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Intelligent Reflecting Surface Assisted Beam
Index-Modulation for Millimeter Wave

Communication
Sarath Gopi and Sheetal Kalyani and Lajos Hanzo

Abstract—Millimeter wave communication is emi-
nently suitable for high-rate wireless systems, which may
be beneficially amalgamated with intelligent reflecting
surfaces (IRS), while relying on beam-index modulation.
Explicitly, we propose three different architectures based
on IRSs for beam-index modulation in millimeter wave
communication. Our schemes are capable of eliminating
the detrimental line-of-sight blockage of millimeter wave
frequencies.The schemes are termed as single-symbol
beam index modulation, multi-symbol beam-index mod-
ulation and maximum-SNR single-symbol beam index
modulation. The principle behind these is to embed the
information both in classic QAM/PSK symbols and in
the transmitter beam-pattern. Explicitly, we proposed to
use a twin-IRS structure to construct a low-cost beam-
index modulation scheme. We conceive both the opti-
mal maximum likelihood detector and a low-complexity
compressed sensing detector for the proposed schemes.
Finally, the schemes designed are evaluated through
extensive simulations and the results are compared to
our analytical bounds.

Index Terms—Intelligent reflecting surfaces, beam in-
dex modulation, phased array antenna, compressed sens-
ing.

I. INTRODUCTION

Next-generation systems are expected to satisfy sub-
stantially improved specifications. Furthermore, new
solutions, such as the Internet of Things (IoT), massive
machine type communications (MTC) also contribute
to the escalating mobile data traffic, as predicted by
the International Telecommunication Union (ITU) [1].
Hence researchers aim for increasing the degrees of
design-freedom in support of these ambitious require-
ments.

The 30 − 300 GHz so-called millimeter wave
(mmWave) frequency band has substantial hitherto un-
exploited bandwidth resources for supporting Gigabit
per seconds (Gb/s) data rates [2]–[4]. For example,
in indoor scenarios a data rate of upto 6.7 Gbps is
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achieved by the IEEE 802.11ad standard developed
at 60 GHz frequency [5]. This result has ignited re-
search interest in this frequency range also for outdoor
scenarios. In an early experiment, it has been shown
that mmWave communication is capable of achieving
a peak data rate of 1 Gbps in an outdoor environment
for a communication range of upto 1.7 km at mod-
erate Bit Error Rates (BERs) [6]. This system used
only 500 MHz of bandwidth at 28 GHz. Naturally,
there are a number of propagation challenges to be
overcome, since typically only line-of-sight (LOS)
communication is possible at these frequencies, which
also suffer from fading, significant absorption losses in
the atmosphere and building-penetration losses [7] [8].

Furthermore, researchers are also aiming for reduc-
ing both the power consumption and hardware cost.
Intelligent Reflecting Surfaces (IRS) offer a viable
solution for meeting these requirements [9]. Explicitly,
IRSs constitute passive reflecting surfaces equipped
with integrated electronic circuits, which are capable of
imposing carefully controlled amplitude and/or phase
shifts on the incident signals [10]–[12]. The concept
has been earlier proposed in [13] and its employ-
ment as a phase-shifter has become popularized by
[14]. IRSs are eminently suitable for energy-efficient
solutions in a wide variety of applications, such as
signal-to-noise-ratio (SNR) maximization [15], rate-
maximization [16], [17], for improving the energy effi-
ciency [18], [19], for minimizing transmit power [20],
for providing secure communication [21], multi-cell
MIMO communication [22], [23], over the air compu-
tation [24], low latency mobile edge computing [25],
index modulation [26] and so on.

In [27], analog beamforming based beam-index
modulation has been proposed as an extension of
spatial modulation [28], [29]. Inspired by these results,
we conceive IRS assisted beam-index modulation for
mmWave communications. Beamforming techniques
have been exploited in mmWave communication for
mitigating their path loss [30]–[32], for achieving
directional transmission [33]–[35], for avoiding inter-
carrier-interference [36] and also for safeguarding
against eavesdroppers [37]. However, there is a paucity
of contributions on beamforming-aided index modu-
lation in IRS-assisted mmWave communication. Our
main contributions are:
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Our Scheme [27]-2018 [15]-2019 [38]-2020 [26] -2020 [39] -2020 [40]-2020
Multi IRS assisted multihop X X

mmWave X X X

non-LOS X X X X X

Beam Index Modulation X X

SNR Optimization X X X X

Beamformer Gain X X X

Rician Channel Model X X

BER analysis based on X

Non-Gaussian Approximation
TABLE I

COMPARISON OF THE PROPOSED SCHEME WITH SIMILAR IDEAS.

1) We propose IRS assisted beam index modulation
for mmWave communication. Beamforming solu-
tions proposed for mmWave frequencies tend to
rely on either analog beamforming [41], [42] or
on hybrid techniques [6], [39], [43]–[48]. In [49]
digital beamforming is proposed, which relies
on complex hardware. As a remedy, IRS has
been proposed for imposing phase shifts on the
incident signal, which can be exploited for beam-
forming. As a further benefit, they are capable
of circumventing the predominantly LOS nature
of mmWave propagation. Hence, our proposed
scheme has at least three appealing features: it
supports non-LOS communication at mmWave
frequencies at a low cost, whilst conveying extra
information via beam-index modulation.

2) We propose three different architectures for IRS
assisted beam-index modulation. The first is
termed as single-symbol beam index modulation,
where the information is carried both by classic
QAM/PSK symbols and by the transmitter beam-
pattern. This idea has also been extended for
further improving the data rate in our Scheme 2,
which is a multi-symbol beam-index modulation
arrangement. In the third scheme, we provide
an architecture for improving the SNR of the
proposed beam-index modulation.

3) The optimal maximum likelihood (ML) detector is
derived for the schemes conceived. Additionally,
a low complexity compressed sensing assisted
detector is also developed.

4) An upper bound of the average BER is obtained
for the optimal ML detector. Finally, the proposed
scheme is evaluated through extensive simulations
and its performance is compared to the theoreti-
cally obtained bound.

In Table I, we provide a bold summary and contrast
our new contributions to the seminal literature. The
key contribution of our scheme is a unique twin-
IRS architecture, in which one of the IRSs can be
positioned farther away from the transmitter. IM on this
IRS is activated wirelessly using the other IRS. This
architecture benefits in terms of accomplishing non-
LOS communication by two LOS paths, additionally
achieving a substantial beamformer gain and hence an
SNR gain. The rest of the paper is organized as follows.
Section II details the proposed IRS assisted beam-index

modulation schemes. The implementation aspects and
parameter design of the schemes are detailed in Section
III, while our detectors are developed in Section IV. In
Section V, the error analysis of the proposed scheme is
provided. Our simulation results are given in Section
VI and we conclude in Section VII.
Notations: Throughout the paper, unless otherwise
specified, bold lower case and bold upper case letters
are used to represent vectors and matrices, respectively.
AH , Tr{A} and λmin(A) represents the hermitian, trace
and minimum eigen value of A, respectively. ‖.‖ stands
for L2- norm. |a| and Re{a} is the absolute and
real value of scalar a, respectively. I is the identity
matrix of appropriate dimension. CN(µ,C) represents
the complex Gaussian distribution with mean vector
µ and covariance matrix C. ⌊b⌋ is the largest inte-
ger not greater than b. Γ(.) is the Γ -function, i.e.,
Γ(z) =

∫ ∞
0

xz−1e−xdx and for integer z, Γ(z) = (z− 1)!
and Γ(a, b) is the Gamma distribution with a and b are
shape and rate parameters, respectively.

II. PROPOSED IRS ASSISTED BEAM-INDEX

MODULATION SCHEMES

We propose three different IRS assisted beam-index
modulation schemes. All these schemes are single
input multiple output (SIMO) arrangements, containing
a transmitter antenna (TA), two sets of IRSs and
NR receiver antennas (RAs). Each IRS has one or
more reflecting surfaces (RS) and each RS has many
elements. The first IRS, namely IRS1, can be directly
accessed by the transmitter and it is used for selectively
activating the elements in the second IRS, i.e. in IRS2.
The block diagram of the proposed scheme is sketched
in Fig. 1, which is further elaborated on using Fig. 2.
The steps from 1© to 5© in the Fig. 2 is detailed below.

1) The incoming bit sequence is split into two
groups. The first group is used for selecting the
classic PSK/QAM symbols, while the second set
is used for beam-index modulation.

2) The TA and IRS1 are kept close to each other.
They have both wired and wireless connections.
Based on the first group of bits, an appropriate
PSK/QAM symbol (s) is selected at the transmit-
ter, which is transmitted wirelessly to each RS in
IRS1.



3

Fig. 1. Proposed IRS assisted beam-index modulation scheme. Solid and dotted lines indicate wired and wireless links, respectively.

Fig. 2. Architecture of single-symbol beam-index modulation.

3) The wired connection is used for mapping the
second group of bits onto beam-index modulation.
These bits are converted to the appropriate phase
vector, which are then forwarded to the elements
of the RSs in IRS1.

4) Based on the received phase vector, the elements
in IRS1 impose the required phase shift on the
incident signal, which are then forwarded to IRS2.
The phase is specifically adjusted for ensuring
that only the desired elements in IRS2 receive the
signal. This specific selection is determined based
on the information bits reserved for beam-index
modulation.

5) Each element of IRS2 induce a constant phase
to reflect the signal towards the RAs. This is cap-
tured by the RAs. The information detected at the
RAs includes both the conventional PSK/QAM
symbols and the specific element indices of IRS2,
which reflect the symbols. This is done jointly by
NR RAs.

For detailing the schemes, we will make the following
assumptions.

1) The channel between the TA and IRS1 may be
deemed to be a low-noise AWGN channel. A con-
ventional horn antenna having a few centimetre

length can be used as the TA, where IRS1 is
positioned, say 4-5 m away from the TA [50].
Hence, the distance should satisfy the far field
condition, albeit this is not actually necessary,
since the position of the TA is perfectly known at
IRS1, hence near-perfect delay compensation can
be arranged for this location. The TA is designed
in such a way that the signal is pointed exactly
towards IRS1. Finally, IRS1, which is a passive
device, introduces a phase shift and reflects the
signal towards IRS2. Hence, the only source of
noise, that can affect the signal is the one, which
is added at IRS1, and this is negligible.

2) There is only LOS communication between IRS1

and IRS2. Typically, a Rician channel model is
used for modelling IRS-assisted communication
systems [51]. However, for the proposed scheme
the elements in IRS1 adjust the phase in such a
way that it forms a directional beam and only the
specifically selected elements of IRS2 receive the
signal. Moreover, IRS2, which is close to IRS1,
is carefully positioned for ensuring that there is
no blockage between IRS1 and IRS2. Hence, the
channel between IRS1 and IRS2 is assumed to be
an AWGN channel.

3) Between IRS2 and the receiver, we have a Rician
channel model.

A beneficial application of the proposed architectures
can be found in the Internet of Things(IoT), where
the desired information has to be collected by sensors
and delivered to either a distant server or to a user.
The various applications include smart homes, indus-
trial and environmental monitoring, building and home
automation etc. Let us assume that the information
collected from a home or an industrial cite should be
communicated to a BS, from where the information
can be communicated to the destination through the
cellular network. In this case, the TA and IRS1, which
only belong to the specific user, can be placed in
the terrace of the home or at the industrial cite. The
IRS2 can be situated at the top of a tall building in
the vicinity, which can be shared among many such
users, who have orthogonal resources. The details of
the schemes are given below.
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A. Scheme 1: Single-Symbol Beam-Index Modulation

This scheme is shown in Fig. 2. In this scheme,
both the IRSs have only a single RS. IRS1 is di-
rectly connected to the transmitter, whereas IRS2 is
kept at a distance, say D, from the first IRS. Let
IRS1 be a (N1H × N1W ) element array, while IRS2

be an (N2H × N2W ) array and let N1 = N1H N1W and
N2 = N2H N2W be the total number of elements in IRS1

and IRS2, respectively. The TA sends the symbols to
IRS1, where each element applies a specific phase shift
to the incident wave so that only one of the elements
in IRS2 receives the signal. Hence, in this scheme
the total number of bits per channel use (bpcu) is
log2 M + ⌊log2 N2⌋, where the first term corresponds
to the QAM/PSK symbols, while the second term
corresponds to the selection of the element in IRS2.
Finally, IRS2 reflects the signal and it is received at
the RAs.

Let s be the transmitted symbol. The symbol re-
ceived at IRS1 is s + w1, where w1 ∼ CN(0, σ2

1
).

However, under Assumption 1, we have σ2
1
≈ 0 and

the contribution w1 can be discarded. Therefore, the
vector received at IRS2 is:

x2 = bs + w2, (1)

where w2 ∼ CN(0, σ2
2
) under Assumption 2) and

b is an N2 × 1 vector. Ideally, b should have only a
single non-zero entry corresponding to the index of
the beam (or equivalently corresponding to the selected
element in IRS2). However, this will not happen in
practice, since a finite power will be dispersed on other
directions also and this power distribution depends on
the beampattern. The vector at the receiver can be
written as:

y = HΘx2 + wR

= HΘbs + w, (2)

where H is the NR × N2 channel matrix as defined
under Assumption 3, Θ is an (N2 × N2) diagonal matrix
of phase shifts given by the elements in IRS2 and
wR ∼ CN(0, σ2

R
). Note that w = HΘw2 + wR is

the additive noise component having a distribution of
CN (0, Σ), where Σ = HHHσ2

2
+ σ2

R
I. Finally, the

receiver has to detect both b and s from y to decode
the transmitted bits. The detection schemes will be
discussed in Section IV.

This scheme predominantly uses only a fraction
of elements of the second reflecting surface, instead
of exploiting all of them to improve the attainable
beamformer gain. However, it should be noted that
most of the transmitted energy is focussed on the
intended elements, while the power impinging on all
other elements is negligibly small, since beamforming
is used in the first stage. Hence, with the aid of the
proposed scheme, we will get the dual advantages of
both a beneficial beamforming gain and the additional
advantage of an increased data rate.

Fig. 3. Architecture of multi-symbol beam-index modulation. Con-
trast to Fig. 2, there are NT RSs in IRS1 in this case.

B. Scheme 2: Multi-Symbol Beam-index Modulation

In the second scheme, the first scheme is extended
to multi-symbol communication. The architecture is
shown in Fig. 3. In this case, there are NT RSs in
IRS1 contrast to a single RS in Scheme 1. The mod-
ulator identifies NT different phase-vectors depending
on the bit sequence corresponding to the beam-index
modulation and each vector is fed to different RSs
in IRS1. Therefore, NT RSs focus the conventional
QAM/PSK symbol onto NT different elements of IRS2.
Hence, in this case, the total number of bpcu is

log2 M +
⌊
log2

(N2

NT

) ⌋
. Therefore, this scheme provides

a higher data rate than scheme 1. The choice of the
elements to be activated can be organized using a look
up table method or the combinatoric approach [52],
[53].

Mathematically, this scheme can be represented us-
ing Equations (1) and (2). However, the difference is
that in this case, ideally there will be NT non-zero
entries in b.

C. Scheme 3: Maximum-SNR Single-Symbol Beam-

Index Modulation

Fig. 4 shows the architecture of this scheme. This is
similar to Scheme 1, except that in this case each ele-
ment of IRS2 is replaced by an RS having N3 elements.
Hence, there will be a total of N2N3 elements in IRS2.
Both the TA and IRS1 function in the same way as
in the case of single-symbol beam-index modulation.
Hence, the signal received at IRS2 can be written using
(1). However, in contrast to the other two cases, here
the elements in IRS2 apply a phase shift to the incident
signal. The phase shift in IRS2 is adjusted in such a
way that the SNR at the receiver is maximized.

Note that in (2) H and Θ is an (NR × N2N3) and
(N2N3 × N2N3) matrix, respectively in this case. Fur-



5

Fig. 4. Architecture of the Maximum-SNR Single-Symbol Beam-
Index Modulation. Contrast to Fig. 2, there are N3 elements in each
RS of IRS2, which impose phase shift on the incident signal to
maximize SNR at the RAs.

thermore, Θ is not a constant matrix, but depends on
H. The overall SNR in this case is defined as:

SNR =
‖HΘbs‖2

Var(‖w‖) , (3)

where the denominator is the variance of the norm of
the vector w. The SNR can be maximized by maxi-
mizing the numerator of (3), since the denominator is
independent of Θ, which is the maximization variable.
Let θ1:N2N3

represents the entries of the diagonal of Θ.
Hence, the SNR maximization can be written as:

max
θl

‖HΘbs‖2 s.t . |θl | = 1 , ∀ l = 1, 2, ..., N2N3. (4)

However, the above optimization problem has the
following challenges. IRS2 is a passive device and it
may not be practical to solve a complex optimiza-
tion problem there. Hence, the optimization should
ideally be carried out at transmitter or receiver and
the resultant information has to be communicated to
IRS2. Therefore, if the optimization depends on the
data to be transmitted (bs), Θ has to be updated in
every time slot, which is a substantial communication
overhead. Hence, the optimization should preferably
only depend on either an average value of bs or indeed
ideally should be independent of it. Accordingly, we
will propose the following solutions for (4).

1) Solution 1: This solution is based on the assump-
tion that an ideal beam pattern exists, i.e., all elements
in the selected RS of IRS2 receives the same power,
while all other elements receive no power. Without
loss of generality, let this constant be 1. Hence, the
optimization function in (4) can be written as:

‖HΘbs‖2
= ‖HΘ1‖2

= ‖Hθ‖2, (5)

where 1 is a vector of 1s and θ is a vector formed
from the diagonal elements θ1:N2N3

of Θ. Hence, the
maximization problem (4) becomes:

max
θl

θ
HHHHθ

s.t . |θl | = 1 , ∀ l = (Î − 1)N3 + 1, ..., ÎN3, (6)

where Î is the specifically selected RS in IRS2. Let
θl = e jαl , since |θl | = 1. Bearing this in mind and
noting that HHH is a Hermitian matrix, (4) is refor-
mulated as the following unconstrained optimization
problem.

max
αl

Î N3∑
i=(Î−1)N3+1

Î N3∑
j=(Î−1)N3+1

Re

{
e j(αi−αj )

(
HHH

)
i j

}
,

(7)

where
(
HHH

)
i j

is the (i, j)th element of HHH. Since
(7) is not a concave function, it can only be solved
using some iterative technique for finding its local
maximum.

2) Solution 2: This solution relies on the assump-
tion that NR ≥ N3, i.e. there are more number of RAs
than the number of elements in the RS of IRS2. In
order to develop the solution, let us state and prove
Lemma 1.

Lemma 1. Let HQ and ΘQ be the (NR × N3) and
(N3 × N3) sub-matrices of H and Θ corresponding
to the selected RS, respectively and let bQ be the
corresponding sub-vector of b. If NR ≥ N3, with
probability 1, the bound

‖HQΘQbQs‖2 ≥ λmin

(
Θ

H
QHH

QHQΘQ

)
Tr

{
(bQs)(bQs)H

}
(8)

is non-trivial, which equivalently leads to

λmin

(
Θ

H
Q

HH
Q

HQΘ

)
> 0.

Proof. See Appendix A for proof. �

Lemma 1 can be used for solving the optimization
problem (4). The idea is to maximize the non-trivial
lower bound instead of the actual function. Hence, the
optimization problem (4) becomes:

max
θl

λmin

(
Θ

H
QHH

QHQΘ

)
s.t . |θl | = 1 , ∀ l = (Î − 1)N3 + 1, ..., ÎN3. (9)

We know that λmin(A) = min
‖z‖=1

‖Az‖ [54, Eq. 7.5.4].

Therefore (9) can be rewritten as:

max
θl

min
z

‖ΘH
QHH

QHQΘz‖

s.t . ‖z‖ = 1, |θl | = 1 , ∀ l = (Î − 1)N3 + 1, ..., ÎN3,

(10)

where (10) is a constrained non-linear minimax op-
timization problem. This can be solved directly [55],
[56]. Alternatively, it can be converted into a non-linear
maximization problem by introducing an additional
variable and then solved using standard techniques.
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It should be noted that in both solutions of the
SNR maximization problem, Î, i.e. the selected data
dependent RS of IRS2 that has to be optimized, de-
pends on the information bits. In order to avoid the
dependence of optimization on the information bits,
each RS is optimized separately whenever there is
considerable change in the channel. The optimized
phase information is passed to IRS2, which applies
phase shifts to all elements instead of the selected RS.
This scheme can be extended to the case of multi-
symbol beam-index modulation (Scheme 2), where
there will be NT RSs in IRS1, which activate NT RSs in
IRS2. Finally, all the activated RSs in IRS2 can apply a
phase shifts for improving the SNR. Thus the scheme
will have both an improved data rate and improved
SNR. Practically, the optimal phase shifts have to
be estimated at the receiver and then communicated
to IRS2 whenever there is significant change in the
channel characteristics.

III. IMPLEMENTATION OF BEAM-INDEX

MODULATION

The principle behind the proposed beam-index mod-
ulation is the data-dependent activation of the elements
in IRS2. This is achieved by appropriately choosing
the phase shifts applied by the elements in IRS1. In
order to estimate the phase shifts, it is assumed that
there is only LOS communication between IRS1 and
IRS2. Therefore, the phase shifts only depend on the
geometry of the pair of IRSs. The estimation of phase
shifts is detailed below.

Let the centre of IRS1 be the origin co-ordinate
(0, 0, 0) and P be the position vector of elements of
IRS1. Let the nth element of IRS2 be activated by IRS1

according to the input bit sequence and let (φhn, φvn)
represents the azimuth and the elevation angle pair for
this element with respect to the origin. Then, the phase-
vector to be given by the elements of IRS1 to choose
the nth beam is ψ = 2π f τ, where τ = PHun

c
with c and

f being the speed of the light and the carrier frequency,
and un =

(
sin φhn cos φvn cos φhn cos φvn sin φvn

)
. Finally,

in the case of multi-bit beam-index modulation, these
phase shifts have to be calculated for each of IRSs
according to the input bit sequences.

Additionally, if the IRS elements can modify the
amplitude of the incident signal along with the phase,
one can modify the relative weighting of each element.
Since IRSs constitute passive devices, amplification
may be difficult to achieve and will not be a cost
effective solution. However, attenuation can be readily
applied to the incident signal [57]. The attenuation can
be adjusted in such a way that it acts as a window
function for the beamforming and the beam pattern can
be accordingly modified. This will help in reducing the
interference, which will be discussed in Section V. In
Section III-A, the design of two IRSs is detailed.

A. Parameter Design

The parameters to be designed are the number of
elements and the corresponding inter-element spacing
in IRS1, as well as in IRS2 and the distance between
two IRSs. Let λ be the wavelength corresponding the
highest frequency of operation. We will fix the design
parameters as follows [58].

1) Inter-element spacing in IRS1 (d1): The elements
in each RSs of IRS1 should be spaced at λ

2

distances. For example, if the maximum operating
frequency is fmax = 60 GHz, then the spacing
between the elements in IRS1 is d1 = 2.5 mm.
Now, if IRS1 is a 100 × 100 element system,
then its dimension is going to be as compact
as 0.25 × 0.25 m. This spacing is important for
avoiding grating lobes in the beams formed using
IRS1 [58, eq. 2.117].

2) Distance between two IRSs (D): The distance (D)
between IRS1 and IRS2 should meet the far field
condition of D > 2L2

λ
, where L is the length of the

RS [59, pp. 32]. In the above example D > 25 m.
If this condition is met, it can be assumed that
the wave front travelling from IRS1 to IRS2 is
planar, so that the phase shifts can be computed
as detailed in Section III.

3) Inter element spacing in IRS2 (d2): The width of
each element in IRS2 (dw) should be less than
DθBW , where θBW is the beam-width of IRS1

and the separation d2 between elements in IRS2

should be higher than this value. These conditions
ensure that the intended element and only the

intended element receives the signal reflected by
IRS1. For a rectangular window, the approximate
beam-width is θBW ≈ 50λ

L
[58, Eq. (2.100)]. In

the example we have considered θBW ≈ 10 cor-
responding to the minimum frequency. Therefore
dw < 48 cm and d2 > 48 cm for D = 25 m. Now,
if N1H = N1W = 8, IRS2 has an approximate
dimension of 4 m × 4 m.

4) Number of elements in IRS1 (N1): The number
of elements in IRS1 determines the length L of
the array and its beam-width θBW , where these
parameter decide the spacing between two IRSs
and the inter-element spacing in IRS2. A larger
value of N1 with accurate phase shifting and a
larger value of d2 direct the beam to the desired
direction, hence reducing the potential beam mis-
alignment problem of our beam index modulation
scheme.

5) Number of elements in IRS2 (N2): This deter-
mines the data rate of the system. A large value
of N2 gives a higher data rate. However, this
will make the size of IRS2 large. Hence, N2

is restricted by the maximum affordable array
dimension.
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IV. DETECTOR

The detector has to recover the bits embedded both
into the QAM/PSK symbol and the TA activation
pattern in IRS2. Explicitly, it has to detect s and b

from y in (2). Let x = bs and A = HΘ. Now, (2) can
be written as:

y = Ax + w. (11)

It is assumed that A is known at the receiver.

A. Optimal Detector

We first derive the optimal ML detector for the
single symbol cases, i.e. for Scheme 1 and Scheme 3.
Then we extent it to the multi symbol case of Scheme
2.

1) Single-Symbol Schemes: Consider the vector x

in (11). Ideally in single-symbol schemes only one of
the entries in x should be a non-zero value, since only
one element receives the symbol. However, this will
not be the case in practice, since the beamformer will
introduce a non-zero power also in directions other
than the required one. Hence, practically more than
one element of IRS2 receives the symbol. However,
the power in the undesired beam-indices is much lower
than that in the intended index and these powers de-
pend on the beampattern of IRS1. The data-dependent
beam-index changes can be represented approximately
by a beampattern rotation. Hence, (11) can be written
as:

y = AΠp + w, (12)

where p represents the vector of powers in the various
indices of x and Πp represents a particular permutation
of the power pattern. Therefore, in order to identify
the beam-index, we have to identify the power pattern
permutation Πp. Now, y ∼ CN(AΠp, Σ). Hence, the
ML detector of this problem is formulated as:

min
Πp

(
y − AΠp

)H
Σ
−1

(
y − AΠp

)

=⇒ max
Πp

Re

{(
y − 1

2
AΠp

)H
Σ
−1AΠp

}
. (13)

In general, the search problem (13) is NP-hard. How-
ever, in our case, there are only N2M different patterns
corresponding to N2 different beam indices and M

QAM/PSK symbols. Hence, a moderate-complexity
search will give the optimal solution to (13).

2) Multi-Symbol Scheme: The ML detector (13) is
also suitable for multi-symbol case. However, in this
case, since there are NT desired beam-indices at a time,
which interact with each other and thereby produce a
large number of possible combinations Πp. Explicitly,(N2

NT

)
M different patterns hypothesis must be tested for

NT RSs in IRS1. Hence the ML detector may no longer
be a computationally attractable solution. Hence, in
Section IV-B, we will be proposing a suboptimal

compressed sensing (CS) aided detector, which can
be used for any of the proposed schemes at a lower
computational complexity.

B. Suboptimal Compressed Sensing Detector

The transmitted vector x in (11) is sparse, when the
number of active elements (i.e., elements that receive
the symbol) is much less than the total number of
elements in IRS2. Therefore, one can use an efficient
sparse reconstruction algorithm [60], [61] for identify-
ing the non-zero components in x, which can be used
to estimate b. However, it should be noted that for the
successful recovery of the sparse vector x, there should
be a sufficient number of measurements. This can be
either achieved by having a sufficient number of RAs
(NR should be sufficiently large) or taking multiple
measurements, which would naturally reduce the data
rate. Finally, s is obtained from the estimated b as:

ŝ = min
s∈M

‖y − bs‖2, (14)

where M is the constellation used.

C. Complexity

The optimal ML detector has to compute (13) for all
possible combinations, which requires approximately
on the order of (N3

R
+ NRN2) multiplications. This

has to be done for each possible symbol. For the
multi-symbol case, there are

(N2

NT

)
M possible sym-

bols. Hence, the total computational complexity is
approximately on the order of

(N2

NT

)
M(N3

R
+ NRN2),

which reduces to the order of N2M(N3
R
+ NRN2) for

single-symbol cases. On the other hand, if a greedy
compressed sensing based suboptimal algorithm is
used, the complexity will be reduced to the order of
N2NRNT , which is much lower than that of the optimal
ML detector.

V. AVERAGE BIT ERROR RATE ANALYSIS

In this section, we will estimate an upper bound for
the average bit error rate (BER) of the optimal ML

detector of Section IV-A. Let Pr
{
Π

i
p → Π j

p

}
represent

the probability that the pattern Πi
p is identified as Π j

p

and νi, j represent the number of bits in error between
the two permutations Πi

p and Π j
p. Then the average

BER is formulated as:

ˆBER =
Ω∑
i=1

Ω∑
j=1
j,i

νi, j

nbΩ
Pr

{
Π

i
p → Π j

p

}
, (15)

where nb is the total number of bits per channel use
and Ω is the total number of possible permutations.
Equation (15) assumes that all permutations are equally

likely. The probability of symbol error Pr
{
Π

i
p → Π j

p

}
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in (15) can be found as follows. When Πi
p is transmit-

ted, the detector identifies Π j
p as the transmitted symbol

based on:

arg max
k

Re

{(
y − 1

2
AΠk

p

)H
Σ
−1AΠk

p

}
= j, (16)

where y is given in (12) in conjunction with Πp =

Π
i
p. Let us define rk = Re

{(
y − 1

2
AΠk

p

)H
Σ
−1AΠk

p

}
.

Hence, we have

Pr
{
Π

i
p → Π j

p

}
= Pr



⋂
k,j

rj > rk


 . (17)

The computation of the probability of intersection of
the event in (17) is very difficult. Hence, it is bounded
using Fretchet’s inequality [62] as follows:

Pr



⋂
k,j

rj > rk


 ≤ min

k
Pr

{
rj > rk

}
. (18)

In order to estimate the bound, the probabilities of
Pr

{
rj > rk

}
have to be calculated for each k , j.

Theorem 1 stated below gives an expression of the
probability Pr

{
rj > rk

}
.

Theorem 1. Let us assume the Rician channel model
with E{H} = H̄ and that the row vectors of H are
independent and identically distributed with covariance
matrix Σ̃c and also let σ2

2
≪ σ2

R
. When Πi

p is the
actual signal transmitted and Θ is a constant matrix
independent of H, the probability of the events rj > rk ,
i.e. Pr

{
rj > rk

}
can be approximated as:

1) For k = i:

Pr
{
rj > ri

}
=

1

2


1 −

√
β1

1 + β1

NR−1∑
n=0

(
2n

n

) (
1

4(1 + β1)

)n
,

(19)

where β1 =

(
Π

i
p−Π

j
p

)H
Θ

H
(
Σ̃c+

1
NR

H̄H H̄
)
Θ

(
Π

i
p−Π

j
p

)
4σ2

R

.

2) For k , i and when qR = Re{q} , 0, where q is
defined in (48):

Pr
{
rj > rk

}
=

1

2


1 − 1

2

√
β2

1 + β2

NR−1∑
n=0

(
2n

n

) (
1

4(1 + β2)

)n
,

(20)

where β2 =
q2
R

(2+σ2
κ )σ2

z1

and the constants σ2
z1

and

σ2
κ are defined in (46) and (54), respectively.

3) For k , i and when qR = 0, Pr
{
rj > rk

}
=

1
2
.

Proof. See Appendix B for proof. �

Finally, for each transmitted symbol Πi
p, the mini-

mum value of Pr
{
rj > rk

}
, ∀ k , j is computed using

Theorem 1 and it is substituted for Pr
{
Π

i
p → Π j

p

}
into

(15) for achieving the bound of the average BER. Note
that (19) and (20) also hold for the Rayleigh channel,

in which case the matrix
(
Σ̃c +

1
NR

H̄HH̄
)

is replaced
by I to calculate β1 and β2.

The bounds derived for the average BER can be
used for both Scheme 1 and Scheme 2. In the case
of Scheme 1 Ω = N2M and nb = log2 M + ⌊log2 N2⌋,
whereas for Scheme 2, the corresponding values are

Ω =
(N2

NT

)
M and nb = log2 M +

⌊
log2

(N2

NT

) ⌋
. For

Scheme 3, Θ is no longer independent of H and
therefore the bounds in Theorem 1 do not hold. How-
ever, the conditional probabilities derived in Appendix
C can be used for Scheme 3 also. Based on this
the unconditional probabilities can be derived using
sampling method for computing the bound.

VI. SIMULATION RESULTS

Extensive simulations have been carried out to es-
tablish the performance of the proposed scheme on the
system parameters. Explicitly, we studied the average
BER of the proposed schemes vs. the SNR, the number
of elements (N2) in IRS2, the number of receivers (NR),
the number of RSs in IRS1 and the Rician factor, de-
noted by K . We have considered both the optimal ML
detector and the low complexity compressed sensing
detector in our performance evaluation. The system
parameters used are given below.

• IRS1 : A 100×100 rectangular array with spacing
2.5 mm. This corresponds to half wavelength of
the frequency.

• Distance between IRSs (D): 30 m. This distance
satisfies the far-field condition for IRS1.

• IRS2: In general, an 8 × 8 rectangular array is
used with inter element spacing of d2 = 60 cm.
However, these parameters are changed for the
various performance studies, which is mentioned
in the corresponding discussions.

We used 16 level QAM at 60 GHz in all simulations.
The results are shown in Fig. 6-9 for 105 Monte
Carlo runs. We used both Rician and Rayleigh fading
channels. Throughout the simulations, it is assumed
that the channel is perfectly known at the receiver.
Channel estimation in IRS-aided systems is quite a
challenge, since the IRS is passive and has no signal
processing capability. However, the schemes adopted
in [51], [63] could be used as a solution to the channel
estimation problem.

In Fig. 6-Fig. 10, the proposed schemes 1 and 2 are
referred as S1 and S2, respectively. S3 represents the
solution of (4), whereas S301 and S302 represent the
solution of (7) and (10), respectively. S1-Err represents
the results of the proposed scheme 1 in the presence
of channel estimation errors. ML and CS represent the
results of optimal ML and compressed sensing based
detectors, respectively and UB, the theoretical upper
bound given in (18).

Fig. 5 shows the performance of scheme S1 at
various SNRs for different values of the Rician factor
(K). Observe from Fig. 5 that the performance of the
low-complexity CS detector is inferior to that of the
ML detector. As for the ML detector, the average
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Fig. 5. S1: Comparison of ML and CS detectors by simulations. K
is the Rician factor in dB

BER tends to zero above 10 dB SNR, whereas it
exhibits an error floor near 0.1 for the CS detector.
The performance of the CS detector is improved, when
the Rician factor K decreases. This is because as
K decreases, the projection matrix A of the signal
recovery becomes more random and the restricted
isometric property [64] is improved and it is best for
the Rayleigh channel. However, the performance of
the ML detector is improved with K , since the LOS
component is increased with K . This is also reflected
by the upper bound seen in Fig. 6.

Fig. 6 shows the performance of single-symbol
beam-index modulation (S1) against the Rician factor
(K) for different SNRs. The average BER obtained
through simulations is compared against the upper
bound derived in Section V. The BER improvement vs.
K is due to increasing the LOS component. However,
the variation in BER is only moderate, because the
SNR is kept constant upon increasing K . Further-
more, the optimal ML detector has perfect channel
knowledge. However, as K increases, the gap between
the simulation results and the corresponding upper
bound is reduced. This is also observed at high SNRs.
Therefore, it can be concluded that for both these cases,
our bound becomes tighter.

The performance of the CS detector can be improved
by increasing the number of RAs as shown in Fig. 7,
where the average BER is plotted against NR. This
is plotted for Rayleigh channel, which gives the best
performance for CS detector. The curves are shown for
different number of elements in IRS2 (i.e. N2). Observe
that for the same number of RAs, the performance
degrades, as N2 increases. However, as N2 increases,
the data rate will increase.

Fig. 8 compares the ML detector’s performance for
the three proposed schemes in terms of their average
BER for Rician factor K = 0 dB. For S2, we used
NT = 2, i.e. the number of RSs in IRS1 is two. This
is because, if NT is large, the complexity of optimal
ML decoding will escalate. For fair comparison, the

−10 −5 0 5 10

10−6

10−5

10−4

10−3

10−2

10−1

Rician Factor (K in dB)

B
E

R SNR=4dB-ML
SNR=4dB-UB
SNR=6dB-ML
SNR=6dB-UB
SNR=8dB-ML
SNR=8dB-UB

Fig. 6. S1: Comparison of the average BER and the theoretical
upper bound (UB).

5 10 15
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10−4

10−2

100

102

104

No of receivers (NR)

B
E

R
N2=4x4-ML
N2=4x4-CS
N2=8x8-ML
N2=8x8-CS
N2=16x16-ML
N2=16x16-CS

Fig. 7. S1: Effect of the number of receivers (NR ) on the BER.

number of elements in all three cases are kept the
same. Therefore, for S3, where the optimization is to
be carried out in an array, a 2 × 2 element array is
considered to form a single RS. Hence, the effective
dimension of IRS2 in S3 is 4 × 4, while it is 8 × 8

in the case of S1 and S2. Hence, the data rate will
be lowest for S3, whereas it is the highest for S2,
since there are more RSs in IRS1. The data rate for
S1, S2 and S3 are 10, 14 and 8, respectively. In Fig. 8,
the legends S3O1 and S3O2 represent the results of
two optimization methods, i.e. the solution of (7) and
that of (10), respectively. Both these schemes perform
better than S1 and S2. This is because there is an
increase in the received SNR due to optimization. In
addition in S3, the modulating symbol is embedded
in 4 elements, which gives an additional performance
improvement. This makes the BER gap between the
curves of S3 and the other schemes substantial. Ob-
serve that S3O1 performs marginally better than S3O2.
This is because S302 maximizes the lower bound,
whereas S301 operates on the exact function. Note
that S301 performs almost similar to the solution of
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Fig. 8. Comparison of three different schemes.

the exact equation (4). The performance of S2 is
approximately 2 dB worse than that of S1. There are
two differences between these two schemes. In S2, the
same QAM/PSK symbol is carried by more than one
elements in IRS2. Hence, the probability of error in
decoding the modulating symbol is reduced compared
to S1. However, the information carried by the beam-
index is higher in the case of S2, whose probability
of decoding error will be higher than that of S1. The
average BER reflects these two opposite effects.

Fig. 9 shows the effect of the number of RSs (NT )
in IRS1 on the BER performance in S3 for different
number of receivers (NR) for CS detector. Similar to
Fig. 7, this is also under Rayleigh channel condition.
The average BER increases as NT increases, which
can be reduced by increasing the number of receivers.
However, as NT increases, the data rate increases. In
this case, for the single RS case (which is equivalent to
S1), the data rate is 10 bpcu , while it is 14, 23, 30 and
36 for NT = 2, 4, 6 & 8, respectively. Finally, in Fig. 10,
the effect of channel estimation errors is demonstrated.
The true channel coefficients are corrupted by adding
noise having a variance of σ2

R
, which affects both the

optimization as well as detection. The average BER
is shown in the figure both with and without channel
estimation. It can be seen that both S1 and S2 have
approximately 2−3 dB performance degradation owing
to the channel estimation error, whereas this gap is
in excess of 4 dB for S3. This is because, in S3,
the contaminated channel information is used both for
optimization and detection.

VII. CONCLUSIONS

We proposed beam index modulation for millimeter
wave communication exploiting the benefits of IRSs.
The proposed scheme has three main advantages: 1)
It achieves low-cost beamforming by using IRS for
applying phase shifts, 2) it is capable of achieving
reliable communication with the help of multiple IRSs
in non-LOS scenarios, and 3) it sends additional in-

2 4 6 8
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B
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R
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Fig. 9. S2: Effect of the number of reflecting surfaces in IRS1

(NT )
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Fig. 10. Effect of channel estimation error.

formation using beam-index modulation without any
additional cost. Furthermore, we developed the optimal
ML detector and a low-complexity compressed sensing
detector for the proposed schemes. An upper bound
of the average BER of the optimal ML detector is
also achieved. Finally, the performance of the proposed
schemes was evaluated through extensive simulations.

APPENDIX A
PROOF OF LEMMA 1

‖HQΘQbQs‖2
= (bQs)HΘH

QHH
QHQΘQ(bQs)

= Tr
{
(bQs)HΘH

QHH
QHQΘQ(bQs)

}
= Tr

{
Θ

H
QHH

QHQΘQ(bQs)(bQs)H
}
. (21)

Note that ΘH
Q

HH
Q

HQΘQ and (bQs)(bQs)H are posi-
tive definite matrices. Therefore applying [65, The-
orem 2] on (21) results in (8). Now, since HQ is
a random matrix and if R ≥ Q, HH

Q
HQ will be a

full-rank matrix with probability 1 and consequently

λmin

(
Θ

H
Q

HH
Q

HQΘQ

)
> 0.
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APPENDIX B
PROOF OF THEOREM 1

Lemma 2 of Appendix C gives the conditional
probability Pr

{
rj > rk |A

}
. Explicitly, the conditional

probabilities are in the form of complementary error
function (Q-functions). The distributions of the argu-
ments of these Q-functions are derived in Lemma 3 in
Appendix D. Therefore, the unconditional probabilities
can be calculated by taking expectation of conditional
probabilities (36) with respect to the corresponding
distributions of their arguments in (43) and (44).

For k = i, the argument of the conditional prob-
ability is a Γ-distributed random variable with rate

parameter b =
2σ2

R(
Π

i
p−Π

j
p

)H
ΘHΣcΘ

(
Π

i
p−Π

j
p

) and shape pa-

rameter k = NR, i.e., fγi j
(
γi j

)
=

1
Γ(k)b

kγk−1
i j

e−bγi j .
The unconditional probability in this case is

Pr
{
rj > ri

}
=

∫ ∞

0

Q
(√
γi j

)
fγi j

(
γi j

)
dγi j . (22)

The closed-form expression for (22) given in [66,
Eq. (A12)] can be applied to get (19). This proves the
first part of the theorem.

For k , i, the probability is computed as follows.
First we will consider the case of qR , 0. By exploiting
the relationship Q(x) = 1 − Q(−x), the probability
Pr

{
rj > rk

}
can be written as:

Pr
{
rj > rk

}
=

∫ ∞

−∞
Q (κ) fκ (κ) dκ

=

∫ 0

−∞
(1 − Q (−κ)) fκ (κ) dκ +

∫ ∞

0

Q (κ) fκ (κ) dκ

=

∫ ∞

0

fκ (−κ) dκ +

∫ ∞

0

Q (κ) ( fκ (κ) − fκ (−κ)) dκ

= C̃ (I1 + I2) , (23)

where C̃ =
2Γ(2NR )
Γ(NR )

√
πσ2

κ

(
v−1
2v

)NR

is a constant term

and

I1 =

∫ ∞

0

e
− 2v−1

2vσ2
κ

κ2

D−2NR

(√
2

vσ2
κ

κ

)
dκ, (24)

while

I2 =

∫ ∞

0

Q(κ)e
− 2v−1

2vσ2
κ

κ2

[
D−2NR

(
−
√

2

vσ2
κ

κ

)

− D−2NR

(√
2

vσ2
κ

κ

)]
dκ. (25)

Note D(.)(.) is the parabolic cylinder function [67, pp.
45] and it can be written in terms Kummer’s confluent

hypergeometric function 1F1(.) as [68, pp. 39 (23)]

DK (z) = 2
K
2
√
πe−

z2

4


1

Γ

(
1−K

2

) 1F1

(
−K

2
;

1

2
;

z2

2

)

− z
√

2Γ
(
−K

2

) 1F1

(
1 − K

2
;

3

2
;

z2

2

)]
. (26)

Let us substitute κ = +
√

t into (24) and expand
D−2NR (.) using (26). Note that dκ = 1

2
√
t
dt. Therefore

I1 becomes:

I1 =

√
π2−(NR+1)

Γ

(
NR +

1
2

) ∫ ∞

0
t−

1
2 e

− t

σ
2
κ 1F1

(
NR;

1

2
;

t

vσ2
κ

)
dt

− 2−(NR+1)

Γ (NR)

√
π

vσ2
κ

∫ ∞

0
e
− t

σ
2
κ 1F1

(
NR +

1

2
;

3

2
;

t

vσ2
κ

)
dt .

(27)

Now, the difference in (25) is formulated as:

∆ = D−2NR

(
−
√

2t

vσ2
κ

)
− D−2NR

(√
2t

vσ2
κ

)

=

2e
− t

2vσ2
κ 2−NR

Γ (NR)

√
πt

vσ2
κ

1F1

(
NR +

1

2
;

3

2
;

t

vσ2
κ

)
.

(28)

In order to evaluate I2, first we express the Q-function
in terms of the complimentary error function as Q(x) =
1
2
erfc

(
x√
2

)
[69, pp. 40], and then subsequently it is

expressed in terms of the hypergeometric function
as [70]:

Q(x) = 1

2
− x
√

2π
1F1

(
1

2
;

3

2
;− x2

2

)
. (29)

Upon substituting (28) and (29) into (25), I2 becomes:

I2 =
2−(NR+1)

Γ (NR)

√
π

vσ2
κ

∫ ∞

0

e
− t

σ
2
κ 1F1

(
NR +

1

2
;

3

2
;

t

vσ2
κ

)
dt

− 2−NR

Γ (NR)

√
1

2vσ2
κ

∫ ∞

0

t
1
2 e

− t

σ
2
κ 1F1

(
1

2
;

3

2
;− t

2

)

1F1

(
NR +

1

2
;

3

2
;

t

vσ2
κ

)
dt . (30)

Note that the second term of the RHS in (27) and the
first term of RHS in (30) will get cancelled. Hence
Pr

{
rj > rk

}
will become:

Pr
{
rj > rk

}
= C1

∫ ∞

0

t−
1
2 e

− t

σ
2
κ 1F1

(
NR;

1

2
;

t

vσ2
κ

)
dt

− C2

∫ ∞

0

t
1
2 e

− t

σ
2
κ 1F1

(
1

2
;

3

2
;− t

2

)
1F1

(
NR +

1

2
;

3

2
;

t

vσ2
κ

)
dt

= C1I3 + C2I4, (31)

where C1 =
1

2
√
πσ2

κ

(
v−1
v

)NR

and C2 =

1

πσ2
κ

√
2v

Γ(NR+
1
2 )

Γ(NR )

(
v−1
v

)NR

. Note that we have

exploited the relationship Γ(x)Γ
(
x + 1

2

)
=

√
π

22x−1 Γ(2x)
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[71, Theorem 6] for reducing C1 and C2. Now,
I3 is expressed using equation [72, pp. 822,
equation(7.621(4))] and it is given below:

I3 =

∫ ∞

0

t−
1
2 e

− t

σ
2
κ 1F1

(
NR;

1

2
;

t

vσ2
κ

)
dt

= Γ

(
1

2

) √
σ2
κ 2F1

(
NR,

1

2
;

1

2
;

1

v

)

=

√
πσ2

κ

(
1 − 1

v

)−NR

, (32)

where 2F1(a, b; c; z) is Gauss’ Hypergeometric function
[67, pp. 42]. Observe that 2F1 (a, b; b; z) = 1F0 (a; z) =
(1 − z)−a [73, A1]. In order to evaluate the integral I4,
we make the substitution z = t

vσ2
κ

and use [72, pp. 823,
equation (7.622(1))] and the integral becomes:

I4 =

∫ ∞

0
t

1
2 e

− t

σ
2
κ 1F1

(
1

2
;

3

2
;− t

2

)
1F1

(
NR +

1

2
;

3

2
;

t

vσ2
κ

)
dt

=

(
vσ2

κ

) 3
2

∫ ∞

0
z

1
2 e−vz 1F1

(
1

2
;

3

2
;−

vσ2
κ

2
z

)
1F1

(
NR +

1

2
;

3

2
; z

)
dz

=

√√√√√√√ π

(
σ

2
κ

)3
2
(
2 + σ

2
κ

) 2F1

©«
NR +

1

2
,

1

2
;

3

2
;−

σ
2
κ

(v − 1)
(
2 + σ

2
κ

) ª®®¬
(
v − 1

v

)−(
NR+

1
2

)
. (33)

Now we apply the transformations

2F1 (a, b; c; z) = (1 − z)−b 2F1

(
c − a, b; c; z

z−1

)
[74]

and 2F1 (a, b; b + 1; z) = bz−bBz (b, 1 − a) [75], when
(33) becomes:

I4 =
σ2
κ

2

√
πv

2

(
v − 1

v

)−NR

B
σ

2
κ

2(v−1)+vσ2
κ

(
1

2
, NR

)
, (34)

where Bz(a, b) = B(a, b)za ∑b−1
k=0

(a)(k)
k!

(1 − z)k is the

incomplete Beta function [76] with B(a, b) = Γ(a)Γ(b)
Γ(a+b)

being the Beta function and (a)(k) is the Pochhammer
symbol. Finally upon substituting (32) and (34) into
(31), we arrive at:

Pr
{
rj > rk

}
=

1

2

− 1

4

√
σ2
κ

2 (v − 1) + vσ2
κ

NR−1∑
n=0

(
1
2

)
(n)

n!

(
1 − σ2

κ

2 (v − 1) + vσ2
κ

)n
.

(35)

Now substituting for v and the Pochhammer symbol
(a)(n) = Γ(n+a)

Γ(a) [77] will give the second term in the
RHS of (20).

Finally, when qR = 0, the distribution of κ is zero
mean Gaussian. Hence, in this case I2 in (23) will be
zero, while I1 =

1
2

and the constant C̃ = 1, which
completes the proof.

APPENDIX C
CONDITIONAL PROBABILITY Pr{rj > rk |A}

Lemma 2. Let Πi
p be the transmitted signal. Then, we

have

Pr
{
rj > rk |A

}
=

{
Q

(√
γi j

)
, if k = i

Q (κ) , otherwise
, (36)

where Q(x) = 1√
2π

∫ ∞
x

e−
t2

2 dx is the complementary
error function and

γk j =
1

2

(
Π

k
p − Π j

p

)H
AH
Σ
−1A

(
Π

k
p − Π j

p

)
, (37)

and

κ =
γik − γi j√

γk j
. (38)

Proof. First the conditional probability Pr
{
rj > rk |A

}
is estimated for k , i when Πi

p is transmitted as
follows.The event rj > rk is

Re
{(

y − 1

2
AΠk

p

)H
Σ
−1AΠk

p

}
< Re

{(
y − 1

2
AΠ

j
p

)H
Σ
−1AΠ

j
p

}
.

(39)

Using (12), (39) can be written as:

Re

{(
w + AΠi

p

)H
Σ
−1A

(
Π

k
p − Π j

p

)}

< Re

{
−1

2

(
Π

j
p − Πk

p

)H
AH
Σ
−1A

(
Π

j
p + Π

k
p

)}
.

(40)

Hence, Pr
{
rj > rk |A

}
= Pr

{
η < gjk |A

}
, where η =

Re

{(
w + AΠi

p

)H
Σ
−1A

(
Π

k
p − Π j

p

)}
and gjk is the

RHS of (40). Finally, note that η ∼ N(µjk, γjk),
where µjk = Re

{(
Π

i
p

)H
AH
Σ
−1A

(
Π

k
p − Π j

p

)}
and

γjk is defined in (37). Now, let us make a substitution
η̃ =

η−µ jk√
γjk

. Clearly, η̃ is a standard normal random
variable and hence the probability in (37) can be
written in the form of the Q-function as:

Pr
{
rj > rk |A

}
= Pr

{
η̃ < −

sjk√
γjk

}
= Q

(
sjk√
γjk

)
,

(41)

where we have

sjk = −
(
gjk − µjk

)
= Re

{
1

2

(
Π

j
p − Πk

p

)H
AH
Σ
−1A

(
Π

j
p + Π

k
p − 2Πi

p

)}

= Re

{
1

2

((
Π

j
p − Πi

p

)
−

(
Π

k
p − Πi

p

))H

AH
Σ
−1A

((
Π

j
p − Πi

p

)
+

(
Π

k
p − Πi

p

))}

= γi j − γik . (42)

When k = i, we have γik = 0 and therefore (41)

becomes Pr
{
rj > ri |A

}
= Q

(√
γi j

)
. This completes

the proof. �

APPENDIX D
DISTRIBUTION OF γmn AND κ

Lemma 3. Under the assumptions of Theorem 1,
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1) The random variable γk j defined in (37) is a Γ-
distributed random variable, i.e.,

γk j ∼ Γ
©«
NR,

2σ2
R(

Π
k
p − Π j

p

)H
ΘHΣcΘ

(
Π

k
p − Π j

p

) ª®®¬
.

(43)

2) When qR , 0, the distribution of the random
variable κ defined in (38) is

fκ (κ) =
2Γ(2NR )e

− 2v−1

2vσ2
κ

κ
2

Γ(NR )
√
πσ2

κ

(
v − 1

2v

)NR

D−2NR

(
−
√

2

vσ2
κ

κ

)
,

(44)

where DK (.) is the Parabolic cylinder function
[67, pp. 45] and the parameters are defined in
Theorem 1.

3) For qR = 0, κ ∼ N(0, σ
2
κ

2
), where σ2

κ is defined in
(54)

Proof. When we have σ2
2
≪ σ2

R
, γk j in (37) can be

approximated as:

γk j ≈
1

2σ2
R

(
Π

k
p − Π j

p

)H
AHA

(
Π

k
p − Π j

p

)
. (45)

Recall that A = HΘ. Under the assumptions of The-
orem 1, HHH obeys a non-central complex Wishart
distribution, i.e., HHH ∼ W

(
NR, H̄, Σ̃c

)
. This can

be approximated as a central complex Wishart dis-
tribution having the covariance matrix of Σc = Σ̃c +

1
NR

H̄HH̄ [78]1. If we use this approximation, it
can be assumed that each entry of H is distributed
according to CN(0, Σc). Hence, the random vari-

able z = 1√
2σ2

R

A
(
Π

i
p − Π j

p

)
is distributed accord-

ing to CN
(
0, 1

2σ2
R

(
Π

i
p − Π j

p

)H
Θ

H
ΣcΘ

(
Π

i
p − Π j

p

)
I

)
.

Hence, γ = zHz is a Gamma distributed variable
having the distribution function of (43). This proves
the first part of the Lemma.

The rest of the Lemma is proved as follows. Define

z1 =
1√
2σ2

R

A
((
Π

j
p − Πi

p

)
−

(
Π

k
p − Πi

p

))
and z2 =

1√
2σ2

R

A
((
Π

j
p − Πi

p

)
+

(
Π

k
p − Πi

p

))
. Similar to the case

of first part of this Lemma, the distributions of z1

and z2 can be approximated as z1 ∼ CN(0, σ2
z1

I) and
z2 ∼ CN(0, σ2

z2
I), where

σ2
z1
=

(
Π

j
p − Πk

p

)H
Θ

H
ΣcΘ

(
Π

j
p − Πk

p

)
2σ2

R

, (46)

and

σ2
z2
=

(
Π

j
p + Π

k
p − 2Πi

p

)H
Θ

H
ΣcΘ

(
Π

j
p + Π

k
p − 2Πi

p

)
2σ2

R

.

(47)

1For Rayleigh channel, HHH exactly follows the central complex
Wishart distribution associated with Σc = I

Also note that E
{
z1zH

2

}
= qI and E

{
z2zH

1

}
= qHI,

where

q =
1

2σ2
R

Tr

{(
Π

j
p − Πk

p

) (
Π

j
p + Π

k
p − 2Πi

p

)H
Θ
H
ΣcΘ

}

=

(
Π

j
p + Π

k
p − 2Πi

p

)H
Θ
H
ΣcΘ

(
Π

j
p − Πk

p

)
2σ2

R

. (48)

Now we can rewrite γk j in (45) as:

γk j ≈
1

2σ2
R

((
Π

j
p − Πi

p

)
−

(
Π

k
p − Πi

p

))H
AHA

((
Π

j
p − Πi

p

)
−

(
Π

k
p − Πi

p

))
= ‖z1‖2. (49)

Similarly κ ≈ Re
{

zH
1

z2

‖z1 ‖

}
. First we derive the dis-

tribution of κ given z1. Note that z1 and z2 are
complex Gaussian distributed random vectors. Hence,

the distribution fκ |z1
(κ |z1) is Gaussian. Let κ̃ =

zH
1

z2

‖z1 ‖ .
Therefore, using [79, prop. 3.13], we have µκ̃ =

E{κ̃ |z1 = z̃} = qH

σ2
z1

‖z̃‖. Note that κ = Re {κ̃} and hence

E{κ |z1 = z̃} = Re {µκ̃} = qR

σ2
z1

‖z̃‖, where qR = Re{q}.
In order to compute variance of the κ given z1, let us
expand κ as:

κ = Re

{
zH

1
z2

‖z1‖

}
=

Re{z1}TRe{z2}
‖z1‖

+

Im{z1}TIm{z2}
‖z1‖

.

(50)

Let u1 =
Re{z1 }T Re{z2 }

‖z1 ‖ and u2 =
Im{z1 }T Im{z2 }

‖z1 ‖ .
Hence,

var (κ |z1 = z̃) = var (u1 |z1 = z̃) + var (u2 |z1 = z̃)
+ Cov (u1, u2 |z1 = z̃) + Cov (u2, u1 |z1 = z̃) . (51)

Using [79, prop. 3.13], it can be shown that:

var (u1 |z1 = z̃) = Re{z̃}TCov{Re{z2}|z1 = z̃}Re{z̃}
‖z̃‖2

=

Re{z̃}2

‖z̃‖2

1

2

(
σ2
z2
− ‖q‖2

2σ2
z1

)
. (52)

Similarly, var (u2 |z1 = z̃) = Im{z̃}2

‖z̃‖2
1
2

(
σ2
z2
− ‖q ‖2

2σ2
z1

)
and

Cov (u1, u2 |z1 = z̃) = −Cov (u2, u1 |z1 = z̃)

= − j
‖q‖2

4σ2
z1

Re{z1}TIm{z1}
‖z1‖2

. (53)

Therefore, var (κ |z1 = z̃) = 1
2

(
σ2
z2
− ‖q ‖2

2σ2
z1

)
. Hence,

κ |z1 ∼ N
(
qR

σ2
z1

‖z̃‖, σ
2
κ

2

)
, where

σ2
κ =

(
σ2
z2
− ‖q‖2

2σ2
z1

)
. (54)
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If qR = 0, fκ |z1
is independent of z1 and hence

the unconditional distribution of κ is the same as the
conditional distribution, i.e., κ ∼ N(0, σ

2
κ

2
).

When qR , 0, the unconditional distribution can
be obtained by eliminating the conditioning with re-
spect to the distribution of ‖ z̃‖, which is Nakagami
distributed Nakagami

(
NR, NRσ

2
z1

)
, since ‖ z̃‖2 ∼

Γ(NR,
1

σ2
z1

). Explicitly, fZ̄ (z̄) = 2z̄2NR−1e

− z̄2

σ
2
z1

Γ(NR )
(
σ2

z1

)NR
[80],

where z̄ = ‖ z̃‖. Hence, the unconditional distribution
of κ is:

fκ(κ) =
2
∫ ∞
0

e−g(κ, z̄) z̄2NR−1dz̄(
σ2
z1

)NR
Γ(NR)

√
(πσ2

κ )
, (55)

where

g(κ, z̄) =

(
κ − qR

σ2
z1

z̄

)2

σ2
κ

+

z̄2

σ2
z1

=

κ2

σ2
κ

+

q2
R
+ σ2

z1
σ2
κ(

σ2
z1

)2
σ2
κ

z̄2 − 2qRκ

σ2
z1
σ2
κ

z̄. (56)

Now using [72, 3.462(1)], we arrive at:

Iκ =

∫ ∞

0
e−g(κ, z̄) z̄2NR−1dz̄

= e
− κ

2

σ
2
κ

∫ ∞

0
e

−
q2
R
+σ

2
z1

σ
2
κ(

σ
2
z1

)2
σ

2
κ

z̄2
+

2qR κ

σ
2
z1

σ
2
κ

z̄

z̄2NR−1dz̄

= e
− κ

2

σ
2
κ

(
σ2
z1
(v − 1)
2v

)NR

Γ(2NR)e
κ

2

2σ2
κ
v D−2NR

(
−
√

2

σ2
κ v
κ

)
,

(57)

where v = 1 +
σ2

κ
σ2

z1

q2
R

. Finally, substituting (57) into

(55) will give (44). �
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