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Automated extraction of dolphin whistles - a Sequential Monte Carlo Probability

Hypothesis Density (SMC-PHD) approach

Pina Gruden1, a) and Paul R. White1

Institute of Sound and Vibration Research, University of Southampton, Highfield,

Hants, SO17 1BJ, UK

The need for automated methods to detect and extract marine mammal vocalizations1

from acoustic data has increased in the last few decades due to the increased availabil-2

ity of long-term recording systems. Automated dolphin whistle extraction represents3

a challenging problem due to the time-varying number of overlapping whistles present4

in, potentially, noisy recordings. Typical methods utilize image processing techniques5

or single target tracking, but often result in fragmentation of whistle contours and/or6

partial whistle detection. This study casts the problem into a more general statistical7

multi-target tracking framework, and uses the probability hypothesis density (PHD)8

filter as a practical approximation to the optimal Bayesian multi-target filter. In9

particular, a particle version, referred to as a Sequential Monte Carlo PHD (SMC-10

PHD) filter, is adapted for frequency tracking and specific models are developed for11

this application. Based on these models, two versions of the SMC-PHD filter are12

proposed and their performance is investigated on an extensive real-world dataset of13

dolphin acoustic recordings. The proposed filters are shown to be efficient tools for14

automated extraction of whistles, suitable for real-time implementation.15
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I. INTRODUCTION16

The detection and extraction of marine mammal calls is a crucial first step in many17

applications, such as abundance estimation1, species identification2–4, behavioural studies5,18

and is used in mitigation during industrial activities6. These applications can involve data19

collection over extended periods of time and result in large quantities of data accumulating,20

in which case automated analysis tools become a necessity. This work proposes and validates21

a multi-target tracking approach for automated whistle extraction using Sequential Monte22

Carlo Probability Hypothesis Density (SMC-PHD) filters, including specific models tailored23

for tracking multiple whistles in a real-world dataset.24

When extracting tonal sounds, such as narrowband frequency modulated delphinid whis-25

tles, the aim is to describe the contour of each call - i.e., the frequency evolution of a26

tonal signal through time. This process can be referred to as extraction7,8, detection3,9
27

or tracking10,11. The typical signal processing work-flow involves a pre-processing stage,28

where the effect of the background noise and interfering signals is reduced, followed by the29

extraction of whistles3,7,11. Most methods for automated whistle extraction are based on30

spectrogram techniques and aim to identify the strongest spectral peaks, which are then31

connected to form continuous whistle contours3,7–9,11. For the purpose of this work, a ”mea-32

surement” is defined to be the frequency associated with a single spectral peak identified33

within a given spectral window. The number of measurements within a spectral window34

varies between windows and is unknown a priori.35
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Whistle extraction represents a challenging problem for several reasons. One is that the36

amplitude of a call changes rapidly throughout the whistle duration, which may cause the37

energy in the whistle to rise above, and then fall below, the detection threshold3, resulting38

in sections of the whistle being missed. Further, there are usually many overlapping whistles39

and other interfering sounds present3, which can mask the signal being tracked. The end40

result is a partial extraction and fragmentation of the contours.41

This can hamper certain applications, such as classifiers, if they require the extraction42

of the full whistle contours2. While it is still possible to use whistle fragments to identify43

species3,12, it is expected that as the length of the detected whistle contour increases, the44

species specific information contained in that detection improves and therefore enhances the45

classification. For instance, Ref.3 found that as the fragment length of the whistle contour46

increased, the classification performance increased as well. This enhancement can prove47

significant in situations where a mix of rare and abundant species are present13.48

The goal of this study is thus to improve on the whistle extraction process, by casting49

it into a multi-target tracking (MTT) framework, which allows for simultaneous tracking of50

multiple objects of interest from the noisy measurements in the presence of missed detec-51

tions, and false alarms (i.e., clutter, additional measurements not generated by a whistle).52

Additionally, in contrast to the majority of automated methods for whistle contour extrac-53

tion, the MTT accounts for the time-varying number of whistles by modelling their birth54

(when a whistle starts) and their death (when a whistle ends).55
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A. Background56

A tracker is based on defining a system, whose configuration is defined at time k, by the57

parameter values in the state vector xk. The dynamics of the system describe how the states58

evolve with time, and are encapsulated in the state equation (1). The vector, zk, contains59

the value of the quantities that are measured at time k. The measurements are related to60

the system states through the measurement equation (2):61

xk = Fs(xk−1,nk) , (1)

zk = Gm(xk,ηk) , (2)

where Fs is the function which combines the previous state vector and the system noise62

process nk to generate the current state and Gm is the function computing the measure-63

ment, zk, combining the current state vector with a measurement noise process, ηk. For64

the whistle tracking problem, we employ a state vector consisting of two parameters - the65

instantaneous frequency and its derivative (the chirp rate) - whilst the only measurements66

available are measurements of the instantaneous frequency. The specific form of the state67

and measurement equations used in this paper are discussed in Section II C.68

A Bayesian recursive filtering approach is frequently adopted in single-target tracking69

problems to estimate the state of a system from a sequence of noisy measurements14. The70

Bayes filter aims to compute the posterior probability density function (pdf) of the state71

estimate at each time step, and is based on a two stage recursion14. The first stage, the72

prediction step, uses the state dynamics (1) to compute an a priori estimate of the state’s73
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density function. Whilst the second stage, the update step, updates that density based74

on the newly available measurement, leading to an estimate of the posterior pdf for the75

state vector14. An analytic solution to the Bayes filter under the assumptions of: a single76

target, Gaussianity of the noise processes and linearity of the underlying models, can be77

obtained. The resulting method is the Kalman filter15. A more general approach for a single78

target, avoiding the need for the assumptions of linearity and Gaussianity, is offered by the79

Sequential Monte Carlo (SMC) filter (or particle filter)14, which is the basis of much of what80

follows here.81

Finite Set Statistics (FISST) provides a suitable framework within which an MTT82

Bayesian filter can be constructed16,17. FISST models the states of the targets and the83

measurements using the concept of random finite sets (RFS), and transforms a multi-sensor,84

multi-target problem into a mathematically equivalent single-sensor, single-target problem.85

A RFS is an object in which the unordered elements have random values, as in any multivari-86

ate random process, but in addition to which the number of elements (the set cardinality)87

is also random17.88

A multi-target Bayesian filter17 determines, at each iteration, the full posterior pdf of89

the multi-target state, which makes it computationally intractable in practice, especially90

when there are a large number of targets. To overcome this problem, one solution is to91

use a filter based on the Probability Hypothesis Density (PHD), vk(x|Z1:k) (where Z1:k is92

the set of measurements z at times 1 to k), which is the first-order moment of the multi-93

target posterior18,19. Note that for compactness and clarity, the dependence of vk on Z1:k is94

suppressed in subsequent equations. The majority of the practical applications of the PHD95
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filter involve spatial tracking of moving objects or targets20–23. Herein, the PHD filter is96

applied to track dolphin whistles, and in the following the PHD recursion is outlined in that97

context.98

A PHD is a function whose peaks identify the likely positions of the whistle contours. A99

whistle with a state x is more likely to be present in the region where the PHD is large. It100

should be noted that the PHD is a density function but not a pdf: a point made apparent101

by noting that its integral over the space of its variables is not unity, but is the expected102

number of whistles.103

The PHD filter is implemented in a recursive manner using prediction and update steps.

The goal is to determine the number and the states of the whistle contours at each time

k. In the prediction step, the predicted PHD, vk|k−1, consists of the information regarding

newborn whistles and persistent whistles (whistles surviving from the previous time step,

represented by the posterior PHD, vk−1). In the update step the predictions of whistles are

refined by incorporating the most recent measurements to obtain the posterior PHD, vk.

The prediction and update steps can be written as17,19:

vk|k−1(xk) = γk(xk) + pS

∫
vk−1(xk−1)fk|k−1(xk|xk−1)dxk−1 , (3)

vk(xk) = [1− pD]vk|k−1(xk) +
∑
z∈Zk

pDgk(z|xk)vk|k−1(xk)
κk(z) + pD

∫
gk(z|xk)vk|k−1(xk)dxk

, (4)

where γk(xk) denotes the PHD of whistle births between time k− 1 and k (i.e., the integral104

of γk(xk) over a given region gives the expected number of new whistles appearing in that105

region at a given time); pS denotes the probability of survival, that is the a priori probability106

that a whistle at time k−1 will survive until time k; and fk|k−1(xk|xk−1) denotes single-target107
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state transition density (i.e., probability density of a transition to the state xk given the108

state xk−1). The probability of detection is denoted by pD and it represents the probability109

that a measurement will be detected from a whistle, κk(z) denotes the PHD of clutter, and110

gk(z|xk) denotes the single-target measurement likelihood function (i.e., a likelihood that a111

measurement z was generated by a whistle with a state xk). Eqs. (3) and (4) have been112

adapted to exclude the spawning terms17, since contour splitting is not typically observed113

in dolphin whistles.114

A closed form solution to (3) - (4) can be obtained assuming the PHD is a mixture of115

weighted Gaussian components leading to the so-called Gaussian Mixture PHD (GM-PHD)116

filter24. Advantages of this method are that it is straightforward to implement, however it117

requires one to assume a linear model for the system and a Gaussian assumption for the noise118

processes. Despite this limitation it has been successfully used to track dolphin whistles11.119

A more general approximation to (3) - (4) can be achieved with a particle filter, in what is120

known as the Sequential Monte Carlo PHD (SMC-PHD) filter25,26, where weighted particles121

(random samples) are used to approximate the PHD function. The SMC-PHD filter is a122

direct generalization of the approach employed for a single-target particle filter, and particles123

are propagated over time using importance sampling and re-sampling strategies25,26. This124

implementation of the PHD filter imposes no constraints on the underlying models, and is125

the focus of the current work.126
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B. Contributions127

In this paper we propose a complete multi-target frequency tracking scheme to track128

frequency modulated narrowband signals from audio recordings using a SMC-PHD filter.129

To achieve this we develop new models for this application, and a particle labeling scheme130

to allow associations of the tracks between frames. Further, this paper reports the outcome131

of performance tests on a real-world dataset, and benchmarks the performance against the132

previously mentioned GM-PHD filter.133

This paper is organized in the following manner. Section II describes the dataset, the134

SMC-PHD algorithm for dolphin whistle tracking, along with the developed models and op-135

timized parameters, as well as the method’s evaluation procedure. Section III contains eval-136

uation of the proposed methods on the real-world dataset comprising of dolphin recordings.137

The discussion and the conclusions can be found in Section IV and Section V respectively.138

II. METHODS139

A. Data, pre-processing steps and obtaining the measurements140

The dataset for evaluation of the filter’s performance was from the 5th Workshop of141

Detection, Classification, Localization and Density Estimation (DCLDE) conference in 2011,142

obtained from the MobySound archive (http://www.mobysound.org), which has been used143

in Refs.3,7,11,27. For this work, a subset containing raw recordings and hand-annotated144

files of whistle contours for six delphinid species (Delphinus capensis, Delphinus delphis,145

Peponocephala electra, Stenella longirostris, Stenella frontalis, and Tursiops truncatus) was146
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used, and is the same dataset used in Ref.11. The majority of recordings were sampled at147

192 kHz, but a small portion (15%) of the files had higher sampling rates, and were re-148

sampled to 192 kHz for consistency. The data collection protocols and study areas are given149

in Refs.7,28. In this study, the hand-annotated files supplied with the dataset were used150

as a ground truth data for the filter’s performance evaluation (described in Section II D).151

Whistles which are 150 ms long and have a Signal to Noise Ratio (SNR) exceeding 10 dB152

for at least one third of their duration are termed valid7 and primarily only valid whistles153

are used in the following analysis. The raw recordings were used for the filter to track the154

whistles and, in addition, a part of raw data was set aside as a training set for parameter155

selection in the SMC-PHD filters. This training set consisted of three one minute duration156

files chosen randomly: they were recordings of Delphinus capensis, Delphinus delphis, and157

Stenella frontalis that contained 67, 55 and 63 valid whistles, respectively. This training158

data was not subsequently used in the performance evaluation.159

To implement the whistle contour tracking, a set of measurements for each time instance160

is needed, which is a standard procedure for any multi-target tracking29. The measurement161

sets, that in our application comprise of the spectral peaks, are obtained using established162

methods3,11. This pre-processing reduces the background noise and the impact of interfering163

signals, and is based on a spectrogram using a sliding window of 2048 points (frequency bin164

width 93.8 Hz) with 50% overlap. The spectral peaks were identified using an 8 dB threshold165

applied to the normalized spectrogram, converted to a dB scale. Only spectral peaks in the166

frequency range (2 - 50 kHz) were selected, since that encompassed most dolphin whistles and167

their harmonics. The precision of the location of the spectral peaks was improved by fitting168
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a quadratic through points surrounding the peak and using the location of the maximum of169

that fitted quadratic as the refined peak location. These spectral peaks represent the mea-170

surement set from which the whistle contours were tracked. The pre-processing code used171

to generate the measurement set from the raw files and the measurement set itself are avail-172

able at https://doi.org/10.5258/SOTON/D0316 to facilitate the comparisons with other173

algorithms that operate on spectral peaks. Moreover, the SMC-PHD filter implementation174

is available at https://github.com/PinaGruden/SMCPHD_whistle_contour_tracking.175

B. Sequential Monte Carlo PHD (SMC-PHD) filter for the whistle contour de-176

tection177

The SMC-PHD filter25,26 consists of the basic prediction and update steps seen in the178

Bayes filter. Following the principles of sequential Monte-Carlo methods (or particle fil-179

ters) the underlying integrals are solved recursively using point-wise approximations. These180

methods rely upon a set of particles and their associated weights which are propagated from181

one time step to the next.182

The standard formulation of the SMC-PHD filter25,26 suffers from two limitations that183

relate to initiating newborn particles (i.e., target birth) and to estimating the state30. The184

location where targets are born is typically known a priori and a large number of parti-185

cles are required in that region. Further, state estimates are typically constructed using186

ad-hoc clustering of particles25,30. To make the filter more computationally efficient and187

increase accuracy, a data driven variation of the SMC-PHD filter has been proposed30–32,188

which generates new particles based on the measurements. This reduces the number of par-189
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ticles required, and eliminates the need for clustering techniques during the state estimation190

process by exploiting properties of the PHD update equation. Further, the state estimates191

do not contain identities (i.e., it is not known which state estimate belongs to which target192

being tracked), and either particle labeling33,34 or an external algorithm22,35 can be used to193

achieve the temporal association of the estimates and so obtain target tracks.194

The algorithm description and the pseudo-code of the SMC-PHD filter used for whistle195

contour tracking are given in Section II B 1, Alg. 1, the temporal association procedure is196

detailed in Section II B 2, and the specific models and parameters are presented in Section197

II C.198

1. The SMC-PHD algorithm199

The SMC-PHD filter propagates through time the weighted particle system Pk ≡200

{w(i)
k ,x

(i)
k }1≤i≤Nk

, which approximates the PHD function, vk(xk)
32. At time k, each whis-201

tle contour is represented by a cluster of particles representing the state vectors x
(i)
k and202

the corresponding weights w
(i)
k . At each time step, the filter produces an estimate of the203

multi-whistle state, X̂k, which contains state estimates, x̂k, of whistles. Further, the sum204

of particle weights represents an estimate of the number of whistles17.205

The prediction step in the SMC-PHD filter starts with the persistent particles from the206

previous time step, along with newborn particles being drawn from a proposal density to207

form the predicted particles x
(i)
k|k−1. The predicted particle weights, w

(i)
k|k−1, are computed208

by scaling them using pS. These estimates are then refined in the update step using the set209

of measurements, Zk.210
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The update process consists of multiple elements. First, the weights and particles are211

partitioned on the basis of the measurement set using the probability that the i -th particle212

is associated with the j -th measurement, denoted Pi,j. To allow for the possibility of a213

missed detection an additional category is added to the measurements, and the probability214

that the i -th particle is associated with the missed detection is denoted Pi,0. Partitioning215

into the clusters is performed by randomly drawing an index for each particle according216

to Pi,j, j = 0, · · · , |Zk| (where | · | denotes the cardinality). The computation of Pi,j and217

partitioning are based on Eq. (4), and are detailed in Eq. (50) in Ref.32. This partitioning218

creates a cluster of particles Ck|k−1(z), one for each measurement, plus one cluster for the219

missed detection class Ck|k−1(∅). Note that there is the possibility that any cluster could220

be empty. The method treats the particles associated with the measurements and missed221

detections in different fashions.222

For non-empty clusters associated with a measurement, all the particle weights in the223

cluster are updated according to the second term in Eq. (4), and particles are resampled224

through a stratified resampling process36. Then a probability of the cluster existing, pe, is225

computed, by summing all the weights of particles in that cluster. If that probability is226

greater than a predefined threshold, η, then the resampled particles within a cluster are227

averaged to give a state estimate x̂k.228

In the cluster corresponding to missed detections, Ck|k−1(∅), the particles and associated229

weights have no measurements on which to base the update. Their weights are scaled230

by (1 − pD), i.e. probability of missed detection. Only particles whose weights exceed a231

threshold, ξ, are kept to reduce the computational burden.232
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Finally, the algorithm takes into account the possibility that a whistle starts at time k,233

i.e. a whistle birth. At the end of each iteration a set of Nb particles are drawn, focussed on234

regions in the state-space where measurements, not associated with state estimates, denoted235

Zb,k, were made. This process is detailed in Section II C 3.236

2. Temporal association of the whistle estimates237

For each time step, the SMC-PHD filter in Alg. 1 outputs a set of the estimated states238

(X̂k) that represent whistle contour peaks for that time step. However, these do not have239

identities associated with them, i.e., one does not know which estimate in one time step240

links to which estimate in the next time step, something that is required to be able to form241

continuous whistle tracks (contours).242

Two broad approaches for temporal association of the estimated states are used in the243

literature; one is to use a separate algorithm for the association22,35, the other is to label244

the individual particles33,34. The particle labeling approach tends to be computationally245

more efficient since it only requires an additional set of labels to be propagated alongside246

the weighted particle set, and does not need a separate algorithm. The particle labeling247

approach was adopted in this work, and each particle i was assigned a label T (i), which was248

propagated through time. Unlike other labeling approaches, which typically require cluster-249

ing methods33,34, the procedure employed in this study grouped particles by exploiting the250

properties of the PHD update equation32. The procedure is outlined below, with reference251

to the relevant steps in Alg. 1.252
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On initialization, each particle is assigned a null label T (i). In subsequent prediction steps253

(line 2 Alg. 1), the set of the predicted particle labels remains the same, Tk|k−1 = Tk−1. In254

the update step, after resampling (line 12 Alg. 1), the resampled particles within a given255

cluster retain the labels of the particles from which they were derived. After that, the cluster256

identity is determined, based on the maximum sum of weights of the particles with the same257

label. If a cluster originates from a newborn whistle, then the cluster is assigned a new258

identity, with all previously unlabelled particles in this cluster being assigned the new label.259

The identity of the state estimate, is determined from the identity of the cluster from260

which the state estimate was derived (line 16 Alg. 1).261

Each newborn particle is assigned the label T
(i)
b,k = 0 (line 27 Alg. 1). The labels are added262

to the labels of the persistent particles and are predicted and updated together in the next263

time step.264

The individual whistles are then tracked from the estimated states based on their iden-265

tities. So that all the states with the same identity are linked together into a continuous266

whistle contour (track). Finally, the duration of the track is examined and if it falls below a267

threshold then it is rejected3,7. This condition is called the track length criterion and various268

values for the threshold were investigated ranging from 53 to 150 ms (10 to 28 time steps in269

the spectrogram).270

If there is more than one state estimate with the same identity at a given time, this271

conflict is resolved in the following way: in the case that this is a new whistle (no previous272

state estimates had this identity), the mean of the states is taken and it becomes the state273

estimate for that identity. If this is not a new whistle, i.e., there were previously some274

14
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state estimates with this identity, the last state estimate with the same identity is projected275

forward to the current time step k, using the system function, Eq. (1). The Mahalanobis276

distance between the predicted states and those with the conflicting identities is computed.277

It is the state closest to the prediction which is retained and the other states with conflicting278

identities are discarded.279

C. Models and parameters for the whistle SMC-PHD280

As stated in Section I A, the state vectors chosen for this study consist of frequency f281

[Hz] and chirp rate α (rate of change of frequency, ḟ [Hz/s]), so that xk = [f, α]t, where [·]t282

denotes the transpose10,11. The following subsections describe the models and parameters283

for the SMC-PHD filter employed in this study.284

1. Measurement model285

It is assumed that the only measurement available is the frequency and that model for286

the noise is additive. Accordingly, the measurement model, (2), can be simplified to11:287

zk = Hxk + ηk = [1, 0]xk + ηk , (5)

where zk [Hz] denotes the available measurements. The measurement noise, ηk [Hz], is288

assumed to be Gaussian white noise with a variance R. The value of R is set to the variance289

of a uniform random variable covering a single frequency bin11, and is thus dependent on290

the width of the frequency bin. Specifically, R = 732 Hz2 for the parameters used in this291

study.292
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From Eq. (5) the measurement likelihood function, gk(z|xk), is determined to be293

gk(z|xk) = N (z;Hxk, R), where N (·;m,Σ) denotes a Gaussian density with a mean m294

and a covariance Σ.295

2. System model296

The system (motion) model describes how the state develops with respect to time. In the297

case of whistle contour tracking, the motion model should contain information on how the298

frequency and chirp component of a given whistle evolve with time. The choice of the motion299

model can be crucial for the performance of the tracking algorithms, and many applications,300

such as surveillance tracking, may have a good understanding of the underlying dynamics37.301

However, this is not the case for the frequency evolution of whistle contours.302

In this work two different motion models are explored. The first model used is a lin-303

ear model described in Ref.11, similar to the “nearly-constant-velocity models” in Ref.37,304

specifically:305

xk = Fxk−1 + nk =


1 4

0 1

xk−1 + nk , (6)

where 4 denotes the time interval between spectral windows (here 0.0053 s, based on fs =306

192 kHz, window length = 2048, 50% overlap). The system noise, nk, in this model is307

Gaussian white noise with a covariance matrix Q.308
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While the SMC-PHD allows for non-linear models the linear model in Eq. (6) provides a309

baseline for comparisons, since it was successfully applied to track dolphin whistles11 albeit310

with a different PHD filter.311

The covariance matrix, Q, is assumed to be diagonal, which is equivalent to assum-312

ing that the noise processes acting on the frequency and chirp rate are uncorrelated.313

In which case there are two degrees of freedom when selecting Q, namely the two vari-314

ances, σ2
f and σ2

α, representing the noise processes driving the frequency and chirp rate,315

receptively. These were determined experimentally by running the SMC-PHD filter on316

the training data and selecting the value that gave the best performance (see Section317

II D for performance metrics description). A range of values were tested, specifically,318

{σ2
f , σ

2
α} = (10, 102), (10, 103), (102, 103), (102, 104), (103, 104), (103, 106). The best perfor-319

mance was achieved for the pair (102, 104).320

A second motion model was developed based on training a neural network to learn the321

temporal relationships defining whistle evolution. The training is based on the set of hand-322

annotated data and the idea is similar to the one used in video tracking38, where a set of323

hand-annotated traffic trajectories are used to learn how the objects in the scene typically324

move, and thus construct a prior to help predict the vehicle motion.325

The neural network structure adopted here is that of a Radial Basis Function (RBF)326

network39. This form of network has the advantage of a comparatively simple structure, but327

retains a good ability to generalize. For our application, the RBF can be expressed as:328

xk =
M∑
j=0

wjφj(xk−1; cj,Qj) + nk , (7)
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where φj is the set of M + 1 basis functions. Herein we use Gaussian functions which are329

parametrised by cj andQj, these control the location and width of the basis functions respec-330

tively (these are closely related to the mean and covariance matrix of a multi-dimensional331

Gaussian probability density function). A diagonal form for the matrices Qj allows one to332

reduce the dimensionality of the model, so limits the amount of training data necessary, but333

does restrict the ability of a network of a given size to generalise. The basis function for334

j = 0, is included as a special case and represents a bias term, realised by fixing φ0 = 1.335

In this study, the training data comprised 13,688 data points from 185 whistles. The336

hand annotations only measure the frequencies in whistles. To train the network to learn337

the full state model it is necessary to know the the chirp rates as well as the frequencies. The338

chirp rates were estimated from the hand annotations using a one point backward difference339

formula to approximate the frequency derivative (chirp rate).340

For a given network size, M , the network is trained by first using a k-means clustering341

algorithm40 to determine a suitable set of centres, cj. The Q matrices are then determined342

on the basis of the Euclidean distances between those centres. The final step is to compute343

the weights wj, which only requires the solution of a linear system of equations39. To344

select a suitable value for M a cross-validation process is used. This cross-validation process345

randomly sub-divided the training data into thirds. Two thirds were used for training during346

validation and one third for cross-validation. The network was trained with various choices347

of M and the process repeated 10 times for different sub-divisions of the training data with348

the results of the 10 repeats averaged. The value of M yielding the smallest mean squared349

error was chosen, in this case M = 60.350
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As in the linear case the noise nk was assumed to be Gaussian, white and uncorrelated351

between the two state variables. Based on the statistics of the residuals the noise variances352

{σ2
f , σ

2
α} were (39 Hz2, 7326 Hz2/s2).353

3. Birth model354

The birth model defines where in the state space new whistles are likely to appear, and355

how many appear at each time step, as characterized by the birth PHD, γk(·). If a whistle356

appears in a region that is not covered by the birth PHD then the filter may fail to track357

it31. There are two main challenges associated with determining a suitable birth model, one358

is to determine the birth region (i.e., where do new whistles appear) and the other is to359

determine the birth magnitude (i.e., how many new whistles appear at each step). Since360

the birth PHD in the SMC-PHD filter is represented by a cloud of weighted particles, these361

challenges translate into determining the regions in state space from which the new particles362

are initiated, and determining their weights.363

a. The birth region. In many other tracking applications the birth region is assumed364

to be a single point or uniform across a region of state space33,41. An alternative is to use a365

data-driven approach, which is effective when the birth region is not known in advance31. In366

this approach every measurement initializes newborn targets, with gating techniques used to367

divide the measurements into those originating from persistent targets and those originating368

from newborn targets21.369

The efficiency of the data driven approach arises because it only introduces particles close370

to measurements where the likelihood of a new target appearing is high. This approach is371
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extended and developed further in the current work. The algorithm used here partitions the372

particles based on measurements and only the clusters with sufficient weighting are used to373

estimate states of persistent whistles (lines 15-18 Alg. 1). This defines the set of persis-374

tent whistles and the measurements associated with them. Any remaining measurements,375

denoted Zb,k, are then considered when generating newborn particles, denoted xb,k.376

The process by which newborn particles are generated is as follows. For every z ∈ Zb,k377

a fixed number of particles, Nb, is drawn. The frequency and chirp rate components of the378

state are drawn independently from different distributions. For the frequency element:379

{x(i)b,k}f ∼ N (x; z(j), R) , (8)

Whereas for the chirp rate there is no direct measurement on which to base the initial380

state estimate. To overcome this, the distribution of chirp rates at the start of a whistle381

was approximated using a Gaussian Mixture Model (GMM)42. The GMM was fitted to the382

distribution of chirp rates measured in the hand annotated training data set. The starting383

chirp rates for the annotated dataset were computed based on the difference between the384

first two frequency samples on a whistle. When fitting the GMM, model order was selected385

on the basis of the Bayesian Information Criterion42, leading to a choice of a mixture of386

three Gaussians. Formally:387

{x(i)b,k}α ∼
3∑

n=1

anN (x;µn, σ
2
α,n) , (9)

20



Automated extraction of dolphin whistles

where an, µn and σα,n are the weights, means and variances of the GMM respectively. For388

our dataset these parameters were a = [0.28, 0.02, 0.71], µ = [1190,−113887, 12999] Hz/s,389

and σ2
α = [9.74, 32.6, 1180]× 106 Hz2/s2.390

b. The birth magnitude. The birth magnitude, νb, is the expected number of object391

births at a given time32, and is commonly chosen in an ad-hoc manner or based on a priori392

knowledge on the expected number of newborn objects24,31.393

In this study an alternative approach of computing νb adaptively was investigated, based394

on the idea that not all measurements are equally likely to generate newborn whistles.395

For this purpose, a distribution of the start frequencies of the whistles (the first frequency396

in each whistle contour) from the training data (see Section II A) was first computed. The397

start frequencies of the whistles in the training data had a skewed, non-Gaussian distribution398

(Jarque-Bera test43, p = 0.001 at 5% significance level), with the majority of whistles starting399

between 8 and 13 kHz. The start frequencies were fitted to a log-normal distribution,400

pstart(z), with the log of the start frequencies having a mean µ = 9.4 and standard deviation401

σ = 0.4. The weight of the ith newborn particle, w
(i)
b,k, is then:402

w
(i)
b,k ∝

pstart(z)

Nb

, (10)

where Nb denotes the number of particles per newborn whistle. Thus the weights of the403

newborn particles reflects the a priori likelihood of a whistle starting at that frequency.404
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4. Other parameters405

Beside the models discussed in the preceding sections, there are additional parameters406

required to implement the SMC-PHD filter. Some parameters are determined based on407

properties of the dataset so the choices here match those used in Ref.11. The constant408

defining the PHD of clutter (κk) was chosen to be uniform across the frequency band of409

interest. The observed mean number of false spectral peaks (clutter) per time step, r, was410

set to 10, leading to κk = r/48000 = 0.0002. Further, the probability of a whistle surviving411

from one time step to the next (pS) was set to pS = 0.994 based on the mean length of412

whistles observed in the training data.413

The particle elimination threshold (ξ) prevents the number of particles increasing with-414

out bounds. It needs to be chosen in a way that the particles on the undetected persistent415

whistles, that are collected in a cluster Ck|k−1(∅), are not eliminated. Following recommen-416

dations elsewhere44, this study used ξ = 100(1 − pD)/M where M denotes the number of417

particles in Ck|k−1(∅).418

The remaining parameters were optimized by running the SMC-PHD filter on the training419

data and choosing the value that resulted in the best performance (defined in Section II D).420

The parameters evaluated in this way are: the probability of detection (pD), number of421

particles per persistent (Mp) and newborn (Nb) whistle, and the threshold used in the state422

estimation (η). The values used are summarized in Table I.423
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D. Performance evaluation424

To evaluate the SMC-PHD filter’s performance, the outputs of the algorithms (which con-425

sist of time against frequency peaks for each whistle) were compared to the hand-annotated426

ground truth data. Only valid whistles (see Section II A) were expected to be detected.427

A detected whistle was considered a match (true positive) to a ground truth whistle if its428

timing overlapped with the ground truth whistle and if the mean difference between the429

detected whistle path and ground truth whistle path did not exceed 3 frequency bins (281430

Hz). If the detected whistle exceeded that criteria, it was considered a false positive. It431

should be noted that detected whistles were matched to ground truth whistles regardless432

of whether the ground truth whistles were considered valid. However, only the whistles433

that matched valid ground truth whistles were considered in the evaluation metrics that de-434

scribe the quality and quantity of matches7. Additionally, whilst the algorithm searched for435

whistles between 2 and 50 kHz, the hand-annotations were only applied to the frequencies436

between 4.5 and 50 kHz, therefore any detected whistle that had over 40% of its contour437

below 4.5 kHz was not taken into account in the evaluation process11.438

The performance was measured in terms of recall, precision, fragmentation, mean de-439

viation and coverage3,7,11. Recall measures the percentage of the valid whistles that are440

retrieved, whilst precision measures the percentage of the detections that are correct7. A441

high precision therefore indicates a low false alarm rate and a high recall indicates high de-442

tection efficiency3. For the detected whistles that matched valid ground truth whistles (true443

positives), three additional performance metrics were computed that describe the quality444
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of the detections: fragmentation, mean deviation, and coverage. Fragmentation measures445

the average number of detections per ground truth whistle, mean deviation measures the446

average frequency deviation between the path of ground truth whistle and its corresponding447

detection and coverage measures the average percentage of a ground truth whistle that is448

matched7.449

To further evaluate the SMC-PHD filter, its performance was benchmarked against the450

GM-PHD filter11. The parameters used in the GM-PHD filter were the same as in Ref.11,451

namely: pS = 0.994, pD = 0.85, U = 10, Tr = 0.001, wth = 0.009, and Jmax = 100.452

The sensitivity of the SMC-PHD filter to the input parameter values in Table I was also453

investigated. The sensitivity analysis was carried out by drawing 30,000 random samples454

for each parameter from their respective parameter ranges. Each of these randomly selected455

parameter sets were then used in the SMC-PHD filter and applied to a single representative456

5 s long segment of data containing multiple overlapping whistles, echolocation clicks and457

echosounder pulses. Note that, since the value of the parameter ξ changes during the458

recursion automatically, it was not included in the sensitivity analysis. To evaluate the459

performance of each parameter set, the F1 score was computed, which is a harmonic mean460

of the precision and recall, and reaches its best value at 100:461

F1 =
2×Recall × Precision
Recall + Precision

. (11)

Afterwards, a pseudo-marginal distribution of each parameter was obtained by creating462

equally spaced bins across a given parameter range and computing an average performance463

in each bin. A pronounced peak in the pseudo-marginal distribution indicates the filter is464
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sensitive to parameter values around the peak location, while a flat distribution indicates465

no sensitivity for the specified range.466

III. RESULTS467

In total, 9,192 whistles form six different dolphin species were tracked with the SMC-468

PHD algorithm. The SMC-PHD was considered using two system models one linear and469

one based on an RBF (see Section II C 2). The performance was investigated across a range470

of track length criteria (10 - 28 time steps in the spectrogram; 53 - 150 ms).471

The overall performance results, across all species, are summarized in Fig. 1, and it can be472

seen that the SMC-PHD filter that utilized the RBF motion model appeared to have better473

precision (with similar recall), for shorter track lengths, compared to the filter using the474

linear motion model. For longer track lengths there was a trade-off between precision and475

recall, with the filter using the RBF motion model having higher precision but lower recall476

compared to the filter using the linear motion model (Fig. 1). There was also a difference477

in the coverage, fragmentation, and mean deviation between the two filter types. While478

the filter that used the RBF motion model had slightly lower coverage and slightly higher479

fragmentation, it had lower mean deviation from the annotated whistle paths (Fig. 1). In480

both filters the track length criteria appeared to mainly influence the precision, recall, and481

fragmentation metrics (Fig. 1). A shorter track length criterion resulted in a higher recall,482

lower precision, and a higher fragmentation compared to when a longer criterion was applied483

(Fig. 1).484
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FIG. 1. (Color online) The performance of the SMC-PHD using a linear and RBF motion models

across a range of track length criteria (from 10- 28 time steps; 53 - 150 ms). Error bars indicate 1 SD

of a given metric. For comparison, the performance of the GM-PHD filter is plotted, but without

the corresponding errorbars to preserve the figure’s clarity. The performance was computed across

all ground truth whistles that met the criteria.

Compared to the GM-PHD filter, both SMC-PHD versions had a better precision, but at485

the cost of a lower recall when longer track lengths were considered (Fig. 1). The GM-PHD486

recall and precision values for shorter track lengths are not displayed in Fig.1, to preserve487

the figure’s clarity, but they change smoothly, reaching recall of 90% and precision of 40%488

for track length 10. This is a comparable recall to both SMC-PHD filters, but at much489
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lower precision. Both SMC-PHD filter versions had a smaller coverage of the individual490

whistles compared to the GM-PHD filter, but the whistles were tracked more accurately,491

with a smaller mean deviation between the detection and the ground truth whistle (Fig. 1).492

All filters had a similar fragmentation rate (Fig. 1).493

In terms of computational speed, both versions of the SMC-PHD algorithm were capable494

of tracking the whistles in real time. For example, a two minute file sampled at 192 kHz,495

containing 795 hand-annotated whistles, took 92.5 s and 117.5 s to be processed with the496

SMC-PHD filter with linear motion model and SMC-PHD filter with RBF motion model,497

respectively (implemented in MATLAB, Release R2016b, on a Mac, Os X, processor 2.7498

GHz and 8 GB RAM).499

An example of tracking by both versions of the SMC-PHD filter using a short and a long500

track lengths is shown in Fig. 2. It can be seen that the measurements, from which the filters501

tracked the whistles, contained a large amount of clutter, i.e., measurements not associated502

with the whistles (Fig. 2, B). In agreement with the performance results in Fig. 1, it was seen503

that the SMC-PHD that used a linear motion model produced more false positive detections,504

for example it detected some of the echosounder pulses when using a track length of 10 time505

steps (Fig. 2, C) compared to the SMC-PHD that used RBF motion model (Fig. 2, E). It506

also had higher deviation from the annotated whistle path (for both track lengths) compared507

to the SMC-PHD filter that used RBF motion model (Fig. 2). However, in some whistles508

better coverage was achieved (a higher proportion of a given whistle was detected) compared509

to the SMC-PHD filter that used RBF motion model (Fig. 2). Moreover, in both filters the510
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longer track length criteria resulted in fewer false positives compared to when shorter track511

length criteria were used (Fig. 2).512
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FIG. 2. (Color online) An example of the whistle tracking scenario. (A) Hand-annotated data

(solid lines denote valid whistles, dashed lines not-valid whistles; for definition see Section II D).

(B) Measurements (spectral peaks) - inputs for the SMC-PHD filters. Extracted whistles with the

SMC-PHD filter that utilised linear motion model for track length 10 (C) and 28 (D) time steps.

Extracted whistles with the SMC-PHD filter that utilised RBF motion model for track length 10

(E) and 28 (F) time steps.

In order to investigate the sensitivity of the SMC-PHD filter to the values of the input513

parameters, the best-performing version (using the RBF motion model and track length514

criteria of 10 time steps) was evaluated on the example shown in Fig. 2. The filter appeared515
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to be insensitive to small deviations from the values in Table I, as seen by the similar per-516

formance for bins adjacent to these values in Fig. 3 (indicated with an “x”). However, large517

changes in some parameters (pS, pD, r, η) lead to significant drops in average performance518

and increase in performance variance. Changes in Mp and Nb did not appear to influence the519

average F1, but the performance dropped for Mp < 15. These results are representative of520

the behaviour of both SMC-PHD versions, but are not shown here due to space constraints.521

It should be noted that the performance distribution in each bin of a given parameter522

in Fig. 3 represents multiple random draws of all the other parameters and therefore is523

not optimized. As such, the average F1 is lower than the performance obtained with the524

optimized parameter values in Table I, which result in F1= 87.6 and F1= 85 for the SMC-525

PHD filter that uses RBF and linear motion models, respectively.526

The false positive detections were also examined in more detail. These were mainly due527

to interference from an echosounder and burst pulses, which can display a tonal quality in528

a spectrogram with the resolution chosen here, see Fig. 4.529
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FIG. 3. (Color online) Pseudo-marginal distributions of the SMC-PHD parameters listed in Table

I. Average F1 score per bin is shown, with the error bars indicating 1 SD. The values of the

paramteres that were used in Table I are denoted by “x”.
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FIG. 4. (Color online) An example of the false positive detection of a burst pulse. A spectrogram

of raw data is shown (left) and the measurements (dots) with detected false positives with the

SMC-PHD filter (lines) are shown (right).
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IV. DISCUSSION530

The use of the RFS-based filters is a new approach in the field of the bioacoustics. This531

paper presents the first attempt to adapt these techniques, specifically the SMC-PHD filter,532

for the purpose of the frequency tracking of narrowband, frequency modulated signals from533

the underwater recordings. These methods provide a flexible framework for multi-target534

tracking, since they impose no restrictions on the form of the character of the underlying535

motion and measurement models nor do they assume a form for the various noise pro-536

cesses. The underlying models and parameters for this application are developed and the537

two proposed schemes are tested on a real world dataset comprising of dolphin whistles. The538

results showed the proposed filters are able to simultaneously extract multiple whistles from539

complex acoustic environments; they are able to track the whistles from highly cluttered540

measurements, through crossings with other whistles and points of missed detections; and541

they are suited for real time implementation. While the proposed filter implementation in542

Matlab was able to run in real-time on a typical desktop/laptop computer, it is assumed543

that significant gains in processing speed can be obtained by carefully implementing the544

filter in a more optimized programming language.545

The proposed filters appear to generalize well. While the training data for the filters’546

parameters and models in Section II C consisted of only three delphinid species, the eval-547

uated performance returned good results for all six delphinid species in the dataset (Fig.548

1). Moreover, the recordings used for evaluation contained different whistle types, different549

noise conditions and amount of interfering signals, and were obtained with different record-550

32



Automated extraction of dolphin whistles

ing equipment. This gives additional evidence that the method generalizes for different551

delphinid species, noise and recording conditions. However, the optimal values for parame-552

ters R, κk, and pD are inherently linked to the choice of pre-processing parameters used to553

obtain the measurements. For example, the measurement noise variance R depends on the554

frequency bin resolution used in the spectrogram computation, and the clutter PHD κk and555

the probability of detection pD depend on the spectrogram amplitude threshold.556

The use of the SMC-PHD filter requires the development of specific models and param-557

eters that govern the recursion. The sensitivity of the filter to the input parameter values558

was evaluated on a representative example that contained multiple overlapping whistles and559

noise sources, and that was not part of the training data. The filter appeared to be robust560

to small changes from the trained parameter values. However, large changes in parameters561

that influence the particle weights (pS, pD, r, η) led to a significant drop in performance and562

increased the variance in the performance results. The value of the parameters that control563

the number of particles per persistent and newborn whistles, Mp and Nb, did not appear564

to have a significant influence on the F1 performance. It should be noted, however, that565

increased number of particles will affect the computational speed of the algorithm, with566

larger number of particles slowing down the recursion. While the parameter values used567

in this study appear to give a good performance, there always remains some potential of568

performance improvement through the selection of a better parameter set. One alternative569

approach is to modify the filter so that it can adaptively adjust the parameter values during570

processing45.571
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The proposed versions of the SMC-PHD filter were benchmarked against each other and572

against a different approximation to the PHD filter, the GM-PHD filter11. Both versions573

of the SMC-PHD filter appeared to have better precision and similar recall compared to574

the GM-PHD for short track length criterion, but at the cost of lower recall when longer575

track lengths are considered. Both versions of the SMC-PHD filter tracked whistles more576

accurately, with smaller mean deviation from the annotated whistle path, but at the cost of577

having smaller coverage of individual whistles compared to the GM-PHD filter.578

The performance of the filters depends on the underlying models. A linear motion model579

describing the evolution of whistle contours was used in the GM-PHD filter and in one580

of the SMC-PHD filter versions. However, since the true motion model is unknown, it is581

advantageous to consider learning it from data rather than arbitrarily adopting a linear582

model. Learning the model from data, as was done for the SMC-PHD filter with RBF583

motion model, results in a non-linear model and thus requires the use of the SMC-PHD584

filter. It was seen that the precision of the filter with the non-linear RBF model was better,585

and this filter tracked individual whistles more accurately (with less deviation) compared586

to the two filters using linear models. The trade-off was a smaller coverage of individual587

whistles and slightly higher fragmentation compared to filters using linear models. It should588

be noted that the non-linear model employed here was trained on a relatively small subset589

of data, and future studies should consider models trained on larger datasets and consider590

employing non-Gaussian statistics for the noise processes.591

The performance was measured based on the hand annotated ground truth data, that was592

subjective, as with all hand annotations, but at the same time reflected on the performance593
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of the filters in the practical scenarios. As such the values of the performance of the filters594

should be taken as a guide, not an absolute measure of performance. For both system595

models, there was a general trade-off between the precision and the recall depending on596

the track length criteria (which specifies the minimum whistle contour length before it is597

classed as a detection). Shorter track lengths led to better recall but lower precision, since598

the number of false positive detections are increased. A shorter track length criterion also599

increased fragmentation in both instances. Depending on the requirements of the study, the600

track length criteria can be chosen appropriately.601

To further improve the performance the following could be considered. This study utilized602

measurements that consisted only of the frequency peaks from a spectrogram, which makes603

this problem similar to that of bearing-only tracking in other applications. Adding additional604

information to the measurements, such as the amplitude or the chirp rate, and expanding the605

measurement model could potentially improve the performance46 and should be investigated606

further.607

Furthermore, in the present work the particle labeling approach for temporal association608

was chosen, since it does not add significantly to the computational load of the recursion.609

With the proposed labeling scheme, the identity conflicts (when multiple estimates were as-610

signed the same identity at a given time step) were resolved outside the main PHD recursion611

and the particles from conflicting clusters propagated freely with the same labels. Although612

not reported here, a different approach was also tested, where the particles associated with613

the estimate that did not get assigned to the track were renamed (assigned a new identity).614

However, this did not produce better results. Another approach could be that instead of615
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discarding the remainder of the conflicting estimates (estimates that are not assigned to a616

given track), these estimates would be compared against other tracks (with different labels)617

and assigned to different tracks as appropriate.618

While the proposed filters successfully tracked dolphin whistles, it should be noted that619

any frequency modulated signals in the measurements would be extracted. On one hand,620

this can result in some false alarms that lower the precision of the filter. This was seen621

with the echosounder and burst pulses, which displayed a tonal quality due to the temporal622

resolution adopted in this study. It may be possible to remove these false alarms in post-623

processing steps. On the other hand, having the ability to detect burst pulses could be624

beneficial in certain applications. Moreover, these filters can be adapted for the extraction625

of baleen whale sounds or other frequency modulated sounds of interest.626

V. CONCLUSIONS627

This study considered the frequency tracking of dolphin whistle contours in the context628

of multi-target tracking. This was achieved with the use of the SMC-PHD filter, a practical629

approximation to the multi-target Bayesian filter. The filter was adapted and extended630

for the purpose of frequency tracking and specific models were introduced, resulting in two631

versions of the filter. The proposed SMC-PHD filters successfully tracked a time-varying632

number of overlapping whistles from highly cluttered measurements in the presence of false633

alarms and missed detections. The high degree of flexibility provided by these methods,634

allied to acceptable computational requirements, means that they are well-suited to real-635

time tracking of narrowband frequency modulated signals.636
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In addition, to facilitate comparisons of different methods, the measurement sets, a637

list of all raw audio files used in this study, as well as MATLAB implementation of the638

method for obtaining spectral peak measurements are openly available from the Univer-639

sity of Southampton repository at https://doi.org/10.5258/SOTON/D0316. Moreover, the640

SMC-PHD filter implementation is available at https://github.com/PinaGruden/SMCPHD_641

whistle_contour_tracking.642
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Algorithm 1 Pseudo-code of the SMC-PHD filter for whistle contour tracking (adapted

based on Ref.32)

1: Input Pk−1 ≡ {w
(i)
k−1,x

(i)
k−1}1≤i≤Nk−1

;Zk

2: Step 1 Prediction

3: Draw particles from proposal density to obtain x
(i)
k|k−1 . see Section II C 2

4: Compute their weights: w
(i)
k|k−1 = pSw

(i)
k−1

5: Step 2 Update, Resampling, State Estimation

6: Partition {w(i)
k|k−1,x

(i)
k|k−1}1≤i≤Nk−1

to form clusters Ck|k−1(z), z ∈ Zk ∪ ∅

7: Initialize Pk = ∅, X̂k = ∅

8: for every z ∈ Zk do

9: if Ck|k−1(z) 6= ∅, it consists of M weighted particles {w(m)
k|k−1,x

(m)
k|k−1}1≤m≤M then

10: Update their weights: ŵ
(m)
k =

pDgk(z|x
(m)
k|k−1

)w
(m)
k|k−1

κk+pD
∑M

n=1 gk(z|x
(n)
k|k−1

)w
(n)
k|k−1

11: Compute probability of cluster’s existence: pe(z) =
∑M

m=1 ŵ
(m)
k

12: Resample based on ŵk to generate Mp particles x
(l)
k , l = 1, · · · ,Mp

13: Set the resampled particle weights to w
(l)
k = pe(z)/Mp, l = 1, · · · ,Mp

14: {w(l)
k ,x

(l)
k }1≤l≤Mp represent updated cluster Ck(z), and Pk = Pk ∪ Ck(z)

15: if pe(z) > η then . η is a threshold determined in Section II C 4

16: Estimate whistle state x̂k from Ck(z): x̂k = 1/Mp
∑Mp

l=1 x
(l)
k

17: X̂k = X̂k ∪ {x̂k}

18: end if

19: end if

20: end for
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21: for every pair (wk|k−1,xk|k−1) ∈ Ck|k−1(∅) do

22: if wk|k−1 > ξ then . ξ is a threshold determined in Section II C 4

23: Update weights as: wk = (1− pD)wk|k−1

24: And add the weighted particles to Pk

25: end if

26: end for

27: Step 3 Whistle birth

28: for every z ∈ Zb,k do

29: Generate Nb particles and compute their weights . see Section II C 3

30: Add the newborn weighted particles to Pk

31: end for

32: Output: Pk ≡ {w
(i)
k ,x

(i)
k }1≤i≤Nk

; X̂k
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TABLE I. Summary of the parameters used in the SMC-PHD filter for dolphin whistle tracking. pS

and pD denote the probabilities of survival and detection respectively; r denotes the average number

of clutter measurements per time step; Mp and Nb denote the number of particles per persistent and

newborn whistle respectively; η denotes state estimation threshold; ξ denotes particle elimination

threshold, where M is the number of particles in cluster Ck|k−1(∅).

pS pD r Mp Nb η ξ

0.994 0.99 10 50 50 0.0005 1/M
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FIGURE CAPTIONS765

Fig.1 (Color online) The performance of the SMC-PHD using a linear and RBF motion766

models across a range of track length criteria (from 10- 28 time steps; 53 - 150 ms).767

The performance is computed across all ground truth whistles that met the criteria768

and is not the average of file or species performances. Each error bar indicates one769

standard deviation of a given metric.770

Fig.2 (Color online) An example of the whistle tracking scenario. (A) Hand-annotated data771

(solid lines denote valid whistles, dashed lines not-valid whistles; for definition see772

Section II D). (B) Measurements (spectral peaks) - inputs for the SMC-PHD filters.773

Extracted whistles with the SMC-PHD filter that utilised linear motion model for774

track length 10 (C) and 28 (D) time steps. Extracted whistles with the SMC-PHD775

filter that utilised RBF motion model for track length 10 (E) and 28 (F) time steps.776

Fig.3 (Color online) Pseudo-marginal distributions of the SMC-PHD parameters listed in777

Table I. Average F1 score per bin is shown, with the error bars indicating 1 SD. The778

values of the paramteres that were used in Table I are denoted by “x”.779

Fig.4 (Color online) An example of the false positive detection of a burst pulse. A spec-780

trogram of raw data is shown (left) and the measurements (dots) with detected false781

positives with the SMC-PHD filter (lines) are shown (right).782
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