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Abstract

This paper proposes a novel Lasso-based approach to handle unobserved parameter hetero-
geneity and cross-section dependence in nonstationary panel models. In particular, a penalized
principal component (PPC) method is developed to estimate group-specific long-run relationships
and unobserved common factors and jointly to identify the unknown group membership. The PPC
estimators are shown to be consistent under weakly dependent innovation processes. But they suf-
fer an asymptotically non-negligible bias from correlations between the nonstationary regressors
and unobserved stationary common factors and/or the equation errors. To remedy these short-
comings we provide three bias-correction procedures under which the estimators are re-centered
about zero as both dimensions (N and T') of the panel tend to infinity. We establish a mixed
normal limit theory for the estimators of the group-specific long-run coefficients, which permits
inference using standard test statistics. Simulations suggest good finite sample performance. An
empirical application applies the methodology to study international R&D spillovers and the re-
sults offer a convincing explanation for the growth convergence puzzle through the heterogeneous
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1 Introduction

Nonstationary panel models have been extensively used in empirical analyses. Their asymptotic
properties are well explored in classical settings when assumptions of common coefficients and inde-
pendence across individuals are in place. Although these assumptions offer efficient estimation and
simplify asymptotic theory, they are often hard to meet in real-world economic problems. On the one
hand, researchers often face the issue of unobserved parameter heterogeneity in empirical models; see
the study of the “convergence clubs” (e.g., Durlauf and Johnson (1995), Quah (1997), Phillips and
Sul (2009)), the relation between income and democracy (e.g., Acemoglu et al. (2008) and Lu and Su
(2017)), and the “resource curse” (e.g., Van der Ploeg (2011)). On the other hand, globalization and
international spillovers give rise to a new challenge — the presence of cross-section dependence. In
general, ignoring these two features may lead to biased or even inconsistent estimators in nonstation-
ary panels, which can severely distort the reliability of classical methods. The goal of this paper is to
study efficient estimation (in terms of convergence rates) and inference in nonstationary panel data
models by allowing for the presence of both unobserved parameter heterogeneity and cross-section
dependence.

Specifically, we consider a nonstationary panel data model with latent group structures and
unobserved common factors. First, we assume that the long-run cointegration relationships associated
with the observables are heterogeneous across different groups and homogeneous within a group. The
latent grouped patterns offer flexible parameter settings by allowing for different slope coefficients
across groups and remain parsimonious and efficient by pooling the cross-section observations within
a group in the estimation procedure. Moreover, there is often economic intuition for considering
grouped patterns in long-run relationships. For example, long-run equilibria in the growth regressions
typically share some common features within a subsample, such as developing or developed countries,
but reveal distinct patterns across subsamples. We also allow for stationary regressors and their
parameters are completely heterogeneous. Second, we employ factor structures to model cross-
section dependence. In our nonstationary panel model we consider both unobserved stationary and
nonstationary common factors. For example, both oil price shocks and global technology innovations
affect GDP levels in all countries. Similarly, both stock market shocks and macro-economic news
affect security prices. But it is hard to tell whether these shock processes are stationary or not. In
general, our framework allows us to fit more complex features to the data in empirical applications
and offers flexibility so that the methods encourage the data to reveal latent features that may not
be immediately apparent.

We take advantage of a growing literature on Classifier-Lasso (C-Lasso) techniques and models
with interactive fixed effects (IFEs); see, e.g., Bai (2009), Su, Shi, and Phillips (2016a, SSP hereafter),
Qian and Su (2016), Moon and Weidner (2017), Su and Ju (2018), Miao et al. (2020), among others.
We propose a penalized principal component (PPC) method, which can be regarded as an iterative
procedure between penalized regression and principal component analysis (PCA). In the first step, we

introduce the unobserved nonstationary common factors into the PPC-based objective function and



iteratively solve a regularized least-squares problem and an eigen-decomposition problem to obtain
the C-Lasso estimators of the group-specific long-run coefficients and the nonstationary factors and
factor loadings. We can do this simply because the presence of unobserved stationary common factors
will not affect the consistency of the long-run coefficient estimators while neglecting the unobserved
nonstationary factors would lead to inconsistency of such estimators due to the induced spurious
regression. Note that the individual’s group membership is also estimated at this stage. In the
second step, we can explore the first-stage residuals to estimate the unobserved stationary factors
and factor loadings. In the third step, we introduce three bias-correction procedures to obtain the
bias-corrected estimators of the group-specific coefficients.

Our theoretical results are concerned with developing a limit theory for Lasso-type estimators
in the present model setting which allows for stationary, nonstationary variates, and various coin-
tegrating linkages. The presence of unobserved common factors complicates the asymptotic analy-
sis in several ways. First, we establish preliminary rates of convergence for the estimators of the
group-specific long-run coefficients and the unobserved nonstationary common factors. To show
classification consistency, we also prove several uniform convergence results with the involvement of
unobserved common factors. Given these uniform results, we show that all individuals are classified
into the correct group with probability approaching one (w.p.a.1). The group-specific estimators en-
joy the oracle property in the latent group literature, so that the three bias-corrected estimators are
asymptotically equivalent to the corresponding infeasible ones that are obtained with full knowledge
of the individual group identities.

Since our model allows for both contemporaneous and serial correlation in the errors, nonsta-
tionary regressors, and unobserved common factors, the usual endogeneity bias in nonstationary
panels is present, originating in two primary sources. The first bias is commonly noted in nonsta-
tionary panels due to the weak dependence between the errors and nonstationary regressors (e.g.,
Phillips and Moon (1999)). As expected, the unobserved nonstationary common factors enter into
the bias formula. The second bias arises from the presence of unobserved stationary common factors
that can be correlated with the nonstationary regressors. We show that stationary common factors
complicate the asymptotic biases and covariance structures but do not affect the consistency of the
long-run coefficient estimators. Based on the bias formula we can employ the Phillips and Hansen
(1990) fully-modified OLS (FM-OLS) procedure to achieve bias correction. Further, we explore a
continuous-updating mechanism to obtain continuously updated Lasso (Cup-Lasso) estimators of
the group-specific parameters, in which procedure we update the estimators of the individual’s group
membership, and the unobserved nonstationary and stationary common factor components. With
these modifications our estimators are centered on zero and achieve the \/N T consistency rate that
usually applies in homogeneous nonstationary panel models. Lastly, we establish a mixed normal
limit theory for the bias-corrected group-specific long-run estimators, which validates the use of t,
Wald, and F statistics for inference.

In the above analyses we assume that the numbers of groups and common factors are known. For



practical work we propose three information criteria to determine the number of groups, the number
of nonstationary common factors and stationary common factors, respectively. These information
criteria are shown to select the correct numbers of groups and common factors w.p.a.l.

We illustrate the use of our methods by studying potentially heterogeneous behavior in the
international R&D spillover model using a sample of OECD countries for the period 1971-2004. As
in earlier work by Coe and Helpman (1995) we regress total factor productivity (TFP) on domestic
R&D capital stock and foreign R&D capital stock. Coe and Helpman assume all countries obey a
common linear specification and ignore the presence of common shocks across countries. In seeking
greater flexibility, our methods allow parameters to vary across countries but with certain latent
group structures and model the common shocks through the use of IFEs. Our latent group structural
model is consistent with the fact that cross-country productivity may exhibit multiple long-run steady
states. As a result, our methods reveal different spillover patterns than those discovered in Coe and
Helpman (1995).

Specifically, our empirical analysis yields two key findings. First, we confirm positive technology
spillovers in the pooled sample by allowing for the presence of common factors. This finding implies
overall convergence behavior in technology growth through direct R&D spillovers when controlling for
the unobserved global technology trend. Second, the group-specific estimates identify heterogeneous
spillover patterns across countries and indicate the existence of two types of R&D spillovers — positive
technology spillovers and negative market rivalry effects in the country-level data. This corroborates
the findings of Bloom et al. (2013) who also found two types of R&D spillovers from firm-level
data. Based on the empirically determined group patterns, we classify the OECD countries into
three groups designated as Convergence, Divergence, and Balance. The major sources of technology
change in the Convergence group come from positive technology diffusion and, as a result, the catch-
up effects through technology diffusion favor the growth convergence hypothesis. Conversely, when
market rivalry effects dominate technology spillovers, we observe overall negative R&D spillovers. For
these countries, technology growth relies on domestic innovations and exhibits divergence behavior.
Our findings therefore explain the growth convergence puzzle through heterogeneous behavior in
R&D spillovers.

A major contribution of this paper is to offer a practical approach that accommodates both
unobserved heterogeneity and cross-section dependence in nonstationary panels. We provide consis-
tent and efficient estimators of group-specific long-run relationships for the observables even when
individual group membership is unknown. The penalization method borrows from the C-Lasso for-
mulation in SSP (2016a), but is modified here by using the principal component method to account
for cross-section dependence simultaneously. Various papers account for unobserved heterogeneity
in large dimensional panel models by clustering and grouping; see, e.g., Bonhomme and Manresa
(2015) on grouped fixed effects, Qian and Su (2016) on structural changes, and Ando and Bai (2016)
on grouped factor models. But almost all the literature focuses on stationary panel data models.

Recently, Huang et al. (2020) have considered latent group patterns in cointegrated panels but they



do not allow for cross-section dependence.

Our theoretical results also contribute to two strands of the literature on cointegrated panels and
factor models. First, it is noted that the average and common long-run estimators permit normal
asymptotic distributions, whereas the heterogeneous and time-series long-run estimators have a non-
standard limit theory; see, e.g., Phillips and Moon (1999), Kao and Chiang (2001), and Pedroni
(2004). In our context, due to the presence of the common components, we maintain the simplicity
of asymptotic mixed normality under grouped parameter heterogeneity. Second, there is a growing
literature using factor models to capture cross-section dependence under the large N and large T
settings; see, e.g., Bai and Ng (2002, 2004), Phillips and Sul (2003), Pesaran (2006), Bai (2009),
and Moon and Weidner (2017). Compared with existing work, our approach accommodates both
stationary and nonstationary common factors and provides a corresponding limit theory for inference.
Our asymptotic theory therefore applies to more general forms of nonstationary panel data models
with internally grouped but unknown patterns of behavior and to models of this type with both
stationary and nonstationary common factors.

The rest of the paper is structured as follows. Section 2 introduces a nonstationary panel model
with latent group structures and cross-section dependence and proposes a penalized principal compo-
nent method for estimation. Section 3 explains the main assumptions and establishes the asymptotic
properties of the three Lasso-type estimators. Section 4 reports the Monte Carlo simulation results.
Section 5 applies the methodology to study heterogeneous cross country behavior in R&D spillovers.
Section 6 concludes. The proofs of the main results are given in the online supplement that also
contains some additional discussions and simulation results.

NOTATION. We write integrals such as fol W (s)ds simply as [ W and define Q72 to be any
matrix such that Q = (QY2)(QY2). BM(Q) denotes Brownian motion with covariance matrix €.
For any m X n real matrix A, we write its Frobenius norm, spectral norm and transpose as || 4],
| Al|sp, and A’, respectively. When A is symmetric, we use fi,,(A) and pi, (A) to denote its largest
and smallest eigenvalues, respectively. Let Py = A(A’A)"'A’ and My = I — P4, where A’A is of
full rank, and I is an identity matrix. Let 0p,x1 denote a p x 1 vector of zeros, I a b x b identity
matrix, and 1{-} an indicator function. Let M denote a generic positive constant whose values can
vary in different locations. We use “p.d.” and “p.s.d.” to abbreviate “positive definite” and “positive
semidefinite,” respectively. The operator 2, denotes convergence in probability, = weak convergence,
a.s. almost surely, and the floor function |x| to denote the largest integer less than or equal to .

Unless indicated otherwise, we use (IV,T') — oo to signify that N and T pass to infinity jointly.

2 Model and Estimation

This section introduces a nonstationary panel model with latent group structures and unobserved
common factors. A penalized principal component method is then proposed to estimate the parame-

ters of the model and the unobserved group structure.



2.1 Model setup

We start by considering a panel cointegration model with both nonstationary and stationary regres-
sors. Assume that for individuals ¢ = 1,..., N, we observe {yit,x17it,$27it}tT:1 where x1;; denotes
nonstationary regressors of order one (I(1) process) and 3 ;; denotes stationary ones (1(0) process),
such that
07 0/
Yit = B1,%1it + BaiT2t + €t 7 2.1)
T14t = T1i¢—1 + Eit,

where y;; is a scalar, ﬁ(l)’i is a p1 X 1 vector of parameters that is associated with the long-run
cointegration relationship, 8,; is a p2 X 1 vector of parameters that may capture the short-run
dynamics, and e;; has zero mean and finite long-run variance. We assume that the error terms e;

are cross-sectionally dependent due to the presence of some unobserved common factors, specified as
eir = M [ + wir = AV Ty + A% for + wat, (2.2)

where f{ is an r x 1 vector of unobserved common factors that contains an 71 x 1 vector of non-
stationary factors fY; of order one (I(1) process) and an 72 x 1 vector of stationary factors £9, (I(0)
process), A = (A, \))) is an r x 1 vector of factor loadings, and wu;; is the idiosyncratic component of
e;+ with zero mean and finite long-run variance. For simplicity, u;; is assumed to be cross-sectionally
independent so that the cross-section dependence among the e;; only arises from the common factors
1, and E(egejr) = E()\?/ftof?’)\?) # 0 in general.

In addition, we introduce latent group structures in ﬂ[l),zﬁ which are heterogeneous across different

groups and homogeneous within a group:

af ifi e GY

a9 ifieGY

where a? # oY for any j # k, UleGg = {1,2,...,N}, and G%ﬂGg = O for any j # k. Let
Nj, = #Gj denote the cardinality of the set Gg. For the moment in this section, we assume that the
number of groups, K, is known and fixed, but each individual’s group membership is unknown. In
Section 3.7, we propose an information criterion to determine the number of groups.

There are three main complications in this panel cointegration model. First, least-squares estima-
tors that ignore the factor component are inconsistent due to the presence of nonstationary common
factors. Noting that the components {)\(1); N0, > 1} are still J(1) processes in general when
r1 > 1, the least-squares estimators of 5(1),1' and Bg’i from the time series regression of y;; on =1 ;
and x9 ;¢ suffer from spurious regression. For this reason, we must take account of the nonstationary
factor component to obtain consistent estimators of the slope coefficients. Therefore, our panel la-

tent factor cointegration model is more general than the traditional panel cointegration model: the



cointegration vector here is (1, 11, 2y ;) and the equilibrium errors {y;; — ﬁ[l)f i — AL > 1)
are stationary whereas standard comtegrating equilibrium errors do not involve unobserved factors
such as f¥,. Second, even though Bai et al. (2009) study a homogeneous panel cointegration model
with nonstationary common factors, it is a big further step to establish desirable asymptotic proper-
ties of the group-specific long-run coefficient estimators and to recover unobserved group identities.
Due to the presence of common factors, the grouping C-Lasso algorithm and derivation of the oracle
property are considerably more difficult than that those of SSP (2016a).! Third, both unobserved
group structures and common factors complicate the non-negligible asymptotic bias in the long-run
estimators arising from endogeneity and serial correlations. An effective new bias-correction proce-
dure is then needed to re-center the limit distributions around zero to facilitate inference. All these
complications call for a new estimation methodology and asymptotic theory.

In the next subsection, we introduce the estimation procedure based on the level equations in
(2.1). A natural question (raised by a referee) is why not proceed to first difference the data and use

an estimation procedure based on the first-differenced equation
Ayie = BYiAT1 it + B AT 50 + AGA T + AYA fi + Auge, (2.4)

where, e.g., Ayt = yit — Yi1—1. To appreciate the importance of working on the level equations in

(2.1), we make two remarks.

Remark 2.1. Let ¢; = (€ly,....,€ip), mi = (a:;,ﬂ, ...,xfﬂ-T)/ and M;; = It — a1 (mézx”> xfz for
[ =1, 2. If the error terms e;; are independent across individuals such that the common components
are absent in (2.2), we can run time series OLS estimation of y;; on (2 ;, 75 ;,) for each i to obtain
the OLS estimators (B/“,Bgl) of ( ?fi, 8’1) It is well known that the OLS estimator BM is super-
consistent and robust to problems such as omitted (stationary) regressors, serial correlations, and
endogeneity (see Phillips (1995), which also allowed for cointegrated regressors in a VAR setting).
For simplicity, we review the asymptotic properties of Bli and 821- by assuming E(xg ;) = 0. Then,
under some standard conditions that ensure proper behavior of T2 x FEARR %acQ iT2,is and = xl %2,

inter alia, we have

1 1 1 1
T(Pr;—BY:) = <T2 iMaiw1 z> T Mz2 e = <T2l‘1 i1 z) 1Mz + op(1),
1 -1
\/_ 3 0 — L, e Lo o — L, . L )
T 52,z' - 5271' = f%,iMl,szz ﬁ%,iMLzez = f%,i@,z ﬁxzﬂ'ez +op(1),
1

1
Ty ;Maje; = Op(1) and —=x5 My e, = Oy (1) as T — oo,

K \/T K

!The oracle property in the latent group literature is that the group-specific estimators are asymptotically equivalent
to the corresponding infeasible estimators that are obtained by knowing all individual group identities.

T




where we use the facts that

—1
s 1 _ 1., 1 (1, 1 . 1,0 N W -1
and similarly 7x9;M e; = TLo € — 7T (waa:l,o (ﬁxlyim’i) (Tml’ie,) = 79,6 + Op(T™).

The above results imply different convergence rates for 3;; and BQZ In particular, 8, ; is super-
consistent regardless of the properties of 1(0) regressors or the endogeneity caused by the correlation

between {Ax; i} and {e;}. If one further assumes orthogonality conditions on the stationary regres-

1

sors that ensure 75 ,¢; = op (1), then we also have

. 1 1
T(By; — (1)1) = (ﬁx’“mu) Tﬂ:’l’iei +op(1).

In this case, we have the asymptotic independence between Bl,i and 521 In the presence of the
factor structure in (2.2), we can continue to obtain super-consistent estimators of 5(1)72- and consistent
estimators of ﬁgi even if {Azy;} and {e;} are contemporaneously correlated. These appealing
properties are completely lost if one works on the first-differenced data. See the next remark.
Remark 2.2. In the absence of the factor structure in (2.2), we have the following first-differenced
equation:
Ayit = BV Aw1 0 + BYi Az + Aug. (2.5)

Apparently, the OLS estimator of (57’;, 8’ ;) based on the time series regression of Ay; on (Ax] ;,, Az} ;)
is inconsistent if E[Azy 4 Aui] # 0 (or E[Azy 4 Aui] # 0), not to mention the super-consistency of
the estimator of /3?,1'- Since we allow for correlation between {Az1 ;;} and {Au;}, estimation based
on (2.5) inevitably leads to inconsistency. This inconsistency of OLS-type estimators of ( ?fi, g'l)

continues to hold in (2.4) even when PCA is used to handle the factor components.

To proceed with the development of level equation estimation in (2.1), let

o = (Oél,...,O(K), ,6 = (51, "'?BN)? Bl = (ﬁl,l? "'?Bl,N)? A = ()\1, ...,)\N)/
Al ()\11, ...,)\ZN)’, F= (fl, ...,fT)’, and Fl = (Flla ...,FlT)I where [ = 1,2.

The true values of ¢, B, B;, A, A;, ', and Fj are denoted o, 3, B?, A0, A?, FO, and FlO. We also use
af, 89, ‘},i, 587“ A = (AN and £2 = (fY, £ to denote the true values of ks By B iy Bais Ni =
(M4, A5;)s and fr = (f1,, f4)'- Interest focuses primarily on establishing each individual’s group
identity and on consistent estimation of the group-specific long-run relationships «j in the presence

of stationary regressors and both unobserved stationary and nonstationary common factors.



2.2 Penalized principal component estimation

In this subsection we propose an iterative PPC-based procedure to jointly estimate the long-run
cointegrating coefficients f3; ;, the short-run parameters 3, ; and unobserved common factors f;, and

to identify the group structure in these long-run relationships. Combining (2.1)-(2.2) yields
Yit = /B(ffixl,it + ﬁgtiwlit =+ )\%f?t + )‘g;fgt + it (2.6)
or in vector observation form:
yi = 2B + FPAY + FIAY + ui = 1,8Y ; + 22,389 ; + FPA); + F9AS; + us, (2.7)

where y; = (Yi1, -, yir)', T14, T2, FP, FY and u; are similarly defined, and z; = (14, T24)-

Ideally, one might attempt to estimate both the stationary and nonstationary common compo-
nents along with the parameters of interest, 8, ; and 8, ;. But due to the fact that the stationary
components and nonstationary components behave differently and require different normalization
rules, it is difficult to study the asymptotic properties of the resulting joint estimators. Nevertheless,
as mentioned above, one can obtain least square estimators of 3, ; and 85, by taking into account
the nonstationary factor component and ignoring the stationary factor component. As we discussed
in the model setup, the estimators of the coefficients of the nonstationary regressors still achieve
consistency regardless of endogeneity, serial correlation or the presence of stationary regressors, and
the estimators of the coefficients of the stationary regressors are consistent under some orthogonality
conditions.? Lastly, we estimate the stationary common component from the resultant residuals.
This motivates the following sequential approach to estimate the unknown parameters in the model.
We first estimate the nonstationary factor component along with 3, ; and (5, then estimate the
stationary factor component along with 35 ; from the resultant residuals. The step-wise procedure is

as follows.

Step 1. We estimate (3, F1, A1) by minimizing the following least squares (LS) objective function:

N

SSR(B, F1, A1) = Z(yi —xif; — F1Au) (yi — 2B — Fi)A) (2.8)
=1

under the constraints that %F{Fl = I,, and A{A; is diagonal. It is well known that the LS

*We require the stationary regressors to be uncorrelated with the stationary common factors, factor loadings and
error terms (c.f., Phillips (1995) and Bai et al.(2009)).



Step 2.

Step 3.

estimator (B;, F1) is the solution to the following set of nonlinear equations:
3 o oY / -1,
Bi = (51 i B2 z) = (5'3'M” %) i Mg yi, (2.9)

FIVI,NT = NT2 Z 3315@)

Fy, (2.10)

where Mg = Ir — %EF{, %F{Fl = I,,, and ‘71 ~NT is a diagonal matrix consisting of the rq
largest eigenvalues of the matrix inside the square brackets in (2.10), arranged in decreasing
order. The LS estimator of A; = (A11,...,A\1n)" is given by A = (:\11, ...,5\1N)’ where ;\/M =
72 (yi —2:B;) F1. Tt is easy to verify that & Aj A = T72F{[he S (yi — i) (yi — ;) i) =
T2F{F\VinT = Vi NT.

Using the initial estimates of Bz and F as starting values, we employ the methodology of SSP
(2016a) by minimizing the following PPC criterion function to obtain estimates of (3, a, F1) :

(2.11)

A N K
N1 (8, e, Fi) = Qur (B, B, F1) + N;]}HBM

where QN7 (81, B2,F1) = 7z oiey (i — 21481 — 2.0B5,) Mry (i — 21481, — ©24B;) , and
A = AMN,T) is a tuning parameter. Minimizing the PPC criterion function in (2.11) pro-
duces the C-Lasso estimators (3;, ax, F1) of (8, ax, Fi) where F1 = (fur, ..., fir) and B; =
(/Bllm /BIQZ)I Note that

FViNT = |05 (yi_xl,ilélz 3321521)( 331151Z 332,1'3271‘)/ I, (2.12)

where %F {F 1 = I, and V; 7 is a diagonal matrix consisting of the 1 largest eigenvalues of the
matrix inside the square brackets in (2.12), arranged in decreasing order. The PPC estimator

. . N kN kN NG ~ 2~ -
of Al = (/\11, ceey >\1N), 1S given by Al = ()\11, ceey )\1N)/ where /\li = %(y, _x17i51,i — $2,i52,i)/F1-
Define the resulting estimated groups

Gp={ie{1,2,..,N}: By, =éa} for k=1,... K. (2.13)

Given the estimates Bl,i’ &y, and Fl, we obtain the cointegration residuals 7;; = vy — 3/1,¢$1,it —
5\/11 flt. Based on the consistency in estimation of the nonstationary part, we have 7;; = A, S+
Bgfixgﬁ + u;¢ + vir where vy signifies the estimation error from the early stages. Then we can
employ the standard procedure in stationary panel models with interactive fixed effects, see
Bai (2009), Moon and Weidner (2017). The LS estimator of (627i,ﬁ12) is the solution to the

10



following set of nonlinear equations:

y -1
Bai = <$/21MF2$21> y ; Mp, 74, (2.14)
~ 1 N
Vo nt = NT (P — @2,iB9,:) (i — w2,iB2,) | F2, (2.15)
i=1

where %FéFQ = I, and Vo n7 is a diagonal matrix consisting of the ro largest eigenvalues of

the matrix inside the square brackets in (2.15), arranged in decreasing order.

Let Bl = ([3171, ‘--:Bl,N) and & = (&, ..., ax) for [ = 1,2. We will study the asymptotic properties
of Blyi, du, and F in Section 3.2 and the classification consistency of the group structure in Section
3.3. Noting that &; has an asymptotic bias, we will propose various methods to correct its bias in
Section 3.4. The asymptotic properties of Bli and Fh may also be studied but they are not the focus
of the present paper.

3 Asymptotic Theory

3.1 Main assumptions

We introduce the main assumptions used to study the asymptotic properties of the estimators Bl,
&, and F1. Let Qi g0(F1) = 757 ;Mp 21, Q1(F1) = diag(Q1.00(F1), ..., QNaa(F1)), and

1 ! 1 ! 1 !
vretiiMeriian gEr Mpzigae o g M vaN
1 ! 1 ! 1 !
vrlieMrriian o Mizigaxe - e MeTiNaN
Q2(F1) = . . . ;
1 ! 1 ! 1 !
WJBLNMFllBl.laNl WJBLNMF1$1,2ULN2 W-’El,NMlel,NaNN

where F} satisfies %F{Fl =1, and a;; = A?g(%A?’A?)_l)\?j. Note that Q2(F1) is an Np; X Np; ma-
trix. Let C = (A%, F?), the sigma algebra generated by the common factors and factor loadings. Let
M denote a generic constant that may vary across occurrences. Define wi = (uit, €l Af, £, T 1)
and let Q; = Z?’;_mE(wago), be the long-run covariance matrix of {w;}. We also define the
contemporaneous variance matrix ¥; = E(w;w],) and the one-sided long-run covariance matrix
A; = Z;io E(wiong) =T; + X;. Note that Q; =T" +T'; + X;. Conformably with wj, {2; and A; are

partitioned as follows

Q1 Qo sy Qg Qs A Ao Az Ay Aisy
Qo1 ooy Doz oa; osy Ao Aooi Aoz Aoggi Aosj
Q= Qg1 Q32 Q33 Q3q Q35 | and Ay = | Ag1; Aga; Asg Azg Assy
Qa1 Q2 Uz Qs sy Agii A Agz Ay Agsy
Q15 s25 W53 Dsas Oss Asi; Asai Aszy Asai Assg
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Partition ¥; correspondingly. Let p = p1 + po. Let S1, 592,53, S4, and S5 denote, respectively, the
Ix(I+p+r),prx(1+p+r),r1x(1+p+7), rax (1+p+r) and p2 X (1+p+7) selection matrices
for which S1wit = i, Sewi = €it, Sswir = AfY,, Sqwir = f9, and Sswy = w24:. Let Sag = (S5, 9%),
a (p1 +71) x (14 p+r) selection matrix. We assume without loss of generality that xg;; has zero
mean.>
We make the following assumptions on {wj:} and {\;}.

Assumption 3.1 (i) For each i , {wi,t > 1} is a linear process: wix = ¢;(L)vit = Y220 Vit
where vy = (vlt,vlt,v{“ vtfz/,vft?')' is a (L+p+r)x1 random vector that is i.i.d. over t with
zero mean and variance matriz Iiipi,; SUPyN>1 MAX1<i<N E(||vie||?7€) < M, where ¢ > 4 and ¢

is an arbitrarily small positive constant; v, vg, v{ t v{2, and v are mutually independent; and

(v, v, vi2') are independent across i.
(ii) Sup N> maxi<i<n - < 7Fll@yll < 0o for some k > 2, and S239;Sh3 has full rank uniformly
(tit) (uit,egt,wé’iJ are independent across i conditional on C.
(iv) B(zauis) = 0 and B(xoufY) =0 for s > t.
(v) \Y is independent of vy for all i,j,and t.
Following Phillips and Solo (1992, PS hereafter), we assume that {w,¢ > 1} is a linear process

in Assumption 3.1(i). For later reference, we partition the matrix operator ¢;(L) conformably with

w;; as follows:

(L) ¢¥E(L)  ¢rN(L)  eMP(L)  4r(L) VL) GYE(L) 0 0 i
¢M(L)  #(L) ¢ (L) ¢ (L) ¢ (L) ¢M(L)  GFF(L)  ¢(L) (L) 5
¢i(L)=| o""(L) ¢"=(L) oM (L) ¢"P(L) ML) |=[ 0O 0 ¢M(L) (L) 0
(L) ¢(L) ¢ (L) ¢(L) ¢ (L) 0 0 o) ¢(L) 0
¢7 (L) ¢7(L) ¢;* (L) ¢;7(L) ;2" (L) ¢7 (L) ¢T*(L) ¢; (L) <z>?f2<f:>( ¢):m<L>
3.1

Since nonstationary and stationary common factors do not depend on i, ¢/1%(L), ¢/1¢(L), $/1%2(L),
¢'2U(L), ¢/25(L) and ¢/2"2(L) are all matrices of zeros. Moreover, we assume that qﬁufl( L)y=0
for [ = 1,2. This assumption indicates that there exists no serial or contemporaneous correlation
between the regression error u;; and (A o fo ) . In Assumption 3.1(iv), we also require the stationary
regressors to be sequentially exogenous to sunplify the asymptotic analysis. These conditions ensure
the consistency of the initial estimators of 37 ;’s and impose some restrictions on ¢;**(L), ¢;2"(L)
and (;szf >(L). For the consistency of the estnnators of BZ,@' s, we further require that the stationary
regressors are uncorrelated with the stationary common factors as in Assumption 3.1(iv).

The moment condition in Assumption 3.1(i) is needed to ensure the validity of the functional

central limit theorem for the weakly dependent linear process {w;}. We apply the Beveridge and

31f E(x2,it) = v2; # 0, we can rewrite the model (2.6) with the inclusion of an intercept, such that y;: = u; +
BY i1t + BY x5 i1 + A3 ST + A3} foy + wie, where 3 = @2, — va; has zero mean and p; = 85,va;.
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Nelson (1981, BN hereafter) decomposition

wit = ¢;(L)vie + Wig—1 — Wi, (3.2)
where Wi = > 222 &ijvi,t_j and &ij =D o ji1 Pis- Assumption 3.1(ii) imposes a uniform k-summability
condition on the coefficient matrix ¢;; that ensures 372, ||<}5”||k < 00 by Lemma 2.1 in PS, thereby
assuring the validity of (3.2). This condition further implies that w;; behaves like a stationary process
with a finite kth moment. The second part of Assumption 3.1(ii) rules out potential cointegration
relationships among the variables in (2} ;, fif)’. Assumption 3.1(iii) allows (ui, €}, % ;;) to be cross-
sectionally dependent, but they become independent across i given C. By saying that “(ug,e;) are
cross-sectionally dependent but they become independent across ¢ given C,” we mean that cross-
section dependence among {(u;,¢e;)}, if it exists, only comes from the sigma algebra generated by
the common factors and factor loadings, C = o(A%, F?). Unconditionally, we allow for cross-section
dependence among {(u;,¢€;t)}. Assumption 3.1(v) ensures that the factor loadings are independent
of the generalization of the error processes over ¢t and across i. Assumption 3.1 validates the following

multivariate invariance principle for partial sums of w;;
1 [T
—= Z'wit = Bi(-) = BM;(9;) as T — oo for all 4
VT 5

where B; = (By;, Bb;, Bs, By, BL,) is a (1 + p+ ) x 1 vector Brownian motion with a covariance

matrix €);.

Assumption 3.2 (i) As N — oo, 4 A”A° 23y > 0and AYAY = Op (Nl/g). SUp > maxi<i<n | AY
< ¢y < oo.

(ii) B|AfY|29T < M and B f3]|?97¢ < M for some € > 0, ¢ > 4 and for all t . As T — oo,
%ZZ;I oY <, | BsBY and %ZtT:l O 2 %4y > 0, where By is an ri-vector of Brownian
motions with a long-run covariance matriz Q33 > 0.

(iii) Let vy (s,t) = % Zf\il E(uipuis) and &y = + Zfil[uituis — E(uitus)]. Then supysq suprs;
max; < <7 N2B|E[* < M and supysysuprsy T71 30 S Iy (s, D)2 < M.

(tv) We consider the linear combinations of the nonstationary regressors xi ;b1 ; where by; is a
p1 x 1 vector. Let by = (b11,....,b1n), F1 € F1 and 71 = (71, ymin) , where Fy = {Fy € RT>™:
%F{Fl = I, } and m1; is an r1 X 1 real vector. Let x;y,, = T1,:b1i — Flox\(l)i. We assume

(a) There does not exist (by, Fi,m1) € RPN x Fy x RVX™ with by = (by 1, ..., b1.n) # 0 such

that we can write

2
R (F{),Fl)< L ) a.s. Vi; (3.3)

14
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(b) There exists a constant ¢ > 0 such that

N

N
. 1 /
min w | == g Xib Xib, | = cienT W.p.a.l; (3.4)
{BrerrrN b P=enr} 51 (NT2 = )

(¢) There exists a constant ppy, > 0 such that P (pimi, (Qu(FY) — Q2(FY)) = ¢pmin) =
1—o(N71).
(v) There exist constant bounds {cy,C2} such that 0 < ¢y < MiN1<i<N fmin (E(azgztxgzt)> <

/ —
mMaxi1<;<N Mmax (E(xlitxlit)) < Coy < O0.

Assumption 3.2(i)-(iii) imposes some standard moment conditions in the factor literature; see,
e.g., Bai and Ng (2002, 2004). Assumption 3.2(i) indicates that the stationary factor loadings and
the nonstationary factor loadings can only be weakly correlated, which facilitates derivations. As-
sumption 3.2(iii) imposes conditions on the error process {u; }, which are adapted from Bai (2003)
and allow for weak forms of cross-section and serial dependence in the error processes. Assumption
3.2(iv.a) is the key identification condition that will be satisfied provided no linear combinations of
x1,4t can be written as a pure factor structure with 2r; factors for all 7. In particular, if there exists

a combination (by, F1, ;) such that
by im1ie = A f1 + mfu for all (i,1),

then we must have by = 0 and 7, f1; = —AYf for all (i,¢). This condition does not rule out
common regressors in the model. For example, we can consider the simplest case where r; = 1 and
z1,i = 14 is I(1). As long as /\(fi varies across ¢ and 1 is not proportional to f?t (14 and f?t
are not collinear in the general case), Assumption 3.2(iv.a) can still hold. See the Online Appendix
C for more details. Assumption 3.2(iv.b) is used to establish the preliminary consistent rates in
Theorem 3.1(i) below and it is in the same spirit as Assumption 4(ii.a) in Moon and Weidner (2017).
Assumption 3.2(iv.c) is used to establish the uniform classification consistency in Theorem 3.3 below.
It assumes Q1 (FY) — Q2(FY) is positive definite in the limit. Assumption 3.2(v) is required for the
identification of B%i and apparently it allows for the presence of both common stationary regressors

and time-invariant regressors in o ;.

Assumption 3.3 (i) For each k =1, ..., Ko, N;/N — 71, € (0,1) as N — co.

(i) minj<gzi<x Hag - agH > ¢, for some fized c, > 0.

(iii) As (N,T) — oo, N/T? — ¢; € [0,00) and T/N? — ¢ € [0, 00).

(iv) Let dr = loglogT. As (N,T) — oo, \WT — 0, \TN~4d;2/ (log )™ — oo, and
dZNVIT=1 % (log T) ¢ — 0.

Assumptions 3.3(i)-(ii) were used in SSP (2016a). Assumption 3.3(i) implies that each group has
an asymptotically non-negligible number of individuals as N — oo and Assumption 3.3(ii) requires

the separability of group-specific parameters. Similar conditions are assumed in the panel literature
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with latent group patterns, e.g., Bonhomme and Manresa (2015), Ando and Bai (2016), SSP (2016a),
and Su and Ju (2018). Assumption 3.3(iii)-(iv) imposes conditions to control the relative rates at
which N and T pass to infinity. They require that N pass to infinity at a rate faster than 77/2
but slower than 72. The involvement of the factor dr is due to the law of iterated logarithm as in
Huang et al. (2020). For example, it appears in the study of limiting behavior of -5 =3 WjW; where
W; = (21,4, F). Lemma A.2 in the appendix shows that both limsup;_,, umax(mWi' W;) and
liminfr_, o umin(%Wi’ W;) are bounded away from the infinity and zero almost surely, respectively.
One can verify that the permissible range of values for A that satisfy Assumption 3.3(iv) is A oc T7¢

for a € (%,%1) for g > 4.

3.2 Preliminary rates of convergence

LetlA)M:B“ ﬁ“forl—12 dnr = min(v/N,T), Cnr = min(vN,VT), nlNT_NZZ 1 ,
and Hy = (HAYAY) (7 FY )V A - The following theorem establishes consistency of 3 i 62 0> nd
£

Theorem 3.1 Suppose that Assumptions 3.1-3.3 hold. Recall that dr = loglogT. Then
(i) 0 1By N 012 =0p((T/d3)~1/?),
(ii) || Pr, - Prg|| = Or((T/8) ),
(iii) 3| Py — FYHi|| = Op(nynr + T7H2C47).

Theorem 3.1(i) establishes the preliminary mean-square consistency of {B“} Theorem 3.1(ii)
shows that the spaces spanned by the columns of Fy and FY are asymptotically the same. Theorem
3.1(iii) indicates that the true factor F{ can only be identified up to a nonsingular rotation matrix Hj.
Compared with Bai and Ng (2004) and Bai et al. (2009), our results allow for heterogeneous slope
coefficients, stationary regressors and unobserved stationary and nonstationary common factors.

The following theorem establishes the rate of convergence for the individual and group-specific

estimators, as well as for the estimated factors up to rotation.

Theorem 3.2 Suppose that Assumptions 3.1-3.3 hold. Recall that dp = loglogT. Then
(i) & Siei 181 — Bl = Op(drT ),
(i) By — B = Op(dy>T~1 + \) and By, — 83, = Op(dy*T~/2 + N=V/2) fori =1,..., N,
(iii) (Grys -ms Gry) — (0, a) = Op(d1T/2T*1) for some suitable permutation (& 1y, ..., &(x))
Of (@1, ceey @K),
(iv) Ty — FOHy| = Op(dy*T " + (NT) /%),

Theorem 3.2(i) establishes the mean-square convergence for the estimators of 5[1)71» while Theorem
3.2(ii) studies the preliminary point-wise convergence of ¢ 1 and BQZ The usual super consistency of
nonstationary estimators Bl,i is preserved if A = O(T~!) despite the fact that we ignore unobserved

stationary common factors and allow for correlation between u; and (f, f{{). Theorem 3.2(iii)
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indicates that the group-specific parameters, 04[1), ...,049(, can be consistently estimated. Theorem
3.2(iv) updates the convergence rate of the unobserved nonstationary factors in Theorem 3.1(iii).

For notational simplicity, hereafter we simply write &y for & (y) as the consistent estimator of 042.

3.3 Classification consistency

We now study classification consistency. Define
EkNT,i ={i¢ lez € G%} and FkNT’Z- ={i¢ G2|i e (;k}7

where ¢ = 1,..., N and k = 1,...K. Let EkNT = UieékEkNTi and FkNT = Uz‘eékaNTi' The events
Exn7 and Fjny7 mimic type I and type II errors in statistical tests. Following SSP (2016a), we say
that a classification method is individually consistent if P(Exn7;) — 0 as (N,T) — oo for each
i€GYand k=1,.., K, and P(FkNT’Z-) — 0 as (N,T) — oo for each i € G and k = 1,..., K. It is
uniformly consistent if P(UL_| Enr) — 0 and P(UE_ Fynr) — 0 as (N, T) — oo.

The following theorem establishes uniform classification consistency.

Theorem 3.3 Suppose that Assumptions 3.1-3.3 hold. Then
(i) P32, Exnr) < Y12 P(Egnr) = 0 as (N, T) — oo,
(i) P(UR2) Finr) < o2y P(Finr) — 0 as (N, T) — oo

Theorem 3.3 implies uniform classification consistency — all individuals within a certain group,
say Gg, can be simultaneously and correctly classified into the same group (denoted Gk) w.p.a.l.
Conversely, all individuals that are classified into the same group, say Gk, simultaneously belong to
the same group (G?) w.p.a.l. Let Nj, = #Gy. One can easily show that P(G), = GY%) — 1 so that
P(N, = N) — 1.

Note that Theorem 3.3 is an asymptotic result. It does not ensure that all individuals can
be classified into one of the estimated groups when 7' is not large or A is not sufficiently big if
we stick to the classification rule in (2.13). In practice, we classify i € Gy, if 31,1 = ¢, for some
k=1,.,K, and i € Gy for some | = 1,...,K if ||By; — &l| = min{||By; — a1l ... |[Br; — éxl|}
and Zszl I{BM = &y} = 0. Since Theorem 3.3 ensures Eszl P(BLZ- =da,) — 1las (N,T) - o0
uniformly in ¢, we can ignore such a modification in large samples in subsequent theoretical analyses

and restrict our attention to the classification rule in (2.13) to avoid confusion.
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3.4 Oracle properties and post-Lasso and Cup-Lasso estimators

We examine the oracle properties of the three Lasso-type estimators. To proceed, we add some
notation. For k =1, ..., K, we define

N
Uit = Z 21, Mpo | (ui+ FA3;) Z wj + F9NS) aij |
1EGO Jj=1
N 1 T
Bipnra = ZBk,iNT,l = UNT Z (Z Z 1{t =s}—sm;1{s < t}) ACIRS
i=1 k ieG0 \t=1 s=1
N
BinT2 = ZBk,z‘NT,2 = \/— Z Ec (71,) MF0F2 A%, Z/\Qjazg ;
i=1 i€GY
T
Vinrt = \/_T Z SE¢T Z {3as (Viimoi?) — [1{t = s} — sa51 {s < t}] L14p} ¢T s
icGo t=1 s=1
Lo
F— Ec (2 ZGG a;iBe (] M pou;
VN, T ; (21,) 14 jGZGO ij 15) ( Mpoui
1
e Y (w1 = Be (21,0)) Mpp FYAS,,
N T e
where His = g(FIO/FP)_lf?S’ Hys = 1 {t = S} — s, UZ;& = (U;fs?vzasl7 zxsy) ‘/7,1;6 = Zi 1 7,5 ’ EC ( )

, S = (1701><p) ) 5S¢ = (Oplxl»LmXp)

ut w ue s
E<~rc>,¢I<L>=<¢i <L>>:< (L) G (L) G (L)

¢ (L) 6" (L) 65 (L) ¢:™(L)
and ¢ is a vector of ones. Let QinT :diag(ﬁ ZieG({ $/17iMF10$17i, cel, ﬁ ZiGG?{ :r’LiMFlo:rl’o
and QaNT K1 = W Dicct 2ojeco T iMpowjaij for kil =1,.., K. Let Qnr = Qint — Qan,

Q11— Q2,11 —Q2,12 . —Q2,1K
Qant11 - QanTiK
_ , , Q221 Q12— Q22 ... —Q22K
QanT = : .. : and Qo = . . . .
Qant k1 - QaNTKK
—Q2,K1 —Q2x2 ... Qik— QKK

where Q1 = limpy o0 NL,c ZieG2 Ee (f B%BQJ s Qo = limy—oo N;]Vk ZieGg EJEG? aijlic <f BQJB%J) ’
_ ~1
and Bg; = By ; — fB2,iB:/3 (f B3Bé) Bs.
Let & = (Q1,...,ax). Let Unr = (Uiyr,- - Ugnr)'s Byt = (Bings- - Biyr)'s Var =
(VinTs s Vienr) and Bynt = Bynra + Brnr2. The following theorem reports the Bahadur-type

representation and asymptotic distribution of vec(& — a).

Theorem 3.4 Suppose that assumptions 3.1-3.3 hold. Let &y, be obtained by solving (2.11). Then
(i) VNTvec(& — a®) = VDN Qn-Unt + 0p(1) = VDN Qny (Ve + Br) + 0p(1),
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(ii) VNTvec(& — &) — /Dng Qi Byt = MN(0, DOQalgoQal) s (N,T) —
1

where Dy :dmg(Nﬁl, ) Ipl, Do :diag<7_—11, o ) @I, Qo = iy 7)o QNT, and Onp =

Var(Vnr|C) .

Theorem 3.4 indicates that V7 and By are associated with the asymptotic variance and bias
of &. The decomposition Bynt = BpnT,1 + BinTt,2 indicates two sources of the bias. The first
bias term Bjn7,1 results from the contemporaneous correlation between (14, fiz) and u; and the
serial correlation among the innovation processes {wj}. Apparently, the presence of unobserved
nonstationary factors f7, complicates the formula for By, N7, through the term s¢,. The second bias
term By 2 is due to the presence of the unobserved stationary factors fgt. In the special case where
neither f{)t nor fgt is present in the model, we have Bynyr = Bpnt,1 = ﬁ ZieGg Aoy ;. This is
the usual asymptotic bias term for panel cointegration regression that is associated with the effects
of the one-sided long-run covariance (c.f., Phillips (1995) and Phillips and Moon (1999)). The ith
element of Vyr is independent across ¢ conditional on C and E¢ (Vyr) = 0. This makes it possible
for us to derive a version of the conditional central limit theorem for Vi and establish the limiting
mixed normal (MN) distribution of the estimators & in Theorem 3.4(ii).

As shown in the proof of Theorem 3.4, the asymptotic bias term By is Op(y/Ng), which implies
the T-consistency of the C-Lasso estimators éj. To obtain the v/ NT-rate of convergence, we need

to remove the asymptotic bias by constructing consistent estimates of Bnr.

3.4.1 Bias correction, fully modified and continuous updating procedures

Three types of bias-corrected estimators are considered: the bias-corrected post-Lasso estimator ézbéck,
the fully-modified post-Lasso estimator dfm, and the fully-modified continuously updated post-Lasso
(Cup-Lasso) estimator &g”: , whose deﬁnitikons are given below.

Following Phillips and Hansen (1990) and Phillips (1995), we first construct consistent time series

estimators of the long-run covariance matrix €2; and the one-sided long-run covariance matrix A; by

T-1 i T— .
Q= > w<7)n<j . and A Z ( ) )
j=—T+1 7=0
where w(-) is a kernel function, J is a bandwidth parameter, and I';(j) = %ZtT;lj Wi ¢4 W5, with
Wit = (Uit, AT 4y, A f{t, fét,xéﬂ-t)’ . We partition €; and A; conformably with ;. For example, Ajl,i
denotes a submatrix of A; given by SjAZ-Sl’ for 5,01 =1,...,5.
We make the following assumption on the kernel function and bandwidth.
Assumption 3.4 (i) The kernel function w(-): R — [—1,1] is a twice continuously differen-
tiable symmetric function such that [* w(z)?dz < oo, w(0) = 1, w(z) = 0 for |z| > 1, and
limp,_y w(z)/(1 = [z[)? = ¢ > 0 for some q € (0,00).
(ii) As (N,T) — oo, N/J? — 0 and J/T — 0.
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We modify the variable y;; with the following transformation to correct for endogeneity:

i = vir — Q2355 Ay e, (3.5)

This would lead to the modified equation g;; = 6%3}17“ + 68{1332,“ + AU+ A9, + 4, where
ﬁj{ = Uit — 91271‘92_211-A$17it. Define

Afyi = Bizi = 012,055, A. (3.6)

Note that (3.5) and (3.6) help to correct for endogeneity and for serial correlation, respectively. Let
9 = (91, ..., 9;p) and A;M = AE’I-.

We can obtain the bias-corrected post-Lasso estimator & bc , the fully modified post-Lasso esti-
mator afé , F1 and F by iteratively solving the following equatlons (3.8) to (3.10)
k

vec <abGC> = vec (&) — \/ QNT (BNTl + Byt 2) (3.7)

-1

aé’: = Z T Mp w1 Z T Mg, 97 — T/ Ng (BkNTl + Bk:NT2> ) (3.8)
ieGy, i€Gy,
. [ 1 K . .
RVine = |5 Z Z (9 — xLi@fé — 29,iB2,) (9 — m1 zaf@ — 22,B2,)" | 1, (3.9)
| k=1;e@,
. 1 K X . . . .
Vo nT = NT Z Z (9i — ﬂfl.idg: — 2By, — F1A1:)(9i — 901,1‘@2? — 2,89, — F1A1)'| Fo,
L k=1ieq,
(3.10)

where Bty = (Biypys- Binry) for L= 1,2, Binry = —=—3"c6, (0 320 54s) Do
k

> _ 1 _ 1 A

BkNT,? = —\/N_kT Zzegk (Zt 12 1%ts> A24 z)‘217 BkNTl - \/N_kT ZzGGk <Zt 12 1%ts> 213>

s = 1{t = s} — 3as, 305 = f,(F{F) " s = fifis/T2 dai = Mo — % 20 Aojdij, and ay; =
5\,12-(%/1’1/&1)_15\13‘. Here the definitions of Fl, VinT, Fg, and Vo N7 are similar to those defined

above.

We obtain the fully modified Cup-Lasso estimators ézgfp by iteratively solving (2.11), and (3.8)
k
0 (3.10), where we also update the group structure estimates {G}. Note that F1, Vi n7, Fb, Va N,

and the factor loading estimates {j\u, 5\22} are also updated continuously in the procedure to obtain

5CUP.
Qs
G m o F /
JN m ~fm ~ACUDP [ ACUD Acup
Let éy, = (& R aéK) and &;" = (04él ey Q1 ) We establish the limiting distribution of
the bias-corrected post-Lasso estimators &%‘f, the fully modlﬁed post-Lasso estimators ozfé , and the

Cup-Lasso estimators é\cgfp in the following theorem.
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Theorem 3.5 Suppose that assumptions 3.1-3.4 hold. Let “b? be obtained by iteratively solving
(3.7), (3.9)-(3.10); let & Afm be obtained by iteratively solving (5’ 8)-(3.10); and let & AC“p be obtained
by iteratively solving (2.11) and (3.8)-(3.10). Then as (N,T) — oo,

(i) VNTvec(& — o) = MN(0, DoQy Q0Q5"),

(ii) \/NTvec(agm — a% = MN(0, DoQyFQpY),

(iti)VNTvec(&g" — a®) = MN(0, DoQy ' Q5 QyY),
where Q(')F = limy 700 QJJ\?T, Q]'\F,T Var(V T]C) VJT is defined in the proof of Theorem 8.5, and
Dy and Qg are as defined in Theorem 3.4.

Theorem 3.5 indicates that all three types of estimators achieve the v/ NT-rate of convergence
and have a mixed normal limit distribution. Asymptotic ¢-tests and Wald tests may be constructed
as usual, provided that one can obtain suitable estimates of Qy, Qn7, and QJJ([T. We can estimate
Qo by Qo = Ql NT — Qg ~nT where Ql N7 and Qg ~T are analogously defined as Q1n7 and Qont with
Ng, Gg, F_{), and A? replaced by Nk, é’k, Fl, and Al, respectively. We can also show that Qn7 and

QX,T can be consistently estimated by

D N T T N
NK * o~k > N/
NT NT2 E E E XZths itWis — E BiNTBiNT?
i=1 t=1 s=1 i=1
D N T T
AN+ NK / A*Jr +/
QNT NT2 E , XtX Ut zs E :BzNTBzNT’
i=1 t=1 s=1

whereXit:(A/lzt,.. X/Kzt)’ X’Mtisthetthrowoff(k’i,X;” My a:lzl{zEGk} NZJGG aij Mg 21,5,

Dy =diag ( » T V@1, Bint = (BL%-NT, ey B}QNT) Brint = By 4NT, \+ By, ANT,2 Bk iNT1 =
ﬁ (Zf;l 23:1 %ts> Ag1i1{i € G}, Brinra = m (thl St %ﬁs) A24z')\2z‘1{i € G},
k k

R R / N ~ oA . ~ A~ ~

Ujy = Yit — agm T1,it — 52,1'132,1‘15 — Ay fae for i € G, Bz'J?VT = (B1+,£NT’ - Blt/zNT) BlijT = B kiNT,1 +

. . T 2\ a o

Byint,2; Bl—c'_iNTl = \/—; (Zt:l 22:1 %ts> A;ﬂ il{Z € Gy}, and uit = yit - 04£ L1t — 521952,% -
’ ’ NkT ’ )

Al A N

Apifit for i € Gi. See the proof of Lemma A.11(ix) in the Online Supplement. Given these estimates,

it is standard to conduct inference on elements of aP.

3.5 Estimating the number of unobserved factors

Our analysis has so far assumed that the numbers of nonstationary and stationary factors, r1 and rq,
are known. We also note the nonstationary factors play a key role in the PPC estimation. We notice
that the presence of stationary factors does not affect the consistency of nonstationary coefficients
estimates despite its introduction of a second-order endogeneity bias. Thus, we consider a two-step
approach to determine 1 and ro. In the first step, we introduce an information criterion to determine
the number of unobserved nonstationary factors, r1, without any information about the unobserved
stationary factors. In the second step, we propose another information criterion to the resultant

residuals to obtain the number of stationary factors, ro. Below, we use r1 and ro to denote a generic
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number of nonstationary factors and stationary factors, respectively. Their true values are denoted
as ) and 79, which are assumed to be bounded above by a finite integer ryax.
In the first step, we estimate the number of unobserved nonstationary factors, r(f, consistently
based on the level data. Let Fj* be a matrix of T' X r; nonstationary factors and Aj} be an r; x 1
r1

vector of nonstationary factor loadings. Let A7 = (A7}, ..., Aly)- Given the preliminary consistent

estimators of 3, ; and 35 ; based on 7y,ax nonstationary factors, we consider the following minimization

problem:
| NoT
ﬁﬂ”l ]\7‘1 _ . . ! . > . )\'f‘ll r1\2
1 =arg min -— (yit — Byt — Bo w2, — Ay f11)7
AL, ErL NT ’ ’
1 i=1 t=1
s.t. F{VF'/T? = I,, and A7A7" is diagonal.
: ~ 5 5 A ! : ~
Given Fi* = (f{1,..., f{7)’; we can solve for AT* = (A{,..., A\;y)’ as a function of F|* by least squares

regression. We suppress the dependence of AT on FI* and define V; (ry, FI*) = 7 SV ST (i —

B;jixl,it — B;7Z~.’I,'27it — /A\E/ A{;)Q. Then we consider the information criterion:
ICy(r1) = log Vi(ry, F{*) + 1191 (N, T), (3.11)

where ¢1(N,T) is a penalty function. Let 71 = argming<,, <p,.. [C1(r1). We add the following

condition.
Assumption 3.5 As (N,T) — oo, g1(N, T)% — 0 and g1(N,T) — .

The conditions on g; (N, T) differ from the conventional conditions for the penalty function used
in information criteria in the stationary framework (e.g., g2(N,7T) in Assumption 3.5 below). In
particular, we now require that g;(N,T) diverge to infinity rather than converge to zero. The
intuition for this requirement is that the mean squared residual, V;(r, F{ 1), does not have a finite
probability limit when the number of nonstationary common factors is under-specified. We can show
that %Vi (r1, F ") converges in probability to a positive constant when 0 < ry < 7"[_1). By contrast,
we have V;(ry, FJ*) — Vl(r?,ﬁlr?) = Op(1) when ry > 9.

0

The following theorem shows that the use of 1C1(r1) determines 7j consistently.
Theorem 3.6 If Assumptions 3.1-8.3 and 3.5 hold, then P(f1 = 1) — 1 as (N,T) — oo.

Once we obtain a consistent estimate of 7“?, we can also obtain a consistent estimator of the
number of unobserved stationary factors, rg, from the resultant residuals based on standard methods
in Bai and Ng (2002). In the second step, the resultant residual takes the form:

R N N NN
Tit = Yit — ﬁu«fl,it - Bz,ﬂzit = Aifi, t=1,..T, (3.12)

where 75 = )\g; fgt + uit + vi¢ and v accounts for the asymptotically negligible estimation error from

the early stages. Since the true dimension 9 is unknown, we start with a model with 7. unobserved
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common factors. Let F3? be a matrix of T' X 7 nonstationary factors and )\gf be an r9 X 1 vector

of nonstationary factor loadings. Let A}> = (A%, ..., \}3;).We consider the following minimization

problem:
e Are | : 1 Al ~ rol pro\2
{FQ A } _argAgﬁrzﬁ;;(m_)‘i 2t )"
s.t. Fy?' Fy?/T? = I, and ALY AL is diagonal,
where F32 = (f52, ..., Z%)’ and AR2 = (Mg s Agnr )/, and BM, 3272-, ;\lliflt are consistently estimated

based on 71 nonstationary factors from the first step. It is easy to show that the BM are T -
consistent and 3272- are /1 -consistent under appropriate orthogonality conditions, which suffices for

our purpose. It is well known that given 13'52, we can solve A2 = A”(ﬁgz) from the least squares

: : A ~ . N
regression as a function of Fj2. Then we can define Va(ro, [3%) = 1= SV ST (R — Ay f52)?

Following Bai and Ng (2002) we consider the information criterion
IC2(T) = log ‘/Q(T27F2T2) +T292(N7 T)7 (313)

where g2(N,T) is a penalty function. Let 7o = arg minp<,<,... /C2(r). We add the next assumption.
Assumption 3.6 As (N,T) — oo, g2(N,T) — 0 and C%1g2(N,T) — o0, where Cyr = min(v/N,/T).

Assumption 3.6 is common in the literature. It requires that g2(/V,T) pass to zero at a certain
rate so that both over- and under-fitted models can be eliminated asymptotically. The following

theorem demonstrates that we can apply IC2(r2) to estimate 79 consistently.
Theorem 3.7 If Assumptions 3.1-8.3 and 3.6 hold, then P(fy = 1) — 1 as (N,T) — oo.

In the simulations and applications, we simply follow Bai and Ng (2002) and Bai (2004) and set

N+T 9 N+T NT
gl(Nv T) = O‘TQQ(Nv T) and 92(N7 T) = Wl()g (CNT) or NT log <N+T> ’

where ap = We first estimate the number of unobserved nonstationary factors by 71 based

T
4loglogT*
on level data, and next estimate the number of unobserved stationary factors by 7o based on the

resultant residuals from the first step.

3.6 Determination of the number of groups

We propose a BIC-type information criterion to determine the number of groups, K. We assume
that the true number of groups, Kj, is bounded from above by a finite integer Kpax.

By minimizing the criterion function in (2.11), we obtain estimates BLi(K, A), ,5’271-(K, A), (K, ),
Mi(K,N), and fiy (K, \) of ,8(1)71-, 68’1-, a?, AY;, and f7, in which we make the dependence of the
estimates Blm BM’ g, A1, and fi; on (K, A) explicit. Let Gr(K,\) = {i € {1,2,..., N} : BM(K, A) =
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ap(K,\)} for k= 1,..., K, and G(K, ) = {G1(K, \),...,Gg(K,\)}. Let & 6" ) denote the Cup-

Lasso estimate of 042. Define

K T
- Ni Z Z E [yzt - Oé KoLt ~ B;img,it — S\Z(K, )\)’f‘t(K’ A) 2
h=lieGy(K

A) t=1
Following SSP (2016a) and Lu and Su (2016), we consider the following information criterion:
1C3(K, \) = log Va(K) + pK ga(N, T), (3.14)

where g3(N,T) is a penalty function. Let K (\) = arg Ming < g< Kpax JC3(K, A).
Let ) = (GK 1,--, Gk, i) be any K-partition of the set of individual index {1,2,...,N}. De-
A . N N "
fine o540, = w7 Yhe D icCrn Zt 1Yt — CUP(K/\)IM it — Bo i — Ai( K, N) f1(K, N)]?, where

{667, 240619, Mi(G90), fi(GU)} s amalogously defined as {47 v Bai (K, X), Mi(K, N),
flt(K, A)} with {@k(K, \)} being replaced by {Gf 1 }. Let o :pllm(MT)_)OO NT Ziil ZieG% ZtT:l[yit—

0r 0r 07 £012
QR T4t — ,8271‘.'1}2,it — Aliflt] . Define

(NT)~/2 when there are neither stationary regressors nor unobserved common factors,

T—1/2 when there are stationary regressors but no unobserved common factors,
UNT = 1
N~1Y2 when there are common nonstationary factors but no stationary factors or regressors,

\C;,; in other cases.

and note that vy7 indicates the effect of estimating the nonstationary panel on the use of IC5(K, \)
under four different scenarios.

We add the following assumption.

Assumption 3.7 (i) As (N,T) — oo, minj<g <k, inf G0 egye &E(K) Log2s o3.
(ii) As (N,T) — oo, g3(N,T) — 0 and g3(N,T)/v34 — 0.

Assumption 3.7(i) requires that all under-fitted models yield asymptotic mean square errors larger
than a%, which is delivered by the true model. Assumption 3.7(ii) imposes typical conditions on the
penalty function gs(N,T"), requiring that it cannot shrink to zero too fast or too slowly.

The following theorem justifies the validity of using IC5 to determine the number of groups.

Theorem 3.8 Suppose that Assumptions 3.1-3.4 and 3.7 hold. Then P(K(A) = Ko) — 1 as
(N, T) — o0

Theorem 3.8 indicates that as long as A satisfies Assumption 3.3(iv) and g3(N,T') satisfies As-
sumption 3.7(ii), we have infi<x<g,.... k2K, [C3(K, A) > IC3(Ko, \) as (N, T) — oo. Consequently,
the minimizer of IC3(K, \) with respect to K equals Ky w.p.a.l for a variety of choices of A. In
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practice, we can further choose A over a finite grid of values to minimize IC3(K ()), \). The next

section provides details.

4 Monte Carlo Simulations

In this section we conduct simulations to evaluate the finite sample performance of the C-Lasso
procedure, the bias-corrected post-Lasso, the fully-modified post-Lasso regression, and the Cup-
Lasso estimators with and without unobserved factors, stationary regressors and incidental time
trends. See Appendix E in the online for the introduction of incidental time trends into our model.
For comparison, we also consider the Lasso-type estimators using first-differenced data, which is
proposed for stationary panels with interactive fixed effects. Note that the method proposed by
Su and Ju (2018) requires the regressors to be predetermined. In general, their method is not
suitable for the first-differenced data in panel cointegration models with both contemporaneous and
serial correlations. Before estimation, we evaluate the performance of the information criteria for

determining the number of unobserved common factors and groups.

4.1 Data generating processes

We consider five data generating processes (DGPs) with stationary and/or nonstationary unobserved
common factors. The observations in each of these DGPs are drawn from three groups with Ny : N :
N3 =0.3:0.4:0.3. There are four combinations of sample sizes, with N = 50,100 and T' = 40, 80.
Data are generated based on the following design. For i =1,..., N andt=1,...,T,

Yit = Wi + pit + 011 + oo + caXyifie + caXg; far + uat
T1,it = M1 T Tlit—1 + Eit . (4.1)
fie=p"+ fiao +

For DGPs 1-4 below, we do not allow for stationary regressors so that po = 0 and wy = (uit, €y, Af1y, for)
are generated from the linear process: w;; = Z;io };jvit—j, where ¢;; = L(j)QY2, L(j) =1 or j735,
025 Qi Q3 Oixp
Q Q Q Q
Q=" 2o i = (08 oY oY vt~ iid. N(0,1,,4q) for i = 1,..., N,
Orix1 Oryxpy 233 Q34
Oryx1 Orgxpy  $243 Qg
and (Utfll,v{y)’ ~1iid. N(0, Iy 4r,). The factor loadings \; = (N};, Ay;) are iid. Ai ~ N (g, Iry4ry)
and gy = 0.1 ¢(p 4ry)x1 With ¢4 an a x 1 vector of ones. The long-run slope coefficients 3, ; exhibit

the group structure in (2.3) for K = 3 and the true values for the group-specific parameters are

0.4 1 1.6
s ())(2)

24



We allow for stationary regressors in DGP 5 and incidental linear time trends in DGP 6 below.
Endogeneity and serial correlations in the system are controlled by ¢;; and the non-zero block
matrices in {2. The parameters ¢; and co control the importance of unobserved common factors. The
estimates of long-run covariance matrices are obtained by using the Fejér kernel with the bandwidth
set at 10.* The maximum number of iterations for Cup-Lasso regression is set to 20. All simulation

results are obtained from 500 replications.

DGP 1. We consider a panel cointegration model with nonstationary regressors and unobserved
stationary common factors such that p; = 2, po =0, ry =0, and r9 = 2. Let cg = 0.5, p;, = p; =
c1 =0, and p1,; = O2x1. There is neither contemporaneous correlation nor serial correlation among

0.25 O1x4

Osx1 Ia
DGP 2. The DGP is similar to DGP 1 except that we now introduce contemporaneous corre-

the errors where L(j) =1 and Q =

0.2,0.2
lations among the errors by setting ¢;; = OY/2 with Q9 = 0 = (0.2,0.2), Qoy = ( ’ ) and

0.2,0.2
1 02
Qg = Qg = .
22 44 (0.2 1)

DGP 3. We consider a panel latent factor cointegration model with both nonstationary regressors
and unobserved nonstationary common factors, such that p1 = 2, po = 0, 71 = 2, and ro = 0. Let
c1=1,p,=p;=0,and py; = pft = 0251. We allow for general forms of weak dependence among

0.2,0.2
’ ) and 922 = 933 =

the errors where ¢;; = jT5QY2 0y = 0y = (O.Q,O.Z), Qo3 =
0.2,0.2
1 0.2

0.2 1
DGP 4. We consider a panel latent factor cointegration model with both nonstationary regressors

and mixed unobserved common factors such that p; = 2, po =0, 71 = 2, and 79 = 1. Let ¢; = 1,
c2 =0.5, u; = p; =0, and P = uf 1 = 09x1. We allow for general forms of weak dependence among

0.2,0.2
the errors where ¢;; = j=3°Q12, Q1 = Q) = Q) = Qug = Q3 = (O.Q,O.Z), Qo3 = (0 50 2);

1 0.2
Qoo = Q33 = (0 5 1 ) and Qg4 = 1. In addition, we allow for weak correlation among the factor

1 0 2/VN
loadings with \; = (\};, ;) ~ i.i.d. N(0.1-¢3,9Q)), where Q) = 0 1 2/VN|.
2/VN 2/vV/N 1
DGP 5. We consider a panel latent factor cointegration model with mixed regressors and
mixed unobserved common factors such that p; = 2, po = 1, 1 = 2, and 7o = 1. Let ¢; = 1,

c2 =05, u; =p; =0, and py; = uft = 0241. The settings of the errors are the same as in DGP

'Findings based on other kernels (the quadratic spectral kernel and Parzen kernel) and other choices of bandwidth
are similar and are not reported
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4. For the stationary regressors and associated coefficients, we generate zo ;4 ~ ii.d. N(0,1) and
By~ N(0.5,1).

DGP 6. We consider a panel latent factor cointegration model with unobserved nonstationary
common factors and incidental deterministic trends such that p; =r1 =2 and ps = r9 = 0. We set
c1 = 1. For the incidental time trends, we generate (f;, p;, 17 ; p/') ~iid. N(0,Ig). The errors are
generated as in DGP 3.

4.2 Estimating the number of unobserved factors

We assess the performance of the two information criteria proposed in Section 3.6 before determining
the number of groups and running the PPC-based estimation procedure. We first obtain the pre-
liminary time-series estimates of both nonstationary and stationary slope coefficients ; ; and By ;
by setting the number of nonstationary factors r1 = rmax. We choose the BIC-type penalty function
a1 (N, T) = qisshesT 92

g2(N,T) = % log(%) to determine the number (r2) of unobserved stationary factors. Note that
r) = 0,0, 2, 2, 2, and 2 for DGPs 1-6, respectively and 7§ = 2, 2, 0, 1, 1, and 0 for DGPs 1-6,

respectively.

(N,T) to determine the number (r;) of unobserved nonstationary factors and

Table 1 displays the probability that a particular factor number from 0 to 4 is selected according
to the information criteria proposed for the level data and the resultant residual data based on
500 replications. For the level data, the precision for selecting the number of nonstationary factors
generally increases and approaches 1 in all DGPs as both NV and T become larger. For DGPs 3-6,
the performance in the case of N = 50 and T = 80 slightly deteriorates in comparison with the case
N =50 and T = 40. Similar phenomenon may occur in the use of information criteria for stationary
factor models.

For the resultant residual data, the probabilities for selecting the number of stationary factors
are influenced by the results in nonstationary factors. In general, it preserves similar finite sample
performance as the level data. As both N and T increase, the probabilities of selecting the number
of stationary factors approach 1 in all DGPs. In general, the simulation results show that the two

information criteria work fairly well in finite samples.

4.3 Determination of the number of groups

The results above show that the information criteria (/C}(r1) and IC5(r2)) in Section 3.6 are useful
in determining the number of nonstationary and stationary factors. We emphasize that these infor-
mation criteria do not require the knowledge of the latent group structure or even the number of
groups.

Next, we focus on the performance of the information criterion (IC3(K,\)) for determining the
number of groups by assuming that the number of unobserved factors is known. We follow SSP
(2016a) and set g3(N,T) = 2log(min(N,T))/ min(N,T) and A = exT—3/* with ¢y = 0.05, 0.1, 0.2,

0.4. Note that g3(V,T) satisfies the two restrictions in Assumption 3.7. Due to space limitations, we
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Table 1: Frequency for selecting 1,72 = 0, 1,2, 3, 4 nonstationary and stationary factors

Level Data Resultant Residual Data

N T 7“1:07’1:17’1:27’1:37’1:47“2:07“2:17’2:27“2:37’2:4

DGP1 50 40 1 0 0 0 0 0 0 1 0 0

50 80 1 0 0 0 0 0 0 1 0 0

100 40 1 0 0 0 0 0 0 1 0 0

100 80 1 0 0 0 0 0 0 1 0 0

1000 1000 1 0 0 0 0 0 0 1 0 0

DGP 2 50 40 1 0 0 0 0 0 0 1 0 0

50 80 1 0 0 0 0 0 0 1 0 0

100 40 1 0 0 0 0 0 0 1 0 0

100 80 1 0 0 0 0 0 0 1 0 0

1000 1000 1 0 0 0 0 0 0 1 0 0

DGP 3 50 40 0 0.014 0.93 0.054 0.002 | 0.984 0.014 0 0.002 0
50 80 0.016 0.048 0.92 0.016 0 0.932 0.004 0.002 0 0.012

100 40 0 0 0.998 0.002 0 1 0 0 0 0

100 80 0 0 0.988 0.012 0 1 0 0 0 0

1000 1000 O 0 1 0 0 1 0 0 0 0
DGP 4 50 40 0.004 0.074 0.908 0.014 0 0.002 0.920 0.042 0.014 0.014
50 80 0.042 0.114 0.836 0.008 0 0 0.844 0 0.012 0.016

100 40 0 0.008 0.988 0.004 0 0.002 0.990 0.006 0.002 0

100 80 0 0.004 0.996 0 0 0 0.996 0.002 0.002 0

1000 1000 O 0 1 0 0 0 1 0 0 0
DGP5 50 40 0.010 0.086 0.892 0.012 0 0 0.900 0.052 0.016 0.012
50 80 0.044 0.134 0.818 0.004 0 0 0.822 0.004 0.014 0.014

100 40 0 0.008 0.984 0.008 0 0.004 0.988 0.008 0 0
100 80 0 0.004 0.996 0 0 0 0.996 0.002 0 0.002

1000 1000 0 0 1 0 0 0 1 0 0 0
DGP 6 50 40 0.004 0.022 0.974 0 0 0.974 0.02 0.004 0 0.002
50 80 0.082 0.036 0.882 0 0 0.882 0.014 0.006 0.006 0.008

100 40 0 0.002 0.998 0 0 0.998 0.002 0 0 0

100 80 0 0 1 0 0 1 0 0 0 0

1000 1000 O 0 1 0 0 1 0 0 0 0
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Table 2: Frequency for selecting K = 1,2, ...,6 groups

N T 1 2 3 4 5 6
DGP 1 50 40 0 0 1 0 0 0
50 80 0 0 1 0 0 0
100 40 0 0 1 0 0 0
100 80 0 0 1 0 0 0
DGP 2 50 40 0 0 0.992 0.008 0 0
50 80 0 0 1 0 0 0
100 40 0 0 0.996 0.004 0 0
100 80 0 0 1 0 0 0
DGP 3 50 40 0 0 0.996 0.002 0.002 0
50 80 0 0 0.996 0.002 0.002 0
100 40 0 0 0.996 0.004 0 0
100 80 0 0 1 0 0 0
DGP 4 50 40 0 0 0.99 0.01 0 0
50 80 0 0 0.992 0.008 0 0
100 40 0 0 0.996 0.004 0 0
100 80 0 0 1 0 0 0
DGP 5 50 40 0 0 0.998 0.002 0 0
50 80 0 0 1 0 0 0
100 40 0 0 1 0 0 0
100 80 0 0 0.996 0 0 0.004
DGP 6 50 40 0 0 1 0 0 0
50 80 0 0 1 0 0 0
100 40 0 0 1 0 0 0
100 80 0 0 1 0 0 0

only report the outcomes for ¢y = 0.1 based on 500 replications for each DGP in Table 2 as the other
choices of ¢y produce similar results. Recall that the true number of groups is 3 in all DGPs. Table
2 displays the probability that a particular group number from 1 to 6 is selected according to 1Cs.
The probabilities are higher than 99% in all cases and tend to unity when T increases to 80. This

indicates good finite sample performance of the criterion IC3 in determining the number of groups.

4.4 Classification and point estimation

We now examine the performance of classification and estimation when we have a priori knowledge of
the numbers of groups and unobserved common factors. Table 3 compares finite sample performance
between our estimators obtained from the level data and the estimators obtained from the first-
differenced data for DGPs 1-2. The latter are obtained by implementing the method of Su and Ju
(2018) for stationary models. Tables 4-5 report classification and point estimation results for DGPs
3-6 and check the sensitivity of classification and estimation performance for different \’s. Here, we

set A = ex\T—3/* where ¢, = {0.05,0.1,0.2,0.4}. Due to space constraints, we only report results
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for ¢y = 0.1 in DGPs 1-2 and ¢y, = 0.1,0.2 in DGPs 3-6. The focus of our analysis is the latent
group patterns in nonstationary slope coefficients. For aj = (ozlyk, agyk)' we only report results for
the estimation of the first nonstationary slope coefficient a4 in each DGP.

For comparison, Table 3 summarizes group classification and estimation results from both the level
data and first-differenced data. Tables 4-5 only report the corresponding results for the level data.
Columns 4 and 9 in Table 3 and Columns 4 and 8 in Tables 4-5 report the percentage of correct
classification over the N cross-section units, calculated as % sz:‘)l el l{ﬁ%i = oY}, averaged
over the 500 replications. Columns 5-7 and 10-11 in Table 3 and Columns 5-7 and 9-11 in Tables
4-5 summarize estimation performance in terms of root-mean-squared error (RMSE), bias (Bias),
and 95% coverage probability (% coverage). For simplicity, we define the weighted average RMSE as
% Zszl NLRMSE(é 1) with éq 1, being the estimate of aj ;. We define the weighted average bias
and 95% coverage probability analogously. For comparison, we report the estimation and inference
results based on the estimates of the C-Lasso, bias-corrected post-Lasso, fully-modified post-Lasso
and Cup-Lasso methods defined in Section 3.4. We also report estimation and inference results for
the oracle estimates that are obtained by utilizing the true group structures {Gg}.

For brevity, we only summarize the main findings in Tables 3. First, when there is no endogeneity
issue in DGP 1, both level data and first-differenced data lead to consistent estimation and there
is no bias in the C-Lasso estimation. In terms of RMSEs, there is a considerable convergence rate
advantage to use level data, where the estimators of the nonstationary slope coefficients enjoy super-
consistency—+/NT-consistency, which is in contrast with the v/NT-consistency of the estimators
in the first-differenced model. The correct classification results generally approach 100% in both
cases. Second, when there is endogeneity in DGP 2, the first-differencing approach does not lead to
consistent estimation. For the first-differenced data, there is no evidence of consistency in terms of
RMSE and Bias. However, the PPC-based estimators obtained from the level data generally show
good finite sample performance with the bias of the C-Lasso estimator being approximately halved
as T doubles.

The classification and estimation are reported in Tables 4-5 below and will now be discussed. In
these tables, we first notice that the results with different c)’s are similar, indicating some robustness
in our algorithm to the choice of the tuning parameter A. Second, the correct classification percentage
approaches 100% when T increases. As expected, the correct classification percentages for the Cup-
Lasso estimates are higher than those of the C-Lasso and post-Lasso estimates in all cases. This
outcome suggests that iterations do help in finite samples to achieve better classification. Third,
regarding parameter estimation Tables 3-5 show that the fully-modified procedure works slightly
better than the direct bias-correction procedure. For DGP 2, the endogeneity bias issue is not very
serious in the C-Lasso estimate since we only introduce contemporaneous correlation among the
errors, nonstationary regressors, and stationary common factors. The two post-Lasso estimates and
the Cup-Lasso estimates are found to perform as well as the oracle estimates in terms of RMSE, bias

and coverage probability. For DGPs 3-6, the performance of the C-Lasso estimates is poorer due
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Table 3: Classification and point estimation of a; for DGPs 1-2

Level Data First-Differenced Data
N T % Correct  RMSE Bias  %Coverage % Correct  RMSE Bias
classification classification
DGP 1
50 40 C-Lasso 99.98 0.0085 0.0002 90.90 C-Lasso 99.92 0.0340 -0.0007
post-Lasso®® 99.98 0.0083 0.0002 90.42 C-Lasso BC 99.92 0.0340 -0.0007
post-Lasso/™ 99.98 0.0083 0.0002 90.24 Post-Lasso 99.92 0.0309 -0.0006
Cup-Lasso 99.98 0.0083 0.0002 90.24 Post-Lasso BC 99.92 0.0308 -0.0006
Oracle - 0.0082 0.0002 90.18 Oracle - 0.0309 -0.0004
50 80 C-Lasso 100.00 0.0040 0.0001 91.90 C-Lasso 100.00 0.0223 0.0002
post-Lasso®® 100.00 0.0040 0.0001 91.60 C-Lasso BC 100.00 0.0223 0.0002
post-Lasso/™ 100.00 0.0040 0.0001 91.52 Post-Lasso 100.00 0.0207 0.0004
Cup-Lasso 100.00 0.0040 0.0001 91.52 Post-Lasso BC 100.00 0.0207 0.0004
Oracle - 0.0040 0.0001 90.68 Oracle - 0.0207 0.0004
100 40 C-Lasso 99.99 0.0057 -0.0001 93.14 C-Lasso 99.95 0.0234 0.0004
post-Lasso®® 99.99 0.0056 0.0000 92.82 C-Lasso BC 99.95 0.0234 0.0004
post-Lasso/™ 99.99 0.0056 0.0000 93.06 Post-Lasso 99.95 0.0202 0.0004
Cup-Lasso 99.99 0.0056 0.0000 93.06 Post-Lasso BC 99.95 0.0202 0.0004
Oracle - 0.0056 0.0000 93.66 Oracle - 0.0202 0.0004
100 80 C-Lasso 100.00 0.0029 -0.0001 92.04 C-Lasso 100.00 0.0162 0.0011
post-Lasso®® 100.00 0.0028 0.0000 93.08 C-Lasso BC 100.00 0.0162 0.0011
post-Lasso/™ 100.00 0.0028 0.0000 93.08 Post-Lasso 100.00 0.0142 0.0010
Cup-Lasso 100.00 0.0028 0.0000 93.08 Post-Lasso BC 100.00 0.0142 0.0010
Oracle - 0.0028 0.0000 93.08 Oracle - 0.0142 0.0010
DGP 2
50 40 C-Lasso 99.98 0.0098 0.0054 83.42 C-Lasso 99.75 0.0981 0.0918
post-Lasso®® 99.98 0.0081 0.0004 91.12 C-Lasso BC 99.75 0.0980 0.0918
post-Lasso/™ 99.98 0.0080 0.0005 91.00 Post-Lasso 99.75 0.0974 0.0922
Cup-Lasso 99.98 0.0080 0.0005 91.00 Post-Lasso BC 99.75 0.0974 0.0922
Oracle - 0.0079 0.0005 91.00 Oracle - 0.0976 0.0924
50 80 C-Lasso 100.00 0.0048 0.0026 84.12 C-Lasso 99.99 0.0974 0.0947
post-Lasso®® 100.00 0.0039 0.0001 91.32 C-Lasso BC 99.99 0.0974 0.0947
post-Lasso/™ 100.00 0.0038 0.0002 92.04 Post-Lasso 99.99 0.0972 0.0949
Cup-Lasso 100.00 0.0038 0.0002 92.04 Post-Lasso BC 99.99 0.0972 0.0949
Oracle - 0.0038 0.0002 92.04 Oracle - 0.0972 0.0948
100 40 C-Lasso 99.97 0.0075 0.0050 79.48 C-Lasso 99.79 0.0960 0.0931
post-Lasso®® 99.97 0.0056 0.0002 92.30 C-Lasso BC 99.79 0.0960 0.0931
post-Lasso/™ 99.97 0.0055 0.0003 92.60 Post-Lasso 99.79 0.0962 0.0940
Cup-Lasso 99.97 0.0055 0.0003 92.60 Post-Lasso BC 99.79 0.0962 0.0940
Oracle - 0.0054 0.0002 92.60 Oracle - 0.0961 0.0938
100 80 C-Lasso 100.00 0.0037 0.0024 80.04 C-Lasso 100.00 0.0969 0.0955
post-Lasso®® 100.00 0.0028 0.0000 92.24 C-Lasso BC 100.00 0.0969 0.0955
post-Lasso/™ 100.00 0.0027 0.0001 92.60 Post-Lasso 100.00 0.0969 0.0958
Cup-Lasso 100.00 0.0027 0.0001 92.60 Post-Lasso BC 100.00 0.0969 0.0958
Oracle - 0.0027 0.0001 92.60 Oracle - 0.0969 0.0958
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to the presence of unobserved nonstationary common factors. In addition, the Cup-Lasso estimates
generally outperform the two post-Lasso estimates due to the updated group classification results.
In DGP 5, we show that the presence of stationary regressors does not affect the finite sample
performance of our estimates for nonstationary slope coefficients. We introduce incidental time trends
in DGP 6 and show that our PPC-based estimation procedure work fairly well with the detrended
data. In addition, the finite sample performance of the long-run estimates preserves similar patterns.
In general, the finite sample performance of the Cup-Lasso estimators is close to that of the oracle
estimates, which corroborates the oracle efficiency of the Cup-Lasso estimates. Accordingly, we
recommend for practical implementation the use of Cup-Lasso estimates for both estimation and

inference.

5 An Empirical Application to the Growth Convergence Puzzle

A longstanding leading question in the economic growth literature is whether national economies
exhibit convergence across countries over time. A benchmark model in the literature is the interna-
tional R&D spillover model proposed by Coe and Helpman (1995) who empirically identified positive
technology spillover effects. Since technological progress is a primary source of economic growth,
positive R&D spillovers are regarded as a force of convergence that activates through the channel
of technology catch-up. Notwithstanding the strength and relevance of this argument, two potential
problems have been identified in the Coe and Helpman study. First, the study fails to distinguish two
distinct types of spillover effects: positive technology spillovers and negative market rivalry effects
(Bloom et al., 2013). Second, the research does not account for unobserved common patterns across
countries, such as financial crisis shocks and technological progress. These two issues may lead to
biased or even inconsistent estimates for the parameters of interest — see, e.g., Griffith and Reenen
(2004), Coe et al. (2009, CHH hereafter), and Ertur and Musolesi (2017).

In this section we apply our model and methodology to re-investigate this issue by allowing
for heterogeneous convergence behavior through the channel of technology diffusion and unobserved
common patterns across countries. In particular, we impose latent group structures on the long-run
relationships between technological change, domestic R&D stock, foreign R&D stock, and human
capital, at the same time capturing any common patterns of behavior via the use of unobserved
factors. Interestingly, we find two directions of R&D spillover — positive technology spillovers and
negative market rivalry effects, which help to explain the economic convergence puzzle through the

channel of technology growth.

5.1 International R&D spillover model

We introduce two linear specifications for the international R&D spillover model. Following the
standard growth literature, we define the total factor productivity (TFP) as the Solow residual,
which is often regarded as a measure of technology change. That is, log(T'F'P) = log(Y) —0log(K) —
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Table 4: Classification and point estimation of a; for DGPs 3-4

C\ 0.1 0.2

N T % Correct RMSE Bias % Coverage % Correct RMSE Bias % Coverage

classification classification

DGP 3

50 40 C-Lasso 98.42 0.0420 0.0155 65.36 98.26 0.0443 0.0143 65.88
post-Lasso®® 98.42 0.0305 0.0028 91.62 98.26 0.0311 0.0029 91.74
pOSt-LaSSOfm 98.42 0.0305 0.0028 92.20 98.26 0.0311 0.0030 92.14
Cup-Lasso 100.00 0.0112 0.0021 90.28 99.98 0.0112 0.0021 90.28
Oracle - 0.0110 0.0021 90.28 - 0.0110 0.0021 90.28

50 80 C-Lasso 99.34 0.0283 0.0072 60.60 99.31 0.0285 0.0073 60.44
post-Lasso®® 99.34 0.0188 0.0009 91.34 99.31 0.0173 0.0014 91.74
post-Lasso/™ 99.34 0.0188 0.0014 91.28 99.31 0.0172 0.0018 91.62
Cup-Lasso 100.00 0.0050 0.0009 90.44 100.00 0.0050 0.0009 90.44
Oracle - 0.0050 0.0009 90.44 - 0.0050 0.0009 90.44

100 40 C-Lasso 98.66 0.0281 0.0135 52.88 98.49 0.0300 0.0125 54.64
post-Lasso®® 98.66 0.0225 0.0027 89.72 98.49 0.0222 0.0033 89.86
post-Lasso/™ 98.66 0.0226 0.0027 90.10 98.49 0.0223 0.0034 90.26
Cup-Lasso 100.00 0.0073 0.0025 89.78 99.98 0.0073 0.0025 89.78
Oracle - 0.0073 0.0025 89.78 - 0.0073 0.0025 89.78

100 80 C-Lasso 99.41 0.0184 0.0069 49.68 99.38 0.0194 0.0064 48.78
post-Lasso®® 99.41 0.0188 0.0009 92.72 99.38 0.0190 0.0009 92.84
post-Lasso/™ 99.41 0.0188 0.0014 93.08 99.38 0.0190 0.0013 93.20
Cup-Lasso 100.00 0.0035 0.0010 93.12 100.00 0.0035 0.0010 93.12
Oracle - 0.0035 0.0010 93.12 - 0.0035 0.0010 93.12

DGP 4

50 40 C-Lasso 98.22 0.0479 0.0145 70.70 98.07 0.0511 0.0133 71.44
post-Lasso®® 98.22 0.0337 0.0022 91.64 98.07 0.0335 0.0020 91.48
post-Lasso/™ 98.22 0.0338 0.0024 91.44 98.07 0.0335 0.0022 91.18
Cup-Lasso 99.97 0.0137 0.0015 89.98 99.93 0.0137 0.0015 90.10
Oracle - 0.0136 0.0015 89.96 - 0.0136 0.0015 89.96

50 80 C-Lasso 99.10 0.0454 0.0089 67.04 99.09 0.0451 0.0082 65.94
post-Lasso®® 99.10 0.0310 0.0008 91.52 99.09 0.0313 0.0007 91.40
post-Lasso/™ 99.10 0.0310 0.0012 91.14 99.09 0.0313 0.0012 91.02
Cup-Lasso 100.00 0.0065 0.0007 90.58 100.00 0.0065 0.0007 90.58
Oracle - 0.0065 0.0007 90.58 - 0.0065 0.0007 90.58

100 40 C-Lasso 98.44 0.0319 0.0140 62.60 98.28 0.0355 0.0130 62.82
pOSt-LaSSObC 98.44 0.0277 0.0024 91.16 98.28 0.0282 0.0021 90.92
post-Lasso/™ 98.44 0.0279 0.0026 90.94 98.28 0.0283 0.0023 90.72
Cup-Lasso 99.97 0.0095 0.0021 91.12 99.94 0.0096 0.0021 91.22
Oracle - 0.0095 0.0021 91.12 - 0.0095 0.0021 91.12

100 80 C-Lasso 99.45 0.0198 0.0073 56.66 99.43 0.0216 0.0070 56.32
pOSt-LaSSObC 99.45 0.0167 0.0007 92.62 99.43 0.0165 0.0006 92.66
pOSt-LaSSOfm 99.45 0.0167 0.0011 92.70 99.43 0.0165 0.0011 92.88
Cup-Lasso 100.00 0.0047 0.0006 93.00 100.00 0.0047 0.0006 93.00
Oracle - 0.0047 0.0006 93.00 - 0.0047 0.0006 93.00
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Table 5: Classification and point estimation of a; for DGPs 5-6

C\ 0.1 0.2

N T % Correct RMSE Bias % Coverage % Correct RMSE Bias % Coverage

classification classification

DGP 5

50 40 C-Lasso 98.01 0.0538 0.0165 63.74 97.78 0.0585 0.0150 63.60
post-Lasso®® 98.01 0.0365 0.0028 91.46 97.78 0.0391 0.0033 91.28
post—LaSSOfm 98.01 0.0364 0.0029 91.96 97.78 0.0390 0.0034 91.78
Cup-Lasso 99.98 0.0112 0.0026 90.80 99.96 0.0114 0.0025 90.80
Oracle 0.0111 0.0026 90.72 0.0111 0.0026 90.72

50 80 C-Lasso 99.33 0.0254 0.0074 60.48 99.31 0.0278 0.0071 60.28
post-Lasso®® 99.33 0.0223 0.0009 91.66 99.31 0.0220 0.0009 91.86
post-Lassofm 99.33 0.0223 0.0014 92.12 99.31 0.0219 0.0014 92.32
Cup-Lasso 100.00 0.0051 0.0010 91.92 100.00 0.0051 0.0010 91.92
Oracle 0.0051 0.0010 90.98 0.0051 0.0010 90.98

100 40 C-Lasso 98.72 0.0292 0.0133 53.10 98.57 0.0309 0.0126 54.30
post-Lasso®® 98.72 0.0245 0.0029 89.00 98.57 0.0252 0.0032 89.32
post-Lasso/™ 98.72 0.0246 0.0031 89.44 98.57 0.0252 0.0034 89.80
Cup-Lasso 100.00 0.0076 0.0027 89.64 99.99 0.0076 0.0027 89.64
Oracle 0.0076 0.0027 90.68 0.0076 0.0027 90.68

100 80 C-Lasso 99.34 0.0184 0.0075 48.18 99.29 0.0203 0.0068 49.24
post-Lasso®® 99.34 0.0177 0.0008 91.04 99.29 0.0187 0.0008 91.06
post-Lasso/™ 99.34 0.0178 0.0013 91.44 99.29 0.0187 0.0013 91.40
Cup-Lasso 100.00 0.0036 0.0011 91.54 100.00 0.0036 0.0011 91.54
Oracle 0.0036 0.0011 91.54 0.0036 0.0011 91.54

DGP 6

50 40 C-Lasso 99.90 0.0322 0.0244 61.72 99.90 0.0308 0.0227 64.06
post-Lasso®® 99.90 0.0233 -0.0100 87.76 99.90 0.0233 -0.0100 87.76
post-Lasso/™ 99.90 0.0176 0.0014 91.42 99.90 0.0177 0.0014 91.42
Cup-Lasso 99.99 0.0172 0.0015 91.40 99.99 0.0172 0.0014 91.40
Oracle 0.0172 0.0014 89.08 0.0172 0.0014 89.08

50 80 C-Lasso 99.98 0.0167 0.0128 62.20 99.98 0.0164 0.0119 63.64
post-Lassob® 99.98 0.0125 -0.0079 86.18 99.98 0.0125 -0.0079 86.18
post-Lasso/™ 99.98 0.0082 0.0008 93.58 99.98 0.0082 0.0008 93.58
Cup-Lasso 100.00 0.0081 0.0009 93.58 100.00 0.0081 0.0009 93.58
Oracle 0.0081 0.0009 91.54 0.0081 0.0009 91.54

100 40 C-Lasso 99.94 0.0277 0.0236 41.88 99.94 0.0264 0.0222 45.64
pOSt—LaSSObC 99.94 0.0176 -0.0103 82.98 99.94 0.0175 -0.0102 83.10
post—Lassofm 99.94 0.0122 0.0013 93.42 99.94 0.0122 0.0014 93.42
Cup-Lasso 100.00 0.0120 0.0013 93.30 99.99 0.0120 0.0013 93.24
Oracle 0.0120 0.0013 91.68 0.0120 0.0013 91.68

100 80 C-Lasso 99.94 0.0125 0.0097 50.38 99.94 0.0124 0.0093 51.56
pOSt—LaSSObC 99.94 0.0104 -0.0077 73.66 99.94 0.0104 -0.0077 73.66
post—LaSSOfm 99.94 0.0061 0.0004 93.50 99.94 0.0060 0.0004 93.44
Cup-Lasso 100.00 0.0050 0.0004 93.44 100.00 0.0050 0.0004 93.44
Oracle 0.0050 0.0004 95.06 0.0050 0.0004 95.06
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(1 —0)log(L), where Y, L, and K denotes final output, labor force, capital stock, respectively, and
0 is the share of capital in GDP. In the first place, domestic R&D investment is a major source of
technology change that stimulates innovation. Second, trade in intermediate goods enables a country
to gain access to inputs available throughout the rest of the world. In this respect, foreign R&D
stocks from a country’s trading partners affect TFP by directly enhancing the transfer of R&D. Coe
and Helpman (1995) empirically identify two sources of technology growth — innovation and catch-up

effects — by running the following regression:
log(Fie) = p; + 5 1og(s7) + 5 log(s}) + ua.

where 4 is the country index, ¢ is the year index, p,; are the unobserved individual fixed effects,
F is total factor productivity, s? is real domestic R&D capital stock, and s/ is real foreign R&D
capital stock. We follow their specification on the international R&D spillover model and introduce

unobserved common patterns to obtain
1y — gd d f f ! .
log(Fit) = Bi log(si) + B; log(sy,) + Aife + wit, (5.1)

where f; denotes the unobserved technology trends or global financial shocks, and the fixed effects
are absorbed into the factor structure. We shall assume that the slope vector 8; = (52, ﬁzf )’ exhibits
the latent group structures studied in this paper. This specification is important because the latent
group structures on B{ allow us to study the two types of spillover effects discussed above — positive
technology spillovers and negative market rivalry effects, respectively.

In addition, we consider the following specification
) — R4 d f f h . / '
log(Fyt) = B5 log(s) + B; log(s;y) + 55 log(hit) + Aifi + it (5.2)

where h;; denotes human capital for country ¢ in year ¢t. Human capital accounts for innovation
outside the R&D sector and other aspects of human capital not captured by formal R&D. Engelbrecht
(1997) finds that human capital affects TFP directly as a factor of production and as a channel for
international technology diffusion associated with catch-up effects across countries. As above, we
allow the slope vector 5, = (Bzd, ﬁ{ , B?)’ to exhibit latent group structures.

CHH further extend the analysis to include institutional variables. In particular, they use various
proxies for institutions to test if the estimated parameters on domestic and foreign R&D capital
and on human capital vary among countries. For example, they first define the dummy variables
(high and low) for some institutional variables and then consider their interaction with log(s%) in
order to provide sub-sample regression results for the above two specifications. Their results suggest
that institutional differences introduce heterogeneous impacts on both innovation effects and R&D
spillovers. In general, CHH employ observed institution variables to group countries into different

subsamples and reveal heterogeneous degrees of R&D spillover effects from institutional differences.
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Instead of using observed characteristics, such as institution variables, our PPC-based method
allows us to analyze parameter heterogeneity empirically by encouraging the data to reveal latent
features that may not be immediately apparent. In particular, the latent group structures on slope
coeflicients allow us to study potentially different impacts of innovation and catch-up effects. We
can also analyze two opposite spillover effects — positive technology spillovers and negative market
rivalry effects, respectively. These features of the methodology help us explain the growth convergence

puzzle by means of different aspects of technological diffusion.

5.2 Data

We use the same dataset as CHH. This dataset is similar to that used in Coe and Helpman (1995)
and is expanded to include two more countries and annual observations. It contains observations for
log(Fit), log(s4), log(s,), and log(hit) for 24 OECD countries from 1971-2004. The bilateral import-
weighted R&D variable S/~ from trading partners is a measure of foreign R&D stock. Human
capital is measured by years of schooling. In CHH, the relevant variables are pre-tested for unit roots
and cointegration. All variables we consider have a unit root, i.e., all are non-stationary. We refer
the readers directly to CHH for details on the definition and construction of these variables, and for

summary statistics of the data.

5.3 Empirical results

We first determine the number of unobserved factors and the number of groups as was done in the
simulation exercises. Then we report the results for the estimation of the group structures and

group-specific parameters.

5.3.1 Estimation of the number of factors

Before running the PPC-based estimation procedure, we employ the information criteria 1C7 and
IC5 in Section 3.6 to estimate the number of unobserved factors. Following the simulation design,
we set g1(N,T) = 410g10ng2(N T) and go(N,T) = & log(NJrT) Based on the results for level
data and resultant residuals, we obtain the estimates 71 = 1 and 7o = 0. That is, we find a single
nonstationary common factor and zero stationary common factors in the data. We fix r; = 1 and

rg = 0 in the following empirical analysis.

5.3.2 Determination of the number of groups

As in the simulations, we set g3(N,T') = %log(min(N, T))/ min(N, T) and A = cxT~3/*. We use the
following tuning parameter settings: ¢y = 0.1, 0.2, 0.4, 0.6, 0.8. Table 7 reports the information
criterion IC3 as a function of the number of groups under these tuning parameters. Following the

majority rule, we find that the information criterion suggests three groups for both model (5.1) and
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Table 6: Information criterion for the determination of the number of groups
Model (5.1) Model (5.2)

\ex 0.1 0.2 0.4 0.6 0.8 0.1 0.2 0.4 0.6 0.8
-4.830 -4.807 -4.790 -4.776 -4.773  -4.680 -4.668 -4.671 -4.671 -4.669
-6.387 -5.545 -5.366 -5.234 -5.210  -4.671 -4.655 -4.430 -4.430 -4.429
-6.259 -6.235 -6.229 -6.206 -6.213 -4.871 -5.058 -4.869 -4.835 -4.218
-6.072 -6.099 -6.090 -6.177 -6.116  -4.865 -4.759 -4.783 -4.572 -4.784
-5.957 -5.974 -5.896 -5.951 -5.861  -4.528 -4.631 -4.526 -4.720 -4.137
-5.785 -5.706 -5.757 -5.814 -5.807  -4.255 -4.398 -4.261 -4.158 -3.701

CTJOT#CO[\')HN

model (5.2). Note that IC3 achieves the minimal values for both model specifications when ¢y = 0.2.

Therefore, we set K = 3 and ¢, = 0.2 in subsequent analyses.

5.3.3 Estimation results

For both model specifications, we employ the pooled fully modified OLS (FM-OLS) estimates un-
der the homogeneity assumption and the Cup-Lasso estimates with one unobserved nonstationary
common factor. Note that we also allow for one unobserved nonstationary factor to obtain the FM-
OLS estimates. Table 6 reports the main results for these two estimates along with the fixed effects
estimates of CHH.

In model (5.1), we have two explanatory variables (log(s?) and log(sf)). We summarize some
of the more interesting findings from Table 7. First, a comparison between the estimates in CHH
and those obtained by pooled FM-OLS suggests that the estimate of the coefficient of log(s?) in
CHH is similar to our pooled FM-OLS estimate, whereas the estimate of the coefficient of log(sf)
decreases substantially after introducing one unobserved nonstationary factor in the model. This
seems to suggest that direct spillover effects are partially offset by unobserved global technology
patterns. Noting that our asymptotic variance estimation allows for both serial correlation and
heteroskedasticity and appears more conservative than that of CHH, this difference explains why the
standard errors (s.e.) of our estimates are much larger than those in CHH. Second, once we allow
for latent group structures among the slope coefficients, our PPC estimation helps to identify quite
different behavior in the estimates of the effects of both domestic R&D stock and foreign R&D stock:
for Group 1, we observe the largest effect of domestic R&D stock, but the estimate on foreign R&D
is negative; for Groups 2 and 3, the coefficient estimates on both domestic and foreign R&D stocks
are positive. In addition, both estimates for Group 2 are larger than those for Group 3, but the
estimates of the coefficient of foreign R&D stocks in Groups 2 and 3 are not statistically significant
even at the 10% level.

The above findings from our PPC estimate have some interesting implications. First, the negative
estimate on foreign R&D in Group 1 indicates that negative market rivalry effects dominate the
technology spillovers for countries inside Group 1. Therefore, technology change in those countries

relies mainly on innovations from domestic R&D stock. Moreover, this result implies that countries
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Table 7: PPC estimation results

Model (5.1)
Slope coeflicients Pooled Pooled Group 1 Group 2 Group 3
CHH2009 FM-OLS Cup-Lasso Cup-Lasso  Cup-Lasso
log(s%) 0.095%** 0.0997%** 0.289%** 0.101%** 0.058%*
(0.005) (0.027) (0.046) (0.023) (0.028)
log(s/) 0.213%%* 0.121%%* -0.147%%* 0.120 0.086
(0.014) (0.044) (0.057) (0.099) (0.068)
Model (5.2)
Slope coefficients Pooled Pooled Group 1 Group 2 Group 3
CHH2009 FM-OLS Cup-Lasso Cup-Lasso Cup-Lasso
log(s?) 0.098*** 0.054** 0.464*** 0.055%** -0.104%**
(0.016) (0.023) (0.064) (0.021) (0.027)
log(s/) 0.035%** 0.121%* -0.413%* 0.022 0.219%**
(0.011) (0.048) (0.138) (0.061) (0.063)
log(h) 0.725*** 0.615*** 1.405%* 0.550*#* 0.567+**
(0.087) (0.138) (0.564) (0.158) (0.130)

Note: Standard errors are in parentheses. ***, ** and * denote significance at the 1%, 5%,
and 10% levels, respectively.

in Group 1 do not favor convergence through the technological change channel. We call this the
“Divergence” group. Second, technology change for countries in Group 2 comes from balanced sources
— the innovation effects from domestic R&D stock and the catch-up effects from technology spillovers,
and interestingly, the magnitudes of those estimates are similar. From this perspective, countries in
Group 2 favor the growth convergence hypothesis. We refer to this group as the “Balance” group.
Last, the technology change in Group 3 is mainly determined by foreign R&D stock and we refer to
Group 3 as the “Convergence” group, which also favors the growth convergence hypothesis.

In model (5.2), we introduce an additional regressor — human capital, which is regarded as another
source of technology change. Our results from the pooled FM-OLS estimates confirm that human
capital is one of the main sources of productivity growth and there exist direct technology spillovers in
the full sample. When using our PPC estimation methods, we find similar heterogeneous behavior for
model (5.2) as that for model (5.1). We can still classify countries into three groups and define them
as groups of Divergence, Balance-Human capital, and Convergence, respectively. For the Divergence
group (Group 1), technology growth relies on innovations and human capital and countries in Group 1
suffer from strong negative market rivalry effects. For Group 2, referred to as Balance-Human capital,
the estimates of the effect of foreign R&D are not significant at the 10% level, and technology growth
still benefits from the innovations and indirect catch-up effects from human capital. For Group 3,
referred to as Convergence, countries benefit directly from the dominating technology spillovers. In

general, the divergence behavior is more statistically significant than the convergence behavior.
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Table 8: Group classification results

Model (5.1)
Group 1 “Divergence” (N; =T)
Austria Denmark France Germany New Zealand
Norway United States
Group 2 “Balance” (N2 =7)
Canada Ireland Israel South Korea Netherlands
Portugal United Kingdom
Group 3 “Convergence” (N3 = 10)
Australia Belgium Finland  Greece Iceland
Ttaly Japan Spain Sweden Switzerland
Model (5.2)
Group 1 “Divergence ” (N1 = 2)
Ireland United States
Group 2 “Balance-Human capital 7 (Ny = 16)
Austria Belgium Denmark Finland Iceland
Israel Italy Japan South Korea Netherlands
New Zealand Norway Portugal Spain Sweden

Switzerland

Group 3 “Convergence” (N3 = 6)
Australia Canada France Germany Greece
United Kingdom

5.3.4 Classification results

Table 8 reports the group classification results. We summarize several interesting findings. First,
based on the results for model (5.1), there are typically two types of countries in the Divergence
group — “Leaders” and “Losers”. Countries like France, Germany, the United States are already at
the global technology frontiers, and they own 61.1% of R&D stock in our sample. By contrast, the
remaining countries in Group 1 account for only 1.5% of R&D stock in our sample. Second, most
OECD countries are classified into Groups 2 and 3 when model (5.2) is used. We also notice that
four of the seven countries in the G7 are classified in the convergence group, viz., Canada, France,
Germany and the United Kingdom. These findings confirm those in Keller (2004) who finds that
the major sources of technical change leading to productivity growth in OECD countries are not
domestic but come from aboard through the channel of international technology diffusion.

In summary, we re-estimate Coe and Helpman’s model by using the pooled FM-OLS and the
PPC-based method with one unobserved global nonstationary factor. The pooled FM-OLS esti-
mates confirm the international R&D spillovers after allowing for an unobserved global factor. In
addition, our Cup-Lasso estimates show heterogeneous behavior in innovations and catch-up effects.
To the best of our knowledge, this finding is the first to empirically identify two types of technol-
ogy spillovers at the country level. Further, these results build an empirical connection between

the “Club convergence” theory (Quah (1996, 1997)) and the conditional convergence model (Barro
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and Sala-i-Martin (1997)). Consequently, economic growth patterns do vary across countries— some

exhibit convergence while others do not.

6 Conclusion

The primary theoretical contribution of this paper is to develop a novel approach that handles un-
observed parameter heterogeneity and cross-section dependence in nonstationary panel models with
latent cointegrating structures. We assume that cross-section dependence is captured by unobserved
common factors which may be stationary and nonstationary. In general, penalized least squares es-
timators are inconsistent due to variable omission and the induced spurious regression problem from
the presence of unobserved nonstationary factors. We propose an iterative procedure based on the
penalized principal component method, which provides consistent and efficient estimators for long-
run cointegration relationships under cross-section dependence. Lasso-type estimators are shown to
have a mixed normal asymptotic distribution after bias correction. This property facilitates the use
of conventional testing procedures using t, Wald, and F statistics for inference. A secondary contribu-
tion of the paper is to employ these methods in an empirical application that provides new findings to
explain the growth convergence puzzle through the heterogeneous behavior of R&D spillover effects.
Even though we do not allow for the presence of incidental time trends in our model, we have done
the extension to this case in Appendix E of the online supplement.

Several interesting topics for future research emerge. First, we do not allow the regressors to
share a similar factor structure as the dependent variable in our model. If the regressors are assumed
to exhibit factor structures, it seems possible to control for the unobserved common factors via the
cross-sectional averages of the dependent and independent variables and then one can extend the
common correlated effects (CCE) estimation of Pesaran (2006) to our framework. Second, as a
referee remarked, the factor loadings (especially those of the nonstationary factors) may also exhibit
a latent group structure, which may or may not be identical to those among the slope coefficients
{5(1),1} . If the factor loadings are not required to share the same latent group structure as {5(1),1‘} ,
we can estimate the model as in the current paper and then estimate the latent group structure in
the estimated factor loadings, say by applying the sequential binary segmentation algorithm of Wang

and Su (2020). Formal analysis of these topics is left for future research.
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This online supplement is composed of five parts. Appendix A contains the proofs of the main
results in the paper. Appendix B contains the proofs of the technical lemmas stated and used
in Appendix A. Appendix C discusses the identification of ,81 i~ Appendix D contains the detailed
procedure for the proposed method in the paper. Appendix E discusses an extension of the basic
model in the paper by incorporating incidental time trends to the y-equation. Appendix F reports
some additional simulation results. Let max; = maxj<;<y and min; = minj<;<n .

A  Proof of the Main Results in Section 3

This Appendix provides the proofs of Theorems 3.1-3.8 in the paper. These results rely on some sub-
sidiary technical lemmas whose proofs are provided in the Additional Online Supplement (Appendix
B).

Recall that dr = loglog T as defined in Assumption 3. To proceed, we define some notation.

(i) Let Hy = (FAYAS) (2 FPF) Vidy and Hy = (FAYAS) (FF9'F2) Vikr.

(ii) Let by = (b1,..., i) and by = (byy, ..., by ), where by; = B8;; — 87, and by; = B, — B, for
i=1,..,Nand [ =1,2.

(ifi) Let niyy = & Son, [|bri])? for § = 1,2, odp = & , Cyr = min(v/N,VT),
Syt = min(v/N, T), and Yy = NYIT1(log T)1Jr6 for some € > 0.

(IV) Let Qi,a}x = Tz 331 zM T1,i, Qz T (Fl) Tz xl zMlel i) and Qz T Qz,a:a:(Flo)

(v) Without loss of generahty, we set 1,0 = 0 and x20 =0 throughout the appendix.

To prove Theorem 3.1, we need the following four lemmas.

Lemma A.1 Suppose that Assumption 3.1 hold. Then for each i =1, ..., N,
(i) = 3] zMFO.I'lZ = fBgZBQZ,
(ZZ) Twl,lMFl()uz = f BQ,L — TF,LBg) dB1; + (AQLZ‘ — W;Aglﬂ'),
where By; = By; — [ BoiBY ([ B3B3) ™ By and m; = ([ BsBS) ™' [ BsBb;.

Lemma A.2 Suppose that Assumptions 3.1-8.2 hold. Let W; = (wl,i, F{)) Then for any fixed small
constant ¢ € (0,1/2),

(Z) lim SUPT 00 Hmax (F%JQW,WI> < (1 + C)pma.x a.s.,
(71) Uminfr_ oo fipin (dT W'W> > CPmin 0-S-s
(117) lim Supp_, o fax (dTT2 Ty z-MFo:L‘M> < (1 + ¢)pmax @S-,

() iminfr_, oo fpin (%TQ x Mpowy, Z) > Pmin/2 @.5..

1



Lemma A.3 Suppose that Assumptions 3.1-3.2 hold. Then
UEs» S = Op(drT2),
(1) SUDN 1 by p<as N Dict ‘
(iii) 3 3ol || e Lo 4, Mppujais
(iv) % X | — O(1),

where uf = uf (ba;) = u; + FINY; — 2,ba ;.

Lemma A.4 Suppose that Assumptions 3.1-3.2 hold. Then

(1) suPryer, SUPN—lnbn%MH# Soity b i M| = Op((T/dr) /),
= Op((T/dr)~'7?),

%gcll,iMFfui
2

%xll,iMF{’u;‘k = op(T~'NV4(log T)(1+9/2),

=O0p(T),

L M )
T2$1,z Flomlﬂ

(11)SUP e 7, SUPN -1 |bll2< M Hﬁ SN AL FY My
(iii) SUPF e, SUPN-1|b||2<M H# Zz 1% PFI i H = OP((T/dT)_1/2)7

where b = (by,ba), F1 is defined in Assumption 3.2(iv), and u} is defined in Lemma A.3.

Proof of Theorem 3.1. (i) Let Q; N7 (814, B, F1) = 73 (yi — 21,815 — %2,iB9,:) Mp, (yi — 21,81, —

K\ K\
T2 zﬁzz) and Qz ]7\/T(5117ﬁ217a ) = Qi,NT(Blmﬁz,z‘aFl)‘F)\ HkK=1 ||51,i—01k\|- Then Q7 (B1, B2, o, F1)
=% ZZ 1 Q; NT(/Bl i Ba, , F1). Noting that y; =181, —72,if2,; = —xl,ibl,i+F{))\?i+u;‘, we have

QiNT(B14s Bois F1) — Qint(BY 15 85,4 FY)

1
s
+ 5 <2>\ O Mgyl — 20 0 Mput —uf'(Pr, —PFIO)U;‘>, (A1)

/ ! 07 17207 040 / / 040
1M by + AGFY My FU A — 201 320 ;Mp FTAY;)

where v} = u; + Fz(])\gi — x9,:b2;.
Let Si N7 (81,4, F1) = 72 (b’l,ﬂf’l,z-Mlel,ibl,i + NG Y My, FPX),; — 2b/1,i‘73/1,z‘MF1F10>‘(1)i> = 7z (114
—FN) M, (21361 — FPAY,) > 0. Then we have

QNT(ﬁ17B27F1) - QNT(IB?HB& FIO)

N N

1 1 * *

=N Z Si,NT(B1, F1) + NT? Z <2>\(1)§ ,MFl — 20} 7,331 M ug —uj' (PR, — PFE)%‘)
i=1 =1

= Snr(B1, F1) + Op((T/dr) /), (A.2)

where Sy (8, F1) = %Zf\;l Si,nT(B1,4, F1) and Op((T/dy)~"?) holds uniformly in (8;, By, F1)
such that i Fl =I,, and +|/b||> < M by Lemma A.4(i)-(iii) and the fact that T Zf\;l u;' Ppou; =
Op((T/dr)~ 1/2). It follows that

QN7 (B1. By, 6. Fr) — Qi (87, 83, @, FY)
1 N A N K
=N > QN1 (B Boi F1) — Quri(BY4, 895, FY)] + N S T 18 — ll
=1

=1 k=1
>Snr(By, F1) + Op((T/dp) ™). (A.3)



Then by (A.2) and (A.3) and the fact that QJ[\(,’:,)J(BI,BQ, d,ﬁ'l) - Q%&;\(B?,ﬂg, a®, FY) <0, we have
1L,
Snr(By, Fr) = = N72 Z 21ib1s — FYAY) My, (w11 — FPAY) = Op((T/dr)~'/?). (A.4)

Let x; 5, = 1401, — FOX),. Noting that tr(AB) > Zthl i (A) pp_siq (B) for any two T' x T sym-

metric p.s.d. matrices A and B where {y, (-)};_, represent descending ordered eigenvalues (e.g.,
Bernstein (2005, p.326)) and M, is a projection matrix with rank 7" — rq, we have

N
a” o 1
i=1 t=r1+1
Therefore ZtT:r1+1 Ly (ﬁ Zi\il Xi7BIX;,Bl> = Op((T/dr)~"?). Then by Assumption 3.2(v), we

.2
must have HblH = Op((T'/dr)~1/?).
(ii) By the result in (i) and Lemma A.2(i),

1 1
dr Lty

~

b,

N
§ :A/ / 7
bl,z'xl,iMﬁlxl,ibl,i S dT m?x Mmax(

) o, a0

Combining (A.4) and (A.6) and applying the Cauchy-Schwarz inequality, we have
Op((T/d})™"/?)

N
1 .
= NTZ Z )\%FloMplFlo)\(l)i - 2b,1,ix/1,iMF1 Flo/\(l)i
i=1

v

N 1/2
1 0/ 70 040 07 170
NT2 Z AléFl MI:H 1Ay -2 NT2 § :bl le zM T zbl J NT2 E )\1;F1/M Fl )\
i=1

which, in conjunction with (A.6), further implies that # Zf\il /\%FP,Mﬁ’l FOX. = Op((T/d3) /).
Then Op((T/d3.) /%) =tr[(Fz FY Mg, FO) (3 AYAD)] > tr(F FY Mg, F) i (37 AYAD). Tt follows that
tr(%F{)’MﬁlFf) = Op((T/d3)7/2) as pmim(FAYAY) is bounded away from zero in probability by
Assumption 3.2(i). As in Bai (2009, p.1265), this implies that

FY'Mg FY FYR) FYE E{FY
T2 ToT2 T2 72

= Op((T/d}) ), (A7)

and 1 S B Fy s asymptotically invertible by the fact that 1 > FYFY is asymptotically invertible from
Assumptlon 3.2(ii). (A.7) implies that F1PF0F1 I, = Op((T/d%«)_l/2), which further implies

2
that || Py, — Pr|| = 2t(11, — & F{Prp Fr) = Op((T/d)71/2).

(iii) We want to establish the consistency of the estimated factor space F1, which extends the
results of Bai and Ng (2004) and Bai (2009). Our model allows for heterogeneous slope coefficients
in both nonstationary and stationary regressors and unobserved stationary common factors. Here

1/2



we don’t need the consistency of 3277; but require that Zf\; L 1B2,4]|? < M for some sufficiently large
constant M w.p.a.l (which can be proved as in Su and Ju (2018)). Note that F} satisfies

T2 Z —2if;)(yi — wiBy)' | Fr = F\Vinr. (A.8)

Using (A.8) and the fact that y; — xzﬁl = —xLilA)Li + FO)\? +u; = —xLilA)M + Ff)\ + FO)\2Z + 4; and
’LNLZ‘ = U; — 13271‘1)271‘. we have

N N N
. 1 - . 1 A A 1 -
PViNT =5 Z$1,ib1,ib/1,zf€,1,iF1 ~ N2 le,ibl,z')\?lFOIFl ~ N2 Z$1,ib1,iu;Fl
NT2 ZFO)\Obl iT1 zFl NT2 Zul 1 le zFl + =5 NT2 Z FOAO{L;F:L
1 A 1 A
+ NT2 Z UZAO/FO/F —|— — Zﬁiﬁ;Fl + NT2 Z FQO)\gZ)\giFQOIFl
=1 =1
1 & 1 1 &
t N1z > AN FY By + ~NT2 ZFS)\gi/\%F{),Fl t N2 > AN FY Fy
i=1 =1 =1
LN
=L+t I+ 5o > NG Fy say.
i=1

It follows that F1Vi vy — FY(FAYA) (A FY'Fy) = I+ ..+ T Let Hy = (£AYAY) (2 FY POV vy
It is easy to show that H; = Op(l) and is asymptotically nonsingular Then FyH{! — FY 0 _
Iy + o+ T] (G PO Fy) 1 (S AYAY) L and L HF1H 1 FOH < L)+ Tl H LRV )~ H

[(FAYAY)7L||. It remains to analyze ||| for I = 1,2,...,11. For I, we have that by the result in
111)

N
F1|| ||x11||2

1I<nz%v 73 Z Lill* = Op(drminr) = op(ninT),
-

[Ez%] [
III <+ Z bl

12 !
where we use the fact that max;<;<y % < maxi<i<N P1A7max (%) = Op(dr) by Lemma

A.2(i) and @ < /r1. For I, we have

LA 1/2 N 1/2

1 |FY F I [ 1S 1 o )

— < = -7 ) E . _ ) —

THI2H — T2 1I§a§}§v T N P Hbl,lH N T2 OP(UINT)?

where we use the fact that “%QFAIU = Op(1) and ||N}|| = Op (1) by Assumption 3.2(i). For I3,

1/2 N 1/2
1A el N B R T P O 73
Tl < =t max 2 NZHb i ﬁg = 0p (\/Zmnr ).




=12 12 ~
where % Zf\il ”“:’FH <2 (% Zf\il M + maxj<i<n ”sz’H ~ f\il Hb2,i\|2> = Op(1) by Assumption

3.1(i) and (iv) and the fact that maxlSiSNM = maxlSiSN%Zthl[ngﬁHg — E(szthQ)] +

max; ¢ E(||z2.4]*) = op (1) + O (1) = Op (1) by Lemma S1.2(iii) in Su, Shi and Phillips (2016, SSPb
hereafter). Similarly, for I; and I,

1 0] 1] P e R P

pin < BEUEL o g {2 S| {25 L optrr,

L & 1A g o {%i Haf\\?}m{%énél,in?}m _ oy (ﬁnm),
where we use the fact that ‘FTOH < ”};10” + # ”\};2;” = Op(1). For I, we have

%||16|| = % HNT?FOAO/&EH < J% <% )y > (% HFOH> J% |AY4|| = Op(T~Y2N1/2),
where @ = (41, ..., uy)" and we have used the fact that = NT HAO’UH = Op(1) and - HZZ 1A?b’ T2 ’

= Op(1) by Assumption 3.1(iv) and straightforward calculations. Analogously, we can show that
%HI7H = OP(T71/2N71/2). For Ig, Ig = ﬁ Zfil <uzu; — uib’mx’m — wz,ibz,iu; + .’L'27ib27ibl27i$,2’l-> Fl =
Ig1 + Ig o + Ig 3 + Ig 4. For Ig 1,

1 1

uuF1

2 (Hfs(a)ll + )1,

where v, (s,t) and &, are defined in Assumption 3.2(iii). Note that || Is(a)|| = T3(T2 ZST:1 1 /1511%)

<12
(TS S (s 02) = Op(T3) and |[15(0) | = TN -T2 S, | ] D@ 2N £ S,
1€5:11%) = Op(T~2N~1) by the fact that T~ S22 ST |lyn (s, 1)[|> < M by Assumption 3.2(iii) (see
also Lemma 1(i) in Bai and Ng (2002)) and that E(||¢,,|*) < N~2M under Assumption 3.2(iii). Then
s 1]l = Op(N~Y2T7=1 4 T=3/2). For Iy, we have

12, N
1 [EEx T 2 1o Jlual?
”[82“ STES T NZ”b il N; T

Similarly, we have L[Igs]| = Op(T~') and L|Iga]| < % ozl UL S™N 15y 12
Op(T~1). Then, we have %|/Is|| = Op(T~1). For Iy and I1o, we have

T 2 T 2
T3 yn(s.t)fi]| + T3> &aufis
s=1 s=1

T
2
t=1

1
ﬁ”fs,l\\z

1 L|[ED)? | F1| || AYAS

Tl = HNTzFQOAO’AOFQO/F H T” T’ | 1”' = Op(T™"), and

1 N 1 ||F I FO 3 AO’AO -
7ol ?H—NTZF{)A(I)’ABFQO’FIH Wias a H\/_H HTII | = ol _ Op((NT)/2),



where A%g = Op(1) by Assumption 3.2(i). Analogously, we have 7| I11]| = Op((NT)~/2). In sum,
we have shown that % HFIHfl — F{JH = Op(nnT + Tfl/zc']}}). Then (iv) follows. B

To prove Theorem 3.2 we need the following two lemmas.

Lemma A.5 Suppose that Assumptions 3.1-3.2 hold. Let 4] = u; + FQO)\gi — $277;ZA)27Z‘. Then

(i) HP — Ppoll = Op(myr + T2CNT),

(1) 772NT 1{/ 511 ”32 il* = OP(T_I/QCJ?T + TdT?ﬁNT)»

(iii) LFY (Fy — FYHy) = Op(Tyyr + 5NT +T-VACY?),

(iv) $F{(Fy — F?Hn Op(Tnyyr + 63 + T7VAC?),

(v) %ﬂ’{’(ﬁ’lel — ) = Op(VTiy N + 5NT) for each i =1,...,N.
Lemma A.6 Suppose that Assumptions 3.1-3.2 hold. Let Ry; = %$’17i(PF{) — Ppl)@;‘, Ry =
e Mp FON; —xi 0000 @ i M w1 jagiby e 3500 aigeh :Mpuj, Rai = i Y5m aija;(Pro—
P )uj, and Ry = %x’lviMFloﬂf — Zjvzl a;j@y ;Mpou;. Then

(i) Rii = Op(sinT) for each i =1,..,N, and N"'S°N | | Rui|* = Op(drsiyy),

(ii) Rai = Op(sant) for each i =1,..,N, and N~ SN ||Ry|* = Op(drs3nr),

(iii) Rsi = Op(sinT) for each i =1,..,N, and N~ "N | Rsi|* = Op(drsing),

(iv) Ry; = Op(T™Y) for each i =1,...,N, and N~*S°N | |Ryl|* = Op(drT—?),
T 20 nr + T Oy and oy = T_5/4C;7%r/2 + T2 g + drming + T3

where ¢iNT =

Proof of Theorem 3.2. (i) Based on the sub-differential calculus, a necessary condition for 3 1,5 32’1-
g, and Fy to minimize the objective function (2.11) is, for each 4 = 1,..., N, that 0,, , belongs to
the sub—difﬁerential of Q?‘\}éﬂ((,ﬁl,ﬁma, F1) with respect to (3 ; (vesp. ay) evaluated at {BM}, {3271},
{ax} and Fy. That is, for each i = 1,..., N and k =1, ..., K, we have

K
2 - N
Op1r = _ﬁ a MF1< - zﬁlz $2z/32z +)‘Z€zj H Hﬂl,i -y, (A.9)

J=1 I=11#j

where &;; = Hgil if |81, — éyll # 0 and ||é]| < 1if ||B1; — @5l = 0. Noting that y; — 21,5 ; —

$2,iB27i = $1,zb1,z + FlHl 1)\“ + ﬂ: + (Flo — FlHl_l))\?i, ’fb;k = u; + on)\gz — $2,ig2,i (Ag) implies that

R N 1 N 1 R
Qinbii = ﬁx’17iMﬁ,luf + ﬁx“ 7 PPN Ze” H 181 — aull, (A.10)
] 1 I=1,1#7

which can be rewritten as
1 N
Qizabri = NTZ Z af/LZ-Mlel,jaiijj + R, (A.11)
j=1

where R; = Ry;+ Ro;— R3;+ Ry _AR5i’ R1;, Roj, R3; and Ry; are defined in the statement of Lemma A.6,
and Rs; = 5 310 €55 [[/21 1z |B1i—ul|- By Lemma A.6(i)-(iv), we have that Y,y % Yoy | Rul* =



Op(TYdrn? yr + dT771NT + dTT* ). In addition, we can show that = ZZ LIRsi]12 = 0p (M) . 1
follows that + S | || Ri||> = Op(T “ldrniyy + dininy +drT T+ A%),

Let Q4 dlag(Ql’m, . QN zz) and Q- as an Np; x Np; matrix with typical blocks NT2 ) Mg w1 jaij,
such that
1 ! 1 !
le’lMplelan le’lMplxl,galg cee NT2 ZL‘l 1M T1,NOIN
1 ! 1 !
Q W$1’2Mﬁ1$171a21 W$1’2Mﬁ1$1’2a22 e WZL‘I 2M 1'1 NAo2N
2 = . .
1 /
NT2x1 NM T1,1aN1 le,NM Ti2aN2 - NT2x1 NM T1NANN

Let R = (R}, ..., Ry)'. Then (A.11) implies that (Q; — Q2)vec(b;) = R. Tt follows that
I A A . . . . ESE:
IRIP = tr (vee(br)'(Q1 — Q2)'(@1 = Qa)vec(5)) = b1 [1tun (Q1 — @)

By Assumption 3.2(iv) and Lemma A.5(i), we can readily show that p,;,(Q1 — Q2) > prin/2 > 0
w.p.a.1. Then 7jyy = NHbl”2 < Pmm i 1 IR\ = Op(T~ driiyg + 3y + drT =2 + A?). This
implies that +[[b1[? = + SN, HbMH? Op (drT=2 4+ X\?).

Next, we want to strengthen the last result to the stronger version: + Zfil 61,112 = Op(drT—2).

Let 3, = 39 —l—dl/zT_lv, where v = (v1,...,uy) is a p; X N matrix. Let v =vec(v). We want to show
that for any given €* > 0, there exists a large constant L = L(e*) such that for sufficiently large N
and 7" we have

. 1/2— e ~ T A n *
P{12N1n|f 2=L NT(ﬁl+d/ T 12}7/327a7F1)>Q1\}¥(ﬁ?7/3(2)7a07F1)} >1-—¢,
N Zi=1 IVill"=

regardless of the property of ,32, Fy and &. This implies that w.p.a.l there is a local minimum
By = (By, .., By) such that £+ S°N || ,]|2 = Op(T2). Note that

T2 [Q?\}?(ﬁl + d;“/2T_1U>B27&7 Fl) - Q?\}?(ﬁ?:ﬁ%v aO, Fl)]

d1/2 N d1/2 5 )
> % ; ( 17:2 ’U .I'l 'LM ajll,ivi - T le 1MF1 <F10 - FlHl))\g_)Z T Zml 'LMFA‘l “:)
N
dr 1
— N 2 ﬁ .’L'l ZM .’L'l Zv’b
1/2

N
T T-R a; b — G Mg uj
v; 2i + 51317, NT azﬂlz Flfﬁl,y Li = NT ATy ;M g U
=1
= Dint — 2D2nT,

where Ro; = T2 leM FON), — ﬁ Z;Vﬂ xll,z‘Mﬁ’lxl,jaiji’j + ﬁ Zjvzl aijlez‘Mﬁ’luj as defined in
Lemma A.6. By Assumptlon 3.2(iv) and Lemma A.5(iv), Dy = dWTv'le > dypiin (Q1) N1 |||
dTPminN_l ||'U||2 /2 w.p.a.1. Note that |D2NT| < {% sz\il ||Ui||2}1/2 Z?:l (DQNT7Z)1/2 , where D2NT,1 =



N " .
A5 Sy [ Raill?, DzNT,2 = v Lo @) My @12, Dans = o i g laigah ;M w1, 4112,
and Dont4 = m SN Zjvzl @iy ;M ujH2 By Lemmas A.6(i)-(ii) and A.5(i), we can show

that Doyt = T2OP(T_5/2CR7%“ +T ' N + iy + T 2517\/27") = op(1), and DNy < dzTTJif Zf\il
~ % N _ _
||%$QZ(MF1 _MF{’)’% ||2+_di >im HT%MFIO af|l> = TOp(ninr+T ICN%)"‘OP(D = op(1). Next,

11 R 2
2 / 7
Dont3 < a7 N3T2 ;; llai;]| H$1,iMFl.’L'1,ijjH

T L orpo - ||371,jH2 0|12 1 & 0|2 2 1 TR
< [ (FAYA)] s  fm DB 1§ e AR e N;Hbmu

= T—Qop( 1)Op (1) Op(1)Op (1) Op (d7T~% + N?) = op (1),

where we use the fact that max1<j<N % = Op (1) by Lemma A.2(i), max;<j<n H)\?jHQ =0p(1)
by Assumption 3.2(i), and s ZZ 1 H)\ H |z14]|> = Op (1) by Markov inequality and %HB;LHQ =

Op (drT~2 4+ X?) . Similarly, we have by Lemma A.5(i),
L 1] NN )
2
Donra < a7 N3T2 ZZ [|as;]] H@‘lleFluJH
i=1 j=1

T S > 3 S R

=1 j=1

2 2
/ /
w14(Mp, = Mpo)us||” + |21, Mipus }

= @OP( "Tine +T7'CN%) +1=o0p(1).

It follows that |Donr| = dpN—1/2 llv||[op (1). Then Dynr dominates Doy for sufficiently large

L. That is, T2 [Q?{;{F{(ﬁl + d;ﬂT*lv,BQ,&,FI) — Q?{;{ﬁ(,@?,ﬁg,ao,ﬁl)] > 0 for sufficiently large L.

Consequently, the result in (i) follows.
(ii) We study the probability bound for each term on the right side of (A.10). For the first term,
we have by Lemma A.6(i) and straightforward calculations

1
/ ~ %
Hﬁxl,z’Mﬁa”i

1 / A~k
< Hﬁxl,iMFloui

33/1@(MF1 - MF{J)@Z(

1
il
= Op(T™) + Op(T~ V2 Ny + T71ONE) = Op(T7Y). (A.12)

For the second term, we can readily apply Lemmas A.6(ii), A.5(i) and A.3(iii), and Theorem 3.2(i)
to obtain

N N
1 1 A 1
T2x1 Z]W Fl)‘ S ||R2,|| + WZQCQJMﬁlijjaij + N—Z ujaij
j:l :
= OP(T75/4CJQ1T/2 + T~ V20, Np 4+ deniyy + T~ YonT) + Op(niyr) + Op(drT ™)
= Op(drT™). (A.13)



The third term is Op (A). By Lemma A.5(i), fpi, (722} Mg z) = Mmm(%:p’l’iMFloxLi) +op(1).
Noting that (%J}/LiMF{)J}Li)_l is the principal px p submatrix Of (FZW/W;) L, ﬂmin(%l‘ll’iMFlofﬁLi)
umin(%ﬂfi' W;), and the last object is bounded away from zero w.p.a.l. It follows that IA)M =
Op(drT~' + \) for i = 1,2, ..., N.

Note that B% = <x’21MF1:L‘21> xh Mp (yi — 71 zﬁll) and

—1
’b2’LH_H $21M $2Z> xQzM wlzblz

1

1
’ + Hfﬂcé,iMplFlo)\?i

b

Iz

By the proof of Lemma A.5(ii) and Assumption 3.2(v), we can show that H T, Mp 2,)” ! H <M
sp

uniformly in ¢ w.p.a.1. Note that ||Pz — Ppo|| = Op(miyr+T 1200h) = Op(d;/2T_1 +(NT)~1/?)

and similarly = Hﬁlel - FPH = Op(d;,/zT—l + (NT)~%/2) by Theorem 3.1(iii) and Lemma A.5(i).

Thus

<Hl 22, H [[ui + F9A|

—T VT VT

= Op(T %) 4 Op(d*T ™" + (NT)"V/2) = Op(T"/?),

$I2,¢Mﬁl (ui + F5A3,) x,2,iMF10 (u; + FSAY,)

T 1

I

1 1 I |2 | P —
‘%%MIEA ‘%%M%GWE—WM%éﬁﬂﬂpTWwf—WWNM
= T'V20p(dy*T~" + (NT)"Y/2) = Op(d/*T~/2 + N~V/2),
; ! [zl Izl 5
HT%M 1ibis gH?mg,iMFPm lr,ql + ==+ Nl R T VT by

=0p(drT™" +X) + Op(drT ! + (NT)"*)op (1) = Op(drT~" + N,

0 0/ 0\ —1 ror 00
0 0 1 P I (F)EY (it FX5) 1,0 ‘ 010
Where :I)z zMFO (uz+F2 )\ ) T.'L'2 z(uZ+F2 )\2Z)+T T < T T L = szi (U/z + F2 )\2Z)+

Op(T~1) = Op(T~/?) by Assumption 3.1(v). It follows that Hlagl = Op(cllTﬂTfl/2 + N~1/2) for
i=1,2,..,N.

(iif) Let Pyr(B1, ) = % iy [Ty 181, — ol and éinvr(a) = T[Ty 1181, — el +H Z1IB —
apll x 189 — axll + ... + e, 189 ; — || By SSP (2016a), we have that as (N, T) —

< éz‘NT(a)”BI,i - B,

K K
H 181, — axll — H Hﬁ(l),i - akH
k=1 k=1

where éy7(a) < Cgnr(e)(1+28,,;—B%|]) and Cxnr(a) = maxi<j<y maxi<s<p<r—1 [ L1y ChsllBLi—
]| K175 = max; <)<k max)<s<p<riy—1 I, ck8||oz? — ag||K17% = O(1) with ¢, being finite inte-



gers. It follows that as (N,T) — oo

|Pnr(By, @) — Pyr(8Y, @) < Crnr(a Z 1b1,6ll + 2Cx N ( Z 1B1,4]|2

=1

1/2
< Crnr(a { ZHbMHQ} + Op(drT %) = Op(d*TY). (A.14)

y (A.14) and the fact that Py7(8),a?) = 0 and that Py7(B;,é1) — Pyr(B1,a?) < 0. we have
5 A > 0 0 = 0 .0 1/2mp—1
0 > Pyr(B4, 1) — Pnr(B4, @7) = Pnr(B5, &) — Pnr(B,@”) + Op(dy "T)

1 N K
= < > TT18Y, = aull + Op(ar* 1)

i=1 k=1

N N & Nk 15 2

1 A 2 A A 1 —

== Il lew = afll+ 7 T law = a3l + .. + = [T llaw — ol + Op(@*T7Y). (A.15)
k=1 k=1 k=1

By Assumption 3.3(i), Ny/N — 74 € (0,1) for each k = 1,...K. So (A.15) implies that [T, ||éu —
|| = Op(di> T for I = 1,..K. Tt follows that (&), -, &) — (0, ..., a%) = Op(di*T1).
(iv) By Theorem 3.1(iii) and Theorem 3.2(i), we have %||F1—F10H1|| = Op( T/ mar+T V20N, =
Op(d*T~1 + (NT)~1/2). m

To prove Theorem 3.3 we use the following two lemmas.
Lemma A.7 Suppose that Assumptions 3.1-8.3 hold. Then for any ¢ > 0,
(i) P (maXISiSN‘ 7z 05| > C¢NT> =o(N™1),
(ii) P <maX1§i§N‘ %x&,zMF{)a:“ > CdTl/JNT> = O(N_l).
Lemma A.8 Suppose that Assumptions 3.1-3.8 hold. Then for any c > 0,
(i) P (maxycicn |[Bull > edif* (g +T72CR}) (nr +T2(10gT)%) ) = o(N 1),
(ii) P (maxlSiSN | Roi| > cle/%zNT) — o(N7),
(iii) P (maxi<icn | Raill > edi*inr) = o(N ),
(iv) P (maxi<i<n ||Rail| > cdr ) = o(N71),
(v) P <max1§i5N HB“ - 50 ; ‘ > ¢ (Yyp + )\(logT)E/2)) =o(N7Y) for any € > 0,

) P (F 2 s - ] > e =08 for any >,

(vii) P <max1§i§N ‘

1T/2(771NT + TA/QCN%)) =o(N™1),
(log T)3(d/>T1/2 + Cj;lT)) — o(N71) .

(viii) P <maX1§i§N H/B2z - Bg,i
Proof of Theorem 3.3. (i) Fix £k € {1,..., K}. By the consistency of &; and Bl’i, we have

Bl,i —ay S o —a # 0 for all i € GY and | # k. Now, suppose that HB“ — d|| # 0 for some i € GY.
Then the first order condition (with respect to 3 ;) for the minimization of the objective function

10



(2.8) implies that

2 . 2 2
Tafll,i(MFf - Mpl)uf 951 zM Fl )\ T2 331

2.
"
)\Ckz
+< 9611 2 11 m ) (/817,_0% )+ T Z €ij H Hﬁu—alH
1, k

J=Lj#k  I=1l#j

Opyx1 = — iy Mpodf + Mg ah Ty — ad)

= — Ay + Ag; — Az + Agi + As; + Agi, say,

where é;; are defined in the proof of Theorem 3.2(i), éx; = Hl[iLl;ék ”Blz —q| L= H{ilh&k o —

af|| > 0 for i € GY by Assumption 3.3(ii). Let Unr = 1 np + AMlog T)/2. Let ¢ denote a generic
constant that may vary across lines. By Lemma A.8(v)-(vi), we have

P (v~ 2

>c\I/NT> =o(N 1) aHdP( ZHﬁu— ?,i i

. cd%w?w) oY)

(A.16)
This, in conjunction with the proof of Theorem 3.2(i)-(iii), implies that
P(|lag — ad|| > cdppyr) = o(N71) and P(mg}oc ki — | > ) /2) = o(N 7). (A.17)
i€GY

By (A.16)-(A.17) and the fact that max;e o %x’leFI 2 ; < cdrppay 5., P (maxiegg Agi| > cd%TwNT>
=o(N~!)and P <maxiegg Agil| > c)\T\IINT) = o(N~1). By Lemmas A.7(ii), A.8(i), and A.8(vii),
we have P (maxieqy | Aull > cTdryr) = o(N 1), P (maxieqy | Asill > edy*(Tnyyg + TV2C))
= o(N"Y), and P (maxieey [ Aaill > edif* (T yr + TV2CRE) (yg + T-V2(0g T)?)) = o(N7Y).

For As;, we have

N . A - . 2 ACki
(B1i — a) Asi = (By; — ou)’' <—$'1,¢Mp T+ = ) T(By,; — )
T° ' 1814 — dul|

> 2Qi e 1815 — anll* + TAkillBr; — dll = ARy — -

Combining the above results yields P(Zx y7) = 1 — o(N~1), where
ST {m s < edsf® (Tour + TV2CE) (vr + 72108 T>‘°’>}
el
N {max | A || < cle/2(Tn1NT +T1/2CN%F)} N {max | ki — c%! < 62/2}
i€G? i€GY

N {max HAM
i€G?

< chTTwNT} N {max HA&

i€G9

< C)\T\IJNT} .

11



Then conditional on Zix7, we have that uniformly in ¢ € Gg,

’ 511 — ) (Ag; + Az + Agi + As; + Agy)

Z) 511 o) As;
> LeAD — ¢ (Td *ny g + TY2d 2O + Td2ab g + NTUNT ) 1310 — dull
T T NT s

ZCT)‘CkHﬁl,z‘ — axll/2,

— ‘ — ) (Ag; + Az + Ay + Agy)

where the last inequality follows by the fact that Td%p/ 2171 nr + TV Qd;ﬂ/ QC]Q%F + Td%4pnp + NTU N7
= o(T\) for sufficiently large (N,T') by Assumption 3.3(iv). It follows that

P(Ek:NT,i) = P(i ¢ Gyli € GY) = P(Ay; = Ay + Az + Ay + Asi + Ag)
< P (1315 = &) Aul = [(Br; — ) Asi — (Bri — &)/ (Azs + Agi + Asi + Asy))
< P(||Ai1]| > ¢TAS /4, Znr) +o(NTH =0 as (N, T) —

where the last inequality follows because T'A > T'dr1) y by Assumption 3.3(iv). Consequently, we
can conclude that w.p.a.1, 1 ; — & must be in a position where [|3; ; — ai| is not differentiable with

respect to 3; for any i € G}. That is, P(||,5’1Z —agl|=0li € GY) =1—0o(N"1) as (N,T) — oo

For uniform consistency, we have that P(Ui(:lEkNT) < Zle P(EkNT) < Z,i(:l ZieGg P(EAkNT,i) <
Nmaxi<i<y P(||Anl]l > cTAY/4) + o(1) — 0 as (N,T) — 0o.This completes the proof of (i). Then
the proof of (ii) directly follows SSP (2016a) and is therefore omitted.

To prove Theorem 3.4, we use the following two lemmas.
Lemma A.9 Suppose that Assumptions 8.1-8.3 hold. Then for any k=1, ..., K,

() 5o Lice, TiMa FIN = 5o Lica, & g1 TriMp a1 jaiby — i Yica, ¥ Ljen
aijxh ;Mg u; N1T2 Zzeék ¥ Zjvzl aijay ;Mp, FYNS; + op(N~12T1),

(ii) Ni T2 Zzeék oy i Mp 1 = ﬁ ZieGO 4 iMpoz; + op(1),

(ii1) m > il xiMp, [(uz + FINY; ) -~ Z] (uj + F /\QJ)a”] = Uint + 0op(1),

(1v) gz Yicc, W ojecy TLiM i 150 = F7 Yied & 2ojec? T1iMpot1aij + op(1),

(v) ﬁ Zz’eék :B'I’Z-Mplxg,ii)g,i = OP(Nfl/szl).
Lemma A.10 Suppose that Assumptions 3.1-3.8 hold. Then

(i) Qnr 2 Qu,

(i1) Ugnt = Vient + Bient +0p(1) for k=1,.., K,

(iii) VN1 LY (0,9Q0) conditional on C where Qo = limy 700 QN7
Proof of Theorem 3.4. (i) To study of the oracle property of the C—ALasso estimator, we invoke
the sub-differential calculus. A necessary and sufficient condition for {;;} and {&x} to minimize
the objective function in (2.11) is that for each i =1,..., N (resp. k =1, ..., K), the null vector 0p, x1

belongs to the sub-differential of Q?{}?(ﬁl,,@z, a,Fl) with respect to (1, (resp. ay) evaluated at

12



{BM} and {d&x}. That is, for each i = 1,..., N and k =1, ..., K, we have

K K
2 A - .
OP1><1 - _lel,i*]\4p1 (y I 161 i T2 7,621 N Z H Hﬁl,i - al”? (A18)
J=1  I=Ll#j
P K
Opix1 = 3 e I 1B —al, (A.19)
=1 =1,k
where é;; = ”gil—:z” if |8; — aj|| # 0 and ||&;] < 1 if ||f5’1Z — &j|| = 0. First, we observe that

181, — éxll = 0 for any i € Gy, by the definition of Gy, implying that §y, — & — of —af # 0
for any i € G, and [ 7& k by Assumption 3.3(ii). It follows that ||é;| < 1 for any i € Gy and
e —_ B 7aj Oék

U7 Bl Taa &

K ; .
Zieék Zj:l,j;ék €ij Hl:l,l;ﬁj Hﬁl,z — | = Zigék Zj 1,55k % Hz 1,l#j [[éur — éul| = Op,x1, and

w.p.a.l for any i € G and j # k. This further implies that w.p.a.1

K

N
Opix1 = ek | 81— aull

i=1  1=1l#k

K K K K
=3 e [ Naw—aull+ > e J] WBi—all+ D> D e [[ oy —aul

icCp  1=Ll#k icGo  I=Ll#k j=Li#kie,  I1=1i#k
K K
= > e [] law—al+d en [I 15—l (A.20)
ieG,  =L1Fk icGo  I=L1#k

Then by (A.18)-(A.20) we have

NkT2 Z L zM ( - Zak — T2 1182 )i Z Cik H ||B1 g al” - O101><1 (A21)

ZEGk lGGo I=1,l#k

Noting that 1{i € G} = 1{i € G} + 1{i € G}, \ G} — 1{i € GY\ Gy} and y; —x“ak—kxuﬁgﬂ-
FONY, + F9NS, + u; when i € GY, we have

NTQZ Flyz*NTQZ@“u le,BJrNTQZa:“ Flo)‘(l)i NT2Z$ A

zeGk 1€Gk zeGk zeGk
1 1

0 / 0 ! 0

x! 7210+ g Z 7 Mz x1:07, — —— Z T Me x50

NkT2 Z 1 z 2k NkTQ . 1,54 Fy ,Zﬁl,z NkTQ ) 13+ 1%k

ieGY z‘eGk\GO i€GI\Gy
0 00
Tg Z i Mp w25 ; + T2 Z ;Mg FY N + T2 Z 2y Mp, (u; + FRA%).
ZEGk ZEGk ZEGk
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Combining (A.21) and (A.22) yields

NTQZ.I']_,LM x11< k—ak NT2Z$1,L F]Q)\?,L NT2Z$1,L 2 uZ+F2>\ )
ZEGk ZEGk ZEGk

+ Olk — CQk + ng — O4k, (A.23)

where élk = ﬁ Zieék\Gg x'lyiMﬁlxl,iB(l)’i, égk = ﬁ ZieG%\G’k $/17Z<MF1$171‘O[2, Cgk = ﬁ Zieéo éik
X Hl]il,l;ék ||31z — ¢&|| and Cup = NleQ ZZeGk T} Mg 11321?)21 By Theorem 3.3 and Lemmas S1.11-
S1.12 in Su et al. (2016b), we have P(N1/2T||C’1k|| >€) < P(FkNT) — 0, P(N1/2T||Cgk|| >¢) <
P(Eyyt) — 0, and P(NV2T||Capl| = €) < 334, Yieqn Pli € Goli € GY) < 3535 Yicy P(Binry) =

o(1). Tt follows that ||C1—Cor+Csi|| = op(N~Y/2T-1). By Lemma A.9 (v), ||N T D icl, Mg, To b
— op(N~'/2T~1). We have By Lemma A.9(i), we have as g —0

N N
NkTQ Z 1M Flo/\?l - N, T2 Z Zx/l,l 'xldawblv] N, T2 Z Zaijxll,iMﬁluj

i€Gy ieGy j:l en j:l
NkTQ Z Z aZﬂ:l Mg, F2 )\23 + OP(Nfl/ZTfl)- (A.24)
ZEGk ] 1

In addition,

NkT2 Z Za:“ acl,]a,]bld NkT2 Z Z Z xy M a:ljjaw( & — Oé?)—l-OP(N*l/?T*l)

ieG, J=1 en l 1jeq
(A.25)

by Theorem 3.3. Let QinT :diag(ﬁ Zz‘eél @) Mp g, ﬁ ZieéK xlleF13311> and QonT
is a Kp; x Kp; matrix with typical blocks W ZieGk Zjeél aij@"l,iMplafl,j such that

NN1T2 Z’LEGl Z]€G1 al]xl ZM l‘l,j, e NN1T2 Z’LEGl Z]EGK aljml ZM l'l’J
A - NN2T2 zzeGQ decl awxl Mp T, - NN2T2 ZZEGQ deGK awwl iMp, 1,5,
Qant =
1 . N S .
NNgT? ZieGK ZjeGl aijzy ; Mp  TLgo NNxT? ZieGK dec aijzy ; Mp 1 TLj

Combining (A.23)—(A.25), we have vV NTvec( &—al) = (QlNT—QQNT)_I\/DNKlffNT+0p(1), where
the kth element of Unp is
| N

o) My | (ui+ F3AY) _N

UkNT—\/—T UJ+F2)‘ ;)

ZEGk

and Dy g :diag(Nﬁl, ey NLK)@)IPI. By Lemma A.9(ii)-(iv), we have that QlNT—QQNT = Qnr+op(l),
Unt = Unr+0p(1), where Uyt and Qnr are defined in Theorem 3.4. Then we have v NTvec( é& —
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o) = Q;\}T\/DNKUNT—&—Op(l). By Lemma A.10(ii), we have Uyy7—Brnt1—Bint 2 = Vinr+op (1),
where Vin7 and Byyt = BinT,1 + BinT2 are defined in Theorem 3.4. Thus,

VNTvec(& — a°) = Qi v/ Dk (Vir + Byr) + op(1), (A.26)

where Vyr = (V{yps -, Vieyr)' and Byt = (Bl y7s - Brenr)'-

(ii) By Lemma A.10 (i) and (iii), @nr <, Qo and Vyr <, N(0,€p) conditional C. This result, in
conjunction with (A.26), implies that v NTvec(&—a®)—/DnrQniBNT 4, MN(0, DoQqy *Q0Q5 ).
|

To prove Theorem 3.5 we use the following lemma.

Lemma A.11 Suppose that Assumptions 3.1-8.3 hold. Then, as (N,T) — oo,
(i) 1 FiAui — FOX | = Op(v/ Tty ) + Op(Cib),
(ii) =l F2 — F9Ha|l = Op(Ciy),
(ii1) Zh= Sic, (P2 — H’1>\°») = op(1),
(iv) & Hmm FON,|| = op(Oh),
(v) \/;— Zzgé’k(A21i - Azl i) =op(1),
(1) 7% i T G =2 1 <13 = 0p(1),
(vit) \/— Z,LGGO (A24,)\2@ A24Z/\21) =op(1),
(viih) g Sieo Sty e [Bas1 {s < 8} Aoy idoi — a1 {s < 1} Agahg] = op(1),
(iz) Qnp = QNT - 0p( ) and Q. = Qfp +op(1),
where Xgi =\, -+ Z 2jaw

Proof of Theorem 3.5. ( ) We first consider the bias-corrected post-Lasso estimators vec(é& Ig) By
construction and Theorem 3.4, we have

\/7Tvec(“bAc - a%
= \/7Tvec( A% — &) 4+ VNTvec(a — o)
_ A—1 (7 :
= VDnkQypVnt + DNk {QNT Byt + BnT2) — QNnp(BNT1 + ByT2)| +o0p(1).

It suffices to show that \/]_VTvec(ézlgf —af = \/DNKQ]_VITVNT + op(1) by showing that (il) OinT —

Qanr = Qnr + 0p(1), (i2) Byra = By + op(1), and (i3) Byrz = Byra + op(1). (i1) holds by
Lemma A.9 (ii) and (iv). For (i2), it suffices to show that Byyr1—Brnr1 = op (1) fork =1, ..., K. By
Theorem 3.3 and using arguments like those in the proof of Lemma A.9(ii), we can readily show that

Binty = Benratop(1), where Binra = 7= Yicao Bori= 7807 Yieas Dimt Damr Fs1 {5 <t} Mg
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It follows that

1 1
Binta — Bunra = o Z (Ao1; — A1) — —— 1{s <t} [%tsAm i — 50921 +op(1)
GGO NkT zGGg t=1 s=1
) LI
=N > (Agri — Agyy) - T S saa{s<t} Z (Agri — Ag1y)
k t=1 s=1 0
zEG’,C ZEG’
N LT
k .
—TZZ(%tS—%tS)]_{S<t} ZAQlZ +0P 1)
=1 s—1 Fican

=Bint1 (1) + Bent,1 (2) + Brnvra (3) + op(1).

We can prove BkNT,l = Bin1,1+0p(1) by showing that Bynr1 (1) = op (1) for [ = 1,2, 3. Noting that

%E?:l Soi dasl{s < t}‘ < 75 IARD D ‘ flt” Hf1s = Op (1) and N%c Ziegg Ao = Op(1),
these results would follow by Lemma A.11(v)-(vi). To show (i3), we first observe that

1
Byt =T EXG:O E (2);1C) Mpo FO [ 29 Z 2 aij
1=k
1 . i
= . E (2] ,;IC FO)\.—— E (< .|C) P oY = B _B 7
VN T zezG:O (2141C) F2 Aoy N T zg;:o (2141C) ProFy Ay = Bint21 — B2
k k

where Ay, = Ay, — & SN, Njay;. Let 20172 = (65211 (L), P22(1)), 67112 = (657 (L), 657 (L)) =
(¢ (L), ¢ (1)), and vf** = (v]"", v]")". Note that ey = wf, = ¢ (L) vij+65° (L) v+ (L) v

+¢°1 (L) Ugcl + ¢¢2 (L) vf2 By the BN decomposition and the independence of {v}{*} and {Uslfz}
we have

fgt =Sqwir = ¢f2f1 (L)vfl + ¢f2f2 (L)U,{z _ ¢f2,f1fz (L)vflh
:¢f2,f1f2(1)vf1f2 + Sylis_1 — Saibis,

t
Ec (a:l it) =E¢ (Sg Z wzm) = Z <¢§f1 (L) UT{% + ¢‘z?f2 (L) Uf;?b) — ¢5,f1f2 (L) thlfz

m=1

:¢§7f1f2 ( )Wflh + SoFe (ﬁ)z'o . ﬁ)z‘t)-

where %flfz = (‘@fl/,‘/tfz/)’ = (Zin . f;%/, Zm 111{,%) wy and Wy are defined in Assumption 3.1.
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1 <0
Let Bf o = Wi ZieGg Sod> o> o ¢i7l+7,¢;’l5£)\2¢. It follows that
BinT 21 — BZNT 21

Z Z¢ ,flfz Vf1f2 f1f2'¢f2,f1f2( 2, Z SQZZ@ l+'r¢zl‘5’4)\2l

eGO t=1 eGO r=0 [=0
LT LS g () (VS fo — 1)1y 5
eGO t=1
T—1 00 iy
Z 52 { Z (EC (wit11) @ Z ?; l+1¢z l) 54)\21 Z (bz‘,l—&-l(b;,lsfl)‘%
eGO =1 z:o
1 ~ 0 1 d 70
- (EC (Wio) f1le¢f27f1f2( 1) — @70%(1)/&1) A+ - ZEC (3 Utf1f2/¢f2,f1f2(1)/)\2i
t=1 t=1

T
1 - so0 1 - <0
_TEC (; wit) WipSyAg; + fEC (wi1) wéOSz/L)‘%}

! 10
=/ ) Qf + Z 82{ i1 +R1T2+R 3+R1T4+R T,5 +RzT6}SA/1)‘2i7
e

where we use the fact that qﬁf’flfz( 1) ¢™12(1) = Sy¢, (1) ¢, (1)’ S} by construction and that

St Y20 Giarti = ¢ (1) ¢ (1) =312 ¢z,l+1¢z,l+¢z,0¢z< )'. Following the proof of Lemma A.7 in

HJS, we can show thatﬁ ZieGg SQR{%’ZSZL)\% =op(1) for I =1,...,6 and ﬁ ZieG% E(Q{%) =0.

It follows that Bynro21 = Bjyra + opr(l) = \/;N_k ZieGg A2471-Z\3i + op(1). Analogously, we have

Bent2 = Bpypgs +op (1), where Binras = \/;N—k ZieGg % Zlirzl ZL sas1{s < 152327203 %,
30 * *

¢i,l+r¢§,lsz/1)\2¢- Let Binro = BZNT,zl — BinT,22- Then

T T 0o o0
N 1 1 -0
Bintp U Z T Z Z (H{s =1t} —sa:1{s <t}) Sy Z Z i 1r P 1S4 A2
Fiegy T t=1 s=1 r=0 =0
T t o]

:% His Z

t=1 s=1 r=0

M

E e f f
(¢li1r¢{2f1 + oo 2) E Ao

~

By Theorem 3.3 and using arguments as used in the proof of Lemma A.9(ii), we can readily show
that Bynr2 = Bent2 + op(1), where Byt = \/— ZZGGO T Zt 1 Zs 1 %t3A24Z)\21 Thus we can
prove that BNTQ = Bnt2 + op(1) by showing BkNT,g = BkNT,2 +op(1) for k=1,..., K. Note that
3 * Ao\ 30 T =T A A

BkNT:Q_BkNT,Q = \/;N_k ZieG%(AQ4,iA2i_A247iA2i) —ﬁ Zieag Zt:l 23:1 1{s <t} [PasQoqir2i—
%t5A24,i5\gi] =op(1l) —op(1) = op(1) by Lemma A.11(vii)-(viii). Consequently, BkNT’g — Bint2 =
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op(1). In sum, we have \/NTvec(&béc —al) = \/DNKQIV}VNT +op(1).
(ii) For the fully-modified post-Lasso estimators dém, we first consider the asymptotic distribution

for the infeasible version of the fully modified post-Lasso estimator aG Noting that yz =1 7Jozk +
3727152,1 + FOXY, + FON), +uf, by (A.23) and (A.24) and Theorem 3.3, we have

fm 0
T2 Zx“M 21,4(G Gk_ak) NkTQZ LiMp (u +F2)‘ T2 Zw
ZGGk ZGGO ZGGk
1 1
Biyr, — ——— N7Y2r=h (A27)

- m ENT,1 mTBk:NTQ + op(

Combining (A.25), (A.27) and Lemma A.9(i) yields

NkT2 Z xy My xlz(aék —af) NkTZ Z Zfﬁlz £,%1,j@ijb1;

en ieG, J=1
1 N
o My [ - 5 e | 4o 3 Mg | 0 wa
k ZGGO j=1 zGGO
1 + 1 N‘1/2T‘1).

- \/mTBkNT’l - \/MTBkNT,Q + OP(

By (A.25) and Lemma A.10 (i)-(iii), we have \/_Tvec —ao) = (QlNT—QgNT)_l\/M[(U}\‘,}—F
UJ{?T) _B]TIT,l — Bnr2] +op(1) =D QNTVNT + Op( ), where

N
Ulq:J]rVT Z M F9 ul — Z zyu )
zGGO Jj=1
| X
Ulf,zNT Z xleFO on N Zaing )
eGO j=1
] T T
Vivea = == >0 S0l S0 (e (Vi ™) = [t = s} = 51 {s <0} Ty | 0] (1)'S™,
7 NiT i€GY t=1 s=1

1
E (21,/C) 1{i € Gy Mo Z aUT (#,41C) MFOU
jEGO

1
VkJJrVT,2 = VN, Z
=1

Z [z1,; — Be (z1,0)] MF0F2 A%
ieGY

1
Vints = INT
k

and U,j Nt = U, ,?TVT + U IszT and VJVT = V,;]“VTI + V,;]“VTQ + VkNT,3 are the kth block-elements of
Up and Vibp, respectively. We have a new error process wjt = (u}, Az} ity A f1gs for, 75 ;)" whose

partial sum satisfies the multivariate invariance prlnmple —= Zt 1wl = B = BM(Q). Following
the proof of Lemma A.10(iii) (see also Theorem 9 in Phllhps and Moon, 1999), we can show that
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Var 4N (0,9f) conditional on C where Qf = limy, 700 Q7 and QF, =Var(Vy|C) . Then we
have

\/NTvec(dém —a 4, MN (0, DOQO_IQS_QEI)-
Next, we show that dém is asymptotically equivalent to &ém by showing that VN T( o ém) =
op (1). Note that

‘/NT(dfm &ém) =V Dnk [(QlNT — Qont) N Uy + B]J'\_TTJ + Bn12) — Qur ( N7t BNT 1+ BNT 2)} .

Then it suffices to show (iil) QlNT — QQNT = Qnr + op(1), (ii2) BNT1 = BNT1 + op(1),(ii3)

UJJ\?T = UJJ\?T + op(1), and (ii4) BNT’Q = Bn12 + op(1). (iil) and (ii4) have been established in the
proof of part (i) of the theorem. For (ii2), we can apply arguments analogous to those used in the

proof of Lemma A.11(v) to establish that E¢ Hﬁ 2 il (Q — Q) ‘ =Op(%+ %) =op (1) . Since

2
A = op (1). The latter

Img —

= Apmi — leﬂ-Q;n%Am,i, this implies that ‘

1
VN Zie@k( 21, — A )
further implies that BX]Tl = B, + op(1). For (ii3) we can apply Theorem 3 to show that
T+ +
Uint = Uinr

__7Tu+ U+ U+ u+
_UkNT - UkNT + UkNT - UkNT

N
1 1
At ~t
/—T ZG l‘ll Fl uz - N leazlju] - NkT ZG l‘aﬂ Fl Zaﬂ”u + OP )
1€ k = v ic X
N
— 1 / ~+ + 1 ’ ot "
_\/WT GEG:O M (8 =) - VNWNT GEG:O ;ml,z‘Mﬁl (“j — U > aij + op(1)
0 j=

\/WT Z 2y ;A <912ZQ221 Qmﬁm) - \/JWT Z i Pp Az (Qm’ i — QlQlQQQz)

1 s A
- =T wi,iM A1 ( Q12,0595 — Q12,055 ) aij + 0p(1)
NeNT 220 =
7 kY

=UU; + UUy; + UUs 4 op(1),

Fru+ 1 ! . +_ LN o F Frut+_ prut
where U,/ = TN ZieG% zy Mg, (ul N D1 az]uj> and Upyy — Uiy = op(1) by Lemma

A.9(iii). Following the proof of Lemma A.11(v), we can show that UU; = op(1) for { = 1, 2, 3. Then
(ii3) follows. This completes the proof of (ii).
(iii) The proof is analogous to that of (ii) and is omitted. W

To prove Theorems 3.6-3.7 we use the following two lemmas.

Lemma A.12 Suppose that Assumptzons 3.1-8.8 and 3.6 hold. Then

(i) For any 1 <1y <r{, V1(7“1, 1) — Vl(rlvFOHm):OP(\/T)v

(ii) For any 1 < r; < 7”17 phmlnf(MT)_,oo drT— [Vl(rl,FloH{l) - Vl(rl,Flo)] = dy, for some
dr, >0,

~ ~ .0
(iii) For any 7“1 <11 < Tmax, Vi(ry, FI') — Vl(rtl),Flrl) = Op(1),
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where Vi (r1, FOHY) is defined analogously to Vi(ri, FI*) with FT* replaced by FYHT*, and H}* =
(N IAO/AO) (T ZFO/FTI).
Lemma A.13 Suppose that Assumptions 8.1-8.8 and 3.5 hold. Then

(i) For any 1 <1y <19, Va(rg, F32) — Va(ra, FYHy?) = Op(Cyh),

(ii) For each 1y with 0 < ry < 19, there exist a positive number ¢, such that pliminf y 7)o [Va(re, F§ H3?)
—Va(ry, F9)] = cr,

(iii) For any fized ro, with 8 < ro < Tmax, Vz(?“z, ) — V2( 0 FTZ) OP(CN%)»
where Va(re, FYHY?) is defined analogously to Va(ra, Fy? ) with Fy? replaced by FOHY?, Hy2 = (N~'AYA9)
x (T EY F32).
Proof of Theorem 3.6. Noting that 1C(r1)— ICl(rl) Vi(ry, FT)—=Vi(r?, F{g)—(r?—rl)gl(N, T),
it suffices to show that P (Vl(rl,Fl”) - Vl(rl,Frl) (r) —r1)g1(N, T)) — 0 as (N,T) — oo when

r1 # r{. First, when 71 < r{, we consider the decomposition

~ 0 TO
Vi(ry, ETYY = VA, YY) = [V, ETY) — m(mﬂH{l)}+M(rl,FPH?)—%(r%FPHf)]
+ (0, FOHY — Vi, B{Y) = DViy + DVig + DVis.

By Lemma A.12, DV} = Op(Tl/Q), DV, 5 is of exact probability order Op(T'/loglog T'), and DV; 3 =
Op (1). It follows that

A~ A 0
P(ICy (1) < IC1 (1)) = P (Vi(re, F{) = Vi1, 1Y) < (1§ = r1)ga (N, 7)) — 0

as g1(N,T) (loglogT) /T — 0 under Assumption 3. 5

Next, for r1 > 79, we have Vi(ry, F/*) — Vi (r0, F} ) = Op(1) for r1 > ¥ by Lemma A.12(iii),
and (r; — r9)g1(N,T) — oo by Assumption 3.5. Thlb implies that P(IC’l(rl) —I1C1("Y) < 0) =

~ ~ 0
P(Vi(ri, F{Y) = Vi(rf, 1) < (1) = r)gi (N, T)) — 0 as N, T — co. W

Proof of Theorem 3.7. Noting that ICs(r2)— ICQ(TS) = Va(ra, F?)—Vg(rg, ﬁgg)—(rg—rg)gg(N, T),
it suffices to show that P (‘/2(7“2,1:_12712) Va(r9, Fy ) < (r —72)g2(N, T)) — 0 as (N,T) — oo when

ry # r9. We consider the under- and over-fitted models, respectively. When 0 < ro < 79, we make
the following decomposition:
A~ A 0
Va(ra, F3?) — Va(r3, E3?) =[Va(ra, 5%) — Va(ra, FSH?)| + [Vi(ra, FOHE?) — VA(r), FOHY)
7‘ T’O
+ [VA(rS, FYHy?) — Vi(r3, Fy?)] = DV + DVag + DVajs.
DVi; = Op(Cyr) for I = 1,3 by Lemma A.13(i). Noting that Vi (re, FY H?) = Vi(rg, F), plim inf (v 7)—00

DVis = ¢ when ry < r§ by Lemma A.13(ii). It follows that P(IC2(r2) < ICa(r9)) — 0 as
g1 (N T) — 0 as (N,T) — oo under Assumption 3.5.

Now, we consider the case where rJ < 79 < rmay. Note that C¥p[Va(re, F32) — Va(r9, F, )] =
Op(1) and C%45(r2 — 19)g2(N, T) > C%,1.g2(N, T) — 00 by Lemma A.13(iii) and Assumption 3 5, we

l;ave P(ICy(r2) < ICy(r9)) = P(Va(re, F3?) — Vi (r2,F2rz) (rY —7r2)g2(N,T)) — 0 as (N,T) — oo

To prove Theorem 3.8 we use the following lemma.
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Lemma A.14 Suppose that Assumptwns 3.1-3.3 and 3.7 hold. Then maxi,<K<Kmax ’UG(K N

A?;(KO A)‘ OP(VNT) where UG(K N NT Zk 1216Gk(K)\) Zt 1 Wit — UP(IKA)im,n 521352 it —
/\11(K, ) flt(K, N2 and vy is defined in Section 3.6.
Proof of Theorem 3.8. First, we show that
1C3(Ko, A) = 10g[V3(K0)] +PK093(N T)
. . . 2
= log — NT Z Z Z [yzt KoLt ~ 5,2,z-$2,it — Mi(Ko, N f1:(Ko, A)] +op(1)

k=1icGy(KoN) t=
% log(c).

We consider the cases of under- and over-fitted models separately. When 1 < K < K, for G&) =

(GK,].a ceey GK,K) we have

K T
V) =g Yo 30 30 [ a0 i = s GO 0 = B ) a6 )]

K
. 1 5 A / % K)\ # K\ ]2
= 1<R<Ko G(K)efg ) NT Z Z Z [y” aGK Wit = Boi(GUE, A)) it — MG fuu(G ))]

. . ~92
= min inf o .
1<K <Ko g)egr)  GUO

By Assumption 3.6 and Slutsky’s lemma, we can demonstrate

> ~2 p 2 2 .
Jpin, IC3(K, \) Jin, G(IgglefG log(6¢)) + pKgs(N,T) = log(c”) > log(g)

It follows that P(min1<K<K0 IOg(K /\) > ICg(K(),/\)) — 1.

When Koy < K < Kpax, we can show that NT[ GEN) &QC:(KO,A)] = Op(1) when there are no sta-
tionary regressors, unobserved common factors, or endogeneity in 1 1, T'[6% 2 &2 | =0p(1)

G(K)\) 7 &Ko A

when there are stationary regressors but no unobserved common factors, N [ aN ~ Tere )\)] =

Op(1) when there are nonstationary factors but no stationary regressors or factors, and C NT[ 52

e oV
Aé(K /\)] Op(1) otherwise. Then by Lemma 14,
P < min IC5(K,\) > IC3(K), ))
KeKk+
- (KHel}?+ vivr log(0% G(K, A)/Aé(Ko,A)) +vnrgs(N, T)(K — Ko) > 0)
/\2 ~2 72
(Knel}?+ V(6 (K N " o) Ty T YNTI3 (N T) (K — Ko) > 0)

—1 as (N,T)— o0
where KT ={K : Ko < K < Kpax}.
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B Proofs of the lemmas in Appendix A
Proof of Lemma A.1. (i) By Lemma 2.1(c) in Park and Phillips (1988), we can show that

1, 1, 1,
ﬁxl,iMFloxl,i = ﬁ“’l,ﬂl,i - ﬁxl,ipploxl,i

1 T 1 T 1 T -1 1 T
= Z T1,it @) 5y — 73 Z 1, fif (ﬁ Z f?J?{) 73 Z Fowl
t=1 t=1 t=1 =1

-1
= /Bm‘Béi —/BziBé </ B3B§> /B3B§z' = /B%Béia
where Bgi = Bgi — fBngé (f BgBé)_l Bg.

(ii) By Lemma 2.1(e) in Park and Phillips (1988), we can show that

1, 1 1
—2' Moow;, =—x u; — =2 . Prou;
Txl,l FlouZ Tw171u1 Txl,l Flou'L

s 1 — 1 — R
=7 > @i — T2 > wiaf (ﬁ > fftf?{) T > Fua
=1 =1 =1 =1

1
= (/ BoidBy; + A21,z‘> — /B%Bé </ B3B§> </ BsdBy; + A317i>

=/ (Bai — m;B3) dB1; + (Ao1,; — miAs1,4),

where m; = ( 1l B3B§)71 | BsBb;, Agi; and Az ; are the one-sided long-run variances, defined above
Assumption 3.1. H

Proof of Lemma A.2. (i) This follows from Lemma A.3(i) in Huang, Jin, and Su (2020, HJS
hereafter).
(ii) This follows from Donsker and Varadhan (1977, eqn (4.6) on p.751) and Lai and Wei (1982

,.eqn (3.23) on p.163).

mlviM 01, 1T W!W;

(111) Note that Hmax <l—dj§112_> < Hmax (%) < Hmax (W) where Mmax(MF{)) = 1. Then
the result follows from Lemma A.3(i) in HJS.

-1 _
(iv) Noting that (%x’“M F{)J:M) is the principal p; X p; submatrix of (% w/! Wl) ! , we have
by (i)

dr , -1 dr - dr - -1
Hmax ﬁxl,iMF{)zlﬂﬁ < Pmax EW’LWZ = | Mmin EWZWZ S2pmin

by the inclusion principle (see, e.g., Corollary 8.4.6 in Bernstein (2005)). It follows that

-1
dr dr -
Hmin (ﬁxll,zMF{)$17l> = { [Mmax (ﬁx/l,zMFPxLZ) > pmin/2' u

Remark. By Lemma 2.1(c) in Park and Phillips (1988), the continuous mapping theorem and
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the inversion formula for partitioned matrix,

_ -~ —1 -~ -1
( 1 W,W>1 N ( [ ByB), fB%Bg) Y (S BaBy) ~ (S BuBl)
TRl -

~ o~ -1 . —1
fB3Béi fB3BZ/3 —7Té (f Bngéz) (f BgBé)_l + 7Té (f B%Béz> T

where m; is defined in the statement of Lemma A.1.

Y

Proof of Lemma A.3. (i) Note that =z Mpowy; = 2T Ui — %x’l,iPFloui. It suffices to show
I 112 2
that + SN xlT”zuz =Op(T7?) and + SN ‘ ﬁwLiPploui = Op(drT~2). Note that

N
1
NT4 Ztr T1,T) ZPFO’LL{LL Pro) < NTE Ztr w127 ;) (ug Prou;)

-1 N
$17i$1,i FP,Fl
N

)y 2[5

2

1 N
NT? > H"”/“PF?“Z‘
=1

Flo’ U

where we use the fact that the limit of 2111 F isp.d. a.s. and maxZ Hmax (w) = Og.s. (1) by Lemma

drT?
T i FPuy 2

A.2(i). The result in (i) follows provided %Zf\il s = Op(T72) and sz 1|

Op(T~?). Noting that 1t = 22:1 git + T1,i0 = S2 22:1 wis and f) = S3 Zs:l w;s, 1t 1s sufficient
to prove either of these two claims. Here we show the former one. Note that

N 2 N,z t 2
L9y LEPH RS o]
N T -1 1 Z 2
/ / —
Zl S2 T2 ; ; wlsfwztSl S2ﬁ ; witwitSl = 2D1 -+ 2D2.

By the panel BN-decomposition, we have w;; = ¢;(1)vy + Wi—1 — Wi, where Wy = Z;io (Nbijvi’t_j
and (Eﬁij =Y e j+1Pis- Then by the Cauchy-Schwarz inequality

2 2

N

2
D1<N

| L /i
Srg > (Z wz’s) v i (1)’
=1 t=1 \s=1

=2 (D11 + D12), say.

t—1

T
1 - -
S23 > (E wis) (Wit—1 — Wit)' S
=1

Let z;s = So (Z 1 w15> v, ¢;(1) S and F; ¢ = o(vit, vi¢—1,...), the sigma-field generated by the series
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{vis, s < t}. Since E(zi|Fit—1) = 0, we have
T

DI

N T
_NT4ZZE”ZZtH2 %Zzt:O(Tﬂ

=1 t=1 i=1 t=1

E(Dy) = ~ Z

=1

where the inequality follows by the fact that B||zy||? < CE HZS 1 Wis EHUMP < Ct. Then Dy =

Op(T~?) by the Markov inequality. For Djs, we have

T-1

52T2 Z Wis Z Wit—1 — Wir) S

= t=s+1

_ 2
1 ~/ /!
T2 E wl'swissl
s=1

Dy =

2

IN

= 2(Di2,1 + D1232), say.

T-1
S ]‘ ~/ Sl
273 E WisWipo7
s=1

Under Assumption 3.1(i)-(ii) and Phillips and Solo (1992), we have E|jwy||* < C' < co. By similar
arguments in the proof of Lemma A.2. in HJS, we can show Dig; = Op(T~2). It’s easy to show
Digp = OP(T*Q). Thus D = Op(T*Q). For D5, we have

’ﬂ |

2 2 c X T
5 T22E<TZIIwnIIZ> < 5 2 3 3wl

T
1
S2 ﬁ E witwét Sl
t=1

1 N
E(D;) = NZE
=1

<T72)7

I
S

where the second inequality comes from the Cauchy-Schwarz inequality. It implies that Dy =

2 2
= O(T7?%) and + Zf\;l ‘ %xlzuz = Op(T72) by

Op(T~2). Consequently, + ZfilE H%gv’“uZ

the Markov inequality. This completes the proof of (i).
(ii) Note that

11 2 3 2 1 2 1 2
NZ Tgxl ZMFOU’ < NZ <HT2$1 zMFOUz + HTQ% ZMFOFQ)\ + Hﬁ*xll,iMFfmlini )
i=1 i=1
= 3 +11+11I),
2
where recall that f9, = Syw;.. For I, we have I = LN A2 Mpou;|| = Op(drT—2) by the result
2t N Zui=1 || T2 Vit FY y

in part (i). By arguments analogous to those used in the proof of part (i) and using F20)\gi in place

2
iy MpoF9AY; || = Op(drT~?). For I11, we have

of u;, we can show that 1] = + SN ‘

IT]T < max xllz‘MFPfBZ,z Z l1bo||? = T~INY(1og T)(1+)/2)
7 b

1
T2

2
%’xll,iMF{)$2,iH = OP(T_INl/q(]og T)(H'e)/?)
by similar analysis as used in the proof of Lemma A.3(i) in HJS. Then the result in (ii) follows.

uniformly in 4 ||ba I < M, where we use the fact that max; ‘
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(iii) Note that

N N
1 D Mool <2 2 swjaig|| + |24 s Prowjas;
N2 Ty i M poUj Qi SNT? L1 ,iUj i Ty i Lpot;aig
Jj=1

i=1 )
1/2 1/2
N / N
1 L1,y 1
Vv 2|72 & 2 lagll
j=1 j=1
1/2 1/2
— N N
o ()] B R R e
Hmin T2 T2 N T2 N v
j=1 j=1
ZOP(Tfl) + OP(Tfl) = Op(Tfl),

LN |7 | Fu; [|2 —2y 1 .7 170 _
where we use the fact that > /7, |—5=—| = Op(T™ %), % Z] 1 T2 = O0p(T7%), =21, 07 =
[ BBy 4+ op(1) = Op(1) by Lemma A.1(i), and sz 1 laijlI* = Op(1) by Assumption 3.2(i).
Similarly, we can show that % >V H N7 ZN 1 21 Mpoujass|| = Op(T7Y).

2
: : / / / /
(iv) Noting that Hl'l,z‘MF{)xLi :tr(MFlo:ULiJ:LiMF{)xM:ELi) Str($17ix1,iMFl():£17ixl’i) < tr(a:uxl’i

2
T1,7 ;) = H:L"“wlz by the fact that luma.x(MFlo) = 1, we have % Zfil ’ %wll,iMF{’xLi < % Zz]\il
2 2
‘ %x’llez . It suffices to show that % Zf\il ’ %1/11331@ = Op(1). Using the panel BN decom-

position z1 3 = S2(¢;(1) Ztszl Vis + Wio — w;) and Cauchy-Schwarz inequality, we have

1 N 1 2 3 N 1 T t 2
—ZE 2£U1 Tl _Z _QZZZSQ¢1 Ulsv'gl(bi(l)lsé
N i=1 T N =1 T t=1s=1[=1
3 N 1 T t 2
TN ZE T2 D0 Soti(Lvis(io — wir)' S
i=1 t=1 s=1
3 N 1 T 2
~ ~ ~ ~ NIl _
-+ N ;E ﬁ tz_; Sg(wio — wit)(wig — wz-t) SQ =3 (Dl + D2 + D3) .

2
For Dy, we have Dy < & SN E {% ST HZZZI vis | } << >V o STt =0O(1), where we use
the fact E HZE:l UZ‘SH2 < Ct. Similarly, we can show that Dy = O(T~!) and D3 = O(T~2). It follows

2
N
that + N, ’ Tl Mpozri|| = 0p(1). ®

Proof of Lemma A.4. (i) Note that

_H TQZblz 11 )

|| NT2 ZbllezMFl Uy T2 ZbllezPFl U;
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For the first term, we have

b
1||b||2<MHNT Z 11 1'L

< . sup (HNT2 Zb“ Ty Ui

Y, FONS,
1||b||2§M NT2Z 1’L 17, 2

)

1
— by .zl .x9 iba;
1,i01,442,3024
+ || 37 2 it mabe,
=1

LT, 1/2
<  sup byil? ~ b
N-1||b|[2<M T {N Z H H } {N P T
LIE BN ¥
+—0= ax A2 sup ~ Hbl,z‘ll2 ;
VT \/_ v-1lz<ar | NV Z Z
el s of v
L1, T2 2 2
+ ——= max m blz -~ b2,z‘
Lttty (S]]
= Op(T™Y) + Op(TV?) + Op(T~Y2\/dp) = Op(T~Y2\/dr),
where we use the fact that max; [[A3;] = Op(1) by Assumption 3.2(i), & SN, 2, S =0p(1) as
shown in the proof of Lemma A.3(i), max; M = Op(/dr) by Lemma A.2(i), and max; ”&\/%H =

Op(1) by an application of Lemma S1.2(iii) in Su, Shi and Phillips (2016b, SSPb hereafter). For the
second term, we have

FLeF N-1|b|2<M

sup sup H NT2? E by zml P

NT4 Zbl ’L‘,'Ul zFlFlul +

)

N 1/2 N 1/2
1 31 (2w 1 1 Juil?
< 77 Sup S max up NZ“’“” N T

) T N-1bl2<m

N N 1/2
n sup IFP IFRI Z Ik 1 3 4]
_y— ¥
\/ mern T2 VT - 1||b||2<M N < T2

N
1
T PR N- 1b|2<M< NT* Zz-_l o

1
i Zbl i@ i FLF w0 iba

1/2 N 1/2
1 £ [zl [E2¥| 2 1 2
up max ——— max —= b1 — ba i
FUT S Tk ma s NZH il 7 2 b
_OP 1/2\/@ +OP 1/2 +O 1/2\/@ 71/2\/_T’

This proves (i).
(ii)-(iii) The proofs of (ii) and (iii) are analogous to that of (i) and are therefore omitted. W
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Proof of Lemma A.5. (i) We make the following decomposition

1. - _
Py —Ppy = Pp — Proy, = ﬁFlF{ — FYH, (H|FYFYH,) ™ H{FY

1 - . 1 .
= ﬁ(F1 — FYHy)(Fy — FYHy) — ﬁ(F1 — FYH)H|FY
1 —1
T2F10H1( Fl Hl) T2F1 Hy I, — <T2H FO’F0H> H{FIO/
= P1+ P2+ P3+Pa, say. (B.1)

By Theorem 3.1(iii), [|p1]| = Op (niyr + T~ 'Cy7) and |||l = |3 = Op(niny +T7/?Cyp). In
addition, noting that

1 1 /o)
I, —ﬁH’FO’FOHH - H—2 F{F1 —H’FO’F0H>H
A~ ~ /
< _FH ) (Fl - FOH>H 42 H% (Fl - F0H> FOHH

= OP (771NT +T7'CN5) + Op(mnt + 712041,

4 N _ _
<Y Bl = Op(nyny + T7YV2CH)).

(ii) By taking the sub-differential of Q?‘\;jlf(,@_l, B4, o, F1) with respect to fy;, for each : =1,...,. N

p p K 5 171K p A
and k = 1,..., K, we have Op, ., = —%mll,iMﬁl (Wi = w101 —T2,iB2,4) + A D50 €5 [ 1121 125 181, —dull,
where é;; is as defined in the proof of Theorem 3.2. From this, we can derive that

(miaians) | {|m

“1
<T2$1 zMﬁ’lei) = [:U’min(% M L 1 Z)] L By (1) and Assumption Az(l)v :U’min(%xll,i
sp
/

Mg x1;) = ,umin(TL i Mpoxy, i) +op (d} uniformly in i. Then

Ipall = Op(nynp + T~ Y2C3L). Tt follows that HPFI ~ Pro

b1 < x My FPNY;

T2

[+l=

~oa}.

sp

Note that

d - -
H <T—Tz$/1 zMlel i H ',z'MF;ﬂUl,z‘) +op(1) < 4pp,
sp
by Lemma A.2(iv) w.p.a.l. It follows that
1
max 1b1i]| < Op (dr) maX{HT2$1 Mp 05 H T2$1 M Fl AN+ C’)\} .

In addition, it is easy to show that max; %:ﬂ’“M uy

| = T2 max; 7 ||o14]| max; =7 [|a7]| =
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Op(dy/*T=1/2) and

1 . [zl 12
max || ot Mg FONY|| = max | o Mg (FHT = F)) §Cmax—T‘

i T

-

1
T2
VdrOp(nint + T_1/2C]§1T)-

Thus, we have max; ||ZA)11|| = dTOp(allT/?T*l/2 + dl/27)1NT +A).
. -1
Note that 8, ; = <JJ/21MF1$2@> 13/2 MF1 (yi — 71 z51 ) and

1 -1
<T:B2ZM $21>
S

-1
(FohiMpyw2a) | = onin (G M, 2.0)] ™ oy (2 My 2.) = o (2 M)
sp

+op (1) = Mmin<%x2,i$2,z‘) +op (1) uniformly in 4, and min; Mmm<%$2 ;&2,i) is bounded away from zero
w.p.a.l by Assumption 3.2(v). It follows that max; H(Tx2 Mp x2:)” Hsp = Op (1) and

1
Lo, ZM Tl zbl )

Y +| 72

1
’ + Hfﬂcé,iMplFlo)\?i

b

1
P

Note that

1L 1N (11 2 1 2 1 2
NZ||bQ7i||2 < Op (1)N {H?x'QZMpl (ui—l—F?O)\gi) +H M, Fl)\ —i—H a:QlM by }
i— i=1

= Op (1) {Ill—i-llg—i-][g}, say.

Then we have
2 L1 2 9 X 2
Ih <4 > TxIQ,iMFIO (ui + F5A5)|| + N > Tﬂﬁ’a,i(Ppl — Ppo) (ui + F323,)
i=1 i=1
N 2 N 0/ porpoN L por 040y ||?
S 3 2 |7 i + B NZ: & T
2 N 0
xQ,i 1 U; +F2 )\2,L' 2

i=1
= Op(T ™) + T %0p(N*9 (log T)'*) + Op(ninr + T~ Cx3) = Op(ninr + T,

where we use the result in (i) and the fact that max; %Hx’QZFlOH = op(NV1 (log T)19/2) by argu-
ments as used in the proof of Lemma A.2(i) in HJS. For I, we have

N 2
1 1 S o1 pOyy0 o121z szll
IIQ = Nizgl ?$I2’iMF1<F1H1 _Fl ))‘11 Smla“XHAhH f HFlHl Fl” Z Z
= Op(Tninr + Cn7r),

By arguments as used in the proof of Lemma A.2(i) in HJS, max; = op(N'/4 (log T)(1+6)/2).

1, .
T:CQ,Z'MFP:’ULI
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max T:U'QJ-ME:ULZ < max %xlzz’MF{)xl,i + max %J}/Q,i(Ppl—PFo)l‘Li
_ op(NYI (log T) /2 1 1/2 ax e ;H ma ||Tl2/z2|| H Py
— op(N/1(10g T) 9" 4 \/TdrOp(nyyy + T~*CR}) = op (T'/?)
and
2 2 N
H3<—ZH xh Mp, 1,ib1 < max 2, Mp 1 NZ||b1,i||2:OP(Tn%NT)'
i=1

2
= d%Op(dTTfl +
drn?yr + A).] Tt follows that n3y, = & SN |bosl|? = Op(T7Y2CW T + Tl y).
(iii) By the proof of Theorem 3.1(iii), we have FyVi yp = Iy + ...+ 11 + = SV FPA?iA(f;F{)/ﬁ'l,
where the I; are defined in the proof of Theorem 3.1(iii). It follows that +F(Fy — FYHy) =
L(FYL 4 oo+ FY L)V A ~N7: Where we recall that Hy = (%A?’A?)(%FP’}E)VQ\%T. It remains to
study the probablhstlc order of £FY'I; for | = 1,2,...,11. For £ F{'I; and % F{I5, we have

[Alternatively, we can show that IT3 < max; by NZZ 1 H My 1

PO AN Jlall? 1
DAL, D NZIIb P = Op(Tdrrsy), and

y HFO'Fln [ Y NS e R P 2
L <r I ) NZHbuII Z — Op(Trune).

For +F{'I3, we have

1
SIFn) < T

i 2y 1/2
'LL

)

N 1/2 N
Lo | FP]l [z14ll ) 1 2o
G LD L

B 112 1 10 2 ~rF 0 2 ~
whore & 32 [ s ([ o )  Noting hat = i b, wo
have

N ||~ ¢ 2 N 2 2 N
1 u;(Fl — F10H1) 2 H ~ 0 2 1 ||’LLZ|| max; ||{IZQZH 1 ~ 2
S A S 3 D | o | 2 H — A2 N 16y
N; T = it N; T T N; 21

= Op(Tniyy + CK/?T)U + OP(T71/2C&% + Tniny)] = Op(Tniny + CKIQT)-

~—
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In addition,

1| aF? | ulFY|I?
N |7

/ 0112
Ty, Fy

bl || 22

1
<_
<% (

op 1) + op(N?/9(log T)H)Op(T2CHE + T ng).

2 1 N
= S U
=1

/ FO
= Op(1) + max || 221
i T

1/2 - _
Then | FY'Is|| = A *mnrlOp(T g + CR%) + op(N?9(1og T) ) Op(T2CRL + Tty p)) =
op(Tnynr). For 2 FYIy and & FI5, we have

1/2 1/2
o |FYFO| HFlH 0 ) al ||:mu2
HF L < To=5— ax | AY] NZHbuH Z — Op(TinT)s

. 1/2
1 [Zal kuH [E3 qu2 1 ; =
T”Ff/l5||§ T max Z N;Hbl,iHQ = Op(VdrninT)-
1=

For 0 g, L(|FO'I|| < H . IFO’FO)\OU’FOH1H+H A SN FY RN (Fy — FOHY) H = Di+
D». For Dy, we have
) | Ha |

By analysis as used to obtain (B.8) in Bai (2004, p.172) HNT Z P 1)\0ultf1tH = Op(N~1/?).
In addition,

Dy < L || (

L N
WZZ)‘?uitf?t,
i1t

=1

N
1 .
NT D A o it f1f
i=1

1 & 212 1 & "
'NTZ/\O szztflt <C{NZHB2’i } Tzlﬁz,itﬁ)t/ = Op (NanT) -
i=1 =1
So D; = Op (772NT + N_1/2) . For Dy, we have
Dy <— T2 HFP'FO T ;z;)ytuzt flt Hlfu)
T 1 1 & 2\ N
S\/NﬁHFlolFOH{ﬁZHflt—Hlf%H } it

=1

:\/%OP( DOp(nint + T~ /C 7)0p (1) = \/%OP(\/TMNT“‘CK/;“)'

It follows that & || FIs|| = Op(\/T/Nniyp+N"Y2+nyyp). Similarly, we can show that || F{ I7|| =

30



Op(v/T/Nnynp +N~Y2). Next, £ FV Iy = £FY (Isy + Iss + Is3 + Isa). For 2FY 15, we have

T T
1 1 N
T”FIO/ISJH = ﬁ Z Zf{sf?t(’YN(s’t) + gst)

t=1 s=1
T T
_T3 ZZflsquNSt T 73 ZZ Frs = HUF) Fléa|| + Hlf o ST st
t=1 s=1 t=1 s=1 t=1 s=1
=I+1T1+111.

For I and II, we apply Assumption 3.2(iii) to obtain

T
ISy whﬂmwmm»
11 Lo o2 - -1
<57 ﬁ; IQﬁCTZWNSt +ﬁ§”ﬁt” 121%XT;|7N(57t)| =0p(T),

and

) 1/2 L LT 1/2
Hf&HQ} {T—ZZ rsstuz}
=1 t=1

| Op(N7V?) = N7V20p(m ny + T72Cxp),

1 T T .
s=1 t=
|7 = )
T T

where we use the fact that % Z:l Zle E|&,]1* = O(N~1) under Assumption 3.2(iii) and Theorem
3.1(iii). Noting that F Hf?SH4 < Cs? and max,; F |4 < CN~', we have

IA

LSS (IR d) < 5 S (BRI {pies)

t=1 s= t=1 s=1

21/2 1 - —-1/2
<Cmax {E¢,/"} ﬁzgs:ouv ).

1 T T
S
t=1 s=1

—_

Then I1] < 25 el | Hell = Op (N~1/2) [Tt follows that & || F” Is1|| = Op(N Y27
+T-1 + N-Y2). For 1 FY13s 5|, we have

1
THFlo'IszH =

1/2
1 quFﬂ! (1" | ul||2 Lo :
T3 Z ul 21 21 < fm?X Z N;Hbllu
O

— T 'op <N1/‘1 (1ogT)<1+€>/2> p (1) Op (nanr) = op (T_lNl/q (1og 7))/ 1)
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where we use the fact that
1 ! T 1 / 0 1 / - 0
aXTH%,z‘FIH < maX—H%iFlHlH+maX_H952i(F1—F1Hl)H

< max—||:n21F1 || H1|l + \/_max ’Fl — F10H1H

= llatll 7|
= OP(Nl/q (IOgT)(HG)/Q)—k\/_Op (ynp + T /20&%) :OP(Nl/q (logT)(HeW)

by arguments as used in the proof of Lemma A.2(i) in HJS and the result in Theorem 3.1(iii).
Similarly, we have &||F{Q'Is 3]| = Op(T~* N/ (log 7)1+, or) and

1 ah I FO,,| 1
< e 2 [ 2] ZHb P

1
ZIF Tl =

N
1 A A .
NT3 Z FV'g,iby b 2
=1
= op(T'N¥7(log )" n3y ).

Itﬁmowsﬂmm%nf?qg\:(h47P1+AF4ﬂ)+OP(T*WAﬂM(ngU“+@”7DNT4—Aﬂm(kg13“+@7gNTD.
For LYy,

HFO’I I <

1 ||F10/F2|| HAO’AO <||f§’F1 [l |

T
= OP( H0p(1) + Op(VTniny + Cyp)) = T Op(1 + VT ny),

1 .
+E8) 1A - o)

where we use Theorem 3.1(iii) and the fact that ”—Fl—Fzﬂ = Op(1) by similar arguments as used in

the proof of Lemma A.3(i). For & F I,

1 .
THF Vol = 3||F0/F0A0/A3f§/F1H
oy IEPFR N IAYASI] (I FRIIELD | oy Ly oo
<Op(NTA) = i—= 7 TRl IR - P

:OP<N71/2) [OP(l) + OP(T]lNT + T71/2C&%—v):| = OP(N71/2).

Similarly, we can show that & [|F'I11|| = Op(N—1/2). Combining the above results and noting that
VITdrnyr = o(1) by the proof of Theorem 3.1(iii), we obtain %FP’(Fl — FYHy) = Op(Tnyny +
Snr + Mant) = Op(Tiyng + O + T_1/4CX,%F/2) and the conclusion in (ii) follows.

(iv) By (ii) and Theorem 3.1(iii),

‘Mﬂm ﬂm)<4@_ﬂmu+wm“(ﬂ—WmM

= Op(Tninr + Cn5) + Op(Tnyny + 6 + T iy 1/2) = Op(Tni N7 + Sy + T71/4CIYI;“/2)'

( ) Note that (FlH 1 Flo) = %ﬂzl [Il +~-+Ill] Gi1 = %(Jl + ...+ J11)7 where G; =
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A\ —1 _
(%FP’E) (LAYA9) ™. Note that |Gy|| = Op(1). For .Ji,

~ %/ 71 I T
uk I szibl,ixl,@'FlGl H

1 -
THJ1|| = WZ

[l ||F1H | T ||2
<VT|Gy H\/k— T max . leb ilI> = 0p(VTdrniny),

where L2l < JJ_U + —2—||)\ ”x“H |bo.|| = Op(1). For Jo and Js, we have

%
1 1 ~ s/ 7 07 07 -
?||J2H < N3 Uy, 21,3013 F1 F1G1H
N 1/2 N 1/2
HFO/FIH HﬁkH 0 H2 1 29 -
<VT||Gy || =25 \/T ax || A7 NZ N;Hbu” = Op(VTnyn1),

and

N 1/2 N o, |12 1/2
1 1 N S 1 || H 1] 1 il
Tl < 2 [[iossbudiFiGa| < Gl 7 max = NZ”b LN RO b

; =1

=1
dr
=0Op ( ?UlNT) Op(l + TdTnlNT) = OP(\/—nlNT)

@k ||?
T

< 35X, (Iarrm? + 5 | £ - rom]) -
Op(1) + Op(Tniyr + CN7) = Op(1 + T2 yp). For Jy, Js, and Jg, we have

1 N
< 577 2|
G IR 0y {% 5 lol? }1/2 {% 3 HBM\P}W = Op(minr),
=1 =1
sl < < i)
o L AL, T {% ﬁl ||z31,i|r2}1/2 {% i Jel” }1/2 = Op(vdrming),

5 1 N
where we use the fact that % > ;°;

1
T||J4||

iy PO, B Gl H

IN

ki~ 3T
Uy, uibl7ix17iF1G1 H

IN
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and

N
1 * 700~/ 7
76l < NT3 Z:: ay FEN 0 F Gy
*/FO
k 0~ / _ -1
< ||G1||— ( NTZA W FP|| || Hy || + NTZA — FYHy) )—OP<T )-
For J7,
N
1 A*/~ or i or AIAO
7l < NT3 Z:: N FY' F1 Gy NTZ U\

Op (1) = Op((NT) "2+ N71),

1 T N
< |5 e
t=1 1

where we use the fact that

1 T N 1 T N . ooy
' WT 2 2 M| = | 2 2 Mo | | 2 2 M M
e t=1i=1 =1 i=1
1 LK A
NT Z Z Agaithika,i = Op((NT)™ /2 + N~1y;
t=1 i=1

see, e.g., eqn (B.1) in Bai (2003, p.164). For Jg and Jy, we can show that

1 1 & 1 &
THJgH < {HN_Z u F1H1 N—Z U ~I Fl F]_Hl }HGlH
N_A i i ]l 1 o [fi]
Z I+ <7 |- rom|| S }\Glu
{wr2 T g
=Op(T™ )+T71/ OP(ThNT‘i‘TflﬂCX/lT):OP( V2 nr +T7Y),
and
1 T - 1 */FOAOIAOFOIF G
?H ol =7 | 772 1G1
lusll 12] HHFQO'FOHHU; Lzl [F2])) || A9'AS F2°'F1 Gl
VT JT PMUVT VT N

= T_IOP(l +VTninr),

where we use the fact that H%FQO’FI lZ*"QO'Z*"{)H HH1H+H%F20I(FI — FloHl)H = Op(1)+VTOp(niNT
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_|_T*1/2C’;[§1) = Op(l + \/TUINT)- For Jyig and Jq1,

a FOAY ASFY 1 Gy

T | J1oll = T HW

“TVN\ VT VT T ¥
= T7'N"Y20p(1 +VTn; y7), and
1 1 A~k -
T Il J11l = T HWUJC/FSAS/AQFP'EQ
< 1 HukH HF20H + ||)\2k||HF20/F2OH + Hi)zZHHJ;?,ZH HF2OH ' O,AO OIFl ||G1|| —OP( 1/2)‘
=N VT VT T W VT ) IR

Combining the above results yields the conclusion in (v). W

Proof of Lemma A.6. We only prove the first part of (i)-(iv) as the second part can be shown

analogously by the repeated use of the fact that max; “zilpzll = Op(le/Q).
(i) By the decomposition in (B.1),

1 r 1 ~ ~ ~ ~ %

Ry; = ﬁx'u(Pﬁl — Ppog,) U = 7 —5%1;(P1 + P2 + P3 + pa) U] = D1 + Do + D3 + Dy (B.2)
For Dh, we have ||D11|| = $1Z F1 Fl Hl)(Fl FOHl) 1 1} Fl Hl TU;Z/L‘ =
T120p(n2yp + T 1C’NT) by Theorem 3.1(iii). For Dsy;,

T
HD2Z|| = T_ Z(fls Hlfls H1T2 Zflta*tajll,is
. L ) 1/2 N 2\ 1/2
<= (T— S| A - s, ) =3 S st | 1
s=1 s=1 t=1

=T720p(nyp + T_l/ZC;f%r)a

2
where we use the fact that & Zs 1 H (7 S fhan)h is‘ = Op(1) under Assumptions 3.1-3.2. For

Ds;, we apply Lemma A.5(v) to obtain || Ds;|| < L Hxlji—zFlu 1 H(FloH — B Yar| || Hyl| = Op(T~ 1/2771NT+
T—165%). Noting that I, — ZH'FYFOH = Op(nyp + T~ 1203%) by the proof of Lemma A.5(i),

|

= T '0p(nynr + T~ V2C5L)0p(1) = Op(T 'y yp + T32CH1L),

o Y|
T2 T

1
| Dail| < T

1 0/ 170 - ‘
I, — (EH’F 'F H) I|Hy |2

FO
T2

Y ar FYlu; FO’FO

07
Fy'xo
T

= Op(1) and )

< |7

X2

.

where we use the fact that
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Op(1) by the proofs of Lemma A.5(iv) and Lemma A.3(i). Consequently, Ry; = Op(T~Y?nnr +
T~1Cy}) and the first part of (i) directly follows.

(ii) By the proof of Theorem 3.1(iii), we have FyH; ' — FY = [I; + ... 4+ I11] Gy, where G =
.\ —1 _ .
<LF0'F1> (LAYAY) ™" = Op(1). Then we have 2} My FON); = zhat My (FyHT — FON), =
2t ;Mp [l + ...+ 111] G1AY; = Lii + ... + L. Note that

A ~ —1
1 - o FYF ([ FYF AYAY 1o
Lni = 5o Zmll,iMﬁlxl,ijj)‘j, 7 | 72 (=) M
1 or Al A T 1 - / A I
= V72 le M, 56‘1,351,])\ i N L)Y + Ly = NT? Z:L‘LiMleijl,jaij + Lg;, and
7j=1 Jj=1
N -1 N
~1 o FYF (FYEy AYAY o -1 7 -
Lri = 572 ;mll,iMﬁluj)‘j/ T2 T2 ( N )= NT? ;xéMﬁlujaij + Lria+ Lrig,
" B . _
where Ly = sk Yooy @4 ;Mg 21,01 ;)9 BRG, Ly = N2 e @ M wa jbjaij, Laio =

NT2 SN @ My uj 3] E 2T2F 1G1)\M,and ai; = A% (HAYAY) 1A Tt follows that Ry; = Z5a) My FOAY,
T2 Z] 1:811M xldblﬂaw + NT2 ZJ 1azj:£1ZM U = = Ly + ... + L1, where L;; = Ly for
1=1,3,4,5,6,8,9,10,11. For Ly,

N
- 1 1 A .
HLMH :ﬁ :Ell’iMﬁlm Zml,jbl,jb/l,jmll,jFlGl)‘(l)i
7j=1

14| || F1 131, 2
<l gy Lol DAL B an 2= Op(drr).

where we use the fact that HM 7 = 1. For Ly; and Ls;, we have

sp

— Fl
||L2’L|| NT2 J: F Zmldbl,]AQJ 3—'2 Gl)‘
1/2 1/2
- N N
1 o el || F3'F 0 |~"31,J||2 1 22
< NG ITRE |2 | mac 29 Z 7 2 sl
: ]:
= Op(T 'nyn7)
and
1/2 - 2y 1/2
N N ~/
= 1 0 1zl !ull 1 2 1 u; b
HL&'HSfHGlHH)\uH T max N;'b 1l N; T

=T Op(\/drmnr)Op(1 + VT nr) = Op(T ™ drny yr + T71/2d1/2772 NT)
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where we use the fact that - Z

v ] < d e « frson - e -

Op(1) + TOp(n2yy + T 1Cyt). For L4,~, we have

B (1 & (e (B - BEY C M R
0 Lit "R\l 14 0 A
< el g NT;( L X911+ 1X311) llea bl

oy M, (FY = FLHY)
T2
1/2 1/2

N 1 N .
72 L3 b2
j=1 j=1

= [Op(mnT + T71/2Cz?/%r) +Op(T7 20 np + T7H]0p (1 y7) = Op(ning + T71/2C]?f%“771NT)a

/ . 0
) My, F

0 i 0
< GG 4 ma AG)

k}
[\

where we use the fact that % HFl0 — FlelH =Op(ninT + T‘l/QC’]QlT) and that

vy Mg FY @’ ) ) Py B FY
T2 S\ "2 T2 T2
'y  Fy xllel (Fy — FYHy)'FY , FO’F0
- T2 T2 T2 + ” ||

=0p(T7Y) + [OP(T*/%WT + 77O + op<T*1)} = OP(T*/%WT +77Y.

For Ls; to Lig;, we have

N
- 1 . .
1Zsill = S |[#1aMe, D by F1GaNy,
J=1
1 fouall gl [ 1 &g 1 & v
0 1%L, L1,j 1Uj 22 _ -1
< 7 NG5 max = NZT— ﬁ;ubmu = Op(T™"\/drmnr),
(FY — FiH ) Mg FY .
12| < NGl 1A% NT2Z( e I+ || === | 131 ) [
L 1/2 1/2
< 0r) (| AN TR SV BN S Lot LS e
=T T2 T2 N & NT? & !

=T 'Op(nnr + Tﬁl/zCKrlT) +Op(T 2 np + T7H)] = Op(T My yp + T73/2C]?/%ﬂ)7
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HEn,lH < —= $’17iMF1$27jb/2jaij NT22{H$1ZMFO$2]172](IZ] I—PF0)$2]b2ja” }

’ 2 1/2 1/2

L1 & Hfﬁl,iMF{ﬂ@,jH N2

S P -H

Jj=1 j=
PSP P ES UV RN
RN % boj

]: :

=T '0p(nany) + T 20p(ninr + T~ 2CR1)O0p (any) = OP(T_5/4OJ:7;/2 + TP nr + 1iN),s

| L7iz2|| = NT4 xy M Zuj)\ FY RGN,
N ! o N
1 Fz’Fl ;O T S o
SWIIGHIIIA il lel,iuj&j +| =% Z;FlujA2j
J= J=
£ 1/2 1/2
N L N
Op (1) 1 ’o~ 3O ‘37171 1” 1 0
< T2 ﬁz;mlzujAQJ + T2 NEQHAQJH
J= 1= Jj=
=O0p(T™?),
1 N
| Lsill = o || 70,0, D W F1 G
j=1
N
_NT4||G1H||A1@|| > i By + Z Flai' By
j=1
. 2 1/2 . .
<OP(1) lXN: 7, ii 1, 21, F1 iXN: 1,
=12 N&%ITT | N&|T T2 N&|'T
ZOP(T_Q),
- F1F0 AYA9 o FY|| 2l By FURY »
IZl < et | 2] | 322 B BB R o), and
T F’FO AYAO B B
IEunsl < a2l | 2L A AT o -2,

Similarly, we can show that ||L11 ]| = Op(N~Y2T~1). Then Ry = ()P(T*5/40]:[1T/2 + T2 Nr +
drn?yr + T~ ) and the first part of (ii) follows.
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(iii) By Lemma A.5(i),

N
1
|Rall < |~ D s (Prp = Py Jus | < 2 | Prp =
j=1

where we use the fact that ~ Z

I eS|
- T1/2
— OP(Tfl/Q

| Pry -

|21,4]]

= > aijl lul

1/2 1/2

1o
NZ i WJ_ZIHUJH

Fl

My + T C]QT)v

7=1

B = b S EATAD DG < [P AT

H)\lj-H = Op (1) under Assumption 3.2(i). Then the first part of (iii) follows.

j 1

(iv) As in the proof of Lemma A.3(i), we can show that Ry = Op(T~1) and N~' SN | || Ry =

OP(dTT_2). |

Proof of Lemma A.7. (i) By the proof of Lemma A.5(ii),

miaX\l%,z‘ll <
Note that

1, M,
mzax T:n U

1
0p g { [k b, G+ 8

1
‘—FH xQZM Fl/\

Op (1) {IIIl + 1115 +I[Ig}, say.

IN

max
i
max

+ max

T

1
/
3:‘2’1 F10 (7%

/
.’1727,L'u1‘

vd

1
T02,i(Pp, — Prp)us

+ max
K3

i
—max
T .

1
7 FYFH! F{’/u

1
_37/2,¢F1 (7 T

T

|2, max —= [|ui|

‘ PFO

vd

1
H M :171 zblz

|

Op(T?(log TY?) + T~ op(N¥9 (log T)+9) + Op(di*T ' + (NT)~1/2)
op (1) .
By the same token, max; %x’QZMFl F9X9, (T~1/2(1log T)? + T-'N?/4 (log T)(He)) =op(1),
1 .
max || o My, FOAL | = max||=ab M, (F1H1 . F10> A0,
. 10 -
< T2 max% max [ A% = || A b — FY)|
TY2NYC)Op(di*T~1 + (NT)V/2) = 0p (1), and
1 1
max TxézMle“ = max ?ﬁé,iMF{ﬂ:l,i + max ?xéz(PFl — PFlo)a:Li

op(NY9 (log T)+9/2) 4 \/TdrOp(d*T~' + (NT) /).

In addition, by the proof of Lemma A.5(ii) and Theorem 3.2(i), max; [|by ;|| = dTOp(leﬂT*l/2 +
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le/2771NT +A) = dTOP(d;/2T*1/2 + ). It follows that

max [bail = |op(NY7 (10gT)"72) + \/TdrOp(mny + T2C5E) | max byl + o (1)

= [oP(Nl/q (log T) 92y 4 \/TdrOp(nynr + T—l/Qc;vlT)} drOp(d*T~V2 4+ X) + op (1)
= op(1).

Now, note that

' a*
P <mzax > chT>
T Ui Yt 2 YNy Yy T T2 || | chyp
<P <mzax 77 ||~ 3 )—i—P max T2 > 3 +P<ma T2 bo || > 3 >

The first term on the right hand side (rhs) of the last equation is o(N~!) by Lemma A.2(i) in HJS.
Since E ( gt)\g;) = 0, each element of fJ,\ can play the same role as u;, the second term on the rhs

is also o (N _1) . Since max; 1321H = op(1) and each element z3;; can plays the same role as w;, the
third term on the rhs is also o (N~!) . Then (i) follows.
(ii) Note that %x’leFPﬂf = 7}2 'y U7 — %xgiPF?a;. The first term is studied in (i). For the

second term, we have

2 -1 2 || p0r5 |2
. dr ol || FYa;
< d%p [umm <T2 FO’F1>} max dTIz“Q H T4z ’ :

2
where liminfr_, o0 fipin (%FP’F{)) > prin/2 a.s. and limsupp_, o Hj;%@ < (14+¢) pax @-8. by
Lemma A.2(i)-(ii). It follows that for some ¢ > 0

P (max — 1) ZPFou

> chibNT) <P <max— HFO' )

T2 | > CTI’NT) =o(N7Y),

where the equality holds by analogous arguments as used in the proof of (i). Consequently we have
P (’ L ) —o(N-1). m

T2
Proof of Lemma A.8. (i) Note that Ry; :;—%x’ll(MFl — Mpo)a;, where recall that 47 = u; +
F9X), — w9:ba;. By (B.2) and the proof of Lemma A.6(i), it suffices to study the probability
bounds for max; || Dyl where | = 1,2,3,4. Let fyyp = %Hﬁl —F10H1H. Note that ||Dy;] <

(d*72 ) o vl 7 147 |- By Lemma S1.2 (iii) in SSP(2016b), and the fact that max; ||\ ]| < e,
T

/ ~ %

by Assumption 3.2(i) and that max; ||b2|| = op (1), we can show that P(max; Llar|| > T2 (log T)?) =
o(N~1) for any ¢ > 0. By Lemma A.2(i), ﬁ |1, = Oq.s. (1) . It follows that
T

P <||D1i|| > cI*(log T)3d;/2771NT) =o(N7Y).
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1/2_ ; N
For Dai, we have || Dai|| < dif e || Hy | S s || Py
T

| . By Lemma A.2(i) in HJS, we can show that

P(max; 72 HFlo’ﬁ;‘ ‘ > cpyy) = o (N71) for any ¢ > 0. It follows that P(||Dys|| > Cle/2771NT¢NT) =

_ . 2_ FO ;
0 (V1) . Noting 1Da| < dif*mur 11 IFL LS 3], we have

P (HDSiH > CT*I/z(logT)?’d & 771NT) =o(N71).

F F
Next, | Dal| < d2 |[ Iy — (s HUFOFOm) | 12,2 L |||C|iz/1;n I

= 0q4.5. (1), %HiFP,Ff)Hl — Iy = Op(mny + T_I/QCN%F)a and P(maxz T2 HFO,AI
o(N~1), we can show that

H . Using the fact that 1/2 |zl

| > CZ/JNT) =

P <HD4z'H > Cd;“/g(nlNT + T_1/2CN1T)¢NT> =o(N71).

Noting that 0y = Op(d;pT*l) by Theorem 3.2(i) and 7 y7 = Op(ninr + T~ /2Cxh), we have

d1T/27_71NT (T2 (log T)* Ty ng + ¥y + T2 (log T)%] + (771NT + T_I/QCKI%) YN

= OP[ 1/2(1/11\{ + T (log T)? )(771NT+T71/2CJ?/1T)}'

Then we have P (mamz | Ruil| > cd (wNT + T 12(log T)3) (17 + Tfl/zCK,%F)> =o(N71).
(ii) By the proof of Lemma A.6(ii), we have ﬁxl,iMﬁlFloA(l)i = T%xl lMpl(Flel — FNY,
T%xl zMﬁl (Flﬂfl — (1 + ...+ I11) Gl) )\?i = L1; + ... + L11;. As in the proof of Lemma A.6(ii),

we have

N N
1 - 1 - -
Rgi T2 :Ul i FlF{))‘(l)% — _NT2 ZJJ/LiMpll‘ijjaji + _NT2 lel,iMﬁ’lujaji = Lli + ...+ Lllia
j=1 Jj=1

where Ly; = Ly; for | = 1,3,4,5,6,8,...,11, Ly = sz S0 @ ;M w1,;01,503; TzFlGlAh, Ly =

_ _ _ 1 N ’ ~ _ or F2 By
Lrqi+ Lri, Lryi = §m 22521 21, ;Mg 2,52 jaji and L72i = 57 Zj 129 Mg, ujAQj—T2 EPN

_ _ _ 18
suffices to study Ly; for I =1, ..., 11. For Ly;, we have || L1;|| < d;/2||G1|| H)\ H T lﬁ}gy‘!g
2
N 3z .
X+ die Hbl’jH . Noting that maxid;/—éTB 214> = Ous.(1) by Lemma A.2(i HF1H = /r,

and max; ||A};|| < & by Assumption 3.2(i) and the Bernstein inequality, it is easy to show that

3/2

P(max; HI_’MH > cdyt "3 yyp) = o(N71). Similarly, we can show that

P(max || Lai|| >edrT™"nyyr) = o(N71), Plmax||Lsi]| > edr (T nyyp + T 124202 r)) = o(N 7Y,
P(max || Lai|| >edr (T~ nyng + le/277%NT)) =o(N1), P(m?X | Lsi|| > cdrT ™ nynr) = o(N 7Y,
maXHL&H >cdp(T™ nlNT—{—d 12 ))zo(Nfl),

P( maxHLliH >cdpT 2 y=o(N"1 for 1 =17,8,9,
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and P(max; || Ly;| > cd;mN*l/QT*l) = o(N~1) for I = 10, 11. Consequently, we have P(max; || Ry;|| >
1/2 -1
CdT §2NT) = O(N )
(iii) Following the proof of Lemma A.6(iii), we have

1/2 N 1/2
1 2

|| 1 ||$1 1”
T2 T

| s 25| -

07 A 0y —
Py H L Aag)

1/2 _
Then P <maxi | Rsi| > ch/ §1NT) =o(N71).
(iv) Write Ry; = 5| Mottt — g SN a2 ;M potit = A5l Mot — < SN a2 005 4k X
i = by M pOU TN 2aj=1 Qg M pQ Uy = el g pO Uy TN 2 =1 Qe iU TN TR
N ! » i A - -1 1 N
=1 @@y ;Ppot;. By Lemma A.7(ii), P (max, ) =o(N7%). For 7= > 54

we have

1. A~k

a;i; ) 1uj,

s o < A | 5 3 s 7

Following the analysis in (i), we can show that P(max; ; 7|2} ;@ US> abyp) = o(N~1). So

N
1 - _
P | max WE aij & 05| > oy | = o(N Y.
=1

(3

Similarly, we can show that P(max; ||ﬁ Z;VZI aijay ; Prot]| > cyyr) = o(N~1). Consequently we

have P (|| Ryl > cdrnr) = o(N71). o
(v) By the proof of Theorem 3.2(i), we have (Q1—Q2)b1 = R. Let S; = (0p,xpy1s- - > Opy xprs Ip1 s Opr xcpr »
., 0py xp;) be a p1 x Np; selection matrix such that S;by = b1,;. It follows that

T 6(85:(01 — Qo) T RRY(Q1 — Qo))
AN !
= vec(S.S;) <<Q1 - Q2> ® <Q1 — Qg) > vec(RR')

Hbl,i

< [t (@1 = @2)] 7 (SISR ) = [ (@1 = Q2)] IR,

where the second equality follows from the fact that tr(A; AsAzAg) =vec(A41)' (A2 ® Aé)YeC(Agl) for

conformable matrices A1, A2, A3, and A4. By Assumption 3.2(v), we have that P(uyni, (@1 — Q2) >
Cpmin) = 1—0(N~1). By the proof of Theorem 3.2, we have R; = Ry;+ Ra;— R3;+ R4;— Rs5;. By Lemma
A.6(ii) and Lemma A.7(i)-(ii), we directly obtain that P (max; ||R1; + Ra; — Rs; + Ruil| > cony) =
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o(N~1). For || Rs;||, we have

)\ K K ) )\ K ) K )\ K K
1Bsil < 5> TI |Bra—a| <53 | II |Bri—a| = II lI8% -l +5> H 181 -
j=11=1,1#j =1 [I1=1,1#j I=1,14j J=11=1,1#
A Py
<CKNT(C¥)K)\H51,Z _CKNT(Q)K+§Z;Z g?s 8% = aul|,
J=11=1,l#j

where we use the fact )H,ﬁil ||§’1Z —ayl| — Hle HB?Z - akH‘ < Cgnr(e)(1 + 2||by4]]) in the proof

of Theorem 3.2(i). Noting that $Cxnr(a)K + 5 Zszl H{iu;ﬁj Hﬁ(l)yz' — || = O()), it follows that
for sufficiently large IV,

b1l < [t (@1 = @2)] 1242
< [,umin <Q1 - Qz)} B

)

<2 | Ry; + Roi — Rai + Rui||” + 4eX? + 4Ck yr ()2 K2 )2 Hi)l,i

[Hamin (Q1-Q2)] (20| Ri+Rsil|>+4X)
(1-4Ck NT ()2 K2)2)

That is, ||lA)1z||2 < . Combining the above results, we have

P (max b1l > ¢ (s -+ (108 7)) )

< P (x> ¢ (W + X008 T)) s (©1 = ) < e

+P </Lmin <Q1 - Q2> > Cpmin)

<P (2 HRli + Ro; — Rg; + R4iH2 > Cw%\TTprznin> + P (C)\2 > C)\2<10g T)ép%nin) + O(Nfl)
—o(N"H+0+0o(NH=0o(N"h.

(vi) The proof closely follows that of (i)-(v) and thus omitted.

.. .. N
(vii) By the definition of Ry;, %x’uMﬁl Flo)\h Ro; + NT2 Z T iMp :/U1731)17]a]Z — ﬁ ZFI
x'lZM £y Wi ji- We have studied Rp; in (ii) and it remains to analyze the last two terms. Noting that

1/2
max; ||

sl gy

1 N
, .
> 2 Mp,w13by jaji|| < dr ]H )

NT?
J=1

we can show that P (maxl- ﬁ Z 1:v1 M, .’I}ijLJGﬂ > dT771NT> =0 (Nfl) . Noting that

N N N
1 1 1
573 D M 505 = oms D@ Mppuagi + 5w D w1 i(Mp — Mpg)ujai.
j=1 j=1 j=1
By (B.1), }—%xlz FO)‘ = Tzfﬁu(P PFOH VFPAY; = T2$1Z(P1 + P2 + Py + D) FPA]; = By +
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FEs; + E3; + Ey4;. Note that

F
12s <atar Ll
) H FOIFO
|| Eai | SﬁlNT”x;zu H 1T12 - H H ?iH:

/Flt)H 1]l HF10H1H H)\(1)Z| . and

1 R
1Bl <7 ||(Fy - FPE

0 07 0
I, - (%H{FP’F{)H1> |331z\| |7 ] HH1F1 F

[
1l |51 %

| Eail| <

where 7y = % HF]‘ - FPHlH = Op(nnr +T72Cx%) by Theorem 3.1(iii), - T (Fy — FOH,) F? H

= Op(n, NT+T*16]Q}+T*5/4C’;,%/ ?) by Lemma A.5(iii), and || I, — (2 H{ FY FOH1) ™| = Op(nynp+
T~12C%) by the proof of Lemma A.5(i). Using the fact that max; ﬁ |zi]|*> = Oqs.(1) and

max; ||| <, we can use the uniform bound for each of the above four terms to obtain

o

Then (vii) follows.

> dif*(nynr + T_l/QCJ?flT)> =o(N7TH).

.’L'l ZM Fl

(viii) By the proof of Theorem 3.2, we have by; = < wh M, a:gz> %xézMFl (ui + F9AS)
%a:’%MA FPAY; + ah ;M w1 b1 . Note that gah My (ui + FXy) = Fah;Mpo (u; + F9A3;) +

+h (Pro — Pp) (ui + F9A3;) By Lemma S1.2 (iii) in SSP(2016b), we can show that

P(max sz Mpo (ui+ FAY) || > T 2(log T)?) = o(N~)
Plmas o7, (Prp — Pp) (i + FOA) | > cdf/*T 2 (log T)%) = o(N )
for any ¢ > 0. The proof follows closely that of (vii). We have
r <ma’< g My Y| > T (log T)? (mNT+T”2C&1T)> =o(N71)

_ 1., 7. 1, R 7o
Note that 4 $2 ZM 1 Zbl = Tx2’iMF{)$1,zb1,z + Tx2,z'(PF1° — PFl)beM,

a2 1) )
T T

\/—||:\E/2_’H Hx;f” HPF{) o PF1H Hi)l’i

where P (maxz- %Hx’QZFPH > CT¢NT> =o(N~1)and P (maxi b1l > ¢ (Yn7 + A(log T)€/2)> =o(N71h).
It follows that P <maxi + Hx’Qszloxlzl;“H > Cle/QTwNTC (Yn7 + A(log T)E/Z)) = o(N~1) and P{max;

, and

IN

o

1, ~
T "$2,iMF{)x17ib17i

132 i PFO — Pﬁl)l‘LibLi

Y

7]
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%|‘$/21<PF10 - Pﬁl)xln‘i)l,z‘ﬂ 2 Cd1T/2T1/2(10g T (ninr + T 2Cxp) (Unr + AMlog T)/?)} = o(N 7).
Then (viii) follows. B

Proof of Lemma A.9. (i) By Lemma A.6(ii), we have

1 - Ao
T Mg FON),; = = 51, Mp, (FLH LN, = o1 Mp, I+ -+ ] G1A); = Lii+ ... + Ly,
Let L;;,l = 1,...,11, be as defined in the proof of Lemma A. 6(11) Then, following the proof of
Lemma A.6(11) we can readily show that ZzeG (L1i+ Lo; + ... + L72;) + Nk Zieék (Lg,i+ Lo ;) =

Op(drm2yp + T~ 1dT/ mnr +T72) =op ( —1/2p-1 ). For L71;, we have

N Z 1t = N Z NT2 Z$1 ZMFO$2Jb2.7a1J N Z NT2 Z'xlz <PF0 - P >x2,jb2ja@]

en ieGy Jj=1 en J=1

=I+11.

9y 1/2 5y 1/2
N 7 N
Noto that 1] < o masacisen i { & S35 [ons [ { o Sice e S [ g
= op (N7Y2T71) by Lemma A.8(viii) and the fact that maxi<; j<n [la;|| = Op (1) and that

2
N%czieék ﬁzy:l Hx’leFloazng = Op(1). For II, we can decompose Pro — Pp as in (B.1)
and use similar arguments as used in the proof of Lemma A.9(iii) below to show that [|[I] =

op (NTV2T71) . Then 5= e Lri = op (N71/2T71) Tt follows that

N
~ 1 1
Z M, 9N, = N > v lez A1 = 3 D g 2 MM
IGGk icGy, ieGy, J=1
L b , /21
+NkZL10Z+NkZLHZ+OP<N T )
1€Gy 1€Gy

Next, we can show that =S~ Lig; = g .. o &) Mp (FO — FyHT )MFOFIG)\ =
? N 1€Gy 100 = Nsz 1€Gy, 1i-7 1447 1 -

op (N~Y2T~1) by using the fact that =+ HFlO - Flﬂl_l‘ = Op(le/2T + T712C4)), +AYAS =
Op (N*l/Z) and & FY'Fy = 5 FYFOH + 45 FY (Fy - FOHy) = OP(T*I+T*1/2771NT+T*10R,1T). In

s OA /A9 F F 1 1 N
a'ddltlon’ T ZZEGk Llli  Ng T2 Z%GGk xl ZM F2 : Gl)\ - Tk ZZGék NTZ 2]21 .’L'Il,iMpl
x FY) )‘236% It follows that

A 1
040
F Z T2$1z 2 T AL = N Z NT2 Zﬂflz *fll,jbl,jaij N, Z NT2 le iM, 10

e e ieGy Jj=1
1 1 _ _
N > N in,iMﬁngAgjaij +op(NHATTY),
icGy, J=1
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(i) Noting that 1{i € G} = 1{i € G} + 1{i € G4 \ G%} — 1{i € G\ G}}, we have

1 1
NT2 lel $1ZZNT2 Z$1Z x11+NT2 Z ml%M x“_NTQ Z xUMF1x“
icGy i€GY i€G\GY i€GI\Gy

NkT2 Z 2y i Mp 21+ Cink — Cank, say.
ZGGO

By Theorem 3.3, we have P(||Cink || > ¢(N~V2T—1)) < P(Fj n7) — Oand P(|| Cank|| > ¢(N~/2T-1))
< P(Ey, nt) — 0. It follows that

_ —1/2—1
NkT2 Z Fla,‘lz— NT2 Z a:“M $11+OP(N T )
en i€GY

_ _1 / . 1 / —_ P- .
Next, &= 7 ZZEGO 2 iMp i = Ziecg T i Mpozri + 77 ZieG% 24,i(Ppo — Pp, )w1:, where

3311 _ —
N Z s I = Op(mnr +T7 203
k

NkTQ Zx].ZPFO_P xlz HPFO_ Fl

zEk

by Lemma A.5(i). Thus & 7 Dice, T, Mp i = ﬁ ZzEGO Ty Mpoz1i +op(1).
(iii) Using the same arguments as those in the proof of (ii), we can readily show that

N
1 1
—\/MT Z :L{lﬂ;MFl ('U/Z + F2 )\ Z Uj + F2 )\ a/zj
- j:l

1€Gy

1

=Uk,NT + —F (uj + F3A9;) aij | +op(1).

N
\/_T D (Mpl . MF?) (i + F9N3) = =D

i€GY J=1

We first consider ﬁ Dieqo ¥1i(Mp, — Mpo) (ui + F9XAY;). By (B.1), \/_T Yicn @i (Mp, —
Mpo) (i + F§AS) = iy e Sican o4 1 (i + F9N) = S, D Noting that 4 HF1 - FPH1H -
Op(mint +T7V2CW%) = OP(d;PT_l + (NT)~1/2), we can show that

2\ 1/2

1 ~ 2
| D1 < {THF1—F1OH1H } TQZZ \/MT Zx“s ult—i—)\ FQOt)

= Op(dTT_l + N_l)Op(l) = Op(l),
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and

1 1 .
1Dz = INT Zwﬁ,iﬁ(ﬂ—FPHI)HiF{),(Ui+F§)\gi)
i€GY
- 1/2 1/2
k 2
< R B - R NTQZH ol s 3 I (i 7))
i€GY ieGy

= VN:Op(d*T™ + (NT)™/)0p (1) = 0p(1).

Similarly, we have ||Dy4|| = op(1). For D3, we can apply analogous arguments as used in the proof of
Lemma 5(v) to show that

1 1 .
Dyl = —— V== FOH (Fy — FOHY) (u; + FINS,
| Dl JNT ‘Z(]$171T2 1V Hi(F1 1 H1) (Uz 2 27,)
i€Gy,
1/2 1/2
~r 7 0 0,0 |I?
< HF1H1H N, T2 3 ol . TQ > \(Fl — FOHy) (ui+ FOAY,)
i€G? i€GY
= VNiOp (1) Op(Tdriiyy +0x7) = op(1).

It follows that ﬁ ZieGg x (Mg, — Mpo) (ui + F9A3;) = op(1). Analogously, we can show that
N
ﬁ ZieGg i (Mp — MF{’)% > je1 (uj + FQO/\gj) a;j = op(1). Then (iii) follows.

(iv) As in (ii), we can readily show that
1/2
NkT2 E Z xy ;M iMp w1 jag = NkTZ Z Z ) Mg @ jai; + op(NV, 12 .
ieG jGGk/ ZGGO jGG
Using (B.1), we obtain the following decomposition

NkTQ Z Z wlz ( MF0> T1,Qi5 = Z NkT2 Z Z ZL‘I Zplxljazj = ZD;, say.

zGGO ]GG zGGO jGG

Using arguments analogous to those in the proof of part (iii) we can readily show that Di=o p(1) for
_ 1 1

1 =1,2,3,4. Then N T2 ZzEGk ~ deGk, iMp i jai = WZieGg NZjeGg, xll,z‘MFloxl,jaij +

op(1).

sin (3 v s 1 . ! R Do — L _ / R Do
(v) Asin (ii), we can readily show that 5= 3- o @ ;Mg @2,ib2i = F7e Ziecg Y ;Mp, T2,b2i+

~1/2— > ;
op(N, /*T~1) Note that b Yicqo 4 My, 2b0i = 5w Sicqo o1 Mppwaibo,i+ 5 S 71
(M, — Mpo)xs, ib2.i. The proof is close to (i) and (iii) and thus omitted here.m
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Proof of Lemma A.10 (i) Note that Qnr = QinT — QanT, Where

Qiny = diag NT2 Z%@Mpoﬂflu U Ng T2 Z $1ZMF0$1Z ,
i€GY €GO

Qant11 - QanTik

Qanr = : : , and QonT R = NN NN.T2 Z Z azﬂuMFOxlj

i€GY GGO
QanT K1 - QaNTKK K

It is sufficient to prove (i) by showing that Qin7 4, Q1 and QaonT LA Q2 as (N,T) — oo by the
Cramér-Wold device, where

Q1 =diag ]\}Enoo_ Z 1% (/ BmBéi) ;- ]\}EHOO—K Z Ec </ 327;351) ;

i€GY i€GY.
Q211 - Q2ik
Q2= : : )
Q2,x1  Q2kK

Qo = limy_oo ﬁ ZieG% ZjeG? ai;Ee <f BQZ'BQ]‘) ,C=0(F° AY), and E¢ () denotes expectation
conditional on C.
We first show QinT -, Q1 as (N,T) — oco. The kth block diagonal element of Q17 is given by

NkT2 Z xl ZMFOxl )

zEGO
T -1 T
1 1
S X et 3 () () (73 k)
zeGO i€GY t=1 t=1

= QuxnT,1 — Q2kNT 2, Say.

We first establish the sequential limit. Let (N, T )Seq — 00 denote the sequential limit by passing
T — oo first and N — oo later. Let Z1; = MF{)xM. Denote the tth column of Z1; as 1. Then as
T — o0,

1 1

~ -1
mﬁ,it = mc’tl,zt

-1
1 .
ZL‘l zFl (FlolFl) T1/2 f{)t = By, — /BQZBé </ BgBé> Bg = BZi,
and by the continuous mapping theorem (CMT) Tz x) ZMFOJ,‘l ;= T12 :E’llx“ = % Zle ﬁil,itﬁjﬁ,it

= [ Bo;Bo;. By the conditional law of large numbers with independent observations (conditional on
C), we have that as N — oo

1 -~
N, Z /BQzB2z 2, hm — Z Ec [/ 327;327;] .

i€GY eGO
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It follows that %xll,iMFlo‘/El,i LA Iimpy oo N%C ZieG% Ec [f BQZB%} as (N, T)seq — 00. To show the

above limit is also the joint distributional limit, we need to verify condition (3.9) in Phillips and
Moon (1999, hereafter PM). We do so by verifying the conditions in Theorem 1 of PM (1999) to
obtain that as (N,T) — oo

Quenr > A o > Ee /B%Béi) and

e Nk zEGO
d —1
Quivrz = lim —— Z Ec (/BgiBg </ BgB§> /B3B§i> :
GO

This implies that ﬁ Zz’eGg xll,iMF{’ffl,i LA limpy_eo N%c Zz‘eGg Ec <f B213§1> as (N, T) — oo. We
focus on the study of QixnT,1 as QirnT2 can be analogously studied.

It is easy to see that limy_, N%c Zz’eGg Ec ([ B2iBb;) is the sequential limit of Qixn7,1. We are
left to verify the four conditions in Theorem 1 of PM (1999) that ensure their equation (3.9) holds.
Let X;7 = % Zle :ULitJ:’Lit and &; = f By, B),;. Recall that M denotes a generic large constant.
Our conditions ensure that sup; supy B [|X;7||* < M. Tt follows that ~ =D cqo B ||| < M and

=~ ZzeGO E ||, 7| 1{ ||X;,7]| > Ne} = 0 for any € > 0, verifying condltlons (i) and (iii) in PM (1999)’s

Theorem 1. Tn addition, ||X; 7| = ||A; 7' for all ¢ € [0,1] by the continuos mapping theorem.
This, in conjunction with the uniform integrability of {||X; 7|} in T for all i and all ¢ € [0,1)
(implied by sup, supy B ||X;7||> < M), and the Fatou lemma, implies that E(X;7) — B(X;) and
E||X; 7' — B for all ¢ € [0,1) as T — co. Then Nik ZieGg E HXZ‘HHg < M < oo for some
¢ >0 (see, e.g., Lemma 12 in PM (1999)), which implies that NL,C ZieG% E[|X| 1 {||X;]| > Ne}] =0,
verifying condition (iv) in PM’s Theorem 1. To verify condition (ii) in PM’s Theorem 1, we apply the

Skorohod representation theorem to construct {X *T} and {X;*} in some probability space such that
X' 4 Xir, X 4 A&; for all 4, and X[ e A*, where 2 and “¥ denote equality in distribution and
almost sure convergence, respectively. Let D; p = Xy — A" Then {D; r} are uniformly integrable in
T for all i and D; 7 “% 0. By the uniform integrability of {D; 7}, for any € > 0 there exists § = § (e)
such that sup; supy E[||D; || 1{||D;r| > 6}] < e. By the almost sure convergence of D; 1 to zero
and the dominated convergence theorem, limp_,oosup; E[||D; 7| 1{||D;r| < 6}] = 0. In addition,
notice that

—ZIIE i) — B(X)|

= & Z I ( (&)

zeGO zeGO
1
< — Y Bl - & =+ ZEIIDlel
szGO ZEGO
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It follows that

hmsup— IIE (X7) — E(A)|
(NT)—>ooNk GZGO

. 1
<limsup ~ > [BI|Dir1 {||Dirll <} +E|Dir1 {|Dizl > 6}[] <0+e=e
(NT) =00 Tk o

Since € is arbitrary, we conclude that lim sup(y 7)o N%c ZieGg |E (X 1) — E(A;)|| = 0, which verifies
condition (ii) in PM (1999)’s Theorem 1.

To show QonT LA Q2 as (N,T) — oo, we also establish the sequential limit first. Note that
the (k, l)th block element of Qanr is given by Qanr ik = ﬁm ZieG% ZjeGlO aijw'l,iMFloij. As

T — 0o 2371 it = Bo J fBZiBé (f BgBé)il B3 = BQZ‘, and

) Tl/

1 1 1 . ! L
ﬁxa,iMFloxl,j T25131 Z.’L'LJ T Z <T1/2 lzt> (mxl’jt> = /BQiBQj by the CMT.

By the conditional law of large numbers for second order U-statistics with independent observations

(conditional on C),
Ec </ BQiBQj) as N — oo.

NN Z Z az]/BmBQj L NN

i€ay jea] ¥ iec? jea?

It follows that

d ~ ~
NN SR > airh ;Mpow j = Jim NNk > ayBe </321-sz> (N, T)yeq — 00.

ZGG% ]GGO zeG%yeGO

Let X1 = %aijl’/uMF{)xl,j and X;; = a;j fBgz-ng. To obtain the joint limit, we can follow the
proof of Theorem 1 in PM (1999) and find that it is sufficient to verify

(i1) lim SUP(N,T)—o0 NLN,c ZieGg ZjeG? E || Xij [l < oo,

(i2) lim SUP(N,T)—00 N+v,€ Ziecg Zjec? IE(Xijr) — B(A)| < oo,

(i3) im sup(n,7)—oo ﬁ ZieG% ZjeG? E[|| X7l L {|| x| > Ne}] =0V e >0, and

(i4) T sup(y 1) o0 787 2oica? 2ojecs B I 1{]| ]l > Ne}] =0 e > 0.

Note that {Xj;r} is uniformly integrable in 7" for all < and j. We can follow step (1a) and verify
the above conditions analogously. As a result,

d ~ o~
T o 2 a5 ayle ([ Buby,) as (41) -

zGGO ]GGO ZEGOJEGO

(ii) First, we observe that
Uent = Uty + Uler (B.3)

u o 1 1 _ 1NN fa  _ _1 1, 040
where Ugnr = 5= 2icct 721 Mpp (wi— 5 22520 wjaig) and Uplr = —5= 3 icqo 721, Mpp (F3 A —
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~ ZN FO)\QJa”) We study U}y and U,{f\,T in turn.
For Uiy, we make the decomposition

1 1
UinT POl — e Z Z ajj— xleFou,
N i€GY T JjeG? T
1 1
= = Z [xlz —Ee (‘Tl z)]MFOUZ

k i€G) T

1 X1

\/MZ TEC( ) {ZGG ZCLUT xlj M pou;

\/sz Z% (1, — Be (21,))] Mpou

jEG?
N u u
= Ulpnt + Usiony — Usnys 5ay-

We will show that U}y contributes to both the asymptotic bias and variance, Ug)  contributes
to the asymptotic variance, and Ugj - is asymptotically negligible. We study these three terms in
turn.

For U} np, we make further decomposition:

Ulnt = \/— Z (21,0 — Be (v1,0)] ui — \/— Z [21,; — Ec (21,0)) Prowi = Utpnry — Uthnra-

eGO eGO

Let o} ;, = w1,4—Be (z1) . Let 61 (L) = (65" (L), 65 (L), 5™ (L)), 621 (L) = (61 (L), 6% (L), $}™ (L)),

o7 = (07 (1), 677 (L), wji = (vfh, v/, vf'), and v/ = (o], o]""). Noting that ei = wf; =
(o (L)fvécje + ¢5° (L) v5, + ¢;72 (L) vi? + gbffl (L) tfl + gbfh (L) Utfz and by the independence of {v}"
and {vz'’'?}, we have

wip =P (L) vl + o (L) v + ¢ (L) v = o1 (L) vl = SUo! (L) vie,
Be (eie) =67 (D)ol + 677 (L) o = 677 (L) o,
eit — Be (eit) =5 (L) vl + 65 (L) v, + 65" (L) vf? = ¢51 (L) vl = S°¢] (L) vle®,

where

)

o) = ( o' (D) ) _ ( G(L) (L) 67 (L) )
Z o7 (L) 6 (L) ¢ (L) (L) ) i

S = (1,01y) , and 8 = (Opy 1, pyp) - Let VT = (Vi Vi, Vie) = (S vty S0y o Sy )

s=1 "is? s=1 "is? s=1 "is

and wj® = (wm wy, wif') . Then by the panel BN decomposition,

t
wit = ¢ (Lvi" + 0 —wy" and Y wit = ¢l(1)VE" + iy — il (B.4)
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where @ji* =372, @3 it and </5zj D et ¢Z,s- Let Biynr1 = ﬁ Dieqo ST 20 2o ¢Z,z+r¢;’lsw
It follows that

U U
UlkNT 1 BlkNTl

\/—Z Zmlztult BNt

GGO t=1

T
1
(53 [ zzﬁwr]%w
eGO r=0 1=0
1 T 1 T—-1 00 ~1_
{¢T Z u:c uac/ Il+p ’ _|_ ? ( w; t_'_lﬁ)%x Z d);r,erlﬁbz‘,s)
zeGO tzl = =

!

1 ~ -
N ST Z (@t = 8l ) 61(1) Z ]
s=0

T it

T

_l uzx ua:l+ 1 ux ~ux! Sul

Wiy Wy Twzl Wio
t=1

\/— Z S*{Qir + Riira + Rir2 + Riirs + Riira + Ruirs + Rure} SY.
ieGY

By Lemma A.7 in HJS, \/LN—]C ZieGg S€Ryir 1 S™ = op (1) for I = 1,2,...,6. It follows that

T
U u 1 uxr Uw (7
Utknt,1 — Blknrg = Z Sel(1) Z (Vi ol = Iy, 61(1)'S™ + 0p (1).

EGO t—l
Recall that ses = fO/(FYFY)~ ) and 5, = 1 {t = s} —3a,. Let By ypo = —= Soicco ST Sor-
ccall that s 1 FY) 7 s and s {t = s} —sas. Let By np, mzzeGg T Q=1

Z s L{s <tF> 020002, qﬁz 1 T/ ;5. Then, using the BN decomposition in (B.4) and following
the proof of Lemma A.7 in HJS, we can show that

u u
Uiknt2 — Biknr2 = E E E %ts% ttis — BlkNTZ

lego t=1 s=1

A X GZZ%bﬁ”W1W%ZZm¢DW

e t=1 s=1 =0 =0
1
r > Sl TZZ%S VAol — 1{s <t} L lél (1S + op (1),
eGO t=1 s=1
where we use the fact that B¢ (ViTol) = BE(ViTol) = I14p if s < ¢t and 0 if s > ¢ by the

independence of v}* over t. Then

Utent — Bixnt = Vient +op (1),

52



where

Vievr == 3= 5710 ;ZZ{% (ViErol) = [1{t = s} = sl {s < 1)) Ty} 0 (1)'S™,

GGO t=1 s=1

T T
BlkNT:< ZZ {tZS}—%tsl{SSt}> ZA2117

ZEGO

since Ag1; = S°Y 220> 20 gbl l+rgbl7’l5“’ = 523 720 2120 Pigr®iy St by construction.
For U3, s We make further decomposition

Usinr = \/— % TEC i z) MFOUz \/— Z ZGO azyTEC(@’l J)MFOUz = Ugpnra—Usinras say-
S S

Apparently, Be (Usiyr,: ) = Be (Usinra) = 0 Var (UgiryC) = Op (1) and Var(Ugiyr,|C) =
Op (1) . We now show that U, NT1 and Us), NT2 are asymptotically independent of Vj;n7 conditional
on C. Note that

T
1
Vlk:NT—\/—Z S61(1) Z Vimul® — Ip) ¢l (1)'SY

gGO t:l

1
Z Seel(1) T Z Z%ts Voo — 1 {s <t} Lippll (1)'SY = Vignra — Viknra-
i€G? t=1 s=1

Let ¢; and ¢y be arbitrary nonrandom p x 1 vectors such that ||c1]| = ||cz2]| = 1. Note that

Cov (c'1V1kNT,b 4Usn1,11C)

= Ee \/_ Z 1s€¢T %Z um um/ Il—f—p) ¢T( Su/\/_ Z T MFOEC (xl z)

i€GY t=1 i€GY

MH

1 1
= . 2 A0l () D e { (Vi — Tisy) 61(1)'S "t } Migle (a,)

ieGy, t=1
1 1 LT
= Fk Z Cllsgﬁi);r(l)ﬁ ZZEC {(V%?x fo/ Il+p) ¢T 'S } Z%STEC x1 zr
ieGy, t=1 s=1
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Using the BN decomposition, we can readily show that

T T T
N S 861 (1) S0 Be { (Vi — 1) ol 8%} Z (210) €2
ZEGO t=1 s=1 r—1
T T
N Z 1SE¢T Ti Z ZEC {(Vz:tm i = Il+p) ¢I( 1)’ Su,Su¢T( } Z s B (w1,r) c2 + op (1)
ieGY t=1 s=1 —
T T
:_ Z 158¢T TLZZ [V;?I uz/¢T( ) Su/SU¢T( } Z%STEC T zr) c2 +op (1)
zGGO t=1 s=1 r=1

!

1 1
-3 2 ¢ 58 (1) 75 SOB |[Viruol(1) sl (1) }ZMSTEC 1) e2 +op (1) = op (1),
iEGg t=1 r=1

where the first inequality follows by the BN decomposition, the second equality follows by the fact
that E (v}¥) = 0, the third inequality follows from E[VZ?%;W@( 1) S“¢T( vi*] = 0 for t # s and
the last equality follows by straightforward moment calculations. Similarly, we have

Cov (6’1 VikNT2, C UsknT 1 |C)

T T
1 u:p u:p U
\/_ E E E i @1 {s <t} )l (1) S/\/_EOTUMFOEC(:E“) 2
ieG? t:l s=1 ieGy,

1
N 3 dsgl(n) TZZZ%SEC{ (Voo — 1 {s <t} I11)] ¢j(1)'su'u;}MFPEc () 2
€GO t=1 s=1

T
1
— Fk Z 1S€¢T Z s e { uac ux/ -1 {8 < t} Il+p] d)T( )/Su’u”} Z e (LELZ‘[) 1)
=1

iGGg t,s,r
N Y sl Z%tsEc { [Vimol® — 1 {s < t} I1p)] ¢1(1)'SVS"0] (1) } Z%rzEc T1 1)
zeGO t,s,r
+op (1)

_ = Z 1S€¢T Z%ts [ Vouw u:c/ng( )Su/SU¢T }Z%NEC T zl) CQ+0P( )

ZGGO t,s,r =1

=~ Z 56l (1) )72 Z%ts { Vvt el (1)'S™ 5 gl (1) } Z%rzEc T1,i) c2 +op (1) = op (1),
ZGGO =1

where >, . = 23:1 ZST:1 Zle . It follows that Cov (c’l ViknT, CéU;kNT,lw) = op (1) . Analogously,

we can show that Cov(c’lvlkNT, c’QngNT72|C) =op (1). Then Cov(c| Vignt, U N7IC) = 0p (1).

For UY 7, we can readily show that U% v = U yrtop (1) where Ul yp = ﬁ SV + ZjeG%j#
+[z1,; — Ec (a:Lj)]’MF{)aijui. By the independence of (x;,u;) across i conditional on C, we have
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g e N N

Ee (UigkNT) = Oand tr{Var (ngNT’C)} = W,CT? dict ZjeGg,j;ﬁi dine Zjleag,jl;éil aijaij, Befuj,
Mpo[z1,j, —E (21,5, [C)][z1,;—Ec (21,7)] Mpoui } = Op (N~1), where we use the fact that Be{uj, Mpo[z1,j,
—Ee (z1,5,)][z1,; — Be (21,5)]' Mpou;} is nonzero if and only if #{i,j,i1,j1} = 2 or 1. It follows that

Usfyr = Op (N7V/2) and Uy = op (1).
In sum, we have

Uint — Biknt = Vignt + Vornt +0p (1), (B.5)

1
where Vvt = Usinr = = 2ici {7 Ee (fUl z) 1{i € GY} — % Zjeco aijrEe(w) ;) } Mppu; and we
have shown that Vipnr and Vopn7 are asymptotically independent conditional on C.
Now, we study U ngT We make the decomposition

kaJZVT \/— Z Txl’LMFOFQOAQZ \/—Z Z azJTa:leFon)\

eGO jeGy
\/— Z (21, — Ec ()] MFPFQOAgi
eGO
N
Z T (¢14) 1{i € G}} Z alJT c(@) MF10F20)‘81‘
=1 ]GGO

1

VN Z N Z i w15 — Ee (xlvj)]/MFf)Fg)‘gi = Ufing + Uding — Ulinr-
Fis1 7 et

We show that Ulfli N7 and szli N7 contribute to the asymptotic variance and bias, respectively, and

Ug,iNT is asymptotically negligible. For UlfliNT, we have E[UlfliNT|C] =0, and tr [Var(UlfliNTm)] =

N%“ ZZGGO 72} O/fglMFOEC { r1i — Ee ()] [3311 — Ec (x:) /} MF{’FQO/\gi =0Op(1). For U2fl§NT7 we have

UkaNT = Bagnr. For U3kNT, we have EC[U3kNT] =0, and

1
tr [Var(Ufing 0| = e S Y am Y My (1. — ool — Belos, ) Mg N,
4,l=1 jmeG?

NkNgTz Z > aija Ay Mo Ee {[1,; — Be (21,5)] [21,; — Be (z1,5)]'} Mpo FSAS;

i,l= 1]€G0
)\O/)\O )\0/)\0 )\0/)\0 )\O/)\O
NkTg > AN - INQFQO/MFPEC{[MJ—Ec(ﬂfl,j)] (21, — Bc (1)} Mpo F3 N L= N L),
JjEG?
)\0/)\0 )\O/)\O 2 9
< | ]| [ Nm 5 I [t s e rnsllens = Be ey My
=0Op (Nfl),

where the second equality follows from the independence of {z1,;} across i conditional on C, the third
equality follows the fact that a;; = Y ()\0’ /N ) 0 = aj;, and the last equality follows from
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the fact that ﬁ ZjeGg H)‘(l)jH2

| P9 MioEe {1 — Be (@) o5 — Be (215"} Mpo F9|| = Op (1)
by straightforward moment calculations. It follows that U:{,i 7 =O0p (N -V ?) = op(1). Then

Ul3r — Baknt = Vaenr +op (1) (B.6)

where Vet = \/;N_k ZieG% % [$1,j — E¢ (xl,j)]/MF{)FQO)‘gi'
Combining (B.3), (B.5) and (B.6), we have Uynr — Bixnt — Bornt = Vinr + op (1), where
Vient = Vignt + Varnt + Vainr. This completes the proof of (ii).

(iii) We have shown asymptotic independence between Vipnr and Vopnr conditional on C. By
the same token, we can show that Vipyp is asymptotically independent of Vixnr conditional on

1 1 1 N 1 —
C. Note that V2kNT = m ZiEGg TE <$/17Z|C> MF{)Ui — —\/N_kN Zi:l ZjeG% al'jTE(ZL‘ll’j|C)MF1()’LLZ' =
VornT1 — VarnT,2. We have

Cov (¢ VarnT,1, 4 Varn|C)

1
=5 O ABe (1) MipuiFic {GFY Mg 315 — Be (21,)] }

ieGY
1 / / 07 007
“N.T2 Z tr {CQCIEC (#1.5) MpoEec {ui)‘QiF2 Mpo (1, — Ee (5'31,1')]}}
F ieGY
1 /
N2 Z tr { [VeC(C2C/1Ec (214) MFIO)} Ec {u; ® [z1,; — B¢ (z1,1)]'} Vec(MFloFQO/\gi)} ,
ieGY

which is Op (1) but not op (1) in general unless Cov(u;, x1,#|C) = 0 or E¢ (z1,4) = 0, which we do
not assume. Similarly,

1
Cov (1 VarnT,2, &3 VarnT|C) = NN.T? > aijciBe(ah ;) MpoBe {uich [w1; — Be (1))} Mpo F3 A3,

70 0
i€G) jeG),

which is Op (1) but not op (1) in general. It follows that

3
Var (Vinr|C) = {Z Var (Vignr|C) + Cov (Vagn, Vagnt|C) + Cov (VagnT, V:akNT\C)/} +op (1)
=1

= Qnrrkr+op (1).
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For any k # [, we have

Cov (Vint, Vin|C) =Cov (VapnT, Vaint|C)

N N
1 1 1
N2 Cov ZN Z aijBe () ;) Mpow;, Z N Z aiyj Be(vy,j, ) Mpoui, |C
k i=1 jeG? i1=1 1E€GY
1 N N
=N O D D D ijtini Be(@ ;) MpBe (uiu;, ) MpoEe(ah ;)
g i=1 jeGY 1=1j,€G?

N
1
=N N?T2 YYD aijaiBe(ah ;) MppB(uiuf) MpoBe(2 5,) = Qnrp,
F i=1 jeGY j1eGo

which is not vanishing unless E¢(z14) = 0. Let Qn7 denote that Kp; x Kp; matrix with typical
blocks Qn7r (p1 X p1) for k,0 =1, ..., K. Note that Viyyr = Zf\il ZyiNT, Where

T T
1
ZrinT = STl )3 G Vol — [1{t = s} — sa.1 {s <t} L1y} 6](1)'SV1 {i € G}
VN T =1 s—1

1 1
+ —— EC (:U/l z) 1 {’L S Gg} - = Z ai]‘Ec(.xllj) MFOUZ‘
VT Njeag 1
1 .
+ m [xl,i — E¢ ($1,i)]/MF9F20/\8@-1 {Z S Gg}

=ZiNnT (1) + Ziint (2) + Ziint (3) -

Let VT = (Vl’NT,...,VI’{NT)/ and Z;nyT = (ZLl-NT,...,Z}(,iNT)’. Note that Z;yr are independent
across ¢ conditional on C. Let w be a nonrandom Kp; x 1 vector such that ||w| = 1. By the Cramér-
Wold device and the martingale CLT (e.g., Pollard (1984, p.171), we can show the asymptotic
normality of Viyr by showing that

N N
Zi=) B Uw'Zz‘NT|4 |Ci—1,NT} =op(1) and Z2 =Y |/ Zinr|" — ' Qvrw =0p (1) (B.7)
i=1 i=1

where C; n7 = U(C’,gl’i,gi), the sigma-field generated from C, Ty, = (1,1, ..., 214) and u; =
(u1, ..., u;), and ® yy =Var(Vyr|C) by the previous calculation and the independence of Z; 7 across
1 given C.

We show the first claim (B.7) by the conditional Markov inequality. Let wy be a nonrandom
p1 X 1 vector with |lwg| < 1. We can show that

N

Ec(21) =) Ee Uw’Z@'NT{4 |} =op (1)
=1

by showing that Zf\il Ec [‘W;QZk,iNT (l)]4 ]} =op(l)fork=1,...,Kandl=1,2,3. We only show that

Zi]\il Ec ||w)Zk,inT 3)* ]} =op (1) foreach k € {1,..., K} since we can show Zf\il E¢ ||w}.ZkiNT O =

o7



op (1) for [ = 1,2 analogously. By the BN decomposition in (B.4), :r;rt =2y —Be (zi) = S0_, wi¥ =
qﬁj(l)Vftm + Wi — wy*. Noting that

T T
sz | Xisfoedi1{i € G}},

t:l s=1

1
Ziint (3) = INT (21,5 — Be (21,:)] Mpo F3 25,1 {i € G} }

we have

N
> Ee [|w22k,iNT 3)[* |}

i=1
L&
:—N2T4 Z Ee [whZrint (3) Ziint (3) wiwh, Ziint (3) Ziint (3) wi)
N2T4 Z Z Z Xt181Xt282Xt383Xt484f251 8;f2szf253 f254EC [wkx;rtl ItZWk w;gfbjt?,w;ruwk}

1€EGY t1,t4 815,54

A0 \O 40 R ot
N2T4 Z Z Z Xty51 Xt Xtass Xtasa S 201 A9iA% S 55 [20y N3iA2: 25, Bictr [wk:wkitztl Ty, Wk Wkl’ztg%tJ

I€EGY t1yeta 815,54

O/ 0/ 0
N2T4 Z Z Z Xt1$1Xt2$2Xt383Xt484f251 2if252 f253 2if254

I€EGY t15-5ta 81,..,54

 [vee (wrh)]' Be (@l al}) @ (@l alt,)] vee (wish)

Using the BN decomposition for :L‘m we can show that the last term has dominant term given by

0 0 0
N2T4 Z Z Z Z Z Xt151Xt282Xt383Xt454f251 2;f252f233 2§f234

ZEGO 1<t1,51<T 1<t2,50<T 1<t3,83<T 1<t4,84<T

x [vec (i)' B | (ol Virviersl (1)) @ (ol (Vv o] (1)) ] vee (wieh)
Z Z 2t1 z‘)‘ggf2t2f2t3 g;fgm [VGC (wkwk)],

ngGO t1,t2,t3,t4
E [(qﬂ( WitV ol()') @ (sl Vi Vi ol (1)) | vee (wieh)

20 207 £0
N2T4 Z Z Z Z Z Xt1s1 Xtaso Xigsg Xigsy f251 2;f252f253 2§f254

1€GY 1,51 12,52 13,53 4,54

_N2T4

x [vee (wih)] B [ (ol OVirVEol (1)) © (el Vv ol (1)) vee (wess)

where M is a generic constant that can vary across lines and the inequality follows from the Chebyshev
inequality. One can readily show that the first term is Op (N *1) . For the second term, noting that
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s = fif (FY Flo)*1 12, it is bounded from above by

FWFO) D DD O LN A TEN TN NE

i€GY tta ls ls

g

1 T
0 (0
T Zfls 2,
s=1

<[ (slovivirelar) o (dovivireay)|
=0p (1)Op (1) Op (N"1) = 0p (N71),

where the last line follows because by Jensen’s inequality and the independence between {f ?t} and

{28}
N2T8 S5 BUAL ANl 1S 1 Bl (Vi vie sl (1)} @ {sf ) Vi vier'sl (1) 111}

i€GY t1,ete
_N2T82 { }
i€GY
! 4 4 4 ue Ue
< S IR Bl BN E IR Blvi) s e e v v}
t1,t2,t3,ta
M '1 T 14 4
<37 X B[] | 72 2o (Bl EOvar)
i€GY L t=1
_1 T 4
—NZZ D3] |7 20t =0
'LEGO L t=1

and the last inequality follows from the fact that E[H f%H4] < Mt? and E[||VZ7;5“5||4] < Mt2. Conse-
quently, we have shown that Zfil Ec [\w%Zk’iNT (3)\4} = op (1) for each k = 1, ..., K. Analogously,

we can show that Zfil Ec []wf,cZkyiNT (l)\ﬂ =op (1) for each k =1,..., K and [ = 1,2. As a result,
the first claim in (B.7) follows.
To show the second claim in (B.7), we first observe that E¢ (Z2) = o/ Zf\il Ec (ZiNTZi ) w —

W'@nrw = 0. The claim follows if we can show that Var(Z3|C) EVar(Zi]\Ll |’ Zinr|? |C> =op(1).
By the independence of Z; 7 over i conditional on C, we have Var(Z,|C) = Z?Ll\/ar <|OJIZZ'NT|2 |C> <
Zf\; 1 Ee (|w’ ZiNT|4> = op (1), where the last equality follows from in first claim in (B.7). Conse-
quently, we have Vi 4N (0,€0) conditional on C, where Qg = lim(y 7y _00 Qn7. B

Proof of Lemma A.11. (i) We first study [|[A; — H; *A\};||. Noting that A;; = (FlFl) 1Fle; =
%F{ei with e; = y; — x;8; = Flel)\(l]i + (Fl0 - FH ))\(1)Z + F20)\2Z +u; — 11 Zl71 i — T2 Zbg i, we have

Hj\lz‘ —H

1 - S
< HEF{(FP_FlHl 1)>‘(1)i

1 . R
_’_HEF{(UZ + F20>\(2JZ — xg’ibg’i)

1.,
+HEF{$1 ibii
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By Lemma A.5(iii), we have Ey; < 2 o (FO — Flel)H H)\?ZH = Op(nlNT+T_15J§,1T+T—5/4C;,¥2).
(FY (w5 + FYAS; — w2ibo )|+ ‘(F — FYHy) (u; + FO)‘gi - xz,il;z,i)H =
OP(T_l). In addition, we can show that F3; < =5 '81 i Flel zbl i (Fl — F{)Hl),xl,ii)l,i

— Op(mn7)- Tt follows that ||Ay; — H; MY = OP(mNT + T~ ) Let ACy,; = leh FOX).. Then
by the triangle inequality

For Fs;, we have Fo; < %

IACL = || Fadss = FAY,

< H(FlHl — O,

‘FlHl Ai — H

‘ (Fy — FOHD) Ay —

Z llewll-

It is easy to show that

lewll - 1155 .
T < o [t = B I = O (VT + Cx)

FOH N
”\C/QL H lT 1HﬁH/\1i — H{ 'Y,

|csil| 1 H 0 3 —1,0
g—F—FHHHA-—H A0,
VT — T I TR T A

Consequently, we have %Hﬁlﬂlz — FO\Y) = Op(WTninr + Cpie).-

= Op(VTnny + T_1/2)>

= Op(VTniny + CKIIT?hNT)-

(i) Given the fast convergence rate of | and éy, and the established convergence rate of 6271‘ =

Op(\/drT~1/2) and Ay; in part (i), the result follows from standard factor analysis. We also assume
the stationary regressors are uncorrelated with the stationary common factors and factor loadings.

Here, we only sketch the proof. Recall that Fy satisfies the following equation: [ NT Sk el D ey (yi—
100k — 2380, — F1 i) (s — w1 6, — 2,180, — Fl/\lz) |Fy = FyVp N Note that y; — 1 jév — 22,105, — i
Fl)\lZ = F2 )\Ql—i—uZ x1,i( 0 — ak) T9 Zbg Z—i—AC’l i= F2 )\QZ—i—uZ x1,4k, where @; = u;— ACY i— T2 Zbg i
and aj, = &y — aY. Then by the proof of Theorem 3.1(iii), we have the following decomposition

K K
. 1 R - 1 N
F2‘/27NT :ﬁ Z Z :L‘Liaka?cx'qu — ﬁ Z Z ZL‘Liak)\g;FgolFQ - = Z Z Tl zaku FZ
k=1icC, k=1ieék k 1z€Gk
> FNaga) By — NT Z > g P + 7 Z FINS. il Fy
k=1icCy, k=1ieq, Ti= LieGy,
K
1 A
ST A S Y b S Y R
k= IZEGk k= 116Gk k= IZEGk

=11+. +L8+—ZF2,\

It follows that | £y — F9Ha|| = o (|| La + .+ |[Zs]|) Vo, where Ha = (A3 AD(RF Ba) V5 4
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= Op(1). One can readily show that

1,i]|? [ £
T JT N

1 I~ TK HZL‘lZH
— |7 < m 2
v bl sy T max

= OP(T1/2N_1/2d1T/2QNT),

ZHakll = Op(drTN " Ko}),

{NZHA%” }1/2{%§riak,,z}l/2

k=1

1 ~
—||L1|| <T max
\/TH 1|| = s

and

| TR el 1B (1 & a2 1 & 2
- IN/ < lz 2 + U; a R 9
\/TH 3” = N InlaX T \/_ {Ng T } {KZHGICH}
= Op(TVAN"V2\/dronT).

Analogously, we have ﬁ”f@“ = Op(TY2N-2p\7) and %HI},H = Op(T'2N-Y2\/dronT).
Since the remaining terms do not involve éj, we can directly obtain from Bai and Ng (2002) that
ﬁ |Li;|| = Op(Cyy) for | = 6,7,8. By the fact that ¢y, are the group-specific C-Lasso estimators, we
have ¢% = & - a%Hz = Op(N~YT—2) before bias correction and oy = Op(N~Y27-1)
after bias correction. Thus, we have TV2N~Y2\/dronr = o(Cyt) and ATTN 103 = o(Cyr)-
Consequently, ﬁ HFQ — F20H2H =0Op (C&%ﬂ) .

(iii) Noting that Ag; — Hy '3, = % V(FY — FyHy DAY, + @ — x14a], we have

\/_ 3 (X% - H;ugi) < Z L (0 — ByHy )N \/_T Z \/_T 3 By

i€Gy, zeGk 1€Gy, ieGy,

= El + E2 — Eg, say.

For Ey, we have HE1H HF2 (F9 — [yHy! H A szeGkA = 0p(C2)0p(VNZ) = op(1),
where we use the fact that 7~ 1F2(F2 F2H2 1) = Op(Cy%). For Es, we make the decomposition:
By = T\/— > il H)FY U+ = Fy—FYHo)'ti; = o1+ Eo . Using @; = uj—ACH j—x2,iba,
we can readily show that

T\/_ ZZEGk(

Egl E E FO’ACM H2 E F2 i) 1()21
’ T\/ T\/ T/ N;
ZGGk ZGGk ZEGk

= O0p(T™V?) +0p (1) + Op(T™?) = 0p (1).

Using the decomposition of Py — F20H2 in (ii), we can readily show that E‘g,g =op(1). Then Fy =
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op (1). For E3, we have

1 S 0 ! A~
HE3<{ ey 5 et m@wmzﬂm}ak

1€Gy, 1€Gy

- {OP(\/M) +0P(\/]Tk)} Op(ont) = op(1).

It follows that ﬁ Zieék(j\% — Hy'23) = op(1).
(iv) Noting that

Hj\gz‘—HQ_ SH%FQ’ (Fg—ﬁﬁgl) A% |+ H%Fﬁaz + H%nguak
<8 (58— ) 108+ 7 | g+ |
=Op(Cy7) + Op(T?) + Op(onT) = Op(Cy}),
we have
Sl < (- )t o)

+ ﬁ H (Fg - F§H2> <>\2z' - H2_1)‘2i>

= Op(Cyy)Op(1) + Op(1)0p(Cyt) + Op(Cyr)Op(Cyt) = Op(Cyrp).

(v) Note that \/;N_k Ziegg(Am,i —Agy ;) = \/LN_,Q Ziegg (Aot ;i —Ee (Ao )]+ \/LN_,Q Ziegg [Ec(Ag1;)—
A9y 4] = dint + dant. Following the proof of Theorem 9 of Phillips and Moon (1999), we can show
that

1 . R 2
e |duvr® = 5 3 Be | Ao ~Be(Aon)|| +op (1) = Op (J/T) 00 (1) = 0p (1),
; 0

1eGy

o 2 A
EC(AQLZ‘) — Agl’i = Op (N/JQQ) = op (1) . It follows that ﬁ ZieG% (A21,i_

and E¢ (dfyr) < et
AQLZ‘) = op (1) .

(vi) We first obtain the rough probability bound. By Jensen’s inequality and Lemma A.5(iii), we
have

T
%ts %ts 1 {5 < t}
1

Yarga
T2

T T 2
< Nk {ZZ (%ts - %ts)2}

t=1 s=1
=V Nil| Pg, = Ppoll = Op({V/ drninr N + N T~ 172

t=1 s=

Note that 7,y = T~ before bias correction, the last term may not be op (1) under our conditions
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n (N,T). To obtain the tight probability bound, we make the decomposition:

M=
M’ﬂ

<%ts - %ts) 1 {3 < t}

o~
Il
=

s=1

Lz -1
afii— S PE) T ) 145 <)

H
Il

1 s=1

1
1 /. /
{Tzf (HlH{ - <T2F10/F1> ) f?s+ﬁ (flt _Hif{)t> H{f?s
1 s=1

b 5 (Fio = HUD) + 5 (o =BG (Fio = LA } 1{s<t)

=d3nT,1 + d3nT2 + d3snT3 + d3nT,4, Say.

Il

o5 Hm
M=
Mﬂ

M=
Mﬂ

t

Following the proof of Lemma A.5(i), we can readily show that dsy7; = op(1) for [ = 1,2,3,4. Then
T T Ga = ) 1{s < 1) = 0p (1),

(vii) We first make the following decomposition

\/— Z (Aggidgi — A24,¢X3¢)

1€G0

- 150
i Z (Agaida; — Aog i HoHy ' y))

;0
ieGy,

A —150 71—0 _
+ — Z (Aggi — Aoy Ho)Hy ' Ao, + o~ Z A241H2(>\2z Hy ' X\y;) = Iy + Lo + L3,
Nk i€GY N i€GY

Following the proof of Theorem 9 of Phillips and Moon (1999), we can show thatNik Y ieqo
= Op(% + %) and I12 = op (1). By the Cauchy-Schwarz inequality,

R 2
Aoy — A24,¢H2H

- =0 |12
N Z A2i — Hy 1)‘21'
1EGO
2
2 3 1y |2, 2 L~ (5 —1,0
Sm Z Xoi — Hy " gl + N, Z N Z ()\2]’(11]‘ — H, )\Qjaij>
ieGY ieGY J=1
N 2 N 2
2 “ _ 2 4 1 © 4 1 Q _
< hoi — Hy "Ny 4+ == D {5 D Ao (@i —aig) |+ D |5 D (Aey — Hy 'A9))ay;
Ng Ny N 4 N N 4
zEGg zEG% Jj=1 i€GY Jj=1
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Following the analysis in (iii), we can readily show that

N ZHM Hy ' X5,

zGGO
3 1 3 2
al ~/ A~

SM Z TFz(Fz foHy? Z Fk Z ngwiak

ieGY i€GY i€GY
=0p(Cy7) + Op(T™) + Op(okr) = Op(CN7)-

SR : : 1 1 N /3 —140 2 1 N
Similarly, by the Cauchy-Schwarz inequality, - Zz‘eGg ~ 2je1(A2 — Hy " Ag5)aij|l < #2051

2
R - _ i N
H)\gj ~ H, 1)\ng NLNk 2 iec ZJ | a3; = Op(Cx5). In addition, we can show that ﬁ Dlieq0 21
LN S o —an P < 25 5
N Zj:l 2j (Gij — aij)|| < Zj:l
N _ - o2
X N}Vk ZieGg Zjvzl llai; — aij||2 — Op(C’NQT). Consequently, we have Nik ZieGg Aoi — Hy ' Xy,

Op(C&%). This result, in conjunction with the result in (iv) and the Cauchy-Schwarz inequal-

1/2
ity, implies that [|I11] < \/Fk{NL,C Zieag A24,¢ _ A24,z‘H2H2}1/2 {NLkZiGGg 2} /
= +v/N,Op (rﬁg + Jq) Op (Cy7) = op (1) . By arguments like those used in the proof of (ii), we can
show that I13 = op (1) . It follows that ﬁ ZieGg(A%ij‘?i - A24’¢5\gz-) =op(1).

llai; — ain2 = Op(Cy?%), which implies that NL,Q ZieG%

5\21‘ — H;l;\gl

(viii) We make the decomposition

Z Z Z {%tsA% idai — 15004 z)\gl} 1{s <t}

eGOt 1s=1

Zl Zl — 5)1{s < t} \/LN_;C Z <A24,i§\2i - A24,i5\(2)i)

-0
ieGy,

I
N[ =
MH
MH

(Gas — »a5)1 {s < t} \/—— Z Aoy z>‘21

1 k EGO

“
I
—
Vo)
Il

I
N[ =
W
MH

“
I
—
Vo)
Il
—

s {s <t} —— ~ Z (A24z)\2z A241)\21) = Io1 + Izg + Ios.
ieGY

Note that Io; = op (1) by (v) and (vi), Is2 = op (1) by (v) and the fact that 3 ZzEGO AMASZ. =
Op (1 ), and Ia3 = op (1) by (vi) and the fact that 71“21: ST a1 {s <t} = Op(1). Tt follows
that —x=7 > ieqy Soimt Do asBasidgi — s Dasdgl1 {s <t} = op (1).

(ix) We define the followmg T x py matrices T1; = x1,; — Be (21,), Xy = MFoaslll {z xe }

+MF0[EC (331 i ><1 {Z € G } N ZJGGO CLUEC (xlj)] and X;“ = MFoxl Z1 {Z € G } i ZJGGO aZ]MFoa:LJ.
Let %’ kit and X}, kit denote the tth row of Xj; and X, ;, respectively, which is a p; x 1 vector. Let
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/
Xit = (X iy oy X ip) and Xy = (X'Lit, ,X'Kzt> . Recall that

N
1
Uent = —mp 30 ahiMip | (s + PN = 5 Dy + 9
N 1
1
— —\/MT ; MFO.%'I 7,]- {Z c G } - _JEXG’:O az]MFO.TlJ (u% —+ F20)\g7,)

N N
1
= == Xji (wi+ F2AS) = Uknr,
NeT' = i=1
/
where Uy inT = ﬁ Z?:l Xk, it (uit + )\g;fgt) . Let UijnT = (U{,iNT7 ey U}(,iNT) . Then
X, .
\/N_l 1,it

T
1
UinT = T z:: : (wit + A% %) =

—1_ )
WXK,NS

N

Xt (uit + )‘21f2t)

where Dyg :diag(Nﬂl, ey N—J\;{) ® Ip,, which is a Kp; x Kp; diagonal matrix. Now we collect all
asymptotic non-negligible components in Uy, ny7 and define them as Zj; ny7 as follows

Zgnt = Ulpnr +Uspnr + U1f/3,NT + UQfIz,NT
1 N
= Z[ZL‘M — Ee¢ ($1,i)]/1 {Z € Gg} MFoui
VNI = '
R 1
+— Z EC (x'l,z) 1 {’L € Gg} — - Z ai]‘Ec(.lej) MFO'LLZ‘
VT = N et ;
N
Z w13 —Be (1)) 1{i € G} Mpo F9A,
N
=1 jEGO

N
1 . 1
= JEGY

N 1 N
— 2 : ) ; i+ 0)\0‘ — § Z ; .

!
T .. .
where Zj ;n7 = ﬁ iy Xt (uit + /\g;fgt) . Similarly, letting Z;ny1 = (Z{,iNT, ey Zl[(,iNT) , We
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have

ZiNT = \/_T Z xzt Uit + )‘2zf2t)

By construction, we note that Uy n7 = Z; n1 + op(1) and U; n7 = Z; n7 + op(N 1), Recall that
Vint = Sy Ziint and Ugnr = Vinr + Big.nt + Bok nr + 0p(1). Then we have

ZiNT = ZiinT + Brint +op(N71),

where By it = Bk inT,1+BkinT,2, BrinT,1 = ﬁ <ZtT:1 St %m) Ag1;1{i € GV}, and By N2 =

/

\/—T (Zt 1 ZS 1%ts) A241)\221 {Z e@? } Define Byt = (Bi,iNT’ ...,B}QNT> . Note that Z;nr
are independent across ¢ conditional on C. Similarly, we have that Z;yr are 1ndependent across ¢ con-
ditional on C. Then we have Qnr =Var(Vyr|C) = ZZ Var(Zint| C) = ZZ 1 Var(Z;n7|C) +op (1),
where ZfVZIVar(ZiNﬂC) = Zfil[Ec (ZinTZl 1) — Ee (Zint) Ec (ZinT)']. By construction, we have
Ec (Zint) = Be (Zint + Bint) +0p(N7Y) = Binr + op(N7Y) and SN | Ec (Zinr) Ec (Zint)' =
Zij\il BinTB! 4+ op(1). Note that conditional on C the expression Z;n7Z! vy — Be (ZinTZlyr) 18
mean zero, and it is also independent across . This together with the bounded moments implies that
Var(zzjil (ZintZlny — Ee (ZintZlyr))|C) = op (1) . Thus, we have

N N
> Ee(ZinrZinr) = Y ZinrZinr +op (1)
i=1 i=1

DNK
- NT2 ZZ%” wit + A9 far) (is + A9 f35) Xfg + op (1)
t=1 s=1
N T T

= DNKZZme i 4 ML) (e 4 ALFL) + 0p (1),

i=1 t=1 s=1

By construction, we have U; n7 = Z;N7+ OP(N*I). Then we have Zi\;l ZiNTZ,ZNT = Zfil Ui,NTUi/,NT
+op(1) = Rk SN ST XX (i + A S, (uis + A% £D,) + op(1). Tt follows that

N T T N
D
NT = N]\;g( E E E XX ( u%t+>‘g;fgt) (uis +>‘(2);fgs) - E BinTBinT-
i=1 t=1 s—1 =1

Recall that QNT = NT2 Z,L 1Zt 1 Zs 1thXZSA;kta;kS Zz 1BZNTBzNT7 where th7 ;kp and
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Bi ~T are as defined in Section 3.4. We decompose ¢ N7 — QN7 as follows,

~ N T T
. Dy
Onr =t = 5 5 DD XX (i, — (wa + A F5) (wis + A5 5,))

i=1 t=1 s=1

N T T
R 1 <
+ (DNK - DNK) ~NT2 Z Z Z (wit + A% f3r) (uis + A%} f25)

=1 t=1 s=1
D S Lo L
NT? Z Z Z XX, ng) (wie + )‘géfgt) (uis + Agéfé’s)
i—1 t=1 s—1
N A A
- (Z BinT BinT — Z Bz'NTB;‘NT>
=1 p

= QOn7i+ Qnr2 + Qnrs + QNTa.

It suffices to prove [[Qnryll,, = op(1) for I =1,2,3,4. Let cxp, be an arbitrary Kp; x 1 nonrandom

vector with ||cxp, || = 1. Note 4}, = yir — LTt — 3/271'1727’% — jxlliflt. By the triangle inequality,
, Noror
| ANT 1 CEpy | = NT2 Z Z Z epy DN Xt XigCrep, (U505 — wiyusy)
i=1 t=1 s=1
, ror
: ' 78 2 2 O e D XK erpy iy (85, — u3y)
i=1 t=1 s=1
, o7
T NT?2 Z Z Z c/Km Dy XiXiocrp, (U5 — ) tis
i=1 t=1 s=1
11 1
Sy Z T Z CKp1 DNKXitﬁ’?Tt el Z (a:s uzs) X;scKpl
N T T
=1 t=1 s=1
1 L1 & 1 Z
+y (T Z ey DN Xin (4 uft)> (T ZustgscKpl) |
=1 t=1 s=1
= A1+ A1

1/2

A 2
Note that A1 < (% S || S DvaKaiy| (% S ||# S8 G - ) X
Op(1)op(1) = op(1) by Lemmas A.3(ii) and A.11(i), where

T T T
1 N 1 IR N
S (o) £ 3o+ om0 ()
s=1 s=1 s=1

=Op(N _1/2)+0P( drT~Y?) + Op(VTiyyr + Cyr) = op(1).

<

H |

Similarly, we can show that A; 2 = op(1). It follows that HQNT,IHSP =op(1).

= op(1). By Theorem 3.3,
sp

it directly implies that P <Nk = Nk> — 1. Then it follows that [[Qn72||,, = op(1).

To prove that ”QNT’Q”SP = op(1), we need to show HDNK — Dni
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To prove that [[Qn73(,, = op(1), we observe that

N T
1 v * ok
|C,KplQNTﬂ3cKp1‘ - 'NT2 ZZZCIKMDNK (XitX/‘ — Xt X )CKPI Uiy Uy

ET:KPIDNKXZtuzt) (TZZ: ( - )cKm)

t=1

T
1S (1 )
N Z (T Zc/[(plDNK (Xit - Xit) uft) (T Zust;scKm) = Agq + Azo.
i=1 t=1 po

IN

2 1/2 1 N 1 T % / 2 1/2
) <N Zi:l HT Zs 1 U (X - Xis) ’ ) and
2

Note that Ag’l S (% Zi\;l H% Zle DNKXZ'{LL;;

1 N 1 T < *
~ D1 H T > im1 DN Xiguj,

2 .
= Op(1). It remains to show + SV H% STt (Kis — X!

Xl,i — X1,
. ' .
op(1) by using that %ZSTZI ul (Xis — XZ-S) = %u;“’ : , where %u;”(XkZ — Xgi) =
XKZ X—KZ
Tu*’[M x1,1{i € Gk} Mpol‘lzl {z ey } _T“’ []{, ZjeGk ai; Mg, xl,j—% Z]EGO al-jMFo:nl j]- By
similar arguments to those in the proof of Lemma A.9, we can show that + ZZ 1 H T STk (X — X!

= op(1). Then Az = op(1). Similarly, we can show that Az = op(1 ) It follows that ||QNT73||8p

op(1).
By the proof of Theorem 3.5, we already show that By, NT — Bint = oP( ). It follows that

ByinT — Brint = op(N ™). Since Qnra :Az'fil EiNT(BzNT — Bint) + i (Bint — Bint) Blyrs
we have HQNTAHsp = Op(l). It follows that Qn7 — QN7 = Op(l).

The proof that Q}T — QL = op(1) is analogous and thus omitted. W

Proof of Lemma A.12. Let ¢ = y; — xLiBM T9 Zﬁ2z = Fl )\11 + U — 11 J)M, Where ﬁ,* =
+ FY'AY; — a,:b2; with a typical element denoted as @ Then Vi (r1, F') = b= SN &M €
and Vi(ry, FOH]) = =7 SN zMFOH é;. Noting that 4}, behaves like a zero mean I (0) process, 5171-

and ﬁli are T~ and T—1/2-consistent, respectively, when r; > 79, the proof follows from obvious
modifications to Lemmas C.2-C.4 in Bai (2004). H

Proof of Lemma A.13. Note that we determine the number of unobserved stationary factors based
on the resultant residuals

N at I oA
o 07 £0
Pit = Yit — B1,%T1,it — BoT2it — Mif1e = Ay far + wit + vit,

2 > N .. . .
where vy = — (b ;21,5 + 0y ;2,0 + A fie — )\(1); f%,) signifies the parameter estimation error from early

stages. Given the preliminary consistency of BM, 3271‘ and ;\/M flt, and the fact that fJ, is stationary,
the proof of the lemma follows from that of Lemma A.10 in Su and Ju (2018) and is omitted. W

Proof of Lemma A.14. Here we consider the case where the model contains both stationary and
nonstationary common factors as analyses of the other cases are similar to but simpler than this

case. Let F(K A) = (fl(K A), .. ,fT(K A)). Noting that é; (K) = y; — 21 l&gp(KA) %27152’1
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F(E, MK, A) = w =z [@l? = B ) — 24[Ba; — B3] + [FOA) — F(K, \)Ai(K, A)], we make

Gr(EN)
the following decomposition on &é(Ko,A) = %7 SN e (Ko) & (K) :
N ~ A
Zon = T Zu i < 3 (FOXY = F(Ko, )i, X)) (FON) — (Ko, Ao, )
r=

Z Z <&gﬁl{0)\) B Bg”) 71 AL ( E;p(Ko,/\) B Bg”)

k LieGy(Ko,N)

N
+ NL Z (52 i — B9 z)/'x/szQz (521 - gz)
N
* % Z (FO/\? = F(Ko, MAi(Ko, A >/ul NT Z Z (@2?:(}(0,/\) B ?l)/xllzuz
= k=14cG)(Ko,\)
Z S <a€“f’ _ 80 ~>/:L" (FOs = (Ko, M)Au(Eo, 1))
k Wt G (Ko,\) 1,8 1, 0, i\ 420,
k 07

N N
2 ! 2 A / R .
+ NT Z (52 i 5 z) x/Zzul + NT ; (ﬁm - Bg,i) 33/2@ (FO/\i — F(Ko, \)Ai(Ko, A))

It is easy to show that

N N
1 N 2 2 N 2 _
|R1inT| = WZ"F)‘i_FO)‘?“ < WZHFV\“_F{) ? %|| = Opr(Cy7),
i=1 i=1

9 N
A5 o
+ﬁ;"F2/\2z F5
1=

by using arguments as in the proofs of Lemmas A.5 and A.11. Similarly,

R <T
|R1 onT|  max

N
2 1
A CU; 0 —1mp—2 —1mp—1
aé:(Ko,,\) _Bk” NT?2 21 HxlllelH =TOp (N T ) =Op (N T ) :
1=
2
= Op (Tfl) .
By the Cauchy-Schwarz inequality, |Ri e¢nr| < 2{|R11n7] |R1,2NT|}1/2 = oP(C]fT). In addition, we
can show that Ry n7 = oP(CR,%) for I =4,5,7,8, and 9. It follows that &QG(KO,A) = ﬁ Zf\il uu; +
Op(Cy7)-
When K > Ko, we use 1{i € G(K,\)} = 1{i € G? }—i—l{z € Gr(K, M\G}—1{i € GO\GR(K,\)}

2
to obtain & UG(KA) SR D il (KN S |:yzt (K nTLit — 527,%2,1% — M(EN) (KN | =

by Theorem 3.5. Similarly, |Ry3n7| < max; % Hx27iH2 ﬁ i]il HBM(KO,/\) — 53,@-
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Ry inT (K) + Raont (K) — Rosnt (K) + Roant (K) , where

T
1
RoinT (K =NT Z Z Z [yzt - OécuPK/\ T1it — 52 Tt — Ni(K, ) fiu(K, /\)} ,
k=1icq0 t=1
1 T N N N 2
Roont (K = ~NT Z Z [yzt KoyFLit — P2t — Ai(KGN) fi(K, A)} ;
k=1 zeGk(K,)\)\GO t=1
1 T N ~ N 2
Ry syt (K =NT Z [yzt - a kATl ~ B2t — MK, N) fo(K, )\)} , and
k= 1zecg\Gku{A)t 1
K N A A )
Roant (K NT Z Z [yzt - dcw Koy Tt~ B2t — Ni(K, N) fi(K, /\)}

k=Ko+1ieGy (K \) t=1

Following the proof of Lemma A.11 in Su and Ju (2018), we can show that, after some relabeling the
indices for the group-specific parameters,

ag:’(m) — o =0p(N7V2T 1 for k=1, ..., Ko,
Z P <EkNT,i) =o0(1) and Z P(FkNT,i) =o0(1) fork=1,.., K.
ieGY i€GY

Then Ziil P (z € Gp(K,\) for k=0,Kq+ 1, ,K) = 0 (1), which ensures that Ry nr (K) = op((NT)™})

for all I = 2,3,4. Given the consistency of &gp(K N for k = 1,..., Ky, we can establish the consis-
k ;

tency of \i( K, )\) and ft(K, A) as in the case where K = K. With these results, we can show that

Ry inT (K) = NT ZZ L w40 p(C’;,QT). The probability order for the remainder term in Ry y7 (K)
can be improved in some cases: (1) When there are no unobserved common factor, no stationary re-
gressors and endogeneity in 1, we can show that Roin7 (K) = ﬁ Zfil ubu; + Op((NT)™1)
by using the fact that dcéj‘f(}(,)\) —a) = Op(N7V2T71) for k = 1,.., Ko when K > Kp; (2)
when there is stationary regressor ;s but no unobserved factor in the model, we can show that
Roant (K) = 37 ZZ Lubu; + Op(T71); (3) when there exists common nonstationary factor but no
common stationary factor or stationary regressor s, Roin7 (K) = ﬁ Zfil wiu; + Op(N~! +

T72) = ﬁ Zf\il ubu; + Op(N71). So the results in Lemma A.14 follows. W

C Discussion on the Identification of 6?’2

In this appendix, we formally discuss the 1dent1ﬁcat10n issue regarding the key parameter vector
of interest, namely, 39, i+ Recall that By = (61 N ~)- The major difficulty lies in the fact that

the dimensions of vec(3}) and vec(F}) all increase to infinity as (N,T) — oo so that the usual
identification arguments (uniform convergence along with identification uniqueness) do not apply. In
fact, for the factor matrix F, we are not able to identify the matrix itself but instead PFlo, which
indicates the space spanned by the columns of F}. Despite these difficulties, we argue here that the
identification of the ?/s is buried in the proof of Theorem 3.1 in the paper.

To proceed, recall that b = (by,bz), by = (bi1,...,0yn) and by = 8;; — B?,i for | = 1,2 and
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i=1,...,N. As in Bai (2009, p.1264) and Su and Ju (2018, Proof of Theorem 3.1), it is easy to argue
that the objective function cannot achieve its minimum for very large value of +|b||? so that there
is no loss of generality to restrict our attention on the case where %|/b||> < M and M is a large
positive constant that does not grow with N or T. Recall that Q}\\}g(ﬁ,a,Fl) = Qn7(B1,82,F1)

"‘% Zfil szKzl Hﬁu - O‘kH and Snt(Bq, F1) = % Zij\il S’i,NT(BI,iv F1), where
N
1 /
QNT(B1,B2,F1) = NT2 Z (yi — 21,81 — ©2,i82;) Mp (yi — 2161 — 22,82,;) and
=1
1
Sint(Brin F1) = g (@1ibri = FYAY) Mp, (21,3013 — FPAY,).

Apparently, if we have homogenous panels as in Bai (2009), then we can write b;; = Li— /B?,i =
(and similarly 3;; = 8, and ﬁgi = () to obtain

N N
1 FOM FO AOIAO 1
Sur(Bh ) =t Yokt 1o { SRS v St )
=1 =1
= b1 Aby + 1By —2b1C', (C.1)

AOIAO
where A = ﬁ Zf\il x/LiMleLi? B = (—*®lIr), C = ﬁ Zfil A?i@)MFla}l,i, and n :Vec(MFIFP) /T.

Note that we suppress the dependence of A, C' and 1 on F;. Completing the squares, we have

Snr(By, F1) = bllD (F1) by +6' B0, (C.2)
where D (Fy) = A — C'B71C, and § =7 — B~1Cb;. Then, under the key identification condition

inf i, (D (F1)) > ¢ for some constant ¢ > 0 (C.3)
Fer

where Fy = {F} € RT*": %F{Fl = I, }, we can follow Bai (2009) to first establish the consistency

of the estimator of the finite dimensional parameter ﬁlo and then establish the consistency of the
estimator of Ppo. As Bai (2009) remarks, the identification condition in (C.3) rules out common

regressors and time-invariant regressors. He discusses how to relax the condition in (C.3) to

Pnin (D (Flo)) > ¢ for some constant ¢ > 0, (C.4)

such that both time-invariant and common regressors can be allowed in the regression provided
that they do not form collinearity with the common factors or factor loadings. The discussion
essentially hinges on the analysis of the expression of Syr(8;, F1) in (C.2). As one can imagine,
similar relaxations would hold for our nonstationary panels if the slope coefficients were indeed
homogeneous.

Below we first outline the major challenges in the formal establishment of the identification
conditions and then explain how we establish the consistency result in Theorem 3.1 with the implicit
use of the identification conditions. Note that even in the stationary homogenous panel, Bai (2009)
only considers the latter directly.

By the proof of Theorem 3.1, we have

Qnr (81, B, 1) — Qnr(BY, BY, FY) = Snr(By, F1) + Op((T/dr) ),
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Where Op((T/dr)~/?) holds uniformly in (b,Fy) € {b € RWFP2)xN By ¢ RT>*m . Lppy = I,

and [/b||? < M}. Since we restrict our attention to the case where {7 ,} form into some finite K
groups, they are be regarded as umformly bounded. As a result, we can restrict the parameter space

for 3, ; and oy, to be bounded so that % LSV T, 181, — ak|| = O (1) uniformly in (8; ). Then
QN7 (B, By e F1) = Qi (8, 5, 0, FY)

N N K
1 A
= W Z[QNT,i(ﬁl,ia B F1) — Qnri(BY 4, 891 FY)] + N Z H 181 — axll
=1

=1 k=1
= Snr(By, F1) + Op((T/dr)™/?)

where we also apply the fact that A = o (T -1/ 2) under Assumption 3.3(iv) to obtain the last equality.

Apparently, S; NT(B1;, B2, F1) > 0 and it attains its unique minimum value 0 at (3 ;, F1) =
( (f,i,Ff). Similarly, Sy7(8, F1) attains its unique minimum value 0 at (81, Fy) = (89, FY). We
show that (39, F?) is the unique point at which Sy (3, F1) achieves its minimum, where uniqueness
with respect to F} is up to a rotation as in the stationary case. This is because M FOH, = M FO and

Snr(8Y, FYHy) = 0 for any nonsingular matrix H;. For ease of discussion, we assume that F € F;
(otherwise, we can always focus on its rotational version such that FYH; € Fi). Let

(B1, F{') = argmin Sy (B4, F1).
B1,F1€F

We need to show that (33, F}) = (89, FV). We consider three cases: (1) Fj = FY, (2) 8% = 37, and
(3) Fy # F{ and B} # B

In Case (1), we argue that if F}' = F?, then we must have 3; = 8. In the case of Fj = F{, we
have

N
. 1 1 . "
0 = Snr(Bi, FY) = SNT(:317F1 = =N Z T2 (z1, 14 F{))‘gi),MFP(xl,ibl,i - Flo/\(l)i)
1Y 1 :
= W > oy <ﬁ$,1,7;MF10$1,¢> b1 ;-
i=1

Consequently, we must have b’{’ i (%x’“M F{)xl,i> bi, = 0 for each i. The identification condition in
Assumption 3.2(iv) is more sufficient to ensure %:L"“M FoL1, to be uniformly asymptotically positive
definite. As a result, we must have b7 ; = 87, — B(l)’i = 0 for all 5. That is, 8% = B9.

In Case (2), we argue that if 8% = B89, then we must have I} = F{. In the case of 8% = 39, we
have

. 1 1
0= Snr(B1, FY) = Snr(B1, FY) = NZTQA iV Mpp FYAY, = tr (EFP’MF;FPNAS”AS’).

Assumption 3.2(i) ensures that %A?’ AY is asymptotically positive definite. It follows that F’ M Pl 0 =
0 or equivalently Mpx FY = 0. Then we must have F} = FY.
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Now, we consider Case (3). Suppose that F; # FY and B} # 8Y. Let x; = x1,ib] ; — FO)Y,. Then

N
1 1
O—SNT(,Bl,Fl = NZEX;MF{‘XZ (C5)

Observe that Mp:x; denotes the residual vector in the least squares projection of x; onto FY :
Xi = F1*7Tli + v; Vi

where my; = (FYFF) " Fr'x; = F¥'y,/T? and ; = Mgz x;- (C.5) implies that ©; = 0 Vi so that
z1,4b7; FO)\ = F{'m; Vi, or equivalently

* 0 * A?z .
.'L'LibLi = (Fl 7F1) Vi.

15

But by the identification condition in Assumption 3.2(iv), the above system of equations can hold
only if b} ; = 0 and Fy'my; = —FY)\Y, Vi (implying that Ff = FY and 71; = —\Y,). Thus a contradiction
arises and we cannot have Fy # F{ and 8} # 8Y.

D The PPC-based Estimation Procedure

In this appendix, we provide more details on the practical implementation of the PPC-based estima-
tion procedure. It consists of five steps.

1. Obtain the initial estimates. By setting r1 = rmax, we obtain the initial estimates BM, 8271-
and Fy from the following set of nonlinear equations:

- PN -1
Bi = (ﬁu:ﬁQ 7,) = (ng‘ wz) ngplyi,

FIVLNT = T2 Z wvﬂz) ,

where Mz = Ir — %FlFl’, %F{Fl = I,,, and V; nr is a diagonal matrix.

2. Determine the number of common factors. We separately determine the number of
nonstationary factors and stationary factors.

(a) Determine the number of nonstationary common factors by choosing 71 to minimize the
following information criterion (IC)

IC1(r1) = log Vi (r1, 1) + 1191(N, T),

A N N r1l A
where Vi(r1, F{*) = 37 SN S5 (=B w1 —Ba 2=y f11)% 91(N, T) = arga(N,T),

_ T
and ar = 4loglogT*

(b) Determine the number of stationary common factors by choosing 9 to minimize the fol-
lowing IC R
ICQ(T) = IOg ‘/Q(T% FgQ) =+ r292(N7 T)7
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R arol A R N N IR
where Va(r2, Fz ) = T va 1 Z,ir 1(7’zt >‘221 f;t) Tit = Yit — 51,1'371,# - /32,i952,z't — Mifue
and g2(N,T) = J\]va g (C%p) or g2(N,T) = N+T log (N+T) as in Bai and Ng (2002).

3. Determining the number of groups. Let A = {/\ = ch*3/4, cj = coy’ for j =0,..., J} for
some ¢y > 0 and v > 1. Given any K € {1,2,..., Kpax} and A € A, compute ICg(K(A),A),
where K (\) = argmin; < g<x,,.. IC3 (K, \) . Choose A € A such that IC3(K (), A) is minimized.
Estimate the number of group by K = minyep K (M) as recommended by Su, Shi, and Phillips
(2016a). We find in simulations ¢y = 0.05, v = 2, and J = 3 work fairly well for all DGPs

under our investigation. If K= 1, stop here and estimate a homogeneous nonstationary panel
as usual. Otherwise, move to the next step.

4. PPC-based estimation.

(a)

(d)

Given A = A(N,T) = and K > 1, #1 and 79, solve the following PPC criterion function to
obtain estimates of (3, ) :

A N K
QN (B e ) = Qur (B, o) + 5 3 [ 180, e

where QN7 (81, B2:F1) = 5z oy (i — 21,814 — $2,i52,z)/ Mp, (yi — 1,81, — ©2,iB2;) ,
and A = A\(IV,T) is a tuning parameter.

Given C-Lasso estimates (dy, Bl, 32), solve the following eigen-decomposition equation to
obtain estimates of I}

N
. 1 . . . . .
Fi\VinT = NTZ E (yi — xl,z‘ﬁu - xQ,i/BZi)(yi - wl,z‘ﬁu - x2,zﬂ2,z’), F,
i=1

where %F_{Fl = I, and V1 y7 is a diagonal matrix.
Given the estimates ,Bu,dk, and Fp, we obtain the cointegration residuals 7;; = y; —

B,LZ-J:Lﬁ - S‘/Iz‘flt' The LS estimator of (BQ’Z-,FQ) is the solution to the following set of
nonlinear equations:

where %FéFQ = I, and Vo y7 is a diagonal matrix.

Iterate above steps until convergence and obtain jointly (BM, /8271‘, g, Fl, FQ) Obtain the

C-Lasso estimates {&y} for the group-specific parameters and {@k, k=1, ,f(} for the
estimated group membership.

5. Post-Lasso estimator with bias correction.

(a)

Given the estimated groups, {G’k, k=1, ,f( }, we obtain the continuous updated esti-
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mators dgfp , Fy and B by iteratively solving the following equations:
k

-1

~fm ’
Y T > ah Mg > @1iMp i = TVNy ( Nt BkNT2> ;
1€Gy ZeGk

K
BVint = | 572 Yo @i- $1,iaéT — 22,iB2,)(%i — fUl,z‘Oég: —w2:89,)" | I,

k 116Gk
I K
. 1 R R . o R . . .
Vo nT = ~NT Z Z (9s — iB1.iOéféT —x2,iB2,; — F1 A1) (i — l'l,iag: — x2ife; — F1A1)' | F2,
L k=1ieGy

where BNTZ = (BiNTp B}(NTZ)/ fori=1,2, BkNTl = ﬁ Zieék(zr?—l 22—1 }ifts)Am i
BkNT2 \/—T Zzeck (Zt 1 Zs 1 %ts)A24 z)‘% BkNT 1= \/—T ZlEGk(Zt 1 Zs 1 %ts)Agﬁ X%

%ts =1 {t = 3} s, Mg = flt(FlFl) fls = fltfls/T s /\21 = )\21 - N Z] 1)\2ja‘lj7 and
a;j = 5\111( LA fh)_lj\lj Note that Fy, V4 NT, B, Vo N7, and {A\15, A2} are also updated

continuously in the procedure to obtain ang

k

(b) Estimate Qnr and Q34 consistently by

) N T T N
A NK ! o~ sk > S
NT = N2 ZE :E :XZtXZS Ujp s — ZBiNTBiNT,
i=1 t=1 s=1 i=1
N T T
O Dyi Z
—+/
NT NT2 z : 2 :XZtXLS Uy Z BzNTBzNT>
=1 t=1 s=1

Where X, = (A’“t,..., Tit) s szt is the tth row of X;H, sz = Mp z1,1{i € G} —
N ZJGG azJM T1,5, DNK dlag( " N )®[p7 BzNT = (BMNTa ---aBK,z‘NT) 7Bk,1NT =

Brint1 + Brinta, Brinti = \/A_T Zt—l S Sas) A i1{i € Gi}, Brinta =

1

N, T

(Zt 125 1%tS)A24 l/\211{l € sz} Uy = yn_o‘i l’zt—ﬁz iL2, Zt_)‘lzflt fori € Gka zNT =
+/ +/ + _ pt+ + _

(B1 z'NT?""BKiNT)’ Bk ANT — Bk: ANT,1 + Bk,zNT,2v Bk,iNT,l - \/N_kT(thl 23:1 %ts)

Al Al A . ~
Ay Z1{2 c Gk} and u*+ = yzt — 04£ w10t — Bo T2t — M fie for i € Gy.

E Extension: The Case of Incidental Time Trends

In the main body of the paper, we assume that there are no deterministic linear time trends in the
y-equation and the nonstationary regressors and common factors are pure unit root processes without
drifts. This appendix relaxes these restrictions to incorporate the deterministic components into our
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panel latent factor cointegration model. Here we consider the following model:

Yit = W + pit + 5’1,i$1,¢t + 5,2,¢$2,it + /\ﬂfﬂe + A’z?if% + Uit
T1it = P15 T T1it—1 + €1t ) (E.1)
fie =t + frea + el

wheret =1,...,N,t=1,...,T, u; denotes the intercept or individual fixed effects and p,t denotes the
incidental linear time trends. We allow for the presence of drifts s ; in the I(1) regressors {x1}
and drift p/* in the I(1) common factor {fi;}. The remaining variables are defined as before.

We first discuss the presence of an intercept p; alone in the y—equation. In this case, as discussed
in Section 3.1, u; could be related to the non-zero means of the stationary regressors and stationary
common factors. For example, if E(zg;) = vy # 0, we can rewritten the model (2.7) with the
inclusion of an intercept, such that y; = p; + B%xut + ﬁgfi$§7it + )\[1)2» ?t + )\gfi fgt + u;, where
xg,it = X2, — U2; has zero mean and p; = ﬁgfim. In this case, we can employ the within-group
demeaned transformation to eliminate the individual fixed effects to obtain

~ I~ !~ 0 70 /0 £0 ~
Yit = 51,1'331,# + 52,i332,z‘t + )\1,if1t + )\2,z’f2t + Uit,

where ¥;: = yir — % Zthl Yit, and T1 ¢, T2,it, f1t, for, and Uy are analogously defined. The PPC-based
estimation procedure is identical to that of Section 2.2 and implemented on the demeaned data.

Second, when we have both individual effects and incidental time trends, we can similarly employ
the within-group detrended data to eliminate both individual fixed effects and incidental time trends.
Specifically, we consider the detrended model:

. ;. ;7 . 10 £0 0 £0 .
Uit = B1 %14t + BoiT2it + A7 f1p + A for + Wit

where 9;¢, ©1,5¢, ©2,it, fit, fot, and 4 are linearly detrended versions of yi¢, 1.4t, T2,it, f1t, for, and .
We can then apply the estimation procedure used in Section 2.2 with the dotted variables replacing
the original variables.

To gain a better understanding of the incidental linear time trends in (E.1), we observe that

t
T1it = T1,i0 + Myt + Z El,is = T1,i0 + Hp 4+ l‘?z’,ta (E.2)

s=1

where *f?,it = 22:1 €1,is 1S a pure unit root process. In nonstationary time series, the reformation
in (E.2) reveals that nonstationary panel data with incidental parameters are composed of two
components: (1) stochastic trends represented by x?i’t; and (2) incidental time trends p, ;£. The
incidental parameters p;; can be interpreted as the individual-specific components of the linear
deterministic trend. Similarly, the nonstationary common factors fY, can be decomposed into the
stochastic trend component and the deterministic trend component, such that f9, = fio + it +
et el

In general, the asymptotic properties of the resulting Lasso-type estimators will be modified by
changing the Brownian motion to the corresponding demeaned or detrended version in the respective
limit distributions. Specifically, for the detrended case we can define xr =diag(1,771), g; = (1,t)",
and g(r) = (1,7). Let t = |Tr|, the integer part of T'r for r € [0,1]. Then as T'— oo, kgt — g(r)
uniformly in r € [0, 1]. By the functional central limit theorem and continuous mapping theorem, we
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have
1 1 T T -1
T14\Tr] = L14|Tr| — L1 fs g
\/T 14T \/T 14T SE_I 1,is9 (;_1 gs9 > gt

1 T T -1
0 0
- JT T16\Tr] — le,isgg (Z gsgg) gt
s=1 s=1

0 0 T -1
1T 1 L1 1
= \;LTTJ T Z = KT, T Z KTGsgshT KT gt

s=1

3

-1

gt ([ twatwan) gt = B0

U
&
=
|
S—
&

where By;(-) is as defined above Assumption 3.2, and B7,(-) is a detrended Brownian motion obtained
by the Ly [0, 1] projection residual of By;(r) on g(r). Following the analysis in Sections 3.1-3.4, we can
show the demeaned or detrended residuals, such as (;, A&y i, A 3, fgt,d:27it), satisfy Assumption
3.1-3.2 and Theorems 3.1-3.3 continue to hold with the demeaned data and detrended data. The
limiting distributions in Theorem 3.4-3.5 are modified by replacing the random processes By;, Ba;
and B3 by the demeaned or detrended Brownian motions. The asymptotic bias and variance can be
estimated from the detrended or demeaned data. In short, the mixed normal limit theory is preserved
for the group-specific long-run estimators, which permits inference using standard test statistics.

F Some Additional Simulation Results

In this appendix, we report some additional simulation results for DGPs 1-6. In addition, we follow
the editor’s suggestion and consider two additional DGPs, namely DGPs 7-8, to closely mimic the
empirical application.

F.1 Additional simulation results for DGPs 1-6

First, we consider the performance of our classification and estimation procedure for DGPs 1-6 when
N =200 and T' = 40. Here N and T differ to a larger extent than their values in Tables 3-5 in the
paper. The results are reported in Table A.1. Comparing the results in Table A.1 with those in
Tables 3-5 suggests that our post-Lasso estimates (bias corrected or fully modified) and Cup-Lasso
estimates perform qualitatively similarly to those in Tables 3-5.

Now we consider two DGPs that mimic the data in the empirical applications where the sample
sizes, (N,T) = (24, 34), are relatively small. We now consider (N,T) = c¢-(24,34) for ¢ =1, 2, 3. By
increasing the value of ¢ from 1 to 3, we should be able to observe the improved performance of our
estimators. We generate the data as follows:

Yit = P11t + Boi®air + B3 w3, + c1Ny; fie + it
Tit = Tiz—1 + Eit ) (F.1)
fit = fre—1+ vt

where i = 1,...,N, t = 1,...,T, the dimension of fi; is 71 = 1, and =4 = (214, %2,)’ in DGP 7 and
Tt — (xl,ityxlit;x?:,it)/ in DGP 8 below.
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DGP 7 (Mimicking Model (5.1) in Table 7) The observations are drawn from three groups with
Ny:Ny:Ng=7:7:10 such that N =37 N; = 24c and T = 34c for ¢ = 1,2,3. Let f3; = 0 and
c1 = 0.5in (F.1). The factor loadings \1; are i.i.d. A;; ~ N(0.1,1) and py, = 0.1. Let §; = (81, B2,)-
The long-run slope coefficients 3, exhibit the group structure in (2.3) for K = 3 and the true values
for the group-specific parameters are

0 o0 0 0.289 0.101) {0.058
(ala Qa, a3) = ) )
—0.147 0.120 0.086

which are as estimated for Model (5.1) from the real empirical data in our applications. The

errors wir = (uit,ely, Af];) are generated from the linear process wj = Z;'io ¢;jVit—j, where
0.25 Q12 O3

O = L2 LG) =575 Q= [ Qa1 Qo Qa3 |, vie = Wi, ofV oY), vl ~idd. N(0,I3),
0 Oix2 €33

and Utl ~ ii.d. N(O, 1). Let 912 = 9/21 = 9,23 = (0.2,0.2), 913 == 0.2, 922 == (012 0i2>, and
Q33 = 1.

DGP 8 (Mimicking Model (5.2) in Table 7) The observations are drawn from three groups with
Ny : Ng:N3g=7:7:10 such that N = Z?:le =24c and T = 34c for c=1,2,3. Let ¢; = 0.5 in
(F.1). The factor loadings Aj; are i.i.d. Aj; ~ N(0.1,1). Let 8; = (814, 2.4, 83;)"- The long-run slope
coefficients [3; exhibit the group structure in (2.3) for K = 3 and the true values for the group-specific
parameters are

0.464 0.055 —0.104
(af,03,9) = | | —0.413 |, [ 0.022 |, | 0.219
1.405 0.550 0.567
which are as estimated for Model (5.2) from the real empirical data in our applications. The
errors wir = (uit,ely, Af];) are generated from the linear process wj = Z;'io gbijvz-,t,j, where
0.25 912 913
¢ij = LW, L(j) =535 Q= [ Qa1 Qo Qo |, vie = (e oV o) vte ~iid. N(0, 1),
0 O1x3 Q33
1 02 0.2
and ’Utl ~ 1.i.d. N(O, 1). Let Q19 = 9/21 = 9,23 = (0.2,0.2,0.2), N3=02,0Q9=102 1 0.2],
02 02 1
and Qgg =1.

Table A.2 reports the simulation results for DGPs 7-8. We summarize the main findings from
Table A.2. First, the classification result is not as good as those in Tables 1-5 when (N, T') = (24, 34).
This is as expected as on average we have only 8 individuals in each group and the large sample theory
cannot work very well in such as case. But as both N and T increase, we observe that the classification
results improve quickly. Second, the Cup-Lasso estimator generally performs better than the two
post-Lasso estimators and thus it is recommended for empirical applications. In particular, as both
N and T increases, the performance of all estimators improve and the coverage of the Cup-Lasso
estimator gets closer to the oracle one.
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Table A.1 Classification and point estimation of oy in DGPs 1-6

C)\ 0.1 0.2

N T % Correct RMSE Bias % Coverage % Correct RMSE Bias % Coverage

classification classification

DGP 1

200 40 C-Lasso 99.99 0.0039 0.0001 93.20 99.98 0.0038 0.0001 94.92
post-Lasso®® 99.99 0.0039 0.0000 94.34 99.98 0.0039 0.0000 94.34
post-Lasso/™ 99.99 0.0039 0.0000 94.34 99.98 0.0039 0.0000 94.34
Cup-Lasso 99.99 0.0039 0.0000 94.34 99.98 0.0039 0.0000 94.34
Oracle - 0.0039 0.0000 95.10 - 0.0039 0.0000 95.10

DGP 2

200 40 C-Lasso 99.98 0.0065 0.0052 62.66 99.97 0.0060 0.0048 67.82
post—LassobC 99.98 0.0038 0.0003 93.32 99.97 0.0038 0.0003 93.32
post-Lasso/™ 99.98 0.0038 0.0003 94.34 99.97 0.0037 0.0003 94.16
Cup-Lasso 99.98 0.0038 0.0003 94.34 99.97 0.0037 0.0003 94.16
Oracle - 0.0037 0.0003 94.26 - 0.0037 0.0003 94.26

DGP 3

200 40 C-Lasso 98.73 0.0251 0.0144 40.40 98.58 0.0272 0.0133 42.60
post-Lasso®® 98.73 0.0234 0.0023 87.84 98.58 0.0233 0.0024 87.80
post—Lassofm 98.73 0.0234 0.0025 87.22 98.58 0.0234 0.0026 87.36
Cup-Lasso 100.00 0.0057 0.0023 88.88 99.98 0.0057 0.0024 88.64
Oracle - 0.0057 0.0023 88.88 - 0.0057 0.0023 88.88

DGP 4

200 40 C-Lasso 98.82 0.0230 0.0124 51.02 98.67 0.0245 0.0114 52.76
post-Lasso®® 98.82 0.0193 0.0019 89.88 98.67 0.0190 0.0018 90.16
post-Lasso/™ 98.82 0.0193 0.0022 89.96 98.67 0.0190 0.0021 89.92
Cup-Lasso 99.97 0.0072 0.0020 91.06 99.92 0.0071 0.0020 91.02
Oracle - 0.0071 0.0020 91.14 - 0.0071 0.0020 91.14

DGP 5

200 40 C-Lasso 98.69 0.0239 0.0143 40.52 98.59 0.0256 0.0135 42.30
post—LassobC 98.69 0.0222 0.0025 88.72 98.59 0.0215 0.0024 88.86
post-Lasso/™ 98.69 0.0223 0.0027 88.44 98.59 0.0216 0.0026 88.46
Cup-Lasso 100.00 0.0057 0.0026 89.24 99.98 0.0057 0.0026 89.16
Oracle - 0.0057 0.0026 90.84 - 0.0057 0.0026 90.84

DGP 6

200 40 C-Lasso 99.93 0.0212 0.0191 26.56 99.92 0.0206 0.0183 28.88
post-Lasso®® 99.93 0.0140 -0.0102 70.66 99.92 0.0140 -0.0103 70.50
post-Lasso/™ 99.93 0.0080 0.0009 93.10 99.92 0.0079 0.0009 93.02
Cup-Lasso 100.00 0.0075 0.0008 93.16 99.99 0.0075 0.0008 93.24
Oracle - 0.0075 0.0008 92.62 - 0.0075 0.0008 92.62
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Table A.2 Classification and point estimation of oy in DGPs 7-8

C)\ 0.1 0.2

N T % Correct RMSE Bias % Coverage % Correct RMSE Bias % Coverage

classification classification

DGP 7

24 34 C-Lasso 77.78 0.0951 0.0156 79.17 76.52 0.0929 0.0145 76.67
post-Lasso®® 77.78 0.0350 -0.0049 79.57 76.52 0.0427 -0.0026 78.69
post-Lasso/™ 77.78 0.0353 -0.0056 80.74 76.52 0.0430 -0.0032 79.31
Cup-Lasso 82.78 0.0248 -0.0001 78.23 81.81 0.0254 0.0006 77.13
Oracle - 0.0151 0.0009 88.52 - 0.0151 0.0009 88.52

48 68 C-Lasso 86.97 0.0939 0.0072 72.18 87.16 0.0755 0.0069 71.33
post-Lasso®® 86.97 0.0192 -0.0043 82.72 87.16 0.0201 -0.0033 83.15
post-Lasso/™ 86.97 0.0192 -0.0042 83.45 87.16 0.0202 -0.0032 83.72
Cup-Lasso 92.94 0.0062 -0.0011 87.37 93.55 0.0059 -0.0007 88.04
Oracle - 0.0048 0.0005 92.14 - 0.0048 0.0005 92.14

72 102 C-Lasso 91.57 0.0714 0.0009 67.77 92.02 0.0521 0.0017 67.36
post—LassobC 91.57 0.0147 -0.0034 85.72 92.02 0.0144 -0.0032 86.05
post-Lasso/™ 91.57 0.0147 -0.0033 86.62 92.02 0.0144 -0.0030 86.85
Cup-Lasso 96.67 0.0030 -0.0005 91.06 97.19 0.0028 -0.0003 91.78
Oracle - 0.0025 0.0003 92.42 - 0.0025 0.0003 92.42

DGP 8

24 34 C-Lasso 82.63 0.0903 0.0136 78.22 79.82 0.0912 0.0164 76.65
post-Lasso®® 82.63 0.0657 -0.0177 83.58 79.82 0.0694 -0.0137 83.85
post-Lasso/™ 82.63 0.0672 -0.0176 83.25 79.82 0.0713 -0.0131 82.25
Cup-Lasso 96.39 0.0275 0.0036 83.27 92.13 0.0355 0.0047 80.90
Oracle - 0.0241 0.0017 82.72 - 0.0241 0.0017 82.72

48 68 C-Lasso 89.24 0.0553 -0.0013 65.03 86.77 0.0567 0.0027 66.22
post-Lasso®® 89.24 0.0531 -0.0156 85.82 86.77 0.0515 -0.0135 83.98
post-Lasso/™ 89.24 0.0532 -0.0155 86.52 86.77 0.0515 -0.0134 84.55
Cup-Lasso 99.56 0.0109 0.0001 90.23 98.12 0.0099 0.0003 89.37
Oracle - 0.0056 0.0002 90.47 - 0.0056 0.0002 90.47

72 102 C-Lasso 91.95 0.0379 0.0000 58.53 90.77 0.0393 0.0017 58.80
post—LassobC 91.95 0.0424 -0.0119 88.12 90.77 0.0408 -0.0112 87.90
post-Lasso/™ 91.95 0.0421 -0.0116 87.72 90.77 0.0407 -0.0109 88.15
Cup-Lasso 99.97 0.0027 0.0003 92.33 99.71 0.0028 0.0003 92.25
Oracle - 0.0027 0.0003 92.33 - 0.0027 0.0003 92.33
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