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Abstract

Indices of �nancial returns typically display sample kurtosis that declines to-
wards the Gaussian value 3 as the sampling interval increases. This paper uses
stochastic unit root (STUR) and continuous time analysis to explain the phe-
nomenon. Limit theory for the sample kurtosis reveals that STUR speci�cations
provide two sources of excess kurtosis, both of which decline with the sampling in-
terval. Limiting kurtosis is shown to be random and is a functional of the limiting
price process. Using a continuous time version of the model under no-drift, local
drift, and drift inclusions, we suggest a new continuous time kurtosis measure for
�nancial returns that assists in reconciling these models with the empirical kurto-
sis characteristics of returns. Simulations are reported and applications to several
�nancial indices demonstrate the usefulness of this approach.

Key words and phrases: Autoregression; Di¤usion; Kurtosis; Stochastic unit root;
Time-varying coe¢ cients.

JEL Classi�cation: C22

1 Introduction

Asset pricing models with roots in the vicinity of unity that correspond to near mar-
tingale generating mechanisms have attracted considerable attention in �nancial theory,
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predictive regression analyses, and empirical applications. Given the well-established
stylized features of heavy-tailedness, high peakedness, and higher moment conditional
dependence that are displayed by asset returns, plausible models also need to generate
non-Gaussian behavior and accommodate conditional heterogeneity. One class of model
that is capable of producing these characteristics while retaing near martingale behav-
ior is a nonlinear time dependent autoregression with a root that is local to unity or
stochastically local to unity.
A secondary stylized fact of �nancial asset returns is that their sample kurtosis

typically declines towards 3 as the sampling interval increases. This paper explores
whether variants of stochastic unit root (STUR) models are capable of mimicking this
additional characteristic. We use discrete time STUR models together with continuous
time analogues of these models and of the usual kurtosis measures to assist in explaining
this additional stylized fact of empirical asset return data.
To �x ideas, we consider the following local stochastic unit root (LSTUR) model

(Lieberman and Phillips, 2019, henceforth LP)

Y1 = �+ "1;

Yt = �+ �ntYt�1 + "t; t = 2; :::; n; (1)

�nt = exp

�
c

n
+ a

utp
n

�
;

where a and c are localizing coe¢ cient parameters and � = �n is a drift parameter that
may be zero, non-zero, or local to zero. Conditions on the STUR driver variable ut and
the error "t are given later in Assumption 1. For brevity, we write the time varying
autoregressive coe¢ cient as �nt = �t in what follows. This autoregressive coe¢ cient is a
stochastically time varying parameter that �uctuates with ut and allows for additional
departures from unity by means of a conventional local-to-unit-root (LUR) speci�cation
involving the �xed localizing coe¢ cient c. The model is therefore �hybrid�in the sense
that �t includes both a deterministic localizing component and a stochastic component,
thus bringing together into one model two main streams of literature on autoregressions
with near unit roots, viz., LUR and STUR formulations. For the background literature
on these speci�cations see, among others, Chan and Wei (1987), Phillips (1987) and
Bykhovskaya and Phillips (2018, 2019) for the former stream, and Leybourne, McCabe
and Mills (1996), Leybourne, McCabe and Tremayne (1996), Granger and Swanson
(1997), McCabe and Smith, (1998), Yoon (2006), Lieberman (2012) and Lieberman
and Phillips (2014, 2017, 2018) for the latter. The hybrid model that combines these
elements was applied by LP in explaining the spread between an index of investment
grade rated corporate debt and the spot Treasury curve as a function of the return on
the S&P500 index.
Limit theory for the

p
n-normalized process as well as for the nonlinear least squares

estimators (NLLS) of a, c and of �t were established by LP in the � = 0 case and
were shown to be functionals of a nonlinear di¤usion process that satis�es a nonlinear
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stochastic di¤erential equation corresponding to a structural model of option pricing that
has been considered in the continuous time mathematical �nance literature (Föllmer and
Schweizer, 1993) and in some recent continuous time econometric work (Tao et al. 2018).
The results were shown to generalize the theory already known in the special cases of
LUR (Phillips 1987) and STUR (Lieberman and Phillips 2017).
In this paper we show that the sample kurtosis of temporally aggregated returns

based on the LSTUR model converges to a random variable which exceeds the Gaussian
value 3 and decreases according to the level of aggregation. This result is consistent with
much �nancial return data and provides a model-based explanation for the empirical
phenomena. To assist in the analysis, we introduce new measures of kurtosis that are
based on continuous time versions of the model and investigate their limiting forms for
various con�gurations of base model, allowing for zero drift, local drift and dominant
drift cases. A further contribution is the asymptotic analysis of a �tted misspeci�ed
�xed-coe¢ cient autoregression and its associated kurtosis measures.
The plan for the rest of the paper is as follows. Notation and assumptions are given

in Section 2. Limit theory for the sample kurtosis of temporally aggregated return data
for the � = 0 case is established in Section 3 and for � 6= 0 in Section 4. In Section 5
we analyze the e¤ects of misspeci�cation of an LSTUR model by a simple AR(1) model
and in Section 6 we introduce measures of kurtosis based on continuous time versions of
the model. Simulations are provided to explore numerical support for the limit theory
and the theoretical results on kurtosis in Section 7. An empirical application is given in
Section 8. Section 9 concludes and proofs are placed in the Appendix.

2 Notation and Assumptions

The following assumption is used in developing asymptotic theory of the LSTUR model
and estimated kurtosis coe¢ cients for temporally aggregated data. The results that
follow no doubt hold with some modi�cation under far weaker conditions, particularly
concerning temporal dependence as implied by the limit theory in Lieberman and Phillips
(2018 & 2019). Some generality is sacri�ced in what follows in order to deliver simpler
formulae without compromising the validity of the main �ndings of the paper.

Assumption 1. (i) ut �iid
�
0;Eu2t = �2u;Eu4t = �4;u

�
and has continuous density

p (u) with asymptotic Pareto tails of the form p (u) � A(juj)
juj�+1 , for A (juj) = O (1) as

juj ! 1 and some � > 4; (ii) "t �iid
�
0;E"2t = �2";E"

4
t = �4;"

�
; (iii) both ut and "t are

symmetrically distributed about zero, and ut is independent of "s for all t; s:

We remark that the assumption on the tail behavior of ut, which ensures the �niteness
of the 4th order moment, covers many distributions, including the Gaussian, the t-
distribution with degrees of freedom exceeding 4, and the asymmetric t distribution.
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The partial sums of wt = (ut; "t)
0 satisfy the invariance principle

n�1=2
bn�cX
t=1

wt ) B (�) � BM(�) ; � = diag
�
�2u; �

2
"

�
; (2)

where b�c is the �oor function and B = (Bu; B")0 is vector Brownian motion. By Lemma
1 of LP, when � = 0,

Yt=bnrcp
n

) Ga;c (r) := e
rc+aBu(r)

Z r

0

e�pc�aBu(p)dB" (p) : (3)

It is convenient to set G� (r) = ��1" Ga;c (r) = e
rc+aBu(r)

R r
0
e�pc�aBu(p)dW (p) where de-

pendence of G� on (a; c) is suppressed for notational simplicity and where W (r) is
standard Brownian motion.
Sample statistics are often calculated using temporally aggregated data, such as

Y m1 = Ym; Y
m
2 = Y2m; :::; Y

m
n=m = Yn;

where m is an aggregation parameter. For example, m = 5 for weekly �nancial data
when the original observations are daily. For simplicity in what follows and with no loss
of generality we assume that n=m is integer valued. The properties of the model and
the limit theory depend on whether or not � = 0. These cases are therefore analyzed
separately.

3 The Case � = 0

If Yt is a price process, then the return series of temporally aggregated data created from
fY mt g

n=m
t=1 , is given by

�m
t = Y

m
t � Y mt�1

= (Ytm � Ytm�1) + (Ytm�1 � Ytm�2) + � � �+
�
Ytm�(m�1) � Ytm�m

�
= ((�tm � 1)Ytm�1 + "tm) +

��
�tm�1 � 1

�
Ytm�2 + "tm�1

�
+ � � �+

��
�tm�(m�1) � 1

�
Ytm�m + "tm�(m�1)

�
=

0X
s=�(m�1)

��
�tm+s � 1

�
Ytm+s�1 + "tm+s

�
; t = 2; :::; n=m: (4)

Let b = (a�u)
2, denote the standardized fourth moments of u and " by �4;u = �4;u=�

4
u

and �4;" = �4;"=�
4
", respectively, and let ��

m = (m=n)
Pn=m

t=2 �
m
t . The limit distribution

of the sample kurtosis of the m-aggregated data is given in the following result.
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Theorem 1 Under Assumption 1, for the model (1) with � = 0; as n ! 1 with m
�xed


mn =
m
n

Pn=m
t=2 (�

m
t )

4�
m
n

Pn=m
t=2 (�

m
t )

2
�2 ) 
m

:= 3 +

3b2
�R 1

0
G�4 (r) dr �

�R 1
0
G�2 (r) dr

�2�
�
1 + b

R 1
0
G�2 (r) dr

�2 +
1

m

�
�4;" � 3

�
+
�
�4;u � 3

�
b2
R 1
0
G�4 (r) dr�

1 + b
R 1
0
G�2 (r) dr

�2 :

(5)

Evidently from the limit expression (5), 
m falls as m increases, matching the ob-
served behavior in the kurtosis measures of much �nancial data. When b = 0 (i.e., either
a = 0 or �u = 0) the limit form 
m reduces to


m = 3 +
1

m

�
�4;" � 3

�
; (6)

which is the result given by Lau and Wingender (1989, eq�n (10)) in the iid case. Oth-
erwise, the limit kurtosis (5) is a random variable. If "t is Gaussian


mn ) 3 +

3b2
�R 1

0
G�4 (r) dr �

�R 1
0
G�2 (r) dr

�2�
�
1 + b

R 1
0
G�2 (r) dr

�2 +

�
�4;u � 3

�
b2
R 1
0
G�4 (r) dr

m
�
1 + b

R 1
0
G�2 (r) dr

�2 ;
which still depends on m. Thus, the LSTUR model has the property that the sample
kurtosis declines with m whether the error process is Gaussian or otherwise.

Also, irrespective of whether �4;" � 3 and since
R 1
0
G�4 (r) dr >

�R 1
0
G�2 (r) dr

�2
a:s:; which follows as in Phillips and Hansen (1990, lemmas A2 and A3), the model is
consistent with 
m > 3 whenever b 6= 0; which is in line with observed �nancial index
data. In other words, higher kurtosis in the observed process in the LSTUR model is
not dependent on Gaussian errors and kurtosis declines as temporal aggregation rises. If
the data generating mechanism (1) is STUR rather than LSTUR (i.e., c = 0), the result
(5) changes only by the form of the limiting G process, with the corresponding limiting
STUR process Ga (r) replacing that of the LSTUR process Ga;c (r) : Thus, these �ndings
apply to both STUR and LSTUR generating mechanisms.
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4 The Case � 6= 0
Under Assumption 1 when � 6= 0, simple derivations following those for the driftless
case show that

Yt
n
) Ha;c (r) := �e

rc+aBu(r)

Z r

0

e�pc�aBu(p)dp: (7)

Aggregating in this case leads to

�m
t = Y

m
t � Y mt�1

= (Ytm � Ytm�1) + (Ytm�1 � Ytm�2) + � � �+
�
Ytm�(m�1) � Ytm�m

�
= (�+ (�tm � 1)Ytm�1 + "tm) +

�
�+

�
�tm�1 � 1

�
Ytm�2 + "tm�1

�
+ � � �+

�
�+

�
�tm�(m�1) � 1

�
Ytm�m + "tm�(m�1)

�
= m�+

0X
s=�(m�1)

��
�tm+s � 1

�
Ytm+s�1 + "tm+s

�
; (8)

for t = 2; :::; n=m. Let H (r) = �H� (r) := Ha;c (r) ; where for brevity we omit the
parameter dependencies in Ha;c (r).

Theorem 2 Under Assumption 1 for the model (1) with � 6= 0;


m;�n =
m
n

Pn=m
t=2

�
�m
t � ��m

�4�
m
n

Pn=m
t=2

�
�m
t � ��m

�2�2 ) 
m;� :=

�
1
m

�
�4;u � 3

�
+ 3
� R 1

0
H�4 (r) dr�R 1

0
H�2 (r) dr

�2 : (9)

As n!1 followed by a! 0 and c! 0 (so that lower order terms are eliminated),
the limit (9) becomes�

1
m

�
�4;u � 3

�
+ 3
� R 1

0
r4dr�R 1

0
r2dr

�2 =
9
�
1
m

�
�4;u � 3

�
+ 3
�

5
;

which equals 5:4 when the STUR variable ut is Gaussian.

5 E¤ects of Misspeci�cation

The use of a simple �tted AR(1) regression involves misspecifying the LSTUR model as
a �xed coe¢ cient autoregression. As we have seen in Sections 3 and 4, the local and
stochastically local to unity speci�cation leads to analytic formulae for the excess kurtosis
and in Section 8 these formulae will be shown to match closely direct computations of
kurtosis in the observed data. Similar close correspondence will be found in the case
of �tted values from a simple AR (1) regression. The explanation for this phenomenon
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is that the misspeci�cation in the �tted autoregression involves an error of Op (n�1)
and this error is su¢ ciently small to ensure the �tted AR kurtosis is asymptotically
equivalent to that of the data. Importantly, however, the AR(1) model does not explain
the source of the excess kurtosis and only provides an analytic asymptotic formula for
the kurtosis that is based on the underlying LSTUR model.
We denote the least squares estimators of � in a �tted AR(1) model under � = 0 and

� 6= 0 by �̂ =
Pn

t=2 YtYt�1=
Pn

t=2 Y
2
t�1 and �̂

�
=
Pn

t=2
~Yt ~Yt�1=

Pn
t=2

~Y 2t�1, respectively,
where ~Yt := Yt � �Y and �Y := n�1

Pn
t=1 Yt. By �̂ = �Y � �̂� �Y�1 we denote the least

squares estimator of � in the �tted AR(1) model under � 6= 0, where �Y�1 = n�1
Pn�1

t=1 Yt.
Finally, we let Ŷt = �̂Yt�1 in the case � = 0, and Ŷ

�
t = �̂ + �̂

�
Yt�1 in the case � 6= 0,

with the associated di¤erences �̂t = Ŷt � Ŷt�1, �̂m
t = Ŷ

m
t � Ŷ mt�1, �̂

�
t = Ŷ

�
t � Ŷ �t�1 and

�̂m;�
t = Ŷ m;�t � Ŷ m;�t�1 .

Theorem 3 Under Assumption 1, for the model (1), �tted data from a misspeci�ed
AR(1) model have kurtosis coe¢ cients and limiting kurtosis as follows:
(i) When � = 0, the sample kurtosis which is based on a �tted AR(1) model that does
not include an intercept is


mAR;n :=

m
n

Pn=m
t=3

�
�̂m
t

�4
�
m
n

Pn=m
t=3

�
�̂m
t

�2�2 ) 
m;

where 
m is given in (5).
(ii) When � 6= 0, the sample kurtosis which is based on a �tted AR(1) model that includes
an intercept is


m;�AR;n :=

m
n

Pn=m
t=3

�
�̂m;�
t

�4
�
m
n

Pn=m
t=3

�
�̂m;�
t

�2�2 ) 
m;�;

where 
m;� is given by (9).
(iii)When � 6= 0, the least squares estimator of � in a �tted AR(1) satis�es

�̂) �+ a

Z 1

0

G (s) dBu (s)�
b

2

Z 1

0

G (s) ds:

These results show that the constant coe¢ cient AR �tted kurtosis simply reproduces
the empirical sample kurtosis in models with and without drift, provided an intercept
is �tted in modeling the data in the case with drift. In the latter case, the result holds
in spite of the fact that � is inconsistently estimated, as shown in part (iii) of Theorem
3. Part (iii) of the theorem will be shown to be particularly useful in Section below
becauses it anticipates an important practical distinction between the empirical �tting
of an AR(1) model and an LSTUR model.
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6 Continuous Time Measures of Kurtosis

6.1 The case of zero drift

When � = 0, an instantaneous kurtosis measure for the process increments dG(r) at r
can be obtained using the stochastic di¤erential equation representation

dG(r) = aG (r) dBu (r) + dB" (r) +

�
c+

b

2

�
G (r) dr: (10)

As indicated in the result that follows, we may de�ne instantaneous kurtosis as in (11)
in terms of the conditional moments of the increment process dG(r) in (10).

Theorem 4 For the process (10),

�b;c (r) : =
E
�
E
�
(dG (r))4 jFr

���
E
�
E
�
(dG (r))2 jFr

��	2 (11)

= 3

8<:1 + b2
h
E
�
G (r)4

�
�
�
E
�
G (r)2

��2i
b2
�
E
�
G (r)2

��2
+ �4" + 2b�

2
"E
�
G (r)2

�
9=;+ o (1) : (12)

The second term in braces in (12) shows the excess kurtosis in the process increments
arising from the non-Gaussianity of G(r). As b ! 0 evidently �b;c ! 3; as expected
since G (r)! Jc (r) =

R r
0
e(r�p)cdB" (p) which is Gaussian in this case. But when c! 0;

G (r) ! Ga (r) = eaBu(r)
R r
0
e�a

0Bu(p)dB" (p), which is non-Gaussian and then �b;0 > 3.
For large b; after some calculation, we have

�b;0 (r) =
3E
�
G (r)4

��
E
�
G (r)2

��2 + o (1) � 3

2
e4br;

and the kurtosis of the process increments dG (r) grows exponentially with b irrespective
of the �xed value of c.

6.2 Local to zero drift

We next consider the case in which the limit of the standardized discrete time model
Yt=
p
n has a discrete time drift comparable in magnitude to the stochastic term,which

occurs when the discrete model has drift local to zero of the form �=�/
p
n. The sto-

chastic di¤erential equation for G(r) in this case is

dG(r) = aG (r) dBu (r) + dB" (r) +

�
�+

�
c+

b

2

�
G (r)

�
dr; (13)
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whose solution is given by Föllmer and Schweizer (1993; theorem 3.5). With initial
condition G(0) = 0; this solution has the following form

G(r) = �erc+aBu(r)
Z r

0

e�pc�aBu(p)dp+ erc+aBu(r)
Z r

0

e�pc�aBu(p)dB" (p) : (14)

De�ne X = c+ b=2 and D (r) = bG2 (r) + �2".

Theorem 5 For the process (13),

�b;c;� =
E
�
E
�
(dG (r)� E (dG(r)jFr))4 jFr

���
E
�
E
�
(dG (r)� E (dG(r)jFr))2 jFr

��	2
= 3 +

3b2V ar (G2 (r)) + 6E
�
fb fG2 (r)� E (G2 (r))ggX2 fG (r)� E (G (r))g2

�
(dr)

fE (D (r))g2 + 2E (D (r))X2V ar (G (r)) (dr)
+O

�
(dr)2

�
:

To �rst order it again follows that �b;c;� > 3 provided b 6= 0; and as b ! 0 evidently
�b;c;a ! 3:

6.3 Dominating drift term

When the drift is �xed rather than local to zero in the discrete time model (1) the
resulting trend in the time series dominates asymptotically. In this case the limit process
corresponding to Yt=bnrc=n is

G(r) = �erc+aBu(r)
Z r

0

e�pc�aBu(p)dp;

in place of (14). Then, E (dG(r)) = f�+XEG (r)g dr =
�
�+

�
eXr � 1

�	
dr,

dG(r) = cG(r)dr + �erc+aBu(r)
Z r

0

e�pc�aBu(p)dpadBu (r)

+
1

2
�erc+aBu(r)

Z r

0

e�pc�aBu(p)dpa2�2udr + �dr

= fXG (r) + �g dr + aG(r)dBu (r) ;

and E (dG(r)jFr) = fXG (r) + �g dr; so that dG(r)� E (dG(r)jFr) = aG(r)dBu (r) : It
follows that the instantaneous kurtosis at r is given by

�b;c;� (r) =
E
�
E
�
(dG (r)� E (dG(r)jFr))4 jFr

���
E
�
E
�
(dG (r)� E (dG(r)jFr))2 jFr

��	2
=

E
�
a4G(r)4E

�
(dBu (r))

4 jFr
���

E
�
a2G(r)2E

�
dBu (r)

2 jFr
��	2 = 3 E [G(r)4]

fE [G(r)2]g2
:
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Observe that when X = 0 and a! 0; G(r)! �r is deterministic and �b;c;� ! 3:

By contrast, we may consider the kurtosis of the averaged relative increments dG(r)�E(dG(r)jFr)p
dr

over an interval such as [0; q] ; de�ned as

��b;c;� (q) =

E
�
1
q

R q
0
E
��

dG(r)�E(dG(r)jFr)p
dr

�4
jFr
�
dr

�
�
E
�
1
q

R q
0
E
��

dG(r)�E(dG(r)jFr)p
dr

�2
jFr
�
dr

��2
= 3

E
�
1
q

R q
0
a4�4uG(r)

4dr
�

n
E
�
1
q

R q
0
a2�2uG(r)

2dr
�o2 = 3 1

q

R q
0
E [G(r)4] dr�

1
q

R q
0
E [G(r)2] dr

�2
In this case when X = 0 and a! 0; G(r)! �r and

��b;c;� (q)!
�4 1

q

R q
0
r4dr

�4
�
1
q

R q
0
r2dr

�2 = 3 1
5
�4q4�
1
3
q2
�2 = 5:4;

which can also be obtained by a direct calculation from the discrete time model in this
special case.

7 Simulations

The purpose of this section is to corroborate some of the analytical results. To this end
we have simulated a driftless STUR model with parameter settings a = 0:7, ut

iid� t (6)

(so that �2u = 1:5 and �4;u = 6), and "t
iid� N (0; 1), as well as a drifting STUR model

with parameter � = 2:5. Note that the t-distribution with degrees of freedom exceeding
4 and the N (0; 1) distribution, both used for ut in this section and in the empirical
application section, are covered by Assumption 1. In addition, an LSTUR model with
c = �b was simulated with the same settings for both drift and driftless cases.
For each model we compared the mean and standard deviation of the sample kurtosis

with those of the asymptotic formulae given in (5) and (9), corresponding to the zero
mean and drift cases. We also constructed PP-plots of the �nite sample distributions of
the sample kurtosis against the limit distributions in each case. The simulation design
comprised temporal average settings with m = 1; 3; 5, sample sizes n = 9; 000, 21; 000,
48; 000, 99; 000, 240; 000, 500 integral points and 5; 000 replications. The results are
summarized in Tables 1-4 and Figures 1-4.1

Inspection of the �gures reveals that the PP-plots move closer to the 45 degree line
as the sample size increases, irrespective of whether the generating mechanism contains

1For brevity only four �gures are displayed. Other cases deliver very similar conclusions.
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a drift or otherwise. This movement is also clear in the tables. When the model does
not contain a drift (and less so in the case where a drift is present), there is a marked
shift near the origination point in the PP-plots which re�ects the fact that the �nite
sample distribution of the sample kurtosis has a non-zero probability of being less than
3, whereas for the asymptotic distribution this probability is zero. The shift at zero
becomes smaller as n increases, but even with 240; 000 observations the discontinuity
does not entirely vanish. Overall, the simulations corroborate the analytic �ndings on
the kurtosis patterns associated with these non-Gaussian models.

8 An Empirical Application

This section explores how well the kurtosis theory developed above is supported by
observed return data on various indices. In particular, we demonstrate that the sam-
ple kurtosis of the observed data match those which are based on the �tted LSTUR-
estimates and decline with the frequency of the data, just as in direct calculations from
the data. Using Theorem 3(iii), through the drift parameter estimates, evidence will be
given in favour of the LSTUR speci�cation and against the traditional �xed coe¢ cient
autoregression. The data employed in these comparisons is now brie�y described.

8.1 Data

The data for the empirical application comprises Exchange Traded Fund (ETF) and
Exchange Traded Note (ETN) data obtained from the following sources. ETF closing
prices data were retrieved from Yahoo Finance, covering the period from January 2010
to December 2017, giving a total of 2013, 417 and 95 observations for the daily, weekly
and monthly frequencies, respectively. The US equity ETF data includes SPDR S&P
500 ETF (SPY) , SPDR S&P 600 Small Cap ETF (SLY) and SPDR S&P MidCap 400
ETF (MDY). IShares MSCI Emerging Markets ETF (EEM) and iShares Global 100
ETF (IOO) were also used, the �rst seeking to track the investment results of the SCI
Emerging Markets and the second - the S&P Global 100 indices.
The bond ETF data includes iShares Core US Aggregate Bond ETF (AGG), iShares

1-3 Year Treasury Bond ETF (SHY), iShares iBoxx investment grade corporate bond
ETF (LQD) and SPDR Bloomberg Barclays high yield bond ETF (JNK) closing price
series.
In addition, we have used the ETFs and ETNs replicating the prices of commodities.

These include SPDR Gold Shares (GLD), iShares Silver Trust (SLV), iPath S&P GSCI
crude oil ETN (OIL) and Rogers International Agriculture commodity total return index
ETN (RJA).
Finally, we have also used the Currency Shares Euro ETF (FXE), which tracks

changes in value of the Euro relative to the US dollar.
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8.2 Results

LSTUR and simple AR(1) models with and without drift were estimated for the empirical
data according to whether they exhibited trend. The LSTURmodel was estimated under
the restriction c + b = 0. For simplicity, for each realization of the LSTUR variates, ut
was generated as ut

iid� N (0; 1) with 2000 replications. Average estimates over the
replications are reported in Table 5 for a model with �tted drift and in Table 6 for a
model without drift.
For the model �tted with a drift, the kurtosis estimates from the observed return

data, from the returns based on the �tted LSTUR-estimates, and from the returns based
on a �tted AR(1) model, are all very close to each other and all decline with the frequency
of the data. The kurtosis estimates for the model �tted without a drift exhibit a similar
pattern, decreasing as the frequency increases, as expected.
The �ndings also corroborate Theorem 3, which shows that the kurtosis estimate

based on a �tted AR(1) model is �rst order equivalent to that based on an LSTUR
model. Importantly, the LSTUR-based drift parameter estimates are very close to the
actual return means in all cases, whereas those based on the AR(1) model are evidently
biased upwards, again corresponding to the asymptotic results. Indeed, this feature of
the empirical results matches the �nding in part (iii) of Theorem 3, which shows that
when LSTUR is the generating mechanism and the �tted model is misspeci�ed as an
AR(1), the drift parameter estimate from the misspeci�ed autoregression is inconsistent,
which is further evidence of the usefulness the local stochastic unit root speci�cation over
traditional �xed coe¢ cient autoregression.

9 Conclusions

Asset price data are typically well described as martingales and their returns as mar-
tingale di¤erences, thereby capturing the prominent feature of near-unpredictability. A
secondary feature of great practical importance is their characteristic peaked and heavy-
tailed distribution, with high kurtosis that steadily declines towards the Gaussian value
of 3 with increasing temporal aggregation of the returns. The present results reveal
that all of these features are captured by stochastic unit root models. The nonlinear
stochastic nature of these models induces non-Gaussian behavior even when the �rst
two moments correspond closely to a simple process like a Gaussian random walk. Most
notably, the asymptotic behavior of sample kurtosis measures from these variants of
STUR models and their continuous time analogues and associated kurtosis measures
all mimick the de�ning characteristics of observed �nancial returns. Several empirical
applications to a variety of �nancial indices con�rm these useful capabilities.
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Table 1. STUR with a drift

n �1 
1 �3 
3 �5 
5

9000
Mean

Std. dev.
12:40
7:34

12:84
3:58

8:37
3:42

8:56
2:39

7:57
3:03

7:64
2:09

21000
Mean

Std. dev.
12:73
10:62

12:93
3:67

8:50
4:66

8:62
2:45

7:61
2:62

7:71
2:18

48000
Mean

Std. dev.
12:64
7:87

12:85
3:50

8:44
3:20

8:57
2:33

7:66
2:39

7:45
2:20

99000
Mean

Std. dev.
12:79
6:42

12:84
3:70

8:53
3:05

8:56
2:46

7:57
2:28

7:66
2:14

240000
Mean

Std. dev.
12:74
4:58

12:81
3:61

8:51
2:58

8:54
2:41

7:72
2:20

7:72
2:17

Notes: calculated with 5000 replications and 500 integral points, ut
iid� t(6);

"t
iid� N(0; 1); � = 2:5, a = 0:7:

Table 2. STUR without a drift

n �1 
1 �3 
3 �5 
5

9000
Mean

Std. dev.
4:15
2:47

4:18
1:93

3:66
1:31

3:67
1:14

3:57
1:07

3:58
1:01

21000
Mean

Std. dev.
4:2
2:36

4:23
1:97

3:68
1:2

3:7
1:16

3:56
1:05

3:6
1:06

48000
Mean

Std. dev.
4:18
2:13

4:21
2:01

3:68
1:17

3:69
1:19

3:57
0:97

3:59
1

99000
Mean

Std. dev.
4:2
2:34

4:21
2:01

3:68
1:26

3:69
1:19

3:58
0:95

3:58
0:99

240000
Mean

Std. dev.
4:18
2:14

4:22
1:94

3:68
1:21

3:7
1:15

4:18
3:57

4:19
3:58

Notes: calculated with 5000 replications and 500 integral points, ut
iid� t(6);

"t
iid� N(0; 1); a = 0:7:
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Table 3. LSTUR with a drift

n �1 
1 �3 
3 �5 
5

9000
Mean

Std. dev.
11:55
12:60

11:58
2:93

7:68
4:67

7:72
1:95

6:87
3:29

6:96
1:74

21000
Mean

Std. dev.
11:34
7:21

11:61
2:96

7:62
2:95

7:74
1:97

6:80
2:02

6:96
1:83

48000
Mean

Std. dev.
11:48
5:89

11:62
2:97

7:69
3:13

7:75
1:98

6:92
2:03

6:98
1:79

99000
Mean

Std. dev.
11:52
5:15

11:52
2:84

7:70
2:47

7:68
1:89

6:98
2:92

6:97
1:78

240000
Mean

Std. dev.
11:52
4:32

11:63
2:99

7:69
2:26

7:75
1:99

6:91
1:77

6:92
1:75

Notes: calculated with 5000 replications and 500 integral points, ut
iid� t(6);

"t
iid� N(0; 1); � = 2:5, a = 0:7, c = �b:

Table 4. LSTUR without a drift

n �1 
1 �3 
3 �5 
5

9000
Mean

Std. dev.
3:7
1:62

3:69
1:179

3:39
0:84

3:39
0:68

3:32
0:68

3:34
0:62

21000
Mean

Std. dev.
3:71
1:92

3:71
1:19

3:39
0:88

3:4
0:7

3:39
0:74

3:38
0:69

48000
Mean

Std. dev.
3:71
2:08

3:71
1:26

3:4
0:81

3:41
0:74

3:33
0:61

3:32
0:57

99000
Mean

Std. dev.
3:7
1:3

3:71
1:29

3:4
0:75

3:41
0:76

3:35
0:69

3:35
0:63

240000
Mean

Std. dev.
3:69
1:34

3:69
1:18

3:39
0:74

3:39
0:69

3:34
0:64

3:34
0:63

Notes: calculated with 5000 replications and 500 integral points, ut
iid� t(6);

"t
iid� N(0; 1); a = 0:7; c = �b:
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Table 5. Estimates for the model with a drift

Ticker Frequency
_

�y �̂n;LSTUR �̂n;OLS �̂n;OLS ân;LSTUR ��y ��ŷ;LSTUR ��ŷ;OLS
SPY daily 0:0004 0:0004 0:0031 0:9995 �0:0029 7:622 7:594 7:620
SPY weekly 0:0021 0:0021 0:0124 0:9980 0:0023 5:051 5:035 5:042
SPY monthly 0:0096 0:0095 0:0560 0:9910 0:0008 3:478 3:442 3:442

SLY daily 0:0005 0:0005 0:0063 0:9987 0:0019 6:574 6:569 6:573
SLY weekly 0:0022 0:0022 0:0280 0:9940 0:0029 4:914 4:899 4:904
SLY monthly 0:0101 0:0096 0:1230 0:9750 0:0045 3:330 3:329 3:333

MDY daily 0:0005 0:0005 0:006 0:9990 �0:0034 7:916 7:886 7:915
MDY weekly 0:0023 0:0023 0:0250 0:9960 �0:0030 5:772 5:744 5:760
MDY monthly 0:0105 0:0100 0:1080 0:9820 �0:0050 3:640 3:588 3:612

IOO daily 0:0002 0:0002 0:0093 0:998 �0:0015 7:822 7:815 7:818
IOO weekly 0:0010 0:0010 0:0360 0:9920 �0:0120 5:028 4:904 5:017
IOO monthly 0:0051 0:0049 0:1440 0:967 �0:0043 3:369 3:331 3:336

AGG daily 0:0000 0:0000 0:0390 0:9920 0:0002 4:805 4:803 4:803
AGG weekly 0:0001 0:0001 0:1780 0:9620 0:0005 4:341 4:335 4:336
AGG monthly 0:0005 0:0005 0:5900 0:8740 �0:0027 3:656 3:573 3:618

LQD daily 0:0001 0:0001 0:0230 0:9950 0:0017 5:006 4:982 5:004
LQD weekly 0:0004 0:0004 0:1130 0:9760 �0:0001 4:882 4:880 4:880
LQD monthly 0:0015 0:0012 0:4410 0:9080 �0:0038 3:218 3:184 3:201

OIL daily �0:0007 �0:0007 0:0003 0:9990 0:0110 7:504 7:480 7:500
OIL weekly �0:0033 �0:0033 0:0004 0:9990 0:0027 3:923 3:925 3:926
OIL monthly �0:0134 �0:0130 0:0002 0:9950 �0:0360 3:368 3:327 3:360
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Table 5 Continued

Ticker Frequency
_

�y �̂n;LSTUR �̂n;OLS �̂n;OLS ân;LSTUR ��y ��ŷ;LSTUR ��ŷ;OLS
SLV daily 0:0000 �0:0001 0:0054 0:9980 0:0120 9:711 9:656 9:707
SLV weekly �0:0001 0:0002 0:0270 0:9910 0:0370 13:391 12:720 13:397
SLV monthly 0:0001 0:0000 0:1340 0:9960 0:0036 4:040 4:003 4:004

RJA daily �0:0001 �0:0001 0:0016 0:9990 �0:0028 6:700 6:690 6:700
RJA weekly �0:0007 �0:0007 0:007 0:9960 �0:0009 4:895 4:887 4:887
RJA monthly �0:002 �0:002 0:051 0:9740 �0:0024 4:452 4:407 4:407

FXE daily �0:0001 �0:0001 0:0100 0:9980 �0:0017 4:483 4:477 4:483
FXE weekly �0:0005 �0:0005 0:0500 0:9900 �0:0013 3:451 3:452 3:453
FXE monthly �0:0019 �0:0018 0:2010 0:9580 0:0012 3:617 3:581 3:582
Notes: ut is simulated as IID N(0; 1); �̂n;LSTUR and ân;LSTUR are the means of the
MLEs of LSTUR in 2000 replications; �̂n;OLS and �̂n;OLS are the OLS intercept and
slope estimates; ��ŷ;LSTUR is the mean kurtosis of �ŷLSTUR in 2000 replications;

��ŷ;OLS is the kurtosis of �ŷOLS:
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Table 6. Estimates for the model without a drift

Ticker Frequency
_

�y ân;LSTUR ��y ��ŷ;LSTUR ��ŷ;OLS
EEM daily 0:0001 �0:0020 6:232 6:227 6:230
EEM weekly 0:0003 �0:0110 4:668 4:628 4:660
EEM monthly 0:0022 �0:0140 4:552 4:556 4:513

SHY daily 0:0000 �0:0010 5:149 5:144 5:147
SHY weekly 0:0000 0:0000 4:350 4:344 4:345
SHY monthly 0:0000 0:0005 3:685 3:680 3:713

JNK daily 0:0000 0:0006 11:632 11:624 11:627
JNK weekly �0:0001 0:0030 6:770 6:729 6:754
JNK monthly �0:0006 0:0050 4:775 4:667 4:735

GLD daily 0:0001 �0:0004 8:483 8:481 8:481
GLD weekly 0:0003 0:0030 4:040 4:040 4:042
GLD monthly 0:0016 �0:0030 2:817 2:795 2:795

Notes: ut is simulated as IID N(0; 1); ân;LSTUR is the mean of the MLE of a in LSTUR
in 2000 replications; ��ŷ;LSTUR is the mean kurtosis of �ŷLSTUR in 2000 replications;
��ŷ;OLS is the kurtosis of �ŷOLS; �̂n;OLS ' 1 for all indices (the deviations from unity

are � 10�4 in all cases).
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Proofs
Proof of Theorem 1. Since ut has zero mean and common continuous density

p (u) with asymptotic Pareto tails of the form p (u) � A
juj�+1 for some constant A > 0

and some � > 4; ut has �nite fourth moment and by standard extreme value theory
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uniformly in t � n. This result and similar results for higher order expansions will be
used repeatedly in the sequel and will not always be cited directly. Using (4) then
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Next,

m

n

n=mX
t=2

(�m
t )

2 =
m

n

n=mX
t=2

0@0@ 0X
s=�(m�1)

"tm+s

1A2

+

0@ 0X
s=�(m�1)

�
�tm+s � 1

�
Ytm+s�1

1A21A
+
2m

n

n=mX
t=2

0@ 0X
s=�(m�1)

"tm+s

1A0@ 0X
s=�(m�1)

�
�tm+s � 1

�
Ytm+s�1

1A : (18)

The �rst term in (18) is

m

n

n=mX
t=2

0@ 0X
s=�(m�1)

"tm+s

1A2

=
m

n

�
("m+1 + � � �+ "2m)2 + ("2m+1 + � � �+ "3m)2+

:::+
�
"n�(m�1) + � � �+ "n

�2o
=
m

n

nX
t=m+1

"2t + op (1)!p m�
2
": (19)

The second term in (18) is
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The squared terms in the last equation are
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For the cross products in (20), consider the case m = 2, which yields the additional term
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Under Assumption 1, the ut�s are i.i.d. and are independent of "s, for all t and s.
Therefore, the leading term in (21) is
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Very similar calculations are carried out for m > 2 and in the sequel and are omitted
for brevity. We conclude that
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Continuing,
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which leads to

m

n

n=mX
t=2

0@ 0X
s=�(m�1)

"tm+s

1A4

=
m

n

0BB@ nX
t=m+1

"4t +

n=mX
t=2

0X
s;s0=�(m�1)

s 6=s0

�
4!

2!2!

�
"2tm+s"

2
tm+s0

1CCA+op (1) :
The �rst term in the last equation converges in probability to m�4;". For each t =
2; :::; n=m, there are m (m� 1) =2 cross products "2tm+s"2tm+s0, s 6= s0, and so

6
m

n

n=mX
t=2

0X
s;s0=�(m�1)

s 6=s0

"2tm+s"
2
tm+s0 !p 3m (m� 1)�4":

Therefore

m

n

n=mX
t=2

0@ 0X
s=�(m�1)

"tm+s

1A4

!p m�4;" + 3m (m� 1)�4" = m2�4"

�
3 +

1

m

�
�4;"
�4"

� 3
��

= m2�4"

�
3 +

1

m

�
�4;" � 3

��
:

23



In the m = 1 case, note that m
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When m = 2 we have
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All other terms in (22) are negligible. The sample kurtosis of the m-period return is
thus
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Proof of Theorem 2. In the case � 6= 0, using (8) and letting rs = btm+ sc =n,
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By (19), the �rst term in (25) is
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As Yt = Op (n), the second term in (25) is
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The �rst term in (26) satis�es
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and the second term satis�es
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Consider the case m = 2. The fourth term in (26) yields
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and more generally
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It follows that
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The third term in (25) is
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Continuing, we �nd that
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and the Op (1) involves functions of L. By similar calculations to the ones done above,
the leading term in the last equation is
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We have
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The sample kurtosis of the m-period return is given by
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which is independent of �. �
Proof of Theorem 3. In the � = 0 case,
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As in (16), �t has the following approximate form using (15)
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by virtue of the limit theory in Ibragimov and Phillips (2008) in the present case of
independence between ut and "s. Next, consider the kurtosis measure based on the
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�tted AR(1) regression Ŷt = �̂Yt�1, for which
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The asymptotic behavior of the kurtosis measure based on the �tted, misspeci�ed con-
stant parameter AR(1) model is therefore given by
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and part (i) of the theorem is completed.
To establish parts (ii) and (iii), in the � 6= 0 case the least squares regression under

the misspeci�cation that �t = � is constant gives
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where ~Yt�1 = Yt�1� �Y is de�ned prior to Theorem 3. Since �t has the approximate form
(27), we deduce that
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Hence,
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;

where ~H (r) := H (r)�
R 1
0
H (s) ds; and H (r) is given in (7).

Next, consider the estimate of the intercept in the regression Ŷ �t = �̂+ �̂
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Yt�1, where
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showing that the �tted intercept estimator is inconsistent.
Now, consider the kurtosis measure based on the simple �tted AR regression Ŷ �t .

Then
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�
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If the model is misspeci�ed as a simple AR(1), then
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The asymptotic behavior of the kurtosis measure based on the �tted, misspeci�ed con-
stant parameter AR is then
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just as in (9). So, the constant coe¢ cient AR �tted kurtosis measure again repro-
duces the actual data kurtosis in spite of the fact that the intercept is inconsistently
estimated.�
Proof of Theorem 4. De�ning the �ltration Fr = � f(Bu (s) ; B" (s)) ; 0 � s � rg
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, we have
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as required. �
Proof of Theorem 5. Under independence of Bu and B";
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We have
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Figure 1: LSTUR with a drift: PP Plot of ∆5 against its asymptotic distribu-

tion,  = 9000 
∼ (6) 

∼ (0 1)  = 25,  = 07  = −
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Figure 2: LSTUR with a drift: PP Plot of ∆5 against its asymptotic distribu-

tion,  = 240000 
∼ (6) 

∼ (0 1)  = 25,  = 07  = −
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Figure 3: LSTUR without a drift: PP Plot of ∆5 against its asymptotic distri-

bution,  = 9000 
∼ (6) 

∼ (0 1)  = 07  = −

40



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: LSTUR without a drift: PP Plot of ∆5 against its asymptotic distri-

bution,  = 240000 
∼ (6) 

∼ (0 1)  = 07  = −
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