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1 Introduction

Option prices contain market expectations about the distribution of future asset prices. In-

vestors can take advantage of these expectations as valuable input for the purposes of volatility

modelling as in Bollerslev et al. (2011), risk management as in Cao et al. (2010), and, more

recently, for optimal asset allocation, see the recent contributions by Kostakis et al. (2011),

DeMiguel et al. (2013) and Kempf et al. (2015). Market expectations are derived from the

distribution function of asset returns. Breeden and Litzenberger (1978) propose a convenient

closed-form expression for obtaining such distribution function implied from option prices under

the assumption of risk-neutral investors. This risk-neutral distribution function can be retrieved

from option prices on the underlying asset. Importantly, the literature on financial derivatives

has developed novel methods for obtaining the counterpart objective distribution function that

incorporates individuals’ risk aversion, see Bakshi et al. (2003), Bliss and Panigirtzoglou (2004)

and Anagnou-Basioudis et al. (2005).

An alternative approach for retrieving the objective distribution function describing the ran-

dom behavior of stock prices is to use historical asset prices. Under this modelling framework,

time series of stock returns are used as inputs of parametric and nonparametric procedures

for predicting the conditional distribution of asset prices. Prominent examples of this include

location-scale time series models for the parametric case or the empirical distribution of re-

turns for the nonparametric case. A popular example within the parametric case is that of the

family of autoregressive models for conditional mean and ARCH, GARCH type processes for

conditional volatility, see Engle (1982) and Bollerslev (1986). Other notable examples using the

historical approach in option pricing are Jackwerth (2000), Aı̈t-Sahalia and Lo (2000), Prignon

and Villa (2002) and Rosenberg and Engle (2002). An additional advantage of this approach is

that it allows the use of Monte-Carlo simulation methods for forecasting asset prices, once the

model parameters and the distribution error are estimated. In particular, simulation methods

can be straightforwardly used to obtain estimates of the objective distribution function of asset

prices.

A strand of empirical studies comparing option-implied methods against historical time se-

ries models for predicting expected asset returns has revealed the outperformance of option
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prices methods, see, for example, Anagnou-Basioudis et al. (2005), Liu et al. (2007) and Shack-

leton et al. (2010). This result can be attributed to the forward-looking nature of option prices.

Indeed, when markets are efficient, the option price should reflect market expectations of the

underlying asset for the time until option expiration in a way that any information arriving into

the market until expiry date should be priced into the distribution. In contrast, the estimates

of future asset prices obtained from historical data are merely based on the past dynamics of

asset prices. In this paper, we explore these findings from an asset allocation perspective.

To the best of our knowledge, empirical work on this area is still very limited, with sem-

inal references being the work of Kostakis et al. (2011), DeMiguel et al. (2013) and Kempf

et al. (2015). The main contribution of our study is to explore alternative state variables

based on option-implied information to construct optimal portfolios as in Campbell and Vi-

ceira (1999). To do this, we use a parametric portfolio policy rule for infinitively-lived investors

and investigate the performance of two different state variables that track the excess return on

the underlying risky asset. We entertain an investment portfolio comprised by two assets (a

risky and a risk-free asset). The dynamic weights on the risky asset determining the optimal

allocation are driven by a state variable that tracks the excess return on the risky asset.

Our first investment portfolio considers the risk premium on the stock return as state vari-

able replacing the log dividend-price ratio proposed in Campbell and Viceira (1999). The state

variable defining the second investment portfolio is the market price of risk given by the ratio

of the risk premium over the standard deviation of the asset return. The conditional mean

and variance of the excess return on the risky asset are then estimated using forward-looking

information from option prices written on the underlying risky asset. For this purpose, we need

to convert the risk-neutral conditional mean and variance of the asset price into the conditional

mean and variance of the asset return evaluated under the objective distribution function.

Therefore, our second contribution is to propose a Taylor expansion to approximate the latter

two statistical moments of the return on the risky asset. To the best of our knowledge this

expansion has not been developed in this context yet, see Jondeau and Rockinger (2006) for

the use of higher moments in a related context. The third methodological contribution of this

study is to explore the robustness of the portfolio allocations obtained from the above state

variables to different modelling choices of the implied risk-neutral distribution of stock returns.
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We consider a lognormal distribution for asset prices as in Black and Scholes (1973), a mixture

lognormal density as in Ritchey (1990), and a nonparametric binomial tree as in Jackwerth and

Rubinstein (1996).

The suitability of the different state variables and methods to approximate the implied

distribution of asset prices is assessed in-sample and out-of-sample using statistical performance

measures such as the Sharpe and Sortino ratios, as well as economic performance measures

such as the value function measuring investor’s utility and a raw measure of revenue in percent

terms. We also use these measures to compare the statistical and economic performance of

our parametric portfolios against the benchmark portfolio introduced by Campbell and Viceira

(1999) and characterized by the log dividend-price ratio. Our optimal portfolios obtained from

option-implied information are also compared against portfolios constructed from historical

information. The latter portfolios are obtained using the risk premium and the market price of

risk, as above, but estimated using parametric ARCH type models. These methods are applied

to a portfolio given by the US one-month Treasury bill and the S&P 500 Index.

Three main findings arise from the empirical study. First, the option-implied approach

provides superior portfolio performance compared to the historical approach using economic

performance measures, but not in statistical terms. In particular, Sharpe and Sortino ratios

are comparable and sometimes higher for the historical approach than for the option-implied

approach. In contrast, the value function and revenue measures are superior for the portfolios

constructed from option-implied information. These findings are obtained for those portfolios

using as state variables the risk premium and the market price of risk. Nonetheless, we find that

the long-term portfolio proposed by Campbell and Viceira (1999) based on the log dividend-

price ratio is difficult to outperform. Second, we show that the functional form of the implied

risk-neutral distribution function does not play a major role on performance for those portfolios

exploiting implied information from option prices. In particular, our empirical study reveals

no significant differences between the lognormal density with a single at-the-money option

compared to the alternatives, which exploit the entire cross-section of option prices. Third,

the optimal portfolio weights that use the option-implied risk-premium as state variable yield

superior portfolio performance compared to the weights constructed from the market price

of risk. Furthermore, restricting the portfolio rules for market timing highlights the timing
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abilities of the implied risk premium compared to the market price of risk.

These results are in line with the findings observed in the empirical literature that show

that option-implied information improve market timing and yield superior portfolio alloca-

tion. Related studies focus on solving option-implied mean-variance portfolios and compare

them against the historical approach, equally-weighted strategies and investment on the index.

DeMiguel et al. (2013) and Kempf et al. (2015) show that the use of option-implied informa-

tion is preferable when finding an optimal allocation for multiple assets compared to different

benchmarks. DeMiguel et al. (2013) compares implied variances and historical correlations

against historical variances and implied correlations whereas Kempf et al. (2015) considers a

fully implied approach. Another influential study very related to our method is that of Kostakis

et al. (2011). These authors exploit higher moments in a portfolio allocation between a risky

and a risk-free asset. As in Jondeau and Rockinger (2006), Kostakis et al. (2011) expand the

expected utility of future wealth via a Taylor series expansion. This procedure allows them to

introduce mean, variance, skewness and kurtosis of the option-implied density into the portfo-

lio allocation. The implied density extracted from option prices is obtained via splines as in

Bliss and Panigirtzoglou (2004). This investment strategy is compared against a benchmark

constructed from historical data. The empirical findings of Kostakis et al. (2011) illustrate the

outperformance of the option-implied approach compared to the historical approach. These

findings are also confirmed by DeMiguel et al. (2013) and are similar in spirit to the empirical

findings of our present study.

The rest of the paper is organised as follows. Section 2 outlines the investor’s asset allocation

problem for a lifetime investor with a parametric portfolio policy rule. Section 3 presents

different methods to retrieve the option-implied distribution of the underlying risky asset and

discusses a transformation to obtain the corresponding objective density function. Section 4

introduces statistical and economic performance measures to assess portfolio performance and

compare it against two benchmark portfolios. Section 5 applies these methods to a portfolio

given by the US one-month Treasury bill and the S&P 500 Index. Section 6 summarizes the main

findings of the study and concludes. A mathematical appendix details the approximation of

the first two conditional moments of the log-return on the risky asset using a Taylor expansion.

Finally, tables are collected in a second appendix.
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2 Investor’s asset allocation problem

This section outlines the lifetime portfolio allocation problem solved in Campbell and Viceira

(1999) which serves as a useful benchmark for our study. The authors provide a simple tractable

analytical solution to an optimization problem with an infinitely-lived investor who chooses both

consumption and portfolio allocation in a discrete time setting. The infinitely-lived investor is

assumed to have Epstein-Zin-Weil preferences (Epstein and Zin (1989) and Weil (1989)) and

maximizes the expected utility of future wealth as in (1) below.

U(ct, Et[ut+1]) =
{

(1− δ)c(1−γ)/θt + δ(Et[u
1−γ
t+1 ])1/θ

}θ/(1−γ)
(1)

where u(ct) is a period utility function, ct denotes consumption and Et[·] is the conditional

expectation at time t; γ > 0 is the coefficient of risk aversion; θ = (1 − γ)/(1 − ψ−1), δ is the

discount factor and, finally, ψ is the elasticity of intertemporal substitution.

Campbell and Viceira (1999) consider a two-asset portfolio. The investor seeks an optimal

allocation between a single risk-free asset with constant log return rf and a single risky asset

with log return rt+1. The dynamics of the log-return on the risky asset are defined as:

rt+1 = Et[rt+1] + ut+1, (2)

with Et[rt+1] being the conditional expected return on the risky asset and ut+1 the innovation

process. This process is normally distributed with zero mean and variance σ2
u. The correspond-

ing excess return on the risky asset is ret+1 = rt+1− rf . An important feature of this framework

is that the risk premium on the risky asset is state-dependent and driven by a single state

variable xt, which satisfies

Et[r
e
t+1] = f(xt), (3)

with f(xt) a deterministic function of the state variable. Following Campbell and Viceira

(1999), the state variable xt is modelled as a mean-reverting AR(1) process with mean µ and
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persistence parameter |φ| < 1. Mathematically,

xt+1 = µ+ φ(xt − µ) + ηt+1. (4)

The associated innovation process ηt+1 is conditionally homoskedastic and normally distributed

with zero mean and variance σ2
η. The two innovations ηt+1 and ut+1 are correlated with each

other, with the correlation coefficient denoted by σηu.

The log-return on the optimal investment portfolio is defined as rPt+1 = rf + αtr
e
t+1, with

αt the parametric portfolio weight that is defined as a deterministic function of the state

variable. Campbell and Viceira (1999) derive the optimal consumption and portfolio policies

under the following assumptions on the functional form of the portfolio weight αt and the log

consumption-wealth ratio. More specifically,

αt = a0 + a1xt (5)

ct − wt = b0 + b1xt + b2x
2
t (6)

The fixed parameters a0, a1, b0, b1 defining the linear portfolio policy are determined by the

following equations (see Proposition 1 in Campbell and Viceira (1999)).

a0 =
1

2γ
− b1

1− ψ
γ − 1

γ

σηu
σ2
u

− b2
1− ψ

γ − 1

γ

σηu
σ2
u

2µ(1− φ) (7)

a1 =
1

γσ2
u

− b2
1− ψ

γ − 1

γ

σηu
σ2
u

2φ, (8)

As anticipated, these expressions depend on both the risk-aversion parameter γ and the

elasticity of intertemporal substitution,ψ, which emerges from the Epstein-Zin-Weil utility func-

tion. The remaining parameters of the log consumption-wealth ratio are retrieved by a recursive

non-linear system and the exact definition of the associated formulae terms and the recursive

procedure to obtain [b0, b1, b2] are summarized in Proposition 2 of Campbell and Viceira (1999).

The expression for the optimal portfolio weight αt consists of two components. The first

term defines the myopic asset demand. The myopic component is proportional to the risk-
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premium and inversely proportional to the volatility on the risky asset and the relative risk

aversion coefficient. The second component captures the intertemporal hedging demand. This

term captures the excess allocation to the risky asset used to compensate against changes in

the investment opportunity set over time. The presence of this term in long-term portfolio

allocation problems goes back to Merton (1969, 1971, 1973). The covariance term between the

two innovations has a crucial impact on the intertemporal hedging demand. The higher the

covariance, the better the ability of the risky asset to hedge against changes in the investment

opportunity set is. Two special cases also become apparent from (7) and (8). Firstly, the

hedging demand becomes zero when σηu = 0 and secondly, when individuals are risk-neutral,

that is γ = 1, and the optimal allocation to the risky asset αt is only driven by the myopic

component.

The optimal portfolio allocation is characterized by the parameters [µ, φ, σ2
u, σ

2
η, σηu]. Camp-

bell and Viceira (1999) estimate a restricted VAR(1) model using ordinary least square methods

with the state variable xt as single predictor:

 ret+1

xt+1

 =

 θ0

β0

+

 θ1

β1

xt +

 ε1,t+1

ε2,t+1

 (9)

where (ε1,t+1, ε2,t+1)
′ v N(0,Ω) and

Ω =

 Ω11 Ω12

Ω21 Ω22

 .
The parameters defining the optimal consumption and portfolio allocation problem are identi-

fied from the parameters of the restricted VAR(1) model as following: µ = θ0 + θ1β0/(1− β1),

φ = β1, σ
2
η = θ21Ω22, σ

2
u = Ω11 and σηu = θ1Ω12.

In a last step, the parameters are normalized in a way so that the intercept a0 of the optimal

policy function determines the optimal allocation to stocks and the optimal consumption-wealth

ratio when the risk premium on the risky asset is zero. Under this scenario a myopic investor

would not allocate any wealth to it. Therefore, any asset demand for a lifetime portfolio

allocation would reflect intertemporal hedging demand. This normalization is achieved by

7



setting a∗0 = a0 − a1(σ
2
u/2), b∗0 = b0 − b1(σ

2
u/2) + b2(σ

4
u/4) and b∗1 = b1 − b2σ

2
u, while the

parameters a1 and b2 are not affected by this transformation.

A crucial element in defining the parametric portfolio policy lies in the choice of state

variable xt. Campbell and Viceira (1999) propose the log dividend-price ratio, which is, in

turn, motivated by findings in Campbell and Shiller (1988), Fama and French (1988), Hodrick

(1992), and others, which found this variable to be a good predictor of stock returns. In this

paper we take an alternative approach and propose two state variables xt constructed from

option-implied information. Our first state variable is the risk premium on the risky asset.

Using the above formulation in expression (3), we consider f(xt) = xt such that xt = Et[r
e
t+1].

Our second state variable is the market price of risk initially proposed by Wachter (2002) and

applied to option prices by Kostakis et al. (2011). This variable resembles the Sharpe ratio

and is defined as xt =
Et[ret+1]√
V art[rt+1]

, with V art[rt+1] denoting he conditional variance of the risky

asset one-period ahead.

Rather than exploiting the historical information contained in financial ratios as in Campbell

and Viceira (1999) and, in particular, its predictive ability, we focus on exploiting the content

of forward-looking information extracted from option prices. The information obtained from

option prices enters the state variables via the first two moments of the log-returns on the

underlying asset Et[rt+1] and V art[rt+1]. Thereby, our next objective is to approximate these

moments from the implied distribution of the risky asset under risk-neutrality conditions.

3 Obtaining Option Implied Moments

Our option-implied approach requires the use of information from option prices transmitted

by the first two moments. In this section we explore option-implied moments obtained from

three different density types; namely, a lognormal density, a mixture-lognormal and a binomial

tree. In a model with lognormal density it is assumed that the volatility is constant along the

range of strike prices. This allows one to estimate the implied density function using the two

closest option prices above and below the current forward price on the underlying risky asset.

More specifically, the implied volatility between both options can be interpolated based on the

current forward price to match the at-the-money volatility. In contrast, employing a mixture-
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lognormal density allows for more complex shapes. Estimation takes into account the entire

cross-section of option prices to capture the non-normal shape contained in option prices. The

use of a binomial tree is, nevertheless, the most flexible density type owing to its nonparametric

nature.

We now review the mixture of two lognormal density functions. The lognormal case can be

viewed as a particular case of the mixture model.

3.1 Mixture of two Lognormal Densities

Under the absence of arbitrage opportunities Breeden and Litzenberger (1978) show that there

is a unique risk-neutral density fQ for all possible values of the underlying asset price S. The

density can be inferred when there are European call prices c available for all strike prices K

with the same time to maturity T .1 The no-arbitrage call option price is defined as

ct,m(K) = e−rf,t(T−t)
∫ ∞
K

(s−K)fQ,t(s)ds, (10)

with rf,t the risk-free rate, T the time to maturity and fQ,t(·) the risk-neutral density. From

this expression, we can obtain the risk-neutral density function evaluated at the different strike

prices K as

fQ,t(K) = erf,t(T−t)
∂2ct,m
∂K2

. (11)

In this setting, the risk-neutral density function fQ,t(K) is assumed to be a mixture of

two lognormal distribution functions, see Ritchey (1990), Melick and Thomas (1997), Brigo

and Mercurio (2002) and Liu et al. (2007). This literature shows that the call option price is

derived from two weighted models, see Black (1976):

ct,m(K | θ, rf , T ) = wtct,B(µ1, T,K, rf,t, σ1) + (1− wt)ct,B(µ2, T,K, rf,t, σ2), (12)

where ct,m(K | θ, rf,t, T ) denotes the option price as a function of the strike price and parametrized

by a set of model parameters denoted as θ, the risk-free rate rf , and the time to maturity T ;

1c and K denote here vectors of prices for the entire cross-sections of options in the market.
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cB(µ1, T,K, rf,t, σ1) and cB(µ2, T,K, rf,t, σ2) are the option prices obtained from Black (1976)’s

model. The statistical moments of order n are obtained from the following expression:

Et,rn[SnT ] = wtµ
n
1exp(0.5(n2 − n)σ2

1(T − t)) + (1− wt)µn2exp(0.5(n2 − n)σ2
2(T − t)), (13)

with Et,rn[·] denotes the expected value evaluated under the risk-neutral implied distribution

function; θ = [µ1, µ2, σ1, σ2, wt], with 0 ≤ wt ≤ 1. Each of the weighted models in Black (1976)’s

formulation has its own mean [µ1, µ2] and variance [σ1, σ2]. This results in five parameters that

need to be determined.

The vector of parameters θ is obtained by minimizing the squared error between the vector

of observed prices, ct,o, and model generated option prices, ct,m, as

min
θ

N∑
i=1

[ct,o(Ki)− ct,m(Ki | θ, rf , T )]2 , (14)

where Ki denotes the cross-section of N option prices available for the underlying risky asset.

The optimization is restricted by the risk-neutrality constraint. It requires that the risk-neutral

expectation of the underlying asset price, represented by the current forward price Ft, has to

equal the expected value of the stock price at maturity, ST , under the risk-neutral density

function. More formally,

Ft = Et,rn[ST ] =

∫ ∞
0

sfQ,t(s)ds = wtµ1 + (1− wt)µ2. (15)

The constraint reduces the amount of free parameters θ by 1.

It is well known that the risk-neutral density does not reflect the objective dynamics of

the underlying asset. Bliss and Panigirtzoglou (2004) provide a framework to transform the

risk-neutral density into its objective counterpart, denoted as fP,t(ST ). These authors relate

both density functions through the marginal utility of the stock price for the investor. For

investors with a power utility function, u(y) = y1−γ

1−γ , where γ denotes the coefficient of relative
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risk aversion, the objective density function is obtained as

fP,t(ST ) =

fQ,t(ST )

u′(ST )∫∞
0

fQ,t(y)

u′(y)
dy

=
SγTfQ,t(ST )∫∞

0
yγfQ,t(y)dy

. (16)

The integral in the denominator of (16) ensures the objective density integrates to 1. The

power utility function adds one more parameter to the set θ inherited by the risk-neutral

density. Importantly, Liu et al. (2007) show that applying the result in (16) for the mixture

lognormal density function and a power utility function results in another mixture lognormal

density function. The transformed parameter values of the objective mixture lognormal density

function are

µ?i = µiexp(γσ
2
i (T − t)) for i = 1, 2 and (17)

1

w?
= 1 +

1− w
w

(
µ2

µ1

)γ
exp(0.5(γ2 − γ)(σ2

2 − σ2
1)(T − t)). (18)

The transformation from the risk-neutral to the objective density function only changes the

values for the mean of the distributions and the weights in the mixture of distributions from

w to w?. The volatilities σ1 and σ2 are not affected by the transformation. Then, the first n

statistical moments evaluated under the objective density function are

Et[S
n
T ] = w?µ?n1 exp(0.5(n2 − n)σ2

1(T − t)) + (1− w?)µ?n2 exp(0.5(n2 − n)σ2
2(T − t)), (19)

with Et[·] denoting the conditional expected value under the density function fP,t(·).

It is worth noting that in order to align this approach to retrieve the objective density

function with Campbell and Viceira (1999)’s framework, that considers an Epstein-Zin utility

function for describing individual’s preferences, we assume ψ = 1
γ

in (1). In doing so, we

reduce the recursive utility function to a power utility function and the framework proposed in

Campbell and Viceira (1999) can be naturally applied in our context. Therefore, we can use the

long-term portfolio optimization framework developed and solved by these authors with option-

implied information, and obtain the objective density function from the transformation (16).

The restriction ψ = 1
γ

imposes an elasticity of intertemporal substitution equal to the inverse
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of the individual’s risk aversion coefficient. This assumption offers a closed-form solution to

obtain the objective density function of stock prices. In general, Epstein-Zin utility functions

do not have a closed-form solution as in (16) for the transformation of the risk-neutral density

function to the objective density function of stock prices.

In our empirical exercise we also consider the case of a lognormal density. This distribution

corresponds to the case wt = 1 in (12) for all t. The right hand side of this expression vanishes

and only the simple Black (1976) model remains with θ = [µ1, σ1]. Since the results for the

lognormal density are embedded in the mixture case, we do not discuss them separately.

3.2 Binomial Tree

This method allows for greater flexibility by obtaining risk-neutral probabilities without im-

posing a specific functional form to the risk-neutral density function. This method goes back

to Rubinstein (1994), who proposes the use of a binomial tree for option pricing. In this model,

the risk-neutral density function is discrete with n+ 1 possible values for the stock price ST at

expiry date T , with corresponding probabilities qt = (q1t, ..., qmt), such that q1t, ..., qmt > 0 and∑m
j=1 qjt = 1. As in the previous section, the density function is priced risk-neutral and the ex-

pected value of the density needs to equal the forward price Ft. More formally,
∑m

j=1 qjtSjT = Ft

characterizes the risk-neutrality constraint. Under those conditions the option pricing formula

in (10) becomes:

ct,m(K; qt,m) = e−rf,t(T−t)
m∑
j=1

max(SjT −K, 0)qjt, (20)

where the first n statistical moments associated to the risk-neutral density function are obtained

as

Et,rn[SnT ] =
m∑
j=1

qjtS
n
jT , (21)

with Et,rn the conditional expected value evaluated at time t under the risk-neutral set of

probabilities.

To estimate the vector qt, Jackwerth and Rubinstein (1996) propose a range of different
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objective functions. However, they recommend to minimise a penalty function given by a

combination of a smoothness function g of the risk-neutral density function and a squared

loss function G measuring the distance between the fit of observed and model option prices

similar to (14). We follow this approach, which leads to the following minimisation problem:

min
qt

g(qt) + αG(qt), where

g(qt) =
m−1∑
i=2

[qi−1,t − 2qi,t + qi+1,t]
2 (22)

G(qt) =
N∑
j=1

[cm(Kj; qt,m)− co(Kj; qt,m)]2 +

[
m∑
i=1

max[0,−qi,t]

]2
+

[
m∑
i=1

qit − 1

]2
(23)

+

[
m∑
i=1

qitSiT − Ft

]2
, (24)

with α > 0 a penalty term that regularizes the optimization problem; N is the number of strike 

prices for the underlying stock.

Using an analogous expression to (16) adapted to the discrete case, we transform the prob-

ability distribution defined by the vector qt = (q1t, . . . , qmt) in the binomial model into a set of 

probabilities pt = (p1t, . . . , pmt) defined as 

pit =

qit
u′(SiT )∑m
j=1

qjt
u′(SjT )

=
SγiT qit∑m
j=1 S

γ
jT qjt

, (25)

for i = 1, . . . ,m, that define the objective probability distribution of ST and SiT is the value

closest to ST . Thereby, the first n statistical moments associated to the objective probability

distribution are obtained as

Et[S
n
T ] =

m∑
j=1

SnjTpjt, (26)

with Et the conditional expected value evaluated under the objective set of probabilities pt.
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3.3 Moment conversion through Taylor expansions

The above methods allow one to obtain the statistical moments of asset prices evaluated under

the risk-neutral and objective probability distributions. In contrast, the state variables driving

the parametric portfolio policy rule αt are defined as a function of the mean and variance of

asset returns. Therefore, we need to transform the expected values of asset prices into the

expected values of asset returns.

To do this, we use a Taylor expansion of the stock price ST . In what follows, we derive

closed-form approximations for Et[rt+1] and Vt[rt+1] as a function of the first moments of St+1.

Note that, in this setting, we assume that T = t + 1. Let rt+1 = lnSt+1 − lnSt, we focus on

computing Et[lnSt+1] first. To do this, we use a second order Taylor expansion of lnSt+1 about

Et[St+1], and obtain

lnSt+1 = lnEt[St+1]+
1

Et[St+1]
(St+1−Et[St+1])−

1

2Et[St+1]2
(St+1−Et[St+1])

2+oP ((St+1−Et[St+1])
2).

(27)

Appendix A shows the following relationship between the conditional expected return and the

conditional expected value of the stock price:

Et[rt+1] ≈ lnEt[St+1]− lnSt −
1

2Et[St+1]2
Vt[St+1], (28)

and

Vt[rt+1] ≈ ln2Et[St+1] +
1− lnEt[St+1]

Et[St+1]2
Vt[St+1]−

Vt[St+1]
3/2

Et[St+1]3
Skewt(St+1) +

Vt[St+1]
2

4Et[St+1]4
Kurtt(St+1)

(29)

+ ln2 St − 2

(
lnEt[St+1]−

1

2Et[St+1]2
Vt[St+1]

)
︸ ︷︷ ︸

Et[lnSt+1]

lnSt (30)

−
(

lnEt[St+1]− lnSt −
1

2Et[St+1]2
Vt[St+1]

)2

︸ ︷︷ ︸
Et[rt+1]

, (31)

with Skewt(St+1) and Kurtt(St+1) denoting the conditional skewness and kurtosis of the stock
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price St+1. The next section discusses estimation of the model parameters.

4 Evaluation Criteria

This section presents the performance measures used to assess the suitability of the state

variables obtained from option-implied information, and introduces two benchmark competitors

that will be discussed below.

4.1 Performance measures

We evaluate the performance of the different investment portfolios using out-of-sample monthly

returns rP,t on the investment portfolio. The optimal portfolio allocation αt is performed for

the whole sample of 243 periods. For the out-of-sample evaluation period, we consider a fixed

window with the first 180 periods for estimating the model parameters. The remaining periods

are used to evaluate the out-of-sample performance. We rely on Exchange Traded Funds (ETF)

to calculate the performance of the risky asset. The advantage of using an ETF to evaluate the

performance of the portfolio allocation compared to an index value is the possibility of including

trading costs and administration fees in the portfolio. The returns of the suggested portfolio

allocation are calculated on the basis of a theoretical fund value of one. On the basis of the

optimal weights, shares are bought using the ask price and sold using the bid price. Depending

on whether the portfolio is long (short) in the risky asset, the funds value is determined by

multiplying the shares with the bid (ask) price. The remaining share in the risk-free asset is

interest-bearing using the corresponding risk-free rate. In case the portfolio weight in the risky

asset exceeds one, interest is charged to finance the leverage. The portfolio weight in each

period is adjusted for the difference in weight between t − 1 and t. Furthermore, we restrict

the portfolio weight to be in the interval [−1, 2] to avoid unrealistic leverage.

The resulting returns are first standardised to 4-week horizons before computing the perfor-

mance measures. This is necessary since option expiry dates are not necessarily connected to

each other. If the estimation horizon is not connected, we assume that the investor holds the

portfolio until the next rebalancing date. Based on the standardised out-of-sample returns, we

evaluate the performance of the proposed state variables using two statistical criteria given by
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the I) Sharpe ratio and II) Sortino ratio; and two economic measures given by the III) Value

function; IV) Portfolio revenue. These criteria are calculated over a series of h realisations.

The annualised Sharpe ratio (SR) is computed using the unconditional average excess re-

turn on the portfolio over the out-of-sample period, denoted as µ̂P = 1
h

∑h
t=1(rP,t − rf,t), and

corresponding unconditional sample variance, denoted as σ̂2
P = 1

h−1
∑h

t=1(rP,t − µ̂P )2. The

annualized Sharpe ratio is defined as

ŜRP =
365

28

µ̂P√
σ̂2
P

. (32)

To add statistical significance to the comparison of Sharpe ratios across investment strategies,

we apply the Sharpe ratio test introduced by Ledoit and Wolf (2008). We follow the implemen-

tation in DeMiguel et al. (2014) and consider 1, 000 bootstrap resamples and an expected block

size equal to 5. To gain further insights on the statistical performance of the different methods,

we also compute the Sortino ratio. This measure extends the Sharpe ratio by only considering

the downside volatility defined as σ̂2
adj = 1

h−1
∑h

t=1(min(0, rP,t − rf,t))2, and, therefore, putting

the emphasis on returns falling below the risk-free rate. The annualized Sortino ratio is

ŜoR =
365

28

µ̂√
σ̂2
adj

(33)

Our first economic measure is the value function. This function is obtained from the realized

values of the utility function (1) under the restriction that the elasticity of intertemporal sub-

stitution is the inverse of the risk aversion coefficient. In this case the Epstein-Zin-Weil utility

function reduces to a standard power utility function. Lastly, the average portfolio revenue is

evaluated. In this case we compare the aggregate revenue obtained from each portfolio over the

life of the investment.

As a further exercise, we analyze the portfolio allocation itself to gain insight on the effec-

tiveness of the myopic and hedging demand components. Therefore, we restrict the portfolio

rule while adjusting optimally for consumption. This procedure is outlined in detail in Camp-

bell and Viceira (1999). We consider three different restricted portfolio rules: First, restriction

of the timing component. This is achieved by setting the state variable xt in (5) to the un-
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conditional expected log excess return E[rP,t]. Second, restriction of the hedging demand by

ignoring the hedging demand on the portfolio allocation. This is accomplished by setting the

covariance σηu to zero. Third, both components are restricted by imposing xt = E[rPt ] and

σηu = 0.

4.2 Benchmark portfolios

In the empirical application we consider two benchmark portfolios competing against the port-

folios constructed from state variables that use option-implied information. These competitors

are i) a parametric portfolio with portfolio weights driven by the log dividend-price ratio and

ii) a historical approach in which the risk premium and market price of risk state variables are

estimated from historical data.

The first benchmark portfolio corresponds to the long-term portfolio initially proposed by

Campbell and Viceira (1999) that considers the log dividend-price ratio as single state variable.

The log dividend-price ratio enters the portfolio allocation directly as predictor in (9). Second,

we implement a historical approach as benchmark. More specifically, we model the conditional

mean and variance of asset returns using a time series model. The conditional mean process is

modelled using an autoregressive process of order one and the volatility component is modelled

using a threshold-GARCH model. This proccess is defined as

rt+1 = µ+ φrt + εt+1 (34)

εt+1 = ut+1

√
ht+1. (35)

ht+1 = w + (α + βIt)ε
2
t + δht (36)

with It = 0 if rt ≥ 0 and It = 1 if rt < 0. This process dates back to Glosten et al. (1993) and

Zakoian (1994). In contrast to standard ARCH and GARCH processes, see Engle (1982) and

Bollerslev (1986), this model accommodates asymmetries on the volatility process due to the

leverage effect (negative shocks to asset prices entail higher volatility in the following period

compared to positive shocks). To guarantee the stationarity of the process, the parameters of

this process satisfy that w, α, β, δ > 0 and α+ β
2

+ δ < 1. The conditional mean and volatility

processes are Et[rt+1] = µ+ φrt and Vt[rt+1] = ht+1.
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5 Empirical application

5.1 Data

The empirical application presented in this section is based on the S&P 500 Index (SPX).

The observation period ranges from 20th January 1996 until the 15th April 2016. Within these

periods the option expiry dates schedule the observation dates and allocation periods. Relevant

option expiry dates are the third Friday each month. In order to avoid autocorrelation problems

as discussed in Bliss and Panigirtzoglou (2004), estimation lengths are fixed at 4 weeks prior

to expiry. This ensures that periods are non-overlapping. Following the procedures outlined in

Section 3, the risk-neutral density is estimated using the closing price on the option observation

date, which results in 243 periods.

In this empirical study we only consider European options which are always written on the

underlying spot market index. The structure of European options allows us to assume that

they are written on the corresponding forward as discussed in Liu et al. (2007). Option as well

as future prices are obtained end of day from the Chicago Mercantile Exchange. Option prices

are checked against no arbitrage constraints. The options passing the no arbitrage constraints

are then selected based on their moneyness. Moneyness is defined as the ratio between current

forward and strike price. To ensure prices are accurate only options that are at-the-money and

out-the-money are taken into account. In-the-money options are less frequently traded and,

therefore, prices might not fully reflect market expectations. To qualify as eligible option the

moneyness for a call-option (put-option) needs to exceed (be below) 0.97 (1.03). Lastly, the

option price itself is checked. If there is no bid price quoted the option is dropped from the

sample since it cannot be actively traded any more. Furthermore, any options with a price of

less than 3/8 are excluded. Too low prices might not reflect the true value of the option due to

the proximity of tick sizes. The eligible option prices are summarised in Table 1. If necessary,

options are transformed via the put-call parity relationship. In case there exists a call and put

option for the same strike the average call price is used.

Corresponding future prices only exist for quarterly expiry dates, namely March, June,

September and December for every year. Since options mature monthly, the closest future
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price is interpolated to match the monthly expiry date. This is performed using the following

definition of the future price Ft = Ste
(rf,t−dt)(T−t). The risk-free rate rf is retrieved via boot-

strapping from zero-coupon bonds. The dividend yield dt is calculated using the total dividend

on the underlying index over the previous year divided by the current stock price. Taking the

logs of dt provides the log dividend price ratio pt − dt in the style of Campbell and Viceira

(1999). Lastly, we obtain ETF bid and ask prices for the the SPDR S&P 500 ETF to evaluate

the portfolio allocation. The ETF was selected based on the fund inception date and size.

5.2 Parameter estimation

This section presents the estimation results of the risk-neutral parameters, the transformation

into the objective density function and the estimation results of the historical approach. Fol-

lowing this, we explore the implications of the parameter values obtained from the portfolio

allocation across state variables and methods. Results presented in this section are obtained

from estimates using the entire sample available.

Table 2 presents the risk-neutral density estimation error for the mixture of lognormal den-

sity functions and the binomial tree. To ensure that the squared error converges to a global

minimum, multiple initial values have been applied into the nonlinear optimisation problem.

Note that the squared errors of the lognormal density are not displayed since the free param-

eter σ is obtained directly from the interpolation of the implied volatility of the two closest

at-the-money options. This guarantees that the density function fits precisely the data. Ta-

ble 3 presents the parameter estimates for the AR(1)-TGARCH(1,1) model introduced above

obtained from the whole evaluation period.

Since the densities are retrieved from option prices they are priced risk-neutral. Therefore,

they need to be transformed to reflect the objective probabilities of the underlying asset. Ex-

pression (16) shows that the transformation relies on an assumption about the utility of the

representative investor. A conventional standpoint is to assume a power utility function. To

avoid the excessive parametrization of the model we consider the estimation of the risk aversion

coefficient obtained by Bliss and Panigirtzoglou (2004) to characterize our representative in-

vestor. These authors provide an extensive study to estimate the risk aversion coefficient from

option prices and evaluate the results with a sequence of different statistical measures. For
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the following empirical study we consider γ = 4.02 for a time horizon of 4 weeks to match the

time to expiry of our option sample. Furthermore, in order to align our model that considers

a representative investor endowed with a power utility function with Campbell and Viceira

(1999)’s framework, that considers an individual with Epstein-Zin utility function, we assume

ψ = 1
γ

in (1). In this scenario the recursive utility function reduces to the power utility case

and the framework proposed by Campbell and Viceira (1999) can be naturally applied in our

context. The reader should note that this assumption has implications on the portfolio policy

rule αt as the coefficients a0 and a1 in (7) and (8) simplify.

Table 4 reports the estimation results for the restricted VAR(1) model for the SPX dataset

using the entire sample. The option-implied approach attains higher values of the R2 using

the risk-premium as state variable compared to the market price of risk. Similar results are

found for the historical approach. Nevertheless, in both cases, the restricted VAR(1) model

given by the log dividend-price ratio as state variable provides a higher R2. Comparing the

dynamics of the two equations within the VAR(1) model suggests that the bottom equation,

describing the dynamics of the state variable, obtains far lower values of the R2. This does not

come as a surprise since the first equation aims to predict the risk-premium in the next period,

which is known to be a difficult task. Apart from the R2, the persistence of φ in the derived

AR(1) model provides useful insights about the dynamics of the applied state variables. The

option-implied approach using the risk premium as state variable obtains overall the lowest

values of persistence. Compared to the risk premium, the market price of risk obtains higher

values of persistency. The higher level of persistence is most likely a consequence of the relation

between the risk premium and volatility. High volatility normally implies a high risk premium

and viceversa. Therefore, the ratio between both factors is relatively stable compared to the

use of the risk premium as single state variable.

The historical approach diverges from these observations. The risk premium is highly per-

sistent, which can be traced back to the estimation method using a historical time series of

asset price returns. The model simply extrapolates the past returns into the future resulting in

a low variation of the risk premium. Opposite to the risk premium is the market price of risk.

Here the persistence is lower and discrepancies in the results may be attributed to the different

model specifications. In the option-implied approach the risk premium is strongly connected
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to the variance priced in the options. For the historical approach this is not directly the case.

In the applied model here there is no direct link between the risk premium and volatility, so

both factors are less related to each other, which helps to reduce persistence.

Lastly, the estimation results of the log dividend-price ratio are in line with the reported

values in Campbell and Viceira (2000) Erratum Table 1. The R2 is the highest compared to

the alternative methods and state variables. Furthermore, the log dividend-price ratio has a

high persistence in line with empirical observations and the expected log excess return lines up

with the alternative methods. Overall, values are similar to the seminal paper by Campbell

and Viceira (1999).

5.3 Portfolio weight characteristics

As briefly discussed in Section 2, there are two components of the portfolio weight, namely

myopic and hedging demand. While the myopic demand entirely derives from the expected

return and variance of the innovation process σ2
u, the hedging demand component depends on

the covariance σηu between the innovations to the state variable ηt+1 and to the risky asset

return ut+1. If σηu equals zero the demand for the risky asset is purely derived from the myopic

component. Therefore, to effectively hedge against changes in the investment opportunity set,

σηu should be of high magnitude. In addition, the sign of σηu also plays a key role on how the

hedging demand contributes to the portfolio weight. In cases where σηu is negative (positive) the

hedging demand increases (decreases) the weight in the risky asset. As discussed in Campbell

and Viceira (1999), cases where σηu < 0 are of empirical relevance. Only when the latter holds,

the long term investor maintains a positive proportion in the risky asset when expected returns

are zero.

This characteristic holds true in the performed analysis except for the historical approach

using the risk premium as state variable. The values for σηu in Table 4 are positive in the

historical approach. This might be a result of the slow adjustment of this method. Since

the historical returns are simply extrapolated into the future, this method lags anticipating

changes in the market. However, to further analyze how the covariance σηu impacts the portfolio

allocation the average portfolio weight is studied by setting the state variable xt to its long run

log excess return.
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Table 5 displays the average portfolio weights and contribution of the hedging demand. In

this application the covariance σηu is mostly negative, increasing the average share in the risky

asset. Comparing the state variables with each other shows that the risk premium and market

price of risk obtain similar results. Even though the share of hedging demand varies, the result-

ing average weight is quite stable. In contrast, the comparison of the risk premium and market

price of risk as state variables with the log dividend-price ratio reveal important differences.

Overall, the average portfolio weight for the log dividend-price ratio exceeds the weights corre-

sponding to the alternative methods considerably. The contribution of the hedging demand to

the portfolio weight for the log dividend-price ratio based portfolio is also much larger than for

the other portfolio strategies. This empirical finding can be partly explained by the magnitude

of the correlation between the innovations to the log dividend-price ratio state variable and to

the stock returns. As mentioned earlier, this correlation gives an indication of how effectively

the state variable can be used to hedge against changes in investment opportunities.

5.4 Performance results

Table 6 reports the results of the different performance measures covered in the study. We

consider two separate exercises given by two diferent evaluation periods: a first exercise that

spans the full dataset and a second exercise that divides the sample set into in-sample and

out-of-sample periods. As discussed in Section 4.1, the in-sample analysis considers the full

sample whereas for the out-of-sample analysis the sample is split in two subsamples. The first

subsample is used to estimate the parameters in the VAR(1) model in (9) and the remaining

periods are then used to evaluate the performance using the obtained parameter values.

In addition to the Sharpe and Sortino ratios, we also compute the value function (1) under

the assumption that the elasticity of intertemporal substitution is equal to the inverse of the

coefficient of relative risk aversion. In this case the value function corresponds to that of

a constant relative risk aversion (CRRA) utility function. For completeness, we also report

the revenue of the investment strategy in percent terms. Table 6 is divided in three panels.

The top panel reports the performance measures for the risk premium obtained from option-

implied information under different choices of the option-implied density function. The middle

panel reports the same empirical exercise for the market price of risk obtained from option-
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implied information, and the bottom panel focuses on the performance measures obtained from

Campbell and Viceira (1999)’s approach based on the log dividend-price ratio.

First, we compare the option-implied state variables given by the risk premium and the

market price of risk for different choices of the distribution function implied from option prices.

The risk premium state variable seems to perform considerably better than the market price

of risk. This result suggests that the risk premium obtained from option-implied information

is a good predictor of the actual future excess returns on the risky asset. More specifically,

large values of this state variable predict large excess returns and hence, a larger allocation

to the risky asset. In contrast, the portfolio allocation driven by the market price of risk gets

less exposure to the risky asset under large expected returns. The reason for this is that the

risk premium is adjusted by the underlying risk, proxied by the conditional variance. The

choice of method for modelling the implied distribution of the risky return does not seem to be

instrumental for obtaining these findings. These results hold for both the full sample and the

out-of-sample periods.

Second, we compare the portfolios obtained from using option-implied information against

the corresponding portfolios in which the state variables are estimated from time series models

(historical approach). The results are mixed; statistical measures such as the Sharpe and Sortino

ratios show the superiority of the historical approach. In contrast, economic measures such as

the value function and portfolio revenue suggest the opposite entailing a superior performance

of the option-implied methods compared to the historical approach.

Finally, we compare the option-implied methods against the portfolio policy using the log

dividend-price ratio as state variable. In this case the results show a clear outperformance

of this method compared to the state variables proposed in this paper. This finding suggests

that the log dividend-price ratio is a better predictor of the excess return on the risky asset

that state variables based on forward-looking information. A potential explanation for these

findings is the ability of the log dividend-price ratio and, more generally, of financial ratios for

predicting excess returns. In our case the persistence of the log dividend-price ratio entails

persistent portfolio weights that take full advantage of periods of large returns on the risky

asset. In contrast, our approach based on information obtained from option prices is based on

state variables that are stationary and revert quickly to the mean implying a set of portfolio
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weights that revert more quickly to the intercept a0 in (5) than under the log dividend-price

ratio.

Table 7 adds statistical significance to the performance measures discussed above by re-

porting the p-values of the Sharpe ratio test developed by Ledoit and Wolf (2008). The null

hypothesis corresponds to equality of Sharpe ratios across strategies and the alternative hy-

pothesis implies that one strategy outperforms the other. The results in this table are very

inconclusive and do not allow to draw any meaningful conclusion about the superiority of one

strategy over the others in terms of Sharpe ratios.

5.5 Effect of hedging and timing the portfolio

This section examines the influence of the components comprising the portfolio weights, namely

hedging demand and timing of the portfolio, on portfolio performance. To do so, the portfolio

rule is set fixed while allowing the investor to optimally adjust their consumption. Table 8

reports changes in the value function (1) when restricting the portfolio rules compared to the

unrestricted policy given in (5) for the estimated parameters. This exercise is divided into a full

sample exercise and an out-of-sample evaluation period. If the additional component (hedging

demand or portfolio timing) is beneficial, then the value function should display a negative

value indicating a reduction compared to the unrestricted rule.

We analyze first the effect of the timing component to the portfolio using the value function

as performance measure. The timing component is set fixed to equal to the long run log excess

return. The results reported in Table 8 show a large loss in value function with respect to

the unrestricted portfolio for those portfolios constructed from option-implied information and

using the risk premium and the market price of risk as state variables. For the historical

approach, the effects of market timing seem to be much smaller than for the other strategies.

In contrast, for the log dividend-price ratio the effect of timing the portfolio is even larger than

for option-implied portfolios.

In the second exercise we restrict the ability of the portfolio to hedge. This is done by

neglecting the hedging demand component from the portfolio. To assess the performance of

this restricted portfolio we compare the value functions across strategies and portfolios. The

results are qualitatively similar to the previous exercise analyzing the timing component. The
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results are less sizeable for the out-of-sample evaluation period but still reflect in all cases a

loss in performance (value function) compared to the unrestricted portfolio.

Unsurprisingly, the combination of no hedging demand and no timing yields the worst

performance across investment strategies and portfolios.

6 Conclusion

This paper explores the role of option-implied information from a long-term optimal asset

allocation perspective. To do this, we propose two state variables constructed from option-

implied information and build parametric portfolios based on the long-term asset allocation

problem presented in Campbell and Viceira (1999). The first variable is given by the risk

premium on the risky asset and the second variable is the market price of risk. We also explore

different choices proposed in the literature to extract the information from option prices for

constructing the predictive density function of the underlying risky asset. In particular, we

consider a lognormal distribution, a mixture of lognormal distributions and a binomial tree. A

third methodological contribution is to approximate the conditional first two moments of the

expected log return on the risky asset using a Taylor expansion of the log of the asset price.

This approximation is necessary for constructing our state variables based on the risk premium

and the market price of risk.

We assess these strategies to construct optimal parametric portfolios using statistical mea-

sures such as the Sharpe and Sortino ratios, and economic measures such as the value function

and the revenue in percent terms. The empirical results to a portfolio given by the one-

month US Treasury bill and the S&P 500 Index are mixed. The risk premium estimated from

forward-looking information outperforms the market price of risk as a suitable state variable

for constructing optimal portfolios. The reason for this outperformance is the superior abil-

ity of the risk premium compared to the market price of risk for predicting the excess return

on the risky asset. This result is robust to different specifications of the implied distribution

function of the risky asset obtained from option prices. We also compare these strategies based

on implied information with the Campbell and Viceira (1999) parametric long-term portfolio

given by the log dividend-price ratio as state variable and an historical approach in which the
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estimates of the risk premium and the conditional variance are obtained from time series of

historical prices. The results show the outperformance of the historical approach for statistical

performance measures such as the Sharpe and Sortino ratios and the outperformance of the

option-implied information for economic measures given by the value function obtained from

the investor’s lifetime utility function and revenue in percent terms.

Overall, these results highlight the importance of considering option-implied information

as an alternative and valuable option for constructing investment portfolios. Suitable state

variables are obtained from the first moments of the distribution of asset returns that are

obtained from forward-looking measures. Despite the appeal of these measures, our results

show that it is difficult to beat financial ratios such as the log dividend-price ratio. In fact,

whereas we show that the use of the implied risk premium and the market price of risk state

variables results in better value function performance than the use of historical methods, the

performance improvement is small compared to the improvement resulting from Campbell and

Viceira approach using the log dividend-price ratio – as seen in our empirical exercise. The

rationale behind this empirical result is the strong ability of financial ratios for predicting stock

returns.

Data availability statement

The data that support the findings of this study are available from the corresponding author

upon reasonable request.
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Appendix A: Taylor expansion of ln St+1

In this section we derive closed-form approximations for Et[rt+1] and Vt[rt+1] as a function of

the first moments of St+1. Let rt+1 = lnSt+1 − lnSt, we focus on computing Et[lnSt+1] first.

To do this, we use a second order Taylor expansion of lnSt+1 about Et[St+1], and obtain

lnSt+1 = lnEt[St+1]+
1

Et[St+1]
(St+1−Et[St+1])−

1

2Et[St+1]2
(St+1−Et[St+1])

2+oP ((St+1−Et[St+1])
2).

(37)

Taking the conditional expectation in the above expression, we obtain

Et[lnSt+1] = lnEt[St+1]−
1

2Et[St+1]2
Vt[St+1] + oP (Vt[St+1]), (38)

that can be approximated as

Et[lnSt+1] ≈ lnEt[St+1]−
1

2Et[St+1]2
Vt[St+1]. (39)

Now, by construction, Et[rt+1] = Et[lnSt+1]− lnSt. Then,

Et[rt+1] ≈ ln
Et[St+1]

St
− 1

2Et[St+1]2
Vt[St+1] = lnEt

[
St+1

St

]
− 1

2Et[St+1]2
Vt[St+1] (40)

Similarly, we have Vt[rt+1] = Et[r
2
t+1]− E2[rt+1], and such that

Et[r
2
t+1] = Et[ln

2 St+1] + ln2 St − 2Et[lnSt+1] lnSt. (41)

We only need to derive Et[ln
2 St+1] to obtain the conditional variance as the remaining expres-

sions are already known. From expression (37), we have

ln2 St+1 = ln2Et[St+1] +
1

Et[St+1]2
(St+1 − Et[St+1])

2 +
1

4Et[St+1]4
(St+1 − Et[St+1])

4 (42)

+
2 lnEt[St+1]

Et[St+1]
(St+1 − Et[St+1])−

lnEt[St+1]

Et[St+1]2
(St+1 − Et[St+1])

2 (43)

− 1

Et[St+1]3
(St+1 − Et[St+1])

3 + oP ((St+1 − Et[St+1])
4). (44)
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Taking conditional expectations,

Et[ln
2 St+1] ≈ ln2Et[St+1] +

1

Et[St+1]2
Vt[St+1] +

1

4Et[St+1]4
Et(St+1 − Et[St+1])

4 (45)

− lnEt[St+1]

Et[St+1]2
Vt[St+1] (46)

− 1

Et[St+1]3
Et(St+1 − Et[St+1])

3. (47)

Rearranging the terms, we obtain

Et[ln
2 St+1] ≈ ln2Et[St+1] +

1− lnEt[St+1]

Et[St+1]2
Vt[St+1]−

1

Et[St+1]3
µ3t +

1

4Et[St+1]4
µ4t, (48)

with µ3t = Et(St+1 − Et[St+1])
3 and µ4t = Et(St+1 − Et[St+1])

4.

We can write this expression as a function of the first four standardized central conditional

moments (mean, variance, skewness and kurtosis) of St+1, that is,

Et[ln
2 St+1] ≈ ln2Et[St+1] +

1− lnEt[St+1]

Et[St+1]2
Vt[St+1]−

Vt[St+1]
3/2

Et[St+1]3
Skewt(St+1) +

Vt[St+1]
2

4Et[St+1]4
Kurtt(St+1),

(49)

with Skewt(St+1) and Kurtt(St+1) denoting the skewness and kurtosis parameters of the con-

ditional distribution of the stock price St+1.

Now, using the above expressions, and (39) and (41), we can derive the expression for

Et[rt+1] and Vt[rt+1]. More formally,

Et[rt+1] ≈ lnEt[St+1]− lnSt −
1

2Et[St+1]2
Vt[St+1], (50)
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and

Vt[rt+1] ≈ ln2Et[St+1] +
1− lnEt[St+1]

Et[St+1]2
Vt[St+1]−

Vt[St+1]
3/2

Et[St+1]3
Skewt(St+1) +

Vt[St+1]
2

4Et[St+1]4
Kurtt(St+1)

(51)

+ ln2 St − 2

(
lnEt[St+1]−

1

2Et[St+1]2
Vt[St+1]

)
︸ ︷︷ ︸

Et[lnSt+1]

lnSt (52)

−
(

lnEt[St+1]− lnSt −
1

2Et[St+1]2
Vt[St+1]

)2

︸ ︷︷ ︸
Et[rt+1]

. (53)
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Appendix B: Tables

Mean Median
Standard
deviation

Minimum Maximum

Amount 58.94 44 34.27 16 185

Deep OTM Call OTM Call ATM Options OTM Put Deep OTM Put
F/K < 0.90 0.90− 0.97 0.97− 1.03 1.03− 1.10 1.10 <

Amount 3.23 15.75 22.9 24.21 33.91

Table 1: Summary statistics of the amount of options and by moneyness in % on each observa-
tion date for the period from January 1996 until April 2016. The amount of options vary quite
strongly due to the increasing amount of available option prices over the past years.

Method
G in % g

Mean Median
Standard
deviation

Mean Median
Standard
deviation

Mix-log 16.70 11.65 19.19
Bin-Tree 2.13 0.93 5.27 17.93 5.33 88.05

Table 2: Risk neutral density estimation error for the mixture-lognormal density (mix-log) and
binomial tree (bin-tree) for the period from January 1996 until April 2016.

µ φ ω δ α β d.o.f.

0.043 -0.031 0.018 0.903 0.000 0.164 8.785
0.006*** 0.078* 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
(0.012) (0.155) (0.003) (0.009) (0.000) (0.014) (0.986)

Table 3: Parameter estimates of the AR-TGARCH model in (34) representing the historical
approach. P-values are labelled with *, **, and *** which indicate statistical significance at
the 10%, 5% and 1% levels, respectively. Standard errors are reported in parentheses.
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Restricted VAR(1) Derived Model

xt Method

(
θ0
β0

) (
θ1
β1

) [
Ω11 Ω12

Ω21 Ω22

]
R2 µ φ

[
σ2
u σuη

σuη σ2
η

]
ρ

RP Log

(
0.000
0.003

) (
0.234
0.691

) [
2.456E − 03 −3.405E − 04
−3.405E − 04 9.344E − 05

] (
0.008
0.478

)
0.002 0.691

[
2.456E − 03 −7.952E − 05
−7.952E − 05 5.097E − 06

]
-0.711

Mix-Log

(
−0.002
0.003

) (
0.414
0.726

) [
2.449E − 03 −2.531E − 04
−2.531E − 04 4.730E − 05

] (
0.011
0.527

)
0.002 0.726

[
2.449E − 03 −1.047E − 04
−1.047E − 04 8.098E − 06

]
-0.744

Bin-Tree

(
−0.003
0.003

) (
0.399
0.730

) [
2.447E − 03 −2.765E − 04
−2.765E − 04 5.566E − 05

] (
0.012
0.532

)
0.002 0.730

[
2.447E − 03 −1.102E − 04
−1.102E − 04 8.845E − 06

]
-0.749

Hist

(
0.002
0.000

) (
0.101
0.938

) [
2.466E − 03 3.960E − 06
3.960E − 06 4.347E − 07

] (
0.004
0.881

)
0.002 0.938

[
2.466E − 03 4.002E − 07
4.002E − 07 4.442E − 09

]
0.121

MPR Log

(
−0.005
0.047

) (
0.042
0.732

) [
2.454E − 03 −1.990E − 03
−1.990E − 03 3.233E − 03

] (
0.009
0.535

)
0.002 0.732

[
2.454E − 03 −8.325E − 05
−8.325E − 05 5.660E − 06

]
-0.706

Mix-Log

(
−0.008
0.047

) (
0.055
0.736

) [
2.450E − 03 −1.622E − 03
−1.622E − 03 2.351E − 03

] (
0.011
0.540

)
0.002 0.736

[
2.450E − 03 −8.985E − 05
−8.985E − 05 7.220E − 06

]
-0.676

Bin-Tree

(
−0.010
0.039

) (
0.071
0.773

) [
2.447E − 03 −1.261E − 03
−1.261E − 03 1.478E − 03

] (
0.012
0.596

)
0.002 0.773

[
2.447E − 03 −9.001E − 05
−9.001E − 05 7.530E − 06

]
-0.663

Hist

(
0.002
0.024

) (
0.002
0.834

) [
2.466E − 03 1.048E − 03
1.048E − 03 1.280E − 03

] (
0.004
0.692

)
0.002 0.834

[
2.466E − 03 2.252E − 06
2.252E − 06 5.910E − 09

]
0.000

dt − pt
(

0.121
−0.100

) (
0.030
0.975

) [
2.419E − 03 −2.419E − 03
−2.419E − 03 2.721E − 03

] (
0.023
0.950

)
0.002 0.975

[
2.419E − 03 −7.141E − 05
−7.141E − 05 2.371E − 06

]
-0.943

Table 4: Estimation results for the period from January 1996 until April 2016 for the SPX index using the risk-premium (RP), market price
of risk (MPR) and log dividend price ratio (dt − pt) as state variable. The state variables are derived assuming the lognormal density (log),
mixture-lognormal density (mix-log), binomial-tree (Bin-tree) and historical approach (hist).
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xt Method
Mean optimal allocation in % Fraction hedging demand in %
αt = [a0 + a1(µ+ σ2

u/2)]× 100 [αt,h(µ; γ, φ)/αt(µ; γ, φ)]× 100

RP Log 0.38 8.1
Mix-Log 0.39 12.1
Bin-Tree 0.39 12.2
Hist 0.35 -0.2

MPR Log 0.38 9.8
Mix-Log 0.38 10.7
Bin-Tree 0.37 9.5
Hist 0.35 0.3

dt − pt 1.14 67.9

Table 5: The left column displays the mean optimal percentage allocation to the risky asset
computed over the period January 1996 to April 2016. The right column panel displays the
mean hedging demand relative to the mean total demand (αt,hedging(µ; γP ,Ψ) = αt(µ; γP ,Ψ)−
αt,myopic(µ; γP ,Ψ)). All values are based on the full-sample estimates of the return processes
for the risk premium (RP), market price of risk (MPR) and log dividend price ratio (dt − pt)
state variables. The state variables are derived assuming the lognormal density (log), mixture-
lognormal density (mix-log), binomial-tree (Bin-tree) and historical approach (hist).

xt Method
Inner-Sample Out-of-Sample

Sharpe
Ratio

Sortino
Ratio

Value func.
in %

Revenue
in %

Sharpe
Ratio

Sortino
Ratio

Value func.
in %

Revenue
in %

RP Log 0.148 0.135 0.191 9.293 0.757 1.055 0.127 4.461
Mix-Log 0.134 0.124 0.229 13.770 0.666 1.999 0.155 8.172
Bin-Tree 0.136 0.124 0.220 13.405 0.610 2.684 0.152 8.048
Hist 0.233 0.198 0.145 0.635 0.953 1.043 0.111 2.083

MPR Log 0.102 0.096 0.203 16.148 0.607 1.243 0.135 10.477
Mix-Log 0.089 0.085 0.219 19.940 0.486 1.194 0.155 15.446
Bin-Tree 0.117 0.110 0.191 14.129 0.291 0.559 0.148 12.634
Hist 0.210 0.180 0.145 0.307 0.744 0.686 0.111 1.209

dt − pt 0.294 0.226 0.836 13.607 0.853 0.836 0.518 13.299

Table 6: The inner-sample results refers to the entire sample horizon from January 1996 to April
2016 over 243 periods. The out-of-sample evaluation is performed from January 2011 until April
2016 over 63 periods. The state variables are denoted as risk-premium (RP), market price of
risk (MPR) and log dividend price ratio (dt − pt). The state variables are derived assuming
the lognormal density (log), mixture-lognormal density (mix-log), binomial-tree (Bin-tree) and
historical approach (hist).
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RP MPR dt − pt
Log Mix-Log Bin-Tree Hist Log Mix-Log Bin-Tree Hist

RP Log - 0.79 0.86 0.58 0.37 0.38 0.41 0.65 0.85
Mix-Log - 0.98 0.79 0.79 0.27 0.32 0.80 0.96
Bin-Tree - 0.79 0.43 0.27 0.40 0.85 0.97
Hist - 0.98 0.90 0.98 0.11 0.50

MPR Log - 0.36 0.84 0.99 0.83
Mix-Log - 0.54 0.87 0.73
Bin-Tree - 0.97 0.83
Hist - 0.53

dt − pt -

Table 7: The table shows the results of the Sharpe Ratio Test testing H0 : SR1 = SR2 for
the entire sample horizon (January 1996 to April 2016). The state variables are denoted as
risk-premium (RP), market price of risk (MPR) and log dividend price ratio (dt − pt). The
state variables are derived assuming the lognormal density (Log), mixture-lognormal density
(Mix-Log), binomial-tree (Bin-Tree) and historical approach (Hist).

xt Method
Inner-Sample Out-of-Sample

Hedging No-Hedging Hedging No-Hedging
Timing No-Timing Timing No-Timing Timing No-Timing Timing No-Timing

RP Log 0.191 -33.4 -5.7 -33.9 0.127 -15.3 -2.0 -15.6
Mix-Log 0.229 -44.4 -9.2 -44.8 0.155 -30.9 -4.7 -31.2
Bin-Tree 0.220 -42.1 -9.2 -42.6 0.152 -29.4 -4.7 -29.7
Hist 0.145 -12.7 0.1 -12.7 0.111 -4.9 -0.3 -4.9

MPR Log 0.203 -37.4 -7.1 -37.8 0.135 -20.6 -3.0 -20.9
Mix-Log 0.219 -42.1 -8.0 -42.5 0.155 -30.6 -4.6 -30.9
Bin-Tree 0.191 -33.7 -6.8 -34.1 0.148 -28.1 -4.3 -28.3
Hist 0.145 -12.5 0.0 -12.6 0.111 -3.0 -0.1 -3.1

dt − pt 0.836 -84.6 -66.0 -84.7 0.518 -80.4 -60.1 -80.5

Table 8: The panel displays results of the value function for restricted and unrestricted portfolio
rules. For the restricted portfolio rules the relative change of the value function compared to
the unrestricted rule is displayed. The inner-sample evaluation refers to the entire sample
horizon and the unconditional mean implied by the risk-premium process. The out-of-sample
evaluation uses the average realised return to calculate the value function of the investor. The
state variables are denoted as risk-premium (RP), market price of risk (MPR) and log dividend
price ratio (dt − pt). The state variables are derived assuming the lognormal density (log),
mixture-lognormal density (mix-log), binomial-tree (Bin-tree) and historical approach (hist).
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