

1 **Marine n-3 fatty acids, sudden cardiac death and coronary**
2 **disease: Fish or supplements?**

3
4 Erik Berg Schmidt^{1,2*} and Philip C. Calder^{3,4}

5
6 ¹*Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark*

7 ²*Department of Clinical Medicine, Aalborg University, Aalborg, Denmark*

8 ³*School of Human Development and Health, Faculty of Medicine, University of Southampton,
9 Southampton, United Kingdom;*

10 ⁴*National Institute for Health Research Southampton Biomedical Research Centre, University
11 Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United
12 Kingdom*

13
14 **Author for correspondence: Erik Berg Schmidt, Department of Cardiology, Aalborg University
15 Hospital, Aalborg, Denmark, ebs@rn.dk*

16
17 Coronary heart disease (CHD) remains one of the most common causes of death despite a marked
18 reduction in incidence during recent years. More than half of deaths from CHD are caused by sudden
19 cardiac death (SCD) (1). A few high-risk patients, mainly with severe left ventricular dysfunction
20 caused by heart failure, cardiomyopathies or genetic arrhythmic disorders may be recognized and
21 protected from SCD by medications, pacemakers and implantable cardioverter defibrillators (ICDs).
22 However, SCD is often the first manifestation of CHD and therefore mainly occurs unanticipated and
23 outside of hospital. Hospital treatment of CHD including myocardial infarction (MI) and treatment
24 post-MI have significantly improved during the last decades, but this does not help individuals who
25 have no symptoms or for other reasons do not come to medical attention. To reduce fatalities from
26 CHD there is an urgent need for preventive measures to reduce the risk of SCD.

27
28 One such option might be intake of n-3 polyunsaturated fatty acids (PUFAs), notably
29 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) derived from seafood. Thus, in-vitro
30 studies (2) and research in monkeys and rats (3) have reported antiarrhythmic effects of marine n-3
31 PUFAs. These seminal studies indicated that marine n-3 PUFAs might possibly reduce the risk of
32 SCD, bearing in mind that the doses investigated were high. Marine n-3 PUFAs may reduce the risk
33 of malignant arrhythmias by several mechanisms including increasing the stability of myocardial
34 cells, modulating intracellular calcium levels, lowering of heart rate reducing oxygen demand, and
35 an effect on the autonomic nervous system with an increase in heart rate variability (4).

36
37 SCD is difficult to study because sudden death may be caused by a variety of cardiac and non-
38 cardiac causes. Furthermore, fatalities are often difficult to precisely classify because autopsies are
39 seldom performed. A beneficial effect of marine n-3 PUFAs may therefore perhaps be more clearly
40 reflected in fatalities from CHD rather than in risk of non-fatal MI and this has indeed often been
41 reported (5,6). However, spouses of 334 subjects without known heart disease but with primary
42 cardiac arrest were interviewed concerning the victims fish consumption the month preceding the
43 incident (7). There was a 50% reduced risk of primary cardiac arrest in subjects eating at least 5.5 g
44 marine n-3 PUFAs the month before the incident, corresponding to one weekly main course of fatty
45 fish compared to non-fish eaters. In a subgroup, the content of EPA and DHA was determined in red
46 blood cells and a high content of these fatty acids was also associated with a lower risk of primary
47 cardiac arrest. A beneficial effect of moderate consumption of fish compared to no or very little fish
48 intake on SCD and CHD is supported by several observational studies (1,6,8), with little additive

47 effect of higher fish intakes (6). While an effect of fish on SCD would likely be mainly of an
48 antiarrhythmic nature, this does not exclude a role for other effects of marine n-3 PUFAs, such as
49 reduced inflammation, thrombosis and triacylglycerols although at least some of these effects may
50 require higher intakes of n-3 PUFAs (9).

51 In this issue of the *Journal of Nutrition*, Macartney et al. (10) report results from a study where rats
52 were fed fish oil (providing more DHA than EPA) at a low dose equivalent to 0.57 g/ day of n-3
53 PUFAs in humans or at a higher dose equivalent to 2.3 g/day or a control diet. After 4-5 weeks of
54 feeding, the animals were subjected to cardiac ischemia by left coronary artery occlusion followed
55 by reperfusion. Fish oil feeding led to an increase in DHA in myocardial tissue, a lowering of heart
56 rate and a marked and significant reduction in ventricular tachycardia and ventricular fibrillation (VF).
57 The effects were present at the low dose of fish oil but were slightly greater with the high dose of fish
58 oil. These results could cautiously be interpreted as an intake of EPA+DHA around 0.6 g per day (or
59 4 g per week) - which can be achieved by consuming (fatty) fish twice weekly - might provide
60 protection against SCD in humans bearing in mind that results from animal models cannot be directly
61 extrapolated to humans. The results of the study, however, support current guidelines
62 recommending consumption of (fatty) fish 1-2 times weekly for protection against CHD for the whole
63 population (6,11).

64 In the Macartney study (10), 2.4 g/day of n-3 PUFAs also had beneficial (actually even better than
65 the low dose) effects, but in humans such an intake cannot be realistically achieved by diet alone on
66 a long-term basis apart from in very few populations with extremely high consumption of seafood
67 and so would require the use of supplements. The first and largest trial investigating the effect of
68 marine n-3 PUFA supplementation on CHD was the Italian multicenter Gissi-Prevenzione trial (12).
69 In that trial, 11,324 patients were included post-MI and randomized to about 0.9 g per day of marine
70 n-3 PUFAs as ethyl esters; there was a 26% reduction in SCD during 3.5 years of follow up compared
71 to those not given n-3 PUFA supplement. Results from more recent trials with n-3 PUFA
72 supplements have, however, been less convincing and have often produced null effects (13-16).
73 However a recent trial (REDUCE-IT) with 3.6 g/day of EPA as an ethyl ester in at risk patients
74 showed a significant reduction in the primary outcome (a composite of cardiovascular death, non-
75 fatal MI, non-fatal stroke, coronary revascularisation or unstable angina), in the secondary outcome
76 and in a range of exploratory outcomes (17). Nevertheless, another recent trial investigating the
77 effect of marine n-3 PUFAs in patients with hypertriglyceridaemia (STRENGTH; not yet published in
78 detail) was stopped early because no effect of n-3 PUFAs was observed in an interim analysis. A
79 recent meta-analysis included data from 13 randomised controlled trials (127,477 patients; mean
80 follow-up 5 years) (18): in an analysis excluding REDUCE-IT, marine n-3 PUFAs were associated
81 with a significantly, albeit moderate, lower risk of MI, CHD death, cardiovascular death and total
82 cardiovascular disease. These inverse associations for all outcomes were strengthened after
83 including REDUCE-IT.

84 There is consensus that fish, preferably fatty with a high content of n-3 PUFAs, should be consumed
85 1-2 times weekly for prevention of CHD and cardiovascular disease (6,11). There is, however, much
86 debate about the value of supplemental marine n-3 PUFAs for prevention of CHD. In the most recent
87 American Heart Association Advisory on this topic, a minority of the authors found supplemental n-
88 3 PUFA treatment of patients with high risk of cardiovascular disease reasonable, while the majority
89 of the authors advocated n-3 PUFA supplements for secondary prevention of CHD (19). Important
90 distinctions between fish intake and n-3 PUFA ("fish oil") supplements are that fish contains many

91 health-promoting nutrients other than n-3 PUFAs, that supplements are taken on top of the usual
92 diet, and that fish consumption reduces intake of other nutrients with potential detrimental effects on
93 CHD e.g. those from meat (6,16). Furthermore, fish consumption may be an integral part of a healthy
94 dietary pattern that may overall reduce cardiovascular disease (16).

95 Another important issue raised, although not directly investigated, by Macartney et al. (10) is that the
96 failure of several randomized clinical trials to observe a beneficial effect of supplemental n-3 PUFAs
97 might be at least partly because those not receiving the supplements might have had a
98 moderate/high fish consumption making it difficult to obtain an effect of the supplements, especially
99 since the major part of the effect on VF may be achieved from a low intake of marine n-3 PUFAs.
100 Further studies are warranted to establish the optimal dose of n-3 PUFAs for prevention of vascular
101 disease. Future clinical trials should systematically register the diet of the participants and ideally
102 use biomarkers for intake of EPA and DHA; this has not always been done in the past.

103

104 **Conflicts of interest**

105 EBS No conflict of interest. PCC has received research funding from BASF AS and acts as a consultant
106 to BASF AS, Smartfish, DSM, Cargill, Danone/Nutricia and Fresenius-Kabi.

107

108 **References**

1. Chiuve SE, Rimm EB, Sandhu RK, Bernstein AM, Rexrode KM, Manson JE, Willett WC, Albert CM. Dietary fat quality and risk of sudden cardiac death in women. *Am J Clin Nutr* 2012;96:498-507.
2. Hallaq H, Smith TW, Leaf A. Modulation of dihydropyridine-sensitive calcium channels in heart cells by fish oil fatty acids. *Proc Natl Acad Sci U S A* 1992;89:1760-1764.
3. McLennan PL, Abeywardena MY, Charnock JS. Dietary fish oil prevents ventricular fibrillation following coronary artery occlusion and reperfusion. *Am Heart J* 1988;116:709-717.
4. McLennan PL. Cardiac physiology and clinical efficacy of dietary fish oil clarified through cellular mechanisms of omega-3 polyunsaturated fatty acids. *Eur J Appl Physiol* 2014;114:1333-1356.
5. Del Gobbo LC, Imamura F, Aslibekyan S, Marklund M, Virtanen JK, Wennberg M, Yakoob MY, Chiuve SE, Dela Cruz L, Frazier-Wood AC, Fretts AM, Guallar E, Matsumoto C, Prem K, Tanaka T, Wu JH, Zhou X, Helmer C, Ingelsson E, Yuan JM, Barberger-Gateau P, Campos H, Chaves PH, Djoussé L, Giles GG, Gómez-Aracena J, Hodge AM, Hu FB, Jansson JH, Johansson I, Khaw KT, Koh WP, Lemaitre RN, Lind L, Luben RN, Rimm EB, Risérus U, Samieri C, Franks PW, Siscovick DS, Stampfer M, Steffen LM, Steffen BT, Tsai MY, van Dam RM, Voutilainen S, Willett WC, Woodward M, Mozaffarian D; Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Fatty Acids and Outcomes Research Consortium (FORCe). ω-3 Polyunsaturated fatty acid biomarkers and coronary heart disease: pooling project of 19 cohort studies. *JAMA Intern Med* 2016;176:1155-1166.
6. Rimm EB, Appel LJ, Chiuve SE, Djoussé L, Engler MB, Kris-Etherton PM, Mozaffarian D, Siscovick DS, Lichtenstein AH; American Heart Association Nutrition Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Epidemiology and Prevention; Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; and Council on Clinical Cardiology. Seafood long-chain n-3 polyunsaturated fatty acids and cardiovascular disease: a science advisory from the American Heart Association. *Circulation* 2018;138:e35-e47.
7. Siscovick DS, Raghunathan TE, King I, Weinmann S, Wicklund KG, Albright J, Bovbjerg V, Arbogast P, Smith H, Kushi LH, et al. Dietary intake and cell membrane levels of long-chain n-3 polyunsaturated fatty acids and the risk of primary cardiac arrest. *JAMA* 1995;274:1363-1367.

139 8. Albert CM, Hennekens CH, O'Donnell CJ, Ajani UA, Carey VJ, Willett WC, Ruskin JN, Manson
140 JE. Fish consumption and risk of sudden cardiac death. *JAMA* 1998;279:23-28.

141 9. De Caterina R. n-3 fatty acids in cardiovascular disease. *N Engl J Med* 2011;364:2439-2450.

142 10. Macartney MJ, Peoples GE, McLennan PL. Cardiac arrhythmia prevention in ischemia and
143 reperfusion by low dose dietary fish oil supplementation in rats. *J Nutr* 2020; in press.

144 11. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, Cooney MT, Corrà U,
145 Cosyns B, Deaton C, Graham I, Hall MS, Hobbs FDR, Løchen ML, Löllgen H, Marques-Vidal
146 P, Perk J, Prescott E, Redon J, Richter DJ, Sattar N, Smulders Y, Tiberi M, van der Worp HB,
147 van Dis I, Verschuren WMM, Binno S; ESC Scientific Document Group. 2016 European
148 Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force
149 of the European Society of Cardiology and Other Societies on Cardiovascular Disease
150 Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited
151 experts) Developed with the special contribution of the European Association for
152 Cardiovascular Prevention & Rehabilitation (EACPR). *Eur Heart J* 2016;37:2315-2381.

153 12. Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico. Dietary
154 supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction:
155 results of the GISSI-Prevenzione trial. *Lancet* 1999;354:447-455.

156 13. Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, Deane KH,
157 Summerbell CD, Worthington HV, Song F, Hooper L. Omega-3 fatty acids for the primary and
158 secondary prevention of cardiovascular disease. *Cochrane Database Syst Rev* 2020;3(2)

159 14. Aung T, Halsey J, Kromhout D, Gerstein HC, Marchioli R, Tavazzi L, Geleijnse JM, Rauch B,
160 Ness A, Galan P, Chew EY, Bosch J, Collins R, Lewington S, Armitage J, Clarke R; Omega-3
161 Treatment Trialists' Collaboration. Associations of omega-3 fatty acid supplement use with
162 cardiovascular disease risks: meta-analysis of 10 trials involving 77 917 individuals. *JAMA*
163 *Cardiol* 2018;3:225-234.

164 15. Innis JK, Calder PC. Marine Omega-3 (N-3) fatty acids for cardiovascular health: An update for
165 2020. *Int J Mol Sci* 2020;21:1362.

166 16. Bork CS, Mortensen LT, Hjelmgaard K, Schmidt EB. Marine n-3 fatty acids and CVD: new
167 insights from recent follow-up studies and clinical supplementation trials. *Proc Nutr Soc* 2020;1-
168 7. doi: 10.1017/S0029665120006886. Online ahead of print.

169 17. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, Doyle RT, Jr., Juliano
170 RA, Jiao L, Granowitz C, Tardif JC, Ballantyne CM, for the REDUCE-IT Investigators.
171 Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. *N Engl J Med*
172 2019;380:11-22.

173 18. Hu Y, Hu FB, Manson JE. Marine omega-3 supplementation and cardiovascular disease: an
174 updated meta-analysis of 13 randomized controlled trials involving 127 477 participants. *J Am*
175 *Heart Assoc.* 2019;8:e013543.

176 19. Siscovick DS, Barringer TA, Fretts AM, Wu JH, Lichtenstein AH, Costello RB, Kris-Etherton
177 PM, Jacobson TA, Engler MB, Alger HM, Appel LJ, Mozaffarian D; American Heart Association
178 Nutrition Committee of the Council on Lifestyle and Cardiometabolic Health; Council on
179 Epidemiology and Prevention; Council on Cardiovascular Disease in the Young; Council on
180 Cardiovascular and Stroke Nursing; and Council on Clinical Cardiology. Omega-3
181 Polyunsaturated Fatty Acid (Fish Oil) Supplementation and the Prevention of Clinical
182 Cardiovascular Disease: A Science Advisory From the American Heart Association. *Circulation*
183 2017;135:e867-e884.