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12 Abstract

13 Background: Pressure mapping technology has been adapted to monitor over prolonged periods to

14 evaluate pressure ulcer risk in individuals during extended lying postures. However, temporal

15 pressure distribution signals are not currently used to identify posture or mobility. The present study

16 was designed to examine the potential of an automated approach for the detection of a range of static

17 lying postures and corresponding transitions between postures.

18 Methods: Healthy subjects (n=19) adopted a range of sagittal and lateral lying postures. Parameters

19 reflecting both the interactions at the support surface and body movements were continuously

20 monitored. Subsequently, the derivative of each signal was examined to identify transitions between

21 postures. Three machine learning algorithms, namely Naïve-Bayes, k-Nearest Neighbors and Support

22 Vector Machine classifiers, were assessed to predict a range of static postures, established with a

23 training model (n=9) and validated with new input from test data (n=10).
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24 Findings: Results showed that the derivative signals provided a means to detect transitions between

25 postures, with actimetry providing the most distinct signal perturbations. The accuracy in predicting

26 the range of postures from new test data ranged between 82%-100%, 70%-98% and 69%-100% for

27 Naïve-Bayes, k-Nearest Neighbors and Support Vector Machine classifiers, respectively.

28 Interpretation: The present study demonstrated that detection of both static postures and their

29 corresponding transitions was achieved by combining machine learning algorithms with robust

30 parameters from two monitoring systems. This approach has the potential to provide reliable

31 indicators of posture and mobility, to support personalized pressure ulcer prevention strategies.

32

33 Keywords: pressure ulcers, continuous pressure monitoring, actimetry systems, machine learning,

34 postures detection

35

36 1. Introduction

37 Systems capable of automatically classifying patterns of movement performed by a human subject

38 e.g. wearable actimetry sensors, are widely used in many clinical and research applications in

39 healthcare through advanced human-machine interfaces (Manini and Sabatini, 2010; Mathie et al.,

40 2003; Mohammed et al., 2016). Recently, their use has been shown to improve the provision of

41 optimal turning critical for PU prevention (Ifedili et al., 2018; Pickham et al., 2018). Nonetheless,

42 there are issues with compliance to body worn sensors, and the information gleamed from actimetry

43 does not correspond to interface pressure measurements (Stinson et al., 2018), which currently

44 represents one of the primary means to assess PU risk.

45 In recent years, interface pressure measurements systems have been adapted to continuously monitor

46 subject-support surface interactions, with the resulting data being used to indirectly classify a range of

47 postures and movements (Duvall et al., 2019; Kim et al., 2018; Wai et al., 2010; Yousefi et al., 2011).

48 However, the predictive power of these algorithms for early PU risk is largely dependent on the

49 magnitude of the applied pressure in pre-determined areas of the pressure sensing mat (Wai et al.,

50 2010) and are commonly associated with arbitrary thresholds. Only a few studies have combined

51 interface pressure measurements and actimetry signals for classifying postures, none of which were

52 directly focused on pressure ulcers (Zemp et al., 2016).

53 In a recent publication, the authors have identified a series of robust signals estimated from both

54 continuous pressure mapping and actimetry systems, which can accurately track postures and mobility

55 during different evoked postures (Caggiari et al., 2019). However, the signals in isolation

56 demonstrated limited sensitivity and specificity, therefore a combined signal analysis approach was

57 recommended. These signals resulted in large data sets (Bogie et al., 2008), which would benefit from

58 intelligent data processing. While it is well known that actimetry systems can detect posture and

59 mobility with a high degree of accuracy (Edwardson et al., 2016; Lyden et al., 2016), there is limited

60 evidence that parameters estimated from pressure distribution could act as a surrogate for detecting

61 both postures and corresponding transitions between postures during prolonged lying.

62 Accordingly, the present study was designed to develop a robust methodology for detecting static

63 postures and transitions between postures, using data acquired for pressure monitoring and actimetry

64 systems. Three conventional machine learning algorithms, namely Naïve-Bayes (NB), k-Nearest

65 Neighbors algorithm (KNN) and Support Vector Machine (SVM) classifiers, each of which have been

66 adopted in previous research studies to classify range of postures (Chi-Chun et al., 2008; Duvall et al.,

67 2019; Foubert et al., 2012) were included in the evaluation.

68 The accuracy for detecting a range of static postures and their corresponding transitions, namely

69 changes in posture, were assessed using the following objectives:

70 i)	Perform data reduction and feature extraction of the raw actimetry and pressure

71 monitoring signals

72 ii)	Create a methodology for the automatically detection of changes in posture from the set

73 of data and

74 iii)	Apply the machine learning algorithms, cross-validated with leave-one-out testing, and

75 evaluate their accuracy in classifying the range of prescribed lying postures.

76
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77 2. Methods

78 2.1 Participants

79 The training data set was derived from the previous study evaluating the performance of pressure

80 monitoring and actimetry signals to distinguish postures (Caggiari et al., 2019), which was conducted

81 with institutional ethical approval (Ref: 26379). The data from nine of the healthy participants (5 male

82 and 4 female) were allocated into the training group, each of whom were observed to performed a

83 number of minimal postural adjustments during the static postures (Caggiari et al., 2019). Participants

84 were aged between 27-36 years (mean = 32 years) with an average height and weight of 1.70 m and

85 72.0 kg (standard deviation = 0.1 m and 17.0 kg), respectively. The corresponding BMIs ranged

86 between 19 to 30 kg/m2.

87 A separate cohort of ten healthy participants (4 male and 6 female) were recruited into the test group,

88 under the same institutional ethics. Participants were aged between 27-56 years (mean = 34 years)

89 with an average height and weight of 1.73 m and 68.9 kg (standard deviation = 0.1 m and 15.7 kg),

90 respectively. The corresponding BMIs ranged between 19 to 28 kg/m2.

91 Exclusion criteria for both groups included participants with a history of skin conditions, neurological

92 or vascular pathologies that could affect tissue health or those were unable to lie in a supine posture

93 for a period of 2 hours. Informed consent was obtained from each participant of both groups prior to

94 testing.

95 2.2 Test equipment

96 The equipment and test protocol has been described in the recent paper (Caggiari et al., 2019). To

97 review briefly, interface pressure measurements were recorded using a full body pressure monitoring

98 system (ForeSite PT, XSENSOR Technology Corporation, Canada). The fitted mattress cover

99 incorporates 5664 pressure measuring sensor cells, with a spatial resolution of 15.9 mm, covering a

100 sensing area of 762mm x 1880mm. Each sensor operates within a range of 5-200 mmHg (0.7-26.6

101 kPa) and an acquisition rate of 1 Hz. Three actimetry sensors (Shimmer Platform, Realtime

102 Technologies Ltd, Dublin, Ireland) were attached to the sternum and the left and right anterior iliac

103 crests with a Velcro strap. Each device represents a small wireless sensor (53mm x 32mm x 25mm),

104 integrating a tri-axial accelerometer and gyroscope, that records real-time calibrated Euler angles data

105 at 51 Hz (range = 2g).

106

107 2.3 Test Protocols

108 All test procedures were performed in the Biomechanics Testing Laboratory in the Clinical Academic

109 Facility in Southampton General Hospital, where room temperature was maintained at 24o.

110 Participants were requested to wear loose fitting clothing and adopt a series of sagittal and lateral

111 postures on a standard hospital bed frame (Hill-Rom, AvantGuardTM) and a castellated foam mattress

112 (Solace Foam Mattress, Invacare UK). A continuous lateral rotational system (CLRS) (Vikta

113 KomfitiltR) placed underneath the support surface enabled left and right 20-25o tilt of the overlying

114 mattress in the lateral plane with an automated 10 min cycle time.

115 Each of the subjects in the training group adopted a series of prescribed sagittal postures held for 10

116 minutes, achieved by adjusting the head of the bed (HOB) in 10° increments to a maximum of 60o and

117 then lowering by 10o to supine. In addition, lateral postures were evoked through a continuous lateral

118 rotational system (CLRS). An adapted version of the protocol was used for the test group intended to

119 evaluate the performance of the classifiers. Here, sagittal postures were held for 20 minutes starting in

120 the supine posture followed by raising the HOB angle by 20° increments to a maximum of 60°. The

121 HOB was then lowered in 20° increments to supine. Subsequently lateral postures were adopted

122 through the CLRS system, as for the training group. Interface pressure distribution and actimetry data

123 were continuously recorded throughout the two hours test period for both training and test groups.

124 Participants were instructed to remain as still as possible on the mattress.

125 2.4 Outcome parameters

126 The results of the previous study (Caggiari et al., 2019) involving a comprehensive ROC analysis

127 revealed a number of parameters as the most accurate in detecting changes in posture, which included:

128 	Tilt angles (TA) of the trunk with respect to the sagittal and the lateral planes and

129 	Percentage variation of contact area (CA) of sensors recording a minimum threshold pressure

130 of 20 mmHg estimated at the whole body ROI.

131 These parameters were estimated for all subjects from both training and test groups. For the

132 estimation of contact area, pressure readings equal or above a 20 mmHg (2.7kPa) threshold were

133 included, as they were most indicative of evoked postural changes (Caggiari, 2020).

134 Furthermore, signals from training group were adapted to consider static postures in 20o increments of

135 HOB. As an example, Fig. 1 shows the temporal trend of the variations of contact area and the

136 corresponding pressure distribution during sagittal and lateral postures, for one subject of the training

137 group. It is evident that changes in the HOB angle are reflected in the incremental step changes in the

138 signal and changes in the pressure distribution. In particular, the relative change in signal was

139 dependent on the HOB angle, with angles <20o revealing reduced variation in contact area. This was

140 also evident for lateral postures. In addition, it is evident that there were differences in the signal

141 dependent on whether the HOB was increasing or decreasing corresponding to 20o HOB and supine

142 postures (Fig. 1).

143
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145 Fig. 1: Temporal profile of the percentage variation of contact area at the whole body ROI and the

146 corresponding pressure distribution for 8 sagittal and lateral postures, involving 20o HOB increments.

147

148 2.5 Post-processing of the signals from training group

149 The flowchart in Fig. 2 illustrates the processing of the signals from both training and test groups.

150 This included a moving average filter with a time window of 30 samples for the pressure data from

151 both groups, to remove the high frequency noise. The corresponding actimetry signals, which were

152 originally acquired at 51 Hz, were re-sampled at 1 Hz and filtered using a window of 15 samples

153 (Caggiari et al., 2019).

154 The signals from training group were then manually annotated, by denoting the beginning and the end

155 of each evoked posture. The transitions between postures were not included as they contained noise

156 due to natural adjustments in posture observed in all participants. Each of the signals was then

157 interpolated in order to encompass 600 data points, for each posture, resulting in a total of 4800 data

158 points per signal. The interpolation was applied in order to include signals and hence postures of an

159 equivalent time period. All signals were then subjected to a fixed-width sliding window of 60 seconds

160 to reduce the raw data by evaluating features i.e. mean and derivative values. Mean values were

161 calculated within each sliding window for both trunk tilt angles and contact area signals, resulting in a

162 80 point data set for each signal. The reduced signals from all the subjects were allocated to the

163 training data set. A principal component analysis (PCA) was performed and the training signals

164 projected onto the PCs dimensional space.
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166

167	Fig. 2: Flow chart depicting the different processes for data acquisition for use with the classifiers.

168

169 2.6 Classifiers

170 Three commonly used classifiers were employed, each of which adopts distinct approaches for event

171 classification.

172 2.6.1 KNN classifier

173 The KNN classification rule, first described by Cover and Hart (1967), depends on the distance metric

174 between the new observation point and k nearest data point(s) (Short and Fukunaga, 1981). Given the

175 nature of our data, the Euclidean distance was selected as the distance metric. Moreover, the

176 parameter k determines how many neighbors will be chosen and its choice has a significant impact on

177 the diagnostic performance of KNN algorithm. Accordingly, a sensitivity analysis was performed and

178 k = 10 was identified to provide the highest accuracy and was therefore chosen for the current

179 analysis.

180 2.6.2 Naïve-Bayes classifier

181 The Naïve-Bayes classifier represents a probabilistic strategy based on Bayes’ theorem, which

182 describes the probability of an event based on the prior knowledge that some other events have

183 already occurred i.e. conditional probability. A Gaussian distribution was considered the most

184 appropriate approach for assessing the conditional probability, which can be written as:


 	1 

 1 	−1

185	P(H ¦ E)  =	 
√det(2𝜋𝜎𝐸)

exp(−

(ℎ − 𝜇𝐸)𝑇𝜎𝐸
2

(ℎ − 𝜇𝐸))

186 where H represents a new event and E is some observed event, µE is the mean and σE is the covariance

187 matrix of the observed events.

188 2.6.3 Support Vector Machine (SVM) classifier

189 The SVM (Burges, 1998) classifier is based on defining a hyperplane that divides the clusters of data.

190 The optimal hyperplane is the one representing the largest distance to the nearest element of each

191 cluster (support vectors). SVM projects the data into a higher dimension from the original space

192 where the hyperplane can be derived from kernel functions. Gaussian kernel function was considered

193 the most appropriate for the present data.

194 2.6.4 Cross-validation

195 A leave-one-subject-out cross-validation was performed to test the robustness of the training model in

196 detecting the range of static postures (Fig. 2). This consisted in training a model with data from 8 of

197 the 9 subjects in the training cohort, who were randomly selected. The data of the excluded subject

198 were then tested and the accuracy in postures classification was assessed. This process was repeated

199 for each individual who has been used to test the trained model and the accuracy of the classifiers was

200 determined. Subsequently, a training model was created with the set of data of all subjects in the

201 training cohort. The accuracy of all classifiers was then assessed by applying data from subjects in the

202 test cohort. This resulted in a percentage accuracy across all postures adopted in the test data. This

203 percentage accuracy was established for each participant within the test group and calculated as the

204 number of data points correctly classified for each posture with respect to the corresponding total

205 number of points in the signals.

206 2.7 Test data sets

207 After filtering, signals from test group were interpolated to encompass 9000 data points (2.5 hours of

208 recording), including both static postures and the transition between postures. Signals corresponding

209 to each participant represented a distinct data set to identify changes in posture and test the training

210 model. Each of the test data sets was subjected to the 60-second sliding window for data reduction

211 and both mean and derivative values were estimated within each window prior to identify the changes

212 in posture and classify the corresponding static postures. The derivative signal of both contact area

213 and trunk tilt angles in both sagittal and lateral planes were used for the detection of any change

214 between two postures. The signals were subjected to a discriminant threshold to identify where the

215 variations in the derivative occurred. Different thresholds were examined in order to identify the

216 optimum value which accommodated all subjects. Once the changes in posture from the test data set

217 were identified, the mean signals from the subsequent sliding windows were projected onto the

218 training PCs dimensional space and subjected to posture classification.

219

220 3. Results

221 3.1 Leave-one-out cross-validation

222 The cross-validation demonstrated an accuracy ranging between 85%-99% for classification

223 performed with Naïve-Bayes. The corresponding accuracy using KNN and SVM ranged between

224 53%-95% and 59%-100%, respectively. Accordingly, it is demonstrated that the training data set

225 could provide a robust means for detecting static postures with the test data set.

226 3.2 Detecting changes in posture

227 Consistent variations in the derivative magnitude of the trunk tilt angles were identified in association

228 with the sagittal changes in posture for all subjects. Smaller variations were also evident in the lateral

229 plane when lateral postures were adopted (data not shown). They were subjected to processing which

230 involved the signal rectification, in order to use a generic positive threshold. The rectified derivative

231 signal for both sagittal and lateral trunk tilt angles were then summarised to obtain a single signal

232 which included both sagittal and lateral changes in posture. An example of the rectified derivative

233 profile of trunk tilt angles for one subject is illustrated in Fig. 3A. The corresponding derivative of the

234 contact area is shown in Fig. 3B. The latter reveals that changes in posture were well distinguished in

235 magnitude at high HOB angles, but less distinctive at lower HOB angles (<20°). Indeed, perturbations

236 in magnitude were also observed during static postures, which did not enable the correct detection of

237 all changes in posture (Fig. 3B). Accordingly, only the derivative of the trunk tilt angles was used and

238 an appropriate discriminant threshold value of 0.10 for all subjects was selected for subsequent

239 detection of the transitions between postures (Fig. 3A), resulting in 100% accuracy for all subjects.
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242 Fig. 3: Rectified derivative profile for subject #1 in the test cohort of A) the sum of the derivative

243 signals of trunk tilt angles at both sagittal and lateral planes, B) contact area. Each data point in the

244 signals corresponds to a derivative value calculated within the 60-second sliding window.

245

246 3.3 Accuracy in classifying the range of postures

247 As illustrated in Fig. 4, static postures corresponding to signals for all subjects from the training group

248 (n=9) resulted in clusters of points spatially distributed across the first and second PCA dimension,

249 which contributed to 87% and 12% of the variance in the signals, respectively. This reflects the

250 changes in signal magnitude associated with either increasing or decreasing the HOB angle (Fig 1). In

251 particular, when a reduced variation in the step changes was observed e.g. HOB <20o, there is a

252 reduced spatial distribution of adjacent clusters. This is particularly evident in the first principal

253 component (PC1) (x-axis - Fig. 4). When the signals corresponding to the static postures of one

254 subject from the test group are projected onto the training PCs space (data points in pink) separate

255 clusters are observed. These clearly overlapped with the corresponding clusters of points from the

256 training data.

257 The estimated accuracies for each of the three classifiers are summarised in Table 1. It is evident that

258 for increments of 20o in the HOB angles there was a high accuracy for each subject and all classifiers.

259 In particular, the accuracy was >80% in classifying postures using the Naïve-Bayes classifier for all

260 subjects. The corresponding accuracy using the KNN classifier resulted ≥90% in 8/10 subjects, with

261 the remaining two subjects showing an accuracy value of 70% and 74%. SVM resulted in accuracy

262 values of >80% in 8/10 subjects with the remaining two resulting in an accuracy of 71% and 69%,

263 respectively.

264
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266 Fig. 4: Signals corresponding to the training data set (9 subjects) projected onto the first two principal

267 components, PC1 and PC2, with their corresponding variance in brackets. Each posture is represented

268 by a spatially distributed coloured cluster. Signals from one subject from the testing group (data points

269 in pink) were projected onto the training PCs dimensional space.

270
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273

274

275

276

277	Table 1: Percentage accuracy in classifying the range of postures for all classifiers.


Accuracy [%]

	
	Subjects
	Naïve-Bayes
	KNN
	SVM

	
	1
	90
	94
	97

	
	2
	95
	97
	91

	
	3
	98
	90
	86

	
	4
	89
	92
	90

	
	5
	97
	93
	97

	
	6
	83
	97
	82

	
	7
	93
	90
	97

	
	8
	98
	74
	71

	
	9
	100
	98
	100

	
	10
	82
	70
	69

	278
	
	
	
	
	

	279
	4. Discussion
	
	
	
	



280 This study has detailed the application of intelligent data processing of biomechanical signals

281 depicting changes in lying posture from angles of body segments (actimetry) and pressures measured

282 at the interface between the body and support surface i.e. contact area of pressures >20mmHg. The

283 derivative of signals was assessed to identify changes in posture in both sagittal and lateral planes. A

284 series of machine learning algorithms in the form of Naïve-Bayes, KNN and SVM classifiers were

285 applied to a set of data involving signals derived from an actimetry system and interface pressure

286 distribution estimated from a high resolution sensing array. A cross-validation technique was applied

287 using each machine learning algorithm, revealing that the training data could provide a robust means

288 of classifying the data. Subsequently, an adapted protocol was used to provide test data, which was

289 observed to correspond with the clusters derived from the training phase (Fig. 4). The resulting

290 classification accuracy of the test data ranged between 82% 100%, 70%-98% and 69%-100% for the

291 three classifiers, respectively (Table 1), with Naïve-Bayes classifier showing the highest accuracy in

292 classifying the range of static postures. A value >80% could represent a benchmark by which the

293 majority of the postures can be monitored.

294 Findings revealed that the derivative of the signal representing the trunk tilt angles correctly identified

295 the changes in posture for all subjects, as characterised by a transient increase in the magnitude of the

296 derivative at each corresponding change in posture (Fig. 3A). By contrast, the derivative of the

297 contact area signal generally revealed less distinct changes in magnitude when evaluating changes in

298 posture involving HOB angles <20o and thus it proved problematic in identifying their occurrence

299 (Fig. 3B). Accordingly, the trunk tilt angles derivative, resulting from the sum of sagittal and lateral

300 signal derivatives, was considered to represent a more robust means to automate the detection of the

301 changes in posture in the test data. Indeed this approach, based on the derivative of biomechanical

302 parameters, has been applied in several other areas of the biomedical field, for example, for the

303 detection of the different gait phases (Taborri et al., 2016).

304 Previous research have utilised intelligent data processing from machine learning algorithms to

305 classify a range of lying and sitting postures and their transitions from the distribution of pressure at

306 the subject-support interface (Foubert et al., 2012; Kim et al., 2018; Matar et al., 2019; Rus et al.,

307 2017; Wai et al., 2010; Yousefi et al., 2011; Zemp et al., 2016). These approaches adopted and the

308 results reported are summarised in Table 2.

309

310

311

312

313

314

315	Table 2: Summary of relevant studies classifying lying and sitting postures.


Study	Data used for classification	Classifier(s)	Accuracy	Changes in posture



i) Raw pressure values

> 70%


Wai et al. (2010) -
ii) 
Eigen vectors	> 50%

Lying postures
iii) 
Mean, variance, standard deviation, root mean square estimated in 9 ROIs

SVM

✗
> 60%

Yousefi et al. (2011) -
Lying postures

Binary pressure images projected in PCA space


KNN	> 97%	✗





Kim et al. (2018) -
Sitting postures


Heat map of pressure distribution


Naïve - Bayes SVM

> 85%
✗
> 90%




Duvall et al. (2019) -
Lying postures

Weight measured by four cells placed under the legs of the bed


KNN	> 95%	✓


Zemp et al. (2016) -
Sitting postures

Median of the force data divided by the subject’s body weight and backrest angles



SVM	> 70%	✗

Foubert et al. (2012) -
Lying to sitting
i) 
WNAS


SVM and KNN

> 90%
✓

ii) COP displacements	> 75%




Matar et al. (2019) -
Lying postures

Oriented gradient and local binary patterns estimated from pressure distribution


Artificial neural network



> 97%	✗



Present study

Eigen vectors estimated from biomechanical parameters derived from actimetry systems and pressure distribution

Naïve-Bayes	> 80%

KNN	≥ 70%	✓
SVM	≥ 69%


316

317 It is evident that the present findings are comparable with previous studies, with high accuracy values

318 in postures classification reported for the detection of range of static postures. However, only two

319 studies have detected the transition phases between static postures. Foubert et al. (2012) have used

320 lateral and longitudinal displacements of the centre of pressure estimated from pressure distribution,

321 reporting an accuracy of >90%. By contrast, a separate study utilised the total weight on the bed

322 measured by using a system involving four load cells (Duvall et al., 2019). Their results reported that

323 a change of 7lb (3.2kg) in the measured weight within a temporal window of 7secs was able to detect

324 the changes in posture with an accuracy of 98%. Furthermore, limitations of many previous studies

325 included the short-term estimation of the pressure distribution (up to tens of seconds) and the limited

326 range of supine postures (i.e. supine, prone, left and right turn). There are, however, some studies

327 which have evaluated a range of postures involving the elevation of the HOB angle (Yousefi et al.,

328 2011) and data derived from a longer period i.e. 5 minutes of pressure monitoring (Kim et al., 2018).

329 In addition, Zemp et al. (2016) utilised a composite data set involving force values acquired at the

330 support surface normalised to individual body weight and the corresponding backrest tilt angle

331 estimated with actimetry positioned on the backrest, for the detection of sitting postures. However,

332 both parameters were acquired at a single time point.

333 The present study has applied an automated method to identify the occurrence and magnitude of

334 movements based on signal derivative and machine learning algorithms. This could be achieved using

335 either actimetry or pressure parameters. To date, these temporal data are unknown in many care

336 settings.

337 It is inevitable that the use of able- bodied cohorts in a lab-based study precludes generalising the

338 present findings to individuals, from specific sub-populations, deemed to be at risk of developing

339 pressure ulcers i.e. the elderly, spinal cord injured and those managed in intensive care units. The

340 study protocol was also limited in selecting a pre-determined order of relatively small postural

341 changes (20o HOB increments) maintained for a relative short period of 10-20 minutes. Thus, future

342 studies should examine random postures involving different HOB increments and the side-lying

343 lateral posture typically adopted in clinical settings. The current method would require an

344 improvement in accuracy and validation to account for random postures on specialised mattresses

345 used by patients in both acute and community clinical settings where the recommended frequency and

346 magnitude of movements are not strictly followed (Defloor et al., 2005; Woodhouse et al., 2019). This

347 would support clinicians when informing clinical decision-making.

348 Technology to monitor individuals could provide critical means to detect posture and mobility.

349 However, it is clear that the emergence of digital health strategies will necessitate the use of robust

350 monitoring tools. Accordingly, continuous pressure monitoring represents an important tool which

351 when integrated with support and feedback technologies could promote PU prevention through self-

352 management and targeted care interventions (Tung et al., 2015). This would result in more efficient

353 practice and a personalised approach. It could also be integrated with risk assessment to create a more

354 objective means of PU risk. In addition, machine learning applied to large data sets derived from these

355 technologies could provide a robust means for translation into indicators of posture and mobility

356 associated with both frequency and magnitude of postures.

357 5. Conclusion

358 The present study has defined a methodology for classifying static lying postures and identifying

359 transitions in between different postures. The combination of biomechanical parameters acquired

360 using pressure monitoring and actimetry technologies were combined using data reduction and

361 machine learning approaches. The combination of monitoring technologies and advanced algorithms

362 offers the potential to track posture and mobility in individuals at risk of pressure ulcers, informing

363 personalised care strategies. Further research is needed to establish the accuracy of the posture

364 prediction involving clinical data sets in sub-groups of patients at risk of pressure ulcers e.g. spinal

365 cord injured.
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