Open data and energy analytics - an analysis of essential information for energy system planning, design and operation
Massimiliano Manfrena, Benedetto Nastasi*b Daniele Groppic, Davide Astiaso Garciab
aFaculty of Engineering and Physical Sciences, University of Southampton, Boldrewood Campus, SO16 7QF Southampton, United Kingdom
bDepartment of Planning, Design, Technology of Architecture, Sapienza University of Rome, Via Flaminia 72 – 00196 Rome, Italy
cDepartment of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, Via Eudossiana, 18 - 00184 Rome, Italy

Abstract
Energy transitions are reshaping global and national energy systems and appropriate decision-making strategies are needed to drive an effective change in response to pressing global issues. Governmental institutions, industry, academia, and civil society are all participating to this global change, playing different roles. Open energy models and associated data are essential to promote open science practices, and create an effective science-policy interaction. For example, they can foster multi-disciplinary research addressing the co-evolution of energy technologies and human behaviour more transparently and, more in general, they can improve the interaction of multiple linked models and data, by improving them with respect to the current state of the art. In this paper, we present an analysis of features of open energy models and data, highlighting essential information that can be shared among communities of researchers in the energy field to foster multidisciplinary research. This information inherently embodies different key concepts and perspectives in modelling that affect both simulation and optimization processes employed for energy systems planning, design and operation. Indeed, this shared knowledge is crucial to overcome critical technical issues (e.g. end-use energy efficiency improvements, energy conversion processes, energy infrastructures operation, etc.) that may inhibit successful energy transitions. Finally, ecosystems of interacting open data and models are key assets for the development of next generation energy services and technologies, based on innovative business models in which the problem of monitoring, verifying and tracking performance transparently (at multiple levels) will be fundamental.
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Highlights:
· Energy transitions are reshaping global, national and local energy systems.
· A more effective interaction among science, policy and society is needed in transitions.

· Open energy modelling principles are contributing to the evolution of research.
· Ecosystems of open energy models can be used for multi-disciplinary research.
· Ecosystem of models could enable the development of next generation energy services and technologies.
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1 Introduction
Decentralization, digitization and innovative business models are essential drivers in energy transitions, which will affect energy systems at multiple levels. Open data, open science, open innovation and open energy modelling principles are crucial to create an effective science-policy interaction, because governmental institutions, industry, academia, and civil society will need to interact in multiple ways in transition processes [1–3]. A relevant research effort has been devoted in recent years to conceptualization of sustainability transitions [4] and, more specifically for energy, it is crucial today to conceptualize “complementarities” at multiple levels [5] and to adopt a multi-level perspective in planning low carbon transitions [6,7]. In particular, if we have to address the general topic of the co-evolution of human behaviour, energy technologies, infrastructures and, at the same time, we have to tackle specific problems and applications coherently, (i.e. if we have to answer specific research question while following the above mentioned general principles), we need to define a clear conceptual framework for our research and understanding the inherent “complementarities” embodied by different perspectives in energy modelling for systems planning, design and operation. This problem constitutes essentially the motivation of the research presented in this paper, which aims to highlight links among some of the key concept in energy research at the state of the art and propose an interpretation of emerging concepts that can be relevant for the future development of ecosystems of interacting applications, using open data and open models. Open data and models may represent a key asset for the development of next generation energy services and technologies, which will have to be based on innovative business models in which the problem of monitoring, verifying and tracking performance improvements in a transparent way will be fundamental. Clearly, the availability of data at multiple levels will be an enabling factor and infrastructures and technologies such at the Internet of Things (IOT) [8] and cyberphysical systems are essential for disruptive innovations in the energy sectors regarding, for example, built environment [9], energy delivery to end users [10] and energy infrastructures [11]. As already mentioned, innovative business models will have a relevant role for the evolution of the energy systems, considering concepts such as prosumer [12] and prosumager [13]. We believe that all the elements reported before have to be considered when pursuing research aiming at radical shifts in energy systems, coherent and consistent with sustainability transition strategies. 
1.1 Background and motivation 
Energy transitions involve the evolution of the network of actors and groups that are traditionally operating in the energy sector (e.g. policy makers, regulatory authorities, transmission and distribution authorities, etc.). Indeed, socio-technical innovations depends critically on the possibility to access new information, knowledge, and resources which, in turn, are key enablers for the development of new ideas and products [14]. We can find in innovation studies the concept of multi-level perspective (MLP) [6], which is one of the basic elements of socio-technical transition strategies [15,16], where MLP concept can be used to critically question current “regime” level [7]. In fact, MLP analytical process articulates in three levels: niches (where socio-technical changes are introduced and tested), regime (where technologies, institutions and practices are aligned and conformed) and landscape (context for regime stability or change). Simply put, the scope of MLP is that of enabling niche experiments to scale-up and change the regime, exploiting external pressures. Pressures include, for example, opportunities that may emerge also at the local level [17]. Further, innovation intermediaries can help accelerating environmental sustainability transitions [18], leading to the creation of business ecosystems in sustainability transitions. For this reason, we will illustrate hereafter some of the most relevant elements for the creation of business ecosystems in sustainability transitions. First of all, the achievement of stringent energy efficiency goals is one of the crucial elements in energy transition strategies and, more in general, in sustainability transitions. Energy efficiency measures are designed to provide benefits in terms of energy, emission and cost savings, but other related co-benefits can be present as well (e.g. improved indoor environmental quality, health, productivity, pollution reduction etc.). While the concept of Energy Performance Contracting (EPC) is not new, the potential of energy efficiency measures is still largely untapped. For this reason, it is necessary to rethink critically the structure of EPC, by understanding better the role of relevant actors, stakeholders and coalitions [19] and by engaging them appropriately, considering barriers such lack of interest, awareness, knowledge and human and financial capacity [20]. Additionally, the role of consumer in the energy sectors has experienced an important evolution in recent years going from consumer, to prosumer and to prosumager [13]. In order to secure the expected savings, performance has to be monitored, verified and tracked transparently. Today, this can happen by means of automated or semi-automated data analysis workflows [21], using state of the art computing technologies and the Internet of Things [10]. Rather than being conceived for separate applications, we can envision ecosystems of applications [22] based upon open data and models [23,24], which may be linked to innovative business models to determine techno-economically feasibile paths in sustainability transitions. These ecosystems can be represented by groups of interconnected applications that are aimed at supporting energy transitions. Applications can share a set of common features and information, to ensure the standardization of methods and consistency with open science principles. Following these arguments, in Section 2 we will describe some elements emerging from research on open energy data and models, highlighting a possible path from open energy modelling principles to systems of interacting models. Then, in Section 3 we will analyse essential features of systems of models from a theoretical perspective, highlighting useful features. After that, in Section 4 we will present some examples of applications that may benefit from an evolution towards systems of models. Finally in Section 3 we summarize the most relevant concepts and insights to set questions for future research.
2 From open energy modelling principles to systems of models
Looking at recent research, we can extract some interesting principles that may contribute to reshape energy research profoundly, from a methodological point of view, in the near future. We describe these principles going from open energy modelling to systems of models, even though the elements reported are not strictly sequential (they have been proposed by different authors at different point in times and in different contexts), as we clarify in Figure 1.

First, we need to recall the fact that we are still far from exploiting the real potential of open data and analytics for energy systems [23], even though there are extremely important initiatives on open energy modelling [25] and data analytics [26], where transparency is an essential component [24,27]. The choice of a modelling paradigm can be debatable [28], as well as the specific rules adopted within a specific modelling paradigm [29].
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Figure 1: From open energy modelling principles to systems of models
Further, we have to acknowledge clearly the limitations of individual models and eventually find ways to “soft-link” them [30] being aware of their limitations (that determine boundaries of acceptability for their application), but also of the possibility to use them at multiple scales for informed decision-making [31]. Transparency of modelling can be considered as a pre-requisite for “soft-linking” and the ability to integrate data and information from multiple sources (and bottom-up and top-down perspectives as well) is inherently fundamental for the complex interdisciplinary research on sustainability transition pathways [4] and, more specifically, for the analysis of complementarities in energy transitions [5]. In principles, elements emerging from recent research highlight the necessity of a structured approach to systems of models (e.g. multi-model ecologies [22]), in order to engineer complex networked systems [32] that have to evolve on a continuous base because they are part of a fast-evolving socio-technical landscape. We can give some examples of specific problems that depend on the interaction of technologies (at multiple levels) and on human behavior. First of all, the “performance gap” problem in the built environment, regarding not merely direct energy use [33,34], but also embodied energy use and emissions [35], highlighting the intrinsic limitations of current approaches to sustainability [36,37]. Further, the necessity of finding paths of integration of technologies (in the built environment in particular [38]) to achieve decarbonisation and energy flexibility goals. Additionally, with respect to decentralized energy infrastructures, the optimization of multi-energy systems [39,40] that can be represented as multi-commodity networks [41–44]. After that, the use hydrogen and innovative energy carriers [45], that are an essential component of multi-energy systems, and are an enabling technology for long-term storage and CO2 recycling [46]. These are just some of the current issue in energy research  that will be described in more detail in Section 5 by means of examples.
3 Systems of models – analysis of essential information and features
In the previous section we highlighted some principles that can help creating a framework for future research in the area of systems of energy models. We can find in recent literature examples of thorough analysis of open data and systems of models [23–25,27], and one of them using the specific term of “multi-model ecologies” [22]. In this paper, the authors insist on three key concepts: connectivity, diversity and hierarchy. In this research we will use these definitions as a basis and we will concentrate first on connectivity and diversity (Section 4.1), and then we will highlight some essential features and information (Section 4.2) that may help defining a clear hierarchy (i.e. structure and organization) of systems of models, with some examples from built environment research. In Figure 2 we report the three concepts defining systems of models and we highlight the importance of modelling standards and cyber-physical systems and IoT infrastructure as enabling factors for their deployment. 
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Figure 2: Systems of models – Connectivity, diversity, hierarchy
3.1 Connectivity (and interoperability) and diversity in systems of models
Connectivity involves increasing the ability to exchange data, information and knowledge among different models, datasets and actors involved in the use of models (either directly or indirectly, encompassing, more in general, the communication channels which facilitate the flow of information and knowledge). Therefore, connectivity is intertwined deeply with interoperability, which aims to ease the flow of data and information among different types of applications. On the other hand, diversity is crucial as well, as we need to cope with the increasing complexity of energy systems, where technical factors and social factors become interdependent [4,5] (i.e. we need to coordinate hierarchically the use of multiple models that are interdependent and that have to co-evolve). Meta-modelling (or surrogate, reduced-order modelling) concept [47,48] may be introduced as a tool to find a balance between connectivity and diversity needs in systems of models. In fact, meta-models represent simplifications of more complex models that embody relevant advantages from the computational point of view (e.g. reduction of computing time and resources) but also from the interoperability point of view (e.g. use of open standards for software). Indeed, we can trace a parallel between this research and more general purpose research on modelling for IOT/cyber-physical systems, using standardized principles and rules [8], independently on the specific field of application.

3.2 Hierarchy and integration of essential features and information for energy system planning, design and operation
We portrayed in Section 2 some recent advances in energy research, highlighting a possible path of evolution going from open energy modelling principles to systems of models. It is very important to think forward and to try to anticipate how these emerging principles will contribute to reshape research on energy technology and energy systems planning, design and operation. In this Section we will propose some essential features and information that could be at the basis of future developments of modelling research targeted to the creation and deployment of models in IOT/Cyber-physical systems in an integrated and hierarchical way, following the principles indicated in literature [8,9,22–24]. Figure 3 depicts these essential features.
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Figure 3: Essential features of system of models
We introduced previously the concept of meta-modelling, i.e. surrogate modelling, as an essential tool to reach a compromise between diversity and interoperability of models, and to be able to exploit current standardization in modelling and communication protocols. Additionally, we can think about models as “digital twins” (i.e. digital counterparts) of real world processes, giving the possibility to use data analytics to improve the performance of services and technologies by exploiting multiple feedback loops. We can find examples of the use of meta-modelling techniques to face problems at multiple scales in the built environment, from individual buildings and facilities [49], to urban scale [50], to regional scale and geographic clusters [51]. These examples present several conceptual analogies with previous research on the use of meta-modelling concept for integrated building performance analysis [47]. The application of these principles at multiple scales can be targeted, for example, to problems such as the decarbonisation of building stock [52–54], as well as many other problems that will be reported in Section 4. We believe that the development of innovative technologies and services for energy transitions could benefit from the features proposed hereafter that we summarize in Table 1, contextualizing with respect to built environment research, and we provide a graphical diagram in Figure 4 representing a potential path of development from open energy modelling principles up to systems of models and their essential features.
Table 1: Essential features for models – Examples from built environment research
	Feature
	Description
	Examples
	Research advances

	Data standardization
	Standard data formats
	Building Information Modeling (BIM) [55], Energy performance of buildings [56], Common Data Environment (CDE) [57–59], City Geography Markup Language (CityGML) [60,61]
	Future research efforts could be devoted to the creation of flexible data standard, starting from linked open data concept

	Interpretability
	Increased transparency
	Visualization of energy/exergy flow across multiple levels in systems [62] and in buildings [63]. Operational profiles visualization [64]
	Visual analytics can help achieving more transparent and intuitive comparisons of models results, at multiple levels of analysis

	Scalability
	Spatial scalability
	Building fabric [65–68], whole building [69–71], building stock [53,72], community and city scale [73,74]
	Models can be developed with multiple spatial resolutions, increasing progressively the level of detail

	
	Temporal scalability
	Monthly [75–79], daily [69,71,80–83], hourly interval data [84,85]
	Models can be developed with multiple temporal resolutions, using an incremental approach

	Flexibility/adaptability
	Multiple scopes/uses
	Design optimization [86–90]
Energy management, [69,71], Anomaly detection [70], Control, [91], Monitoring of internal conditions [92,93]
	Models with similar characteristics can be used for multiple purposes (e.g. multivariate regression and autoregressive models with exogenous inputs for time series)

	Re-configurability
	Re-configurability across life-cycle phases
	Linking design and operational performance analysis [94,95]. Performance Gap analysis from design to operation [96].
	A continuity in the use of models across life cycle phases of buildings/facilities or individual technologies can be established. This enables a “digital twin” approach
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Figure 4: Potential path of development from open energy modelling principles up to systems of models and their essential features.
4 Systems of models – examples from current research
In Section 3 we introduced essential features and information for systems of models that can be built upon open energy modelling principles. In this Section we will present examples of application that can benefit from an evolution of research in the direction of systems of open models. Recalling some of the concepts introduced in Section 2, the examples are organized as follows. First, we describe energy modelling problems at multiple levels in the built environment. After that, we describe issues related to electrification of heating and transportation and their impact on energy infrastructures. Finally, we discuss issues related to multi-energy systems, innovative energy carriers and storage, which are fundamental for low carbon and decentralized energy systems design and operation.
4.1 Multi-level energy modelling in the built environment
In the last years comprehensive reviews of building energy models [97–99] have been published. A comprehensive analysis of energy performance of buildings requires understanding both the human and technical influencing factors [100]. These factors can create a discrepancy between design and measured performance, i.e. a performance gap [33,101]. In order to enable large scale performance benchmarking for buildings, it is necessary to introduce the concept of statistical “Reference Buildings” [102], i.e. building models that represent the common typologies, technologies and end-uses in the building stock, identified by means of statistical analysis. For this reason, the identification of Reference Buildings requires the use of large scale statistical data. However, building data are generally multi-level data, making it difficult to have access to the complete information at scale. Nonetheless, a statistical approach to building performance [103] is necessary to reconcile bottom-up and top-down perspectives in energy modelling [97] and to create a soft-linking among different energy models, applied at multiple scales. The use of Reference Buildings is common today, for example, for techno-economic optimization of buildings using methods such as cost-optimal analysis [102,104], for utility scale performance analysis of design [105] and operation [53] strategies and for energy planning at national scale [106–108]. Further, more advanced techniques such as Bayesian analysis could be used to reconstruct built environment data under uncertainty [109–111]. An interesting research development concerns physical-statistical modelling approaches that are a combination of simplified physical models and statistical computing techniques. They are generally indicated with the term “grey box” models [112]. In this type of models, physical parameters are expressed with lumped quantities (thereby reducing the amount of parameters) and the model structure represents a reduction of a detailed “white-box” physical model. In fact, models for building energy performance prediction can be roughly classified as “white-box” (detailed models), “grey-box” (physical-statistical reduced-order models) and “black-box” (statistical and machine learning reduced-order models). “White-box” models are generally detailed models based on physical laws (validated according to energy simulation test standards [113,114]) which are used for design phase simulations, while “black-box” models are used in data analysis workflows, for example in energy management during operation. In synthesis, physical-statistical models are a good comprise between the generalization capability of “white box” models and the statistical capabilities and computational efficiency of “black box” models, which however need to be trained on data. Additionally, physical-statistical models can be used both for simulation (forward mode) and system identification (inverse mode). In particular, they can derived in a transparent way from fundamental energy analysis principles [115,116] and can be thought as a starting point to create “black-box” statistical models for specific applications [117]. In terms of practical applications, they can be used to characterize the behaviour of technologies in experimental test-facilities [118]. Further, they can be integrated in the design process using Building Information Modelling (BIM) software [112]. Finally, they can be used for advanced integrated room automation [119]. Considering all these characteristics, “grey-box” models are suitable for implementation in cyberphysical systems [10]. Among others, regression-based approaches present a relevant potential for practical applications [120], in which the exploitation of the approximated physical interpretation of regression model coefficients [54,65,121,122] is essential. Indeed, the possibility of deriving an interpretation depends on the formulation of an approximated physical model used as a basis for the regression; this can be created, for example, using definitions compatible with current technical standardization [56]. In terms of practical applications, regression-based approaches could be used, for example, for heat loss coefficient (HLC) estimation [66,68,123], for projections about energy consumption in future climate change scenarios [124–126] and for creating load profiles when designing decentralized energy systems from buildings [127] up to community scale [41,128,129], linking them ideally to the many of issues described in Section 4.2 and 4.3. Further, in terms of technologies, regression-based approaches can complement the analysis of performance of heat pumps and cooling machines [130,131], considering also exergy balance [132,133], where temperature dependence is fundamental (external air temperature is the fundamental independent variable in regression [70,71]). Finally, based on their characteristics they can help providing suitable evidence of the impact of technologies [123,134] and especially efficiency measures [135], which can inform decision-making processes and future policies by means of robust and empirically grounded methods [136]. As a conclusion, the research developments presented in this Section are deeply intertwined with technological development in sensors and automation fields. The availability of building energy and environmental monitoring data, using state of the art technology [137], is a pre-condition for further developments regarding multi-level energy modelling in buildings, which can help improving the performance of envelope technologies [67] and HVAC systems [138]. The appropriate level of detail in modelling (going from “white-box” to “black-box” approaches) depends again on the specific application and uncertainty in measurement has to be carefully considered [139].
4.2 Load shapes analysis and electrification of heating and transportation
The co-evolution of energy infrastructures and built environment is crucial to ensure the long-term sustainability of energy services. In Section 4.1 we reported examples of analysis of data at multiple levels in the building system and at multiple scale for the building stock. In this Section we will introduce other examples where shared data are relevant for the co-evolution of energy infrastructures and built environment, considering in particular, the impact of technologies such as heat pumps, for the electrification of heating demand, and electric vehicles, for the electrification of transportation demand. First of all, we have to recall the fundamentals of electrical system engineering and economics [140], and consider load shape analysis methodologies (e.g. peak demand, load factor, coincidence factor and diversity factor, load duration curves, etc.) [141]. The analysis of load shape characteristics and temporal variability assumes today an important role because of the increasing quantity of renewable generation in the system, on the one hand, and the necessity to differentiate tariffs depending on end-uses and behaviour [142], on the other hand. The goal is that of reshaping the demand (e.g. demand response) [135] and harmonizing the methods to quantify the impact of energy efficiency investments, which are clearly dependent of energy savings actually obtained by end-users. In recent years, there have been important research initiatives in this direction such as the Uniform Methods Project [136], whose goal was to harmonized the methods for quantifying energy savings for specific measures, both in residential and commercial buildings. Rather than being simply applicable to the building sector, harmonized methods are fundamental also for system level research and policy, for example if we consider the issue of comparing simulations and measured data for large scale studies. In this sense, we can find studies aimed at synthesising electrical demand profiles for UK dwellings [143] and quantififying diversity of residential electricity demand [144]. Further, we can find examples of bottom-up modelling approaches to quantify the variability of the impact of users on load profiles at building scale [145] and the related consequences on low voltage grids [146]. Again, regarding large scale studies, the level of temporal and operational detail is fundamental also for energy-system planning models, where “traditional” optimization approaches are no longer sufficient and multiple operating configurations can be studied by binning data of loads and renewable generation [147]. If we focus on the large scale impact of heat pump technology in electric systems [148], we can find examples of field trials [149] and studies regarding the effects of decarbonisation of gas and electricity supply [150] at national scale. The penetration of heat pumps is crucial for the decarbonisation of the heating sector [151], together with district heating systems [152] and energy efficiency measures, in the built environment in particular [54]. The switch from fuel-based heating systems (e.g. natural gas) to electric heat pumps depends critically on the rate of substitution of heating technologies and will have a relevant impact on electric infrastructures, together with electrification of transportation, as mentioned before [153]. Further, power to heat concept (linking heating and electricity sector), may open up new perspectives with respect to flexibility in electric infrastructures [154] but will have also relevant implications for transmission expansion [155]. Energy flexibility is the ability to manage demand and generation according to climate, user needs and grid conditions [156]; different options exist for system level flexibility planning [157]. Flexibility in buildings depends on the capability to use storage resources and to act on appliances (including HVAC), following a trigger (e.g. time, power, energy price, etc.). Due to the inherent complexity, we can understand how demand side flexibility [156], will have to be investigated in detail in the future, regarding in particular the role of HVAC as an active part of energy infrastructures (e.g. for demand response) [158] and also as a mean to absorb surplus renewable in future energy systems with high penetration of renewables [159]. In terms of data, a high spatial and temporal resolution of models (discussed in Section 4.2) is needed to explore the potential of heating demand side management due to heat pump diffusion at scale [160], and there exist already examples of large-scale demand response provided by residential heat pumps [161]. The exploitation of distributed energy resources requires the integration of technologies such as photovoltaics, heat pumps and energy storage at the building or facility level [162]. The evolution of standardization of infrastructures communication protocols is necessary to ensure efficient operation [163]. The research on control plays an essential role for this integration in the built environment [127] and the results can be relevant for changes at the level of electric energy system as a whole [164], which may be pushed by consumer centric innovations in business models [165]. A large part of research at the state of the art concentrates on strategies to unlock the flexibility potential by means of control [166] and, for this reason, different modelling strategies have to be tested [167], considering also appropriate levels of modelling complexity [168]. As anticipated, beyond heating demand electrification, another fundamental issue is constituted by transportation demand electrification [169], which will have an impact both on building stock and distribution grids [170]. Demand side energy policies and participation are necessary to address this change [171], because of the socio-technical dimension of the problem, which requires a clear segmentation of the data regarding end-users [172]. Projections of the increase of electric demand due to transportation and change in load profiles can be determined using travel survey data [173] and tested using empirical data from selected samples of end users [174]. Indeed, projections of load profiles can be important for integrated energy planning at the urban and community scale [175,176], where the behavioural aspect of the interaction of end-users with the urban environment have to be taken into account. More in general, for the long-term evolution of energy systems and especially for built environment, electrification will be crucial [177] to tackle the decarbonisation problem, as reported before.
As a conclusion, in this Section we summarized some of the concepts emerging from energy research in the built environment (i.e. heat pumps, heating demand electrification, electrification of transportation, decarbonisation, flexibility and control). An appropriate spatial and temporal resolution of data and models, together with harmonized methodologies could help promoting multi-disciplinary research aimed at energy system planning, design and operation. While sharing the same fundamental problem of addressing the change of load profile shapes and their spatial and temporal aggregation, different research applications require specific contextual data; nonetheless further research efforts can be put in the definition of harmonized accounting methods, aimed at documenting transparently the impact of different technologies, following the examples of recent research projects [135,136]. Finally, energy (and exergy) flows can be visualized at multiple scales [62], not simply for national scale energy models but also for integrated electricity-heat-gas networks in multi-energy systems [178] or in complex building system design and operation analysis [63].
4.3 Multi-energy systems, innovative energy carriers and storage
In Section 4.1 we described some of the potential developments regarding multi-level energy modelling in the built environment, while in Section 4.2 we presented issues related to energy load shapes analysis, with a particular focus on electrification of heating and transportation. In this Section we will report examples of modelling approaches and issues concerning innovative solution for decentralization of energy infrastructures, namely multi-energy systems [178,179], energy-hubs [180–182] and microgrids [183–185]. In a decentralized perspective, the complexity of issues to be considered for optimal design and operation of buildings increases, because end-users are not simply “consumers” but “prosumers” (producers/consumers) [186]. First of all, the appropriate aggregation of demand at the community scale is a challenging problem [187], because of the necessity to provide multiple energy services and carriers for end-uses in an optimized way. Further, contingent regulations, incentive schemes and policies can have a relevant impact both on the choice of technologies [188] and energy carriers [189]. Additionally, the availability of data regarding performance and cost of technologies is fundamental, but the situation is jeopardized, following rules set by each Region and/or Country [190]. The evolution of the heating sector [191] and, in particular, the electrification of heating reported in Section 4.2, will have a relevant impact on decentralized energy systems. In fact, while at present electricity demand is still mostly dependent on the use of electrical appliances and lighting [192], heating and domestic hot water (DHW) demands can be supplied with different solutions (beyond conventional gas boilers) such as electric or gas absorption heat pumps, solar thermal [193] (eventually combined with heat pumps [194]), biomass boilers/stoves, combined heat and power or district heating systems [195]. For this reason, an energy analysis simply focused on the demand side of the problem (i.e. the calculation of a load and basic sizing criteria) is not sufficient anymore [98] because of the technological evolution of technical systems in buildings, which include distributed generation, in particular solar technologies [196]. The presence of storage and, consequently, the availability of a certain degree of inertia in the system is essential to achieve flexibility (topic introduced in Section 5.2) but creates difficulties when modelling the dynamic energy behaviour. Thermal storage in buildings depends first on the thermo-physical properties of construction components that could help modulating the operation of heating and cooling systems [197]. Further, thermal storage is generally present in building technical systems (e.g. water tanks for DHW and/or heating system) and in district energy systems [198]. The combined effect of multiple storage resources determines a relevant flexibility potential at the district scale [199]. However, the presence of storage capabilities at multiple levels increases the need for sophisticated dynamic models [200]. Additionally, the appropriate consideration of coincidence factor of loads (e.g. heating and DHW) for aggregation of users, together with storage capabilities, could determines relevant savings regarding sizing of technical systems (i.e. avoiding oversizing). From an economic perspective, the presence of a dynamic price of electricity [201] increases further the level of complexibility of modelling, because of the need to account for the time-varying economic impact of energy demand when performing optimization. For example, load reduction and load shifting strategies are deeply influenced by the pricing schedules adopted by utilities [202]. In brief, the variations of electricity prices could be a determining factor [203] when performing techno-economic optimization (both for design and operation), in many cases even more relevant than the variations of performance of technological components themselves [204]. In turn, research advances related to predictive control of decentralized systems depends critically on the availability of forecasting of electricity prices [205], load shapes [206] and weather data, especially solar energy [207]. Additionally, the resolution of data (i.e. from yearly to hourly and sub-hourly) for emission factors can influence the results of modelling for decarbonisation strategies [208]. The definition of appropriate boundaries for energy and carbon accounting for buildings [209] is necessary to progress further with respect to zero energy and carbon neutrality concepts [210]. The issues related to end use energy demand and transportation [211] (introduced in Section 4.2) can play a relevant role in the design choices regarding microgrid control [212] and polygeneration technologies [213], especially with respect to the portfolio of fuels, where hydrogen could become an option for transportation [214]. Among other things, the valorization of process wastes or handling renewable production excess is essential both for energy efficiency and flexibility (e.g. dampening the renewable intermittency problems and performing peak shaving). Finally, the evolution of market and technology of electric energy storage [215] will play a relevant role on the optimal sizing for distributed generation systems for end-users [216], with innovative business models aimed at cost-optimality [217].
5 Summary of research findings and indications for further research
In this research work we discussed the role of open data and models for energy planning, design and operation. Fundamentally, our goal was highlighting essential information that can be shared in order to create systems of interacting models that could, in turn, enable innovative applications in energy transitions. For the reasons described in Section 2, these systems of models could represent a step forward in energy research and they could embody concepts and principles at the state-of-the-art such as open energy modelling (i.e. transparency, reproducibility, etc.) and soft linking (i.e. addressing limitations, defining boundaries for the application of models, etc.). Further, they could help creating an integration between top-down and bottom-up modelling perspectives. In Section 3 we moved from principles to specific features and information for systems of models. We started by analysing the definitions given in recent literature regarding “multi-model ecologies” [22], namely diversity (of disciplines, applications, perspectives and system scales), hierarchy (different levels of interacting models and dataset), and connectivity (exchange of data, information and knowledge among different models, datasets and actors involved). With respect to hierarchy, in Section 3.2 we proposed some essential features for models, namely data standardization, interpretability, scalability, flexibility/adaptability, re-configurability. For these features we reported in Table 1 literature examples and we indicated research advances, with a focus on built environment applications. In synthesis, these features could be the basis for future developments of modelling research targeted to the creation and deployment of models in IOT/Cyber-physical systems as “digital twins” of real-word processes. Rather than being conceived for individual and separate applications, “digital twins” can be conceived in an integrated and hierarchical way, following the principles outlined before. We believe that modelling research developments in this direction could help responding to critical issues. We gave examples in this sense in Section 4, starting from energy modelling in the built environment in Section 4.1, where we showed how “white-box” modelling approaches can be combined with “grey-box” and “black-box” statistical approaches in order to address multiple issues related to building energy performance, from design to operation, maintaining a certain degree of continuity in the data analytical workflow. After that, we discussed in Section 4.2 the possibility to analyse building energy performance at scale, in order to address challenges such as electrification of heating and transportation, which will affect the shape of load profiles in electrical systems. Finally, in Section 4.3 we described the role of models in innovative decentralized energy paradigms (i.e. multi-energy system, microgrids, energy-hubs, etc.) where the evolution of storage technologies and innovative fuels will be necessary to increase further the penetration of renewable energy source in the future.
In this research study some “transversal” topics are emerging as well. First of all, data accessibility. The problems of lack of detailed data or insufficient reliability of data due to non standardized collection procedures must be faced. Currently, it causes a knowledge gap undermining informed choices for policy making in the energy transition process (as well as in many other processes). Further, the availability of open data repositories regarding technologies, energy demand for end uses and weather data will be crucial. Having standardized and up to date data will enable consistent modelling processes at multiple levels and/or scales of analysis, reducing partially the modelling effort and pushing forward the development of next generation energy technologies and services, based on innovative business models. Finally, models’ validation process. Validation is considered generally the first step when introducing a new model and this could become difficult when dealing with systems of models. The use of basic principles (e.g. energy and mass balance equations, conversion factors, etc.) and the visualization of energy flows at multiple levels in systems are crucial to make models transparent and easy to interpret, unhiding the “ad-hoc” assumptions and simplifications that are generally introduced in specific problems or applications. 
6 Conclusion
In this paper we illustrated a reflection on some of the most promising principles and concepts emerging from recent energy systems research, indicating how they can contribute to the evolution of energy technologies and services, fostering multi-disciplinary research. After having identified the principles, we extracted essential features and information that can be shared among communities of researchers in the energy field to overcome critical technical issues that may inhibit successful energy transitions. Far from being exhaustive, our research represents an exploratory work aimed at orienting future research efforts. Nonetheless, the research works described can provide an empirical ground and evidence to inform research regarding systems of interacting models. What we consider of particular importance, at this stage, is identifying a coherent conceptualization for the research itself. Further, we would like to explore in the future other related issues such as linking transparently advanced applications with fundamental knowledge, in order to improve transparency and reproducibility. Another aspect of future research may be that of understanding to what extent features and information are actually constraining the choice of modelling techniques in practical applications. Indeed, this type of research could determine a profound methodological innovation, by looking at the whole life-cycle of models (i.e. from feasibility, to design and operation) in relation to energy technologies and systems, where they could act as “digital twins” of real world processes.

As a conclusion, we believe that open data, open science, open innovation and, more specifically, open energy modelling principles are crucial to create an effective science-policy-market interaction in energy and sustainability transitions. Research efforts in energy modelling should be oriented to the identification of solutions that represent good compromises between connectivity and diversity and to the definition of appropriate hierarchies of data and models, for example by using linked open data schema and meta-models.
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