

What is the meaning of a 'genomic result' in the context of pregnancy?

Shiri Shkedi-Rafid^{1,2} · Rachel Horton³ · A. M. Lucassen¹

Received: 18 April 2020 / Revised: 21 June 2020 / Accepted: 11 August 2020
© The Author(s), under exclusive licence to European Society of Human Genetics 2020

Abstract

Prenatal genetic testing and analysis in the past was usually only offered when a particular fetal phenotype was noted or suspected, meaning that filtering and interpretation of genetic variants identified could be anchored in attempts to explain an existing health concern. More recently, advanced genomic testing is increasingly being used in "low-risk" pregnancies, producing information on genotype adrift of the phenotypic data that is often necessary to give it meaning, thus increasing the difficulty in predicting whether and how particular genetic variants might affect future development and health. This presents an increasing challenge to healthcare scientists, clinicians, and parents in deciding what qualities prenatal genotypic variation should have in order to be constructed as a 'result.' At the same time, such tests are often requested in order to make binary decisions about whether to continue a pregnancy or not. As a range of professional organizations develop guidelines on the use of advanced genomic testing during pregnancy we highlight the particular difficulties of discovering ambiguous findings such as variants with uncertain clinical significance, susceptibility loci for neurodevelopmental problems and susceptibility to adult-onset diseases and aim to foster international discussions about how decisions around disclosure are made and how uncertainty is communicated.

Introduction

Constructing genomic results in the context of pregnancy is particularly challenging as the data they are developed from often convey rather uncertain information but are nevertheless the substrate for a very binary decision—whether to continue a pregnancy or not. Public discourse around genomic technology tends to portray all genomic information as meaningful. Unsurprisingly, some prospective parents express a wish to know 'everything' from prenatal genetic and genomic tests [1]. The dichotomy of the decision driven by such findings in pregnancy clashes

uncomfortably with the uncertain or probabilistic nature of the information that genomic tests often provide. Recently, advanced genomic testing is increasingly being used in "low-risk" pregnancies [2], producing information on genotype adrift of the phenotypic data that is often necessary to give it meaning, so greatly increasing the difficulty in predicting whether and how particular genetic variants might affect future development and health. This presents a challenge to scientists, clinicians, and parents in deciding what qualities prenatal genotypic variation should have in order to be constructed as a 'result.'

31
32
33
34
35
36
37
38
39
40

Q1–Q5

These authors contributed equally: Shiri Shkedi-Rafid, Rachel Horton

 A. M. Lucassen
a.m.lucassen@soton.ac.uk

¹ Genetics Department, Hadassah Medical Center, Jerusalem, Israel

² Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel

³ Clinical Ethics and Law at Southampton (CELS), Faculty of Medicine, University of Southampton, Southampton, UK

Genomics in a prenatal context

Attempts to predict the future health of a fetus are inevitably coarse. Any pregnancy involves uncertainty: for any pregnancy that continues to term there will be a 2–3% chance that the resultant child will have a 'birth defect' [3]; a 50% chance they will develop cancer at some point in their lifetime [4]; a 33% chance they will experience mental health problems [5] and a 25% chance they will die from cardiovascular disease [6].

42
43
44
45
46
47
48
49
50

51 Tests carried out during pregnancy, such as fetal ultrasound, might delineate, say, a structural brain anomaly, but
 52 whether this will have any functional consequences may be
 53 unclear [7], and the resulting uncertainty or anxiety about
 54 effects has the potential to persist for many years after a
 55 child is born. Additional investigations may be offered in
 56 pursuit of clarity, for example fetal MRI, or genomic testing,
 57 but often the future of the fetus will remain opaque [8]. Many
 58 potential fetal phenotypes will be difficult or
 59 impossible to assess in the prenatal period, for example
 60 intellectual disability.

61 Genomic tests generate a slew of data, and plucking out
 62 meaningful results is no simple task. For example, each
 63 person has around 100,000 rare genetic variants in their
 64 genome [9]; most of these will have very little effect on
 65 health, but many will appear concerning based on purely
 66 hypothetical evidence [10]—genomic tests must go beyond
 67 simply delineating where these variants are in order to be
 68 useful. This opens up questions as to what qualities genetic
 69 variants should have in order to be considered meaningful
 70 results in the prenatal context, and then whether there is
 71 different meaning in pregnancies in which an abnormality is
 72 already suspected.

73 The challenge of constructing a result from genomic
 74 data is not unique to pregnancy, but with limited opportu-
 75 nity to assess phenotype, and curtailed time for decision-
 76 making, the prenatal context intensifies the pressure on
 77 making decisions regarding which genetic variants to
 78 value as clinical results: what nature, magnitude, and
 79 certainty of risk might they need to confer? This com-
 80 plexity is reflected in the wide variation in clinical practice
 81 between different centers and countries: policy ranges
 82 from tending to disclose a wide range of findings,
 83 including genetic variants with uncertain or adult-onset
 84 impacts [11], to disclosing only variants with well-es-
 85 tablished, childhood-onset clinical consequences [12, 13].
 86 What factors should determine whether and when a par-
 87 ticular genomic variant is valued as a meaningful result
 88 (e.g., magnitude, and certainty of risk) and who should be
 89 involved in these decisions? The landscape to which these
 90 questions apply is shifting both as the genetic tests on offer
 91 become broader in scope, and as they increasingly detach
 92 from being used only in ‘high-risk’ contexts where they
 93 sought to explain or clarify existing clinical problems, to
 94 being used in ‘low-risk’ pregnancies where there is (at
 95 least initially) no clinical concern to explore. Testing in
 96 ‘low-risk’ pregnancies may be offered routinely to all
 97 pregnant women if noninvasive genomic testing—that do
 98 not have the associated miscarriage risks of older invasive
 99 investigations—becomes more accessible through better
 100 sensitivity and lower costs.

The nuanced nature of genomic results

102
 103 Currently, the main prenatal investigations are chromoso-
 104 mal microarray analysis (CMA), which checks for missing
 105 or extra genomic material, and exome-sequencing (ES),
 106 which identifies variants in the coding sequence of the
 107 genome. CMA is offered as a first-line test in pregnancies
 108 with structural anomalies [14], and ES is gradually being
 109 offered in pregnancies with structural anomalies and normal
 110 CMA [15]. Most CMAs and ESs will be ‘normal,’ but some
 111 will establish comparatively clear-cut diagnoses. As tests
 112 interrogate progressively more of the genetic code at ever-
 113 higher resolution, they exponentially increase the chance of
 114 finding genetic variants with uncertain or unexpected
 115 implications [16].

116 Although uncertain genomic variants have in common
 117 the inability to define in pregnancy the exact phenotype of
 118 the child once born, there are unique aspects to various
 119 types of uncertain information.

Variants of uncertain significance

120
 121 Variants of unknown/uncertain clinical significance (VUS)
 122 are genetic variations that have conflicting evidence of
 123 pathogenicity based on various bioinformatic tools, or no
 124 data at all. Obtaining greater phenotypic detail can assist in
 125 the interpretation of these variants, yet is often difficult in
 126 pregnancy where not all phenotypes can be readily identi-
 127 fied (e.g., intellectual disability). Establishing whether a
 128 variant is inherited or de novo may sometimes assist
 129 interpretation, yet due to the possibility of variable
 130 expression/penetrance, inherited variants cannot auto-
 131 matically be classified as benign [17, 18]. In time, with
 132 growing evidence, it is likely that the majority of VUS
 133 could be classified as pathogenic (playing a part in disease
 134 causation) or benign [19]. Yet in the context of a current
 135 pregnancy, the hope of future clarification cannot help
 136 decision-making. Nevertheless, classification might be
 137 achieved prior to the next pregnancy, which could be
 138 helpful for parents on the one hand, but could be emo-
 139 tionally challenging on the other hand, especially if based
 140 on the eventual classification, parents might have made a
 141 different decision about their earlier pregnancy.

Susceptibility loci

142
 143 Susceptibility loci (SL) are recurrent copy-number variants
 144 (CNVs) identified via CMA with incomplete penetrance
 145 and variable phenotype, often associated with neurodeve-
 146 lopmental problems [20]. The spectrum of effects of an SL
 147 may be well understood, but there is no way to know
 148 whether a given fetus will experience any of the difficulties
 149 associated. For SL, unlike VUS, uncertainty centers around

whether a genetic variation will cause disease in a particular person, rather than whether the variation is associated with disease at all. SL are often inherited from a healthy parent, in which case there would be a 50% chance of similar inheritance in each pregnancy. SL can explain part of the etiology of the associated disorder(s) but other genetic and nongenetic events are likely required in order for associated clinical features to manifest. The more common SL are those with low penetrance, meaning the majority of individual carrying the SL will never go onto develop associated symptoms [20]. Single-nucleotide variants (SNVs) identified via ES can also be associated with low penetrance and variable expression inviting us to reflect on at what point penetrance is sufficiently low that it is no longer appropriate to consider an SL/low-penetrance SNV to constitute a prenatal result.

166 Predisposition to adult-onset conditions

167 Another challenging finding is a genetic variation associated
 168 with risks for adult-onset conditions. For example, finding
 169 that a fetus would have an increased risk of breast cancer
 170 from the third decade of life onwards [21]. In a postnatal
 171 setting, professional guidance suggests that children should
 172 not usually be tested for adult-onset conditions known in
 173 their families until they are old enough to decide for
 174 themselves whether they might want this information, even
 175 if their parents request it [22]. Should fetuses have similar
 176 protections against their parents finding out about possible
 177 health risks in their far future? Parents may express a strong
 178 interest in knowing such information, but what, if any,
 179 boundaries should be placed around what it is reasonable
 180 for them to know. In addition, what are legitimate responses
 181 by the clinical team if parents ask for a termination of the
 182 pregnancy based on such findings? For example, how much
 183 should clinicians press the point that such findings are rarely
 184 absolute and that especially where findings are made in the
 185 absence of a family history of the condition, never develop?

186 Genetic tendencies toward adult-onset conditions might
 187 of course have been inherited from a parent, so that if such
 188 findings in a fetus are constructed as a result, this might
 189 allow parents themselves to be made aware of and tested for
 190 a health risk at a point in their lives where screening or
 191 treatment might be beneficial. Such parents may already be
 192 aware of their inheritance, but finding this out will require a
 193 form of result construction in the fetus. Arguably, in pregnancies
 194 that continue, the fetus as a future person benefits if
 195 their genomic test contributes to safeguarding the health of
 196 their parents. To what extent should construction of prenatal
 197 genomic results be influenced by the timeframe within
 198 which identification of a risk is likely to lead to benefit, and
 199 to whom should this benefit apply?

200 The changing landscape around prenatal testing

201 Early prenatal tests sought to determine whether a fetus had
 202 inherited a genetic condition that had affected others in the
 203 family, for example cystic fibrosis or Tay-Sachs disease, or
 204 to check whether unusual features in a pregnancy might be
 205 explained by a major chromosomal anomaly. Whilst the
 206 results of such tests might leave prospective parents with
 207 difficult choices, there was usually a clear clinical indication
 208 for the test, and some certainty as to what the results might
 209 mean [23]. For such pregnancies, genomic testing will aim
 210 to give clarity: highly uncertain or tentative genotypic
 211 findings may be unhelpful, and vulnerable to being given
 212 greater weight than might be warranted from a technical
 213 scientific perspective, but the already identified clinical
 214 problem provides a lens through which to interpret the
 215 genomic data.

216 Interpretation of genomic data depends heavily on the
 217 clinical context (phenotype) in which it is acquired, but this
 218 nuance is often missing from public discussions about
 219 genetic and genomic tests. Advertising from direct-to-
 220 consumer genetic testing companies, and popular discourse
 221 around 'personalized medicine' and the genomic testing that
 222 underlies it, gives a pervasive message that genomic
 223 information is routinely clear-cut and useful, and that more
 224 data will mean more information, more power, and more
 225 choice [24, 25]. Such messages are also propagated by
 226 stakeholders with less direct commercial interests, for
 227 example, ongoing genomics research funding depends on
 228 society continuing to view the information it provides as
 229 valuable, and worthy of investment.

230 It is therefore unsurprising that some prospective parents
 231 might see prenatal genomic testing as a way to achieve
 232 certainty and/or reassurance as to the future of a pregnancy,
 233 regardless of whether there is a clinical problem to explain.
 234 In a survey of nearly 2000 adults in the UK, 'informative'
 235 was the most popular word chosen to describe genome
 236 sequencing in healthcare [26].

237 The growing availability of genomic testing, together
 238 with a very low miscarriage rate from invasive prenatal
 239 diagnosis [27–29], result in a demand for genomic tests in
 240 uneventful pregnancies [30, 31]. With the increasing sensi-
 241 tivity of noninvasive prenatal testing in identifying fetal
 242 sub-chromosomal CNVs [32] and SNVs [33–35], it is
 243 expected that the number of advanced genomic tests done in
 244 the context of uneventful pregnancies will continue to
 245 escalate. The chances of identifying variants with uncertain
 246 clinical significance and/or low-penetrant SL in these
 247 uneventful pregnancies will often be higher than the chance
 248 of identifying variants that would clearly have a severe
 249 impact on health in childhood [2].

250 Invasive prenatal tests cannot be done without health
 251 professional involvement, as specialist equipment and

expertise are needed to obtain a sample for testing, embedding an opportunity for parents to discuss their expectations around prenatal testing with a clinician experienced in maternal and fetal medicine prior to undergoing a test. This is set to change with increasing use of “noninvasive” prenatal testing—this only requires a maternal blood sample, which a patient could arrange to have taken and sent away to, for example, a direct-to-consumer genetic testing company, without crossing paths with a specialist. Whilst being able to offer prenatal tests without the risk of miscarriage is something to celebrate, there are risks that their technical safety will lead to people thinking of prenatal testing as ‘risk-free’ and routine. This may mean that more people have prenatal genomic testing without having thought in detail as to whether they truly want to know the information that it might provide, and perhaps without being aware that its outcome may be very uncertain [23, 36].

Decision-makers in prenatal genomic result construction

Navigating from millions of variants per person to clinical results requires filtering, interpretation and disclosure decisions. Well-established bioinformatic filtering pipelines, and variant interpretation guidelines such as the ACMG criteria [37], perform much of this curation, but in choosing a filtering pipeline, or considering which ACMG criteria apply, scientists and clinicians are already placed in the position of working out what sort of data should potentially be valued as a ‘result.’

Over the last few decades, medicine has increasingly recognized the importance of involving patients in clinical decision-making, and acknowledging their expertise in terms of judging what way forward would be best in the context of their own lives. Clinical genetics has a long history of aspiring to non-directive counseling [38], where clinicians aim to provide a balanced view of a patient’s options, but the patient determines how and whether to act on the information that they have been given. “Binning” models for communicating findings from genomic tests have been advocated as a potential way by which patients can make choices as to what sort of information they might want to know from a test, picking from menus of “preventable,” “high risk,” etc. [39]. However, these choices are often more ambiguous than they might appear—for example different people might mean different things by an “actionable” finding [40], and might attribute different weight to the same numerical risk [41].

Capturing subtle differences as to what sort of genomic information parents might value as a result of testing, in such a way that professionals can use this as an unambiguous guide to interpreting their prenatal test, is next to

impossible. Expecting deference to parental consent to easily and exclusively resolve any dilemma relating to construction of prenatal genomic results is therefore inappropriate, both relying on and feeding into an overly deterministic perspective on genomics (i.e., unwarranted expectations that genomic variation can be controversially boxed into discrete categories with clear sequelae). Whilst in-depth consent conversations in advance of testing might give health professionals some idea of what a prenatal “result” might mean for particular parents, even where such conversations have happened, professionals are still left in the position of trying to apply principles discussed in abstract, to the genotypic data actually identified.

We argue that as a part of the consent process for prenatal genomic testing, it is essential to be explicit about the necessary involvement of scientists and clinicians in the process of interpreting data to produce genomic results. This is important both for maintaining trust by explaining why prenatal genomic results might sometimes be different in nature to what parents initially anticipated, and to avoid unfairly positioning parents as wholly carrying the burden of whatever result comes from their prenatal test, whether or not it bears any relation to what they were expecting, because “they asked for it” [42]. Perhaps the parental role in construction of genomic results in the prenatal setting could be seen as somewhat analogous to the birth plan a woman might develop regarding delivery—developing preferences, and establishing key information in advance are very important, and sometimes these preferences can then be followed to the letter. However, an evolving or unexpected situation might mean that a different course is more appropriate, and in order to achieve a good outcome, the woman and the professionals involved in her care need to depart from or adapt the original plan.

Conclusions

The clinical uncertainty and ambiguity of the information provided by many genomic tests is particularly glaring in the prenatal context. Popular discourse around genomic testing tends to present its results as clear-cut and informative, so many prospective parents may understandably express a wish to know “all the information,” and yet be unprepared that this may be uncertain and probabilistic. We highlight that construction of a genomic result in the context of a particular pregnancy is an interpretative process—parental preference may guide and to some extent direct this process, but professionals will sometimes have to make choices as to how best to honor previously expressed parental preferences in situations involving ambiguity. We argue the need to be explicit about this as part of the consent process for prenatal genomic tests—caricaturing prenatal

result construction as a simple matter of parental choice does a disservice both to the scientists and clinicians whose expertise is brought to bear in the process, but also to the parents, who may feel they were told they had choices that turned out to be illusory.

As prenatal genomic testing expands in technical scope and transitions to being offered in uneventful pregnancies, the need to explore what a prenatal genomic result should encompass, who should be involved in defining this, and how and to what extent parental preferences can meaningfully influence result construction, is becoming more urgent.

Funding Anneke Lucassen's work is supported by funding from a Wellcome Trust collaborative award (208053/Z/17/Z).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- van der Steen SL, Bunnik EM, Polak MG, Diderich KEM, Verhagen-Visser J, Govaerts LCP, et al. Choosing between higher and lower resolution microarrays: do pregnant women have sufficient knowledge to make informed choices consistent with their attitude? *J Genet Couns.* 2018;27:85–94.
- Stern S, Hacohen N, Meiner V, Yagel S, Zenvirt S, Shkedi-Rafid S, et al. Universal chromosomal microarray analysis reveals high proportion of copy number variants in low risk pregnancies. *Ultrasound Obstet Gynecol.* 2020. <https://doi.org/10.1002/uog.22026>.
- Feldkamp ML, Carey JC, Byrne JLB, Krikov S, Botto LD. Etiology and clinical presentation of birth defects: population based study. *BMJ.* 2017;357:j2249.
- Ahmad AS, Ormiston-Smith N, Sasieni PD. Trends in the lifetime risk of developing cancer in Great Britain: comparison of risk for those born from 1930 to 1960. *Br J Cancer.* 2015;112:943–7.
- Pedersen CB, Mors O, Bertelsen A, Waltoft BL, Agerbo E, McGrath JJ, et al. A comprehensive nationwide study of the incidence rate and lifetime risk for treated mental disorders. *JAMA Psychiatry.* 2014;71:573–81.
- Foundation BH UK Factsheet; 2018. file:///C:/Users/rhh1n18/Downloads/bhf-cvd-341/statistics-uk-factsheet.pdf.
- Rochon M, Eddleman K. Controversial ultrasound findings. *Obstet Gynecol Clin NAm.* 2004;31:61–99.
- Pisapia JM, Sinha S, Zarnow DM, Johnson MP, Heuer GG. Fetal ventriculomegaly: Diagnosis, treatment, and future directions. *Childs Nerv Syst.* 2017;33:1113–23.
- Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, et al. A global reference for human genetic variation. *Nature.* 2015;526:68–74.
- Cassa CA, Tong MY, Jordan DM. Large numbers of genetic variants considered to be pathogenic are common in asymptomatic individuals. *Hum Mutat.* 2013;34:1216–20.
- Committee on Genetics and the Society for Maternal-Fetal Medicine Committee Opinion No. 682: microarrays and next-generation sequencing technology: the use of advanced genetic diagnostic tools in obstetrics and gynecology. *Obstet Gynecol.* 2016;128:e262–e268.
- Vanakker O, Vilain C, Janssens K, Van der Aa N, Smits G,B, et al. Implementation of genomic arrays in prenatal diagnosis: the Belgian approach to meet the challenges. *Eur J Med Genet.* 2014;57:151–6.
- Gardiner C, Wellesley D, Kilby MD, Kerr B Recommendations for the use of chromosome microarray in pregnancy. Royal College of Pathologists, British Society for Genetic Medicine, Royal College of Obstetricians and Gynaecologists, British Maternal and Fetal Medicine Society; 2015. <https://www.rcpath.org/uploads/assets/06664c28-0f90-4230-86158c91fea14be6/Recommendations-for-the-use-of-chromosome-microarray-in-pregnancy.pdf>.
- Genetics ACoOAGCo Committee Opinion No. 581: the use of chromosomal microarray analysis in prenatal diagnosis. *Obstet Gynecol.* 2013;122:1374–7.
- Ferretti L, Mellis R, Chitty LS. Update on the use of exome sequencing in the diagnosis of fetal abnormalities. *Eur J Med Genet.* 2019;62:103663 <https://doi.org/10.1016/j.ejmg.2019.05.002>
- Horton RH, Lucassen AM. Recent developments in genetic/genomic medicine. *Clin Sci.* 2019;133:697–08.
- Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C, et al. A copy number variation morbidity map of developmental delay. *Nat Genet.* 2011;43:838–46.
- Kaminsky EB, Kaul V, Paschall J, Church DM, Bunke B, Kunig D, et al. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. *Genet Med.* 2011;13:777–84.
- Westerfield L, Darilek S, Van Den Veyver IB. Counseling challenges with variants of uncertain significance and incidental findings in prenatal genetic screening and diagnosis. *J Clin Med.* 2014;3:1018–32.
- Rosenfeld JA, Coe BP, Eichler EE, Cuckle H, Shaffer LG. Estimates of penetrance for recurrent pathogenic copy-number variations. *Genet Med.* 2013;15:478–81.
- Srebnik MI, Joosten M, Knapen MFCM, Arends LR, Polak M, van Veen S, et al. Frequency of submicroscopic chromosomal aberrations in pregnancies without increased risk for structural chromosomal aberrations: systematic review and meta-analysis. *Ultrasound Obstet Gynecol.* 2018;51:445–52.
- Fenwick A, Plantinga M, Dheensa S, Lucassen A. Predictive genetic testing of children for adult-onset conditions: negotiating requests with parents. *J Genet Couns.* 2017;26:244–50.
- Hashiloni-Dolev Y, Nov-Klaiman T, Raz A. Pandora's pregnancy: NIPT, CMA, and genome sequencing-A new era for prenatal genetic testing. *Prenat Diagn.* 2019;39:859–865.
- Schapler M, Schicklanz S. Medicine, market and communication: ethical considerations in regard to persuasive communication in direct-to-consumer genetic testing services. *BMC Med Ethics.* 2018;19:56.
- Marcon AR, Bieber M, Caulfield T. Representing a "revolution": how the popular press has portrayed personalized medicine. *Genet Med.* 2018.
- Ballard LM, Horton RH, Fenwick A, Lucassen AM. Genome sequencing in healthcare: understanding the UK general public's views and implications for clinical practice. *Eur J Hum Genet.* 2020;28:155–64.
- Akolekar R, Beta J, Picciarelli G, Ogilvie C, D'Antonio F. Procedure-related risk of miscarriage following amniocentesis and chorionic villus sampling: a systematic review and meta-analysis. *Ultrasound Obstet Gynecol.* 2015;45:16–26.

471 28. Beta J, Zhang W, Geris S, Kostiv V, Akolekar R. Procedure- 498
472 related risk of miscarriage following chorionic villus sampling and 499
473 amniocentesis. *Ultrasound Obstet Gynecol*. 2019;54:452–7. 500
474 29. Salomon LJ, Sotiriadis A, Wulff CB, Odibo A, Akolekar R. Risk 501
475 of miscarriage following amniocentesis or chorionic villus sampling: 502 systematic review of literature and updated meta-analysis. 503
476 *Ultrasound Obstet Gynecol*. 2019;54:442–51. 504
477 30. Fiorentino F, Napoletano S, Caiazzo F, Sessa M, Bono S, Spiz- 505
478 zichino L, et al. Chromosomal microarray analysis as a first-line 506 test in pregnancies with a priori low risk for the detection of 507 submicroscopic chromosomal abnormalities. *Eur J Hum Genet*. 508
480 2013;21:725–30. 509
483 31. Hay SB, Sahoo T, Travis MK, Hovanes K, Dzidic N, Doherty C, 510
484 et al. ACOG and SMFM guidelines for prenatal diagnosis: is 511
485 karyotyping really sufficient? *Prenat Diagn*. 2018;38:184–9. 512
486 32. Yu D, Zhang K, Han M, Pan W, Chen Y, Wang Y, et al. Non- 513
487 invasive prenatal testing for fetal subchromosomal copy number 514
488 variations and chromosomal aneuploidy by low-pass whole-genome 515
489 sequencing. *Mol Genet Genom Med*. 2019;7:e674. 516
490 33. Hayward J, Chitty LS. Beyond screening for chromosomal 517
491 abnormalities: advances in non-invasive diagnosis of single gene 518
492 disorders and fetal exome sequencing. *Semin Fetal Neonatal Med*. 519
493 2018;23:94–101. 520
494 34. Perlado S, Bustamante-Aragonés A, Donas M, Lorda-Sánchez I, 521
495 Plaza J, Rodríguez, de Alba M. Fetal genotyping in maternal 522
496 blood by digital PCR: towards NIPD of Monogenic disorders 523
497 independently of parental origin. *PLoS ONE*. 2016;11:e0153258. 524

UNCORRECTED PROOF

Author Query Form

Please ensure you fill out your response to the queries raised below and return this form along with your corrections

Dear Author

During the process of typesetting your article, the following queries have arisen. Please check your typeset proof carefully against the queries listed below and mark the necessary changes either directly on the proof/online grid or in the 'Author's response' area provided below

Queries	Details Required	Author's Response
AQ1	Please note that we only allow the following standard wording to be used for author contribution footnote: 'These authors contributed equally'. Please check the revised statement; any contributions not covered by this statement can be added to the Author contributions section.	
AQ2	Please clarify whether the splitting of the original affiliation "1" as done is correct. If No, please show how they should be sorted out.	
AQ3	Please check your article carefully, coordinate with any co-authors and enter all final edits clearly in the eproof, remembering to save frequently. Once corrections are submitted, we cannot routinely make further changes to the article.	
AQ4	Note that the eproof should be amended in only one browser window at any one time; otherwise changes will be overwritten.	
AQ5	Author surnames have been highlighted. Please check these carefully and adjust if the first name or surname is marked up incorrectly. Note that changes here will affect indexing of your article in public repositories such as PubMed. Also, carefully check the spelling and numbering of all author names and affiliations, and the corresponding email address(es).	
AQ6	Please check the URL link for correctness in reference [6].	
AQ7	Please check the edits made in reference [11].	
AQ8	Please provide the page range and volume in reference [25].	