

Energy-Driven Systems and Compute

Towards Self-powered Embedded Computing Systems

Geoff Merrett 20 October 2020

networking/comms

harvester

power conversion

sensors

user

memory

An energy harvester is one part of a system

compute

application

user interface(s)

actuators

peripherals

design tools energy storage

ENERGY HARVESTING

Highly variable supply + variable consumption!

Southampton

ENERGY-NEUTRAL COMPUTING

$$\int_{(n-1)\cdot T}^{n\cdot T} P_h(t)dt = \int_{(n-1)\cdot T}^{n\cdot T} P_c(t)dt$$

ENERGY-DRIVEN COMPUTING

What's wrong with energy storage and complexity?

• Emerging applications demanding small dimensions, volumes, weight, cost, etc.

Properties of energy storage devices (sustainability, maintenance, etc)

ENERGY-DRIVEN COMPUTING

Rethinking the design of EH systems

ENERGY-DRIVEN COMPUTING

INTERMITTENT COMPUTING

Simplify the system; design for intermittency

Compute across power outages

D. Balsamo, A.S. Weddell, A. Das, A. Rodriguez Arreola, D. Brunelli, B.M. Al-Hashimi, G.V. Merrett, L. Benini, (2016) Hibernus++: a self-calibrating and adaptive system for transiently-powered embedded devices. IEEE TCAD, 1-13.

INTERMITTENT COMPUTING

Compute/Memory

- Self calibration for runtime threshold optimisation (hibernus++)
- Adaptive restore based on EH properties (hibernus++)
- Efficient state retention (Selective Policies, *ManagedState*)
- Fine-grained power adaption (PowerNeutrality)

Peripherals/Sensors/Communication

- Hibernation and restore of external peripheral state (RESTOP)
- Support for communication and mesh networking

Applications/Users/Interfaces/Design Tools

- Application case studies, e.g. cycle computer, fitness monitor, wall clock, etc.
- Design tools, e.g. ENSPECT, FUSED, Device Sizing, Support for Arm Mbed

www.transient.ecs.soton.ac.uk

POWER NEUTRAL COMPUTING

- In Power-Neutral computing, $P_c(t) \cong P_h(t)$
- We can approximate power-neutral behaviour if $V_C(t) \approx k$, $\forall t$

- Power consumption is modulated, eg through:
 - Core frequency and/or voltage
 - Power gating processor elements

POWER NEUTRAL COMPUTING

- What happens if V_C remains constant $(V_C(t) \approx k, \forall t)$?
- MPPT approaches are needed as $V_C(t) \neq V_{H MPP}(t)$, $\forall t$
- 'Software-only' MPPT modulates k: $V_{C}(t) = V_{H_MPP}(t)$

DISCUSSION

- We need to rethink the way that we design self-powered systems
- Progress is being made across all aspects of the system, but a wide range of challenges still exist

YOUR QUESTIONS

Professor Geoff Merrett | gvm@ecs.soton.ac.uk Head of Centre for IoT and Pervasive Systems

Southampton