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Abstract

The UML Activity Diagram (UAD) is mostly used for modeling behavioral aspects of objects
and systems. OCL (Object Constraint Language) is used together with UAD to specify guard
conditions and action constraints. Due to the ambiguous semantics of UAD, it is relevant to
formalize such diagrams using formal semantics and formal methods. In this paper, we opt for a
formal transformation of UML activity diagrams denoted by functional semantics into FoCaLiZe,
a proof based formal language. The ultimate goal is to detect eventual inconsistencies of UML
activity diagrams and to prove their properties using Zenon, the automatic theorem prover of
FoCalL.iZe. In addition to the proposed formal basis for UAD. The presented approach directly
supports action constraints, activity partitions and the communication between structural and
dynamic aspects of UML models.

Keywords: UML Activity Diagram, UML Semantics, Software Engineering, Model Properties,
Model Verification, Formal Methods.

1 Introduction

UML activity diagrams (UAD) [1] are graphical notations describing the behavior of UML
class instances during their lifetime, without considering triggering events. They use the Object
Constraint Language (OCL) [2] to specify action constraints and transition guards. UAD are
frequently used in applications of workflow modeling [3], such as software application modeling
[4], web services composition modeling [5] and also in business process modeling [6]. The wide
use of UAD is enhanced with MDE (Model Driven Engineering) tools for verification and code
generation.

The semantics of UAD models (especially within the scope of critical systems) lend themselves
to combination with formal methods in order to express and check software properties using the
verification techniques provided by formal methods.

Many studies have focused on the formalization and the verification of UAD. They use
formal methods, such as B method [7], Alloy [8], Petri Nets [9], Maude [10] and model checkers
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[11]. However, the large gap between UML (object oriented modeling) and formal methods
(mathematical and logical specifications) can lead to a cumbersome model to model transformation
that loses essential semantics of the original UML/OCL models.

We have already formalized most UML class diagram features [12, 13, 14], OCL constraints
[15] and UML state machines [16] by transformation into FoCaLiZe [17]. The latter is a formal
programming environment with a purely functional language that shares with UML and OCL
most of their architecture, design and specification features [18, 13].

The transformation combines both the structural and behavioral aspects of UML models within
a single FoCaLiZe model. Behavioral diagrams such as state machines communicate and refer to
the structural elements of models, such as attributes, methods and OCL constraints. Thus, it is
possible to express behavioral actions and transitions using references to attributes, class operation
calls and class constraints. Note that some proofs of derived constraints can be achieved without
the transformation of behavioral diagrams. Therefore, we transform the class diagram and its OCL
constraint into FoCaLiZe before transformation of behavioral diagrams. The consistency of the
whole model is ensured by the proof of all generated constraints using FoCaLiZe proof techniques.

In this paper, we contribute functional semantics of UAD in FoCaLiZe. This semantics is an
extended description and specification of our work presented in [19].

Firstly, we propose a functional semantics for UAD that provides clear and effective solutions
for choice control nodes (decision and merge nodes) and parallelism control nodes (fork and join
nodes). Then we implement the proposed semantics using parallelism and choice statements
in FoCaLiZe. In the final steps, we use FoCaLiZe proof techniques to check UAD properties.
The proposed transformation considers OCL pre/post-conditions of classes operations and action
constraints. It also supports activity partitions (activities that invoke several actors) and the
communication between UML activity diagrams and their corresponding classes. Furthermore,
the transformation of UAD into FoCaLiZe is realized in such a way that it could be naturally
integrated with the proposals of the aforementioned UML class diagram transformation [18, 13].

The remainder of this document is organized as follows: sections 2 and 3 present basic
concepts of FoCaLiZe and define the subset of UML activity diagram and OCL constraints
supported by our transformation. In section 4, the semantics of UML activity diagrams is studied,
followed by the specification of the transformation rules. Section 5 presents approaches that
integrate UML classes, activity diagrams and the FoCaLiZe environment for error detection and
proving of model properties. Section 6 describes the implementation of the transformation model
and section 7 discusses some related works before concluding.

2 The FoCaLiZe Environment

FoCaLiZe [17] is an integrated development environment with formal features including
a programming language, a constraint (property) specification language and theorem provers.
A FoCaL.iZe project is organized as a hierarchy of species that may have several roots. The
upper levels are built along the specification stages, while the lower ones correspond to the
implementation. Each node of the hierarchy corresponds to a refinement step toward a complete
implementation using object oriented features such as multiple inheritance and parameterization.

The main brick in a FoCaLiZe project is the species. which groups together several methods:
the carrier type of the species, functions to manipulate this carrier type and logical properties.
The properties of a species express requirements that must be verified. Using EBNF (Extended
Backus-Naur Form) notation, the general syntax of a species is:
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Table 1: The Syntax of a Species

spec = species species_name [(param [{ , param}* ])] =
[inherit spec_def | { , spec_def}* | ;] {methods;}* end;;
param = ident in type | ident is spec_def
spec_def :=  species_name | species_name (param [{ , param}* |)
methods = rep | signature | let | property | theorem
rep = representation = type;
signature :=  signature function_name : function_type;
let :=  let [rec| function_name = function_body;
property :=  property property_name : property_specification ;
theorem ;= theorem property_name : property_specification proof= theorem_proof’

A species is defined by a collection of methods as follows:

» The representation describes the data structure of the species entities.

« A signature specifies a function without giving its computational body, only the functional
type is provided at this stage. A signature is intended to be defined (will get its computational
body) later in the subspecies (through inheritances).

o A let defines a function together with its computational body.

o A property is a statement expressed by a first-order formula specifying requirements to
be satisfied in the context of the species. A property is intended to be defined (will get its
proof) later in the subspecies (through inheritances).

o A theorem is a property provided together with its formal proof.
The elements between parenthesis after the species name and after the inherit clause are

needed for the parameterization and multiple inheritance mechanisms, which will be presented in
the next sub-sections.

Code 1: The species Point

species Point =
signature getX : Self — float;
signature getY : Self —> float;
signature equal: Self — Self— bool;
signature move : Self —> float — float — Self;
(% distance: calculates the distance between two given points %)
let distance (a:Self, b: Self):float = sqrt( ((getX(a) — getX(b))=(getX(a) — getX(b))) +
((getY(a) — getY(b))+(getY (a) — getY(b))) ):
property equal_reflexive: all x: Self, equal (x, x) ;

property distanceSpecification: all p q:Self, equal(p, q) — distance(p, q) = 0.0;
end;;

The species Point (see Code 1) models points of the plane. Each point is specified by its
coordinates (the signatures getX and getY). The text enclosed between "(*" and "*)" represents
comments. The key word Self refers to contextual instance (the one point that is the subject
of this species), even though it is not yet instantiated. Because the representation of the species
Point is still undefined, it is possible to inherit from this species to construct new species with
different representations.

2.1 Inheritance

When creating a species by multiple inheritance, some signatures can be instantiated by
functions and properties by theorems. It is also possible to associate a definition of function to a
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signature, a proof to a property or to redefine a method even if it is already used by an existing
method. All these features are due to the FoCaLiZe late-binding mechanism.

A species is said to be complete if all declarations have received definitions and all properties
have received proofs. The representations of complete species are encapsulated through species
interfaces. The interface of a complete species is the list of its function types and its properties.
It corresponds to the end user point of view, who needs only to know which functions he
can use, and which properties these functions satisfy, but doesn’t care about the details of the
implementation. A collection is created by the implementation of a complete species. A collection
can hence be seen as an abstract data type, only usable through the methods of its interface.

The species ColoredPoint (see Code 2) aims to manipulate colored (graphical) points. Note
that the functions st and snd (predefined functions) return, respectively, the first and the second
component of a pair.

Code 2: The species ColoredPoint

(* Definition of the type color %)
type color = | Red | Green | Blue ;;

species ColoredPoint = inherit Point;
representation = (float = float) = color;
let getColor(p:Self):color = snd(p);
let newColoredPoint(x:float, y:float, c:color): Self = ((x, y), ¢);
let getX(p) = fst(fst(p));
let getY(p) = snd(fst(p));
let move(p, dx, dy) = newColoredPoint(getX(p) + dx, getY(p) + dy, getColor(p));
let equal(p:Self, q:Self) = (getX(p) = getX(q)) && (getY(p) = getY(q)) && (getColor(p) = getColor(q));
let printPoint (p:Self):string = let printColor (c:color) = match ¢ with
Red —> "Red"
Green — "Green"
Blue — "Blue"
in (" X =" " string_of_float(getX(p)) *
"Y =" A" string_of_float(getY(p)) "
" QOLOR = " A printColor(getColor(p)));
proof of distanceSpecification = by definition of equal, distance;
proof of equal_reflexive = assumed;
end:;;

collection ColoredPointCollection = implement ColoredPoint; end ;;
let p = ColoredPointCollection!

newColoredPoint(2.0, 5.0, Blue);;

basics#print_string (ColoredPointCollection!printPoint(p));;

At the top level (outside the species), we define a given type color that will be used by
the species ColoredPoint. The latter is a complete species that inherits the species Point and
provides definitions (computational bodies) for all its signatures and proofs for all its properties
(including inherited signatures and properties). Some new methods are also added (getColor,
newColoredPoint and printPoint) in order to get the color of a point, to allow the creation of
new instances and to print the coordinates and the color of a given point.

The collection ColoredPointCollection implements the complete species ColoredPoint.
Then, it is used to create a new entity, p, of the species ColoredPoint and print its coordinates.

The “!” notation (in Code 2) is equivalent to the usual dot notation of message sending in
object-oriented programming.

2.2 Parameterization
Parameterization specifies a (supplier-client) dependency relationship between species. Via
this mechanism, a species (the client) can use the methods of other species (the suppliers) in order
to develop its own methods.
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In mathematics, a circle is defined by its radius and its center (a point). The species Circle
(see Code 3) is parameterized using the species Point in order to define the center of a circle.

Code 3: The species Circle

species Circle (P is Point) =
representation = P = float ;
let newCircle(centre:P, radius:float):Self = (centre, radius);
let getCenter(c:Self):P = fst(c);
let getRadius(c:Self): float = snd(c);
let belongs(p:P, c:Self):bool = (P!distance(p, getCenter(c))= getRadius(c));
theorem belongs_specification : all c:Self, all p:P,
belongs(p, c¢) <= (P!distance(p, getCenter(c))= getRadius(c))
proof =
<I>1 assume ¢ : Self, p : P,
prove belongs(p, ¢) <—> (P!distance(p, getCenter(c))= getRadius(c))
<2>1 hypothesis hl : belongs(p, c),
prove belongs(p, ¢) — (P!distance(p, getCenter(c))= getRadius(c))
by hypothesis hl definition of belongs
<2>2 hypothesis h2 : (P!distance(p, getCenter(c))= getRadius(c)),
prove (P!distance(p, getCenter(c)) = getRadius(c))—> belongs(p, ¢)
by hypothesis h2 definition of belongs property basics#beq _symm
<2>3 ged by step <2>1, <2>2
<1>2 conclude ;
end;;

Here, the species Circle can use all signatures, functions and properties of Point, even if
they are not completely defined yet.

2.3 Proofs and Compilation

FoCaL.iZe provides several means to write the proofs of properties. We can directly write
Coq proofs or use the key word assumed to avoid providing proofs. However, the usual way
to write proofs is to use the FoCaLiZe proof language (FPL) (see the proof of the theorem
belongs_specification of the species Circle, Code 3 ). Using FPL, the developer organizes
the proof in steps. Each step provides proof hints that will be exploited by Zenon (the automatic
theorem prover of FoCaLiZe) [20].

Finally, the compilation of FoCaLiZe sources produces OCaml and Coq [21] code. The
OCaml code provides the executable program. The Coq code is automatically generated by Zenon,
when it succeeds finding proofs. The Coq code is then checked by the Coq theorem prover.

3 Abstract Syntax for UAD

UML is a general-purpose modeling language that helps developers to design, visualize and
document the artifacts of software engineering. A UML model is a set of diagrams describing the
static and the behavioral aspects of software systems. Thanks to the declarative language OCL
(Object Constraint Language) one can describe constraints (properties) of UML models. An OCL
constraint is a precise statement which may be attached to any UML element.

An activity diagram (of a UML class) describes the behavior of the class objects. It specifies
the sequence of actions (workflow) of an object during its lifetime. For clarity sake, we only focus
on simple actions (class operation calls) in this paper.

In order to provide a formal framework for the transformation of UAD to FoCaLiZe specifi-
cations, we propose an abstract syntax for the subset of UAD constructs that we consider, using
mostly UML metamodel syntax [1]. The UAD subset that we support is sufficient to express
any behavior of a UML class diagram. However the additional UAD features that are not yet
supported allow such models to be constructed with more structure. Note that, the UAD/OCL

5



Table 2: Abstract Syntax of UML Activity Diagrams

ActivityDiagram = ActivityDiagramldent declaration®

declaration = node | transition

node = sourceNode | targetNode

sourceNode = InitialNode lactionNode |controlNode

targetNode :=  FinalNode lactionNode |controlNode

actionNode = nodeldent [«localprecondition» Pre-Condition] operation_call [«localpostcondition» Post-Condition)
controlNode = nodeldent {DecisionNode [ForkNode |JoinNode IMergeNode} '
operation_call = self.operationldent (| actualParameter {, actualParameter}* | )

guard = OclExpression

Pre-Condition = OclExpression

Post-Condition = OclExpression

transition = transition transitionldent (sourceNodeldent [[guard]] targetNodeldent)

elements are clearly defined for the purposes of translation but not in a mathematical form that
enables us to reason about the model. The proposed syntax is written in EBNF notation (see Table
2) in order to improve the readability of our transformation rules.

In the syntax presented in Table 2, an activity diagram consists of a set of nodes and a set of
transitions. Each transition (flow) is a directed edge interconnecting two nodes. It specifies that
the system moves from one action to another. We distinguish between two types of nodes: control
nodes and action nodes.

Control nodes (see Fig. 1) are used to specify choice (DecisionNode and MergeNode),
parallelism (ForkNode and JoinNode), initial nodes (InitialNode) or final nodes (FinalNode).

'

Y
@ —> T
Initial Node ¥ vy
Merge Node Fork Node
Y [guara
® D i Y
Final Node else Y
Decision Node Join Node

<<localprecondition®> h.
constraint I

<< localpostoondit ions>|
constraint

]

|
¥
{ _‘lr_j\._.

Action Node

Figure 1: UML activity diagram notations

The decision nodes choose one of the outgoing transitions. The merge nodes merge several
incoming transitions so that the first incoming transition will become the first outgoing one. The
Join nodes synchronize several parallel incoming transitions, while the fork nodes split a transition
into several parallel outgoing flows.

Action nodes are calls to class operations (operation_call). The initial node starts the global
flow.

Action constraints are presented as notes attached to action nodes, specified with the stereo-
types «localpreconditions and «localpostconditiony. The local pre-condition describes
a constraint which is assumed to be true before the action is executed. The local post-condition
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describes a constraint which has to be satisfied after the action is executed. We use OCL syntax to
specify local pre and post-conditions on actions.

A transition guard ([guard]) is an optional constraint that controls the firing of the transition.
If the guard is true, the transition may be enabled, otherwise it is disabled.

An expression of the OCL language [2] uses types and operations on types. We distinguish
between primitive (Integer, Boolean, Real and String), enumeration type, object type (classes
of UML model) and collection types. For a given OCL type, T, the OCL type Collection(T)
represents a collection family of elements of type T.

In this work, we have considered the two main OCL constraints: class invariants and pre and
post-conditions on classes operations. An invariant is an OCL expression attached to one class
(c_n) and must be true for all instances of that class at any time. Its general form is:

context c_n inv : [,
where E;,, is the OCL expression describing the invariant.

The pre-condition of an operation OP_n of the class ¢_n describes a constraint which is
assumed to be true before the operation is executed. The post-condition of OP_n describes a
constraint which has to be satisfied after the operation is executed:

context c_n :: OP_n(py : typeEXpi ... pm :typeExpy) pre:Ep., post:E,.q

where p; ...p,, are the operation parameters, typeExp; ...typeExp,, their corresponding
types and E,,, and [, are the OCL expressions describing the pre/post-conditions.

AbstractOrder

OrderID : Integer

get OrderlD ():Integer
set_OrderID (n : Integer)

Context Order :: payOrder()
.| pre : self.filled
Order L7 | Post: self.paid

filled : Boolean
paid : Boolean
shipped : Boolean

rejectOrder ()
fillOrder ()
shipOrder ()
payQOrder ()
initOrder ()
colseOrder()

Figure 2: The class Order

Activity Diagram Example: Orders Processing.
We present here the activity diagram of the class Order (see Fig. 2 and Fig. 3).

Through inheritance, the class Order concretizes and refines the abstract class Abstract0Order,
which cannot be instantiated. It acquires all attributes and methods of the class AbstractOrder
and defines its own attributes and methods.
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Figure 3: UML Activity Diagram: orders processing

Firstly, an order (a new instance o of the class Order is created) is received by the action
receive_order (the operation initOrder () of the class Order is invoked).Then, if the con-
dition guard (Self.rejectOrder()) of the decision node is not true (the order is not rejected),
the flow goes to the next step: the action £ill_order (Self.fill0Order()). After that, the
fork node splits the path of the control flow into two parallel tasks. On the left path, the action
ship_order (call of the operation shipOrder()) is executed. On the right path, to bill the
order and process its payment, the action pay_order (Self.payOrder()) is handled. When
the two paths are accomplished, the join node may take place and the action close_order
(Self.closeOrder()) is achieved. Returning back to the above decision node, if the order is
rejected, the flow is passed directly to the action close_order.

4 From UAD to FoCaliZe

A UML activity diagram describes the behavior of a UML class and uses OCL expressions.
Therefore, we will first present an overview on the transformation of UML classes and OCL
expressions, then we describe the semantics and transformation rules for activity diagrams.

During the transformation from UML/OCL to FoCaLiZe, we will use the following notations:

o The term “class c_n" refers to the UML class named c_n and the term “species c¢_n" refers
to the FoCaL.iZe species named c_n.

« For a UML/OCL element E, [[E] denotes its transformation into FoCaLiZe. We will also
preserve the same UML/OCL element identifiers in the transformations, taking into account
upper and lower cases to respect FoCaLiZe syntax if necessary.
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4.1  Transformation of UML Classes and OCL Constraints

The similarities between FoCaLiZe species and UML classes [22] led us to transform a UML
class into a FoCaLiZe species.

Attributes specify the state of class objects. Therefore, each attribute gives rise to a signature
modeling its getter function in the corresponding species:

UML:
attrNane : typeExp [mult] ;
FoCaLiZe:
signature get attrNane : Self -> [ typeExp [multl];

Operations represent services invoked by any object of the class in order to affect object
behaviors. In the context of object oriented programming languages, when an instance o of the
class c_n invokes an operation named N of the class, the memory state of the instance o is affected
and moves to a new memory state o’. In functional languages (without memory state) such as
FoCalL.iZe, the two memory states of an object represent two different entities. Taking into account
this difference between the two formalisms, we convert a class operation into a species signature
(function interface) that starts with the type Self (the entity that invokes the function), followed
by the function parameter types, and ends with the type Self (the new created entity). So, the
general transformation of operations is:

UML:
diry pp : typey [mult]
N ... : Type[mult]
diry py ¢ typey [multy]
FoCalLiZe:

signature N: [Self]->[Typei[multi]]->...-> [Typei[mult;]]->[Self];

OCL constraints are mapped into species properties.

To facilitate the transformation of OCL expressions we built a FoCaLiZe library that formalizes
OCL expressions. In this library, classes of the UML model correspond to FoCaLiZe species and
OCL primitive types (Integer, Real, String and Boolean) correspond to FoCaLiZe primitive
types (int, float, string and bool). OCL collection types are handled using the general
species OCL_Collection of the library, in which we specify functions for OCL operations on
collections (forAll, isEmpty, size ...). The OCL constraints (invariants, pre-conditions and
post-conditions) specified in the context of a UML class are then mapped into FoCaL.iZe properties
of the corresponding species.

Most of the OCL expressions on types Integer, String and Real are directly converted into
their corresponding FoCaLiZe expressions using almost the same operations on FoCaLiZe types:
int, string and float.

Most OCL formulas (of type Boolean, see Table 3) have a straightforward counterpart as
FoCaLiZe boolean expressions. In Table 3, ¢ and y are two OCL formulas, & and 8 are two
numeric (integer/real) expressions, o is an object of the model and coll, coll; and coll, are OCL
collections.

Note that, the OCL operations forAll and exists, when applied to the OCL collection re-
turned by the al1Instances operation, are respectively mapped to the FoCaLiZe universal (all)
and existential (ex) quantifiers. Otherwise, they must be turned into special defined FoCaLiZe
operations that iterate on all instances of a collection.
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Table 3: Mapping of OCL formulas

OCL FoCaLiZe

true true

false false

not(¢9) ““([¢]

¢ and y (o] /N [wl 7 [¢] && (]
pory (o] Tvl/ ol 11 [wl

¢ xor y (o] 1<>1 [l

¢ implies y (o] -> [w]

if ¢ then y else ¢
let x :type = Expin ¢

if [¢] then [[y] else [¢]
let x = [Exp] in [[¢]

a=p (@] = [A]

a<>p “=([o] = [BD
oa>p [o] > 8]

a<p [o] < (8]

a>=p [a] >=[B]

o <= (o] <= [£]
alllnstances -> forAll(x | ¢) | all x: Self, [¢]
alllnstances -> exists(x | ¢) ex x: Self, [¢]

coll -> forAll(x | ¢)

coll -> exists(x| )

coll -> isEmpty()

coll -> notEmpty/()

coll -> includes(o)

coll -> excludes(o)

colly -> includesAll(coll,)
colly -> excludesAll(coll,)

forAll([coll]], ]
exists([[coll],]
isEmpty([[coll]])
notEmpty([[coll]))
includes([[0], [coll])
excludes([o], [coll])
includesAll([[coll], [colls]]
excludesAl1([[coll]], [coll]]

[
[9])
[o])

)
)

An OCL invariant E;,, of the class c¢_n is converted into a FoCaLiZe property of the corre-

sponding species:

OCL:
contextc_n inv : [E;,
FoCaLiZe:
property inv_ident : all e: Self, [E;,] ;

OCL pre and post-conditions E . and s of an operation op_n of the class c_n specify that
the post-condition is satisfied after the operation execution, when the pre-condition is satisfied
before the operation execution. Therefore, we convert pre and post-conditions together into a
FoCaLiZe implication of the corresponding species:

OCL:

context c_n::op_n(pi_n:typeExp; ...pi_n: typeExpy)

pre :Ep.,
pOSt :E post
FoCalLiZe:

property pre_post_ident

all e: Self,
all pj_n

: [typeExp1] , ...

[Epre(e)] > [Epost(e)] 5

where [[E,.(e)] is the transformation of the pre-condition applied to the entity e (before the

,all py_k: [typeExpi] ,

operation is executed) and [E o (€’)] is the transformation of the post-condition applied to the
entity ¢’ resulting from the operation op_n (after the operation execution). The inv_ident and
pre_post_ident are identifiers that are assigned to invariants and pre/post-conditions.
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To transform (multiple) inheritance, templates, template bindings and dependency features, we
use similar mechanisms in FoCaLiZe. Although FoCaLiZe is a functional language, it supports
multiple inheritance, parameterized species (like templates in UML) and the substitution of formal
parameters of species, which is similar to template binding in UML.

This paper focuses more on the formalization of UAD, so for more details about the formal
transformation of classes attributes, methods and OCL constraints, the reader may refer to
[12, 13,15, 14].

Code 4 illustrates the transformation of the abstract classes AbstractOrder and its sub-
class Order (see Fig. 2) and its OCL constraints. The transformation generates the species
AbstractOrder and Order using the inheritance mechanism in FoCal.iZe, which accurately
reflects inheritances in UML/OCL.

Code 4: The species Order, derived from the class Order

species AbstractOrder =

signature get_Orderld : Self — int ;
signature set_OrderId : int — Self ;
end;;

species Order = inherit AbstractOrder;
(= Transformation of attributes =)
signature get_filled : Self — bool;
signature get_shipped : Self — bool;
signature get_paid : Self — bool;

(# Transformation of operations )

signature newOrder : bool — bool — bool —> Self; (%The species constructor )
signature rejectOrder : Self — bool ;

signature fillOrder . Self — Self;

signature shipOrder : Self — Self;

signature payOrder ¢ Self — Self;
signature initOrder . Self — Self ;
signature closeOrder : Self — Self ;

(# Transformation of payOrder pre/post—constraints )
property payOrder_pre_post: all e:Self, (get_filled(e)) —> (get_paid(payOrder(e)));
end;;

Note that the species constructor is always automatically generated, even if it is not explicitly
declared in the original class.

4.2 Functional semantics for UAD and its transformation to FoCaLiZe

Let us start with the description of a functional semantics for a simple control flow (without
emphasis on the sequence and conditions of the flow). We will then present the implementation
of this semantics in FoCal.iZe. After this, we will describe the transformation of control nodes
(decision, merge, fork and join nodes) using corresponding functional statements in FoCaLiZe.

Based on the previously described syntax for UAD (see Table 2), an activity diagram AD of a
class c¢_n consists of a set of nodes (NID) and a set of transitions (TRR):

ND = {InitialNode, ndj,...,nd;,FinalNode}
TR ={tr,...,trn}.

Each action node nd has form:

nd = nodeldent [«localprecondition»Pre-Condition]
self.action (param; ...param,)
[«localpostcondition» Post-Condition)
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where self.action (param; ...param,) is an operation call of the class c_n.
Thus, the set of node identifiers is:
NI = { InitialNode,FinalNode,nodeldent|,... ,nodeldent;}.
Each transition ¢r has form:
tr = transition trident (sourceNode [[guard]] targetNode)

where the pair (sourceNode, targetNode) € NI? represents the source and target node identi-
fiers (in addition to InitialNode and FinalNode, we only have action nodes at this step) of the
transition ¢7.

The optional transition guard ([guard]) guards the transition. It is a logical formula specified
by an OCL expression.

The set of transition identifiers is TI = { trldent,,...,trldent,}.

Let I be the list of instances (snapshots) of the class ¢_n. For an instance o, state(o) denotes
its current action node in the activity diagram of the class c_n.

state : 1 — NI (D)
(0) — state(0)

An activity diagram of the class c_n can be thought of as a function that takes a transition #r
and an instance o € I such that state(o) = sourceNode (the source node identifier of the transition
tr) as parameters and returns the instance of such that state(of) = targetNode (the target node
identifier of the transition ¢7). The instance o/ = o.action(param; ...param,) is the result of the
execution of the action (operation call) in the source action node (sourceNode):

AD:I x TI—1 (2)
(0,tr;) —> of

In the context of object oriented programming languages o and o are the same object (instance),
but with different memory states. In functional languages (without memory states) such as
FoCalL.iZe, o and o/ are two different entities, which makes the above, functional, interpretation of
activity diagrams perfectly suited for transformation to FoCaLiZe.

Using the functional semantics presented in (2), the activity diagram of one class directly
communicates with the structural components of the same class and other classes of the model
that connected with relationships. In such a way, all behavior actions are directly expressed using
class operation calls.

The implementation of the UAD of the class c_n into FoCaLiZe translates the function AD
(modeling the activity diagram, see formula (2)). It is a function aD (function names must start
with a lowercase letter, in FoCaLiZe syntax) of the species c¢_n derived from the class c_n.

Before describing the function aD, let us first highlight the following correspondences between
UML and FoCaLiZe:

« The class c_n is transformed into a species having the same name (c_n).

« The set of instances of the class c_n (I) corresponds to the set of entities of the species c_n
(E).

« The set of transition identifiers TT is modeled by a new FoCaLiZe enumeration (transitions).

« The set of node identifiers NI is modeled by a new FoCaliZe enumeration (nodes).
12



« The function state (see formula (1)) is transformed into the species signature state:
signature state: Self -> nodes

« The instances (memory states) o and o/ correspond to the species entities e and e/ (e/ =
[o.action(param; ... paramy,)], the operation call holds in the node sourceNode).

Table 4: General transformation of UAD into FoCaLiZe

UML:
public class c_n = A ; O end

nd) [docalprecondition» PreCondition,] self.action;(prmyy ... prmy,)
[docalpostcondition» PostCondition;]

ndy[«localprecondition» PreConditiony] sel f.actiony(prmy ... prmg,)
[docalpostcondition» PostConditiony]

transition 77| (sourceNode; [[guard1]targetNode)

transition 17, (sourceNodey, [[guardyl|targetNodey,)

FoCaLiZe
type nodes = | [nd{]...| [ndi] ;;
type transitions = | [tri]... | [[frm] 33
speciesc_n =

signature state: Self -> nodes ;
signature [action|]l: Self -> [prmTypeyl... -> [prmTypei,]] -> Self ;

signature [actioni]l: Self -> [[prmTypepll... -> [prmTypey,]l -> Self ;

let aD(t:transitions, e:Self): Self = match t with

| [t D -> if ([guard\] A (state(e) = [sourceNodei]))
then e
else focalize_error ("ERROR");

| [zri] -> if ([guard;] N (state(e) = [sourceNode;]))
then [actions, (e, prmg,i,...,prmsgm,)]
else focalize_error ("ERROR");

| [trm] -> if ([guard,] A (state(e) = [sourceNoden]))
then [actiong,, (e, pring,1,...,prisp,n)]
else focalize_error ("ERROR");

| _ -> focalize_error("ERROR")

So, on the FoCaLiZe side, for a given entity e of the species c_n (derived from the class c¢_n)
and for a given transition identifier [[#r/d]), the function aD returns a new entity e/:

aD:[E X transitions — [E 3)
(e, [trld]) — et
13



In order to group the transformation of all transitions of one activity diagram within a single
function (see Table 4), we use the pattern matching in FoCaLiZe. So, each time we call the
function aD only one pattern will be invoked. This is, of course, according to the state of the entity
passed as parameter. If no pattern matches the state of the entity, the function will return an error
message that expresses a system deadlock.

When we call the transformation function (aD) using the parameters 77| (the first transition in
the UAD) and an entity e, such that state(e) = InitialNode (It is always the source state of
the transition #r}), the transition is fired and returns as result the same entity e with a new state
(the next node in the UAD).

4.2.1 Transformation of control nodes

Using the transformation presented in Table 4, the DecisionNode and the MergeNode have
a straightforward counterpart as FoCaL.iZe expressions.

However, new functions need to be defined for the ForkNode and the JoinNode. for each
category of control nodes (one function for fork nodes and one function for join nodes).

Table 5: General Transformation of Decision Nodes

UML:

Y

_else _[ guard]

‘Decision
™ T2
v v

( Decision DecisionNode )

transition 17| (Decision|[not(guard)]]...)
transition ¢r; (Decision|[guard])...)

FoCaLiZe

type nodes = | [Decision] ... ;;
type tramsitions = | [rri]] | [tra] ... 55
species c_n =

signature state: Self -> nodes ;

let aD(t:transitions, e:Self): Self = match t with
| [zr1 ] ->if ([not(guard)]l A (state(e)= [Decision]])) then e
else focalize_error ("ERROR");

| [tro]l -> if ([guard] A (state(e)= [Decision]]))) then e
else focalize_error ("ERROR");

end; ;
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DecisionNode:

A decision node (see Table 5) is followed by two transitions. If the first transition is guarded
by the guard [guard], the second transition is guarded by its negation (not([guard)])). In this paper,
we only support decision nodes followed by two transitions.

A decision node followed by more than two transitions should be transformed into several
decision nodes each followed by two transitions before transformation. Therefore, the two
transitions are naturally handled using the above function aD.

MergeNode:

The formalization of merge nodes consists in directing (guiding) the processing of all
incoming transitions (of the merge node) to the pattern modeling the outgoing transition in the
function aD (see Table 6).

Table 6: General Transformation of Merge Nodes

UML:
Y
»< Merge =
Tr,
v
Merge MergeNode
( transition tri (Merge [[(true)]]... )
FoCaLiZe
type nodes = | [Merge] ...
type tramsitions = | [tr] ... ;;
species c_n =
signature state: Self -> nodes ;
let aD(t:transitions, e:Self): Self = match t with
| [zr1]1 -> if ((state(e) = [[Merge]))) then e
else focalize_error ("ERROR");
end;;
ForkNode:

For the transformation of fork nodes we need to define a particular function (ADFN) that
should generate as many copies of the result object as the outgoing transitions (paths) from the
fork node:

ADFN T X TI =T x---x I (4)
(0,tr;)) — (o,...,0)
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For this purpose, we use the FoCaLiZe type 1ist (t) that groups several elements of the same
type t. So, on the FoCaLiZe side, for a given entity e of the species c_n (derived from the class

c¢_n) and for a given transition identifier [[#7Id]], the function aDFN (that transforms the function
ADFN) returns a list of entities 1ist (E):

aDFN:E X transitions — list(E) Q)
(e, [[trId])) — [e;...;¢€]

Table 7 summarizes the general transformation of fork nodes.

Table 7: General Transformation of Fork Nodes

UML:

A Fork
Tr,

Fork ForkNode

trail-s.ition tri(Fork[[(true)]]...)

FoCaLiZe

type nodes = | [Fork] ... ;;
type tramsitions = | [rr] ... ;;
species c_n =

signature state: Self -> nodes ;
let aDFN(t:transitions, e:Self): list(Self) = match t with
| [tr1] -> if (state(e) = [Fork]])then [e; ...; el

else focalize_error ("ERROR");

_ -> focalize_error ("ERROR") ; end;;

JoinNode:

Similarly, we need to define a particular function (ADJN) for join nodes. The function ADJN

has a collection of objects of the class c_n and a transition as parameters and returns one object of
the class:

ADJN:(I x---x I) x TI—>1I (6)

((01,...,04),tr) —> 0

To transform the function ADJN to FoCaLiZe, we also use the type 1ist (t). So, for a given
list of entities of the species c_n (derived from the class c¢_n) and for a given transition identifier
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[¢r1d], the function aDJN (that transforms the function ADJN) returns one entity of the species:

aDFN : list(E) x transitions — E @)
([ers---sen], [trId])) — e

In Addition, we use the function (signature) join() specified in the species c_n as follows:
signature join : list(Self) -> Self;
The number of elements (of type Self) in the list parameter of the signature join is equal to the
number of the incoming transitions to the join node. The function join returns one entity of the
species. It is used to group the data of several species entities within a single entity.

Finally, to synchronize all the incoming transitions to the join node, its outgoing transition
must be conditioned by: ((state(x;) = [[Join]])) A ... A (state(x,) = [Join]))), where : x;,i: 1..n
belong to the incoming entities to the join node. This synchronization is ensured by a recursive
function states (see Table 8).

Table 8: General Transformation of Join Nodes

UML:

Join Tr,
( Join JoinNode
transition tr| (Join|[true]]. .. )

FoCaLiZe

type nodes = | [Join] ... ;;
type tramsitions = | [rr] ... ;;
species c_n =

signature state: Self -> nodes ;
signature join : list(Self) -> Self ;

let aDJN(t:transitions, le:1list(Self)):Self= match t with
| [Join]] -> if (let rec states (1:list(Self)):bool =match 1 with
| [0 -> true
| x::r -> (state(x) = [Join])&& (states(r)) in states(le) )
then join(le)
else focalize_error ("ERROR")
-> focalize_error("ERROR") ; end;;

The function states checks that all the elements of the list le are incoming entities to the join
node (Join).

To sum up, a fork node generates as many copies of the result object as the outgoing transitions
(paths) using the function ADFN (its corresponding FoCal.iZe function is aDFN). The outgoing
transition actions will be executed in parallel. Each outgoing transition uses one of the generated
copies. Then, the following join node will group all of them, using the function ADJN (its
corresponding FoCaLiZe function is aDJN). Hence, the function ADJN synchronizes and groups
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the data of several objects (entities, on FoCaLiZe side) within a single object (entity on FoCaLiZe
side). This synchronization of all the outgoing actions from the fork node is ensured by the
recursive function states defined in Table 8. It uses the condition:

((state(xy) = [Join]l) A ...A (state(x,) = [Join])), where : x;,i: 1..n.
In other words, the join node will not be launched until all the outgoing transitions (actions) from
the fork node have been handled and reached the join state together.

4.2.2  Transformation of action constraints

Action constraints (local pre and post-conditions, see Fig. 1, page 6) are transformed in a
similar way to OCL pre/post-conditions.

We convert local pre and post-conditions together into a FoCaLiZe implication (L pre = Lpos)
of the corresponding species:

UML:

action «localprecondition» L,

op(p1 : typeExpy ... py : typeExpy,)
«localpostcondition» L,

FoCalLiZe:

property pre_post_action

all e: Self,

all p; :[typeExpi] ,... , all pg:[[typeExpi] ,

[[]]-‘pm(e)]] -> [[]Lpost(el)ﬂ >

Where op is the name of the operation invoked by the action action, p; ... p; are the operation
parameters and typeExp; ...typeExpy their corresponding types.

[L,re(e)] is the transformation of the pre-condition applied to the entity e (before the action
is executed) and [[Lp,s(€')] is the transformation of the post-condition applied to the entity ¢/
resulting from the action execution.

Transformation Example:

We can now complete our species Order (see Code 5) by the transformation of the class
Order activity diagram (see Fig. 2 and Fig. 3, page 7) and its action constraints.

Code 5: Transformation of the class Order activity diagram

open "basics" ;;
type transitions = | Trl | Tr2 | Tr3 | Trd | TeS | Treé | Tr7 | Tr8 | Tr9 | Tr_Forkl
| Tr_Joinl | Tr_final;;
type nodes = | InitialNodel Receive_order | Decisionl | Fill_order | Forkl | Ship_order
| Pay_order | Joinl | Mergel | Close_order | FinalNode;;
(= The species Order, derived from the class Order %)
species Order =
signature get_filled : Self — bool; signature get_shipped : Self — bool;
signature get_paid : Self — bool;
signature newOrder : bool — bool — bool —> Self;

signature rejectOrder : Self — bool ; signature fillOrder : Self — Self;
signature billOrder : Self — Self; signature shipOrder : Self — Self;
signature payOrder : Self — Self; signature joinOrder : list(Self)—> Self ;
signature closeOrder : Self — Self ; signature initOrder : Self — Self ;

signature state: Self — nodes;

(= Transformation of the class order activity diagram =)
let aD (t:transitions, e:Self): Self = match t  with
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I Trl — if (state(e) = InitialNode) then e else focalize_error ("ERROR")
| Tr2 — if state(e)= Receive_order then initOrder(e) else focalize_error ("ERROR")

(% Handling of the node Decisionl — Decision not satisfied =)

I Tr3 — if ((state(e)= Decisionl) && (~~ rejectOrder(e) )) then e else focalize_error("ERROR")
| Tr4 — if (state(e) = Fill_order) then fillOrder(e) else focalize_error("ERROR")

| Tr5 — if (state(e) = Ship_order) then shipOrder(e) else focalize_error ("ERROR")

| Tr6 — if (state(e) Pay_order) then payOrder(e) else focalize_error ("ERROR")

(= Handling of the node Mergel =)
| Tr7 — if (state(e) = Mergel) then e else focalize_error("ERROR")

(+ Handling of the node Decisionl — Decision satisfied )
I Tr8 — if ((state(e) = Decisionl) && (rejectOrder(e))) then e else focalize_error ("ERROR")
I Tr9 — if (state(e) = Close_order) then closeOrder(e) else focalize_error ("ERROR")
| _ — focalize_error("ERROR");
(= Handling of Fork Nodes )
let rec aDFN (t:transitions, e:Self):list(Self)= match t with
| Tr_Forkl — if state(e)= Forkl then [e; e] else focalize_error("ERROR")
| _ — focalize_error("ERROR") ;
(= Handling of Join Nodes )
let rec aDJN (t:transitions,
le:list(Self)): Self = match t with
I Tr_Joinl —
if (let rec states (l:list(Self)):bool = match 1 with
| [1 — true
| x::r = (state(x) = Joinl) && (states(r)) in states(le) ) them joinOrder(le)
else focalize_error ("ERROR")
| _  — focalize_error("ERROR") ;
(* Transformation of payOrder pre/post—constraints )
property payOrder_pre_post: all e:Self, get_filled(e) —> get_paid(payOrder(e)) ;
(# Transformation of the action pay_order constraints )
property action_pay_order_property: all e:Self, get_filled(e) — get_paid(aD(Tr6, e)) ;
end;;

The property action_pay_order_property represents the transformation of the action
pay_order localprecondition and localpostcondition.

4.2.3  Transformation of activity partitions
An activity partition (See Fig. 4) is an activity group for actions that invoke more than one
class and have some common characteristics.

ClassA ClassB
Tl
ClassA H@\ ClassB
actionl() action2( )
action3( )

oG

Figure 4: Activity Partition

To transform activity partitions, we use the same semantics and techniques as for activity
diagrams (see Table 4). In addition, we use FoCaLiZe parameterized species (see section 2.2,
page 4) to group the transformation of several classes within a single species. So, the activity
partition presented in Fig. 4 is transformed into a function of the species Partition presented in
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Code 6. The latter is parameterized by the species ClassA (derived from the class ClassA) and
the species ClassB (derived from the class ClassB).

Code 6: Example of Activity Partition Transformation

type transitions = | Trl | Tr2 | Tr3 | Tr4 ;;
type nodes = | InitialNode | Actionl | Action2 | Action3 | FinalNode ;;

species ClassA =
signature actionl : Self — Self;
signature action3 : Self — Self;
end;;
species ClassB =
signature action2 : Self — Self;
end;;
species Partition(A is ClassA, B is ClassB)=
representation = A « B ;
signature state: Self — nodes;

let activityD (a:transitions, e:Self):Self= match a  with
| Trl — if (state(e) = InitialNode) then e else focalize_error("ERROR")
| Tr2 — if (state(e) = Actionl) then (Alactionl(fst(e)), snd(e))
else focalize_error("ERROR")
| Tr3 — if (state(e) = Action2) then (fst(e), Blaction2(snd(e)))
else focalize_error("ERROR")
| Tr4 — if (state(e) = Action3) then (Alaction3(fst(e)), snd(e))
else focalize_error("ERROR")
[ focalize_error ("ERROR") ;

end;;

5 Verification Approaches

Our goal is to provide a framework that automatically generates FoCaliZe abstract spec-
ifications from UAD and OCL constraints. We can then use these specifications to check the
consistency of the original model.

When we launch the transformation tool and the generated FoCaL.iZe source is being compiled,
several proof obligations are automatically generated. In particular, the proof of the derived
properties from class invariants, pre and post-conditions and action constraints. At this stage,
the automated theorem prover Zenon is (automatically) invoked to find proofs using function
definitions and proof hints (see Fig. 5). If a proof fails, the FoCaLiZe compiler indicates the line
of code responsible for the error. In this case, The FoCaliZe developer analyses the source in
order to correct and/or complete the UML model, and then restarts the development cycle.

According to the error message generated by the FoCaLiZe compiler, there are two main kinds
of errors: either Zenon could not find a proof automatically, or there are inconsistencies in the
original UML/OCL model. In the first case, developer interaction is needed to give appropriate
hints to prove the properties, while in the second case one must go back to the original UML/OCL
model to correct and/or complete it.

Note that it is fairly easy for the FoCaLiZe developer (who has a good understanding of the
transformation) to determine the corresponding source elements in the UAD/OCL.

In addition to explicit properties (derived from OCL constraints), the FoCaLiZe compiler
inserts implicit proof obligations when analyzing species. For example, if one function is redefined,
all related proofs must be redone and any recursive definition must be done in parallel with its
termination proof.

Although Zenon is the automatic theorem prover of FoCaLiZe, in a final step, each proof is
transformed (automatically) to Coq scripts, and then rechecked. When we compile a FoCal.iZe
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Figure 5: Transformation and Proof Framework

source (containing proof obligations), it is Zenon that will be invoked first. Then, all proofs will
be automatically re-written into Coq terms for verification.

As a proof example, we present here an approach for incoherency detection. Using the
proposed transformation, we obtain two kinds of properties from the original UML/OCL model:

« The properties derived from the OCL pre and post-conditions.

« The properties derived from action specifications (action local pre/post-conditions).

When a particular action of an activity diagram invokes one operation of the class and this
operation is attached to an OCL pre and post-conditions, we obtain (in the FoCaLiZe specification)
two properties referring to the same operation: the OCL pre/post-conditions and the action local
pre/post-conditions. To detect contradictions, we assume that the property derived from the OCL
pre/post-conditions (pre-post_property) is satisfied and then try to provide a proof (using FPL)
of the property derived from the action specification (action_property) as follows:

proof of action_property= by property pre-post_property ;

If there is no contradiction between the two properties, Zenon will get the proof. Otherwise, the

proof will be impossible.
To clarify this proof process, we complete the species Order with the following proof

statements (Code 7):

Code 7: Successful proof of action_pay_order_property

species Order =

(= Transformation of payOrder pre/post—constraints )
property payOrder_pre_post: all e:Self, get_filled(e) — get_paid(payOrder(e)) ;

(= Transformation of the action pay_order constraints )
property action_pay_order_property:
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all e:Self, get_filled(e) — get_paid(aD(Tr6, e)) ;

proof of action_pay_order_property = by  property payOrder_pre_post;
end;;

This example provides the proof of the property action_pay_order_property. It specifies
the action pay_order of the class Order activity diagram.

The compilation of the above FoCaLiZe source ensures the correctness of the specification.
No error has occurred, this means that the compilation, code generation and Coq verification were
successful.

Imagine now that the UML user swaps (by mistake) the specification of the OCL pre/post-
conditions of the operation payOrder. In this case, we will get the following FoCaLiZe source
(Code 8):

Code 8: Unsuccessful proof of action_pay_order_property

species Order =

property payOrder_pre_post: all e:Self,
get_paid(e) — get_filled (payOrder(e)) ;

property action_pay_order_property:
all e:Self, get_filled(e) — get_paid(aD(Tr6, e)) ;

proof of action_pay_order_property = by  property payOrder_pre_post;
end;;

The compilation of this FoCaLiZe source returns the following message:

File "order.fcl", line 85, characters 27-57:
Zenon error: exhausted search space

without finding a proof

### proof failed

When Zenon cannot find a proof automatically, the FoCaLiZe compiler indicates the reason
for the error, if any.

Finally, in order to validate the proposed transformation model, we have built firstly, a
formal semantics for both UML and FoCaLiZe: I'y;y (for UML) and I'g (for FoCaLiZe). Then, a
denotational semantics is defined based on these semantics. To be brief, only an overview about
these semantics will be presented in the following paragraphs.

For a given class named cn, Ty (cn) = (¢n, V), where V,, is the value of the class. A class
value is a pair (I'cy, body.,) composed of the local context of the class (I';;) and the body of
the class (body.,), denoted by body, = (Acn, Ocny Cen, ADyy,). It is composed of class attributes
(A¢p), class operations (O,), class constraints (C,) and the class activity diagram (AD,,):

o Ay ={(attr_n:typeExp)}*, where attr_n is an attribute name of the class cn and typeExp
its type.

o Oy ={(op_n:opType)}* where op_n is an operation name of the class c¢n and opType
its parameters and returned types.

o Con={(const_n:oclExp)}* where const_n is a constraint name of the class cn and oclExp
its first order expression.
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o AD., = {ND.,} U{Tch} where NI, is a set of nodes and TR, is a set of transitions.

The local context of the class cn (I'¢y,) is the list of its class parameters (P.,,) and the list of its
class dependencies (D.y,): Ty = Py U D, where,
P., = {(fp_n, typeExp) | fp_n € Py} and D, = {cn; / cn; € Dey }

The semantics of the class activity diagram (AD,,) is detailed in section 4.2.

Using the above definitions, we define by induction, the general semantics I'yy of a UML/OCL
model M with multiple inheritance relationships, formal parameters, dependencies list, OCL
constraints and activity diagrams.

In a symmetrical way, for a given species named sn, ['r(sn) = (sn, V,), where Vj, is the value
of the species. A species value is a pair (I'y, , bodys,) composed of the local context of the species
Iy, and its body:

bodysy = (Sigsn, Letsy, Props,, Proofy,), with

o Sigsn = {(funName : funSig)}* where funName is a function name and funSig its signa-
ture.

o Lets, = {(funName : funSig)}* where funName is a function name and funSig its signa-
ture.

o Propg, = {(propName : propSpec)}* where propName is the name of a property and
propSpec its logical statement.

o Proofy, = {(thmName : thmSpec) }* where thmName is a theorem name and thmSpec its
logical statement.

During the transformation of the class cn to the species sn, the typing context of both UM-
L/OCL (I'y (¢n)) and FoCaLiZe (I'r (sn)) are enriched progressively, using semantics functions
(inspired by the proposed transformation rules). Each typed element in I'y (cn) will get a counter-
part in T'p(sn). By definition (of the semantics functions), each two paired elements in Ty (cn)
and I'r(sn) having exactly the same semantics. So, we could prove the total correspondence
between the semantics of the class cn and the semantics of the species sn.

6 Implementation

The UAD/OCL transformation is part of a wider FoCaLiZe project and hence needs to integrate
with the pre-existing infrastructure. Therefore Eclipse based transformation tools such as QVT,
ATL and ETL are not available within our current tool platform.

On the other hand, the XSLT' [23] processor is available in most programming environments,
allows us to transform an XML document into various formats (XML, HTML, PDF, Text, etc.)
and enables any change in its structure. In particular, we need to reorder the tags (elements of
the XMI document) before performing the transformation. Finally, the combination of XMI and
XSLT satisfies most conditions on tool independence and avoids (solves) the problem of model
representation.
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Figure 6: Systematic transformation of UML models into FoCaLiZe

Therefore, we have developed an XSLT stylesheet specifying the transformation rules from a
UML model expressed in the XMI interchange format (generated by the Papyrus graphical tool)
into FoCaLiZe (see Fig. 6).

The output is the corresponding FoCaLiZe source file, which can be directly read by the Fo-
CaLiZe compiler (see Fig. 6). Additional information about the transformation tool (UML2FOC)
are now available on-siteZ, where instructions for installation and use are detailed.

7 Related Work

Some works deal with the transformation from UAD to the B method based tools. For
example, [24] proposes the translation of activity diagrams into Event B, in order to verify
workflow properties of distributed and parallel applications with the B prover. In a second work
[25], a meta-model transformation from UAD to Event-B is proposed in order to verify functional
properties of workflow models. A recent contribution aims to automate the generation of B
language specification, starting from UML structural and behavioral diagrams and using graph
grammar rules [26].

For comparison purposes, we studied the above transformation of UML/OCL models into
Event-B method (which is the closest formal method to FoCaLiZe). We noticed that the navigation
of OCL constraints via associations is not naturally formalized: each abstract machine (the main
brick in a B method project) cannot access the properties of the other abstract machines. In
addition, the transformed OCL constraints are not exploited to check the consistency of activity
diagram transitions. In our transformation, we addressed the above limits using the FoCal.iZe
parameterization (a client-supplier relationship) and late binding mechanisms. The latter allows
a safe use (even at the abstract level) of all the functions and properties that are specified in the
supplier species in order to develop functions and properties of the client species.

The transformation of an activity diagram (of a given class) into B ignores the cases where the
class is created by multiple inheritance or from a UML template via a binding relationship. Using
our proposal, the transformation of an activity diagram is always handled in a similar way, even if
the class is created using the above UML features.

"' A usable language for the transformation of XML documents, recommended by the World Wide Web Consortium
(W30).
2http://wuw.univ-eloued.dz/uml2foc/
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The Alloy tool is another formal method which has been used in the framework Alloy4SPV
[27] for the verification of software process. The proposed framework uses a subset of UML?2
Activity Diagrams as a process modeling language. However, class structures are isolated from
activity diagrams.

Another approach consists of translating a UML activity diagram into CPN (Colored Petri
Nets) specifications [28, 4] to attribute a formal semantics for UML activity diagrams and verify
their properties. Recent contributions focus on the verification of SysML activity diagrams
through their translation into Recursive RECATNets [29] and into Modular Petri Nets [30]. Yet
here, neither OCL, action constraints nor activity partitions are considered. Another proposal
using Colored Petri Nets [31] consists in the modeling of dynamic process aspects with CPN
transformed from UAD.

A formal transformation of UAD based on rewriting logic and Graph Transformation [32, 33]
is also proposed using the Maude system and its Real Time Checker.

The basic building blocks of UML 2.5 Activity Diagrams and their structural semantics have
been formalized using Z Schemas [34].

Finally in [35], a shallow embedding and verification of a simple assembly language with
procedures for arithmetic overflow. It uses a safety logic written as HOL (High Order Logic)
through the proof assistant Isabelle/HOL [36]. Note that the language in question here is a very
simple and limited language, without any high design and architectural features such as those
advised by UML.

8 Conclusion and Perspectives

In this paper, we have proposed a functional semantics for UAD and then implemented a
model transformation with FoCaLiZe. The proposed formal modeling supports the following
points:

» Communication between a class structure and its activity diagram.
* OCL constraint: invariants and pre/post-conditions.

 Action constraints.

* Activity partitions.

* Formal implementation of control nodes (DecisionNode, MergeNode, ForkNode and
JoinNode) using parallelism and choice statements in FoCaLiZe.

In addition, the high level design and architectural features of FoCaLiZe significantly reduces
the gaps between UML/OCL and formal methods. The generated formal specification reflects
perfectly both structural and behavioral aspects of the original UML/OCL model.

Moreover, using the automatic theorem prover Zenon, it is possible to prove the derived
theorems and detect contradictions and deadlocks. Zenon indicates code portions responsible for
errors, which leads developers to improve, complete and correct their original UML/OCL models.

In this paper we only focused on simple UML activity diagrams where activities are simple
actions and behavioral expressions are limited to class operation calls. In future work, we will
deal with additional UML2 activity diagram features such as complete activities with parameters
and object nodes (pin and central buffer).

On the verification side, we will use the proposed transformation to deal with the verification
of additional properties such as deadlock-freeness and the availability of system services.
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