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Energy Efficiency and Delay Optimization for Edge
Caching Aided Video Streaming
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Abstract—In this paper, we design a computing, communica-
tion and caching scheme for edge caching-based video streaming
in order to improve the network performance. Firstly, we
optimize the system’s energy efficiency and delay with the aid of
network function virtualization. Then, a dynamic edge caching
decision is developed, and based on Lyapunov optimization,
an alternating resource optimization algorithm is proposed for
allocating the optimal subcarrier and power resources, video
caching and computing resources. Our numerical results show
that the proposed scheme outperforms both the traditional
caching scheme as well as the least frequently used (LFU)-40%
regime, and strikes a compelling tradeoff between the energy
efficiency and delay.

Index Terms—edge caching, video streaming, computing, en-
ergy efficiency, delay.

I. INTRODUCTION

For high-throughput video streaming, edge caching substan-
tially reduces users’ delay, whilst additionally improving the
network performance [1]. In traditional caching at the edge,
the popular videos will be completely stored in advance in
the edge and then transmitted without relying on the backhaul
link when requested [2].

The literature of edge caching has evolved rapidly [3]–[5].
For a given cache memory budget, Zhang et al. [3] optimized
the cache size of macro and small base stations (BSs) in
heterogeneous networks for maximizing the overall network
capacity. Ma et al. [4] proposed to exploit both the temporal
and spatial video request patterns observed for improving the
performance by edge content caching, while Li et al. [5]
minimized the average video distortion of all users. They
all improve the user experience by caching strategies or by
optimizing the edge cache size. However, the storage space in
the edge is always limited. In order to circumvent this problem,
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video compression is introduced, which only caches the com-
pressed videos and the corresponding transcoding parameters
at the edge [6]. When requested, the compressed video can be
transcoded into different-resolution versions required by the
users on the fly.

In this way, video compression can alleviate the shortage of
edge storage space and congestion of the backhaul link through
online transcoding, so as to integrate computing, caching,
and communication (3C) resources. However, existing con-
tributions only manage one or two of the resources [7], [8].
Explicitly, Sun et al. [7] proposed a hierarchical wireless
resource allocation architecture, in which subchannels are first
allocated to the local resource managers and then to the
users. Wang et al. [8] considered the offloading decision and
resource allocation in the twin-fold context of communication
and computing.

Nevertheless, the 3C resources exploited for optimizing the
energy efficiency (EE) of video streaming are characterized
in this treatise for the first time, where the most popular
videos are cached without compression, while the remaining
videos are compressed and then cached for enhancing the
performance of vehicular networks. Specifically, we formulate
the problem of maximizing the network’s EE, while satisfying
the delay constraints by developing a near-instantaneously
adaptive edge caching (NAEC) decision regime and optimizing
both the subcarrier and power allocation, as well as the com-
puting resources. Then by invoking Lyapunov optimization, an
alternating resource optimization (ARO) algorithm is proposed
for solving the above problem. Finally, our numerical results
show that the proposed 3C scheme outperforms both the
traditional caching scheme as well as the LFU-40% regime,
and the associated tradeoff between the EE and delay is
characterized. The main contributions and our comparisons to
the relevant references are shown in Table 1.

II. SYSTEM MODEL

For simplicity, we assume that a single physical base station
(BS) supports K users and the BS has certain computing
and caching capability. With the aid of network function
virtualization (NFV), the physical BS could be virtualized into
a pair of virtual BSs (vBSs), e.g., vBS1 and vBS2, where
vBS1 is equipped with a certain storage space for caching
uncompressed videos, while vBS2 has sufficient computing
resources used to transcode compressed videos, as shown in
Fig. 1. For convenience of analysis, we partition the different-
size and different-resolution video files into video blocks of
the same size. Assume that there are L video blocks, each
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Table 1: Our Main Contributions.

Novelty [2] [3] [4] [5] [6] [7] [8] Our paper
Video streaming scenario X X X X
Theory of video compression (transcoding online) X X
Theory of edge caching X X X X X X
Dynamic edge caching decision X X X
Allocation of computing resource X X X
Allocation of communication resource (subcarrier) X X X
Allocation of communication resource (power) X X X
Optimization of network performance (EE) X X X
Optimization of network performance (delay) X X X X X
Tradeoff between EE and delay X
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Figure 1: System model.

having M bits and an index set of L= {1, ..., l, ..., L}. The
vBS1 can cache Cn video blocks, where Cn<L. The system
has time slots t∈{0, 1, 2, ..., T} of duration τ . The procedure
of edge caching-based video streaming is divided into two
phases: the pre-caching phase during off-peak hours and the
online transmission phase.

A. Pre-caching Phase
In the pre-caching phase, we propose a NAEC decision

based on least frequently used (LFU) strategy, which means
video blocks in vBS1 that are least frequently used in a certain
time period are removed when full [9]. The mobile network
operator (MNO) stores either uncompressed or compressed
video blocks at the edge according to their popularity. Assume
that the system does not know the time-varying popularity in
advance. Therefore, the popularity of video blocks for user
k, ∀k ∈ K may be determined from the user’s historical re-
quests during the previous T1 transmission slots (T1 < T ), and
then some of the cached videos may be replaced depending on
the predicted popularity based on the previous request history.

Without loss of generality, we use the Zipf distribution to
indicate the popularity probability of video block l for user
k, which is formulated as qk,l (t) =

[Ok,l(t)]
−α∑L

i=1 [Ok,i(t)]
−α , where

Ok,l (t) is the popularity order of video block l for user k
arranged in descending sequence based on the user’s historical
requests. In other words, α indicates the degree of popularity,
which is typically in the range of α ∈ [0.5, 1.5]. A large α
represents more requests concerning popular video blocks and
less requests for unpopular ones. Let ql (t) = 1

K

∑K
k=1 qk,l (t)

denote the average popularity probability of video block l
requested by all users in the whole network. And the full set is

given by q (t) = {q1 (t) , ..., ql (t) , ..., qL (t)}, while its sorted
version arranged in descending order of q (t) is formulated as
O(t) = Π (q (t)).

Therefore, vBS1 stores the top Cn video blocks of O(t),
while vBS2 stores the remaining (L−Cn) compressed video
blocks and transcoding parameters. To facilitate our mathe-
matical analysis, we neglect the compressed video’s storage
space requirement at the edge in this paper. The popularity
order Ok,l (t) of a video block of user k will be updated once
every T1 transmission slots, so will O(t). The specific steps
of the NAEC decision in pre-caching phase are summarized in
Algorithm 1. It can be found that the number of video blocks
evicted and replaced in both vBSs varies in every update.

B. Transmission Phase
During the transmission phase, the MNO assigns the most

suitable vBS to users. If the requested contents have been
cached without compression, the user is associated with vBS1
directly for video-acquisition; otherwise the user is associ-
ated with vBS2 for fetching, transcoding and transmission.
Therefore, we divide this phase into two processes: computing
process and transmission process, which are described below,
respectively.

1) Computing Process: Let us assume that the set of
video blocks requested by user k at slot t is dk (t) =
{dk,1 (t) , ..., dk,n (t)} and the total number is n. The number
of compressed video blocks is

∑n
l=1 y (Π [dk,l (t)]), where

Π [dk,l (t)] is the new position of dk,l (t) according to
Π(q (t)), and y (i) = 1 if i > Cn, otherwise y (i) = 0.
Then the load that has to be computed for user k at slot t is
Ac

k (t) = M ·
∑n

l=1 y (Π [dk,l (t)]), so we model the queuing
process of computing for user k as:

Zk (t+1)=max {Zk (t)−[fk (t)/ck]τ+Ac
k (t) , 0} , ∀k, (1)

where [fk(t)/ck] accounts for the local computing rate of user
k at a computing clock frequency of fk(t) expressed in CPU
cycle/s, and ck is the number of computing cycles required
per bit in CPU cycle/bit [10]. The network is said to be
stable, when all the K queues are mean-rate stable [11]. We
define F (t)={fk(t)} as the set of computing clock frequency.
Meanwhile, we have the time-averaged expectation of fk(t) as

fk = lim
I→∞

1

I

∑I−1

t=0
E {fk (t)}. (2)

Given fk (t), the power consumption of computing can be
calculated as r[fk (t)]

3 in which the parameter r depends on
the hardware architecture [10]. Therefore, based on E = Pt,
which indicates that energy consumption is equal to the
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Algorithm 1 Near-instantaneously Adaptive Edge Caching
(NAEC) Decision in Pre-caching Phase.
1: Input: The set dk(t) of video blocks requested by user k at slot t.
2: Output: O(t), and update cached video blocks in vBS1 and vBS2.
3: Set t = mT1,m ∈ N.
4: Initialization: When m = 0, vBS1 caches the first Cn uncompressed video blocks

according to users’ request order, and vBS2 caches the remaining compressed video
blocks; O (t) = ∅.

5: REPEAT
6: Let m = m + 1.
7: Obtain popularity order of Ok,l(t) during the previous T1 transmission slots, and

its probability qk,l(t) by Zipf distribution.
8: Obtain the full set q(t) of the average popularity probability in the whole network.
9: Obtain the sorted version O(t) = Π (q (t)) arranged in descending order of q(t).

10: Compare the existing video blocks stored in vBS1 with the top Cn video blocks in
O(t). The same are reserved, and different are evicted and replaced by LFU. Then
use the same method to evict and replace compressed videos in vBS2.

11: STOP when t ≥ T .

product of power and time, all users’ computing-related energy
consumption Ecomp (t) in slot t is given by

Ecomp (t) =
∑K

k=1
r[fk (t)]

3 · [Ac
k (t) ck]/fk (t). (3)

We then have the time-averaged expectation of Ecomp (t) as

Ecomp = lim
I→∞

1

I

∑I−1

t=0
E {Ecomp (t)}. (4)

2) Transmission Process: Regardless whether associated
with vBS1 or vBS2, all video blocks requested have to be
transmitted over wireless channels. Let us consider the down-
link (DL) transmission in an orthogonal frequency division
multiple access (OFDMA) system, where no inter-user inter-
ference is encountered. The DL bandwidth B Hz is partitioned
into S subcarriers and each subcarrier has a bandwidth of B/S
Hz. The channel coefficient hk,s(t) of user k on subcarrier s
(∀s ∈ S) at slot t is independent and identically distributed
(i.i.d.) over time and pk,s(t) is the transmit power of user k
on subcarrier s at slot t, while P (t) = {pk,s(t)} is the set of
transmit powers. The achievable data rate rk,s(t) of user k on
subcarrier s at slot t is given by

rk,s(t) =
B

S
log2

[
1 +

pk,s(t) |hk,s(t)|2

(B
S
)N0

]
, (5)

where the power spectral density (PSD) of the additive white
Gaussian noise (AWGN) is N0. We define X(t) = {xk,s(t)}
as the set of subcarrier allocation indicators and xk,s(t) is a
time-sharing factor of user k on subcarrier s. Based on (5),
the total DL transmission rate of user k at slot t is given by

Rk(t) =
∑S

s=1
xk,s(t)rk,s(t) , ∀k. (6)

Similar to (2), we have the time-averaged expectation of
Rk = lim

I→∞
1
I

∑I−1
t=0 E {Rk (t)}. Moreover, the DL transmis-

sion power consumption of user k at slot t is modeled as
Pk(t) =

∑S

s=1
xk,s(t)pk,s(t) + P c

k , ∀k, (7)

where P c
k denotes the circuit power consumption for user

k. Then the time-averaged expectation is defined as P k =
lim
I→∞

1
I

∑I−1
t=0 E {Pk (t)}.

The traffic load required by user k for wireless transmission
at slot t is Aa

k (t)=M ·n. Thus, we model the queuing process
of transmission for user k by:

Qk (t+ 1)=max {Qk (t)−Rk (t) τ+Aa
k (t) , 0} ,∀k. (8)

Without loss of generality, we assume the total delay to be
the sum of transmission queuing delay and computing queuing
delay. Due to the fact that the user’s average queuing delay is

proportional to the average queue length according to Little’s
Theorem [12], we can represent the delay of user k by the
sum of the queue length [Qk (t)+Zk (t)]. In addition, by E=
Pt, we get the energy consumption of wireless transmission
Eaccess (t) in slot t as:

Eaccess(t)=
∑K

k=1
Pk(t)·

Aa
k(t)

Rk(t)
=
∑K

k=1

Pk(t)Mn

Rk(t)
. (9)

The time-averaged expectation of Eaccess(t) is given by

Eaccess = lim
I→∞

1

I

∑I−1

t=0
E {Eaccess (t)}. (10)

Let us now analyze the EE performance of the 3C scheme.
The time-averaged network EE is deduced from the definition
of EE as the ratio of total number of requested bits to the total
energy consumption, as follows:

UEE(X,P,F ) =
nMK

Ecomp + Eaccess

. (11)

III. PROBLEM FORMULATION AND SOLUTION

We aim for maximizing the network’s EE of the proposed
scheme, while satisfying the user’s delay constraint including
the transmission and computing delay in the edge caching-
based video streaming service, i.e.,

min
X,P ,F

1

UEE(X,P ,F )
,

s.t. C1 : Qk (t) ≤ β, ∀k, t, C2 : Zk (t) ≤ ω,∀k, t,
C3 : R̄k ≥ Rav

k ,∀k, C4 : fk ≤ fmax
k , ∀k,

C5 : fk(t) ≥ 0, ∀k, t, C6 : 0 ≤ xk,s(t) ≤ 1, ∀k, s, t,

C7 :
∑K

k=1
xk,s(t)≤1, ∀s, t, C8 : Pk(t) ≤ Pmax

k , ∀k, t,

C9 : pk,s(t) > 0,∀k, s, t,
(12)

where Rav
k , fmax

k and Pmax
k are the average rate requirement,

the maximum computing capability and power of user k,
respectively. Furthermore, C1 and C2 guarantee the queueing
stability under the maximum queue lengths of β and ω, re-
spectively, while C3 guarantees the average rate requirements
of user k. Additionally, C6 and C7 denote the time sharing
constraints of subcarriers, while C4, C5, C8 and C9 are the
peak and nonnegative computing frequency constraints, as well
as the peak and nonnegative transmission power constraints,
respectively.

To reduce the complexity in (12), we propose an ARO
algorithm by separating the edge caching subproblem from the
communication subproblem to make the optimization problem
easier to solve.

A. Communication Subproblem
For the subcarrier and power allocation in the communica-

tion subproblem, we have
min
X,P

Eaccess,

s.t. C1, C3, C6− C9.
(13)

Using the generalized fractional programming theory of [13]
and a similar transform to the stochastic optimization problem
of [14], the nonlinear fractional problem of (13) is transformed
into

min
∑K

k=1
[P k(X,P )− πEE

k (t)Rk(X,P )],

s.t. C1, C3, C6− C9,
(14)

where πEE
k (t)=

∑t−1
τ=0 Pk[X(τ),P(τ)]∑t−1
τ=0 Rk[X(τ),P(τ)]

.
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Algorithm 2 Alternating Resource Optimization (ARO) Al-
gorithm to Solve (12).
1: Initialization:Qk(0)=0,Zk(0)=0,Gk(0)=0,Yk(0)=0,andπEE

k (0)=0.
2: REPEAT
3: Set d = 0. Initialize the lagrange multipliers θk , the step size ed.
4: repeat

Solve the power allocation, subcarrier allocation by using (20) and (21),
respectively.

d = d + 1; Update θd
k by subgradient method.

until Convergence = true or d > dmax

return {X∗(t),P ∗(t)} as the optimal result.
5: Update user’s rate Rk(t) and power Pk(t) by (6) and (7).
6: When t = mT1,m ∈ N, update the video popularity set O(t) and cached video

blocks in vBS1 and vBS2 by Algorithm 1.
7: Update F ∗(t) according to (28).
8: Let t = t + 1.
9: Update Qk(t), Zk(t), Gk(t), Yk(t) and πEE(t) according to (15), (25), (16),

(26) and (14), respectively.
10: STOP when t = T .

We transform the transmission queue according to C1 into:

Qk(t+1)=

{
max[Qk(t)−Rk(t)τ, 0], if Qk(t)>β,

max[Qk(t)−Rk(t)τ+Aa
k(t), 0], otherwise.

(15)

The queue is denoted as Q(t)={Qk(t)}.
Based on the general Lyapunov theory of [11], we transform

C3 in (12) into a virtual rate queue stability problem for
simplifying it. We denote the virtual rate queues as G(t) =
{Gk(t)}, which are updated as follows:

Gk(t+ 1) = max[Gk(t) +Rav
k τ −Rk(t)τ, 0],∀k, t, (16)

where Gk(0)=0. The vector Θ(t)=
[
Q(t),G(t)

]
is defined to

represent the queuing states of all queues. According to [11],
the drift-plus-penalty function df(t) is given by

df(t) = E
{
L
[
Θ(t+ 1)

]
− L

[
Θ(t)

]
|Θ(t)

}
+ V E

{∑K

k=1
[P k(X,P )− πEE

k (t)Rk(X,P )]
}
,

(17)

where the Lyapunov function is defined as

L(Θ(t))
∆
=

∑K

k=1

{[
Q2

k(t)+G2
k(t)

]
/2
}
, (18)

and V ≥0 is a control parameter invoked for striking a tradeoff
between the delay and EE.

According to stochastic optimization theory [11], the opti-
mal solution of the problem (14) at slot t can be obtained by
minimizing the upper bound of df(t) as follows

min
X,P

∑K

k=1

{
ξ1Qk(t)A

a
k(t)−τQk(t)Rk(t)+

τGk(t) [R
av
k −Rk(t)]

}
+V

∑K

k=1

{
Pk(t)−πEE

k (t)Rk(t)
}
,

s.t. C6− C9,

(19)

where ξ1 is a binary factor, which equals to 1 if the queue
length is below the transmission queue length threshold β and
0 otherwise.

Following a similar approach presented in Section 3.2 of
[13], we can prove that (19) is convex and its closed-form
solutions can be obtained by the Karush-Kuhn-Tucker (KKT)
conditions. We obtain the optimal power allocation policies as

p∗k,s(t)=

[
B

S

{
πEE
k (t)+[τQk(t)+τGk(t)]/V

(1+θk/V )In2
− N0

|hk,s(t)|2

}]+

, (20)

where [y]+ = max[y, 0], and θk is the Lagrange multiplier
corresponding to constraint C8. Substituting (20) into (19),
we obtain the optimal subcarrier assignment as

x∗
k,s(t)=

{
1, if φk,s(t)<0 and k=arg min

1≤k≤K
φk,s(t),

0, otherwise,
(21)
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Figure 2: Cache hit rate comparison (T1=10 time slots).

where
φk,s(t)=(V +θk) p

∗
k,s(t)−

[
τQk(t)+τGk(t)+V πEE

k (t)
]

× B

S
log2

{
1+

p∗k,s(t)|hk,s (t)|2

(B/S)N0

}
.

(22)

Using the sub-gradient-based method, the update of θk is
given as

θ
(d+1)
k (t)=

[
θdk(t)−ed

{
Pmax
k −

[∑S

s=1
x∗
k,s(t)p

∗
k,s(t)+P c

k

]}]+

, (23)

where d denotes the iteration index having the maximum value
of dmax and ed is the step size. For sufficiently small ed, the
primal variable pk,s(t) and xk,s(t) will converge to the optimal
p∗k,s(t) and x∗

k,s(t) as d → ∞, respectively [15].

B. Edge Caching Subproblem

For the computing resource allocation of our edge caching
subproblem, we have

min
F

Ecomp,

s.t. C2, C4, C5.
(24)

Similar to the derivation of (13), based on Lyapunov the-
ory [11], we transform C2 and C4 into, respectively:

Zk(t+1)=

{
max[Zk(t)−[fk (t)/ck]τ, 0], if Zk(t)>ω,

max[Zk(t)−[fk (t)/ck]τ+Ac
k(t), 0], otherwise,

(25)

Yk(t+1)=max[Yk(t)+fk(t)τ−fmax
k (t)τ, 0], ∀k, t. (26)

Then the optimal subproblem (24) may be transformed into:

min
F

∑K

k=1

{
V r[fk(t)]

2ck
∑n

l=1
y (Π (dk,l (t)))

+ξ2Zk(t)A
c
k(t)−τZk(t)[fk (t)/ck]+τYk(t) [fk(t)−fmax

k ]
}
,

s.t. C5,

(27)

where ξ2 is a binary factor, which equals to 1 if the queue
length is below the threshold ω and 0 otherwise. Specifically,
according to Algorithm 1, we can evaluate the video popularity
set O(t) and update cached video blocks in vBS1 and vBS2
every T1 slots during the pre-caching phase. Therefore, we
know that (27) can be solved by simple quadratic programming
to arrive at the optimal computing frequency f∗

k (t):

f∗
k (t) =

[
τ Zk(t)

ck
− τYk(t)

2V rck
∑n

l=1 y (Π (dk,l (t)))

]+

. (28)

Therefore, we propose a step-by-step iterative ARO al-
gorithm for optimizing the 3C resources, as summarized in
Algorithm 2. Observe that the algorithm has a complexity
order of O(TK(dmaxS+n)) and converges with probability 1
by Theorem 4.4 of [11]. In APPENDIX A, we prove that the
set of {X∗(t),P ∗(t),F ∗(t)} is the optimal solution of (12).
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IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we compare the performance of our 3C
scheme to that of the traditional caching scheme, where the
most popular videos are cached at the edge without com-
pression and the remaining videos are transmitted over the
backhaul link. This scheme also adopts the NAEC decision
to evict and replace video blocks in vBS1. For simplicity, the
subcarrier bandwidth B is normalized to 1. The parameters
are given as follows: V = 2000, K = 10, S = 64, L = 100,
M = 1 kbits, Cn = 30, n = 10, ck = 2000 cycle/bit,
r=10−27 W·s3/cycle3, fmax

k =1010 cycle/s, Pmax
k =(40/K)

W, P c
k = 0.2 W, α= 1, τ = 0.15 s/slot, Rav

k = 1 Mbit/s and
(β + ω)=0.4s.

Firstly, to show the advantages of our NAEC decision in
terms of eviction and replacement, we use the LFU-40%
caching (only fixed update 40% of video blocks in vBS1 by
the LFU principle in each update) and the static caching (video
contents cached in vBS1 are always unchanged) regimes for
comparison. We evaluated the cache hit rate of these cache
decisions in Fig. 2. It can be seen that our proposed cache
decision maintains a higher cache hit rate (more than 80%)
than the other decision regimes after initialization.

Fig. 3 characterizes both the EE and delay versus the
number of users K for three schemes. For our proposed 3C
scheme, the EE decreases near-exponentially upon increasing
K, while the delay increases almost linearly. It is expected
that the increase of the number of users has a negative impact
on the network’s performance. For the LFU-40% regime and
for the traditional scheme, the variation of EE and delay is
similar to that of our proposed scheme, but its performance
is inferior. The delay of the traditional scheme is seen to
be higher than that of the other two schemes, because its
backhaul transmission imposes a higher delay. Therefore, if
the edge storage space is sufficient, the MNO should first
consider using the proposed 3C scheme, which saves more
energy consumption and reduces delay than the traditional
scheme and the LFU-40% regime.

Fig. 4 depicts both the EE and delay versus the number
n of video blocks requested by user k in slot t under the
three schemes considered. Naturally, a higher n implies a
higher traffic load in the network. Observe that as the traffic
loads increase, the EE of the three schemes decreases near-
exponentially, which indicates that the number of video blocks
also has an adverse effect on the network’s performance. Ad-

ditionally, in our proposed scheme, the delay is lower, whilst
the EE is higher than that of the other two schemes. When
n exceeds 45, the delay of the proposed scheme saturates
within about 0.4s due to the limits of maximum queue lengths
controlled by β and ω.

Fig. 5 focuses on the EE and delay versus the tradeoff factor
V of the three schemes. It can be seen that both the EE and
delay increase with the increase of V for all the schemes. As
observed, the higher the delay, the higher the EE. Explicitly,
they cannot be improved at the same time, indicating their
tradeoff. Therefore, V serves as a control parameter facilitating
the improvement of EE at the expense of the delay upon
increasing V . Observe that the EE of the proposed scheme
is always better than that of the other schemes.

V. CONCLUSIONS

In this paper, we designed a 3C scheme for optimizing
the EE and delay of edge caching-based video streaming
by NFV. Then, we proposed the NAEC decision for pre-
caching and designed the ARO algorithm for optimizing the
computing, communication and caching resources with the
aid of Lyapunov optimization. Finally, the numerical results
demonstrated that our proposed scheme has better performance
and efficiently reduces the users’ delay. Additionally, the
associated tradeoff between EE and delay may be readily
controlled by the factor V .

APPENDIX A
PROOF OF OPTIMAL SOLUTION

As presented in Section 3.2 of [13], we can view∑K
k=1 Rk(t) in (19) as a perspective function of the concave

function log2

[
1 +

pk,s(t)|hk,s(t)|2

(B
S )N0

]
, which is jointly concave in

X(t) and P (t). Furthermore,
∑K

k=1 Pk (t) in (19) is a linear
function of X(t) and P (t), respectively, and the constraints in
(19) are all linear constraints. Therefore, the problem (19) is
convex. By exploiting the property of convex problems that the
local minimum is the global minimum, the optimal solution
{X∗(t),P ∗(t)} obtained by the classic Lagrange multiplier
method is the global optimal solution of (13).

Similarly, (27) is a convex problem, because its objective
is a single-variable quadratic function and its constraint is
linear. Therefore, the optimal solution of F ∗(t) is also the
globally optimal solution of (24) according to the properties of
convex problems. Furthermore, our proposed problem of (12)
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can be decomposed into two independent subproblems (13)
and (24), so the set {X∗(t),P ∗(t),F ∗(t)} of the optimal
solution obtained by the pair of subproblems is the optimal
solution of (12).
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