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Abstract—In contrast to Part I of this treatise [1] that focuses
on the optimization problems associated with single matrix
variables, in this paper, we investigate the application of the
matrix-monotonic optimization framework in the optimization
problems associated with multiple matrix variables. It is re-
vealed that matrix-monotonic optimization still works even for
multiple matrix-variate based optimization problems, provided
that certain conditions are satisfied. Using this framework, the
optimal structures of the matrix variables can be derived and
the associated multiple matrix-variate optimization problems
can be substantially simplified. In this paper several specific
examples are given, which are essentially open problems. Firstly,
we investigate multi-user multiple-input multiple-output (MU-
MIMO) uplink communications under various power constraints.
Using the proposed framework, the optimal structures of the
precoding matrices at each user under various power constraints
can be derived. Secondly, we considered the optimization of the
signal compression matrices at each sensor under various power
constraints in distributed sensor networks. Finally, we investigate
the transceiver optimization for multi-hop amplify-and-forward
(AF) MIMO relaying networks with imperfect channel state
information (CSI) under various power constraints. At the end
of this paper, several simulation results are given to demonstrate
the accuracy of the proposed theoretical results.

Index Terms—Matrix-monotonic optimization, MIMO, multi-
ple matrix-variate optimizations.

Manuscript received May 05, 2020; revised August 27, 2020 and September
29, 2020; accepted October 22, 2020. The associate editor coordinating the re-
view of this article and approving it for publication was Prof. Stefano Tomasin.
This work was supported in part by the National Natural Science Foundation
of China under Grants 61671058, 61722104, and 61620106001, and in part
by Ericsson. This work of S. Ma was partially supported by the Science
and Technology Development Fund, Macau SAR (File no. 0036/2019/A1 and
File no. SKL-IOTSC2018-2020), and in part by the Research Committee
of University of Macau under Grant MYRG2018-00156-FST. H. V. Poor
would like to acknowledge the support of U.S. National Science Foundation
under Grant CCF-1908308. L. Hanzo would like to acknowledge the financial
support of the Engineering and Physical Sciences Research Council projects
EP/N004558/1, EP/P034284/1, EP/P034284/1, EP/P003990/1 (COALESCE),
of the Royal Society’s Global Challenges Research Fund Grant as well as
of the European Research Council’s Advanced Fellow Grant QuantCom.
(Corresponding author: Shuai Wang)

C. Xing and S. Wang are with School of Information and Electron-
ics, Beijing Institute of Technology, Beijing 100081, China. C. Xing was
with the Department of Electrical and Computer Engineering, University of
Macau, Macao S.A.R. 999078, China. (E-mails: xingchengwen@ gmail.com
swang @bit.edu.cn)

S. Chen and L. Hanzo are with School of Electronics and Computer
Science, University of Southampton, U.K. (E-mails: sqc@ecs.soton.ac.uk,
Ih@ecs.soton.ac.uk). S. Chen is also with King Abdulaziz University, Jeddah,
Saudi Arabia.

S. Ma is with the State Key Laboratory of Internet of Things for Smart
City and Department of Electrical and Computer Engineering, University of
Macau, Macao (E-mail: shaodanma@um.edu.mo).

H. V. Poor is with Department of Electrical Engineering, Princeton Uni-
versity, Princeton, NJ 08544 USA (E-mail: poor@princeton.edu).

I. MOTIVATIONS

The deployment of multi-antenna arrays opened a door
to effectively exploit spatial resources to improve energy
efficiency and spectrum efficiency [1]-[5]. Meanwhile, the
involved design variables are usually matrices instead of
simple scalars [6]-[8]. In order to solve the matrix-variate
optimization problems for MIMO communications efficiently,
the most widely used logic is first to derive the optimal
structures of the matrix variables. Then based on the optimal
structures, the considered optimization problems can be greatly
simplified [9]-[16].

Matrix-monotonic optimization is an interesting frame-
work that takes advantage of monotonic property in posi-
tive semidefinite matrix set to derive the optimal structures
of optimization variables [1], [17]-[20]. In Part I [1], we
focus our attention on single-variable optimization problems.
However, for many practical optimization problems there are
multiple matrix variates to optimize. For example, in multi-
user multiple-input multiple-output (MU-MIMO) communi-
cation systems, the transceiver optimization processes of the
downlink and uplink involve multiple matrix variables, namely
the equalizer matrices and precoder matrices [21]-[24]. For
multi-carrier MIMO systems, in each subcarrier there is a
precoder matrix and an equalizer matrix [17]. Moreover, in
multi-hop communications the forwarding matrix of each relay
has to be optimized [25], [26].

This fact inspires us to take a further step and to investi-
gate the optimization problems hinging on multiple matrix-
variables. Generally speaking, solving an optimization prob-
lem having multiple matrix-variables is more challenging
than its single matrix-variable counterpart. How to solve
this kind of optimization problems has attracted substantial
attention both across the wireless communication and sig-
nal processing research communities [21]-[23]. In contrast
to single matrix-variable optimizations, for multiple matrix-
variable optimization in most cases it is impossible to derive
the optimal solutions in closed-form. Iterative optimization
algorithms or alternating optimization algorithms have neeb
widely used to solve this kind of optimization problems [23]-
[27]. Unfortunately, there is no general-purpose mathematical
tool or framework that can cover all the kinds of optimization
problems. In some cases, similar to the single-variable case,
for multiple matrix-variable optimization first the optimal
structures of the matrix variables have to be derived, based on
which the optimization can be significantly simplified and the
corresponding convergence rate can be substantially improved.



In this paper, we investigate in detail, how to exploit the
hidden monotonicity in positive semidefinite matrix fields to
derive the optimal structures of the multiple matrix variables.
Based on the optimal structures, the optimizations of multiple
matrix variables can be significantly simplified. In our work,
it is revealed that for many optimization problems associ-
ated with multiple matrix variables, the matrix-monotonic
optimization framework still works. We also would like to
point out that the authors of [17] also investigate how to
apply matrix-monotonic optimization to optimization prob-
lems associated with multiple matrix variables. However, it
is worth highlighting that the previous contribution [17] only
considers a simple sum power constraint. By contrast, our
work in this paper is significantly different from that in [17],
since here diverse power constraints are taken into account,
such as the multiple weighted power constraints of [20], the
shaping constraint of [28], [29] and so on. Additionally, more
scenarios are also taken into account. Furthermore, in addition
to the multi-hop systems investigated in [17], in this paper, the
MU-MIMO uplink and distributed sensor networks are also
considered.

The main contributions of this paper are enumerated in the
following. These contributions distinguish our work from the
existing related works.

o Firstly, we investigate precoder optimization in the up-
link of MU-MIMO communications under three differ-
ent power constraints, namely the shaping constraint,
joint power constraint and multiple weighted power con-
straints. Based on the matrix-monotonic optimization
framework, the optimal structures of the matrix variables
can be derived. Then the optimization can be substantially
simplified and can be efficiently solved by an iterative
algorithm. In each iteration based on the optimal struc-
ture, the optimal solutions of the remaining variables are
standard water-filling solutions. We cover the precoder
optimization under per-antenna power constraint as its
special cases.

o Secondly, we investigate the signal compression matrix
optimization problem in a distributed sensor network
under the above three power constraints. For this data
fusion optimization, there exist correlations between the
signals transmitted from different sensors. This makes
the corresponding optimization problem significantly dif-
ferent from that in the MU-MIMO uplink. Moreover, in
contrast to [27], where at each sensor only the sum power
constraint is considered, in our work more general power
constraints are taken into account, namely the shaping
constraint, joint power constraint and multiple weighted
power constraints. This is our main contribution. Based
on the matrix-monotonic optimization framework, the
optimal structures of the compression matrices can be
derived and the optimal solutions of the remaining vectors
are found to correspond to water-filling solutions.

o Thirdly, we investigate the robust transceiver optimiza-
tion problem of multi-hop amplify-and-forward (AF)
cooperative MIMO networks, including both linear and
nonlinear transceivers. For the linear transceivers, various

kinds of performance metrics are taken into account,
namely the additively Schur-convex and Schur-concave
scenarios [25], [26], [30]. On the other hand, for nonlinear
transceivers, both decision feedback equalizers (DFE) and
Tomlinson-Harashima precoding (THP) are investigated.
In contrast to [28], [31], various power constraints are
taken into account in the robust transceiver optimization
instead of the simple sum power constraint. Based on
the proposed framework, the optimal structures of the
robust transceiver design can be derived, based on which
the robust transceiver optimization can be efficiently
solved. Hence our contribution fills a void in the robust
transceiver design literature of multi-hop AF MIMO
systems under multiple weighted power constraints.

The remainder of this paper is organized as follows. In
Section II, the basic properties of the framework on matrix-
monotonic optimizations are given first. Following that, the
MU-MIMO uplink is investigated in Section III. Compression
matrix optimization for distributed sensor networks is dis-
cussed based on matrix-monotonic optimization in Section I'V.
In Section V, robust transceiver optimization is proposed for
multi-hop AF MIMO relaying networks separately under shap-
ing constraints, joint power constraints and multiple weighted
power constraints. Several numerical results are given in
Section VII, Finally, the conclusions are drawn in Section VIIIL.
Notation: To be consistent with our Part I work [1], the
following notations and definitions are used throughout this
paper. The symbols Z, ZT, Tr(Z) and |Z| denote the Her-
mitian transpose, transpose, trace and determinant of matrix
Z, respectively. The matrix Z 2 is the Hermitian square root
of a positive semidefinite matrix Z, which is also a positive
semidefinite matrix. For an N X N matrix Z, the vector A(Z)
is defined as A(Z) = [M\i(Z), - ,An(Z)]T where )\;(2Z)
denotes the ith largest eigenvalue of Z. The symbol [Z]; ;
denotes the ith-row and jth-column element. On the other
hand, the symbol d(Z) denotes the vector consisting of the
diagonal elements of Z. The identity matrix is denoted by
I. In this paper, A always represents a diagonal matrix, and
A N\, and A " represent a rectangular or square diagonal
matrix with the diagonal elements in descending order and
ascending order, respectively.

II. FUNDAMENTALS OF MATRIX-MONOTONIC
OPTIMIZATION

In this paper, we investigate a real valued optimization
problem with multiple complex matrix variables {X k}szl
which is generally formulated as

Opt.1.1: min fo({X,}E ),
{ Xk}

k=1
st Yri(Xk) <0,
1<k<K,1<i< Iy, (D

where 9y, ;(-), 1 <k < K, 1 < < I}, denotes the constraint
functions. Similar to the single-variate matrix-monotonic opti-
mization investigated in Part I [1], all constraints considered in



this paper are right unitarily invariant, i.e., for arbitrary unitary
matrices Qx,’s,

Vi (XkQx,) = Vr,i (Xk) . (2)

In the following, several specific power constraints are given.
The general power constraint model is one of the main
contributions of this work.

A. The Constraints on Multiple Matrix Variables

The simplest constraint is sum power constraint, i.e., the
sum power across all transmit antennas is smaller than a
predefined threshold. For example, in MU-MIMO uplink com-
munications, each mobile terminal has a sum power constraint
such as

Tr(Xk X)) < P 3)

It is obvious that the sum power constraint is right unitarily
invariant. Moreover, in order to constrain the fluctuation of the
eigenvalues of X X!, the following joint power constraint
will be used [28], [29]

Tr( Xk X)) < Pey XXy <7l 4)

The difference between the sum power constraint and the joint
power constraint is that there is an additional maximum eigen-
value constraint. It is obvious that the joint power constraint
is right unitarily invariant.

From the circuit viewpoint, each amplifier is connected to
one distinct antenna. It is not reasonable to use the sum power
as a constraint as the powers cannot be shared between differ-
ent antennas. In other words, the individual power constraint
or per-antenna power constraint is more practical, which is
formulated as [21], [31], [32]

(XeX}'], < Pin, n=1,---,N. (5)

n,mn
The per-antenna power constraint is also right unitarily in-
variant. It is worth highlighting that the per-antenna power
constraint cannot include the sum power constraint as its
special case.

In order to build a more general constraint model including
more specific power constraints as its special cases, multiple
weighted power constraints are given in the following [1], [20]

Tr(Qi Xp X)) < Py, i=1,- 14, (©6)

where [}, is the number of weighted power constraints for the
kth variable X,. The positive semidefinite matrices €2y, ;’s are
weighting matrices. The multiple weighted power constraints
are right unitarily invariant as well.

Finally, in order to constrain the transmit signals to be in
a desired region, shaping constraint can be used. Shaping
constraint is a constraint on the covariance matrix of trans-
mitted signals. Specifically, the shaping constraint on a matrix
variable X, is defined as [28], [33]

X X} 2 Ry, )

where R, is the desired signal shaping matrix [28], [33].
The shaping constraint (7) is right unitarily invariant as well.
Under these power constraints, in the following we give the

properties which are the basis of application of the framework
of matrix-monotonic optimization.

From a mathematical perspective, the more complicated
power constraints will significantly change the feasible set
compared to that of the sum power constraint. This is because
the sum power constraint is both right unitarily invariant and
left unitarily invariant, however the general power constraints
are only right unitarily invariant. In other words, the symmetry
of sum power constraint does not exist for the general power
constraints such as multiple weighted power constraints. It
is clear that under multiple weighted power constraints the
extreme values and the optimal solutions are significantly
different from that under the sum power constraint. The
multiple weighted power constraints model also includes the
sum power constraint model as its special case. Note that the
sum power constraint model is not a special case of the per-
antenna power constraint model. One model can include two
different constraint models as its special cases. This is also an
advantage of the multiple weighted power constraints model.

B. Matrix-Monotonic Properties

The framework of matrix-monotonic optimization aims at
exploiting the monotonicity in positive semidefinite field to
derive the optimal structures of the matrix variates. As the
constraints in Opt. 1.1 are right unitarily invariant, defining
X = FrQx, Opt.1.1 is equivalent to the following opti-
mization problem

Opt.1.2: min F.Qx, K ),
P (FoQx, 1< fO({ k}k) 1)
sit. Yrq(Fy) <0,

1<k<KI1<i<I, (@)

In our work, Opt. 1.2: satisfies the following properties.

For the kth optimal unitary matrix Qx,, the objective
function in Opt.1.2 can be transferred into a function of
AFIIILF) ie.,

fo{FQx, 1) = go s AN(FITLFy)) for k=1, | K
9)

with go 1 (A(FII,F,)) being a monotonically decreasing
function with respect to A(F'IT, Fy,) for k=1,--- , K. The
optimal F}, is a Pareto optimal solution of the following vector
optimization subproblem
Opt.13: max X FEIILFy),
k
st. ri(Fr) <0, 1<i<I, (10

which is equivalent to the following matrix-monotonic opti-
mization problem [1], [17]

Opt.14: max FI1I,.F,
k

st Uri(F) <0, 1<i<I. (1)

where IIj is independent of Fj. Then, based on the results
of Part I [1], the optimal structure of F}j can be derived.
Based on the optimal structures, the optimization problem
can be substantially simplified. To elaborate a little further,



given the optimal structures, the optimization problem Opt. 1.2
associated with multiple matrix variables can be efficiently
solved in an iterative manner. It is worth noting that given
the optimal structures, an iterative algorithm is still needed
to solve Opt.1.2 and in most cases the iterative algorithms
used are iterative water-filling algorithms [53], [54]. Suffice
to say that the convergence of this kind of algorithms can
be guaranteed, but in a general case after convergence only
covergence to the local optimum of the final solutions can
be guaranteed. Based on Part I [1], in the following the
fundamental results for Opt. 1.4 are given, which constitute
the basis for the following sections.

Shaping Constraint For the shaping constraint, Opt. 1.4
becomes the following optimization problem [28]

Opt.1.5: maxp, FIIIF;
st. F,F < R, .

12)

The following lemma reveals the optimal structure of Fj, for
Opt. 1.5 with the shaping constraint.

Lemma 1 When the rank of R, is not higher than the
number of columns and the number of rows in Fy, the optimal
solution Fopi 1 of Opt. 1.5 is a square root of Ry, ie.,
Fopt,kF}II)t,k = R,,.

()

Joint Power Constraint Under the joint power constraint,
Opt. 1.4 can be rewritten as

Opt.1.6: maxp, FIIILF,
st.Tr(FLF) <Py, FFY <71

(13)

The Pareto optimal solution F . for Opt.1.6 is given in
Lemma 2.

Lemma 2 For Opt. 1.6 with the joint power constraint, the
Pareto optimal solutions satisfy the following structure

Fopixe =Un, ApUsry i (14)
where the unitary matrix Ury, is specified by the EVD
0, =Un, A, Upy, with Amy, N\, (15)

every diagonal element of the rectangular diagonal matrix
AF, is smaller than /Ty, and Uy, ), is an arbitrary unitary
matrix having the appropriate dimension.

Multiple Weighted Power Constraints Under the multi-
ple weighted power constraints, Opt. 1.4 becomes

Opt. 1.7: max Fi11,F,
k

st Tr( i FF)<Pe;1<i<I,. (16)

Note that the weighted power constraints include both the
sum power constraint and per-antenna power constraints as its
special cases. The Pareto optimal solution Fi 1 for Opt.1.7
is given in Lemma 3.

Lemma 3 The Pareto optimal solutions of Opt. 1.6 satisfy the
following structure

Fopix = 2Ug Ay Uiy, i (17)

where U,y x is an arbitrary unitary matrix of appropriate
dimension, Q) = Zfil o, Qi the nonnegative scalars
oy, i are the weighting factors that ensure that the constraints
Tr(ﬂ;m-FkF,?) < Py, hold and they can be computed by
classic subgradient methods, while the unitary matrix Uﬁk is
specified by the EVD
1 1
Q, Iy * =Ug Ag UL with Ag N\ (18)
In this paper, we focus our attention on the optimization
problems of multiple complex matrix variates. In order to over-
come the difficulties arising from the coupling relationships
among the multiple matrix variates, the right unitarily invariant
property of the constraints in Opt. 1.1 is exploited to introduce
a series of auxiliary unitary matrices. Each auxiliary unitary
matrix aligns its corresponding matrix variable to achieve
extreme objective values. As a result, the optimal solutions of
the matrix variables are Pareto optimal solutions of a series of
single-variate matrix monotonic optimization problems. Then
the optimal structure of each matrix variable can be derived,
based on which the original optimization problem can be
solved efficiently in an iterative manner. In the following,
three specific optimization problems will be investigated,
namely transceiver optimization for the multi-user MIMO
(MU-MIMO) uplink, signal compression for distributed sensor
networks and transceiver optimizations for multi-hop amplify-
and-forward (AF) MIMO relaying networks. Generally speak-
ing, an auxiliary unitary matrix aligns its lefthand side and
righthand side with its corresponding matrix variables. The
three examples are specifically chosen for characterizing the
effects of the matrix variates on the auxiliary unitary matri-
ces. Specifically, in the transceiver optimization of the MU-
MIMO uplink, when optimizing the kth matrix variate, the
other matrix variates only affect the righthand side of the
corresponding unitary matrix. As for signal compression in
distributed sensor networks, when optimizing the kth matrix
variate, the effects of other matrix variates are only on the
lefthand side of the corresponding unitary matrix. Finally, as
for transceiver optimizations in AF MIMO relaying networks,
when optimizing the kth matrix variate, the other matrix
variates affect both sides of the corresponding unitary matrix.

III. MU-MIMO UPLINK COMMUNICATIONS

The first application scenario for the matrix monotonic
optimization theory is found in MU MIMO uplink communi-
cations. In the MU MIMO uplink system of Fig. 1, K multi-
antenna aided mobile users communicate with a multi-antenna
assisted base station (BS) [34]-[37]. The BS recovers the
signals transmitted from all the K mobile terminals. The sum
rate maximization problem associated with this MU-MIMO
uplink can be formulated as follows [21], [34]-[36]

K
Opt.2.1: m;g —log |[R, + > Hy X, W, XH|,
kSk=1 k=1
st Yri(Xk) 0,1 <i < Ip, 1 <k <K,
(19)

where H}, is the MIMO channel matrix between the kth user
and the BS, X, is the precoding matrix at the kth user, and



R, is the additive noise’s covariance matrix at the BS. For the
kth user, the positive definite matrix W), is the corresponding
weighting matrix. Different from the work in [21], the power
constraints considered in our work are more general than the
per-antenna power constraints in [21]. Similar to Opt. 1.2,
defining X = FipQx,, the optimization problem (19) is
equivalent to

K
R.+ Y H.F.Qx W.Q% FIHE
kJk=1 k=1

st Upi(F) <0,1<i< 1 <k<K,

Opt.2.2: miB —log

)

(20)

The objective function of Opt. 2.2 satisfies the following prop-
erty, which can be exploited to optimize the multiplematrix

|AAA

Mobile

YYYY f ””
Base Station % Terminal

¢ o
: o
TY7Y.
Mobile
Terminal

Fig. 1. The uplink of MU-MIMO communications.

variables

K
R, + Y HiF.Qx WiQ%, F'H}!
k=1

=log ’I + H,F.Qx, W,.Q%, F'H}!

log

-1
X (Rn +ZHijQXijQ§kF}HHjH)
7k

+log|Ry + Y _H,;F;Qx,W;Q% F/'H}'
i#k
= log ’I + WiQ%, Fi'H{' K ' H.F.Qx, |+ log | Ky, |,
20

where we have

K, =R, + Z#k H;F;Qx,W,Q% FI'H'. (22)

Therefore, based on (21) for the kth matrix variate Fj
Opt. 2.2 can be written in the following equivalent formula
Opt.2.3: rr;ikn —log I+WkQ§kF,fHEKr;1HkaQXk ,

s.t. Knk:Rn+ZHJFJijW]Q§JF}HHJH,
Jj#k

d’k,?(Fk) < 057’ = 17 7Ik7'
(23)

The matrix FJ'H,'K_ 'H,F} can be interpreted as the
matrix version SNR for the kth user [31]. Based on Matrix
Inequality 4 in Part I [1], we have

log ‘I +WiQ%, Fi H!K_ 'H,F.Qx,

< log (1+ N(W)N(FUHI K, HLFy)) . (24)

The equality holds when the unitary matrix Q) x, equals

Qopt, x, = Usnr Uiy, (25)

where the unitary matrices Usnr,, and Uy, are defined based

on the following EVDs

F;CHH;I;IK;,CIHka = USNR,kASNR,kUSHNR,k with Agnr.x N\
W), = Uw, Aw, Uy, with Aw, . (26)

From the multi-objective optimization viewpoint, the optimal

solutions of Opt. 2.3 belong to the Pareto optimal solution sets
of the following optimization problems for 1 < k < K

Opt.2.4: H;?aX A (FEHEK&lHka) s
&
Knk:Rn+ZHijQXjoQEI(jF}HHij
J#k '
Yri(Fr) <0,i=1,---,I.

s.t.

27)
which is equivalent to
Opt.2.5: n};‘akx F,?HEK;}H;CF;C,
Ko =Rt S H,FQx, W,Q FIHN,
Y i(Fi) <0,i=1,---  I.

s.t.

(28)

It can be seen that by using alternating optimization al-
gorithm, the multiple-matrix-variate optimization of Opt.2.3
is transferred into the multiple single-matrix-variate matrix-
monotonic optimization of Opt.2.5. Based on Opt.2.5, the
optimal structure of F}; can be derived, and then the original
optimization problem Opt.2.2 can be solved in an iterative
manner. It is worth noting that in most cases, for the alternating
optimization algorithm, the final solutions are suboptimal. The
alternating optimization algorithm stops when the performance
improvement is smaller than a predefined threshold or the
iteration number reaches the predefined maximum value. The
convergence can be guaranteed when the subproblems are
solved with global optimality.
1) Shaping Constraint: We have I, = 1 and

VY1 (Fy) =F,F — R (29)

Sk *

Based on Lemma 1 in Section II, we readily conclude that
for 1 < k < K, when the rank of R, is not higher than the
number of columns and the number of rows in F},, the optimal
solution Fip¢ . of Opt.2.3 is a square root of Ry, .

2) Joint Power Constraint: We have [, = 2 and

V1 (Fy) = Tr(FLFE) — Py,

1/1k,2(Fk):FkaH*TkI. (30)



Based on Lemma 2 in Section II, we readily conclude that for
1 < k < K, the optimal solution F, , of Opt.2.3 satisfies
the following structure

Fopi . =V, Ar.UR 1 (1)

where the unitary matrix Vﬁk is defined based on the SVD

_1 .
K Hy =Ug Ag Vg with A \.. (32

and every diagonal element of the rectangular diagonal matrix
Ap, is smaller than /7. The diagonal matrix Ap, can be
efficiently solved using a variant water-filling algorithm [52],
[54].

3) Multiple Weighted Power Constraints: In this case, we

have
Vii(Fr) =Tr(Q i Fu FY) — Py (33)

Then based on Lemma 3 in Section II, we conclude that for

Colrflﬁi‘ms Y Y YY
X
ixi YTYY YTYY
| ; Sensor . fjlellslit(::‘
NS UL
!_X ) : Sensor

Fig. 2. Illustration of distribute sensor network.

1 <k < K, the optimal solution F; ;. of Opt.2.3 satisfies

the following structure
_1
Fopt e =2, * Vag, A g U/Ix{rb,ka (34)

where the unitary matrix V4, is defined by the following SVD

_1 _ 1
K2 HyQ, % =Us, Ay, V4, with Agq, N\, (35)
and the matrix €2}, is defined as
Iy
Q=) o (36)

The diagonal matrix A 7, can be efficiently solved using water-
filling algorithms [53].

IV. SIGNAL COMPRESSION FOR DISTRIBUTED SENSOR
NETWORKS

In the distributed sensor network illustrated in Fig. 2, the K
sensors transmit their individual signals to the fusion center
[38]-[47]. Specifically, the kth sensor transmits its signal
x), to the fusion center, when the channel between the kth
sensor and the fusion center is H},. The fusion center recovers
the transmitted signals x; for 1 < k£ < K. In contrast
to the scenario of MU-MIMO communications, there exist
correlations among xj [27], and the correlation matrix is
denoted by

(37

Note that the correlations among the signals make the opti-
mization approach of this application totally different from
that of the MU-MIMO application.

To maximize the mutual information between the received
signal at the data fusion center and the signal to estimate, the
signal compression can be formulated as Opt.3.1 [27], given
as

Opt.3.1: min — log ‘C;l

{Xk}szl
+ diag{ {XEH,?R;leka}szl} ‘

stbei (XeR3,) <0, 1<i< L1 <k <K,
(38)

where Fj, is the signal compression matrix at the kth sensor,
R,, is the covariance matrix of the signal xj transmitted
from the kth sensor, and R,,, is the covariance matrix of the
additive noise ny, for the kth sensor signal received in its own
time slot at the fusion center. Note that if all the sensors send
signals at the same frequency, all the R, are identical. If the
sensors use different frequency bands, the noise covariance
matrices R, are different.

Note that in [27], only the simple sum power constraint
is considered, while in our work the more general multiple
weighted linear power constraints are taken into account.
In other words, the result derived in this section for signal
compression in distributed sensor networks is novel.

For the general correlation matrix Cp, it is difficult to
directly decouple the optimization problem. A natural choice
is to take advantage of alternating optimization algorithms
among X for 1 < k < K. To simplify the derivation, a
permutation matrix P}, is first introduced, which reorders the
block diagonal matrix diag{{X,?H,?R;leka}le} S0
that the following equality holds

Podiag{ { X! HI'R,' Hi. X,.},_, | P!

Ny

XIHR'H; X, 0 ]
0 Er |
The computation of Pj, and the definition of = are provided
in Appendix A. The permutation matrix Py, aims at moving the
term X H R H};, X, at the top of the block diagonal ma-
trix. The permutation matrix P}, is determined by the position
of the term X EH ,?R; LH}. X}, in the block diagonal matrix

k
diag{ {XPHIR 'H, X k}szl } Note that a permutation
matrix is also a unitary matrix. By further exploiting the
properties of matrix determinants, Opt. 3.1 becomes equivalent
to Opt. 3.2 of (40).

(39)

Opt.3.2: min— log ]Pkc;lp,?

{Fk}kzl

)

+Pyding{ { XFHI' Ry, H X}, P!

stbes (XeRE,) <0, 1<i< L1 <k<K.

(40)
In order to simplify Opt. 3.2, we divide P,C, ! P! into
P, P
P, C—1PH — 1,1 1,2 ) 41
W Tk [ pP,, P, “1



Combining (39) and (41) leads to

P,C,'P + Pkoliag{{X,?H,E‘R;}Hka}f:l}PkH
_ Pl,l"’X]IC—IH]I;IR;leka- P172

P, P,y +E

Further exploiting the fundamental properties of matrix deter-
minants [27], [56], we have the following equality
Pl,l + XIIC{HIEIR;leka P1’2
P, Py o+ Ey,
= | Py + Ey|| X HY Ry H X, + 4],

T

} . (42)

(43)
where

&, =P — P o(Py2+E;) ' Py (44)

Based on (43), the alternating optimization of Fj, for 1 < k <
K can be performed. Specifically, the optimization problem
Opt. 3.2 is transferred into: for 1 < k < K,
Opt.3.3: I})l(in —log |<I>;€ + X,?HER;;H;CX;C’,
k i (45)
s.t. wkﬂ(XkRék) <0,1 << I
It can be seen that by exploiting its block diagonal struc-
ture, the multiple-matrix-variate matrix-monotonic optimiza-
tion of Opt.3.1 is transferred into several single-matrix-
variate matrix-monotonic optimization problems in the form
of Opt.3.3.
For 1 < k < K, by introducing the auxiliary variable

1

Fi.Qx, =Xy R3,, (46)
the optimization problem Opt. 3.3 is transferred into:
1 1
Opt.3.4: min — log |Re2 @) R
k
+Q%, Fi'H)'R,'H, F;.Qx,|,
stbei (F) < 0,1<i < I A7)

Based on Matrix Inequality 3 in Part I [1], we have
log | Rz’ @1 Rel +Q%, Fi ' HY' R, H, F,.Qx, |

_1 _1
< Zlog|AN—j+1(Rmk2 ®.R.’) + A\ (Fy H{' R, H.Fy)|
j

(48)
based on which the optimal unitary matrix Q x, equals [17]
Qopt, X, = USNR,kUgCRk (49)

where the unitary matrices Usnr,x and U g are defined
by the following SVD and EVD,

Fi'H\' K, ' Hi Fy, = Usng s Asnr 1 Uskr o With Asnr,i N\
1 1 _ _ o
Rmkz ‘I’ka,f = U<I>kRk A<I>kRk ngRk with A‘ﬁkRk .
(50
From the multi-objective optimization viewpoint, the opti-
mal solutions of Opt. 3.4 belong to the Pareto optimal solution

sets of the following optimization problems for 1 < k£ < K

[17]
Opt.3.5: AN(FIHER-'H,F},),
P mz:x (k k Lt g k) 1)

s.t. Q/Jkyi(Fk) S 0, 1 § 1 S Ik.

which is equivalent to the following matrix-monotonic opti-
mization problem:

Opt.3.6: max FIHIR 'H,F;,
Y F k k k kELk (52)

S.‘}Ec. wk,i(Fk) S 0, 1 § 1 S Ik.

Based on the fundamental results of the previous sections
derived for matrix-monotonic optimization, we have the fol-
lowing results. Clearly, the optimal X equals

_1
Xopt,k = 1'7‘0pt,onpt,X;c R:l:k2 . (53)
1) Shaping Constraint: We have [;; = 1 and
Vi1 (Fr) = FiF)' — Ry, (63)

Based on Lemma 2 in Section II, we have when the rank of
R, is not higher than the number of columns and the number
of rows in F}, the optimal solution Fy ;. is a square root of
R, .

2) Joint Power Constraints: We have

Vi1 (Fr) = Tr(FpFlY) — P,

V.2 (Fk) =F.F! — 7,1 (64)

Based on Lemma 2 in Section II, the Pareto optimal solutions
Fop 1 satisfy the following structure

Fopt,k = VH}«,AFkUA};Irb,k7 (65)

where every diagonal element of the rectangular diagonal
matrix Ay is smaller than /7. The diagonal matrix A
can be efficiently solved using a variant water-filling algorithm
[52], [54].

3) Multiple Weighted Power Constraints: We have

Vii (Fr) = Tr (i FiFLY) — Pe. (66)

Based on Lemma 3 in Section II, the Pareto optimal solutions
Fop 1 satisfy the following structure
R
Fopeo =, * Vo, Ap Uk ) (67)
where €2 is given by (36), while V%k is defined by the
following SVD, respectively,
_1 B VY o

Ry H S, 2 =Usp, Ay, V3, with Agg, . (68)
The diagonal matrix A 7, canbe efficiently solved using water-
filling algorithms [53], [54].

Remark 1 The results of this paper can also be applied to
more complex scenarios. For example, when the CSI between
a sensorland its data fusion center is1 imperfect, H, = Hj, +
Hy W2, where ./H\k and Hv ¥} are the estimated CSI
and the channel estimation error, respectively. The correlation
matrix Wy, is a function of both the channel estimator and
of the training sequence. Based on the proposed framework,
the optimal structures of the optimal solutions for the robust
signal compression matrices at different sensors can also be
readily derived.



TABLE 1
THE OBJECTIVE FUNCTIONS AND THE ASSOCIATED OPTIMAL FIRST UNITARY MATRICES Q1 FOR MULTI-HOP COOPERATIVE AF RELAY NETWORKS.

[| Index | Objective function || Optimal Qx, [
Obj.1 | log [®yse ({FrtE  {Qx, 15 ,,C =1)] Qopt,.x; =Va, Uy,
Obj.2 Tr(W‘I>MSE ({Fk}gzl,{QXk }5:1’0 = I)) Qopt, x; = VA1U1I/{V
Obj.3 | i (@[ ®ysn ({Freti 1, {Qx, 11, C = I)]) || Qopt.x, = Va, Uppr
Obj.4 | fi%u (@[ ®Puse ({Fili,.{Qx, i1, C=1T)]) || Qopt.x, =Va,

Obj. 5 I\C/IOEZﬁﬁr( [i’MSE ({Fk}leﬂ {ka}szl’ C)]) Qopt,x; = Va, UgMD
Obj.6 | fiSne ([ Pmse ({Frti . {Q@x, }i 1, C)]) Qopt.x;, = Va,

V. MuLTI-HOP AF MIMO RELAYING NETWORKS

Multi-hop relaying communication is one of the most im-
portant enabling technologies for future flexible and high-
throughput communications, such as machine-to-machine,
device-to-device, vehicle-to-vehicle, internet of things or satel-
lite communications [28], [48]. The key idea behind multi-
hop communications is to deploy multiple relays to realize
the communications between the source node and destination
node [48], [49]. Before presenting our third application of
transceiver optimization for multi-hop communications, we
first highlight the difference between our work presented in
this section and the previous conclusions in [28], [31].

e We consider a more general power constraint which
includes both the per-antenna power constraint in [31]
and the shaping constraints in [28] as its special cases.

o The channel estimation errors are realistically taken into
account in our work. By contrast, in [31] the CSI is
assumed to be perfectly known.

To the best of our knowledge, the robust transceiver optimiza-
tion for multi-hop communications even under the per-antenna
power constraint is still the problem not yet fully solved in
the existing literature. Therefore, the results presented in this
section is novel and significant.

The K-hop AF MIMO relaying network is illustrated in
Fig. 3, where the source, denoted as node 0, communicates
with the destination, represented by node K, with the help of
the (K — 1) relays, which are nodes 1 to (K — 1). Denote
the signal sent by the source as x(, which has the covariance
matrix of aio I. Then the signal model in the kth hop, for
1 <k < K, can be expressed as

zp =Hp Xjxp_1 + ny, (69)

where xj, is the signal received by node k, Hj, is the channel
matrix of the kth hop, and nj is the additive noise of the
corresponding link with the covariance matrix U%k I, while
X, is the forwarding matrix of node (k — 1). Note that Sy
is the source’s transmit precoding matrix. When the channel
estimation error is considered, based on a practical channel
estimation scheme [15] the CSI of the kth hop is expressed as

o~ 1
H, =H;, + Hw ¥, (70)

where H, . and Hw,klllé are the estimated CSI and the chan-
nel estimation error of the kth hop, respectively. Furthermore,
W, is the covariance matrix of the channel estimate, and
the elements of Hyy ;. follow the independent and identical
complex Gaussian distribution CA/(0, 1). For notational con-
venience, let us define the new variables F} Qx, = X, with
the associated unitary matrix Q x,, and FpQj, for 2 < k < K
as

F, =X, K3, M;_.1Q%,, (71)
where Q) is the associated unitary matrix,
1
Mk_(Knk H.F.F'H'K,> +I) : (72)
Ko, = (02 + To(BF ) ) T, (73)

1
and clearly K;j) My = 04,I. Based on these definitions, as
proved in Appendix B the MSE matrix of the data detection
at the destination is expressed as, [28], [31]

®use ({Fi iz, {Q@x, Hier: C)

H
K
_1 1~
=02, CC"-42 C (H M, *K,,> HkaQXk>
k=1

K
M, Ky HyF, c
X H k ny k kQXk.

k=1

(74)

Based on the MSE matrix given in (74), both the linear
and nonlinear transceiver optimization problems [28], [31]
can be unified into the general optimization problem Opt. 4.1
given in (75). Various objective functions typically adopted for
Opt. 4.1 are listed in Table I. For linear transceiver optimiza-
tion, to realize different levels of fairness between different
transmitted data streams, a general objective function can be
formulated as an additively Schur-convex function [31], [51]
or additively Schur-concave function [31], [51] of the diagonal
elements of the MSE matrix, which are given by Obj.3 and
Obj.4 [31], [51], respectively. The additively Schur-convex
function f28yex(-) and the additively Schur-concave function

Loagave(-) represent different levels of fairness among the
diagonal elements of the data MSE matrix. When nonlinear

transceivers are adopted for improving the BER performance

min
{F.} i {Qx, Y ,.C
s.t.

Opt4.1:

[Clii

f((I)MSE({Fk}é(:lv{QXk k= 1’0))

=1, [C]Z,

(75)
j=0for ¢ <j1<i<N.
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Fig. 3. Multi-hop cooperative AF MIMO relaying network.

at the cost of increased complexity, e.g., THP or DFE, the
objective functions of the transceiver optimization can be
formulated as a multiplicative Schur-convex function or a mul-
tiplicative Schur-concave function of the vector consisting of
the squared diagonal elements of the Cholesky-decomposition
triangular matrix of the MSE matrix, that is, Obj.5 and Obj. 6
[31], [51], respectively, where L is a lower triangular matrix.
The multiplicatively Schur-convex function fyPeyex(-) and the
multiplicatively Schur-concave function fypPeqe(-) reflect the
different levels of fairness among the different data streams,
i.e., different tradeoffs among the performance of different data
steams [17]. The detailed definitions of f{o%yex(.), feoasave(.),

Voovex(-) and fypesive(-) are given in Appendix C. This
appendix makes our work self-contained.

The constraints ¢y, ;(F)) < 0 are right unitarily invariant,
and the power constraint model of Opt.4.1 is more general
than the power constraint models considered in [17], [28], [31].

For linear transceivers with the objective functions Objs. 1-
4 in Table I, C' = I is an identity matrix, while for nonlinear
transceiver optimization with the objective functions Obj.5
and Obj.6 in Table I , C is a lower triangular matrix.
Specifically, we assume that the size of C' is N x N. Then,
for nonlinear transceivers, the optimal C' satisfies [31]

Cope =diag{{[L];;}¥, } L7,

where L is the triangular matrix of the Cholesky decomposi-
tion of the following matrix [31]

LLH :‘FIV’MSE ({Fk}f:b {QXk }é(:l)

(76)

K 1 1~ t
=02, I—02, <H M, * K’ HkaQXk>
k=1
K 1 1~
X (H Mk‘ 2I<nk2-lq-k-Fk'CzX;c> . (77)
k=1
The optimal unitary matrices @ x, can be derived based on

majorization theory. Specifically, the optimal Qj for £ > 1
are derived as [26], [28], [31]

H
QOpt,Xk :VAk UAk—l )

where the unitary matrices V4, and U,4, are defined by the
following SVDs

(78)

M, *Kn2HyFy =Ua, Aa, VA with Aa, N\, (79)

The optimal Qx, is determined by the specific objective
function, and various Q.p¢, x, associated with different ob-
jective functions are also summarized in Table I. Here, the
unitary matrix Up,, denotes an arbitrary matrix having the

appropriate dimension. The unitary matrix Uy is the unitary
matrix defined by the following EVD

W =Uw Aw Ui, with Ay . (80)

The unitary matrix yDFT is a DFT matrix [55], [56]. Finally,
the unitary matrix Ugmp ensures that the triangular matrix of
the Cholesky decomposition of ®nisk ({Fi i, {Q@x, } 1)
has the same diagonal elements [31].

Given the optimal Qop¢, x, and Cop¢, the objective function
of Opt. 4.1 can be rewritten as [28]

f (@MSE ({Fk}kI;lv {QOpt,Xk}kI’(=l7 Copt))
N(FRHUK VH, Fy)

ng

K
kl;[l 1+ N\ (FPHP K HLyFy) |
o K
éfEigen ({)\(FEﬁEKnkIHka)}kl) .

In (81) fEigen(-) is a monotonically decreasing function with
respect to the eigenvalue vector )\(FkaI\EK Ekl H ka). The
specific formula of fgigen(-) is determined by the specific

performance metrics. For example, for sum MSE minimization
fEigen(-) equals

_— K
fEigen <{)\(F]£{-/H\EKM1Hka)}k_1>

1)

I K pHIH 1 —1 717
=Y a2 (1-] NlE Hy K, IZIEF DERY (82)
= v L+ N(FUHP KL, Hy F)

In addition, for sum rate maximization fgigen(-) equals

HrH 177 K
Feige ({A(Fk HI'K,, Hka)}k_l)

zI:I (1 ﬁ )\z(FEf_I\I[an_klf_I\ka) ) (83)
= og — —— .
Pt i 1+ N(FEHIK, HL Fy)

Hence, given Qopt,x, and Cypt, Opt.4.1 is transferred into

—~ — K
fEigen ({)\(FEH]I;IKH—;Hka)} )7

Opt.4.2: min
P k 5:1
st K, = (02, + Te(FE ) ) I,
Y i(Fi) <0,1<i<I;,1<k<K.
(34)

k=1

Since the objective function of Opt.4.2 is a monotonically
decreasing function of A(FIH'K 'H}.F},), it can be de-
coupled into the following sub-problems: for 1 < k < K,

Opt.43: min A(FI'H'K;'H,Fy),
k

ny
st. Ky = (a§k+Tr(FkF,§1\Izk))I, (85)
Vri(Fr) < 0,1 <i < Iy

Clearly, Opt.4.3 is equivalent to the following matrix-
monotonic optimization problem

Opt.d.4:  min FRHPK,'H,F,
k
(86)

ny

Vr,i(Fi) <0,1 <0 < Iy

st K, = (03 + T () )1,



In this application, by exploiting its cascade structure, we are
able to transfer the associated multiple-matrix-variate matrix-
monotonic optimization problem into several single-matrix-
variate matrix-monotonic optimization problems. Based on the
fundamental results of the previous sections, we readily have
the following results.

1) Shaping Constraint: We have [;; = 1 and

Vi1 (F)

As proved in Part I, based on Lemma 1 in Section II, it
is concluded that when the rank of R, is not higher than
the number of columns and the number of rows in Fj, a
suboptimal solution F ; that maximizes a lower bound
of the objective of Opt.4.4 is a square root of R, . When
W, = 0 the lower bound is tight and then the suboptimal
solution will be the Pareto optimal solution of Opt. 4.4.
2) Joint Power Constraint: We have

Vi1 (Fy) = Tr(FFH) — Py,
@/Jk,Z(Fk :FkFE—’TkI.

As proved in Part I, based on Lemma 2 in in Section II for the
general case Wy, x I, a suboptimal solution that maximizes a
lower bound of the objective of Opt. 4.4 satisfies the following
structure

=F.F' - R,,. (87)

(88)

~ 1
PR VA . H
. 00 ¥, ? Vg Ap UR,
k:

;o (89)

W=

35 0GT 3y A AH y/H
(1= (U3 ¥, P Vg Ap A V)

where E’k = O’ I + P Wy. It is worth noting that when
W, =0 or ¥y x I the corresponding lower bound is tight.
In other words, in that case the suboptimal solution is exactly
the Pareto optimal solution of Opt.4.4. The unitary matrix

Vﬁk is the right unitary matrix of the following SVD

-

Hy (o2, I+ Pe¥y) % =Ug Ag VE with Ay N\,

a7, Ve,
(90)

and every diagonal element of the rectangular diagonal matrix
A 7 in (89) is smaller than the following threshold

\/Tk, (ng + Pk)\mm(\Ilk))/(ng + Pk)\max(\:[lk))-

The diagonal matrix Az can be efficiently solved using a
variant water-filling algorlthm [53], [54].
3) Multiple weighted power constraints: We have

Vri (Fr)

As proved in Part I, based on Lemma 3 in Section II, we
conclude that the Pareto optimal solutions Fgp 5 satisfy the
following structure

O

=Tr(Q, FyFy') — Pi. (92)

~ 1
~3 H
O ¥y * Va, Ap U

Fopt,k - 1 (93)
(1T (€, w2, * Vag A A V)
where the unitary matrix V¢, is defined by the SVD
Hk U'HkA'HkV’Hk with Aqq, N\, %94)

and the matrix €, is defined by

Q =02, ) alm(ﬂk,i + Ppi%y). 95)

The diagonal matrix A z can be efficiently solved using water-
filling algorithms [53], [54]

VI. DISCUSSIONS

In this paper, we have investigated three representative
examples for the proposed framework of multi-variable matrix-
monotonic optimization. Based on the proposed matrix-
monotonic framework, the structure of the optimal solutions
for the three largely different optimization problems can be
derived in the same logic. The distinct difference between
our work and existing work is that more general power
constraints have been taken in account. Taking more gen-
eral power constraints into account is definitely not trivial
extensions. From physical meaning perspective, the considered
optimization under more general power constraints includes
more MIMO transceiver optimizations as its special cases.
Moreover, from a mathematical viewpoint, the optimization
with more general power constraints is more challenging. It is
impossible to extend the existing results in the literature to the
conclusions given in this paper via using simple substitutions.
From convex optimization theory perspective, adding one more
constraint may not change the convexity of the considered
optimization problem. Specifically, adding one more linear
matrix inequality on a SDP problem, the resulting problem
is still a SDP problem. Adding a quadratical constraint on
a QCQP problem, the resulting problem is still a QCQP. The
story is totally different for the matrix-monotonic optimization
framework as the matrix-monotonic optimization framework
aims at deriving the structure of the optimal solutions. One
more constraint will change the feasible region of matrix
variate and significantly change the structure of the optimal
solutions. The corresponding analytical derivations will change
distinctly.

We also would like to point out that the matrix-monotonic
optimization framework is applicable to more complicated
communication systems. Recently, in [18] based on the matrix-
monotonic optimization framework, a general framework on
hybrid transceiver optimizations under sum power constraint is
proposed. Different from the fully digital MIMO systems, in a
typical hybrid MIMO system, at the source or the destination
the precoder or the receiver consists of two parts, i.e., analog
part and digital part. For the analog part, only the phase of
the signal at each antenna is adjustable. After that, in [19]
based on the matrix-monotonic optimization framework, a
framework on the transceiver optimizations for multi-hop AF
hybrid MIMO relaying systems is further proposed. In multi-
hop communications, the forwarding matrix at each relay
consists of three parts, the left analog part, the inner digital
part and the right analog part.

VII. SIMULATION RESULTS AND DISCUSSIONS
A. Two-user MIMO Uplink

We first consider the MU-MIMO uplink, where a pair of
4-antenna mobile users communicate with an 8-antenna BS.
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Fig. 4. Sum rate performance comparison between the proposed closed-form
solutions and the solutions computed by the CVX tool for the two-user MIMO
Uplink.

We define % as the SNR for the kth user, where P is the
sum transmit power of user k and o2 is the noise power at
each receive antenna of the BS. Without loss of generality, the
same maximum transmit power is assumed for all the users,
i.e., P, = P,. Based on the Kronecker correlation model
[13]-[15], the spatial correlation matrix Rgry of the BS’s
receive antennas and the spatial correlation matrix Ry j of
the kth user’s transmit antennas, where k=1,2, are specified
respectively by [RRX]Z'J — 779l and [RTx,kL_j _ le,;a\.
In the simulations, we further set (1 = 72 = 7. Three
power constraints, namely, the shaping constraint, the joint
power constraint and the per-antenna power constraints, are
considered. For the shaping constraint, the widely used Kro-
necker correlation model of [Rsk]iy. = 0.6/"77! is employed
[28]. For the joint power constraint, the threshold is chosen
as 7, = 1.4. For the per-antenna power constraints, the power
limits for the four antennas of each user are set to 1.2, 1.2,
0.8 and 0.8, respectively.

It is worth highlighting that the transceiver optimization
under these three power constraints can be transferred into
convex optimization problems, which can be solved numeri-
cally using the CVX tool [58]. This approach however suffers
from high computational complexity, especially for high di-
mensional antenna arrays. By contrast, our approach presented
in Section III provides the optimal closed-form solutions for
the same transceiver optimization design problems. Fig. 4
compares the sum rate performance as the function of the
SNR for the proposed closed-form solutions and for the
numerical optimization solutions computed by the CVX tool.
It can be seen that our closed-form solutions have an identical
performance to the solutions computed by the CVX tool.

B. Signal Compression for Distributed Sensor Networks

In this subsection, we investigate the performance of the
proposed algorithm employed for signal compression in dis-
tributed sensor networks. Specifically, the distributed sensor
network considered consists of K sensors and a data fusion

200
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n D
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Fig. 5. Mutual information performance comparisons between the proposed
algorithm and the LMMSE algorithm based on CVX for distributed sensor
networks with different numbers of sensors.

center. Each sensor is equipped with 4 antennas and the
data fusion center is equipped with 8 antennas. The per-
antenna power constraints for the four antennas of each sensor
are set to 1.2, 1.2, 0.8 and 0.8, respectively. For the signal
correlations between different sensors, the distance-dependent
correlation matrix model of [27] is adopted. Specifically, we
have Ry, , = e~dmn I for the mth sensor and the for the
nth sensor, where d,, , is the correlation between these two
sensors. In our simulations, d,, ,, is distributed uniformly be-
tween O and 1. In order to quantify the performance advantages
attained, a benchmark algorithm based on CVX is used in this
subsection. The algorithm based on CVX aims for minimizing
the weighted sum MSE under per-antenna power constraints,
which is termed as the linear minimum mean square error
(LMMSE) algorithm. In the LMMSE algorithm, the signal
compression matrices of the different sensors and the combiner
matrix at the data fusion center are optimized iteratively.
At each iteration, the optimization problem considered is a
standard QCQP problem, which can be readily solved by
CVX. Observe in Fig. 5 that the proposed algorithm always
outperforms the CVX-based benchmarker.

C. Dual-hop AF MIMO Relaying Network

A dual-hop AF MIMO relaying network is simulated, which
consists of one source, one relay and one destination. All the
nodes are equipped with 4 antennas. At the source and relay,
per-antenna power constraints are imposed. Specifically, the
power limits for the four antennas are set as 1, 1, 1 and 1, re-
spectively. The SNR in each hop is defined as the ratio between

the transmit power and the noise variance, i.e., SNRy = %.

Without loss of generality, the SNRs in the both hops are
assumed to be the same, namely, SNR; = SNR, = SNR.

In contrast to the existing works [28], [31], which consider
the transceiver optimization unrealistically with the perfect
CSI, in this paper, we focus on the robust transceiver op-
timization, which takes into account the channel estima-
tion error. In the simulations, the estimated channel ma-
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Fig. 6. Sum rate performance comparison between our proposed robust
design and the non-robust design of [31] for the dual-hop AF MIMO relaying
network.

trix is generated according to H, P = ﬁWk\Ilé [17],
where we have [‘Ilk]i,' = 0.6/"77|. The elements of ﬁw,k
are independently identically distributed Gaussian random
variables. In order to ensure that E{|[H ]” [H] Z*j} =
L V/i\,j, we /Sft ]E{[vak']i,j [vak]:,j} = o2,
E{ [vak]i,j [HW’f]r
ity, we assume 07, = 0%2 = o2. It can be seen from Fig. 6 that
our robust design achieves better sum rate performance than
the non-robust design of [31]. Furthermore, as expected, the
performance gap between the robust and non-robust designs
becomes larger as the channel estimation error increases.

and

} =1—02 . Without loss of general-

VIII. CONCLUSIONS

In this paper, we investigated the application of the frame-
work of matrix-monotonic optimization in the optimizations
with multiple matrix-variates. It is shown that when several
properties are satisfied, the framework of matrix-monotonic
optimization still works, based on which the optimal structures
of multiple matrix-variates can be derived. Then the multiple
matrix-variable optimizations can be effectively solved in
iterative manners. Three specific examples are also given in
this paper to verify the validity of the proposed multi-variable
matrix-monotonic optimization framework. Specifically, under
various power constraints, i.e., sum power constraint, shaping
constraints, joint power constraints and multiple weighted
power constraints, the transceiver optimizations for uplink
MIMO communications, the compression matrix optimizations
for distributed sensor networks, and the robust transceiver
optimizations for multi-hop AF MIMO relaying systems have
been investigated. At the end of this paper, several numerical
results demonstrated the accuracy and performance advantages
of the proposed multi-variable matrix-monotonic optimization
framework.

APPENDIX A
COMPUTATION OF Pj AND Ej,

Given the following block diagonal matrix

®— diag{{XEH,glR;;Hka}f:l} (96)
the permutation matrix Py aims at changing the orders of
the kth element X'HR_'H; X}, and the first element
XTHPR'H, X along the diagonal line. Before construct-
ing P, we first give an identity matrix I that has the same
dimensions as ®. Moreover, I can be interpreted as a block
diagonal matrix as

I= diag{{Ik}szl}

where Ij, is an identity matrix of the same dimensions as
XUPHIR'H;; X, for 1 < k < K. Moreover, I is further

Ny
divided into the following submatrices

7)

I,
Z

I= diag{{Ik}szl} - 98)

Tk
where Z;. and I, have the same row number for 1 < k < K.

Based on the above definitions of Z}’s, we have

I, L) = T, 9L = 0,for, k # j, (99)

and

I,®I) = I,9Z;, = X H{' R, H\ X, (100)
Therefore, based on (98) Pj is constructed by interchanging
Z, and Zy, i.e.,

Zy
I,

Ty
A
Tyt

P, = (101)

| Zi |

It is obvious that Pj, is a unitary matrix, i.e.,
PP} =TIand PP, =1. (102)

Based on (101) and together with (99) and (100), we have

) _ K
Pkdlag{{XEHERnleka}kzl }Pl?

Hr7H p—
= [ Xy H B H X, 0 } : (103)
0 =
where =, is the following block diagonal matrix
), = diag{®2, -, @1, @1, psr, - Bx} (104)

with ®; = XNHIR, 'H; X ;.



APPENDIX B
MSE MATRIX FOR MULTI-HOP COMMUNICATIONS

Based on the signal model given in (69), at the destination
the received signal y equals

Yy=xx =Hg XgTr 1+ng. (105)

After performing a linear equalizer G, the signal estimation
MSE matrix at the destination can be written in the following
formula [26], [28], [31]

Prse (G, { X}y, ©)

=E{(Gy — Cxy)(Gy — Cxy)"} (106)

where C' = I + B and B is a strictly lower triangular matrix
[17]. For the linear transceivers, B is a constant matrix, i.e.,
B = 0. On the other hand for the nonlinear transceivers with
THP or DFE, B corresponds to the feedback operations and
should be optimized as well [26], [28], [31]. Substituting (105)
into ®yise (G, { Xk} ;) in (106), we have

Pnisk (G, { X1, C)

= ®use({Fi i {Qx, 1o, C)

H

K

1 1~

= o2, CC" — o2 C (H M, *K,,” HkaQXk>
k=1

K
x <H M,;2K;k2f{\kaQXk> cH. (112)
k=1

APPENDIX C
FUNDAMENTAL DEFINITIONS OF MAJORIZATION THEORY

A brief introduction of majorization theory is given in this
appendix. Generally speaking, majorization theory is an im-
portant branch of matrix inequality theory [57]. Majorization
theory is a very useful mathematical tool to prove the inequal-
ities for the diagonal elements of matrices, the eigenvalues of
matrices and the singular values of matrices. Majorization the-
ory can reveal the relationships between diagonal elements and
eigenvalues, based on which some extrema can be computed.
Moreover, majorization theory can quantitatively analyze the
relationships between the eigenvalues or singular values of
matrix products and matrix additions and that of the involved

=G (fI\KXKRmKAX[%f{\I% + Tr(XKRwalXE'IIK)I> GHindividual matrices. Based on majorization theory, a rich body

K K H
e (H ﬁkxk> R,,C" — CR,, (H ﬁkxk> GH
k=1 k=1

+GR,,,G" + CR,,C", (107)

where Ry, = E{z;x!'}. The corresponding LMMSE equal-
izer GLMMSE equals

K H
Gimvse = CRy, (H Hka)

k=1
— — —1
X (HKXKREK_lXI}}HE + KHK) (108)
with
K, =Tt(XgRa, XiU)[+R,,. (109)

It is well-known that the LMMSE equalizer G yvse is the
optimal G for ®y5p (G, {Xk}szl) as [17]

Pise (G, { Xk} 1, C) = ®use(Grvuse, { Xk ey, C).
(110)

Substituting Gymse into (107), we have
Prse (G, { X ey, C)
i H
= CR,,C" - CR,, (H ﬁka>
k=1

—~ o~ —1
x (HKXKR@.HXI%HI% + KHK)

K
X (H fI\ka> R,,C". (111)
k=1

Therefore, based on the definition of F} in (71) and the
definition of M, in (72) we have

®rnise (G { Xkt ie1, C)

of useful matrix inequalities can be derived, based on which
the extrema of the matrix variate functions can be derived.
The definitions of additively Schur-convex, additively Schur-
concave, multiplicatively Schur-convex and multiplciatively
Schur-concave functions are given in the following. Mean-
while, we would like to point out that Schur-convex function
is a kind of increasing function and Schur-concave function
is a kind of decreasing function [28]. They actually have no
relationship with the traditional convex or concave properties
defined in the convex optimization theory [50].

Definition 1 ([57]) For a K x 1 vector x € RX, the (th
largest element of x is denoted as Tpg), Le., T = T[] = - =
x(). Based on this definition, for two K x 1 vectors x,y €
RE, the statement that y majorizes = additively, denoted by

T <4 vy, is defined as follows

m m K K

Zx[n] < Zy[n]; m=1,--- vK_]-vandZm[n] = Zy[n]

n=1 n=1 n=1 n=1
(113)

Definition 2 ([57]) A real function f(-) is additively Schur-
convex when the following relationship holds

f(®) < f(y) when © < y. (114)

A real function f(-) is additively Schur-concave if and only if

—f() is additively Schur-convex.

Definition 3 ([28], [51]) Given K x 1 vectors x,y € RE
with nonnegative elements, the statement that the vector y
majorizes vector x multiplicatively, denoted by x <y vy, is
defined as follows

m

m K K
H T < H Y, m=1,--- J(—l,andH Tpp] = H Yln]-
n=1 n=1 n=1

n=1 = =
(115)



Definition 4 ([28], [51]) A real function f(-) is multiplica-
tively Schur-convex when the following relationship holds

flx) < f(y) when © < y. (116)

A real function f(-) is multiplicatively Schur-concave if and
only if —f(-) is multiplicatively Schur-convex.

Generally, it is not convenient to use these definitions to
prove whether a function is Schur-convex or not. In the
following, two criteria are given, based on which we can judge
whether a function is additively Schur-convex or multiplica-
tively Schur-convex [17], [25], [26] . For a given function
f(+), according to the value order of the elements of @ the
considered function f(x) is first reformulated as

f@) =d(zpy, -

When f(x) = ¢(wp),- T — €Tpey +6000) is a
decreasing function with respect to e for e > 0 and Ty —€ >
T[41]+e, f(+) is additively Schur-convex. On the other hand,
when f(x) = ¥(xpy, -+, 2p)/e; Tpgaye, - -+ ) is a decreasing
function with respect to e for e > 1 and x[k]/e > T[hy1)€s
f(+) is multiplicatively Schur-convex.

STk Tlet1], ) (117)
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