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Abstract

We discuss some conceptual and practical issues that arise from the
presence of global energy balance effects on station level adjustment mech-
anisms in dynamic panel regressions with climate data. The paper pro-
vides asymptotic analyses, observational data computations, and Monte
Carlo simulations to assess the use of various estimation methodologies,
including standard dynamic panel regression and cointegration techniques
that have been used in earlier research. The findings reveal massive bias
in system GMM estimation of the dynamic panel regression parameters,
which arise from fixed effect heterogeneity across individual station level
observations. Difference GMM and Within Group (WG) estimation have
little bias and WG estimation is recommended for practical implementa-
tion of dynamic panel regression with highly disaggregated climate data.
Intriguingly from an econometric perspective and importantly for global
policy analysis, it is shown that despite the substantial differences between
the estimates of the regression model parameters, estimates of global tran-
sient climate sensitivity (of temperature to a doubling of atmospheric
CO2) are robust to the estimation method employed and to the specific
nature of the trending mechanism in global temperature, radiation, and
CO2.

Keywords: Climate modeling, Cointegration, Difference GMM, Dynamic
panel, Spatio-temporal modeling, System GMM, Transient climate sensi-
tivity, Within group estimation.

JEL Classification : C32, C33

1 Introduction

A natural and near universal condition in modeling climate is the use of an
energy balance relationship that links average global temperature to average
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global downwellling radiation and greenhouse gas influences. This balance sug-
gests the existence of a long run cointegrating econometric relation among these
variables, a relation that is now supported by considerable empirical evidence
(Storelvmo et al, 2016, 2018; Kaufmann et al, 2011, 2013). While such global
balancing relations are of considerable interest in themselves, they are also useful
in the specification of more detailed models that relate to station level behav-
ior and adjustments that must necessarily take global influences into account.
Panel models of this type have been used recently in climate studies by Magnus
et al. (2011) and Storelvmo et al. (2016). These studies help to assess, inter
alia, the impact that atmospheric aerosols have on measurements of greenhouse
gas (GHG) effects on global warming and thereby the measurement of transient
climate sensitivity (TCS) to CO2, which is arguably the ‘holy grail’ of mod-
ern climate science. These econometric models are now also being employed
as a window through which global climate models can be calibrated against
observational data (Phillips et al.2020).
The present contribution raises some conceptual issues and provides analyses

that are useful in understanding the manner in which the Earth’s mechanism
of global energy balance (or imbalance) affects the dynamic mechanism of local
station level adjustments in temperature. As shown in Phillips et al. (2020)
and discussed below, station level dynamic adjustments that are impacted by
the time path of the equilibrium energy balance can, under the seemingly nat-
ural condition of a stationary error correction formulation, imply a further long
run cointegrating relationship between average global temperature and radia-
tion. That relation in turn implies a long run relationship between downwelling
radiation and CO2.
A second objective of this paper is to report simulations that compare the

use of standard panel econometric methods for estimating dynamic panel regres-
sions with disaggregated station level data. The methods examined are Within
Group (WG) least squares, difference GMM (diff-GMM; Arellano and Bond,
1993), and system GMM (sys-GMM; Blundell and Bond, 1998). The simula-
tion design is based on the empirical model used in Magnus et al (2011) and
Storelvmo et al (2016) with observational data on both CO2 and downwelling
radiation employed in the data generating mechanism and with sample sizes
that correspondingly match the observed data.
The simulation findings show substantial bias in system GMM estimation,

particularly in the panel autoregressive coeffi cient estimates which are biased
upwards almost sixfold and thereby provide a hugely distorted picture of sta-
tion level temperature dynamics and the manner in which these are impacted by
trends in global averages in radiation and CO2. These biases correspond closely
to the empirical differences between the estimates using the data of Storelvmo
et al (2016) and Phillips et al. (2020). They are also predicted by earlier simu-
lations and by stationary panel asymptotic theory (Bun and Weijmeyer, 2010;
Hayakawa, 2007, 2015;), which show how system GMM limit theory is affected
by the magnitude of the ratio of the variance of individual station level fixed
effects to the equation error variance. Global climate data naturally display sub-
stantial heterogeneity across station location, so that fixed effect heterogeneity is
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a prominent characteristic in modeling this data. As a result, sys-GMM estima-
tion is deemed unreliable in parametric dynamic panel regressions with climate
data of this highly disaggregated type. For the cross section and time series
sample sizes that are presently available, WG and diff-GMM methods both per-
form well although diff-GMM manifests some bias and has greater variance than
WG estimation. The findings therefore indicate a preference for WG estimation
of dynamic panels with substantially disaggregated climate data. The present
paper gives a complete asymptotic theory for WG estimation of such models in
the presence of potentially cointegrated nonstationary climate data. This limit
theory enables inference about individual parameters in the panel regression
model and assists in forecasting exercises.
A third objective of the paper is to investigate the estimation of TCS. This

parameter measures the effect on temperature of a doubling of atmospheric
CO2 levels from pre-industrial time levels. It is therefore a global parameter
that is expressed as a function of both dynamic adjustment parameters in the
panel regression and the parameters of the global energy balance relationship.
Estimation of TCS may be conducted based on full system estimation of the
dynamic panel model. Despite the substantial differences between WG, diff-
GMM and sys-GMM estimates of the regression model parameters, estimates
of global TCS are shown to be identical, and therefore completely robust to the
estimation method employed as well as the specific nature of the trending mech-
anism that is present in the key variables of the system: global temperature,
radiation, and CO2. The robustness extends to the asymptotic theory of the
TCS estimates and therefore provides some measure of assurance of reliability
concerning both the TCS estimate and its associated asymptotic confidence in-
tervals for this important parameter. This reassurance is important to policy
makers in the consideration of GHG abatement measures designed to control
the effects of anthropogenic-driven climate forcing.
A second method of estimation of TCS is to conduct a simple single equation

cointegrating regression to capture the long-run impact of atmospheric CO2 lev-
els on global temperature. This procedure was explored in Phillips et al. (2020)
and shown to allow for energy imbalance, so that sustained rises in atmospheric
CO2 may impact station level temperature while continuing to influence rising
global temperature, a situation that approximates prevailing climate conditions
and accords with earlier empirical studies with aggregate data (Kaufmann et al,
2011, 2013). The cointegration approach allows for the use of standard meth-
ods of estimation, such as fully-modified least squares (FM-OLS) and dynamic
ordinary least squares, accounts for the presence of both deterministic and sto-
chastic trends in the global variables as well as the cointegrating link, and is
convenient to apply in practical work. A further advantage of working with the
global time series data is that methods such as FM-OLS allow for endogenous
regressors and weakly dependent errors as normal components within potential
cointegrating linkages.
The present paper is organized as follows. The dynamic panel model and

assumptions on its various components are given in Section 2. Section 3 shows
invariance of the estimate of the TCS parameter to the specific method employed
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in estimation of the panel regression. Asymptotic theory for the panel regression
coeffi cient estimates and the TCS parameter are given in Section 4. Simulations
are reported in Section 5 and Section 6 concludes. Proofs are given in the
Appendix B and additional figures in Appendix A.

2 Model and Assumptions

Throughout the paper we use the following dynamic panel model from Magnus
et al. (2011) and Storelvmo et al (2016), which relates station-level tempera-
ture (Tit+1) at time t + 1 to local temperature (Tit), local downwelling surface
radiation (Rit), and global factors (λt), all at time t. The base model has the
following two equations

Ti,t+1 = αi + β1Ti,t + β2Ri,t + λt + uit+1, i = 1, ..., N and t = 1, ..., n, (1)

where the αi are station-level effects, β1 and β2 are parameters, and uit+1 is a
disturbance. The time specific quantity λt in (1) is specified by the equation

λt = γ0 + γ1Tt + γ2Rt + γ3 ln(CO2,t), (2)

which relates the spatial aggregates (Tt, Rt) =
(
N−1

∑N
i=1 Tit, N

−1∑N
i=1Rit

)
and the logarithm of the CO2 equivalent series, ln(CO2,t). Phillips et al. (2020)
added the following mechanisms for the generation of local radiation effects Rit
and global CO2

Rit = R0it + δ′riGt + Pit, Pit = Pi0 + UPit , (3)

ln(CO2,t) = δc0 + δc1t+ δ′cGt + uct, (4)

Gt =

t∑
s=1

ugs, U
P
it =

t∑
k=1

uPik, (5)

which provide for both global (δ′riGt) and local (Pit) stochastic trend determi-
nants of Rit and a deterministic drift (δc1t) in conjunction with global stochastic
trend components (δ′cGt) as the primary drivers of the logarithm of global CO2.

Equation (2) may be interpreted as a form of energy balance relationship
that captures the global linkage between temperature, radiation and greenhouse
gas atmospheric influences, allowing for the presence of stochastic and determin-
istic trend effects. The balance in these global elements is measured by λt and is
assumed to be one of the drivers impacting local temperature in the subsequent
time period. The dynamic panel regression equation (1) therefore characterizes
the dynamic adjustment mechanism of station level temperature Tit+1 as an
autoregression on past temperature Tit, radiation Rit, and global energy bal-
ancing effects λt. Equation (2) is specified without error, so that the observed
aggregate variables (Tt, Rt, ln(CO2,t)) are assumed to impact station-level tem-
perature in (1) directly without noise. The possibility of including unobserved
noise in the specification of λt and the impact on the asymptotic theory of this
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inclusion of measurement error in (2) is considered later in the paper. Phillips
et al. (2020) provide a detailed discussion of the specification of (1)-(5) and the
justification for these equations in terms of relevant atmospheric considerations
and empirical assessments using observed data. The global variables are shown
in Figure 1 over the time period 1964-2005.
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Figure 1 (Phillips et al., 2020): Global temperature (T̄t, green, solid),

downwelling radiation (Rt, orange, dotted), and CO2 equivalent (ln (CO2t),
blue, dashed) over 1964-2005.

The following assumptions A(i)-(vi) concern various components of the panel
system (1)-(5). They are related to but stronger than the conditions used in
Phillips et al. (2020). More specifically, the assumption of independent and
identically distributed (iid) equation errors in A(i), A(iii) and A(iv) and the
assumption of independence of the errors across equations in Assumption A(i)
are useful and commonly employed to establish limit theory for panel regression
estimation procedures such as WG, diff-GMM and sys-GMM for which endoge-
nous regressors and equation error serial dependence typically produce bias and
inconsistencies. These stronger conditions are not needed for the aggregate time
series approach in Phillips et al. (2020) where estimation by FM-OLS cointe-
grating regression was used. Readers are referred to that work for a detailed
discussion of the more relaxed conditions used with that methodology. Specific
implications of the present assumptions on convergence rates and asymptotic
bias and effi ciency are discussed later in the paper.
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Assumption A

(i) The panel regression errors {uit} ∼iid
(
0, σ2u

)
over i and t and are in-

dependent of the random sequences
{
uPit
}
, {δri} , {uct} for all (i, t) . The

idiosyncratic loading factors {δri} ∼iid (δr,Σr) and station-level effects
αi ∼iid

(
α, σ2α

)
are independent and both are independent of

{
uPit
}
, {uct}

for all (i, t) , where the
{
uPit
}
are defined in A(iii) and the {uct} in A(iv).

(ii) R̄0t = N−1
∑N
i=1R

0
it →a.s. R

0 = limN→∞

{
N−1

∑N
i=1 E

(
R0it
)}
.

(iii) Pit = Pi0+
∑t
k=1 u

P
ik =: Pi0+UPit where u

P
ik ∼iid

(
0, σ2p

)
with finite fourth

moments over i and t,

P̄0 = N−1
N∑
i=1

Pi0 →a.s. P
0 = lim

N→∞

{
N−1

N∑
i=1

E
(
P 0it
)}

,

N−1/2
∑N
i=1

(
Pi0 − E

(
P 0it
))

= Op (1) and the partial sums UPit satisfy the
invariance principle n−1/2UPit ⇒ UPi (r) ≡ BM

(
σ2P
)
for all i.

(iv) ugt ∼iid (0,Σg) with finite fourth moments has partial sums Ugt =
∑t
k=1 ugk

that satisfy the invariance principle n−1/2Ugbnrc ⇒ Ug (r) ≡ BM (Σg) ,
vector Brownian motion with covariance matrix Σg > 0; and uct ∼iid(
0, σ2c

)
with finite fourth moments has partial sums Uct =

∑t
k=1 uck which

satisfy the invariance principle n−1/2Ucbnrc ⇒ Uc (r) ≡ BM
(
σ2c
)
, with

σ2c > 0.

(v) |β1| < 1, |β1 + γ1| < 1.

(vi) (n,N)→∞ with n
N + N

n3 → 0.

An important feature of the model (1) and (2) is that it can be used to
measure transient climate sensitivity (TCS) to CO2 emissions. This parameter
plays a major role in discussions about the potential impact of greenhouse gas
emissions on Earth’s climate. TCS is defined as the expected global temperature
after a doubling of CO2 and has the following analytic form (Magnus et al., 2011;
and Storelvmo et al., 2016)

TCS =
γ3

1− β1 − γ1
× ln(2). (6)

Phillips et al. (2020) developed a simple and direct cointegration regression
approach to the estimation of the parameter TCS using the long run relation-
ship among the variables (Tt, Rt, ln(CO2,t)) that is implied by (1) and (2). A
different, station-level approach is to estimate the parameters of the dynamic
panel regression model (1) combined with the parameters that appear in the
aggregate balancing relation (2) and to use these estimates in conjunction with
formula (6) to obtain an estimate of TCS and an associated confidence interval.
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The present contribution is concerned primarily with studying this station-
level approach to estimation. As expected, the limit theory of TCS estimates
obtained in this way from estimates of the complete model differ from those
obtained by fitting the long-run relationship alone. Full panel regression esti-
mation of the system (1) and (2) can be performed in various ways, for instance,
by WG, diff-GMM, and sys-GMM techniques, with many additional variations
depending on the precise selection of instrumental variables in the use of diff-
GMM and sys-GMM techniques. Intriguingly, as we show in Theorem 1 below,
the resulting estimates of (6) obtained in this way turn out to be invariant to
the method employed in the panel regression estimation of (1) and (2). This in-
variance holds even though the individual parameter estimates of (β1, β2, γ1, γ2)
obtained by WG, diff-GMM, and sys-GMM differ. In some cases, particularly
sys-GMM, the differences are huge —see Table 1 below and the attendant discus-
sion. These differences arise primarily because of the substantial heterogeneity
in the fixed effects αi in the climate panel regression equation (1) which capture
the large local variation in station temperature levels.

3 Estimation by Dynamic Panel Regression

3.1 Common Trends and Global Cointegration

The system (1) and (2) involves the station-level panel adjustment mechanism
(1) with global effects imparted by the time specific effects λt, which in turn
depend on global averages over stations. To reconcile these two components,
aggregation of (1) gives

Tt+1 = ᾱ+ β1Tt + β2Rt + λt +
1

N

N∑
i=1

uit+1 = ᾱ+ β1Tt + β2Rt + λt + ū·t+1,

where ᾱ = N−1
∑N
i=1 αi and ū·t+1 = N−1

∑N
i=1 uit+1. Following standard prac-

tice for identification purposes in the presence of fixed individual and time ef-
fects, we set ᾱ = 0. Substituting (2) gives the global equation

Tt+1 = γ0 + (β1 + γ1)Tt + (β2 + γ2)Rt + γ3 ln(CO2,t) + ū·t+1. (7)

Setting θ1 = β1 + γ1 and θ2 = β2 + γ2, it is convenient to write (7) as

Tt+1 = γ0 + θ1Tt + θ2Rt + γ3 ln(CO2,t) + ū·t+1, (8)

and solving by back substitution gives the stochastic trend representation of
Tt, in conjunction that of with (Rt, ln(CO2,t)) , which is given in Phillips et al.
(2020, theorem 1), viz.,

Wt =

 Tt
Rt

ln(CO2,t)

 =

 δT0 + δT1t+ δ′TUgt + u+Tt
δr0 + δ′rUgt +Op

(√
n
N

)
δc0 + δc1t+ δ′cUgt + uct

 =: δw0+δw1t+DwUgt+u
+
wt,

(9)
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where

δT1 =
γ3δc1
1− θ1

, δT =
θ2δr + γ3δc

1− θ1
, (10)

uTt = γ3

∞∑
j=0

θj1uct−1−j −
θ1

1− θ1

∞∑
k=0

θk1 [θ2δr + γ3δc]
′
ugt−1−k − δ′Tugt,(11)

u+Tt = uTt +Op

(
1√
N

+

√
n

N
+ t |θ1|t

)
, (12)

where D′w = [δT , δr, δc] , δw0 = [δT0, δr0, δc0]
′
, δw1 = [δT1, 0, δc1]

′
, u+wt = uwt +

Op

(
1√
N

+
√

n
N + t |θ1|t

)
and uwt = [uTt, 0, uct]

′
.

From the trend representation (9) the following long run cointegrating rela-
tionship among the global variables (Tt, Rt, ln(CO2,t)) is obtained

Tt =
θ2

1− θ1
Rt +

γ3
1− θ1

ln(CO2,t) +
µ

1− θ1
+

1

1− θ1
ζt, (13)

using: (i) the fact that δT = θ2δr+γ3δc
1−θ1 , which delivers cointegration among the

stochastic trend components of (Tt, Rt, ln(CO2,t)); and (ii) the linkage δT1 =
γ3δc1
1−θ1 , which ensures deterministic co-movement of the linear trends in Tt and
ln(CO2,t). The equation error (or equilibrium error correction) in (13) is

1

1− θ1
ζt = uTt −

γ3
1− θ1

uct +Op

(
1√
N

+

√
n

N
+ t |θ1|t

)
, (14)

which is a stationary, weakly dependent time series up to an asymptotically
negligible component.
Importantly, the cointegrating relation (13) is distinct from the time spe-

cific effect λt. In fact, (13) represents the ultimate global linkage in these vari-
ables that results from integrating the time specific effects λt with the station-
level adjustment mechanism and the global aggregation process that leads to
(Tt, Rt, ln(CO2,t)) . Moreover, the coeffi cient of ln(CO2,t) in the relationship
(13) gives the transient climate sensitivity parameter (6) upon scaling by ln(2)

TCS =
γ3

1− θ1
× ln(2) =

γ3
1− β1 − γ1

× ln(2), (15)

which means that the TCS parameter can be estimated directly from appro-
priate econometric estimation (such as fully-modified least squares (FM-OLS))
of the long run cointegrating relation (13) without regard to the dynamic ad-
justment mechanism (1). That approach was followed in Phillips et al. (2020)
where an asymptotic theory of inference was developed for the methodology.
The present work instead pursues a panel regression approach although we do
discuss later a key difference between the asymptotic theory of the resulting
FM-OLS of TCS and the asymptotic theory of estimates of TCS based on
panel regression estimates such as WG, diff-GMM, and sys-GMM.
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3.2 Dynamic Panel Estimation and Invariance Properties

The alternative station-level approach uses panel regression methods to esti-
mate both (1) and (2). This approach was used in Magnus et al. (2011) and
Storelvmo et al. (2016). Specifically, sys-GMM methods were employed by
Magnus et al. (2011) and Storelvmo et al. (2016) because their estimates of
the panel autoregressive coeffi cient β1 exceeded 0.9 and dynamic panel regres-
sions with autoregressive coeffi cients close to unity are known to lead to weak
instrumentation in diff-GMM methods, thereby reducing effi ciency but retain-
ing consistency (Kruiniger, 2009; Phillips, 2018). In the present application,
as might be expected given the global coverage of the station-level observa-
tions, there is considerable heterogeneity in the fixed effects αi of the dynamic
panel regression (1), a feature that is known to produce sys-GMM estimates
of the coeffi cients in dynamic panel regression that can be substantially biased
(Hayakawa, 2007, 2015). For this reason, we might expect some large differences
in the coeffi cient estimates among these three panel regression procedures.
For the observational data used in Storelvmo et al. (2016) and Phillips et al.

(2020), the differences are substantial, particularly between sys-GMM and the
other two approaches. Table 1 below provides estimates of the parameters of
the system (1) and (2). The massive difference between the sys-GMM estimate
of the parameter β1 (0.8665) and the estimates obtained by diff-GMM (0.1125)
and WG (0.1346) is striking - the sys-GMM estimate is more than six times
greater than the WG estimate and nearly eight times greater than the diff-GMM
estimate. The implications of these differences for the station-level dynamic
adjustment mechanism of temperature are enormous. Similar major differences
occur in the estimation of the parameter γ1 in the aggregate relation for λt.
Table 1 also reports the ratio rα = σ̂α/σ̂u of the estimated standard deviation
σ̂α of the fitted fixed effects αi to the standard deviation of the fitted equation
errors ui,t+1. For the WG estimates, this ratio is 15.043 which is ten times greater
than the corresponding value from sys-GMM, showing the major differences in
how the two methods capture and represent the observed variation in the data
at the local level.
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Table 1: Dynamic Panel Regression and
Transient Climate Sensitivity Estimates

Estimation Method
WG diff-GMM sys-GMM

Parameter
β1 0.1346 0.1125 0.8665
β2 -0.0001 -0.0048 0.0098
γ1 -0.0230 -0.0010 -0.7549
γ2 0.0262 0.0309 0.0162
γ3 3.6400 3.6400 3.6400
β1 + γ1 0.1116 0.1116 0.1116
β2 + γ2 0.0261 0.0261 0.0260
rα = σα

σu
15.043 12.825 1.4769

TCS 2.8399 2.8399 2.8399

Notes: rα = σα
σu

=
(
V(αi)
V(uit)

)1/2
Even more striking is that, in spite of the differences in the estimates of the

individual coeffi cients, estimates of the composite parameters β1 + γ1, β2 + γ2,
and the transient climate sensitivity parameter TCS are all invariant to the
method of estimation of the dynamic panel regression equation. This equiva-
lence is established analytically in Theorem 1 below. An important implication
of this analytic invariance is that the TCS estimate has the same asymptotic
theory for the different panel regression methods and thus the same induced
asymptotic confidence interval.
To proceed, it is convenient to write the model (1) and (2) in the form:

Ti,t+1 = αi + β1Ti,t + β2Ri,t + λt + uit+1 =: αi + β′Xit + λt + uit+1(16)

λt = γ0 + γ1Tt + γ2Rt + γ3 ln(CO2,t) =: γ0 + γ′Wt, (17)

with notation Xit = (Ti,t, Ri,t)
′ and Wt = (Tt, Rt, ln(CO2,t))

′
. It follows by

aggregation and the normalization condition ᾱ = 0 that

Tt+1 = β′Xt + λt + ū·t+1 =
(
β′, 0

)
Wt + λt + ū·t+1.

The model (16)-(17) can also be written in the combined factor augmented form

Ti,t+1 = γ0 + αi + β′Xi,t + γ′Wt + uit+1, (18)

which is a dynamic panel model with common factor given by the component
γ′Wt with observable Wt. The technical complications involved in the analysis
of (18) arise because: (i) the common factor aggregate Wt =

(
X̄ ′·t, ln(CO2,t)

)′
relates to the observable station level variables Xit that appear as regressors in
(18), as well as the exogenous variable CO2,t; (ii) the regressors (Xi,t,Wt) have
deterministic and stochastic trend components; and (iii) there is cointegration
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(both deterministic and stochastic) among the elements of the global aggregate
Wt. Aggregating (18) and using the identification condition ᾱ = 0 gives (8).
Setting

θ = (θ1, θ2, θ3)
′

= (β1 + γ1, β2 + γ2, γ3)
′
,

the global dynamic regression is

Tt+1 = γ0 + θ1Tt + θ2Rt + γ3 ln (CO2t) + ū·t+1 = γ0 + θ′Wt + ū·t+1, (19)

which it is convenient to write in observation form as

T+ = γ0ιn−1 +Wθ + Ū+ = (T2, T3, ..., Tn)
′ (20)

where T+ = (T2, T3, ..., Tn)
′
, Ū+ = [ū·2, ..., ū·n]

′
, and ιn−1 is an (n− 1) vector

of ones.
We now proceed to analyze the estimation of this station-level system and to

develop asymptotic theory for the resulting coeffi cient estimates and the asso-
ciated TCS parameter. For the purpose of the discussion below it is convenient
to work with the WG estimator. But, as will be demonstrated, the results ob-
tained for the TCS parameter estimates (and for certain linear contrasts of the
other coeffi cients, notably β1 + γ1 and β2 + γ2) apply also to diff-GMM and
sys-GMM procedures.
The WG procedure involves the following steps.

Step 1. Estimate the dynamic panel model by least squares, which involves es-
timating the time specific effect λt as the time specific intercept in the
regression (1). That is, applying least squares with intercept standardized
so that ᾱ = 0, we obtain

λ̂t = Tt+1 − β̂
′
Xt = Tt+1 − β̂1Tt − β̂2Rt = Tt+1 −

(
β̂
′
, 0
)
Wt, (21)

with

β̂ =

(
n−1∑
t=1

N∑
i=1

X̃i,tX̃
′
i,t

)−1(n−1∑
t=1

N∑
i=1

X̃i,tT̃i,t+1

)
, (22)

where we use the notation Ãit = Ait−Āi·−Āt.+Ā·· with Āi· = (n− 1)
−1∑n−1

t=1 Ait,

Āt. = N−1
∑N
i=1Ait, and Ā·· = (n− 1)

−1
N−1

∑n−1
t=1

∑N
i=1Ait. This

means that the time specific and station specific effects are estimated
by regression elimination and the slope coeffi cients β are estimated using
pooled least squares regression after elimination of these effects.

Step 2. Regress the fitted λ̂t on (1, Tt, Rt, ln(CO2,t)) by least squares giving

λ̂t = γ̂0 + γ̂1Tt + γ̂2Rt + γ̂3 ln(CO2,t) = γ̂0 + γ̂′Wt, (23)

and the corresponding vector of coeffi cient estimates
(
γ̂0, γ̂

′) = (γ̂0, γ̂1, γ̂2, γ̂3) .

11



Step 3. Estimate the TCS parameter using the coeffi cient estimates
(
β̂1, γ̂1, γ̂3

)
giving

T̂CS =
γ̂3

1− β̂1 − γ̂1
× ln (2) . (24)

Steps 1 and 2 may be amalgamated in a combined least squares regression
that minimizes the following objective function with respect to

(
αi, β

′, γ0, γ
′)

subject to the identification condition that ᾱ =
∑N
i=1 αi = 0

n−1∑
t=1

N∑
i=1

{
Ti,t+1 − αi − β′Xi,t − γ0 − γ′Wt

}2
, (25)

which leads to the same estimates of the coeffi cients
(
β̂, γ̂

)
as those obtained by

following Steps 1 and 2 above. Writing the vector of estimated time effects ob-

tained in Step 1 as λ̂ =
(
λ̂t

)
, it is apparent from (23) that the slope coeffi cients

estimates of γ in the regression (23) take the form

γ̂ =
(
W̃ ′W̃

)−1 (
W̃ ′λ̂

)
. (26)

where W̃ = W − W̄ is the matrix of deviations from time series means W̃t =
Wt − W̄ .
The estimates

(
β̂, γ̂

)
and implied estimate T̂CS of the TCS parameter

above are all obtained using WG estimation of the panel regression system
(16)-(17). Somewhat remarkably, as the following result shows, the resulting
estimate T̂CS as well as the corresponding estimates of the linear contrasts
θ̂i = β̂i + γ̂i, (i = 1, 2) , are invariant to the method of estimation of the panel

regression equation estimates
(
β̂, γ̂

)
, whether by WG, diff-GMM or sys-GMM.

Theorem 1 (Estimation Invariance) Station-level estimation of the dy-
namic panel regression model (16)-(17) by the methods WG, diff-GMM, and

sys-GMM all lead to the same common estimate θ̂ =
(
W̃ ′W̃

)−1
W̃ ′T+ of the

slope coeffi cient θ in (19) and the common estimate of the TCS parameter

T̂CS =
γ̂3

1− θ̂1
× ln (2) .

Remarks

1. Somewhat remarkably given the substantial differences among the meth-

ods WG, diff-GMM and sys-GMM, the composite estimates
(
β̂1 + γ̂1

)
and

(
β̂2 + γ̂2

)
are invariant to the panel regression method employed.

12



The individual estimates
(
β̂1, β̂2, γ̂1, γ̂2

)
obtained by the methods WG,

diff-GMM and sys-GMM are not invariant but the estimated coeffi cients
β̂i and γ̂i involve compensatory adjustments that ensure invariance of the

contrasts
(
β̂1 + γ̂1

)
and

(
β̂2 + γ̂2

)
. As shown in the proof of Theorem

1 these adjustments ensure that the estimation error for the composite
estimate θ̂ of θ in (20) satisfy the system

θ̂ − θ =
(
W̃ ′W̃

)−1
W̃ ′T+ − θ =


(
β̂1 + γ̂1

)
− (β1 + γ1)(

β̂2 + γ̂2

)
− (β2 + γ2)

(γ̂3 − γ3)

 , (27)

which is determined solely by least squares regression of (the aggregate
time series matrices) T+ on W̃ , making the estimation error θ̂ − θ of the
composite parameters invariant to the method of estimation of the panel
regression equation (16).

2. The intuitive explanation for this invariance is that the individual esti-
mated coeffi cients β̂i in (16) depend on data (Ti,t+1, Xi,t) that upon aggre-
gation necessarily satisfy the global dynamic relationship (19), which upon
time series demeaning is just T̃t+1 = θ′W̃t + ˜̄u·t+1, where T̃t+1 = Tt+1− T̄
and W̃t = Wt − W̄ . The temporally demeaned linear time series rela-
tionship T̃t+1 = θ′W̃t + ˜̄u·t+1 involves only the composite vector θ in its
systematic part. Thus, the parameter θ may be interpreted as a global
composite parameter and this aggregate relationship may be interpreted
as a reduced form dynamic equation for the global variables. The esti-

mates
(
β̂1, β̂2

)
of the system parameters (β1, β2) are used to estimate the

time specific effects λt by cross section aggregation giving λ̂t as shown in

(21), giving λ̂t = Tt+1 −
(
β̂
′
, 0
)
Wt. Correspondingly, when the parame-

ter γ is estimated in (23) using these specific fitted values λ̂t, we have

γ̂ =
(
W̃ ′W̃

)−1 (
W̃ ′λ̂

)
, so that the resulting estimates satisfy

γ̂ =
(
W̃ ′W̃

)−1
W̃ ′
{
T+ −W

[
β̂
0

]}
=
(
W̃ ′W̃

)−1
W̃ ′T+ −

[
β̂
0

]
(28)

and transposition gives

θ̂ =
(
W̃ ′W̃

)−1 (
W̃ ′T+

)
=

 β̂1 + γ̂1
β̂2 + γ̂2
γ̂3

 , (29)

showing invariance and the manner in which the compensatory adjust-
ments in the composite estimates are automatically embodied by virtue
of the cross section aggregation and the regression (23). In effect, the
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estimate γ̂ adjusts to whichever specific fitted values λ̂t are obtained from
the particular panel regression method of estimation that produces the

estimates
(
β̂1, β̂2

)
. Thus, the estimates

(
β̂1 + γ̂1

)
,
(
β̂2 + γ̂2

)
, and γ̂3

of (β1 + γ1) , (β2 + γ2) , and γ3 are each invariant to the choice of esti-
mation procedure for the coeffi cients β in the panel regression (16). In
every case, the estimate θ̂ of the composite parameter θ ends up taking
the same value and is invariant to the panel regression method.

4 Asymptotic Theory

In view of the invariance properties established in Theorem 1, It is convenient
to do the analysis with the (invariant) composite parameter estimate θ̂ and the
implied estimate T̂CS. It is also convenient to fix ideas by working with the
WG estimates of the parameters (β, γ) and, hence, θ and TCS.
We start by writing the common trend representation (9) as

Wt = δw0 + δwt+ Vt + u+wt, (30)

where Vt = DwUgt =: [VTt, Vrt, Vct]
′
, and δw = (δT1, 0, δc1)

′
. Subtracting time

series means gives W̃t = δw t̃+ Ṽt + ũ+wt, with Ṽt = Vt − V̄ . Then

θ̂ − θ =
(
W̃ ′W̃

)−1 (
W̃ ′Ū+

)
, (31)

and the limit theory needs to take account of degeneracy in the asymptotic form
of the sample moment matrix W̃ ′W̃ =

∑n
t=1 W̃tW̃

′
t arising from the presence of

both linear and stochastic trends inWt.We remark also that asymptotics for the
second component of (31), W̃ ′Ū+ =

∑n
t=1 W̃tū·t+1, depends on the behavior of

the cross section averaged elements ū·t+1 = N−1
∑N
i=1 ui,t+1. Under Assump-

tion A(i) and using  to denote weak convergence, these elements satisfy a
CLT

√
Nū·t+1  ξt+1, say, and are therefore of order Op

(
N−1/2

)
. Further, in

view of Assumptions A(i)-(iv), we have the functional laws n−1/2Vbnrc  V (r) ,

n−1/2Ṽbnrc  Ṽ (r) = V (r)−
∫ 1
0
V (s) ds, and an implied functional law for par-

tial sums of the limit variates ξt+1, viz., n
−1/2∑bnrc

t=1 ξt  Bξ (r) ≡ BM
(
σ2ξ

)
,

where σ2ξ = E
(
ξ2t
)

= σ2u.
To handle the asymptotic degeneracy of the sample moment matrix, we pro-

ceed in the usual fashion by rotation of the coordinate system of the regressors
to isolate directions of different magnitudes (Park and Phillips, 1988, 1989).

Define the deterministic trend direction h = δw/
(
δ′wδw

)1/2
in (30) and let H⊥

be an orthogonal complement of h so that the matrix

H = [h,H⊥] =
1(

δ′wδw
)1/2


δc1γ3
1−θ1 0 −δc1

0
(
δ′wδw

)1/2
0

δc1 0 δc1γ3
1−θ1

 , (32)
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is orthogonal and δ′wδw =
(

δc1
1−θ1

)2 {
(1− θ1)2 + γ23

}
. Rotating the system by

H gives

H ′W̃t =

{
at̃+ h′Ṽt +Op (1)
V⊥t +Op (1)

, with a =
(
δ′wδw

)1/2
, (33)

which isolates the deterministic trend in the leading coordinate and the sto-
chastic trend in the remaining coordinates, which we have written as V⊥t =
H ′⊥Vt. Corresponding to these coordinates, define the scaling matrix Dn =
diag

(
n3/2, nI2

)
.

With these preliminaries, we are able to state the following asymptotic result
concerning the composite parameter estimate θ̂ in (31) and its mixed normal
(MN ) limit theory corresponding to the different directions of deterministic
and stochastic trends in the component variables. The presence of mixed nor-
mality may appear unusual in panel regression setting where sequential cross
section and time series asymptotics commonly lead to standard normal limit
theory. In the present case, the key parameters (including the TCS parame-
ter) rely on the coeffi cient of λt in what is effectively an aggregate time series
regression among global variables that have deterministically and stochastically

nonstationary characteristics. Thus, in (26) we have γ̂ =
(
W̃ ′W̃

)−1 (
W̃ ′λ̂

)
and in (29) θ̂ =

(
W̃ ′W̃

)−1 (
W̃ ′T+

)
, both involving the nonstationary compo-

nents of W̃ . These features of the regression leading to the estimate θ̂ produce
mixed normal limit theory in the same way that they do for conventional coin-
tegrating regressions among nonstationary variables. Additional complications
arise in the present case because the signal matrix W̃ ′W̃ in this regression is
asymptotically degenerate due to the presence of nonstationary components of
different orders of magnitude. These complications are discussed in the remarks
following Theorem 2.
The results in Theorem 2 below also enables us to derive the limit theory

for the estimate of TCS = θ3
1−θ1 × ln(2) =: g (θa) , where θa = (θ1, θ3) , based

on the panel regression estimate θ̂a.

Theorem 2 Under Assumption A and as (n,N)→∞ :

(i) n
√
N
(
θ̂ − θ

)
 H⊥

(∫ 1
0
Ṽ⊥,r̃Ṽ

′
⊥,r̃

)−1 ∫ 1
0
Ṽ⊥,r̃dBξ ≡MN

(
0, σ2ξH⊥

(∫ 1
0
Ṽ⊥,r̃Ṽ

′
⊥,r̃

)−1
H ′⊥

)
;

(ii) n3/2
√
Nh′

(
θ̂ − θ

)
 
(
a
∫ 1
0
r̃2
Ṽ⊥

)−1 (∫ 1
0
r̃Ṽ⊥dBξ

)
≡MN

(
0,

σ2ξ
a2

(∫ 1
0
r̃2
Ṽ⊥

)−1)
;

(iii) n3/2
√
N
(
T̂CS − TCS

)
 1

δc1(1−θ1)

(∫ 1
0
r̃2
Ṽ⊥

)−1 (∫ 1
0
r̃Ṽ⊥dBξ

)
≡MN

(
0,

σ2ξ
δ2c1(1−θ1)

2

(∫ 1
0
r̃2
Ṽ⊥

)−1)
,

where r̃(r) = r −
∫ 1
0
sds, r̃Ṽ⊥ = r̃ −

(∫ 1
0
r̃Ṽ⊥

)(∫ 1
0
Ṽ⊥Ṽ

′
⊥

)−1
Ṽ⊥, Ṽ⊥,r (r) =

Ṽ⊥ (r)−
(∫ 1

0
Ṽ⊥r̃

)(∫ 1
0
r̃2
)−1

r̃, Ṽ⊥(r) = H ′⊥Ṽ (r) , and Ṽ (r) = V (r)−
∫ 1
0
V (s) ds.
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Remarks

3. In (i) and (ii), Ṽ⊥,r̃ (r) is the L2 projection residual of Ṽ⊥ = H ′⊥Ṽ on r̃, and
r̃Ṽ⊥ is the L2 projection residual of r̃ on Ṽ⊥. These projections are simply
the equivalent in the limit theory of the projections that take place in finite
samples. As is now familiar in nonstationary regression, transformations
that occur in finite samples in Euclidean space are commonly reflected in
the limit theory by projections in the corresponding L2 space where the
limiting stochstic processes lie, such as the projection residuals Ṽ⊥,r (r) =

Ṽ⊥ (r)−
(∫ 1

0
Ṽ⊥r̃

)(∫ 1
0
r̃2
)−1

r̃ and r̃Ṽ⊥ = r̃−
(∫ 1

0
r̃Ṽ⊥

)(∫ 1
0
Ṽ⊥Ṽ

′
⊥

)−1
Ṽ⊥

4. In the deterministic trend direction h, (ii) shows that h′θ̂ has the faster

convergence rate O
(
n3/2
√
N
)
consonant with both a deterministic linear

trend and cross section aggregation effects. In the alternate direction H⊥,

the stochastic trend dominates and the convergence rate is O
(
n
√
N
)
,

combining the influence of the stochastic trend and cross section aggrega-
tion, giving

n
√
NH ′⊥

(
θ̂ − θ

)
 

(∫ 1

0

Ṽ⊥,r̃Ṽ
′
⊥,r̃

)−1 ∫ 1

0

Ṽ⊥,r̃dBξ

≡ MN
(

0, σ2ξ

(∫ 1

0

Ṽ⊥,r̃Ṽ
′
⊥,r̃

)−1)
. (34)

This slower rate of convergence also dominates the limit distribution the-
ory for the full vector θ̂, which is a singular mixed normal distribution
with support determined by the range space of H⊥, as given by (i).

5. As shown in the Appendix

n2
(
W̃ ′W̃

)−1
 H⊥

(∫ 1

0

Ṽ⊥r̃Ṽ
′
⊥r̃

)−1
H ′⊥, (35)

so that the usual formula σ̂2u
(
W̃ ′W̃

)−1
, employing a consistent estimate

σ̂2u of panel regression equation error variance σ
2
u, suffi ces for the asymp-

totic variance matrix in (i). This formula holds in spite of the degenerate
asymptotic rank of the signal matrix W̃ ′W̃ and the scaling by

√
N of

the estimation error in (i). The reason for the latter is that the esti-

mation error θ̂ − θ =
(
W̃ ′W̃

)−1 (
W̃ ′Ū+

)
from (31), and the moment

matrix W̃ ′Ū+ =
∑n
t=1 W̃tū·t+1 involves the cross section sample mean

ū·t+1 = N−1
∑N
i=1 ui,t+1 whose variance is σ

2
u/N, so cross section sample

size scaling is already implicitly incorporated in σ̂2u
N

(
W̃ ′W̃

)−1
and the
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estimated variance matrix of n
√
N
(
θ̂ − θ

)
is then σ̂2un

2
(
W̃ ′W̃

)−1
 

σ2ξH⊥

(∫ 1
0
Ṽ⊥r̃Ṽ

′
⊥r̃

)−1
H ′⊥, as required.

6. The n
√
N convergence rate of θ̂ is explained by the use of cross section

averaging in conjunction with time series averaging in the presence of non-
stationary data with stochastic trends in the direction H⊥. As discussed
in Remark 2, estimation of θ by panel regression techniques essentially
involves, after cross section aggregation, estimation of the global dynamic
relationship (19), or Tt+1 = γ0+θ′Wt+ū·t+1. Upon time series demeaning,
the global dynamics follow the equation

T̃t+1 = θ′W̃t + ˜̄u·t+1 (36)

which, in turn, depends only on the composite vector θ. Thus, the parame-
ter θ may be interpreted as a global composite parameter and this aggre-
gate relationship may be interpreted as a reduced form dynamic equation
for the global variables. The error in (36) is

˜̄u·t+1 = ū·t+1−
1

n

n−1∑
t=1

u·t+1 =
1

N

N∑
i=1

ui,t+1−
1

nN

n−1∑
t=1

N∑
i=1

ui,t+1 = Op

(
1√
N

)
,

(37)
where the Op

(
N−1/2

)
order holds under Assumption A(i) in which the

dynamic panel regression errors of (1) are assumed to satisfy {uit} ∼iid(
0, σ2u

)
over i and t. WG, diff-GMM, and sys-GMM estimation of the

components of θ all lead, as shown by the invariance result of Theorem 1,
to least squares regression on (36), whose error is Op

(
N−1/2

)
, which in

turn affects the convergence rate of all the respective coeffi cient estimates
by
√
N scaling. In consequence, the deterministic and stochastic trends in

the global vector variable Wt lead to the dual convergence rates of n
√
N

and n3/2
√
N for θ̂ in the respective directions H⊥ and h (in (34) and (ii))

where each rate is scaled by the
√
N factor in view of (37)1 .

7. When N → ∞ and Assumption A holds, the convergence rate n3/2
√
N

of T̂CS exceeds the convergence rate n3/2 of the FM-OLS estimator of

1The n
√
N and n3/2

√
N rates of convergence apply under (37) and ū·t+1 =

1
N

∑N
i=1 ui,t=1 →p 0. More generally by the ergodic theorem under cross section station-

arity, ū·t+1 = 1
N

∑N
i=1 ui,t=1 →a.s. E (ui,t+1|Ct+1) =: ζt+1 where Ct+1 is a filtration on the

probability space of the aggregate variables that is generated by time series common global

shocks. In such cases, the convergence rate is O (n) and O
(
n3/2

)
rather than O

(
n
√
N
)

and O
(
n3/2

√
N
)

; and the corresponding limit distributions are affected by the time series

properties of the global common shock process ζt. The FM-OLS estimator used in Phillips et
al. (2020) is robust to this extension under general weak dependence conditions on ζt because
endogeneity and serial dependence are accounted for in FM-OLS regression. Panel regres-
sion estimators based on WG and GMM methods do not take such effects into account and
are generally inconsistent, as would be expected in dynamic models with serially dependent
disturbances.

17



TCS studied in Phillips et al. (2020). This divergence is explained as
follows. The FM-OLS estimator of TCS is based on a cointegrating re-
gression estimation of equation (13) among the elements of Wt in which
the TCS parameter appears directly as the coeffi cient of the ln (CO2t)
variable scaled by ln (2). Upon time series demeaning this cointegrating
equation has the form

T̃t =
θ2

1− θ1
R̃t +

γ3
1− θ1

˜ln(CO2,t) +
1

1− θ1
ζ̃t, (38)

where ζt, which is given by (14), is a stationary, weakly dependent equi-
librium error term up to an asymptotically negligible residual component.
In (38) the panel regression errors uit have been eliminated up to an as-
ymptotically negligible term by cross section averaging. The dominant
Op (1) component of ζt in (14) is the composite stationary error

uTt −
γ3

1− θ1
uct = γ3

∞∑
j=0

θj1uct−1−j −
θ1

1− θ1

∞∑
k=0

θk1 [θ2δr + γ3δc]
′
ugt−1−k

−δ′Tugt −
γ3

1− θ1
uct,

which is a serially dependent linear process of the innovations (uct, ugt) .
Thus, (38) is a cointegrating regression equation with asymptotically sta-
tionary errors. The use of FM-OLS regression and other effi cient meth-
ods of cointegrating equation estimation therefore produces asymptotically
unbiased and asymptotically effi cient estimates of the coeffi cients in (38)
whose rates of convergence are determined by the trend behavior of the
component regressors. Since ln(CO2,t) has a linear deterministic drift, the
coeffi cient of this variable in (38) and hence the implied estimate of the
TCS parameter have a convergence rate of O

(
n3/2

)
, as shown in Phillips

et al. (2020). By contrast, under Assumption A(i) and specifically the
requirements that: (a) {uit} ∼iid

(
0, σ2u

)
over i and t; and (b) that the

energy balance (time specific effect) variable λt is not subject to measure-
ment error, the convergence rate of panel dynamic regression estimation of

TCS by WG (or the GMM methods) is O
(
n3/2
√
N
)
. Violations of con-

dition (a) that introduce serial dependence in uit lead to endogeneity in
the dynamic panel regression with consequent effects (including inconsis-
tency) on the asymptotics of these panel regression estimates. Violations
of (b) induce a time series measurement error (uλt, say) into the factor
augmented form of the global dynamic regression equation (18). The pres-
ence of such time series measurement errors in λt mean that the global
dynamic regression equation (36) now has a residual ũλt of order Op (1) ,
rather than a residual of order Op

(
N−1/2

)
as in (37). This affects the rate

of convergence, which becomes at most O
(
n3/2

)
—like that of FM-OLS

—and introduces the possibility of endogeneity and serial correlation bias
induced by the properties of uλt. In consequence, Theorem 2 only holds
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under the strict environment of Assumption A(i) or analogous stationary
and ergodic martingale difference assumptions. Accordingly, the use of
the long-run cointegrating regression equation (38) to estimate the para-
meter TCS by methods such as FM-OLS that take weak dependence and
possible endogeneity of the composite errors into account provides a more
robust approach to the estimation of transient climate sensitivity and, as a
result, seems preferable to the use of direct panel regression methods such
WG, diff-GMM, and sys-GMM, at least without further modification of
those techniques.

8. From (iii) the (conditional) variance of the limit distribution of T̂CS is
σ2ξ

δ2c1(1−θ1)
2

(∫ 1
0
r̃2
Ṽ⊥

)−1
, which is seen to diverge when δc1 → 0 or θ1 =

β1 + γ1 → 1. The reason for divergence is that when δc1 = 0 there is
no deterministic trend in ln (CO2t) and hence no deterministic trend in
Tt or the common trend representation given in Theorem 1. In this case,

the rate of convergence is O
(
n
√
N
)
not O

(
n3/2
√
N
)
, explaining the di-

vergence in the result (iii). When θ1 = 1, there is a second unit root in
the global dynamic regression equation (19), implying that Tt now has a
quadratic deterministic trend and does not (deterministically) co-move or
cointegrate with ln (CO2t) and Rt. In this case, the joint limit distribution
of θ̂ is again singular but is now dominated by the stochastic trend compo-
nent (which has the lowest order in the signal moment matrix), so the rate

of convergence is again O
(
n
√
N
)
rather than O

(
n3/2
√
N
)
, explaining

the divergence of the limit variance in (iii) when θ1 → 1.

9. Under Assumption A, it follows from Theorem 2 and is shown in the
Appendix (Section 9.3) that, using (iii), we can construct by dynamic
panel regression an asymptotically valid 100 (1− α) % confidence interval
for the TCS parameter. This interval has the form

T̂CS ± zα
{
σ̂2uĝ

′
aEa

(
W̃ ′W̃

)−1
E′aĝa

}1/2
, (39)

where σ̂2u is a consistent estimate of σ
2
u, Ea is the selector matrix

Ea =

[
1 0 0
0 0 1

]
,

and

ĝ′a = g′a

(
θ̂1, θ̂3

)
= ln (2)

 θ̂3(
1− θ̂1

)2 , 1

1− θ̂1

 ,

is the estimated gradient vector of the function TCS = g (θa) = θ3
1−θ1 ln(2)

evaluated at θ̂a =
(
θ̂1, θ̂3

)′
, and zα is the 100 (1− α/2) percentile of the
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standard normal distribution. The asymptotic variance element that ap-

pears in the confidence interval formula (39), σ̂2uĝ
′
aEa

(
W̃ ′W̃

)−1
E′aĝa, has

four components: (i) σ̂2u is the usual consistent estimate of the equation
error variance σ2u; (ii) the estimate of the first derivative function ĝa associ-
ated with the linearization of the functional formula for the TCS parame-

ter; (iii) the selector matrix Ea that identifies the two components
(
θ̂1, θ̂3

)
of θ̂ that are relevant in determining T̂CS; and (iv) the signal matrix W̃ ′W̃

in the regression that delivers the estimate θ̂ =
(
W̃ ′W̃

)−1 (
W̃ ′T+

)
. As

explained in Remark 5 above, the inverse of the signal matrix W̃ ′W̃
may be used in (39) in spite of its asymptotic singularity, which af-

ter normalization has the well defined form H⊥

(∫ 1
0
Ṽ⊥r̃Ṽ

′
⊥r̃

)−1
H ′⊥ given

in (35), because the relevant directions for the variation of T̂CS are
identified and consistently estimated in the asymptotic variance element

σ̂2uĝ
′
aEa

(
W̃ ′W̃

)−1
E′aĝa, as shown in the derivations given in Section 9 of

the Appendix.

5 Simulation Evidence

We report below results of a small simulation exercise with panel WG (within
group least squares), diff-GMM (Difference GMM), and (non-optimal) sys-GMM
(System GMM) estimation of the parameters in the following panel ARX(1)
model (Storelvmo et al, 2016):

Tit = αi + β1Tit−1 + β2Rit−1 + λt−1 + uit, t = 1, .., n; i = 1, ..., N (40)

λt = γ0 + γ1T̄·t + γ2R̄·t + γ3 log (CO2t) (41)

with uit ∼iid N
(
0, σ2u

)
and αi ∼iid N

(
0, σ2α

)
and parameter settings based

on the WG estimates obtained using the observed climate data with n = 42,
N = 963, viz.,

β1 = 0.1346, β2 = −0.0001, (42)

γ0 = −14.915, γ1 = −0.023, γ2 = 0.0262, γ3 = 3.640 (43)

σα = 7.4147, σu = 0.4929 (44)

The simulations utilize the observed exogenous data on (Rit, CO2t)
n,N
t=1,i=1 and

use (40) and (41) to generate simulated data for (Tit, λt)
n,N
t=1,i=1 recursively based

on the parameter settings (42) - (43). The exercise is designed to shed light on
the finite sample properties of various dynamic panel regression procedures in
the context of the climate model (40) and (41) with data that relates closely to
what was used in the empirical study.
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The Figures 1-4 collected in Appendix A show densities of the WG, diff-
GMM, and sys-GMM estimates of the first equation (40) of this model based on
R = 1500 replications with sample sizes n = 42, N = 50, using only the first 50
cross section observations of (Rit, CO2t)

n,N
t=1,i=1 and therefore much smaller than

the observational cross section sample size N = 963. The data were generated
as described above with true parameter settings (42) - (43) and observed data
for radiation Rit and CO2 equivalent CO2t. Simulation results based on the full
cross section sample size N = 963 are reported in the subsequent Figures 5-8.
The WG densities show little bias (as might be expected with time series

sample size n = 42) and seem to conform well with asymptotic normality for
both β1 and β2. The Diff_GMM estimates show little bias in the estimation
of β2 but show downward bias in the estimation of β1, and have much greater
variance than the WG estimates, for both β1 and β2. By contrast the sys-GMM
estimates are biased for both parameters. The sys-GMM estimates of β1 are
particularly heavily biased upwards from a true value of β1 = 0.135 to a value
around unity. The reason is the large ratio

rα =
σα
σu

=
7.4147

0.4929
= 15.043,

of the standard deviation of the individual effects relative to the equation error.
System GMM (both optimal and non-optimal versions) is known to be very sen-
sitive to heterogeneity in the fixed effects αi and, in particular, to the magnitude
of r2α (Hayakawa, 2015; Bun and Windmeijer, 2010), which in the present case
is r2α = 226.29. For a simple panel AR(1) model with fixed effects, for instance,
Hayakawa shows that non-effi cient system GMM is actually inconsistent when
n/N → c > 0 and the probability limit of the system GMM estimate of β1
tends to unity when r2α →∞. This analytic finding corresponds closely with the
simulation results obtained here for the more complex model (40) - (41) with
its multiple sources of nonstationarity.
These simulations confirm the existence of substantial bias in system GMM

estimation in the present context. The findings are very similar for the data-
realistic sample size settingN = 963, although the distributions are much tighter
in view of the larger value of the cross section sample size N. Interestingly,
the system GMM estimates of β1 in this case are centred around 0.8 rather
than unity, which corresponds closely to the sys-GMM estimate obtained with
the observed data where β̂1 = 0.864 (see Table 1). Moreover, since the ratio
n
N = 42

963 = 0.0436 is close to zero in this case, Hayakawa’s (2015) expression for
the bias in his theorem 4(a) indicates that the bias will be smaller for N = 963
than when N = 50 and this analytic result for the bias matches the simulation
findings for the temperature data.

6 Concluding Remarks

Panel data econometric methods seem well suited to assess the impact on
global temperature of rising greenhouse gas (GHG) concentrations in Earth’s
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atmosphere. They have the advantage of modeling the aggregate impact of
GHG on temperature while also incorporating the effects of changes in down-
welling surface radiation at the station level. In this way, panel models may
account for some of the observed ‘local dimming’that has occurred during the
past half century due to rising levels of local pollution. Recent work by Magnus
et al. (2011) and Storelvmo et al. (2016) sought to model these effects through
system estimation of a dynamic panel regression framework, finding that the
dimming influence of aerosols on surface radiation masked more than 30% of
the aggregate effect of rising CO2 levels on Earth’s average temperature.
The analytic and simulation results of the present paper show that these local

dimming effects are surprisingly robust to the econometric methodology used to
estimate Earth’s transient climate sensitivity. Estimates of this aggregate-level
parameter are found to be invariant to the dynamic panel regression method
employed. However, estimates of some of the individual parameters in the dy-
namic panel regression system can differ substantially. In particular, system
GMM methods are found to be unreliable in estimating the panel autoregres-
sive coeffi cient and certain aggregate parameters, suffering from considerable
bias. Both the simulation and analytic results favor within group methods for
time series and cross section sample sizes of the order now available in observed
spatio-temporal datasets. Within group panel estimation also gives results that
are broadly in line with findings from direct time series cointegrating regressions
of the aggregate data. This correspondence between the results of methods that
employ disaggregate and aggregate data gives some assurance of the reliability
of the estimates of climate sensitivity to CO2 levels. Some further computations
that reinforce some of the present findings about the finite sample performance
of dynamic panel regression methods and provide R programs for estimating
models of this type are given in Phillips and Han (2019).
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8 Appendix A: Additional Figures

Figure 1: Kernel estimates of the densities of WG and sys-GMM estimates of
β1 based on R = 1500 replications with n = 42, N = 50, and true value

β1 = 0.135.

Figure 2: Kernel estimates of the densities of WG and sys-GMM estimates of
β2 based on R = 1500 replications with n = 42, N = 50, and true value

β2 = −0.0001.
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Figure 3: Kernel estimates of the densities of WG and diff-GMM estimates of
β1 based on R = 1500 replications with n = 42, N = 50, and true value

β1 = 0.135.

Figure 4: Kernel estimates of the densities of WG and diff-GMM estimates of
β2 based on R = 1500 replications with n = 42, N = 50, and true value

β2 = −0.0001.
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Figure 5: Kernel estimates of the densities of WG and sys-GMM estimates of
β1 based on R = 1500 replications with n = 42, N = 963, and true value

β1 = 0.135.

Figure 6: Kernel estimates of the densities of WG and sys-GMM estimates of
β2 based on R = 1500 replications with n = 42, N = 50, and true value

β2 = −0.001.
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Figure 7: Kernel estimates of the densities of WG and diff-GMM estimates of
β1 based on R = 1500 replications with n = 42, N = 963, and true value

β1 = 0.135.

Figure 8: Kernel estimates of the densities of WG and diff-GMM estimates of
β2 based on R = 1500 replications with n = 42, N = 963, and true value

β2 = −0.0001.
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9 Appendix B: Proofs

9.1 Proof of Theorem 1

The proof follows by simple algebraic manipulation, as shown in the remarks
leading to (28) and (29). In what follows, we provide a more explicit demon-
stration and establish the explicit form of the estimation error θ̂ − θ given in
(27), which is useful in the development of asymptotics.
To proceed we use the implied form of the aggregate dynamic relation (19),

viz.,

Tt+1 = γ0 + θ′Wt + ū·t+1, with θ = (θ1, θ2, γ3)
′
, and θi = βi + γi for i = 1, 2

(45)
which in matrix observation form is

T+ = γ0ιn−1 +Wθ + Ū = (T2, T3, ..., Tn)
′ (46)

where T+ = (T2, T3, ..., Tn)
′
, Ū+ = [ū·2, ..., ū·n]

′
, and ιn−1 = (1, ..., 1)′ is

(n− 1)× 1. Using (29) we then have

θ̂ =

 β̂1 + γ̂1
β̂2 + γ̂2
γ̂3

 =
(
W̃ ′W̃

)−1 (
W̃ ′T+

)
= θ +

(
W̃ ′W̃

)−1 (
W̃ ′Ū+

)
, (47)

which gives (27). We note that the time specific intercept λt in the regression
is estimated by the regression residuals

λ̂t = Tt+1 − β̂
′
Xt = Tt+1 − β̂1Tt − β̂2Rt = Tt+1 −

(
β̂
′
, 0
)
Wt (48)

using the identification condition that ᾱ = 0, as in Step 1 of the WG estimation.
However, equation (48) applies not only for the WG estimate β̂ but also when
the panel regression equation (1) is estimated by diff-GMM and sys-GMM, in
which case the residuals λ̂t themselves depend on the method of estimation and

we may write these as λ̂
GMM

t . In particular, if β̂GMM denotes either of these
panel GMM estimates of β, then analogous to (48) we have

λ̂
GMM

t = Tt+1 − β̂
′
Xt = Tt+1 − β̂1Tt − β̂2Rt = Tt+1 −

(
β̂
′
GMM , 0

)
Wt. (49)

Using the vector of these residuals λ̂
GMM

=
(
λ̂
GMM

t

)
, the slope coeffi cients

γ in equation (2) are estimated by least squares regression giving γ̂GMM =(
W̃ ′W̃

)−1 (
W̃ ′λ̂

GMM
)
, just as in the case of WG estimation. The coeffi cient

estimates γ̂GMM , just as λ̂
GMM

, then also depend on the method of estimation
of the slope coeffi cients β̂ in (1). Specifically, as in (28) we have

γ̂GMM =
(
W̃ ′W̃

)−1
W̃ ′
{
T+ −W

[
β̂GMM

0

]}
=
(
W̃ ′W̃

)−1
W̃ ′T+−

[
β̂GMM

0

]
,
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which reveals the compensatory adjustments between the estimated panel re-
gression coeffi cients β̂ and the estimated coeffi cients γ̂ in the aggregate relation.
In the same way, when WG is used to estimate β we have

γ̂WG =
(
W̃ ′W̃

)−1
W̃ ′
{
T+ −W

[
β̂WG

0

]}
=
(
W̃ ′W̃

)−1
W̃ ′T+ −

[
β̂WG

0

]
.

Upon transpositon and therefore irrespective of whether GMM or WG estima-
tion of β is employed in the panel regression, we have

θ̂ − θ =


(
β̂1 + γ̂1

)
− (β1 + γ1)(

β̂2 + γ̂2

)
− (β2 + γ2)

(γ̂3 − γ3)

 =
(
W̃ ′W̃

)−1
W̃ ′T+ − θ, (50)

which shows that the estimates
(
β̂1 + γ̂1

)
,
(
β̂2 + γ̂2

)
, and γ̂3 of (β1 + γ1) ,

(β2 + γ2) , and γ3 are each invariant to the choice of estimation procedure for
the coeffi cients β in the panel regression (16). We deduce that the same is true
for the implied estimate of the parameter TCS, viz.,

T̂CS =
γ̂3

1−
(
β̂1 + γ̂1

)×ln (2) =: g
(
θ̂1, γ̂3

)
, with θ̂1 = β̂1+γ̂1 and θ1 = β1+γ1,

thereby establishing the stated invariance result. �

9.2 Proof of Theorem 2

(i) Define the scaling matrix Dn = diag
(
n3/2, nI2

)
conformably with the rota-

tion matrix H = [h,H⊥] given by (33). Then, by standard weak convergence
methods, we have

D−1n H ′W̃ ′W̃HD−1n = D−1n H ′
n∑
t=1

W̃tW̃
′
tHD

−1
n

=

 1
n3

∑n
t=1

(
at̃+ h′Ṽt +Op (1)

)2
1

n5/2

∑n
t=1

(
at̃+ h′Ṽt +Op (1)

)
(V ′⊥t +Op (1))

1
n5/2

∑n
t=1

(
Ṽ⊥t +Op (1)

)(
at̃+ h′Ṽt +Op (1)

)
1
n2

∑n
t=1

(
Ṽ⊥t +Op (1)

)(
Ṽ ′⊥t +Op (1)

)


 
[
a2
∫ 1
0
r̃2 a

∫ 1
0
r̃Ṽ ′⊥

a
∫ 1
0
Ṽ⊥r̃

∫ 1
0
Ṽ⊥Ṽ

′
⊥

]
, (51)

where a =
(
δ′wδw

)1/2
. Inverting and by joint convergence and continuous map-

ping we have

DnH
′
(
W̃ ′W̃

)−1
HDn = Dn

(
H ′W̃ ′W̃H

)−1
Dn  

[
a2
∫ 1
0
r̃2 a

∫ 1
0
r̃Ṽ ′⊥

a
∫ 1
0
Ṽ⊥r̃

∫ 1
0
Ṽ⊥Ṽ

′
⊥

]−1
.

(52)
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it follows that

DnH
′
(
θ̂ − θ

)
= DnH

′
(
W̃ ′W̃

)−1
W̃ ′Ū = DnH

′
(
W̃ ′W̃

)−1
HDnD

−1
n H ′W̃ ′Ū

=

{
Dn

(
H ′W̃ ′W̃H

)−1
Dn

}{
D−1n H ′W̃ ′Ū

}
=

{
Dn

(
H ′W̃ ′W̃H

)−1
Dn

}{
1√
N

[
n∑
t=1

D−1n H ′W̃tξt+1 + op (1)

]}
.

Then

√
NDnH

′
(
θ̂ − θ

)
 
[
a2
∫ 1
0
r̃2 a

∫ 1
0
r̃Ṽ ′⊥

a
∫ 1
0
Ṽ⊥r̃

∫ 1
0
Ṽ⊥Ṽ

′
⊥

]−1 [
a
∫ 1
0
r̃Ṽ hdBξ∫ 1

0
Ṽ⊥dBξ

]
, (53)

using the fact that

n∑
t=1

D−1n H ′W̃tξt+1 =

[
1

n3/2

∑n
t=1 h

′W̃tξt+1
1
n

∑n
t=1H

′
⊥W̃tξt+1

]
=

 1
n3/2

∑n
t=1

(
at̃+ h′Ṽt +Op (1)

)
ξt+1

1
n

∑n
t=1

(
Ṽ⊥t +Op (1)

)
ξt+1


 

[
a
∫ 1
0
r̃dBξ∫ 1

0
Ṽ⊥dBξ

.

]

Thus √Nn3/2h′ (θ̂ − θ)√
NnH ′⊥

(
θ̂ − θ

)  [
a2
∫ 1
0
r̃2 a

∫ 1
0
r̃Ṽ ′⊥

a
∫ 1
0
Ṽ⊥r̃

∫ 1
0
Ṽ⊥Ṽ

′
⊥

]−1
a
∫ 1
0
r̃dBξ∫ 1

0
Ṽ⊥dBξ

. (54)

The partitioned inverse in (53) can be written explicitly as follows. For nota-
tional convenience define the projection residuals

r̃Ṽ⊥ = r̃ −
(∫ 1

0

r̃Ṽ⊥

)(∫ 1

0

Ṽ⊥Ṽ
′
⊥

)−1
Ṽ⊥,

Ṽ⊥,r (r) = Ṽ⊥ (r)−
(
a

∫ 1

0

Ṽ⊥r̃

)(
a2
∫ 1

0

r̃2
)−1

ar̃ = Ṽ⊥ (r)−
(∫ 1

0

Ṽ⊥r̃

)(∫ 1

0

r̃2
)−1

r̃,

and then the inverse limit signal matrix has the following explicit form[
a2
∫ 1
0
r̃2 a

∫ 1
0
r̃Ṽ ′⊥

a
∫ 1
0
Ṽ⊥r̃

∫ 1
0
Ṽ⊥Ṽ

′
⊥

]−1
(55)

=


(
a2
∫ 1
0
r̃2
Ṽ⊥

)−1
−
(
a2
∫ 1
0
r̃2
Ṽ⊥

)−1 (
a
∫ 1
0
r̃Ṽ ′⊥

)(∫ 1
0
Ṽ⊥Ṽ

′
⊥

)−1
−
(∫ 1

0
Ṽ⊥,rṼ

′
⊥,r

)−1 (
a
∫ 1
0
Ṽ⊥r̃

)(
a2
∫ 1
0
r̃2
)−1 (∫ 1

0
Ṽ⊥,rṼ

′
⊥,r

)−1
 .
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These results lead to the required limit theory for n
√
N
(
θ̂ − θ

)
. We use (53)

and the decomposition

n
√
N
(
θ̂ − θ

)
= n
√
N [hh′ +H⊥H

′
⊥]
(
ψ̂ − ψ

)
= h

[√
Nnh′

(
θ̂ − θ

)]
+H⊥

[√
NnH ′⊥

(
θ̂ − θ

)]
= H⊥

[√
NnH ′⊥

(
θ̂ − θ

)]
+ op (1)

 H⊥ [0, I2]

[
a2
∫ 1
0
r̃2 a

∫ 1
0
r̃Ṽ ′H⊥

a
∫ 1
0
H ′⊥Ṽ r̃

∫ 1
0
H ′⊥Ṽ Ṽ

′H⊥

]−1 [
a
∫ 1
0
r̃dBξ∫ 1

0
Ṽ⊥dBξ

]

= H⊥

[
−
(∫ 1

0
Ṽ⊥,r̃Ṽ

′
⊥,r̃

)−1 (
a
∫ 1
0
Ṽ⊥r̃

)(
a2
∫ 1
0
r̃2
)−1 (∫ 1

0
Ṽ⊥,r̃Ṽ

′
⊥,r̃

)−1 ][ a
∫ 1
0
r̃dBξ∫ 1

0
Ṽ⊥dBξ

]

= H⊥

(∫ 1

0

Ṽ⊥,r̃Ṽ
′
⊥,r̃

)−1{∫ 1

0

Ṽ⊥dBξ −
(∫ 1

0

Ṽ⊥r̃

)(∫ 1

0

r̃2
)−1 ∫ 1

0

r̃dBξ

}

= H⊥

(∫ 1

0

Ṽ⊥,r̃Ṽ
′
⊥,r̃

)−1 ∫ 1

0

Ṽ⊥,r̃dBξ

≡ MN
(

0, σ2ξH⊥

(∫ 1

0

Ṽ⊥,r̃Ṽ
′
⊥,r̃

)−1
H ′⊥

)
, (56)

with Ṽ⊥,r̃ (r) = Ṽ⊥ (r)−
(∫ 1

0
Ṽ⊥r̃

)(∫ 1
0
r̃2
)−1

r̃, the L2 projection residual of Ṽ⊥

on r̃. This result gives the limit theory for the vector n
√
N
(
θ̂ − θ

)
, and hence

its individual elements, showing that the limit distribution is singular because
of the presence of a multivariate deterministic time trend in the regressors.
(ii) The explicit inverse given in (55) also enables us to find the limit distri-

bution of the coeffi cient estimates in the linear trend direction. In particular,
we have from (54) and (55) that

√
Nn3/2h′

(
θ̂ − θ

)
 [1, 0]

[
a2
∫ 1
0
r̃2 a

∫ 1
0
r̃Ṽ ′⊥

a
∫ 1
0
Ṽ⊥r̃

∫ 1
0
Ṽ⊥Ṽ

′
⊥

]−1 [
a
∫ 1
0
r̃dBξ∫ 1

0
Ṽ⊥dBξ

]

=

[ (
a2
∫ 1
0
r̃2
Ṽ⊥

)−1
−
(
a2
∫ 1
0
r̃2
Ṽ⊥

)−1 (
a
∫ 1
0
r̃Ṽ ′⊥

)(∫ 1
0
Ṽ⊥Ṽ

′
⊥

)−1 ] [ a
∫ 1
0
r̃dBξ∫ 1

0
Ṽ⊥dBξ

]

=

(
a2
∫ 1

0

r̃2
Ṽ⊥

)−1(
a

∫ 1

0

r̃dBξ

)
−
(
a2
∫ 1

0

r̃2
Ṽ⊥

)−1(
a

∫ 1

0

r̃Ṽ ′⊥

)(∫ 1

0

Ṽ⊥Ṽ
′
⊥

)−1 ∫ 1

0

Ṽ⊥dBξ

=

(
a2
∫ 1

0

r̃2
Ṽ⊥

)−1(
a

∫ 1

0

[
r̃ −

(∫ 1

0

r̃Ṽ ′⊥

)(∫ 1

0

Ṽ⊥Ṽ
′
⊥

)−1
Ṽ⊥

]
dBξ

)

=

(
a

∫ 1

0

r̃2
Ṽ⊥

)−1(∫ 1

0

r̃Ṽ⊥dBξ

)
≡MN

(
0,
σ2ξ
a2

(∫ 1

0

r̃2
Ṽ⊥

)−1)
, (57)
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giving the stated result.
(iii) We next proceed to examine the TCS estimate T̂CS and develop its

asymptotic theory. Some care is needed in application of the usual delta method
because of the singularity of the limit theory for θ̂ and its effects on the limit
distribution of T̂CS. Set θa = (θ1, θ3) = (θ1, γ3) , write TCS and T̂CS as

TCS = g (θa) =
θ3

1− θ1
× ln (2) , T̂CS = g

(
θ̂a

)
=

θ̂3

1− θ̂1
× ln (2) , (58)

and define the gradient vector

ga (θa) = ln (2)

(
θ3

(1− θ1)2
,

1

1− θ1

)′
. (59)

Observe that the leading column of the orthogonal matrix H in (32) is

h =

(
δc1γ3
1− θ1

, 0, δc1

)′
/

[(
δc1

1− θ1

)2 {
(1− θ1)2 + γ23

}]1/2
and so

g′aEa = ln (2)

(
θ3

(1− θ1)2
, 0,

1

1− θ1

)
. (60)

Then

g′aEaH⊥ = g′a

[
0 −δc1
0 δc1γ3

1−θ1

]
=
[

0 −δc1 θ3
(1−θ1)2

+ δc1γ3
(1−θ1)2

]
= [0, 0] , (61)

since θ3 = γ3. Since θ̂a− θa = Op
(
n−1N−1/2

)
by (56), it follows by application

of the delta method and use of (56) and (61) that n
√
Ng′a

(
θ̂ − θ

)
→p 0 and,

hence,

n
√
N
(
T̂CS − TCS

)
= n
√
Ng′a

(
θ̂ − θ

)
+ op (1) = op (1) .

The limit distribution of T̂CS is then obtained by using the limit distribution
of the coeffi cient estimates θ̂ in the linear trend direction. To do so, we proceed
as follows. First note that

H = [h,H⊥] =
1(

δ′wδw
)1/2


δc1γ3
1−θ1 0 −δc1

0
(
δ′wδw

)1/2
0

δc1 0 δc1γ3
1−θ1

 ,
with δ′wδw =

(
δc1
1−θ1

)2 {
(1− θ1)2 + γ23

}
=: a2. Write the product

g′aEa = ln (2)

(
θ3

(1− θ1)2
, 0,

1

1− θ1

)
=

(
δ′wδw

)1/2
δc1 (1− θ1)

h′. (62)
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Proceeding in the same way as (57), it follows that

n3/2
√
N
(
T̂CS − TCS

)
= n
√
Ng′a

(
θ̂ − θ

)
+ op (1) =

(
δ′wδw

)1/2
δc1 (1− θ1)

n3/2
√
Nh′

(
θ̂ − θ

)
 

(
δ′wδw

)1/2
δc1 (1− θ1)

[1, 0]

[
a2
∫ 1
0
r̃2 a

∫ 1
0
r̃Ṽ ′⊥

a
∫ 1
0
Ṽ⊥r̃

∫ 1
0
Ṽ⊥Ṽ

′
⊥

]−1 [
a
∫ 1
0
r̃dBξ∫ 1

0
Ṽ⊥dBξ

]

=

(
δ′wδw

)1/2
δc1 (1− θ1)

(
a

∫ 1

0

r̃2
Ṽ⊥

)−1(∫ 1

0

r̃Ṽ⊥dBξ

)
≡
(
δ′wδw

)1/2
δc1 (1− θ1)

MN
(

0,
σ2ξ
a2

(∫ 1

0

r̃2
Ṽ⊥

)−1)

= MN
(

0,
σ2ξ

δ2c1 (1− θ1)2
(∫ 1

0

r̃2
Ṽ⊥

)−1)
, (63)

as required.
�

9.3 Estimating the Asymptotic Variance Matrix of θ̂

The asymptotic variance matrix of θ̂ may be estimated in the usual way. To
show this, note that standard partitioned matrix inversion gives

n2
(
W̃ ′W̃

)−1
= n2

(
HH ′W̃ ′W̃HH ′

)−1
= n2H

(
H ′W̃ ′W̃H

)−1
H ′

= n2H

[
a2
∑n
t=1 t̃

2 a
∑n
t=1 t̃Ṽ

′
tH⊥

a
∑n
t=1H

′
⊥Ṽtt̃

∑n
t=1H

′
⊥ṼtṼ

′
tH⊥

]−1
H ′ {1 + op (1)}

= : n2H

[
a11 a12
a21 A22

]−1
H ′ {1 + op (1)} (64)

= n2H

[
a−111.2 −a−111.2a12A−122

−A−122.1a21a−111 A−122.1

]
H ′ {1 + op (1)}

= H

[
Op
(
n−1

)
Op
(
n−1/2

)
Op
(
n−1/2

) (
A22.1

n2

)−1 ]
H ′ {1 + op (1)}

 H

 0 0

0

{∫ 1
0
H ′⊥Ṽ Ṽ

′H⊥ −
(∫ 1

0
H ′⊥Ṽ r̃

)(∫ 1
0
r̃2
)−1 (∫ 1

0
r̃Ṽ ′H⊥

)}−1 H ′
= H⊥

(∫ 1

0

Ṽ⊥r̃Ṽ
′
⊥r̃

)−1
H ′⊥
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because

n2a−111.2 =
n2

n3

a2
∑n
t=1 t̃

2

n3
−
(
a
∑n
t=1 t̃Ṽ

′
tH⊥

n5/2

)(∑n
t=1H

′
⊥ṼtṼ

′
tH⊥

n2

)−1(
a
∑n
t=1H

′
⊥Ṽtt̃

n5/2

)
−1

= Op
(
n−1

)
,

n2A−122.1 =

{
1

n2

n∑
t=1

H ′⊥ṼtṼ
′
tH⊥ −

(
a
∑n
t=1H

′
⊥Ṽtt̃

n5/2

)(
a2
∑n
t=1 t̃

2

n3

)−1(
a
∑n
t=1 t̃Ṽ

′
tH⊥

n5/2

)}−1
,

 
{∫ 1

0

H ′⊥Ṽ Ṽ
′H⊥ −

(∫ 1

0

H ′⊥Ṽ r̃

)(∫ 1

0

r̃2
)−1(∫ 1

0

r̃Ṽ ′H⊥

)}−1
=

(∫ 1

0

Ṽ⊥r̃Ṽ
′
⊥r̃

)−1
,

n2A−122.1a21a
−1
11 =

n2

n5/2

{(
A22.1
n2

)−1
a21
n5/2

(a11
n3

)−1}
= Op

(
n−1

′2
)
.

Next the (cross section asymptotic) panel regression error variance σ2ξ is to be
estimated. Under Assumption A(i) σ2ξ = σ2u and σ

2
u may be estimated from the

residual of the combined panel regression (25), viz

σ̂2u =
1

Nn

n∑
i=1

n−1∑
t=1

û2it+1 =
1

Nn

n∑
i=1

n−1∑
t=1

(
T̃i,t+1 − β̂1T̃i,t − β̂2R̃i,t − γ̂′W̃t

)2
,

which is consistent for σ2u under Assumption A, where

ûit+1 = Ti,t+1−α̂i− β̂1Ti,t− β̂2Ri,t− γ̂0− γ̂′Wt = T̃i,t+1− β̂1T̃i,t− β̂2R̃i,t− γ̂′W̃t.

With these results in hand, we can construct the following consistent estimate

of the conditional variance matrix of n
√
N
(
θ̂ − θ

)
in Theorem 2, viz.,

n2N

(
σ̂2u
N

)(
W̃ ′W̃

)−1
= σ̂2un

2
(
W̃ ′W̃

)−1
 σ2ξH⊥

(∫ 1

0

Ṽ⊥,r̃Ṽ
′
⊥,r̃

)−1
H ′⊥,

(65)

So, the asymptotic variance is given by the usual formula σ̂2u
(
W̃ ′W̃

)−1
. Note

that the effective sample size scaling involved in (65) is n2, corresponding to
the presence of stochastic trends in the signal matrix W̃ ′W̃ . The scaling by√
N in the standardized estimation error n

√
N
(
θ̂ − θ

)
arises because of the

estimation error θ̂ − θ =
(
W̃ ′W̃

)−1 (
W̃ ′Ū

)
from (31), and the moment ma-

trix W̃ ′Ū =
∑n
t=1 W̃tū·t+1 involves the cross section sample mean ū·t+1 =

N−1
∑N
i=1 ui,t+1 whose variance is σ

2
u/N, so cross section sample size scaling

is already implicitly incorporated in σ̂2u
N

(
W̃ ′W̃

)−1
and the estimated variance

matrix of n
√
N
(
θ̂ − θ

)
is then σ̂2un

2
(
W̃ ′W̃

)−1
 σ2ξH⊥

(∫ 1
0
Ṽ⊥r̃Ṽ

′
⊥r̃

)−1
H ′⊥,

as required.
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Proceeding in a related way we can estimate the conditional variance of the
estimate T̂CS of the TCS parameter and, using this, a 100 (1− α) % confidence
interval for TCS. Using the same notation as in (64) and the definitions

g′a = g′a (θ1, θ3) = ln (2)

(
θ3

(1− θ1)2
,

1

1− θ1

)
,

Ea =

[
1 0 0
0 0 1

]
,

so that g′aEa =
(δ′wδw)

1/2

δc1(1−θ1) h
′, as in (62), we obtain

n3g′aEa

(
W̃ ′W̃

)−1
E′aga = g′aEaH

(
H ′W̃ ′W̃H

)−1
H ′E′aga

=
δ′wδw

δ2c1 (1− θ1)2
n3 [1, 0]

[
a−111.2 −a−111.2a12A−122

−A−122.1a21a−111 A−122.1

] [
1
0

]
{1 + op (1)}

=
δ′wδw

δ2c1 (1− θ1)2
(a11.2
n3

)−1
{1 + op (1)}

 δ′wδw

δ2c1 (1− θ1)2
(
a2
∫ 1

0

r̃2
Ṽ⊥

)−1
=

1

δ2c1 (1− θ1)2
(∫ 1

0

r̃2
Ṽ⊥

)−1
,

since

a11.2
n3

=
a2
∑n
t=1 t̃

2

n3
−
(
a
∑n
t=1 t̃Ṽ

′
tH⊥

n5/2

)(∑n
t=1H

′
⊥ṼtṼ

′
tH⊥

n2

)−1(
a
∑n
t=1H

′
⊥Ṽtt̃

n5/2

)
 a2

∫ 1

0

r̃2
Ṽ⊥
,

and a2 = δ′wδw. Thus,

n3σ̂2ug
′
aEa

(
W̃ ′W̃

)−1
E′aga  

σ2u

δ2c1 (1− θ1)2
(∫ 1

0

r̃2
Ṽ⊥

)−1
.

Next, since θ̂ and σ̂2u are consistent for θ and σ
2
u, we have

ĝ′a = g′a

(
θ̂1, θ̂3

)
= ln (2)

 θ̂3(
1− θ̂1

)2 , 1

1− θ̂1

→p ga (θ1, θ2) ,

and

n3σ̂2uĝ
′
aEa

(
W̃ ′W̃

)−1
E′aĝa  

σ2u

δ2c1 (1− θ1)2
(∫ 1

0

r̃2
Ṽ⊥

)−1
,

giving a consistent estimate of the asymptotic conditional covariance matrix (63)

of the limit distribution of n3/2
√
N
(
T̂CS − TCS

)
. It follows that a 100 (1− α) %

confidence interval for TCS may be constructed as

T̂CS ± zα
{
σ̂2uĝ

′
aEa

(
W̃ ′W̃

)−1
E′aĝa

}1/2
.
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