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ABSTRACT The optical fibres widely used in telecommunication can be simultaneously used for
(distributed) sensing or fibre network self-monitoring. In our work, we monitor changes in the fibre
environment via monitoring changes in the state of light polarization without the utilization of methods
based on back-scattered light. These changes can generate a vast amount of data, but it is generally not
straightforward to extract useful information from them, e.g., future fibre break predictions or earthquake
monitoring. We suggest using machine learning to solve this problem. However, since the measured data
events are not labelled (i.e., we do not know in advance what fingerprint in themeasured data corresponds to a
future fibre break), unsupervisedmachine learningmethodsmust be used. Here, we report a proof-of-concept
approach in which we use a simple polarimetric technique and installed optical fibre, which we disturb
with controlled vibrations, knocking on the fibre, and rack door closing near the fibre. Using a machine
learning K-means algorithm, we distinguish between data generated with these controlled disturbances and
data generated by noise due to common traffic. These results are the first step along the way to automated
data labelling, which can be used for the classification of events.

INDEX TERMS Optical fibre sensors, event detection, K-means, machine learning, polarimeter.

I. INTRODUCTION
Intelligent fibre optic systems need to provide (among other
benefits) self-monitoring, which, for example, includes early
detection of future fibre breaks or detection of an intrusion.
To perform the mentioned intentions in as large a portion
of the fibre network as possible, these smart functionalities
should be provided with hardware of minimal cost.

The above effects can be monitored via measuring changes
in the properties of the light (phase, amplitude, or polariza-
tion) that propagates through the fibres, which are measured
at the receiver side [1] or in the back-reflection (e.g., [2], [3]).
The system operating in transmission has the advantage
of simplicity (often not requiring any additional compo-
nents [1]), but generally cannot provide spatially-resolved
detection (with some exceptions, e.g., the relatively com-
plex dual-wavelength method presented in [4]). Detection
systems operating via reflection (e.g., optical time-domain
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reflectometry, OTDR [5] or phase-resolved optical time-
domain reflectometry φ-OTDR [6]) can achieve spatially-
resolved detection, but generally require additional optical
hardware and must cope with the detection of extremely
low levels of the back-scattered signals. The additional hard-
ware may significantly increase the cost of the system,
e.g., φ-OTDR requires a dedicated, relatively high-power
continuous-wave (CW) light source with significant demands
on its coherence length, which must be at least twice the fibre
optical length. Such a CW light source is not only expensive:
its high power can also easily cause undesirable cross-talk
when the fibre is simultaneously used for data signals.

For practical use, any measurement technique sensitive
to fibre manipulation needs to be complemented with data
analysis that identifies events of interest, e.g., ‘tapping on the
fibre’ or ‘slow degradation of the fibre’. Such a technique
must function effectively even in the presence of ‘noise’, e.g.,
events that are not of interest (a person walking down the
corridor, playing music or talking, a truck passing on the
road, etc.).
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Methods of machine learning have recently emerged to
address the classification of measured data; however, they
have been almost-uniquely applied to back-scatter-based sys-
tems (based on OTDR or φ-OTDR) [7]–[9]. Tejedor et al. [7]
provide an overview of the application of Distributed Acous-
tic Sensing (DAS) and pattern recognition to detect poten-
tially dangerous events on gas pipelines. Makarenko [8] and
Bublin [9] both utilize deep learning techniques for data
acquired by DAS during perimeter monitoring on pipelines.
Machine learning applied to simple systems operating in
transmission has not been, to the best of our knowledge,
reported yet. For the classification, the model must be learned
from data which are already labelled. The most challenging
question is how to obtain such labels for measured data.

Here, we suggest performing automatic recognition of
the fibre changes of interest (events) from data acquired
with our cost-effective transmission-based polarization mon-
itoring method [3] using unsupervised machine learning.
To achieve this, we demonstrate the first necessary step exper-
imentally, which is grouping (clustering) data that are deemed
to correspond to the same/similar event. We suggest and use
the unsupervised machine learning algorithm K-means [10]
for this task.

Although our measurement method [3] requires additional
hardware on the receiver side (a low-cost polarization ana-
lyzer, which we describe later), it can be used in conjunction
with the extremely inexpensive transmission of amplitude-
modulated data. Thus, the overall system cost can be lower
than for techniques requiring a coherent receiver [1], where
the cost of optical hardware to transmit and detect the data
on its own is significantly higher than for simple amplitude-
modulated transmission.

Our results represent the first step towards the future auto-
mated identification of various events from the measured
data. Achieving this final goal will require training a classi-
fication model for categorization of events (i.e., to evaluate
which footprint data correspond to ‘tapping on the fibre’
and which group of data corresponds to ‘slow fibre degrada-
tion’, etc.). This will allow for the final data classification of
‘tapping on the fibre’ or ‘slow fibre degradation’ directly
from the newly measured yet unseen data.

The structure of this paper is as follows: section II describes
the experimental setup and provides definitions of the exper-
iments. The following section III aims to provide an accurate
explanation of the data processing pipeline and the utilized
algorithms. Section IV summarizes the results and explains
the estimations of the parameters for all testing scenarios.
The performance and evaluation of results are discussed in
section V, where possible future work is also mentioned.
All is concluded in the final section VI.

II. EXPERIMENTAL SETUP
We used an optical fibre polarimeter, which consists of
four polarization-sensitive fibre gratings inscribed along
a short piece of optical fibre. The light passing through
the gratings is scattered out with the scattering intensity

polarization-dependent. The four projections of the input
State Of Polarization (SOP) onto four linearly-polarized sig-
nals with the polarization axis projection defined by the polar-
ization axis of the four gratings [11] is then detected by four
InP photodiodes. Subsequently, the signals from photodiodes
are amplified with transimpedance amplifiers and digitized
using analogue-to-digital converters; for technical details,
see [11], [12].

Our experimental testbed, Fig. 1, consists of two lab-
oratories (‘A’ and ‘B’) in different buildings which are
approximately 1 km apart from each other. The installed
G.652 single-mode fibre that connects these two laboratories
is installed underground. Within the two buildings, it passes
through several rooms with switches in which the fibre is
connected. This setup thus represents a real-world scenario,
especially when compared to other reports that address pure
in-laboratory conditions, e.g., [13], [14].

FIGURE 1. Testbed schematics depict SFP C43 (Small Form-factor
Pluggable transceiver at λ = 1542.94 nm) as a light source and inline
polarimeter with 2% tap as measurement endpoint.

In laboratory A, a data signal is sent down the Fibre
Under Test (FUT) using a Small Form-factor Pluggable (SFP)
transceiver operating at 1542.94 nm (ITU channel 43). It is
detected in laboratory B with the polarimeter that samples the
signal at a fixed frequency of 20 kHz, and data are recorded
continuously with a computer.

During the measurement, we introduce controlled distur-
bances as follows:

1) A loudspeaker creating pulses of discrete frequencies
(PDF): we glued a small section of the FUT in a 2 mm
diameter protective buffer directly onto a diaphragm of a
loudspeaker. We introduced pulses of discrete frequencies
of 10, 20, 30, 40, 50, 75, 100, 200, and 500 Hz interleaved by
3-s long silences. After that, we introduced 5-s long ‘heart-
beat’ signals that consisted of repeated pairs of two signals
with 100% and 20% of loudspeaker amplitude, respectively.
The scenario PDF contains ten types of different events in
total. The overall length of the PDF sequence was 95 s.

2) Periodic closing and opening of a rack door (RACK ):
this test represents events that occur in actual operation.
It consisted of tapping on the FUT two times, followed by
closing and opening the door of the rack in which the fibre
was installed. The open-close event was performed five times
during the acquisition interval, which was approximately 44 s
long.

The experimental data were then visualized by time-
frequency 2-D maps (known as spectrograms). For each time
point (x-axis), the frequency response (y-axis) was calculated
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from the time domain data acquired over a short time interval
using Fast Fourier Transform (FFT) [15].

The FUT, which is partially buried underground, primarily
detects frequencies below 1 kHz. This is because higher fre-
quencies are strongly attenuated by most materials, including
soil [16]. We have found that most FUT detection occurs for
frequencies below 200 Hz.

Due to the fixed polarimeter sampling frequency, the reso-
lution of the time-frequency map is limited. Better frequency
resolution (larger FFT window) reduces time resolution, and
vice-versa. Time resolution that is required for data acqui-
sition depends on the duration of the disturbance events we
are monitoring. In our experiment, we chose the FFT win-
dow size of 12,288 samples, which led to a relatively low
time resolution of ∼0.625 s (1 column of the spectrogram
equals 0.625 s), which, however, was sufficient to distinguish
between two consecutive events. This choice provides excel-
lent frequency resolution, which should allow for effective
distinction between different FUT disturbances, which is the
key interest in our study.

III. DATA PROCESSING
In this section, we start with a brief description of the critical
components of the K-means algorithm. Next, the data pro-
cessing pipeline will be explained.

A. K-MEANS ALGORITHM
The K-means method allows division of measured data
(events) into K clusters, with each cluster containing exper-
imental observations that are deemed to correspond to the
same event (in our case, fibre disturbance). Finding param-
eter K is not straightforward and is generally performed
experimentally or with the help of some metric measuring
the K-means performance. We discuss our approach for K
estimation later.

The K-means algorithmworks iteratively: see Fig. 2. In the
initialization step, we place one measured data sample into
each cluster. In the first iterative step, K-means sorts the rest
of the measured data events into the K clusters based on their
similarity, which is calculated via the least-squared Euclidean
distance (mean) between the measured data event and the
cluster’s centroid. In the second iteration step, K-means
calculates new centroids of each cluster. Consequently,
the centroid represents all measured data events that are
in the cluster. The iterative process continues until there
are no more re-assignments of measured data events to the
clusters between the iterative steps. This process assigns
events of a similar nature to the same cluster. In practice,
we utilized K-means implemented with Python’s scikit.learn
package.

B. DATA PROCESSING PIPELINE
The data processing pipeline schematic is depicted in Fig. 3.
It starts with an acquired signal, which is subsequently trans-
formed into a spectrogram using FFT. Firstly, we normal-
ize the values of the spectral content to be within [0, 1]

FIGURE 2. The schematic diagram of the K-means algorithm.

FIGURE 3. The overview of the data processing pipeline. The acquired
signal is first transformed using FFT from time to frequency domain. Next,
the whole spectrogram is normalized, and the columns are used as input
vectors for the K-means algorithm.

throughout the entire spectrogram. We then describe the nor-
malized spectrogram by amatrix S, in which the spectral con-
tent of the i-th measurement sample is in the i-th column of S,
denoted as Si.
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Subsequently, we take all columns Si as input vectors for
the K-means algorithm. The initial K-means clusterization
result showed that most of the measured events (in the RACK
scenario) occurred within a single time slot of 0.625 s (cor-
responding to a single column in S). However, few measured
events were longer (in particular, from the PDF test), spread-
ing over several columns in the spectrogram. To account
for them as a single measurement event when processing
them with K-means, we pre-processed them with the unwrap
method.

This method takes the u consequent data lines and then
unwraps them to the side. We demonstrate this with the
following example:

A = [[0 0]
[1 1]
[2 2]
[3 3]
[4 4]]

B = unwrap(A, 3)
B:
[[ 0. 0. 1. 1. 2. 2.]
[ 1. 1. 2. 2. 3. 3.]
[ 2. 2. 3. 3. 4. 4.]]

After the application of unwrap to the transposed spec-
trogram, we obtain new matrix ST , which we transposed
back. Subsequently, the input vector is defined as Vi =
unwrap(ST )T i. For example, V0 = [S0, . . . , S4] for u = 5.
We used unwrap for data events during the PDF test. From

the experimental data, we estimated that each event lasted for
approximately five samples (5× 0.625 s), which is the value
we used for unwrap.
As we have mentioned earlier, establishing how many

clusters K should be used for the K-means method is non-
trivial. Sometimes, this is known, e.g., when we know how
many types of events we expect. However, when not known,
we can, for example, use learning algorithms applied to the
measured data or data extracted from them (‘meta-data’).
This approach is commonly referred to as ‘meta-learning’.
Meta-learning requires a way to evaluate the K-means clus-
tering performance, i.e., to evaluate how similar events within
the same cluster are, and how different they are in different
clusters. This is done either by a human or by using met-
rics (or an index) that quantifies the clustering performance.
There are many indices to perform this task, e.g., Silhou-
ette index [17], Davies-Bouldin [18], Calinski-Harabasz [19],
Dunn index [20], and R-squared index [21]. Establishing
which one is the most applicable to our data is beyond the
scope of this paper. Later, we will discuss how to assess their
suitability using an example of the Silhouette index.

IV. RESULTS
Table 1 summarizes the results for both use-cases, RACK and
PDF. We can see that the success rate in the RACK scenario
for K = 5 is 100 % for event identification. Still, only 6 of
7 events are assigned into the correct cluster, and at the same

TABLE 1. Result summary of both use-cases, RACK and PDF. ‘The lowest
acceptable value of K ’ row includes such K values that at least 50 % of
different events are distinguished from background. The last two rows
are evaluated with respect to the lowest acceptable K.

time, each type of event has only one assigned cluster (this
is referred to as homogeneity). Specifically, the 2nd knock is
misplaced into cluster number 2 instead of the same cluster
as the 1st knock (cluster number 1). In the PDF use-case (for
K = 8), the best event identification achieved 50% success,
and cluster homogeneity was achieved for 4 of 10 events.

FIGURE 4. Measured and normalized spectrogram for RACK testing with
corresponding K-means clusterization for different K = [2,8]. One sample
is equivalent to 0.625 s, and the total time duration is 43.75 s.

Figures 4 and 5 show normalized spectrograms of RACK
and PDF tests, respectively. They also show the K-means
clusterization results when setting K to selected values of
K = 2, 3, ..8 for the RACK test and K = 2..12 for the PDF
test, respectively.

In the RACK test, Fig. 4, we expect two knocks on the
patchcord followed by five hard closings of the rack doors.
Thus, we expect K = 3: (1) background, (2) knocking,
and (3) rack door closing. However, for K = 3, K-means
assigned two clusters (1 and 2) to the two knocks. The rack
door closing was then mistakenly identified as background
(cluster 0). It is worth noting that this discrepancy between
the algorithm output and the expected result is not due to
an error in the K-means algorithm. It only means that the
signals of the 1st and the 2nd knocks exhibit greater difference
than background versus rack closing. The lowest K value that
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FIGURE 5. Measured and normalized spectrogram of PDF test with
corresponding K-means clusterization for different K = [2,12]. One
sample is equivalent to 0.625 s, and the total time duration is 100 s. For a
clearer view, the last two rows of clustering results lack the number of
clusters.

allowed the identification of all expected events (background,
knocking, and rack closing) isK = 5: five door closing events
(cluster 0), knocking (clusters 1 and 2), and background
(cluster 3). However, cluster 4, which follows the 2nd knock,
is erroneously not evaluated as background (cluster 3).

In the PDF test, Fig. 5, we can see that the polarime-
ter is capable of capturing the frequency of the disturbance
(as we increased it from 10 through 20, 30, 40, 50, 75, 100,
200, and 500 Hz), including its harmonics. Thus, we expect
that K-means should recognize all of these events. Since we
expect nine different frequencies, heartbeat knocking, and
background, K should be 11.
For all K values from 2 to 10, K-means did not distinguish

between background and footprints of 10, 20, and 30 Hz
frequencies. Later, for K = 11 and K = 12, there is evidence
of excessive granularity in ‘silence’ segments, and only 40,
50, and 75 Hz frequencies were identified in their full length.
The two results (K = 9 and K = 10) are very similar. The
results for K = 10 identified one more cluster (number 9 for
500 Hz frequency) than the results for K = 9, where there
are also traces of excessively extensive granularity (short
intervals with cluster number 3).

Here, we decided to selectK = 8 as a trade-off between the
number (5) of correctly identified clusters for frequencies and
clear and homogeneous identification of background. The
footprints of 40, 50, 75, and 200 Hz (cluster numbers 6, 7,
5, and 4) were correctly identified. The result for K = 7 is
similar to the results for K = 8 (perhaps slightly better in the
case of the 200 Hz footprint), but it failed in the identification
of ‘heartbeat’. In our opinion, it is better to assign ‘heartbeat’

into the same cluster as 40 Hz rather than into the cluster of
background (which is what happened for K = 7). For K = 8,
in Fig. 5, we see separated clusters of blocks corresponding
to frequencies (40, 50, 75, and 200 Hz), as well as ‘heartbeat’
knocking. Unfortunately, lower frequencies of 10, 20, and
30 Hz were not identified as separate clusters. However,
we obtained good consistency in background noise identifi-
cation for one type of footprint (cluster 0).

V. DISCUSSION
In Section IV, we have found that K = 5 captured all of the
events in the RACK test, although we expected to need only
K = 3. As we have mentioned earlier, the task of finding
the optimum K , which we performed manually, should be
performed automatically in the future with the help of met-
rics or an index. We mentioned that there is a large number
of such metrics or indices. However, as we show below with
the example of the Silhouette index, a careful approach must
be adopted when using these metrics or indices.

A. SILHOUETTE INDEX
The Silhouette index ranges from −1 to +1, where a high
value indicates that events are well matched to their cluster
and poorly matched to neighbouring clusters.

TABLE 2. Silhouette index for RACK and PDF tests for various K .

Table 2 shows Silhouette index values for both experi-
ments: RACK and PDF. For RACK, the highest Silhouette
index is achieved for K = 2. As shown in Fig. 4, with
K = 2, K-means recognized only one of the two events:
it recognized all knocks, but no closings of the rack. Thus,
a metrics or index other than Silhouette must be used to
recognize both events of interest.

For the PDF test, we expected 11 clusters (9 frequencies,
background, and ‘heartbeat’), but similarly to the RACK test,
the Silhouette index is the highest for K = 2. As shown
in Table 2, there is a local maximum of the Silhouette index
at K = 10, which is slightly lower than the expected
K = 11. We speculate that the footprint of the 10 Hz signal
is too similar to the ‘background’. Analyzing local maxima
of the Silhouette index gives a K value close to what we
would expect, showing the usefulness of this index for the
PDF test.
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B. FUTURE WORK
Once the properties of clusters are established, we would
assign labels to them (e.g., knowing that cluster number
3 corresponds to events describing opening a rack with fibres,
we could label this cluster as ‘Rack opening’). The output
pairs (input vector–label) will next be used as input data
for training of machine learning classification algorithms
like Support Vector Machines, Artificial Neural Networks or
K-Nearest Neighbours (which would later place unseen data
events into different classes).

Following that, we could provide automated identification
of measured events with a classification algorithm. For prac-
tical application of classifier training, we will need at least
hundreds to thousands of labeled data. It can be expected that
the footprints of a given event will not be entirely identical
because of differences in the background noise, environment
and conditions at the specific time of occurrence. Thus,
K-means requires numerous input vectors (repeated measure-
ments of the same event) to converge a clustermean to a stable
and reliable value. In practice, the selected optical link will be
measured for a reasonably long period, and the K-means will
process the acquired data.

Our initial experiments shown here provided us with data
corresponding to limited types of events. The main advantage
of the machine learning approach is that a trained classifica-
tor is capable of rapidly evaluating new data and assigning
them into categories learned from training data, enabling
real-world events to be accommodated even with the in-lab
developed system.

VI. CONCLUSION
Our approach demonstrates the suitability of unsupervised
machine learning methods like K-means to sort measured
data with event footprints into a defined number of categories
(clusters). Subsequently, these categories can be used as tar-
get labels of data instances for training a classification model.

The key task is to find the optimum number of cate-
gories, especially when adopting methods of machine learn-
ing. We demonstrate this using the Silhouette index, which
requires careful analysis to allow for estimation of this
number.

To make this practical, it will be necessary to carry out
further steps, including the evaluation of events with respect
to the knowledge of the original event occurrences or with
learned classifiers.
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