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Abstract It is common practice for auditors to verify only a sample of recorded
values to estimate the total error amount. Monetary-unit sampling is often
used to over-sample large valued items which may be overstated. The aim
is to compute an upper confidence bound for the total errors amount. Näıve
bounds based on the central limit theorem are not suitable, because the dis-
tribution of errors are often very skewed. Auditors frequently use the Stringer
bound which known to be too conservative. We propose to use weighted em-
pirical likelihood bounds for Monetary-unit sampling. The approach proposed
is different from mainstream empirical likelihood. A Monte-Carlo simulation
study highlights the advantage of the proposed approach over the Stringer
bound.
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1 Introduction

In practice, it is natural to audit only a sample of accounting records to estab-
lish the correctness of the entire financial reporting process. Audit techniques
are divided into two main areas: the so-called “internal audit” which is carried
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out internally to monitor the accounting process, and “external audit” car-
ried out by accounting experts who certify the correctness of the accounting
recording process. We shall focus on the latter. In general, auditing aims to
verify whether there are material errors in a set of N accounting records or
items. The inferential problem facing the auditor is to decide, on the basis of
sample information, whether the errors found on the accounting records are
attributable only by random material errors or by fraudulent actions. Each
item in the sample provides the auditor with two types of information: the
recorded amount (or book amount) and the audited amount (or corrected
amount). The difference between these two amounts is called the error which
is used to estimate the overall unknown error amount.

Auditors want to verify if the total error falls below a pre-assigned “tolerable
error amount” denoted A hereafter. This can be achieved by calculating an
upper confidence bound for the total error. If this bound is lower than A, the
auditor concludes that no misstatement has been made. On the contrary, if this
bound is larger than A, then the auditor may decide to verify all the recorded
amounts. Alternatively, a p-value calculated at A can be used instead.

The primary focus is on the upper bound of the confidence interval rather
than point estimation. The fraction of incorrect items present in a sample can
also be very variable leading to unreliable estimates and confidence bounds.
In fact, two scenarios are possible. We may have a relatively high number of
small errors which results in a high overall error rate. The second scenario is
when we have a small amount of larger errors and a small overall error rate.
Thus, the distribution of errors may be very skewed with many null errors. As
a consequence, the upper limits of the confidence intervals based upon variance
estimates and the central limit theorem are no longer adequate (e.g. Cox and
Snell, 1979). The actual coverage of these intervals is frequently lower than the
chosen nominal level (Kaplan, 1973; Neter and Loebbecke, 1975; Beck, 1980).
In practice, auditors tend to use unconventional confidence interval limits (e.g.
Horgan, 1996), such as Stringer’s (1963) bounds. This approach, however,
tends to give conservative limits with coverages larger than the nominal level.

Audit sample are often selected with “probability proportional to size” sam-
pling without replacement, also called “monetary-unit sampling” (MUS) (e.g.
Arens and Loebbecke, 1981; Higgins and Nandram, 2009). Large valued items
containing the greatest potential of large overstatement, have more chance of
being sampled.

Chen et al. (2003) proposed an empirical likelihood bound for popula-
tion containing many zero values. This approach is limited to simple random
sampling, and cannot be directly used with MUS. A analogous parametric
likelihood-based approach based on mixture models was proposed by Kvanli
et al. (1998). However, non-parametric are preferable because it avoids making
assumption about the distribution of the errors. We propose to use Berger and
Torres’s (2016) non-parametric weighted empirical likelihood approach, which
takes into account of the unequal selection probabilities inherent with MUS.
Empirical likelihood providing confidence bounds driven by the distribution
of the data (Owen, 2001); that is, it tends to give large upper bounds with



Empirical likelihood and audit sampling 3

skewed data. This makes it particularly suitable for MUS. Bootstrap is an-
other well-known non-parametric approach for confidence bounds. However, it
may perform poorly with data containing many zero errors. In this paper, we
compare numerically the empirical likelihood bound proposed by Berger and
Torres’s (2016) with the Stringer’s (1963) bound.

This paper is organized as follows. §2 describes MUS and the point esti-
mator of the total overstatement error. In §3, we describe the empirical bound
proposed, the Stringer’s (1963) bound and other alternative bounds. The re-
sults of the simulation study are presented in §4.

2 Statistical sampling method in auditing

An accounting population consists of N line items with recorded (or book)
values, {zi : i = 1, . . . , N}, where zi > 0. The audited (correct) amount of the
N line items in the population is denoted by {xi : i = 1, . . . , N}. The values
xi are unknown before sampling, whereas zi are known.

The error in item i, is yi := zi−xi. When yi > 0, the i-th item is overstated
and when yi < 0, it is understated. We have 100% overstatement if yi = zi.
When yi = 0, the account is error free. A large fraction of the items in the
population are error free while the non-zero errors are usually highly skewed
to the right (Johnson et al., 1981; Neter et al., 1985). The total error amount
is defined as

YN :=
N∑
i=1

yi =
N∑
i=1

ti zi, (1)

where

ti := yi
zi

is called the fractional error or “taint” that is the fraction of error within zi.
The purpose is to estimate, on sample basis, the total error amount YN .

More precisely, the auditors is mostly interested in obtaining an upper bound
of a confidence interval derived from an estimate of YN . If the upper bound
exceeds a “tolerable error amount” A, we conclude that there are significant
material errors in the book values, or on the contrary there are only minor
errors.

Generally, the audit processes consists in selecting samples with “monetary-
unit sampling” (MUS) also called “dollar unit sampling” (Arens and Loebbecke,
1981). According to this approach, an accounting balance can be considered
as a group of monetary units that can be either correct or incorrect. If the
selected monetary-unit falls within the i-th item then a taint is observed. In
practice a systematic random sample S of size n with unequal probabilities
proportional to zi is often selected (e.g. Madow, 1949; Tillé, 2006, §7.2). How-
ever, the approach proposed is not limited to systematic sampling.
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Under MUS, an audit amounts xi is selected with probability πi := nziZ
−1
N ;

where

ZN :=
N∑
i=1

zi

denotes the known total book amount. We usually have nziZ−1
N < 1. However,

with small population or right-skewed zi, we may have nziZ−1
N > 1 for some

units. In this case, we need to adjust the πi with the usual scaling method
that can be found in Tillé (2006, §2.10); that is, πi = 1 if nziZ−1

N > 1 and the
remaining πi are adjusted so that

∑N
i=1 πi = n. The Horvitz and Thompson

(1952) estimator of YN is given by

Ŷn :=
∑
i∈S

wi yi, (2)

with wi := π−1
i . If nziZ−1

N 6 1 for all i, scaling is not needed and (2) reduces
to the mean per-unit Ŷn = ZN t, where t := n−1∑

i∈S ti is the sample mean
of the taints.

3 Confidence bound for the total error amount

The interest of the auditors usually focuses on obtaining an upper confidence
bound for YN , at a specified confidence level 1 − α ∈ [0.5, 1), e.g. α = 0.05 or
0.01. If this upper bound exceeds a tolerable error amount A, then there is
statistical evidence of a possible material error. When this bound is less than
A, we conclude that the recorded values are a fair reflection of the accounts.

It is important to compute confidence intervals whose limits are reliable.
The presence of low error rates means that yi usually have a strongly positive
asymmetric distribution, because small yi are much more frequent than large
yi. As a result, the upper limits of the näıve confidence intervals based on
variance estimation and the central limit theorem (see (13) below) can be
problematic as their coverage is generally below the confidence level 1 − α
(Kaplan, 1973; Neter and Loebbecke, 1975; Beck, 1980), because the sampling
distribution is usually not normal (Stringer, 1963; Kaplan, 1973; Neter and
Loebbecke, 1975, 1977). In addition, a negative correlation between Ŷn and
standard error estimates can increase the probability of type II error and
reduces the probability of type I error (Kaplan, 1973). The lack of normality
is the main reason for not using classical statistical inference, based on the
central limit theorem (Ramage et al., 1979; Johnson et al., 1981; Neter et al.,
1985; Ham et al., 1985).

Non-traditional heuristic estimation methods have been developed to over-
come the above problems (e.g. Horgan, 1996). These methods are known as
“Combined Attribute and Variable” (CAV) (Goodfellow et al., 1974a,b) some
of which will be described in §§ 3.4 and 3.3. The Stringer’s (1963) bound, de-
scribed in §3.3, is widely used by auditors. Swinamer et al.’s (2004) simulation
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study show that the upper bound is too conservative, with confidence level
frequently greater than 1− α.

3.1 Weighted empirical likelihood’s bounds proposed for MUS

Berger and Torres (2016) developed an empirical likelihood approach for un-
equal probability sampling. We show how this method can be used to derive
a confidence bound for the total error YN .

The “maximum empirical likelihood estimator” is defined by

ŶEL = arg max `(Y ),

where `(Y ) is the following “weighted empirical likelihood function”.

`(Y ) := max
pi:i∈S

{∑
i∈S

log(npi) : pi > 0,
∑
i∈S

pi = 1,
∑
i∈S

piwi

(
yi −

Y πi
n

)
= 0
}
,(3)

where wi := π−1
i are weights. The function (3) is different from Owen’s (1988)

and Chen et al.’s (2003) empirical likelihood functions, because the constraint
within (3) contains the adjustments wi which take into account of the fact
that the yi are selected with unequal probabilities, under MUS. The function
(3) can also be adjusted to accommodate stratification (see Berger and Torres,
2016, for more details).

Using Lagrangian multipliers, we have that the set of pi that maximises∑
i∈S log(npi) for a given Y is given by

pi(Y ) := 1
n

{
1 + wici(Y )>η

}−1
,

where ci(Y ) is the 2× 1 vector function

ci(Y ) :=
{
πi,
(
yi −

Y πi
n

)}>
(4)

and η is the Lagrangian vector which is such that the constraint

n
∑
i∈S

pi(Y )wi ci(Y ) = (n, 0)> (5)

holds. Thus, (3) reduces to

`(Y ) =
∑
i∈S

log
{
npi(Y )

}
= −

∑
i∈S

log
{

1 + wici(Y )>η
}
· (6)

This function can be calculated numerically from the observed yi (i ∈ S) and
a given value Y .

In practice, the function (3) is not needed for point estimation, because it
can be shown that ŶEL = Ŷn given by (2). This function is used to derive an



6 Yves G. Berger et al.

upper confidence bound. The (1 − α) “empirical likelihood confidence bound”
bα is the largest root of

χ2
1,1−2α − 2`(bα) = 0, (7)

where χ2
1,1−2α denotes the upper (1−2α)-th quantile of a χ2-distribution with

one degree of freedom. A root-finding algorithm, such that the Brent (1973)
and Dekker’s (1969) method, can be used to find bα.

The quantity bα is an upper confidence bound, because the convexity of
−2`(Y ) implies that the equation χ2

1,1−2α − 2`(Y ) = 0 has two roots bL and
bα, such that bL < bα. Berger and Torres (2016) showed that

−2`(YN) d→ χ2
1, (8)

where χ2
1 denotes the χ2-distribution with one degree of freedom. Hence

Pr{−2`(YN) 6 χ2
1,1−2α} → 1 − 2α or Pr{bL 6 YN 6 bα} → 1 − 2α, by us-

ing the convexity of −2`(Y ). Thus, [bL, bα] is a two-sided (1− 2α). Hence, bα
is indeed an upper confidence bound.

The computation of bα involves a root-finding algorithm. A simpler and
less computationally intensive approach based on a “p-value” of a one-side
test can be used to check if bα 6 A at a given level α, where A denotes the
“tolerable error amount”. A p-value less than α means that bα is likely to be
below A. In other words, bα 6 A if p-value 6 α, and bα > A otherwise. This
p-value is given by

p-value := 1
2

[
1 + (−1)δ{Ŷn6A}F{−2`(A)}

]
(9)

is the p-value of a one-side test. Here, F{·} is the cumulative distribution
of a χ2-distribution with one degree of freedom. Here, δ{Ŷn 6 A} = 1 if
Ŷn 6 A and δ{Ŷn 6 A} = 0 otherwise. The value of F{−2`(A)} can be found
from the usual statistics table of χ2-distributions. Note that A < Ŷn implies
p-value > 0.5, because F{−2`(A)} > 0. It can be shown that p-value 6 α

implies 2`(A) > χ2
1,1−2α and Ŷn 6 A. The strict concavity of (6) implies that

A is larger than the largest root bα of (7). Hence bα 6 A. The trivial case
A < Ŷn always implies bα > A. In this case, we always have that p-value
> 0.5.

Berger and Torres (2016) showed that (8) holds conditionally on {yi, πi :
i = 1, . . . , N}. Property (8) relies on regularity conditions, such as the exis-
tence of fourth moments of Ŷn, n/N → 0 and that the central limit theorem
holds for Ŷn. In fact, Ŷn may not be normaly distributed, because of the skew-
ness of the distribution of yi. It turn out that for moderate n, simulation
studies have shown that the distribution of −2`(YN) is still well approximated
by a χ2-distribution, even with skewed yi (Owen, 1988; Berger and Torres,
2016). Since empirical likelihood is a data driven approach, the bound bα
should capture the skewness of the yi.
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3.2 Extension for large sampling fraction or strong correlation between
selection probabilities and the errors

The approaches described so far rely on n/N → 0, because (8) hold under
this assumption. Berger and Torres (2016) proposed an empirical likelihood
for non-negligible n/N or when the πi are strongly correlated with the yi. We
described briefly this approach. The technical details can be found in Berger
and Torres (2016) and Berger (2018). This approach is based on a “penalised
empirical likelihood function” defined by

˜̀(Y ) := max
pi:i∈S

{∑
i∈S

log(npi)− n
∑
i∈S

pi + n : pi > 0,

∑
i∈S

(
npiqi −

qi − 1
n

)
= 1, n

∑
i∈S

(
piqi −

qi − 1
n

)
wi

(
yi −

Y πi
n

)
= 0
}
,

where pi = n−1, if qi = 0. Here, qi = (1 − πi)1/2 are Hájek’s (1964) finite
population correction. Note that n/N → 0 implies πi → 0 and qi → 1. If we
replace qi by 1, we have that (10) reduces to (3). Berger and Torres (2016)
showed that −2˜̀(YN) d→ χ2

1 for non-negligible n/N . Thus, the (1−α) “penalised
empirical likelihood confidence bound” b̃α is the largest quantity which is the
solution to

χ2
1,1−2α − 2˜̀(̃bα) = 0· (10)

The function ˜̀(Y ) can be calculated by using the Lagrangian method as in
(6). We expect b̃α to be smaller than bα with non-negligible n/N . The p-value
of the tolerable amount A is p-value := 0.5[1 + (−1)δ{Ŷn6A}F{−2˜̀(A)}].

Our simulation study in §4 also show that bα given by (7) can be too
conservative, when yi is strongly correlated with πi. This could be the case
when the errors are mainly within the tail of zi or when the πi are strongly
correlated with the yi. In these situations, b̃α is less conservative and have
better coverages, even when n/N is negligible. The bound b̃α should be lower
than bα, when the number of units with πi = 1 is large, because the variance
of the sampling distribution is smaller (see Berger and Torres, 2016, for more
details).

With accounting populations with a very low error rates, we may have a
“zero-error sample”; that is yi = 0 for all the sampled items. In this case,
Ŷn = 0 and the auditor evaluates the book amount as free of error. In this
case, it is not be possible to obtain empirical likelihood bounds, because the
functions `(Y ) and ˜̀(Y ) cannot be computed when yi = 0 for all i ∈ S. The
bound b̃α cannot be computed when qiyi = 0 for all i ∈ S; that is, when yi = 0
for all i ∈ S such that πi < 1. In this case, it may not be possible to find pi
that satisfies the constraint within ˜̀(Y ), for a given Y . The more conservative
bound bα can still be computed in this situation, as long as yi 6= 0 for some
units with πi = 1.
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3.3 The Stringer bound

Suppose that we are interested in cases of overstatement, i.e. xi = zi if xi 6 zi.
Let us also assume that the value of each overstatement does not exceed the
declared value such that 0 6 ti 6 1. Let T1, . . . , Tn be independent random
variables that describe the taints, such that Pr(0 6 Ti 6 1) = 1. Here, ti is an
observation of Ti. Let 0 6 t(1) 6 t(2) 6 . . . 6 t(n) 6 1 be the ordered statistics
of {T1, . . . , Tn}. Let ui be the (1− α) upper confidence limit for the binomial
parameter when i errors are observed in a sample of size n. The quantity ui
is the unique solution to

i∑
k=0

(
n

k

)
uki (1− ui)n−k = α, for i = 0, 1, ..., n− 1; (11)

with un = 1. The ui can sometimes be calculated using the Poisson approxi-
mation instead of a binomal within (11). An upper bound for the total over-
statement error can be obtained by combining the upper limits of the sample
errors with the observed taints. The Stringer bound, at the significance level
α is defined as (e.g. Pap and van Zuijlen, 1995).

b(S)
α := ZN

{
u0 +

n∑
i=1

(ui − ui−1)t(n−i+1)

}
·

The bound relies on 0 6 ti 6 1, which is not necessary for the empirical limit
bα and b̃α. When some taints ti are negative, we can use the “Stringer offset
bound” (e.g. Clayton and McMullen, 2007) given by

b(SO)
α := ZN

{
u0 +

n∑
i=1

(ui − ui−1) max(0, t(n−i+1)) + 1
n

n∑
i=1

min(ti, 0)
}
·

We have that b(SO)
α = b

(S)
α , when 0 6 ti 6 1.

The Stringer bound has been extensively studied in literature and many
empirical studies confirm that the coverage level is at least equal to its nominal
level. However, this bound is very conservative (Leitch et al., 1982; Reneau,
1978; Anderson and Teitlebaum, 1973; Wurst et al., 1989; Higgins and Nan-
dram, 2009) and is usually much larger than the total error (1). This is also
confirmed by the simulation study in §4. The direct consequence is that au-
ditors may reject an acceptable accounting populations (Leitch et al., 1982).
Bickel (1992) studied the asymptotic behaviour of the Stringer bound and
showed that in case of large samples the confidence level is frequently higher
than its nominal level. Pap and van Zuijlen (1996) showed that the Stringer
bound is asymptotically conservative. In §4, we how that The Stringer bound
is more conservative than the empirical likelihood bound. Indeed, bα and b̃α are
usually smaller than b(S)

α and have confidence levels close to α. The “Stringer
offset bound” b(SO)

α can be less conservative, when some ti are negative.
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It is not possible to compute the empirical likelihood bounds (bα or b̃α)
with zero-error sample. However, the Stringer approach has the advantage of
providing a bound in this situation. Indeed, when yi = 0 for all the sampled
items, ti = 0, Ŷn = 0 and b(S)

α = ZNu0 = ZN(1−α1/n). Since usually, Ŷn = ZN t,
we can view (1− α1/n) as an upper bound for the average taints. This upper
bound decreases with n, reflecting the fact that with a large zero-error sample,
the average taints has more change of being small.

3.4 Other confidence bounds

Fienberg et al. (1977) introduced a less conservative bound based on a multi-
nomial distribution derived from MUS. The method is rather complex because
it is necessary to maximize over a joint confidence region. Leslie et al. (1979)
proposed a “cell bound” which can be much greater than the actual error
amount when we have a low error rate (Plante et al., 1985). Dworin and Grim-
lund (1984, 1986) introduced the so-called “moment bound” which is obtained
by approximating the sampling distribution with a three-parameters gamma
distribution. The method of moments is used to estimate these parameters.
Simulation studies shows that the moment bound gives coverage close to the
nominal level, and is less conservative than the Stringer bound.

Fishman (1991) showed that Hoeffding’s inequality can be used to derive
a confidence bound, which can be more conservative than the Stringer bound.
Howard (1994) proposed a bound based on bootstrap and Hoeffding’s inequal-
ity. This bound is not uniformly better than the Stringer (1963) bound, when
the accounts are characterized by low error rates.

When the non-zero accounts values can be described by a suitable para-
metric model, Kvanli et al. (1998) showed that it is possible to use a parametric
likelihood ratio statistics to define a two-sided confidence interval for the mean
error. The nominal value is achieved when this parametric model holds. How-
ever, the bound depends entirely on the parametric model. Assuming a model
that does not follow the distribution of the account may affect the coverage.
The method introduced in paragraph §3.1 is very similar, but it has the ad-
vantage of being non-parametric, because it is not necessary assume a model
for the errors.

4 Simulation studies

In this §, we compare the numerical performance of the empirical likelihood
bounds proposed with the Stringer bound. The recorded values zi are simu-
lated from a skewed log-normal distribution,

log(Nzi) ∼ N (1, σ2 = 1.44), i = 1, . . . , N · (12)

We use this distribution, because zi are monetary values which usually follow
a right-skewed distribution. Furthermore, the main reason for using MUS is
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the skewness of zi. The resulting πi, proportional to zi, are right-skewed, with
some πi = 1, depending on the values of N and n. The distribution of the
taints ti is crucial, because it drives the sampling distribution of Ŷn and the
upper bounds. Indeed, when πi < 1, we have that Ŷn = ZN t and the sample
mean t of the taints drives the sampling distribution of Ŷn. We shall consider
uniform, and skewed distributions, with positive and negative ti, and large
fractions of ti = 0 and 1. In the different simulation setup considered, we shall
vary n as well as the distribution of ti. The values zi generated are fixed and
the same, for a given N . This isolates the effects of the distribution of the
taints ti.

Consider N = 10 000, 1000 and 700. The error in item i, is yi = ti zi,
with (100− r)% of ti are equal zero and the remaining r% positive taints are
generated randomly from uniform distributions Un(tL, tU ). Here, r denotes
the error rate. We shall consider r = 2%, 5% and 10%. Several ranges of
positive taints are considered: [tL, tU ] = [0.1, 0.3], [0.2, 0.7] and [0.5, 0.7]. The
values generated yi, ti, zi are treated as fixed. The MUS sample is based
on a systematic procedure with random ordering of line items, selected with
probability proportional to zi. The sample sizes considered are n = 100, 200
and 500. We consider 1000 replications. Consider a nominal coverage of 1−α =
0.95. The results are given in Table 1 and 2.

We shall compare b(S)
α with bα, b̃α, b(S)

α and b(N )
α , where b(N )

α is the following
näıve bound based on the normal approximation.

b(N )
α := Ŷn + Φ−1(1− α) v̂(Ŷn) 1

2 , (13)

where Φ(·) is the cumulative function of a standardised normal distribution
and Φ−1(1− α) is its 1− α quantile. Here, v̂(Ŷn) is Hartley and Rao’s (1962)
consistent variance estimator for systematic sampling. It is well known that
b

(N )
α tends to be too small. Here, b(N )

α is used as a benchmark.
Several indicators are computed to assess the accuracy of the bounds. The

coverage probability of a specific bound is the proportion of replications for
which a bound is greater than or equal to the true population error amount.
A bound is considered unreliable if its coverage is significantly different from
1 − α = 0.95. The observed mean of a bound b is denoted by Mean(b), with
b = b

(N )
α , bα, b̃α or b(S)

α . In the tables, we report the value of Mean(b)/Y0.95,
where Y0.95 denotes the 95% quantile of the observed distribution of Ŷn. The
quantities Mean(b)/Y0.95 gives unit free values which are usually close to 1. The
uncertainty of the bound is measured by the observed standard deviation (s.d.)
of the bounds. In the tables, we have the relative efficiencies s.d.(bα)/s.d.(b(S)

α )
and s.d.(̃bα)/s.d.(b(S)

α ). A relative efficiency larger (smaller) than 1 indicates
that bα is less (more) stable than b

(S)
α . We also compute the decile ranges of

bα/b
(S)
α and b̃α/b

(S)
α which assesses the variation of bα and b̃α with respect to

b
(S)
α . It will reveal that the empirical likelihood bound are often lower and

approximately proportional b(S)
α .
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In Table 1, the sampling fraction n/N is small. The coverage of b(N )
α is

significantly smaller than 95% and b
(S)
α gives large coverages. On average bα

is slightly larger than b
(N )
α and smaller than b

(S)
α . The bounds bα and b

(S)
α

have similar standard deviations. With n = 100, the standard deviations bα
is slightly larger. Some coverages of bα may be significantly different from
95%. With n = 100, and r = 2%, about 13% of the samples contains only zero
values for yi. Those samples have been ignored when computing the coverages.
With n = 500 and r = 10%, we observe large coverages significantly different
from 95%, because in this case n/N = 0.05 is small but not negligible enough,
leading to a more conservative bound bα. With n/N = 0.05, the bound b̃α is
more suitable and should have better coverage.

In Table 2, we consider n = 200 with N = 1000 or 700; that is, n/N
is not negligible. Usually, the bound b

(N )
α has a low coverage and b

(S)
α has a

large coverage. The bound bα is too conservative with 100% coverage, but bα
is usually smaller than b

(S)
α , because Mean(bα) 6 Mean(b(S)

α ). The coverages
of b̃α are closer to the nominal value, because the effect of the Hájek’s (1964)
corrections qi are more pronounced than with N = 10 000, in Table 1. However,
some coverages are still significantly different from 95%. The bound b̃α is
smaller than bα. The bound b̃α is mostly smaller than b

(S)
α because the upper

deciles are less than 1. The bound b̃α is more stable than b
(S)
α , because we

observe a smaller s.d. for b̃α. With N = 1000, the bound bα is only slightly
more stable than b

(S)
α .

For the next series of simulation, we consider the situation when the errors
are only in the right tail, which could be the case with fraudulent behaviour.
Let Z1−r denote the 1− r quantile of zi generated from (12), where r denotes
the error rate. We generate ti randomly from uniform distributions Un(tL, tU ),
when zi > Z1−r. If zi 6 Z1−r, we set ti = 0. We consider r = 2%, 5% and 10%.
The ranges are [tL, tU ] = [0.1, 0.3], [0.2, 0.7] and [0.5, 0.7]. Since the errors are
in the right tail, we expect a strong correlation between πi and yi. The results
are given in Table 3. The coverages of bα are larger than with b̃α. Usually,
we observe coverages closer to 95% with b̃α. The Stringer bound b

(S)
α has a

very large coverages and is usually larger than b̃α. The coverage of b(N )
α is

smaller than b̃α, when n = 100. Most coverages of b(N )
α are not significantly

different from 95%, when n > 100. The bound bα is more conservative than
b̃α, even when n/N is negligible, because of the following reasons. Some πi can
be large even when n/N is negligible; thus some qi can be very different from 1
for the units that are more likely to be selected. Furthermore, the correlation
between yi and πi makes b̃α less conservative, because the self-normalising
property of ˜̀(Y ) implies that ˜̀(Y ) can be approximated by a quadratic form
(Berger and Torres, 2016) involving a small variance because of qi and the
correlation between yi and πi (e.g. Rao, 1966). The bound b̃α seems to be the
most appropriate.
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Now, we consider the situation when we have 100% overstatement for some
items; that is, we allow ti = 1, for some i. We also consider a right-skewed
beta-distribution for 0 < ti < 1. Consider (100 − r)% of ti are equal zero
and (1− γ)r% taints generated randomly from a Beta(2, 5) distribution. The
remaining γr% taints are equal to one. We consider N = 10 000, with n =
100, 200 and 500. The error rates are r = 2%, 5% and 10%. The fraction γ
of taints equal to one among the ti > 0 is γ = 10%, 20% or 40%. Systematic
sampling is used, with probability proportional to zi. The results are given in
Table 4. We also observe low coverages for b(N )

α and a large coverage for b(S)
α .

By comparing Table 4 with Table 1, we see that we have a lower coverage
for bα with n = 100, when r = 2% or 5%. In these situations, the bound bα
has larger s.d. than b

(S)
α . We have Mean(b(S)

α )/Y0.95 < 2. In Table 1, this ratio
can be larger than 2 for r = 2%. With r = 10%, the coverage of bα is the
closest to 95%. The fraction γ of ti = 1 does not seem to affect the precision
and the coverage of bα.

For the last series of simulation, we consider understatements; that is neg-
ative taints. We follow approximately Clayton and McMullen’s (2007) simula-
tion setup. Now, r denotes the fraction of ti > 0, and ν represents the fraction
of ti < 0, which are given by ti = −ai, with ai generated randomly from a
Beta(2, 5) distribution. The fraction of ti = 0 is given by (100− r − ν)%. We
have (1−γ)r% taints between 0 and 1, following a Beta(2, 5) distribution. The
fraction of ti = 1 is γr%. We consider γ = 20%, N = 10 000 and n = 200. The
fraction of ti > 0 is r = 2%, 5% or 10%. The fraction ν of ti < 0 is ν = 2%, 5%
or 10%. Systematic sampling is used, with probability proportional to zi. The
results are given in Table 5.

For Tables 4 and 5, the positive taints are generated the same way with
γ = 20%. The differences observed between Tables 5 and 4 can be just due
to the negative taints. We notice that the coverage of b(SO)

α can be lower than
95% and decreases with ν, because the Stringer offset bound b(SO)

α is used. The
offset reduces the bound and is more pronounced with large ν. We observe large
coverages for b(N )

α . The coverages of bα are the closest to 95%, in all cases. We
observed lower coverages in Table 4 for n = 100, because the distribution of
the taints is more skewed than in Table 5. Note that we have smaller s.d for
bα compared to b(SO)

α . The large values of Mean(b)/Y0.95 observed in Table 5
are due to the fact that Y0.95 can be close to zero.

In Table 2, the number of units with πi = 1 is 46 with N = 700 and 33 with
N = 1000. With N = 10 000 and n = 500, we only have 5 units with πi = 1
(Table 1, 3, 4 and 5). For n = 100, 200 and N = 10 000, we have πi < 1 for
all i. These numbers are the same for different distribution of taints, because
we use the same zi generated by (12), for a given N . We expect b̃α to be
noticeably lower than bα, when the number of units with πi = 1 is large. This
is what we observe in Table 2.
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5 Conclusions

Our simulation study confirms that the näıve bound based on the central limit
theorem can be too small, with an observed coverage significantly lower than
the nominal level. On the other hand, the Stringer bound is too conservative,
with a coverage close to 100%, unless we have understatements. The empirical
bounds proposed have coverages closed to the nominal level and usually lies
between the näıve bound and the Stringer bound. The penalised empirical
likelihood bound described in §3.2 seems to be the most appropriate, because
it takes into account of the sampling fraction and possible correlation between
the error and the selection probabilities. For example, when the errors are
mainly within the tail of the recorded values, better bounds are obtained with
the penalised empirical likelihood approach, even with small n/N . We rec-
ommend using the penalised empirical bound, because it has better observed
coverages and may be more stable than the stringer bound.

Both empirical likelihood bounds have the advantage of respecting the
confidence level and of being less conservative than the Stringer bounds. How-
ever, they are more numerically intensive than the Stringer bound, because
they rely on a Lagrangian parameter. The approach based on p-values is a
simpler alternative to check if total error exceed a tolerable error amount. We
need to compute `(A) which requires solving (5) with a root-search method,
to obtain the value of η for Y = A. Once η is known, `(A) can be computed
from (6). The analogue to (5) for the penalised version of Section 3.2 can be
easily derived. Computing the bound bα (or b̃α) is more numerically intensive
than the approach based on p-values, because it involves η for different values
of Y , in order to solve (7) (or (10)).

Like the Stringer bound, both empirical likelihood bounds may not be
suitable with very small sample sizes. It cannot provide a bound for samples
containing no errors. It can be unstable with sample containing an tiny amount
of errors. Recent empirical likelihood approaches tackle the former (e.g. Chen
et al., 2003; Chen et al., 2008; Jing et al., 2017) but the are not designed
to handle unequal probability sampling, used in MUS. It would be useful to
investigate how these extensions can be used under MUS.
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