods overall, but also
transcriptomics-based support vector regression achieves good
performance scores. Indeed, multiomic data integration does
not always guarantee improved predictions, especially when
benchmarking over gene expression (56). While any differ-
ence in accuracy generally depends on the task, our findings
demonstrate that the knowledge embedded in genome-scale
metabolic models is complementary to gene expression and
may support its exploitation by data-driven models in a va-
riety of scenarios. Therefore, support vector regression also
appears as a promising framework for further improving the
predictions guided by transcriptomic and fluxomic data, once
such complementarity is fully exploited.

Finally, it is important to note that metabolic flux informa-
tion has a straightforward mechanistic interpretation, as it is
directly linked to the underlying biochemistry. Data augmen-
tation based on metabolic networks, combined with multiview
learning, can therefore increase predictivity while providing
direct mechanistic insights into the condition-specific interac-
tion of metabolites that give rise to the phenotypic outcome.
This can translate into advantages in terms of human ability
to trust and employ more biologically-interpretable machine
learning models, especially in scenarios where it is important
to understand the effect of cell or metabolic engineering opera-
tions (10). Our results thus support the extension of such data-
and knowledge-based multiomic machine learning to biological
engineering and to other relevant phenotypic targets, such as
the secretion of metabolites for drug development.

Materials and Methods

Transcriptomic and growth data. The main transcriptomic dataset
used in this work was collected in a previous study (27), which pro-
vides two-channel microarray profiles for 1484 single-gene deletion
strains of S. cerevisiae during the mid-log phase. We downloaded
this data from the supplementary material of a second study (63),
which provides also relative growth rates compared to the wild type
for 1312 strains, expressed as the log2 of the doubling time ratio
between each strain and the wild-type. After merging transcrip-
tomic profiles and growth rates, we obtained 1143 samples with
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their associated growth rates, which we used in the following stages.
An independent dataset for testing the proposed MMANN was

obtained from a third study (28), providing gene expression profiles
for single and double gene deletion strains of S. cerevisiae on the
same microarray platform. Among these strains, we selected the
single mutants that do not overlap with those in our primary dataset
(14 strains) and all the double mutants (72 strains). In this second
dataset, 58 of the genes present in the main training dataset were
missing. To ensure consistency of features, i.e the same gene sets,
and feed this new data into our pre-trained models, we imputed the
gene expression values for the missing genes by linear regression
based on the other variables. Upon imputation of missing values,
the obtained 86 mutants represented an experimentally-independent
set of conditions and served as a real-case scenario for using our
proposed MMANN method.

Genome-scale metabolic modeling. A genome-scale metabolic model
(GSMM) is a collection of all known biochemical reactions and
transmembrane transporters that occur within an organism. The
reaction network is mathematically represented as a stoichiometric
matrix S, capturing the exact proportions of reactants and products
involved in each biochemical transformation (57). Reaction rates
(fluxes) are mass- and energy-balanced assuming a metabolic steady-
state, and can be described by a vector v of reaction fluxes through
the network, limited by their lower and upper bounds vlb and vub.
The constraints given by vlb and vub can be modified to model
varying genetic or environmental factors, yielding a context-specific
metabolic model consistent with experimental data.

We estimated the metabolic fluxes associated to each transcrip-
tional condition by solving the following parsimonious FBA problem:

min
v
‖v‖1

subject to w>v = f ,

S v = 0 ,
vlb Θ ≤ v ≤ vub Θ .

[1]

Here w is a binary vector expressing the biomass pseudo-reaction
as unique objective, while f is the maximal growth rate achievable
by the network under the given constraints. The impact of each
transcriptional condition is represented by Θ, which is the gene
set expression vector obtained by mapping the expression of the
individual genes onto the associated reactions. This involves con-
verting logical gene-protein-reaction association rules into max/min
operations, as follows:

Θ(g1 ∧ g2) = min{θ(g1), θ(g2)}
Θ(g1 ∨ g2) = max{θ(g1), θ(g2)},

[2]

where θ(g) represents the expression level of a gene g, and Θ repre-
sents the effective expression level of the gene set {g1, g2} (58). We
refer the reader to the SI Appendix for more details regarding the
nutritional conditions.

In this work, we used the iSce926 yeast GSMM, which includes
926 genes, 3494 reactions, and 2223 metabolites (29). Among
these 926 genes, a total of 908 (98%) are present in our main
transcriptomic dataset. To solve Eq. 1, we used the COBRA toolbox
3.0 (59) with the PDCO solver. The solutions provide steady-state
fluxes for every reaction in the iSce926 GSMM across the 1143
yeast strains from the main dataset and the 86 strains from the
experimentally-independent dataset.

Machine learning models. To predict the relative doubling time, ex-
pressed as the log2 of the doubling time ratio with respect to the
wild type, we started from the transcriptomic and fluxomic profiles
as features, and we used the following supervised learning methods:
support vector regression (SVR) (35), random forest (RF) (37),
artificial neural networks (ANNs) (60). To integrate omic profiles
and obtain multiomic machine learning models, we employed the
following multiview methods: Bayesian efficient multiple kernel
learning (BEMKL) (40), bagged random forest (BRF), and multi-
modal artificial neural networks (MMANNs). Further, to reduce
the number of omic predictors, we employed sparse group LASSO
(SGL) (41), non-dominated sorting genetic algorithm II (NSGA-II)
(42), and iterative random forest (iRF) (43) (see SI Appendix for
details on each of these methods).

Machine learning model selection, training, and testing. To assess
model generalization, we randomly split our samples into train
and test subsets comprising 80% and 20% of the main dataset,
respectively. Training data was used for fitting the models and
learn latent patterns present in the data, which can predict the
relative doubling time of yeast mutants. Since many of the adopted
methods have hyperparameters that can impact the learning process,
we performed a grid-search to identify the optimal hyperparameter
settings with the use of validation data subsets. Using the 80%
data portion, we applied 5-fold cross-validation repeated three times
for all methods, except the ANN-based models, for which we used
a fixed 10% of the training set for validation. After selecting the
hyperparameters, we trained each model again, this time using
the full training data - validation samples included. In order to
measure model performance, we used the obtained models to make
predictions on all the samples in the test set, which are disjoint
from those in the training and hyperparameter selection phases.

To account for stochastic variability - whether in cross-validation
or during the optimization process in the case of ANN - we repeated
the training-test procedure 100 times for each combination of dataset
and ANN-based model, and repeated the selection-training-test
procedure 100 times for each other dataset-method combination.
Feature selection methods were optimized and applied one time
only. Lastly, we applied a randomly selected MMANN model to the
experimentally-independent test set to simulate a real-use scenario.
To ensure full reproducibility, we provide the train-test split indexes
and the random seed used, along with details on methods, software
packages and hyperparameter search spaces in the SI Appendix.

Data normalization and performance metrics. When feeding the dif-
ferent data views to the machine learning techniques, we used
z-score normalization, where the mean and standard deviation of
the training data was also used to normalize the test data in order
to prevent information leakage. We used the normalized data in all
the learning approaches due to the different data distributions of
the two views (fluxes and gene expression), also noting in general
that normalization is a requirement for SVR and enables faster
convergence in ANNs.

The hyperparameter selection focused on minimizing the root
mean squared error (RMSE):

RMSE =

√∑n

i=1(ŷi − yi)2

n
, [3]

where model predictions yi are compared with observed growth rates
ŷi across all n strains. The RMSE emphasizes incorrect predictions.
When evaluating and comparing models we used three additional
metrics, namely the mean absolute error (MAE):

MAE =

∑n

i=1 |ŷi − yi|
n

, [4]

the median absolute error (MDAE):

MDAE = median(|ŷ1 − y1|, ..., |ŷn − yn|), [5]

and the Pearson’s correlation coefficient (PCC). MDAE statistical
differences across data-method pairs were estimated by Wilcoxon
rank-sum tests through the wilcox.test R function, whose p−values
were adjusted via Bonferroni correction.

Artificial neural network interpretation. To quantify the variable con-
tributions in the MMANN models, we used the SHapley Additive
exPlanations (SHAP) method (51). SHAP uses a game-theoretic
approach to determine the importance of a particular feature to
individual data inputs. SHAP values are thus feature importance
scores defined to satisfy local accuracy, missingness, and consistency
properties. We used a variant of the SHAP method specifically
designed for ANN models, called Deep SHAP (51), whose working
principle is the back-propagation of unit activation differences to
input features. The top contributing features inspected in terms of
biological classification were chosen as those in the largest mean
SHAP value percentile, where the mean was computed over the
training samples.
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Biological feature classification. The biological classification for the
genes identified by the feature selection methods and SHAP was
obtained with the PANTHER classification system (46). The KEGG
pathway annotation (61) for GSMM reactions was obtained from
a curated S. cerevisiae GSMM (62). The statistical enrichment
tests on PANTHER were run with default parameters. To assess
associations between the feature selection methods and the selected
gene features, χ2 independence tests were run on biological and
metabolic process classification classes via the chisq.test R function.
These tests were performed first across SGL, NSGA-II, and iRF,
and finally with the inclusion of the MMANN features obtained
through SHAP.

Data availability. The microarray and growth data obtained for this
study is available on GEO (accession numbers GSE42526, GSE42527,
and GSE42536), Array Express (E-MTAB-1383, E-MTAB-1384 and
E-MTAB-1385), and as flat files from the authors of the original
studies (27, 28, 63). The yeast metabolic model can be found in the
supplementary material of the corresponding paper (29). All data,
models, and code used in this work are also available on GitHub
at https://github.com/multiOmicMechanismAwareML/CodeBase,
along with the information for replicating the results presented.
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