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Abstract

Disentangled representation learning has seen a surge in interest over recent times,
generally focusing on new models to optimise one of many disparate disentan-
glement metrics. It was only with Symmetry Based Disentangled Representation
Learning that a robust mathematical framework was introduced to define precisely
what is meant by a “linear disentangled representation”. This framework deter-
mines that such representations would depend on a particular decomposition of the
symmetry group acting on the data, showing that actions would manifest through
irreducible group representations acting on independent representational subspaces.
Caselles-Dupré et al. [2019] subsequently proposed the first model to induce and
demonstrate a linear disentangled representation in a VAE model. In this work
we empirically show that linear disentangled representations are not present in
standard VAE models and that they instead require altering the loss landscape to
induce them. We proceed to show that such representations are a desirable property
with regard to classical disentanglement metrics. Finally we propose a method
to induce irreducible representations which forgoes the need for labelled action
sequences, as was required by prior work. We explore a number of properties of this
method, including the ability to learn from action sequences without knowledge of
intermediate states and robustness under visual noise. We also demonstrate that it
can successfully learn 4 different symmetries directly from pixels.

1 Introduction

Many learning machines make use of an internal representation [Bengio et al., 2013] to help inform
their decisions. It is often desirable for these representations to be interpretable in the sense that
we can easily understand how individual parts contribute to solving the task at hand. Interpretable
representations have slowly become the major goal in the sub-field of deep learning concerned with
Variational Auto-Encoders (VAEs) [Kingma and Welling, 2014], seceding from the usual goal of
generative models, accurate/realistic sample generation. In this area, representations generally take
the form of a multi-dimensional vector space (latent space), and the particular form of interpretability
is known as Disentanglement, where each latent dimension (or group of such) is seen to represent an
individual (and independent) generative/explanatory factor of the data. Standard examples of such
factors include the x position, the y position, an object’s rotation, etc. Effectively separating them
into separate subspaces, “disentangling them” is the aim of disentanglement research.

Understanding disentangled representations (in the specific case of VAEs) has primarily been based
on the application of numerous “disentanglement metrics”. These metrics operate on disparate under-
standings on what constitutes ideal disentanglement, and required large scale work [Locatello et al.,
2018] to present correlations between them and solidify the fact that they should be considered jointly
and not as individuals. Symmetry based disentangled representation learning (SBDRL) [Higgins et al.,
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2018] offers a mathematical framework through which a rigorous definition of a linear disentangled
representation can be formed. In essence, if data has a given symmetry structure (expressed through
Group Theory), the linear disentangled representations are exactly those which permit irreducible
representations of group elements. Caselles-Dupré et al. [2019] propose modelling and inducing
such representations through observation of action transitions under the framework of reinforcement
learning. Their model successfully induces linear disentangled representations with respect to the
chosen symmetry structure, demonstrating that they are achievable through simple methods. Whilst
Caselles-Dupré et al. [2019] assume symmetry structure comprising of purely cyclic groups, Quessard
et al. [2020] expand this to the more expressive class of SO(3) matrices.

Current work shows that irreducible representations can be induced in latent spaces, but has yet to
determine if they can be found without explicitly structuring the loss landscape. Furthermore, they
are not related back to previous disentanglement metrics to demonstrate the utility of such structures
being present. Finally, by sticking to the reinforcement framework, Caselles-Dupré et al. [2019] and
Quessard et al. [2020] allow the model direct knowledge of which actions they are observing. This
restricts the applicable domain to data where action transition pairs are explicitly labelled.

In this work, we make the following contributions:

• We confirm empirically that irreducible representations are not naturally found in standard
VAE models without biasing the loss landscape towards them.
• We determine that inducing such representations in VAE latent spaces garners improved

performance on a number of standard disentanglement metrics.
• We introduce a novel disentanglement metric to explicitly measure linear disentangled

representations and we modify the mutual information gap metric to be more appropriate
for this setting.

• We propose a method to induce irreducible representations without the need for labelled
action-transition pairs.

• We demonstrate a number of properties of such a model and show it continues to lead to
strong scores on classical disentanglement metrics.

• We demonstrate it can disentangle 4 separate symmetries, the most demonstrated directly
from pixels to date?

2 Symmetry Based Disentangled Representation Learning and Prior Works

This section provides a high level overview of the SBDRL framework without the mathematical
grounding in Group and Representation theory on which it is based. The work and appendices
of Higgins et al. [2018] offer a concise overview of the necessary definitions and theorems. We
encourage the reader to first study this work since they provide intuition and examples which we
cannot present here given space constraints.

SBDRL VAE representation learning is concerned with the mapping from an observation space
(generally images)O ⊂ Rnx×ny to a vector space forming the latent space Z ⊂ Rl. SBDRL includes
the additional construct of a world spaceW ⊂ Rd containing the possible states of the world which
observations represent. There exists a generative process b : W → O and a inference process
h : O → Z , the latter being accessible and parametrised by the VAE encoder. SBDRL assumes for
convenience that both h and b are injective. For this work, it will be convenient to further assume
that |W| = |O| = |Z| = N , i.e. there are a finite number of world states and there is no occlusion in
observations. We should note however that neither of these are strictly required.

SBDRL proposes to disentangle symmetries of the world space, transformations that preserve some
(mathematical or physical) feature, often object identity. Specific transformations may be translation
of an object or its rotation, both independent of any other motions (note the similarity to generative
data factors). Such symmetries are described by symmetry groups and the symmetry structure of
the world space is represented by a group with decomposition G = G1 × · · · × Gs acting onW
through action ·W : G×W →W . The component groups Gi reflect the individual symmetries and
the particular decomposition need not be unique.

SBDRL calls Z disentangled with respect to decomposition G = G1 × · · · ×Gs if:
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1. There is a group action ·Z : G×Z → Z
2. The composition f = h ◦ b :W → Z is equivariant with respect to the group actions onW

and Z . i.e. g ·Z f(w) = f(g ·W w) ∀w ∈ W, g ∈ G.
3. There is a decomposition Z = Z1 × · · · × Zs such that Zi is fixed by the action of all
Gj , j 6= i and affected only by Gi

Since we assume Z is a vector space, SBDRL refines this through group representations, constructs
which preserve the linear structure. Define a group representation ρ : G→ GL(V ) as disentangled
with respect to G = G1 × · · · × Gs if there exists a decomposition V = V1 ⊕ · · · ⊕ Vs and
representations ρi : Gi → GL(Vi) such that ρ = ρ1 ⊕ · · · ⊕ ρs, i.e. ρ(g1, . . . , gs)(v1, . . . , vs) =
(ρ1(g1)v(1), . . . , ρs(gs)vs). A consequence of this is that ρ is disentangled if each factor of ρ is
irreducible. Note that we can associate an action with a group representation through g ·w = ρ(g)(w).

Given this, a linear disentangled representation is defined in SBDRL to be any f : W → Z that
admits a disentangled group representation with respect to the decompositionG = G1×· · ·×Gs. As
such we can look for mappings to Z where actions by Gi are equivalent to irreducible representations.
It will be useful in later sections to know that the (real) irreducible representations of the cyclic group
CN are the rotation matrices with angle 2π

N .

ForwardVAE Higgins et al. [2018] provides the framework for linear disentanglement however
intentionally restrained from empirical findings. Caselles-Dupré et al. [2019] presented the first
results inducing such representations in VAE latent spaces. Through observing transitions induced
by actions in a grid world with G = Cx × Cy structure, their model successfully learns the rotation
matrix representations corresponding to the known irreducible representations of CN .

In implementation, the model stores a learnable parameter matrix (a representation) for each possible
action, which is applied when that action is observed. Under the reinforcement learning setting of
environment-state-action sequences, they have labelled actions for each observation pair, allowing
the action selection at each step. This is suitable for reinforcement problems, however cannot be
applied for problems which lack action labelling.

Finally, they offer two theoretical proofs centred around linear disentangled representations. We
briefly outline the theorems here: 1) Without interaction with the environment (observing action
transitions), you are not guaranteed to learn linear disentangled representations with respect to any
given symmetry structure. 2) It is impossible to learn linear disentangled representation spaces Z of
order 2 for the Flatland problem, i.e. learn 1D representations for each component cyclic group.

Further symmetry structures ForwardVAE only explored cyclic symmetry structures G = CN ×
CN , albeit with continuous representations that are expressive enough for SO(2). Subsequent work by
Quessard et al. [2020] explored (outside of the VAE framework) linear disentangled representations of
SO(2) and non-abelian (non-commutative) SO(3). Similar to ForwardVAE, they required knowledge
of the action at each step.

Learning Observed Actions Section 5 revolves around predicting observed actions, a concept
which has some prior work. Rybkin et al. [2018] learn a (composable) mapping from pre to post-action
latents, conditioned on observing the action. Edwards et al. [2019] learn both a forward dynamics
model to predict post action states (given state and action) and a distribution over actions given the
initial state. Contrary to our work, both methods allow arbitrarily non-linear actions (parametrised by
neural networks) which makes them unsuitable for our task. Furthermore they differ significantly in
implementation. Thomas et al. [2017] utilise an autoencoder with a ‘disentanglement’ objective to
encourage actions to correspond to changes in independent latent dimensions. They use a similar
reward signal to that we use in Section 5, however have access to labelled actions at each step and
encourage no latent structure other than single latents varying with single actions. Choi et al. [2018]
learn to predict actions between two frames in a (action) supervised manner with a focus on localising
the agents in the image.

3 Which Spaces Admit Linear Disentangled Representations

This section empirically explores admission of irreducible representations in latent spaces. In
particular we look at standard VAE baselines and search for known true symmetry structure.
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Figure 1: Sequential observations from the Flatland toy problem. If the agent would contact the
boundary, it is instead warped to the opposing side (e.g. between the third and fourth observations).

Problem Setting We shall use the Flatland problem [Caselles-Dupré et al., 2018] for consistency
with ForwardVAE, a grid world with symmetry structure G = Cx × Cy, manifesting as translation
(in 5px steps) of a circle/agent (radius 15px) around a canvas of size 64px × 64px. Under the
SBDRL framework, we have world space W = {(xi, yi)}, the set of all possible locations of
the agent. The agent is warped to the opposite boundary if within a distance less than r. The
observation space O, renderings of this space as binary images (see Fig 1), is generated with the
PyGame framework [Shinners] which represents the generative process b. The inference process
h is parametrised by candidate VAE models, specifically the encoder parameters θ. The order of
the cyclic groups is given by (64 − 2 ∗ 15)/5 ≈ 7 which leads to the approximate phase angle of
α ≈ 0.924. All candidate representation spaces shall be restricted to 4 dimensional for simplicity and
consistency. All experiments in this and later sections report errors as one standard deviation over 3
runs, using randomly selected validation splits of 10%. We shall evaluate the following baselines,
VAE [Kingma and Welling, 2014], β-VAE [Higgins et al., 2017], CC-VAE [Burgess et al., 2018],
FactorVAE [Kim and Mnih, 2018] and DIP-VAE-I/II [Kumar et al., 2017a].

Evaluation Method Once we have a candidate representation (latent) space Z , we need to locate
potential irreducible representations ρ(g) of action a by group element g. For the defined symmetry
structure G, we know that the irreducible representations take the form of 2D rotation matrices. We
further restrict to observations of actions by either of the cyclic generators gx, gy or their inverses
g−1x , g−1y . Consequently, we store 4 learnable matrices to represent each of these possible actions.
Since there is no requirement for representations to be admissible on axis aligned planes, we also
learn a change of basis matrix for each representation. To locate group representations, we encode
the pre-action observation and apply the corresponding matrix, optimising to reconstruct the latent
representation of the post-action observation. As we iterate through the data and optimise for best
latent reconstruction, the matrices should converge towards irreducible representations if admissible.

If cyclic representations are admissible, then our matrices should learn to estimate the post action
latent with low error. However, since not all models will encode to the same space, we also compare
to the expected distance between latent codes. If the reconstruction error is significantly lower than
the expected distance, then we can say that the space is admissible to (in this case) cyclic irreducible
representations. We also introduce a metric to explicitly measure the extent to which actions operate
on independent subspaces as required by the definition of a linear disentangled representation. We
call this metric the independence score and define it as a function of the latent code z and the latent
code after applying action a, denoted za for actions of G = G0 × · · · ×Gs,

Independence Score = 1− 1

s!

∑

i, j 6=i
max

a∈Gi,b∈Gj

(∣∣∣∣
z − za
||z − za||2

· z − zb
||z − zb||2

∣∣∣∣
)

. (1)

Results For comparison, we first discuss results with ForwardVAE, where cyclic representations are
known to reside in axis aligned planes. We provide in section B of the supplementary material explicit
errors for post action estimation whilst restricted to each possible axis aligned plane. Comparing
ForwardVAE with baseline VAEs, Table 1 reports mean reconstruction errors for the post action
observations xa, post action latent codes za, the estimated phase angle for cyclic representations
(against known true value α) and the independence score.

We can see that none of the standard baselines achieve reconstruction errors close to that of For-
wardVAE. Neither do we see good approximations of the true cyclic representation angles (α) in
any other model. Whilst the mean α learnt by the VAE and β-VAE are close to the ground truth,
the deviation is very large. Dip-II achieves lower error however it is still an order of magnitude
worse than ForwardVAE. This is further reflected in the independence scores of each model, with
ForwardVAE performing strongly and consistently whilst the baselines perform worse and with high
variance. These results suggests that none of the baseline models have effectively learnt a linear
disentangled representation.
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Table 1: Mean reconstruction values through learnt estimation of a cyclic representation.
Forward VAE β-VAE CC-VAE FactorVAE DIP-I DIP-II

||x̂a − xa||1 0.011±.004 0.096±.004 0.108±.020 0.093±.015 0.060±.027 0.054±.011 0.045±.013
||ẑa − za||1 0.034±.023 0.328±.029 0.255±.037 0.151±.028 1.286±.748 0.431±.140 0.270±.106
||α̂− α||1 0.009±.013 0.054±.366 0.07±.316 0.100±.297 0.260±.190 0.139±.147 0.051±.062
Indep 0.926±.063 0.791±.109 0.581±.475 0.289±.465 0.547±.362 0.655±.216 0.814±.119

Table 2: Disentanglement metrics for baseline models on Flatland and the spearman correlation of
independence score with each (italics indicate low confidence).

Beta Mod SAP MIG DCI FL Indep

Forward 1.000±.001 0.977±.002 0.301±.080 0.021±.013 0.960±.013 0.320±.003 0.989±.004
VAE 0.876±.006 0.387±.055 0.296±.161 0.044±.010 0.010±.011 0.697±.024 0.625±.167
β-VAE 0.954±.079 0.698±.239 0.620±.165 0.087±.110 0.221±.165 0.539±.239 0.808±.250
cc-VAE 0.883±.198 0.530±.356 0.475±.387 0.056±.062 0.113±.159 0.624±.211 0.542±.186
Factor 0.995±.005 0.767±.099 0.404±.056 0.084±.093 0.090±.024 0.506±.130 0.766±.079
DIP-I 0.983±.028 0.643±.109 0.558±.203 0.038±.050 0.076±.062 0.597±.109 0.894±.024
DIP-II 0.795±.146 0.292±.234 0.252±.075 0.057±.066 0.044±.071 0.762±.203 0.760±.132

Corr 0.743 0.851 0 .293 0 .180 0.864 −0.855 1.0

4 Are Linear Disentangled Representations Advantageous for Classical
Disentanglement

This section expands on the single downstream performance task evaluated by Caselles-Dupré et al.
[2019]. We evaluate models with a suite of disentanglement metrics from the literature. By Locatello
et al. [2018], it is known that not all such metrics correlate, and as such it is useful to contrast linear
disentanglement with previous understandings.

Problem Setting Flatland has two generative factors, the x and y coordinates of the agent. With
these we can evaluate standard disentanglement metrics in an effort to discern commonalities between
previous understandings. In this work we adapt the open source code of Locatello et al. [2018]
to PyTorch and evaluate using the following metrics: Higgins metric (Beta) [Higgins et al., 2017],
Mutual Information Gap (MIG) [Chen et al., 2018], DCI Disentanglement metric [Eastwood and
Williams, 2018], Modularity (Mod) metric [Ridgeway and Mozer, 2018], SAP metric [Kumar et al.,
2017b]. In addition, we evaluate two further metrics that expand on previous works: Factor Leakage
(FL) and the previously introduced Independence score.

Factor Leakage Our Factor Leakage metric is descended from the MIG metric which measures,
for each generative factor, the difference in information content between the first and second most
informative latent dimensions. Considering linear disentangled group representations are frequently of
dimension 2 or higher, this would result in low MIG scores, which would imply entanglement despite
being obviously disentangled. We extend it by measuring the information of all latent dimensions
for each generative factor (i.e. each group action). The FL metric then reports the expected area
under this curve for each action/factor. Intuitively, entangled representations encode actions over all
dimensions; the fewer dimensions the action is encoded in, the more disentangled it is considered
with respect to this metric.

Results Table 2 reports classical disentanglement metrics alongside our FL and independence
metrics with comparisons of ForwardVAE to baseline VAEs. ForwardVAE clearly results in stronger
scores with very low deviations for each metric except the SAP and MIG score. Both of which
measure the extent to which each factor is encoded in a single latent dimension. Naturally, this is
not suited to the 2 dimensional representations we expect in Flatland. Indeed, by Caselles-Dupré
et al. [2019], no action can be learnt in a single dimension on this problem. We also report the
correlation of the independence scores against all other metrics. We see quite strong correlations
with all metrics other than SAP and MIG, which both depend on single latent dimensions per factor.
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Figure 2: Schematic diagram for RGroupVAE and components. • denotes matrix vector multiplication.
Dashes denote possible paths dependent on selected action.

- Learnable module. - Loss. - Operation without parameters

From the performance of ForwardVAE and the correlation of independence and other metrics, we
can see linear disentangled representations are beneficial for classical disentanglement metrics, and
in particular it also reduces the variance in the scores dramatically.

5 Unsupervised Action Estimation

ForwardVAE explicitly requires the action at each step in order to induce linear disentangled struc-
tures in latent spaces. We now show that policy gradients allow jointly learning to estimate the
observed action alongside learning the latent representation mapping. We will then examine prop-
erties of the model such as learning over longer term action sequences and temporal consistency.
All experimental details are reported in supplementary material section A and code is available at
https://github.com/MattPainter01/UnsupervisedActionEstimation. Before introduc-
ing the model, we briefly outline the RL methods that it will utilise.

Policy Gradients Policy gradient methods will allow us to optimise through a Categorical sampling
of η-parametrised distribution p(A|ψ, s) over possible choices {A1, . . . , AN} and conditioned on
state s. The policy gradient loss in the REINFORCE [Williams, 1992] setting where action Ai
receives reward R(Ai, s) is given by,

Lpolicy =

{− log(p(Ai|ψ, s)) ·R(Ai, s) if R(Ai, s) > 0

− log(1− p(Ai|ψ, s)) · |R(Ai)| if R(Ai, s) < 0
. (2)

We find that minimising the regret R(Ai, s)−maxj R(Aj , s) instead of maximising reward provides
more stable learning for FlatLand, however the increased runtime was unacceptable for the more
complicated dSprites data, which uses standard reward maximisation. To encourage exploration we
use an ε-greedy policy or subtract the weighted entropy 0.01H(p(Ai|ψ, s)), a common technique
used by methods such as Soft Actor-Critic [Haarnoja et al., 2018].

Reinforced GroupVAE Reinforced GroupVAE (RGrVAE) is our proposed method for learning
linear disentangled representation in a VAE without the constraint of action supervision. A schematic
diagram is given in Figure 2. Alongside a standard VAE we use a small CNN (parameter ψ) which
infers from each image pair a distribution over a set of possible (learnable) representation matrices.
These matrices can be restricted to purely cyclic representations by learning solely a cyclic angle,
or they can be learnt as generic matrices. We also introduce a decay loss on each representation
towards the identity representation, since we prefer to use the minimum number of representations
possible. The policy selection distribution is sampled categorically and the chosen representation
matrix is applied to the latent code of the pre-action image with the aim of reconstructing that of the
post-action image. The policy selection network is optimised through policy gradients with entropy
regularisation to encourage exploration. Rewards are provided as a function of the pre-action latent
code z, the post action latent code za and the predicted post action code ẑa,

R(a, x, xa) = ||z − za||22 − ||ẑa − za||22 . (3)
Similar to ForwardVAE, we then train a standard VAE with the additional policy gradient loss and a
weighted prediction loss given by

Lpred = ||ẑa − za||22 , Ltotal = LVAE + Lpolicy + γLpred . (4)
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Table 3: Reconstruction errors for post action observation (x), latent (z) and representation α.

(a) FlatLand

ForwardVAE RGrVAE

||x̂a − xa||1 0.011± 0.004 0.016±0.004
||ẑa − za||1 0.034± 0.023 0.100±0.029
||α̂− α||1 0.009± 0.013 0.012±0.040

Independence 0.989±0.004 0.960±0.015

(b) dSprites

RGrVAE VAE

||x̂a − xa||1 0.008±0.005 0.010±0.000
||ẑa − za||1 0.103±0.040 0.294±0.106
||α̂− α||1 0.205±0.095 0.312±0.159

Independence 0.985±0.014 0.879±0.050

Table 4: Disentanglement Metrics for RGrVAE. We see similar scores on dSprites and FlatLand,
suggesting linear disentanglement in both cases.

Beta Mod SAP MIG DCI FL

FlatLand 1.000±0.000 0.956±0.010 0.464±0.059 0.051±0.020 0.809±0.059 0.355±0.016
dSprites 0.998±0.001 0.901±0.010 0.420±0.040 0.033±0.014 0.689±0.057 0.165±0.030

Flatland To demonstrate the effectiveness of the policy gradient network, we evaluate RGrVAE
on Flatland. We allow 4 latent dimensions and initialise 2 cyclic representations per latent pair
with random angles but alternating signs to speed up convergence. Examples of the learnt RGrVAE
actions are given in supplementary material section C. Table 3a reports reconstruction errors against
ForwardVAE. RGrVAE achieves similar error rates to ForwardVAE. The latent reconstruction,
showing the largest error is still far below the baselines (with the exception of CC-VAE, which
performs much worse on the independence score). This proves the basic premise that RGrVAE can
induce linear disentangled representations without action supervision.

dSprites Table 3b reports reconstruction errors on dSprites, with additional symmetries in scale
and rotation leading to symmetry structure G = C3 × C10 × C8 × C8. We see that the symmetry
reconstruction is an order of magnitude worse than on FlatLand which is expected since it is a
harder problem. Whilst we see similar improvements on latent reconstruction as on FlatLand, the
observation reconstruction appears much closer to the baseline. This is due to the object taking up
a significantly smaller fraction of the image in dSprites than in FlatLand, so the expected distance
between pre and post action observations is much lower. We do note that RGrVAE continues to have
highly independent representations compared to the baseline. This combined with action traversals
in Figure 3 (see supplementary material C for full traversals) and disentanglement metrics (next
paragraph) demonstrate that RGrVAE has extracted 4 symmetries, the most currently demonstrated
directly from pixels. Note from the traversals, however that the rotation symmetry learnt was C4,
which is close to the C4/C5 symmetries of the square and oval (due to the shapes being symmetric
themselves) and not C10. It is possible with additional training and learning rate annealing this
could be overcome, but likely with significantly increased runtime. We believe a comparably trained
ForwardVAE would perform similarly or better thus our comparison to a baseline in this experiment.

Classical Disentanglement Metrics Table 4 reports disentanglement metrics for RGrVAE on
FlatLand and dSprites. On FlatLand, we can see that despite removing the requirement of action
supervision, RGrVAE performs similarly to ForwardVAE (Table 2) on the Beta, Modularity, FL
and Independence metrics. The SAP score is more comparable to baseline methods, implying that
despite the high independence and low cyclic reconstruction errors, RGrVAE may rely more on single
dimensions than ForwardVAE, the DCI disentanglement is also lower and the MIG larger, which
are both consistent with this finding. Despite this, the DCI disentanglement is comparatively much
larger than baselines, which shows, with the Beta, FL and independence scores that RGrVAE does
not encode factors in solely single dimensions, instead capturing a linear disentangled representation.
We also include metrics evaluated on dSprites where we see similar scores to FlatLand. This provides
further evidence that RGrVAE learns linear disentangled representations effectively.

Longer Action Sequences By applying a chosen action and reconstructing with the result, we have
a new image pair (with the target) for which we can infer another action. Repeating this allows us to
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Figure 3: Action traversals for main actions of RGrVAE trained on dSprites. We sampled the
true actions from the dataset based on the following symmetry groups: Scale: C3, Rotation: C10,
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Figure 4: Exploring properties of RGrVAE. a) α reconstruction MSE against sequence length. b)
Estimated active number of representations in total (solid) and per action (dashed) over training for
different total available representations. c) Latent reconstruction MSE for applying actions over a
number of steps.

explore initial observation pairs which differ by more than the application of a single action. In the
limit this could remove the requirement of having sequential data, however by [Caselles-Dupré et al.,
2019], we know that this no longer guarantees linear disentanglement with respect to any particular
symmetry structure. Figure 4a reports the CN α reconstruction error, where we see that larger steps
results in gradually degraded estimation, however it is relatively consistent for a small number of steps.
Note that this does not preclude linear disentanglement, simply linear disentanglement with respect
to G = Cx × Cy is extremely unlikely. Since our measure is specific to G, linear disentanglement
with respect to other symmetry structures would not be evident from this figure.

Over Representation Recall from previous paragraphs, we introduced weight decay on the repre-
sentations (towards the identity representation) in an effort to reduce the impact of over-representation
preferring to use as few representations as possible. This is obviously desirable when the exact
symmetry structure of the dataset is unknown. In Figure 4b we plot an estimate of the number of
total/per-action active representations (N ≈ eh where h is the mean or per action entropy). Over
training we see the number of active representations decrease, towards 1 for each action but between
4 and 6 for the total. This total is higher than the ideal 4. Since for each action there is close to 1
active representation we believe it is increased by policies for different actions choosing the same
minority representation some small fraction of the time.

Temporal Consistency A desirable property of representing actions is that they remain accurate
over time - the representation isn’t degraded as we apply new actions. Figure 4c reports the latent
reconstruction error ||ẑa − za||1 as additional actions are applied. We can see that the quality of
representations degrades gradually as we add steps and indeed is only marginally worse than the error
achieved by ForwardVAE. Note that for this test, only the initial observation is provided to the model,
unlike our experiment with longer action sequences, where predicted observations are fed back into it
as it works towards a terminal observation.
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Table 5: Performance of RGrVAE under visual noises. τ is the number of epochs to 0.95 estimated
independence, representing policy network convergence.

None Gaussian Salt Backgrounds

True Indep 0.9595±0.005 0.9325±0.020 0.9329±0.011 0.9071±0.055
||α̂− α||1 0.0315±0.021 0.0278±0.010 0.0174±0.021 0.0312±0.017
τ0.95 176.0±80.2 164.33±50.2 168.67±38.6 919.0±644.2

Convergence Consistency and Robustness It is important to understand robustness of our models
and one way to do that is to measure performance under less than ideal conditions. We will introduce
different methods of visual noise to the FlatLand problem and find the conditions under which
RGrVAE does and doesn’t converge. We will first consider simple Gaussian and Salt+Pepper noises
before looking at adding complex distractors through real world backgrounds. Note that for these
tests we slightly increased the complexity of the underlying VAE by doubling the channels (to 64
from 32) for the intermediate/hidden layers (i.e. not output or input). This was since we assumed that
more complex problems would converge faster with (slightly) more complex models.

We find in Table 5 that the addition of simple noise (salt and pepper, Gaussian) did not prevent
policy convergence and results in strong independence and reconstruction scores. Whilst we see
the independence score reduced slightly by all noise types, the symmetry reconstruction remains
similar to the noiseless case. We further report the mean number of epochs to reach an estimated
independence of 0.95 (τ0.95), which represents explicitly the convergence of the policy network. Here
we can see that the simple noises did not change the convergence rate but the complex distractors
(real world noise) resulted in a order of magnitude slower convergence. We present additional data in
supplementary section B.

On consistency, we would like to highlight that we found low learning rates for the VAE and policy
network (lr ≈ 10−4) with high learning rate for the internal RGrVAE matrix representations (lr
≈ 10−2) to be very beneficial for consistent convergence (regardless of task) and generally prevented
convergence to suboptimal minima. When the learning rates are equal we observed convergence to
suboptimal minima every few runs.

6 Conclusion

Symmetry based disentangled representation learning offers a solid framework through which to
study linear disentangled representations. Reflected in classical disentanglement metrics, we have
shown empirically that such representations are beneficial and are very consistent. However, we
find that even for simple problems, linear disentangled representations are not present in classical
VAE baseline models, they require structuring the loss to favour them. Previous works achieved this
through action supervision and imposing a reconstruction loss between post action latents and their
predicted values after applying a learnt representation to the pre action latents. We introduced our
independence metric to provide a means to measure the quality of linear disentangled representations,
before introducing Reinforce GroupVAE as a means to induce these representations without explicit
knowledge of actions at every step. We show that RGrVAE prefers to learn internal representations
that reflect the true symmetry structure and ignore superfluous ones. We also find that it still performs
when observations are no longer separated by just a single action, and can model short term action
sequences, however with decreasing ability to recover the chosen symmetry due to the reduced bias.
We demonstrate its ability to learn up to 4 symmetries directly from pixels, double that demonstrated
by prior work and show that it is robust under noise and complex distractors.

Extracting linear disentangled representations is achievable when the underlying symmetry groups
can be sampled individually or in small groups. Whilst this is likely possible for video data since over
short time scales we might expect only a few actions to occur simultaneously, this may not always be
the case. We believe the end goal to be the ability to extract the simplest symmetry structure possible
by observation of the data as a whole and without prior definition of what this structure should be.
The ability to infer observed actions may be vital in such a system, and we see our work as one small
step in this direction.
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8 Broader Impact

Representation learning as a whole does have the potential for unethical applications. Disentangle-
ment if successfully applied to multi-object scenes could allow (or perhaps require, this is unclear)
segmentation/separation of individual objects and their visual characteristics. Both segmentation and
learning visual characteristics have numerous ethical and unethical uses on which we wont speculate.
For our particular work, we don’t believe understanding and encouraging linear disentangled repre-
sentations has any ethical considerations beyond the broad considerations of disentanglement work
as a whole. We do believe that routes towards reducing the degree of human annotation in data (such
as our proposed model) is beneficial for reducing human bias, although this can introduced even
by the choice of base data to train on. Unfortunately for our work (and most unsupervised work),
explicit supervision allows for more rapid convergence and consequently a lower environmental
impact, a topic which is of increasing concern especially for deep learning which leans heavily on
power intensive compute hardware.
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