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Abstract

Density functional theory (DFT) is often used for simulating extended materials

such as infinite crystals or surfaces, under periodic boundary conditions (PBCs). In

such calculations, when the simulation cell has non-zero charge, electrical neutrality

has to be imposed and this is often done via a uniform background charge of op-

posite sign (‘jellium’). This artificial neutralization does not occur in reality, where

1



a different mechanism is followed as in the example of a charged electrode in elec-

trolyte solution, where surrounding electrolyte screens the local charge at the interface.

The neutralizing effect of surrounding electrolyte can be incorporated within a hybrid

quantum-continuum model based on a modified Poisson-Boltzmann equation, where

the concentrations of electrolyte ions are modified to achieve electroneutrality. Among

the infinite possible ways of modifying the electrolyte charge, we propose here a phys-

ically optimal solution which minimizes the deviation of concentrations of electrolyte

ions from those in open boundary conditions (OBCs). This principle of correspondence

of PBCs with OBCs leads to the correct concentration profiles of electrolyte ions and

electroneutrality within the simulation cell and in the bulk electrolyte is maintained

simultaneously, as observed in experiments. This approach, which we call the Neutral-

ization by Electrolyte Concentration Shift (NECS), is implemented in our electrolyte

model in the onetep linear-scaling DFT code which makes use of a bespoke highly

parallel Poisson-Boltzmann solver, dl mg. We further propose another neutralization

scheme (‘accessible jellium’) which is a simplification of NECS. We demonstrate and

compare the different neutralization schemes on several examples.

1 Introduction

Density functional theory (DFT) provides valuable insights into material properties and phe-

nomena at the atomic scale starting from just the knowledge of the structural arrangement

of atoms and molecules. Due to its ab-initio nature, it is extensively used in physical and

chemical sciences to model complex material systems. The systems can be structurally very

complex such as protein-ligand systems, nanoparticles, electrode-electrolyte interfaces, etc.,

which can involve tens of thousands of atoms. Conventional DFT scales as O(N3), where

N is the number of atoms, which makes it prohibitively costly to model such large com-

plex systems. DFT has been reformulated in terms of the single particle density matrix to

scale linearly with the number of atoms as in the Order-N Electronic Total Energy Package

2



(onetep).1

Apart from structural complexity, in many applications, such as in biology, electrochem-

istry, energy conversion and storage, the systems under consideration have a net non-zero

charge. Under periodic boundary conditions, the electrostatic potential of a charged system

diverges, making it necessary to neutralize the overall charge. Traditional DFT approaches

introduce a uniform background charge (‘jellium’) to neutralize the charged system, which

introduces spurious charge densities and unphysical energies, whereas, in reality, electroneu-

trality is maintained by the surrounding electrolyte solution.

The surrounding electrolyte solution can be included mainly via explicit solvation,2

implicit solvation,3 or both.4 In the former, explicit molecules of surrounding solvent and

electrolyte are added and considered on an equal footing as the main system. The surrounding

electrolyte molecules not only neutralize but can also form bonds and adsorb on the main

system.5 More extensive models of electrode-electrolyte interfaces can also include an explicit

counter-electrode.6,7 While consideration of explicit solvent and electrolyte molecules helps in

describing local bonding effects and the local effects of electric field,8 it drastically increases

the configurational degrees of freedom. Sampling this large configurational space leads to an

increase in the computational overhead and the loss of focus on the main system.

In many cases, one is focused in the main system and only needs a mean-field neutralizing

effect of the surrounding electrolyte solution. In such a scenario, implicit models of electrolyte

solutions are useful, as they divide the system into two subsystems: an explicit quantum

subsystem whose degrees of freedom are retained, and a continuum model for surrounding

electrolyte solution which averages out the degrees of freedom of the electrolyte solution.9,10

One can retain a first solvation shell of the bonding solvent and electrolyte molecules, while

using an implicit description for the surrounding solution, to reduce computational cost,

without missing important physics. In DFT calculations the surrounding electrolyte solution

can be incorporated via These hybrid quantumatomistic-continuum models are based on

solving the Poisson-Boltzmann equation (P-BE).11 Many DFT+P-BE models have been
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developed recently.12–18

Several approaches to electroneutrality have been proposed in the literatureDFT+P-BE

models,16 amongst which the jellium approach where a uniform neutralizing background

charge is introduced to ensure electroneutrality is widely used.19 Jellium, however, does not

locally screen the charge on surfaces exposed to the electrolyte solution, and could result in

unphysical estimates of the energetics and other properties. Another approach is to mod-

ify the concentrations of Boltzmann ions in order to ensure electroneutrality. This is done

by setting the chemical potentials of Boltzmann ions to satisfy the electroneutrality con-

straint.16 Often anti-symmetric excess chemical potentials of Boltzmann ions are assumed,

an approach known as Donnan neutralization which has been found in membrane equi-

libria.20 This approach has been implemented within several DFT packages.13,16 Another

approach to electroneutrality in simulations of charged interfaces is the effective screening

method (ESM), where the boundary conditions are modified to make the slab nonperiodic

in the direction of the surface normal with the help of Green’s function.21 An alternative

way to achieve electroneutrality is to use an explicit counter-electrode,7 or an explicit layer

of adsorbed ions,5 however, this approach modifies the explicit quantum system and comes

with the cost of an increased number of atoms and their large configurational degrees of

freedom. In this study, we develop a neutralization scheme by shifting the concentration of

electrolyte ions for ensuring electroneutrality in calculations of charged periodic systems via

the Poisson-Boltzmann electrolyte model of the onetep linear-scaling DFT code.18

In this paper We present and study the properties of a model in which electroneutrality

is achieved by shifting the average concentrations of the electrolyte ions from the asymptotic

values corresponding to the open system. For a large enough simulation cell we show that

there is an optimal average concentration shift which minimizes the differences between the

space-dependent electrolyte-ion concentrations associated with periodic and open boundary

conditions. Subsequently, we show that the linear approximation of this method leads to a

new type of jellium neutralization. In the following sections we describe the background of
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the computational tools, theory, implementation details and results of tests on several finite

and extended charged extended systems.

2 Background of computational tools and methods

2.1 The ONETEP linear-scaling DFT program

The electronic structure is computed with the onetep linear-scaling DFT program,1 where

Kohn-Sham DFT has been reformulated in terms of the single particle density matrix,22

ρe(r, r
′) = φα(r)Kαβφ∗β(r′). Here the matrix K is called the ‘density kernel’, {φα} are the

localized orbitals, called the Non-orthogonal Generalized Wannier Functions (NGWFs),23

and there is implied summation over repeated Greek indices (α and β). During the com-

putation procedure, the NGWFs and the density kernel are self-consistently optimized via

two nested loops. Within these loops the electrostatic potential associated with the total

charge distribution, made up of the quantum system and the electrolyte charges, is solved for

with dl mg as described in section 2.2. The NGWFs are expressed in a basis set comprised

of periodic sinc (psinc) functions23,24 which, being equivalent to a plane wave basis set are

controlled by a single kinetic energy cutoff parameter.

We demonstrate the linear-scaling behavior of onetep on a periodic bulk graphite sys-

tem, and compare the computational time with a conventional plane-wave DFT code as

shown in Fig. 1. We clearly see linear-scaling behavior with onetep,1 and cubic-scaling

with a conventional plane wave DFT code. As evident, a large calculation of up to 20,000

atoms can be performed in less than a day’s time with linear-scaling ONETEP, while such

calculations are outside the regime of feasibility of a conventional plane-wave DFT code. This

demonstrates the suitability of ONETEP for complex material systems such as electrode-

electrolyte interfaces, protein-ligand systems, etc.
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Figure 1: Comparison of the computational time using the onetep linear-scaling DFT code
against using a conventional plane wave DFT code for periodic graphite systems with varying
number of atoms. The computations were performed on the Iridis 5 supercomputer at the
University of Southampton on 40 MPI processes with 4 OpenMP threads each (160 cores in
total).

2.2 The DL MG Poisson-Boltzmann solver library

dl mg is a bespoke parallel solver (MPI+OpenMP) for P-BE and Poisson Equation de-

scribed in detail in Refs. 25,26. dl mg has been interfaced with several other DFT packages

like castep,27 and PSI4.28 The discretization is done on a regular grid, the nonlinear P-BE

is solved with a global inexact Newton method29 and the linear Poisson-type equations are

solved with a parallel multigrid method. The higher-order corrections for the finite difference

derivatives are computed with a defect correction iterative procedure.30,31

The non-linear Boltzmann term, which is of particular interest in this paper, includes

an accessibility function that models the short range ion-solute repulsion and the chemical

potential which is needed for periodic boundary conditions as described in Ref. 18.
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3 Theory

Systems studied in this work are composed of a quantum atomistic subsystem with charge

density ρ(r) (“the solute)”32 in contact with a continuum electrolyte with p distinct ion types

with charges {zi} and space-dependent number densities {ci(r)} at temperature T , hence

the electrolyte charge density is defined by ρmob(r) =
p∑
i=1

zici(r). The relationship between

the total charge distribution and electrostatic potential ν(r) is modelled with the P-BE:

∇ · (ε(r)∇ν(r)) = −4πρtot(r) , (1)

where ε(r) is the relative permittivity and the total charge density ρtot(r) = ρ(r) + ρmob(r).

In the P-BE approach the ion concentrations follow the Boltzmann distribution

ci(r) ∝ λ(r) exp(−βziν(r)) , (2)

where β = 1/(kBT ) is the inverse temperature, kB is the Boltzmann constant, and 0 ≤ λ(r) ≤

1 is the ion accessibility function which accounts for the short range repulsion between ions

and solute. In our case, where we have a quantum description for the solute, the permittivity

function (ε(r)) depends on the electronic charge density which is part of the solute charge

distribution, see Ref. 18.

For finite volume solutes, planar or cylindrical structures the electrolyte extends to infin-

ity in at least one dimension in which the ion concentrations reach their asymptotic values

ci(r)→ c∞i , i = 1 . . . p for large |r|. Computations done on finite domains represent this type

of configurations by using open boundary conditions (OBCs) for the respective dimensions.

However, in many cases numerical computations in a finite domain (or computational cell)

of volume V are much simpler if full periodic boundary conditions (PBCs) are used. In this

section we show that one can use a correspondence condition which allows to map an OBCs

configuration of interest to a PBCs configuration to be used for computation.
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An important difference between OBCs and PBCs in systems with charges is the elec-

troneutrality condition that must be satisfied when using PBCs. This can be derived from

Eq. 1 by integrating both sides over the volume of the computational cell. The left hand

side integral can be transformed into a surface integral of ε(r)∇ν(r), which vanishes due to

the opposite signs of the surface normal on the opposite sides of the simulation cell and the

periodicity of ε(r)∇ν(r). Hence, the volume integral of the total charge density on the right

hand side must also be zero, which gives the electroneutrality condition:

ˆ

V

ρpbctot (r) dr = 0 . (3)

In PBCs, it is useful to define bulk concentration as the average electrolyte concentration

within the electrolyte accessible volume (Vacc =
´
V
λ(r) dr)

cbulki Vacc =

ˆ

V

ci(r) dr = Ni , i = 1 . . . p, (4)

For cases of electrolytes under confinement such as electrolytes in porous cavity, where

there is no contact with an external reservoir of electrolyte, the number of electrolyte

particles (Ni) is conserved. For such canonical systems, the electrolyte charge is constrained

following the “charge-conserving P-BE”.33,34 This is something which we have considered

in our previous paper also,18 by fixing the bulk concentration in PBCs. For this canonical

ensemble of electrolyte, one can minimize the free energy functional to get the concentration

for electrolyte ions:18,33,34

ci(r) = cbulki λ(r) exp(−βν(r) + βµex
i ) , i = 1 . . . p, (5)

where {µex
i } is the excess chemical potential obtained from conservation of ions in canonical

ensemble (eq. (4)). Because the electrolyte is neutral (i.e.
∑p

i zic
bulk
i = 0) one has to

compensate the solute charge in this case in order to satisfy Eq. 3. One of the most common
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solutions to this problem, borrowed from solid state physics, is to add to the system a uniform

neutralizing background charge (‘jellium’)

ρpbc-jelliumtot (r) = ρtot(r)−
1

V

ˆ

V

ρtot(r
′) dr′ . (6)

As mentioned in Sec. 1, using jellium neutralization for a system which does not have a

“natural” neutralization background could introduce spurious biases in the results. In our

previous paper where we presented our electrolyte solvent model, 18 we have shown that for

P-BE with PBCs and jellium neutralization the concentration for ion i has the form:

ci(r) = c∞i λ(r) exp(−βν(r) + βµex
i ) , i = 1 . . . p,

where {µex
i } is the electrostatic excess chemical potential determined by the following

equation:

c∞i Vacc =

ˆ

V

ci(r) dr , i = 1 . . . p,

where Vacc =
´
V
λ(r) dr is the electrolyte accessible volume.

3.1 Neutralization by electrolyte concentration shift (NECS)

Our approach is based on the following observation: In a solute-electrolyte system with

OBCs a change in the solute charge induces a response in the electrolyte which will transfer

to infinity an amount of the like charge and bring in from infinity an amount of opposite

charge through the open boundaries of the computational cell in order to reach the new

equilibrium. In the case of PBCs, if the solute charge changes, the electroneutrality condition

requires the addition of a compensating charge into the computational cell, which can be

done in several ways as discussed in Sec. 1.

An alternative, more natural approach to electroneutrality in PBCs is to add ions of
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opposite solute charge and to remove ions with like solute charge, thus mimicking the charge

transfers that take place in OBCs but with the constraint to preserve the electroneutrality

of the computational cell. The shifted ion concentrations {cbulki } must satisfy the electroneu-

trality condition which can be expressed as follows:

ˆ

V

ρmob(r) dr +

ˆ

V

ρ(r) dr = 0,

p∑
i=1

zi

ˆ

V

ci(r) dr + Zs = 0,

p∑
i=1

zic
bulk
i + Zs/Vacc = 0 . (7)

We link the shifted electrolyte average ion concentrations, {cbulki }, to the asymptotic value

of concentrations in the open system {c∞i } via the shift parameters x = {xi}:

cbulki = c∞i − xi
ZsCs
zi

, i = 1 . . . p , (8)

p∑
i=1

xi = 1 , (9)

where we introduce the solute “average concentration” defined as Cs = 1/Vacc for the sake of

a uniform notation. The constraint on {xi}, Eq. 9, ensures the electroneutrality condition∑p
i zic

bulk
i +ZsCs = 0, keeping in mind that the OBCs uniform electrolyte is neutral as well,

i.e.
p∑
i=1

zic
∞
i = 0.

There is an infinite number of combinations in which the electrolyte components can be

mixed to achieve electroneutrality. Physical intuition guides us to select the one that would

generate spatial distributions of the ion concentrations with the smallest deviation from their

OBCs counterpart. A suitable mathematical measure of the deviation between OBCs and
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PBCs is the L2 square norm of the concentration differences:

∆2 =

p∑
i=1

ˆ

V (S)

(cOBC
i (r)− cPBC

i (r))2dr (10)

taken over the volume of the computation cell in the case of a finite solute (or over the open

boundary in the case of planar structure). However, from the computational complexity point

of view this quantity is impracticable because its minimization would require repeated calls

to onetep to compute the needed concentrations at various values of the shift parameters

{xi} until ∆2 is minimized. Also, for certain configurations the OBCs solution might not be

available.

We propose an alternative way of finding the optimal shift parameters, {xi}, which can

be incorporated into the P-BE solver26 and we compare the two methods for several cases.

We start from the observation that in OBCs the concentration profiles given by the classical

Boltzmann theory:

ci(r) = c∞i λ(r) e−βziν(r), i = 1 . . . p , (11)

satisfy the following relationship:

ci(r)
1
zi

cj(r)
1
zj

=
[c∞i ]

1
zi

[c∞j ]
1
zj

(12)

in the region fully accessible to the electrolyte, where λ(r) = 1. For the PBCs case one can

use this relationship as a condition to determine the shift parameters {xi}. Using Eqs. 5

and 12 we can derive the following correspondence condition, for PBCs:

1

zi
ln

(
cbulki eβµ

ex
i

c∞i

)
=

1

zj
ln

(
cbulkj eβµ

ex
j

c∞j

)
= lnX , (13)

where X is an arbitrary positive constant. Using Eq. 8 we get for the optimal parameters
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{xi ≡ xopti }:

xi ≡ xopti =
zic
∞
i

ZsCs
(1− e−βµexi Xzi) i = 1 . . . p . (14)

The constant X can be found from Eq. 9, which can be written as follows

p∑
i

zic
∞
i e
−βµexi Xzi + ZsCs = 0 . (15)

Eq. 13 can be solved analytically in the linear approximation which is valid for small ZsCs.

Expanding the logarithm around 1 we get

xlini = −z
2
i c
∞
i

ZsCs
lnX +

βµex
i zic

∞
i

ZsCs
i = 1 . . . p , (16)

and from the constrain condition, Eq. 9, we find

lnX =

∑p
j βµ

ex
j zjc

∞
j − ZsCs∑p

j z
2
j c
∞
j

, (17)

which are combined to find the linear approximation

xlini =
z2i c
∞
i∑p

j z
2
j c
∞
j

(
1− 1

ZsCs

p∑
j

βµex
j zjc

∞
j

)
+
βµex

i zic
∞
i

ZsCs
i = 1 . . . p . (18)

The zeroth order solution can be obtained by setting

x0i =
z2i c
∞
i

p∑
j=1

z2j c
∞
j

i = 1 . . . p . (19)

We conclude this section with the following observation: Combining Eqs. 8,14 we can

write

cbulki = c∞i e
−βµexi Xzi i = 1 . . . p
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and we define νshift = − ln(X)/β to write the previous equation as follows

cbulki = c∞i e
−βziνshift−βµexi i = 1 . . . p.

This form shows that the correspondence condition described by Eqs. 12,13 is equivalent to

a potential shift in the original P-BE. Consequently, the electrolyte concentrations in PBCs

can be written as:

cPBC
i (r) = c∞i λ(r) e−βzi(ν(r)+νshift) i = 1 . . . p. (20)

Eq. 20 is similar to the method of Lagrange multipliers described in detail by Melander

et al.,16 if the excess chemical potentials are chosen to be proportional to the charge of the

electrolyte species:

µex
i = −ziνshift i = 1 . . . p. (21)

For a binary anti-symmetric electrolyte (z+ = −z−), this becomes exactly equivalent to

the formulation of anti-symmetric excess chemical potentials given by Eq. 35 of Melander

et al.,16 and Eq. 17 of Gunceler et al.13 Our approach generalizes this type of neutralization

and it establishes physical grounds through the correspondence between OBCs and PBCs.

Furthermore, our approach yields a new type of jellium neutralization as described in the

next section.

3.2 NECS for linearized P-BE

We show in the following that the linearization of the Boltzmann term with shifted concen-

trations leads to a new type of jellium neutralization and a correction to the Debye length.

We start from the linear approximation of the Boltzmann term in the electrolyte charge
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concentration:

p∑
i

λ(r) zic
bulk
i e−βziν(r)+βµ

ex
i

=

p∑
i

λ(r) zi

(
c∞i − xi

ZsCs
zi

)
e−βziν(r)+βµ

ex
i (22)

≈
p∑
i

λ(r) zi

(
c∞i − xi

ZsCs
zi

)
(1− β(ziν(r)− µex

i ))

=− ZsCsλ(r)− βλ(r)

p∑
i

z2i c
∞
i

(
1− xi

ZsCs
zic∞i

)
ν(r) , (23)

where we have used the fact that for the linearized P-BE the chemical potential can be

absorbed in the electrostatic potential by a uniform shift18 if the condition
´
V
λ(r) ν(r) dr = 0

is satisfied. The shift parameters, {xi}, are given by Eqs. 14 or 19.

We note that the integral over the computational cell of the zero order term in Eq. 23

is the solute charge −Zs, hence we can introduce the “accessible jellium” neutralization for

the solute as follows

ρpbc-acc-jelliumtot (r) = ρtot(r)− ZsCsλ(r) . (24)

The coefficient of ν(r) in Eq. 23 defines a corrected Debye length:

l−2D = 4πβ

p∑
i

z2i c
∞
i

(
1− xi

ZsCs
zic∞i

)
, (25)

which in the case of linear approximation for the shift coefficients {x0i }, Eq. 19, reads

l−2D = l−2D,OBC − 4πβZsCs

∑p
i z

3
i c
∞
i∑p

i z
2
i c
∞
i

, (26)

where l−2D,OBC = 4πβ
∑p

i z
2
i c
∞
i . The previous equation shows that the correction is exactly 0

for the two component, symmetric electrolyte (i.e., z1 + z2 = 0) , but in general the Debye

length varies as a function of the sign of Zs and the sign of the sum
∑p

i z
3
i c
∞
i .

We note that the uniform jellium neutralization, Eq. 6, is a particular case of this deriva-
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tion for which λ(r) = 1 and
∑p

i z
3
i c
∞
i = 0.

3.3 “Accessible jellium” approximation for P-BE

At this point we can analyze the relationship between NECS and the jellium neutralization

for the full P-BE. We do this by adding and subtracting the accessible jellium term in the

rhs of Eq. 1, expanding the average densities {cbulki }, and regrouping the terms as follows:

ρ(r) + λ(r)

p∑
i

zic
bulk
i e−βziν(r)+βµ

ex
i

=ρ(r)− ZsCsλ(r) + ZsCsλ(r) + λ(r)

p∑
i

(zic
∞
i − xiZsCs)e−βziν(r)+βµ

ex
i

=ρ(r)− ZsCsλ(r) + λ(r)

p∑
i

zic
∞
i e
−βziν(r)+βµexi + λ(r)ZsCs

p∑
i

xi(1− e−βziν(r)+βµ
ex
i ) (27)

=ρpbc-acc-jelliumtot + δρshift(r) ,

where

δρshift(r) = λ(r)ZsCs

p∑
i

xi(1− e−βziν(r)+βµ
ex
i ) . (28)

Eqs. 27,28 show that the rhs of the P-BE can be written as a sum of the solute charge

density (with the new accessibble jellium neutralization), the Boltzmann term which uses

the asymptotic electrolyte densities, {c∞i }, and a term that involves the concentration shifts

{xi}. As in the linear case, we note that the standard jellium neutralization can be derived

from Eq. 27 by setting λ(r) = 1 and dropping the term depending on {xi}.

Eq. 27 suggests an alternative, “accessible jellium neutralization”, in which one replaces

the term (1/V )
´
V
ρtot(r) dr of Eq. 6 with ZsCsλ(r) and neglects the term δρshift(r). Dropping

δρshift(r) is an uncontrolled approximation with respect to NECS but there are two facts that

could justify its use in certain cases: i) δρshift(r) ∝ 1/Vacc while the standard Boltzmann term

is independent of the computational cell volume, ii) | −βν(r) +βµex
i | � 1 far away from the

solute, therefore the product λ(r) (1− e−βziν(r)+βµexi ) is non-negligible only in the transition
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region between the excluded and fully accessible domains for the electrolyte ions. A practical

advantage of the accessible jellium neutralization approximation is that the computation of

the shift parameters {xi} is not needed. The validity of this approximation with respect to

NECS will be assessed for several test cases in Sec. 4.

3.4 Numerical implementation

We have implemented the NECS procedure in the P-BE solver dl mg26 as follows: after

each evaluation of the excess chemical potential the concentration shift parameters {xi} are

computed from Eq. 14, where the parameter X is found from Eq. 15. For a two-component

symmetric electrolyte (z1 + z2 = 0) Eq. 15 can be reduced to a quadratic equation. For the

remaining cases a one dimensional Newton method is used to solve it with initial guess given

by Eq. 17. The starting values of {xi} at the start of dl mg solver iterations are computed

with Eq. 19.

Besides the NECS neutralization dl mg application interface provides the user with

the option to use either of the following: linear approximation (Eq. 16), accessible jellium

neutralization (Eq. 24), or a user provided set of shift parameters {xi}.

4 Results and discussion

We compare the 3 different solute neutralization schemes that we have presented and im-

plemented here: jellium, accessible jellium and NECS. We show what effect each of these

schemes has on the concentration profiles of electrolyte in PBCs, its deviation from OBCs,

asymptotic deviations far away from the quantum system, and total free energy of the sys-

tem.
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4.1 Single K+ cation solute

We start our analysis with the simple case of a single K+ ion as the solute immersed in an

electrolyte solution with PBCs. Although this is not a natural periodic system it useful to

illustrates the correspondence of concentrations of electrolytes between PBCs and OBCs.

We place the K+ in a 0.5 M aqueous A2B-type electrolyte at 298 K at the centre of a

simulation cell of size 40 Å×40 Å×40 Å. The NGWF radius is set to 8.0 a0 (≈ 4.2 Å) and

the kinetic energy cutoff for the psinc basis set is 1000 eV. We perform this calculation

in OBCs as well as PBCs. For PBCs we examine all the three neutralization schemes:

jellium, accessible jellium and NECS. Within NECS, we show the results for arbitrary shift

parameters x = {xi} as well as for the optimal solution xopt found using Eqs. 14,15. The

concentration profiles for Boltzmann ions in OBCs and in PBCs with different neutralization

schemes are shown in Fig. 2 along a straight line with K+ at the origin. We see that in the

case of OBCs the concentration of the Boltzmann ions asymptotically reaches {c∞i } at the

faces of the box. In the case of jellium and accessible jellium, far away from the K+ ion,

the electrolyte becomes non-neutral, which is unphysical. In the case of NECS, we show

the effect of the shift parameters (x). We see that for the simple guesses x = (0, 1) or

x = (0.5, 0.5) the concentration profiles do not reach the asymptotic value of {c∞i }, and

only the optimal solution xopt yields concentrations that reach the correct asymptotic limit.

For this case xopt = (0.226, 0.774). The analytical value predicted from Eq. 18 is xlin

= (0.229, 0.771), which is quite close to the optimal solution. The zeroth order solution from

Eq. 19 is x0 = (0.333, 0.667), which is farther away from the optimal solution. We show

a direct comparison between OBCs and NECS (x = xopt) along a straight line containing

the K+ ion in Fig. 3. The similarity between the profiles of OBCs and NECS demonstrates

the principle of correspondence between the two. Even though the profiles look exactly the

same between OBC and NECS, there is a minute difference in the actual values, the total

electrolyte charge in OBCs integrates to -1.01168 e, while in NECS, it integrates to -1 e,

required to achieve electroneutrality with the quantum K+ ion.
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Figure 2: Concentration profiles for Boltzmann ions in OBCs and with different neutraliza-
tion schemes in PBCs for a K+ ion in 0.5 M A2B electrolyte. Red: positive electrolyte A.
Blue: negative electrolyte B.
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The corresponding electrostatic potential profiles are shown in Fig. 4. We note that

the electrostatic potential in OBCs reaches zero at the boundary following the asymptotic

condition (as r→∞, ν(r)→ 0, ci(r)→ c∞i ). While in NECS in PBCs there is a potential

shift, corresponding to eq. 20, which shifts the concentrations of electrolyte ions to achieve

electroneutrality. We note that the electrostatic potential is quite similar for different

neutralization schemes in this case.
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Figure 4: Electrostatic potential in OBCs and with different neutralization schemes in PBCs
for a K+ ion in 0.5 M A2B electrolyte.

The individual energy components from OBCs and from different neutralization schemes

in PBCs are shown in Table 1. We see that, energetically, the accessible jellium neutral-

ization is very similar to the neutralization by electrolyte concentration shift (NECS) and

OBCs in comparison of the electrostatic, accessibility and DFT energy components, while

jellium and accessible jellium are similar in comparison of the remaining energy compo-

nents. All three schemes have same cavitation and dispersion-repulsion energies as these

depend only upon solvent cavity and are not affected by electrolyte concentrations. We note

here that the osmotic pressure depends upon the total amount of electrolyte in PBCs (as∑
i

´
V
ci(r) dr =

∑
i Vaccc

bulk
i ), hence it is the same for jellium and accessible jellium. For

NECS, the total amount of electrolyte changes to maintain electroneutrality, while for OBCs
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the electroneutrality does not matter. Overall, the total grand potential is quite similar

between the three neutralization schemes, while it is different for OBCs, majorly due to the

difference in osmotic pressure for this finite system. With the insights obtained from the

study of electrolyte concentrations and energy components for a finite system of a single

K+ ion in electrolyte solution, we next focus on truly periodic (extended) systems such as a

graphene sheet with a Na+ atom adsorbed on it and a charged graphite slab.

Table 1: Free energy components (kcal/mol) with different schemes for charge neutrality and
their comparison with OBC

Energy Components OBC∗ Jellium Ac. Jellium NECS(xopt)

Electrostatic energy
1
2

´
V
ρpbctot (r) ν(r) dr 3525.811 3525.787 3525.814 3525.812

Accessibility repulsion energy

kBT
p∑
i=1

´
V
ci(r) lnλ(r) dr 0.025 0.024 0.025 0.025

Osmotic pressure contribution

−kBT
p∑
i=1

´
V
ci(r) dr -32.197 -34.197 -34.197 -34.293

Entropic contribution

kBT
p∑
i=1

´
V
ci(r) ln (ci(r) /c

◦) dr -7.364 -7.786 -7.786 -7.847

Chemical potential contribution

−
p∑
i=1

´
V
µici(r) dr 7.578 7.996 7.996 8.056

DFT energy -21403.450 -21403.508 -21403.476 -21403.476
Cavitation energy 5.967 5.967 5.967 5.967
Dispersion-repulsion energy -4.290 -4.290 -4.290 -4.290
Total Grand Potential (Ω) -17907.921 -17910.007 -17909.948 -17910.045

∗ Due to difference in boundary conditions in OBCs and PBCs, the finite difference multigrid is

329× 329× 329 in OBCs and 336× 336× 336 in PBCs.

4.2 Graphene with adsorbed Na+ ion

We next turn to a simple extended system – a Na+ cation adsorbed on graphene, immersed

in three electrolytes in sequence: AB, A2B, and AB2, all at a 1M concentration. The size

of the simulation cell along the graphene sheet is 17.16 Å×17.33 Å, and two different sizes

are considered in the normal direction: 31.75 Å (“smaller cell”) and 91.75 Å (“larger cell”).
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PBC are employed in all directions, making the positioning of the system along the x-y

plane irrelevant. The positioning along z, on the other hand, is relevant, since we will be

examining the electrolyte ion concentrations at the top and bottom faces of the cell. The

system is positioned with the graphene sheet in the middle of the cell height. We set the

NGWF radius to 7.0 a0 (≈ 3.7 Å) and the kinetic energy cutoff to 814 eV.

We first examine the performance of NECS with varying values of the shift parameters x.

Given that we have a two-component electrolyte, we can introduce the notation x = (x+, x−)

for the sake of brevity and work only with x+, since x− = 1− x+.

As shown in Sec. 4.1 (Fig. 2), an optimal choice of the shift parameters x (determined

from Eqs. 14,15) leads to electrolyte ion concentrations tending to their bulk values far away

from the system, while arbitrary choices result in the concentrations being shifted. We can

thus introduce a more practical measure of assessing the quality of the choice of x:

δ2 =

p∑
i=1

1

S

ˆ

S

(c∞i − cPBC
i (r))2dr, (29)

where the integration is carried out over the simulation cell faces parallel to the graphene.

Analogously, for a system extended in 1D (e.g. a nanowire), we would use four cell faces,

and for a system that is not extended (like the isolated cation studied in Sec. 4.1) we would

use all six. Of course, we retain formal 3D periodicity in all cases.

In contrast to ∆ defined by (10), the quantity δ – which is nothing else but the RMS

difference between the electrolyte ion concentrations obtained in PBCs and the desired bulk

concentration values – can be easily calculated at every energy evaluation. Having first run

a set of calculations with varying x+ (in increments of 0.01), in Fig. 5 we plot the values

of δ for the two system sizes (top and bottom panels) and the three types of electrolyte

(curves within each panel). Crosses denote optimal values determined from Eqs. 14,15. As

expected, the rms concentration difference is much smaller in the larger cell, where the faces

over which it is calculated are farther away from the system. The calculated xopt+ matches
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the actual minima of the curves to a very good accuracy (this is best seen in the insets).

We will now examine if and how the choice of the neutralization method affects the total

charge density due to the electrolyte. For the same Na+:graphene system in the smaller

cell we ran calculations using neutralization with the jellium, accessible jellium and NECS

approaches. In Fig. 6 we plot the electrolyte charge density in a 2D slice taken along the

x-z plane with the y coordinate set to that of the Na+ ion. We note the following features

of interest.

Firstly, NECS predicts a larger net anionic charge density at the point of contact of the

Na+ and graphene exclusion regions. Accessible jellium neutralization does reproduce this

to a degree, while jellium predicts smaller concentrations. This is best seen by examining the

+0.002 isocontour. Secondly, jellium and accessible jellium predict small, but measurable net

cationic charge density in the regions further away from the system. Under the convention

employed in the plot, this corresponds to regions below the graphene layer and at the top

of the plot, where isocontours with small negative values can be seen. NECS, in contrast,

predicts the net charge density to be strictly zero or anionic everywhere.

4.3 Charged graphite electrode

Finally, we test the different neutralization schemes on a model of a charged graphite elec-

trode which is exposed to the electrolyte along is edge planes, as would be expected for

the anode of a Li-ion battery. An AA-stacked H-terminated graphite slab (C240H32) with a

charge of +2 is placed in a 0.5 M AB-type electrolyte, within an orthorhombic simulation cell

of dimensions 13.763 Å×8.535 Å×77.247 Å, as shown schematically in Fig. 7. The solvent is

ethylene carbonate (EC) with a bulk permittivity of 90.7 at 308 K. We use NGWF radii of

8.0 a0 (≈ 4.2 Å) with 4 NGWFs on each C atom and a psinc basis set kinetic energy cutoff

of 1000 eV. The planar-averaged concentration profiles of Boltzmann ions (ci(z), i = ±) are

compared in Fig. 7 for jellium, accessible jellium and NECS with the optimal shift parame-

ters (xopt) found using Eqs. 14,15. We can observe a build-up of negative electrolyte (blue)
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Figure 5: RMS difference in electrolyte ion concentration, relative to the bulk concentration,
on the faces of the simulation cell parallel to the graphene sheet (lower is better). Top:
smaller cell (17.16 Å×17.33 Å×31.75 Å). Bottom: larger cell (17.16 Å×17.33 Å×91.75 Å).
Crosses denote values obtained from x+ = xopt+ .
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Figure 6: Total charge density (e/Å
3
) of electrolyte in three charge neutralization models: (a)

jellium, (b) accessible jellium, (c) NECS with x = xopt in a x-z plane cross-section through
the Na+ ion. For clarity of presentation anionic charge is shown as positive (warm colors)
and the system has been shifted to position the graphene closer to the bottom. The uniform
background charge of jellium models is not shown.
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and a depletion of positive electrolyte (red) at the graphite electrolyte interface for all three

neutralization schemes, resembling the formation of electric double layers near electrode-

electrolyte interfaces. The electrolyte concentration at the interfacial plane peaks to as high

as above 4 M in case of NECS (x = xopt), while it is around 3 M for accessible jellium and

around 2 M for jellium neutralization. Thus, NECS neutralization correctly captures the

physical process of charge storage at the interface.

In the case of jellium and accessible jellium schemes, the charged quantum system

(graphite electrode) is neutralized via a fictitious homogeneous background charge, and the

electrolyte is self neutral (cbulki = 0.5 M, i = ±), which leads to the breaking of electroneutral-

ity (
∑

i zic
∞
i 6= 0) far away in the bulk electrolyte, seen as a deviation from the green line at

extreme z values. In the case of the NECS, there is no fictitious neutralization, the electrolyte

bulk concentrations (cbulki , i = ±) are allowed to vary so as to neutralize the quantum sys-

tem (graphite electrode) and at the same time reach the correct asymptotic limit (c∞i = 0.5

M, i = ±) in the bulk electrolyte. The optimal solution for this case is xopt = (0.240, 0.760).

The analytical value predicted from the linearized Eq. 18 (xlin = (0.364, 0.636)) does not

strictly coincide with the full non-linear optimal solution (xopt). The zeroth order solution

from Eq. 19 is x0 = (0.5, 0.5), which is farther away from the optimal solution.

We compare the electrostatic potential for the three neutralization schemes in Fig. 8.

The Debye length is 4.7 Å, which is quite smaller than the size of the simulation cell (77.247

Å). From the plot, we see that the profiles of electrostatic potential for the case of accessible

jellium and NECS (x = xopt) become flat much closer to the graphite surface than the

jellium neutralization. This indicates an accumulation of counter-charge at the interface for

the NECS method, which is not seen to the same extent in jellium neutralization.

We can also compare the energy components from different neutralization schemes as

shown in Table 2. We observe that the electrostatic energy, DFT energy and the total grand

potential are very similar between accessible jellium and NECS, most likely because accessible

jellium stems out from applying NECS to linearized P-BE. However, the predictions of the
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Jellium

Accessible Jellium

Jellium

NECS (x = xopt)

Figure 7: Concentration profiles for Boltzmann-ions with different neutralization schemes for
a graphite slab with +2 charge in 0.5 M AB-type electrolyte. Colour scheme: red: positive
electrolyte A, blue: negative electrolyte B, green: asymptotic value of 0.5 M concentration.
The top and front views of AA-stacked H-terminated graphite slab (C240H32) are shown.
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Figure 8: Planar average electrostatic potential with different neutralization schemes for the
graphite slab with +2 charge in 0.5 M AB-type electrolyte.
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conventional jellium model are quite different in all the three aforementioned free energy

components. We further observe that the osmotic pressure component is identical for the

two jelliums due to same total electrolyte charge in the simulation cell (
∑

i

´
V
ci(r) dr =∑

i Vaccc
bulk
i ), whereas different for NECS as the amount of electrolyte is varied to achieve

electroneutrality.

Table 2: Free energy components (kcal/mol) with different schemes for the charged graphite-
electrolyte interface

Energy Components Jellium Acc. jellium NECS(xopt)

Electrostatic energy
1
2

´
V
ρpbctot (r) ν(r) dr 148982.432 148944.742 148944.566

Accessibility repulsion energy

kBT
p∑
i=1

´
V
ci(r) lnλ(r) dr 0.025 0.043 0.060

Osmotic pressure contribution

−kBT
p∑
i=1

´
V
ci(r) dr -2.200 -2.200 -2.836

Entropic contribution

kBT
p∑
i=1

´
V
ci(r) ln (ci(r) /c

◦) dr -1.285 -0.935 -0.462

Chemical potential contribution

−
p∑
i=1

´
V
µici(r) dr 1.778 2.126 1.456

DFT energy -1026071.506 -1025950.769 -1025950.770
Cavitation energy 30.844 30.844 30.844
Dispersion-repulsion energy -22.174 -22.174 -22.174
Total Grand Potential (Ω) -877082.087 -876998.323 -876999.316

5 Conclusions

We have developed a new scheme for DFT calculations of charged materials (e.g. electrodes)

in periodic boundary conditions (PBCs) within the Poisson-Boltzmann electrolyte model

where electrical neutrality is achieved via the electrolyte, as in real experiments. Our new

method of neutralization by electrolyte concentration shift (NECS) neutralizes the quantum

charge directly by electrolyte charge and allows the asymptotic electrolyte concentrations to
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reach their bulk values, in contrast with the commonly employed neutralization by a uniform

background charge (jellium). Our approach is based on a principle of correspondence of the

PBC concentration profiles with those under open boundary conditions that leads to the

correct asymptotic concentrations, something that we demonstrated also numerically for

the case of a K+ cation. In further tests, we systematically scanned across a range of

shifted bulk concentrations for a Na+-graphene system and showed that the NECS approach

produces the most physical results. Furthermore, the application of NECS for the linearized

P-BE led to a new kind of jellium-like neutralization within the electrolyte accessible region.

This “accessible jellium” model is an improvement over conventional jellium and simpler

to implement than NECS. All the neutralization schemes were finally tested on a charged

graphite system (a simple electrode model) which is relevant for electrochemical applications.

We have found that the jellium-based models break electroneutrality in the bulk electrolyte,

while concentration profiles obtained with NECS reach the correct asymptotic limits and

produce a realistic description of the behavior of electrolyte around charged interfaces. We

expect the NECS model, which we have implemented in the onetep linear-scaling DFT

code for large-scale DFT calculations, will enable accurate simulations in technologically

important areas such as Li-ion batteries and electrocatalysis.
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