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Abstract: We show how structuring of matter can lead to second order optical nonlinearity. 
Coulomb interactions involving bound electrons cause a nonlinear optical response at 
boundaries. We demonstrate that, in a planar structure cut from a centrosymmetric lattice of 
harmonic oscillators, second order nonlinearity is proportional to the perimeter of the structure. 
This proportionality and our model can instruct the design of dielectric nonlinear particles, 
surfaces and metamaterials for optical second harmonic generation. 

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
The second-order nonlinear interaction of two waves in a medium can generate a third wave at 
a combinational frequency, underpinning the phenomena of second harmonic generation, 
optical rectification, parametric down conversion, sum- and difference frequency generation. 
Conventionally, second harmonic is generated in crystals with symmetry lacking an inversion 
centre, however, centrosymmetric media can generate second harmonic waves in the presence 
of inhomogeneity associated with interfaces [1-9], optical field gradients [9-11] or chirality 
[12]. A considerable effort is now focused on artificial nonlinear materials that can be 
manufactured by top-down nanofabrication processes: second harmonic can be efficiently 
generated in structured metallic and dielectric films, as well as metasurfaces with asymmetric 
patterns even if the bulk of the constituent materials is centrosymmetric [13-22].  

In this paper we report a classical oscillator model that gives rise to second-order 
nonlinearity in a structured dielectric film made of a centrosymmetric dielectric material. The 
film is structured into flakes (particles). We describe the dielectric material of the film as a two-
dimensional lattice of harmonic oscillators with optical electrons. By design, the oscillators do 
not exhibit any second order nonlinear response in isolation. However, we show that flakes of 
such structured films can generate second harmonic where nonlinearity emerges from the 
Coulomb interactions of charges of neighbouring optical electrons and nuclei in the confined 
anisotropic environment of the flake. The model leads to the following scaling rules: for a 
particle of a given shape and orientation (relative to the driving field), the first order 
polarizability is proportional to the particle surface while the second order polarizability is 
proportional to the particle perimeter. 

 

2. Results and discussion 
2.1. Optical nonlinearity of structured dielectric films 

In the model we consider a flake consisting of N atoms and describe atom k as a classical 
Lorentz oscillator [23] with an optical electron with coordinate rk(t) bound to a stationary 
nucleus at Rk. As is standard Lorentz model approximation, we assume that the electron and 
the nucleus are elastically bound which gives rise to a linear restoring force and the atom’s 
linear optical response. In order to account for the influence of the N-1 other atoms on the 
optical electron k, we consider the Coulomb interactions of the optical electron with remaining 
electrons and nuclei. The resulting potential energy Uk is 
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Where q and m are the electron charge and mass, and ω0 is the angular resonance frequency 
of the isolated harmonic oscillator. The resulting equation of motion in an optical field E(t) 
becomes  
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Where γ is the damping frequency. A similar approach has been previously employed to 
study linear macroscopic properties of dielectrics [24] and for treating surface nonlinearity in 
uniform planar surfaces [7, 25-28]. Here, our focus is on highly structured materials. Second 
harmonic generation is strongly shape-dependent and our model is applicable to planar 
dielectric structures of any shape. Therefore, it complements existing models that describe 
second harmonic generation in specific materials and/or shapes [29-32], and symmetry-based 
selection rules [33, 34] that only identify cases where second harmonic generation is forbidden. 

 

Fig. 1. Model for second harmonic generation of interacting atoms in a dielectric nanoparticle. 
(a) The atoms are modelled as damped harmonic oscillators consisting of an optical electron 
constrained to move in the xy-plane and a positively charged stationary nucleus at the atom’s 
centre. (b) The nonlinear optical response of a nanoparticle originates from the Coulomb 
interactions between optical electrons and other atoms. Due to the finite size of the nanoparticle, 
the Coulomb force acting on optical electrons from other electrons and nuclei becomes direction-
dependent. For example, in a two-dimensional ‘particle’ of triangular shape, the trajectories of 
electrons driven by incident light field E(t) are curved: displacement of the charge becomes a 
nonlinear function of the driving field and optical harmonics are generated. 

 
In order to predict the edge nonlinearity of a structured dielectric film, such as a 

metamaterial, we consider plane wave illumination (along z ) of a 2D (two-dimensional) lattice 
of ‘atoms’ consisting of charges that are confined to the xy-plane (see Fig. 1a). The 
electromagnetic response of the single atom is strictly linear and arises from a harmonic 
potential as described above. The nonlinear response arises exclusively due to inter-atomic 
Coulomb interactions. The ∝1/r2 dependence of the Coulomb force, where r is the inter-charge 
separation, gives rise a nonlinear response of optical electrons in collections of coupled atoms, 
which is illustrated by curved optical electron trajectories in Fig. 1b. We note, that similar 
nonlinearity arising from electrostatic interactions has been considered as ‘multipole 
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nonlinearity’ in the context of nonlinear plasmonic metamaterials [35]. We apply this basic 
principle of one-to-one coupling via the Coulomb force to modelling of the response of large 
collections of atoms that form particles with a hexagonal lattice. In order to increase the speed 
and stability of numerical modelling, a perturbative scheme is used. In the first stage, the linear 
response of N coupled atoms is found. This linear response is then used, in the second stage, as 
a source for determining the nonlinear response. In order to approximate a typical atomic 
response in dielectrics such as SiN, ITO and TiOx, we choose ω0≈9.4×1015 s-1 and γ=0.01ω0 
(This ω0 corresponds to a UV resonance at 200 nm wavelength). The amplitude of the driving 
electric field (E) is chosen to be 8.68×107 V/m, which corresponds to pump light of 1 GW/cm2 
intensity. The wavelength of the pump is that of the Nd:YAG laser (1064 nm, angular frequency 
ω≈0.19×ω0), chosen purely because it is a common wavelength for the nonlinear optics 
community and because it lies far outside the resonant region defined by the choice of ω0 and 
γ.  The lattice constant, i.e. the smallest inter-atomic spacing, is 0.5 nm in all cases.  

We will calculate the total linear and non-linear electric dipole induced in collections of 
atoms – 2D particles carved out of a hexagonal lattice by imposing a closed border. Given a 
displacement of the kth electron relative to its nucleus, rk -Rk, the electric dipole due to the kth 
atom is dk=q(rk -Rk), and the total electric dipole is p=∑k dk, which can be separated into linear 
and nonlinear components, p(1), p(2), …, oscillating at the driving frequency ω and its harmonics, 
2ω, … . 

Calculation times for the structures considered below – containing up to 3691 atoms – are 
up to 32 seconds in Matlab R2018b on a Windows 10 computer with Intel® CoreTM i5-6600 3.3 
GHz CPU and 32 GB RAM. 

 

2.2. Triangular particles   

Irrespective of the origin of nonlinear response, the vectorial nature of the electromagnetic 
fields implies that a total second-order nonlinear response of a 2D (two-dimensional) particle 
driven by in-plane optical fields, i.e. a total induced non-linear electric dipole, is allowed only 
for structures with three-fold rotational symmetry, or no rotational symmetry at all [33, 34]. We 
will therefore focus on two-dimensional particles with three-fold overall rotational symmetry, 
the simplest case that permits second-order nonlinearity, represented by equilateral triangular 
arrangements of atoms cut out of a hexagonal lattice. 

We use the notation y
xxd  to denote per-atom second-order nonlinear electric dipole along 

the y-axis induced due to driving field polarized along the x-axis. The other components follow 
in the same way. Fig. 2 shows the second-order nonlinear electric dipole induced in each atom 
of a triangular 2D particle, cut out of a hexagonal lattice of atoms. Several important 
phenomena are readily observable: (1) the quadratic nonlinear dipole is always weakest in the 
central region of the triangle – as one would expect for a centrosymmetric arrangement of atoms 
(hexagonal lattice); (2) a nonlinear response at the edge seems to be induced in all cases with 
similar amplitude, but different phases of second harmonic response at different edges can yield 
vanishing (components of) total second harmonic response for a whole particle. x-polarized 
field (Fig. 2a) as well as y-polarized field (Fig. 2c) create a second-order nonlinear response in 
the x-direction along the edges of the triangle, but the nonlinear response of opposite edges 
cancels out, thus the x-component of the total nonlinear electric dipole is zero, as it should be 
for a particle with mirror symmetry, x ↔ -x. In contrast, the y-polarized second-order nonlinear 
response resulting from x-polarized (Fig. 2b) and y-polarized (Fig. 2d) illumination does not 
cancel.   



 

Fig. 2. Second order nonlinear response in a triangular nanoparticle. Colour maps show the α-
component of the atomic dipoles α

ββd   at frequency 2ω when the particle is driven by light field 
Eβ at frequency ω polarized along the β direction. Note the strong second harmonic (SH) 
response at the edges.  

 

2.3. Particle symmetry 

Basic symmetry considerations [34] show that total second harmonic response is forbidden for 
2-fold rotationally symmetric shapes such as a rectangle, but is allowed for 1-fold symmetric 
shapes such as isosceles triangle. An interesting question to ask is how this selection rule 
appears when a triangle is gradually converted via a trapezoid into a rectangle. How does the 
total nonlinear electric dipole vanish? How does it depend on changes in geometry (for a given 
driving field)? What effect does the finite lattice size have on the changes in the induced 
nonlinear electric dipole? To address this, a series of calculations has been carried out for 
symmetric triangular, trapezoidal and rectangular particles driven by the same electric field 
along the symmetry axis (y-axis). The results are shown in Fig. 3. We fix the height and bottom 
side length of an isosceles trapezoid, and increase the slope of its left and right sides by 
extending its top side from 0 nm to 30 nm, see Fig. 3a. The effect of such changes in particle 
symmetry, from three-fold rotational symmetry via absence of rotational symmetry to two-fold 
rotational symmetry, on the magnitude of the total linear dipole (p(1)) and the total second-order 
dipole (p(2)) is shown in Fig. 3b. The magnitude of the total linear dipole (p(1)) grows linearly 
as the triangle evolves into a rectangle. This is consistent with the linear polarizability of each 
atom being roughly independent of its neighbourhood – so more atoms translate into 
correspondingly higher total linear electric dipole. Indeed, we find that the linear dipole per 
atom remains constant. Clearly, such a simple response is a consequence of operating in the 
off-resonance regime (the driving frequency to atomic resonant frequency ratio is ω/ω0≈0.19). 
In contrast, the magnitude of the total quadratic electric dipole (p(2)) decreases linearly with the 
increase in the top side length. This can be explained by considering the plots of the per-atom 

SH dipole per atom along  y )

SH dipole per atom along  x )(c)

(b)

30 nm

30 nm

SH dipole per atom along  x )(a)

30 nm

×10-37 C m
3.4

1.7

-1.7

-3.4

0.0

SH dipole per atom along  y )(d)

30 nm

x

y

×10-37 C m
3.4

1.7

-1.7

-3.4

0.0

×10-37 C m
3.4

1.7

-1.7

-3.4

0.0

×10-37 C m
3.4

1.7

-1.7

-3.4

0.0



quadratic electric dipole ( y
yyd ) for the rectangle and the triangle (Fig. 3c,d). In the rectangle, the 

second-order electric dipole excitation at the top and bottom sides is of equal magnitude but 
opposite phase, giving zero total effect. In case of the triangle, this cancellation does not occur. 
The gradual drop in the magnitude of the total second-order dipole with increasing top side 
length, shown in Fig. 3b, is consistent with the cancellation of second-order dipole 
contributions from atoms in corresponding sections of the top and bottom sides, which leads to 
complete cancellation of the particle’s second-order nonlinear response as it becomes 
rectangular. Thus, while local edge nonlinearity is also present for particle shapes with 
inversion symmetry, anti-phase nonlinear response of opposite edges causes cancellation of the 
overall second-order nonlinear response of inversion-symmetric particles.  

 

Fig. 3. Removal of second harmonic response by introduction of inversion symmetry of the 
nanoparticle. (a) The schematic shows a transition from a triangular to a rectangular 
nanoparticle.  (b) The magnitudes of the total dipole moments p(1) and p(2) at the fundamental 
and second harmonic frequencies induced by a y-polarized fundamental wave in a particle 
evolving from lack of inversion symmetry to inversion symmetry. Colour maps (c) and (d) show 
the y-component of the atomic dipole y

yyd  at frequency 2ω for the initial and final particle 

shapes. 

 
We note that second-order nonlinear response with same magnitude and opposite phase for 

opposite edges (one rotated 180° relative to the other) has an interesting implication for inverse 
structures (a particle and the corresponding particle-shaped hole). An inverse structure results 
from interchanging which side of the edge the material is on, which is equivalent to a 180° 
rotation of each segment of particle edge. Therefore, inverse structures must have second-order 
dipoles of same magnitude and opposite sign. 

 

2.4. Particle size 

The dipoles in Fig. 3 show remarkably smooth dependencies on particle geometry, despite the 
fact that the length of the longest side of the rectangle is just 61 atoms. One can therefore 
conjecture that whilst the nonlinear response at each point on the edge may be strongly 
influenced by the local orientation of the edge-cut relative to the driving field and atomic lattice, 
the total second-order nonlinear response can be approximated by treating edges as ‘smooth’ 
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even in the presence of a coarse lattice. This conjecture can be tested by choosing a particle of 
some shape, changing its overall size (whilst keeping the lattice size fixed), driving the particle 
with electric field of fixed magnitude and orientation, and calculating the total induced electric 
dipole. The results of this test, for the case of triangular particles, are shown in Fig. 4. The linear 
and second-order nonlinear induced electric dipoles have been calculated for triangles with side 
lengths from 1 nm (6 atoms in total) to 17 nm (630 atoms). Despite the coarse lattice (lattice 
constant of 0.5 nm), the total linear electric dipole is proportional to the number of atoms, i.e. 
the linear electric dipole per atom does not change much, see inset. In contrast, the total second-
order nonlinear electric dipole is proportional to the size S of the triangle’s edges, i.e. to the 
particle’s perimeter. Thus, the overall quadratic nonlinear response in mesoscopic two-
dimensional particles, with centrosymmetric structure of the bulk, is proportional to the 
perimeter of the particle. We note that size effects of (surface) second-order nonlinear response 
of metallic particles have been investigated experimentally in the past, where an increase in 
second-order nonlinear response with particle size has been observed for very small particles 
[36]. The noteworthy effect detected here is that such behaviour persists to levels of just few 
atoms in dielectric particles. 

 

Fig. 4. The effect of the size of nanostructures on their linear and nonlinear response. The 
magnitudes of the total dipole moments p(1) (black line) and p(2) (blue line) at the fundamental 
and  second harmonic frequencies induced by a y-polarized fundamental wave for triangular 
particles of increasing size, S (from 6 to 630 atoms total). The inset shows linear and second 
harmonic responses per atom as functions of the total number of atoms N in the triangle. 

 

2.5. Optimization strategy 

The proportionality of the total induced second-order nonlinear electric dipole to the perimeter 
of the particle suggests a simple strategy of optimizing the non-linear response of mesoscopic 
structures. As illustrated by Fig. 5, given a 2D particle with nonlinear response, such as an 
equilateral triangle, an increased second-order nonlinear response can be achieved by 
substituting the particle (triangle) with smaller particles of the same shape (triangles), which 
have a larger combined perimeter and the same combined area. This process will increase the 
total length of edges, thus increasing the second-order nonlinear response, but will leave the 
overall number of atoms (approximately) unchanged, thus preserving the linear response. 
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We note that this method for maximizing the nanostructure’s nonlinear response will 
naturally lead to a metasurface, i.e. a periodically structured film (Fig. 5). While a particle that 
is small in comparison to the wavelength will radiate over a large solid angle, second harmonic 
generation from a 2D array of nanostructures will become increasingly directed with increasing 
overall size of the array. The direction(s) of second harmonic generation will be determined by 
phase matching, i.e. by constructive interference of the fields radiated by all unit cells of the 
array. 

While we consider 2D structures, we expect that our method can be extended to cover 
structured films, that are thin in comparison to the wavelength under consideration, by treating 
interactions between columns of atoms rather than individual atoms. For such structures, the 
overall nonlinear response will increase with increasing thickness due to the increasing number 
of atoms on the structure’s perimeter. However, as the thickness increases further, phase 
matching along the thickness direction would need to be included to describe the overall 
nonlinear response.   

 

Fig. 5. Optimization of the second harmonic dipole response via nanostructuring. (a) Schematic 
of a large equilateral triangle structure (cut out of a hexagonal lattice of atoms) being divided 
into 4 and then 16 equilateral triangles. The overall area occupied by the triangles remains the 
same, but the length of the perimeter doubles with every step. (b) The distribution of the second 
harmonic (SH) dipole per atom along the y-direction, excited by y-polarized driving field. (c) 
The magnitude of total linear dipole and total second harmonic dipole for the cases considered 
in (b). The total linear dipole is almost the same in all cases, since the number of atoms in the 
three arrangements is almost the same. The total SH dipole is proportional to the total edge 
length, i.e. it doubles with every step. 
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3. Conclusion 
In summary, we have shown that second-order nonlinear optical response can arise from the 
nonlinearity of inter-atomic Coulomb interactions – a universal mechanism, applicable to all 
media. Coulomb interactions between neighbouring atoms cause nonlinear oscillations of 
charges at the edges of 2D particles in response to light. Patterning enables second-order 
nonlinear response even in case of normal incidence onto centrosymmetric dielectric films, 
where the second-order nonlinear response is proportional to the perimeter of the patterned 
shape. The proportionality is extremely robust and persists down to the level of just few atoms. 
Edge nonlinearity, as described here, should be expected in a wide variety of metamaterials, 
photonic crystals and other planar nonlinear nanophotonic structures driven by light at normal 
incidence. It is of direct relevance to the rapidly growing range of applications of two-
dimensional dielectric metamaterials (metasurfaces) in nonlinear photonics and quantum 
optics.  
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