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dubbed “modular graph forms” for closed strings. By inspecting the differential

equations and degeneration limits of suitable generating series of genus-one integrals,

we identify formal substitution rules mapping the elliptic multiple zeta values of

open strings to the modular graph forms of closed strings. Based on the properties

of these rules, we refer to them as an elliptic single-valued map which generalizes
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tree-level relations between the open and closed string.
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1 Introduction

One-loop amplitudes in string theories are computed from integrals over moduli spaces of punc-

tured genus-one world-sheets. For open and closed strings, the punctures are integrated over

a cylinder boundary and the entire torus, respectively, which is often done in a low-energy

expansion, i.e. order by order in the inverse string tension α′. The coefficients of such α′-

expansions involve special numbers and functions which have triggered fruitful interactions be-

tween number theorists, particle phenomenologists and string theorists. For instance, elliptic

polylogarithms [1, 2] and elliptic multiple zeta values (eMZVs) [3] were identified to form the

number-theoretic backbone of genus-one open-string integrals [4–6].

For the closed string, the analogous genus-one integrals involve non-holomorphic modular

forms [7–9] dubbed modular graph forms (MGFs) [10,11] which inspired mathematical research

lines [12–16]. As a unifying building block shared by open and closed strings, both eMZVs [3,17]

and MGFs [10,11,18] can be reduced to iterated integrals over holomorphic Eisenstein series, or

iterated Eisenstein integrals. Similar iterated integrals over holomorphic modular forms play a

key role in recent progress on the evaluation of Feynman integrals [19–39]. As a main result of

this work, we identify infinite families of closed-string integrals, where the appearance of iterated

Eisenstein integrals is in precise correspondence with those in open-string α′-expansions.

More specifically, we give an explicit proposal for a single-valued map at genus one, mapping

individual eMZVs to combinations of iterated Eisenstein integrals and their complex conjugates

which should be contained in Brown’s single-valued iterated Eisenstein integrals [13, 14]. This

generalizes the genus-zero result that the sphere integrals in closed-string tree amplitudes are

single-valued versions of the disk integrals in open-string tree amplitudes [40–45]. The notion

of single-valued periods [46,47] and single-valued integration [48,49] is very general, and in the

case of multiple zeta values (MZVs) amounts to evaluating single-valued polylogarithms [50] at

unit argument. While the single-valued map for the MZVs in tree-level α′-expansions has been

pinpointed in [48, 46], the genus-one studies of single-valued maps from mathematical [12–14]

and physical [51,52] viewpoints1 have not yet led to a consensus for the single-valued version of

individual eMZVs.

Our proposal for single-valued eMZVs can be seen as a correspondence between integration

cycles and antimeromorphic forms that is akin to Betti–deRham duality [57, 58, 49]. In a tree-

level context, Betti–deRham duality relates the ordering of open-string punctures on a disk

boundary to Parke–Taylor factors [40–45] – cyclic products of propagators (z̄i − z̄j)
−1 on the

sphere. As a genus-one generalization, we spell out certain antielliptic (i.e. antimeromorphic and

doubly-periodic) functions on the torus which will be referred to as the Betti–deRham duals2 of

integration cycles on a cylinder boundary.

It will be important to collect the various eMZVs and MGFs in generating series similar

to those in [59–61, 18] as the genus-one single-valued map SV is most conveniently described

1See [53–55, 16, 18, 56] for recent progress in identifying single-valued MZVs in the degeneration of dihedral

MGFs from closed-string genus-one integrals at the cusp.
2We shall use this terminology at genus one even though we are not aware of any explicitly worked out notion

of Betti–deRham duality beyond genus zero.
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open string closed string

SV
eMZV MGF

Bτ Jτ
SV

MZV svMZV

τ→i∞ τ→i∞

sv

Figure 1: Diagram illustrating the various pieces involved in constructing the proposal SV for

an elliptic single-valued map with open-string quantities on its left-hand side and closed-string

quantities on its right-hand side. The elliptic multiple zeta values (eMZV) of the open string are

repackaged in a generating series Bτ whose degeneration limit τ → i∞ contains multiple zeta

values (MZV) as they also arise in tree-level open-string scattering. The closed-string modular

graph forms (MGF) are organized in a generating series Jτ whose degeneration limit τ → i∞ is

expected to only contain single-valued multiple zeta values (svMZV) that are related to the MZV

by the known single-valued map sv. Instead of attempting a direct construction of an elliptic

SV-map from eMZV to MGF, we exploit the differential equations of the generating series Bτ

and Jτ together with their boundary values from τ → i∞ to describe the map SV at the level

of generating series, see (3.34). From this one can extract the map SV : eMZV → MGF by

inspecting individual orders in the α′-expansion.

at the level of these generating series. The α′-expansion of genus-one closed-string integrals –

using the techniques of [18] – yields an explicit form of the proposed single-valued map of the

eMZVs in open-string integrals. The open-string punctures on a cylinder boundary are ordered

according to the cycle which is Betti–deRham dual to the additional antielliptic functions in

the closed-string integrand. For the purpose of this work, it will be sufficient to place all the

open-string punctures on the same cylinder boundary which corresponds to planar genus-one

amplitudes: As will be discussed in future work, single-valued non-planar open-string integrals

yield the same collection of MGFs as the planar ones.

The main evidence for our proposal for an elliptic single-valued map stems from its con-

sistency with holomorphic derivatives in the modular parameters τ of the surfaces and the

degeneration τ → i∞ of the torus to a nodal sphere. Compatibility with the holomorphic

derivative is a simple consequence of recent results on the differential equations of genus-one

open-string integrals [59, 60] and closed-string integrals [61] in τ . Our antielliptic integrands

on the torus ensure that the closed-string differential equations match those of the open string

apart from the disappearance of ζ2 as expected from the single-valued map of MZVs. Moreover,

3



the antielliptic integrands are engineered such as to reproduce Parke–Taylor factors in the de-

generation τ → i∞. Hence, compatibility of the single-valued maps at genus zero and one is

supported by the identification of sphere integrals as single-valued disk integrals [40–45]. The

logic of our construction is illustrated in figure 1.

This work is organized as follows. We start by reviewing open- and closed-string integrals

at genus zero and genus one as well as the basic definitions of single-valued MZVs, eMZVs and

MGFs in section 2. Then, section 3 is dedicated to the modified open- and closed-string integrals

as well as their relation through our proposed single-valued map at genus one. In particular,

the central antielliptic integrands and the resulting proposal for an elliptic single-valued map

can be found in sections 3.2 and 3.5, respectively. In section 4, we set the stage for generating

explicit examples of single-valued eMZVs by introducing a new expansion method for open-string

integrals over B-cycles and relating it to similar closed-string α′-expansions. This leads to the

identifications of MGFs as single-valued eMZVs in section 5, where examples of the antielliptic

integrands are related to earlier approaches to an elliptic single-valued map in the literature.

In the concluding section 6, we comment on the relation of string amplitudes to the generating

series of this work and further directions.

2 Review of genus-zero and genus-one integrals

In this section, we collect background material on world-sheet integrals at genus zero and one,

including the genus-zero single-valued map, and review various definitions relevant to the single-

valued map at genus one.

2.1 Genus-zero integrals

We briefly review the basic disk (open-string) and sphere (closed-string) integrals for genus-zero

world-sheets and how they are related by the genus-zero single-valued map.

2.1.1 Definitions of disk and sphere integrals

Massless tree-level n-point amplitudes of the open superstring [62] and the open bosonic string

[63] can be expanded in a basis of iterated integrals [64]

Ztree(γ|ρ) =

∫

D(γ)

(∏n
j=1 dzj

)

vol SL2(R)

n∏

1≤i<j

|zij |
−sijPT(ρ(1, 2, . . . , n)) (2.1)

over the boundary of a disk which we parametrize through the real line

D(γ) = {zj ∈ R, −∞ < zγ(1) < zγ(2) < . . . < zγ(n) < ∞} . (2.2)

The disk integrands involve dimensionless Mandelstam invariants

sij = −
α′

2
ki · kj , k2j = 0 (2.3)
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and Parke–Taylor factors (with zij = zi−zj)

PT(ρ(1, 2, . . . , n)) =
1

zρ(1)ρ(2)zρ(2)ρ(3) . . . zρ(n)ρ(1)
. (2.4)

The inverse vol SL2(R) in (2.1) instructs to set any triplet of punctures to 0, 1,∞, where the

SL2(R) invariance of genus-zero integrands hinges on momentum conservation
∑n

j=1 kj = 0.

Both the domains and the Parke–Taylor integrands are indexed via permutations γ, ρ ∈ Sn of

the external legs 1, 2, . . . , n. One can arrive at smaller bases of (n−3)! cycles γ and Parke–Taylor

orderings ρ via monodromy relations [65,66] and integration by parts [62,64], respectively.

Closed-string tree amplitudes in turn can be reduced to sphere integrals

J tree(γ|ρ) =
1

πn−3

∫

Cn−3

(∏n
j=1 d

2zj
)

vol SL2(C)

n∏

1≤i<j

|zij |
−2sijPT(γ(1, 2, . . . , n))PT(ρ(1, 2, . . . , n)) (2.5)

involving permutations γ, ρ ∈ Sn of meromorphic and antimeromorphic Parke–Taylor factors

subject to the same integration-by-parts relations as in the open-string case.

2.1.2 Single-valued map between disk and sphere integrals

The disk and sphere integrals (2.1) and (2.5) converge for a suitable range of the Re(sij) and they

admit a Laurent expansion in α′, i.e. around the value sij = 0 of the dimensionless Mandelstam

invariants (2.3). The coefficients in the α′-expansions of disk integrals Ztree are MZVs [67,68],

ζn1,n2,...,nr =
∑

0<k1<k2<...<kr

k−n1
1 k−n2

2 . . . k−nr
r , nr ≥ 2 (2.6)

whose weight n1 + n2 + . . . + nr matches the order in α′ beyond the low-energy limit (i.e.

beyond the leading order in α′). The polynomial structure of the Ztree in sij can for instance

be generated from the Drinfeld associator [69] or Berends–Giele recursions [70], with explicit

results available for download from [71,72].

When applying the single-valued map [48,46] of motivic [73] MZVs3

sv ζ2k = 0 , sv ζ2k+1 = 2ζ2k+1 , sv ζ3,5 = −10ζ3ζ5 , etc. (2.7)

order by order in α′, the disk and sphere integrals (2.1) and (2.5) are related by [40–45]

J tree(γ|ρ) = svZtree(γ|ρ) . (2.8)

The first permutation γ in Ztree and J tree refers to a disk ordering (2.2) and an antimeromorphic

Parke–Taylor factor (2.4), respectively, which are connected by a Betti–deRham duality [57,58,

49]. The key result of this work is to identify similar pairs of cycles and antimeromorphic

functions at genus one.

3Strictly speaking, MZVs need to be replaced by their motivic versions to have a well-defined single-valued map.
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Figure 2: Parametrization of the torus T = C
Z+τZ with identifications z ∼= z+1 ∼= z+τ marked by

|| along the A- and B-cycles. While the torus is drawn for non-vanishing Re(τ) to accommodate

closed-string amplitudes, the cylinder world-sheets for open-string amplitudes are derived from

tori at τ ∈ iR+ via suitable involutions [74].

2.2 Genus-one integrals

As a preparation for our proposal of a genus-one single-valued map, we now introduce the basic

genus-one world-sheet integrals and the objects appearing in their α′-expansion.

2.2.1 Genus-one open-string A-cycle integrals

In the same way as disk integrals can be cast into a Parke–Taylor-type basis (2.1), the basis

integrals for massless genus-one open-string amplitudes are claimed to be generated by [59,60]

Zτ
~η (γ|ρ) =

∫

A(γ)

( n∏

j=2

dzj

)
ϕτ
~η(1, ρ(2, . . . , n))

n∏

1≤i<j

esijGA(zij ,τ) , (2.9)

where we have set z1 = 0 by translation invariance. In this work we restrict to planar amplitudes

with all state insertions on a single cylinder boundary (as opposed to non-planar amplitudes

with punctures on both boundaries of the cylinder). We do not impose momentum conservation

in a genus-one context and treat all the sij with 1 ≤ i < j ≤ n as independent. The ordering of

the open-string punctures on a cylinder boundary is encoded in an integration domain on the

A-cycle of a torus (see figure 2 for the standard parametrization) with τ ∈ iR+ [74]

A(γ) = {zj ∈ R, 0 < zγ(2) < zγ(3) < . . . < zγ(n) < 1} , (2.10)

with similar integration domains [75] for the non-planar open-string integrals.

The integrand of (2.9) features the open-string Green function on an A-cycle (which is chosen

to enforce GA(z, τ) = GA(−z, τ) and
∫ 1
0 dz GA(z, τ) = 0 [51,76])

GA(z, τ) = − log
(θ1(|z|, τ)

η(τ)

)
+

iπτ

6
+

iπ

2
, z ∈ (−1, 1) (2.11)
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and the following combination of the doubly-periodic Kronecker–Eisenstein series [77]

Ω(z, η, τ) = exp
(
2πiη

Im z

Im τ

)θ′1(0, τ)θ1(z+η, τ)

θ1(z, τ)θ1(η, τ)
(2.12)

ϕτ
~η(1, 2, . . . , n) = Ω(z12, η23...n, τ)Ω(z23, η3...n, τ) · · ·Ω(zn−1,n, ηn, τ) (2.13)

with ηij...k = ηi+ηj+ . . .+ηk.
4 The permutation ρ ∈ Sn−1 in ϕτ

~η(1, ρ(2, . . . , n)) is taken to act on

both the zj and the formal expansion variables ηj ∈ C in (2.13). The conjectural basis (2.9) is a

generating function of the world-sheet integrals over the Kronecker–Eisenstein coefficients f (w)

Ω(z, η, τ) =
∞∑

w=0

ηw−1f (w)(z, τ) (2.14)

that occur in the integrands of genus-one open- and closed-string amplitudes [78,4, 52], e.g.

f (0)(z,τ) = 1 , f (1)(z,τ) = ∂z log θ1(z,τ) + 2πi
Im z

Im τ
. (2.15)

While the massless four-point genus-one amplitude of the open superstring [79] is proportional

to the most singular η−3
j -order of Zτ

~η (·|1, 2, 3, 4), the analogous amplitude of the open bosonic

string additionally involves contributions of Zτ
~η (·|1, 2, 3, 4) (and its permutations in 2, 3, 4) at

the orders of η±1
j [75]5. The short-distance behavior f (1)(z, τ) = 1

z +O(z) introduces kinematic

poles into the α′-expansion of (2.9), and the remaining f (w 6=1)(z, τ) are regular for any z ∈ C.

2.2.2 Genus-one closed-string integrals

In the same way as (2.9) is claimed to be a universal basis of genus-one open-string integrals,

the integrals over the torus punctures for massless genus-one amplitudes in type II, heterotic

and bosonic string theories should be generated by [61]

Y τ
~η (γ|ρ) = (2i)n−1

∫

Tn−1

( n∏

j=2

d2zj

) n∏

1≤i<j

esijGT(zij ,τ)ϕτ
~η(1, γ(2, . . . , n)|τ)ϕ

τ
(τ−τ̄ )~η(1, ρ(2, . . . , n))

(2.16)

with z1 = 0. The remaining zj are integrated over the torus T = C
τZ+Z

with modular parameter

τ ∈ H = {τ ∈ C, Im τ > 0}. The closed-string Green function

GT(z, τ) = − log

∣∣∣∣
θ1(z, τ)

η(τ)

∣∣∣∣
2

+
2π(Im z)2

Im τ
(2.17)

4Our conventions for the standard odd Jacobi theta function are

θ1(z, τ ) = q
1/8(eiπz − e

−iπz)
∞
∏

n=1

(1− q
n)(1− e

2πiz
q
n)(1− e

−2πiz
q
n)

and η(τ ) is the Dedekind eta function. In order to avoid confusion with the later expansion parameters ηj , we

always spell out the argument τ of the Dedekind eta function. Representations of the open-string Green function

in terms of elliptic polylogarithms are discussed in [4, 5, 51], and we follow the conventions of [4] for regularizing

endpoint divergences.
5By using Fay identities and integration by parts, the massless four-point genus-one amplitude of open bosonic

strings in section 8.1.1 of [75] can be rewritten in terms of the coefficients in the ηj-expansion of Zτ
~η (·|1, 2, 3, 4).
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is chosen to be modular invariant and to obey
∫
T
d2z GT(z, τ) = 0, and its holomorphic derivatives

parallel those of the open-string Green function GA(z, τ) in (2.11),

∂zGT(z, τ) = −f (1)(z, τ) , 2πi∂τGT(uτ+v, τ) = −f (2)(uτ+v, τ) (fixed u, v)

∂vGA(v, τ) = −f (1)(v, τ) , 2πi∂τGA(v, τ) = −f (2)(v, τ)− 2ζ2 , (2.18)

where u, v ∈ R parametrize the covering space of the torus and the f (w)(z, τ) with z = uτ + v

are defined by (2.15). The second arguments (τ−τ̄)ηj and η̄j of the Kronecker–Eisenstein series

and their complex conjugates in (2.16) have been chosen such that each order in the ηj- and

α′-expansion gives rise to modular forms of purely antiholomorphic modular weight6.

When assembling genus-one amplitudes of open and closed strings from the series Zτ
~η and

Y τ
~η , it remains to dress the component integrals in their ηj-expansions with kinematic factors

that carry the dependence on the external polarizations. The latter are determined from the

conformal-field-theory correlators of the vertex operators, see e.g. [80,81], and unaffected by our

proposal for the single-valued map at genus one.

2.2.3 Differential equations in τ

Based on the differential equations (2.18) of the Green functions and integration by parts in the

zj , the open- and closed-string integrals (2.9) and (2.16) were shown in [60] and [61] to obey the

differential equations

2πi∂τZ
τ
~η (γ|ρ) =

∞∑

k=0

(1−k)Gk(τ)
∑

α∈Sn−1

r~η(ǫk)ρ
αZτ

~η (γ|α) (2.19)

2πi∂τY
τ
~η (γ|ρ) =

∞∑

k=0

(1−k)(τ−τ̄)k−2Gk(τ)
∑

α∈Sn−1

R~η(ǫk)ρ
αY τ

~η (γ|α) ,

respectively. The right-hand sides involve holomorphic Eisenstein series G0 = −1 and

Gk(τ) =
∑

m,n∈Z

(m,n) 6=(0,0)

1

(mτ + n)k
, k ≥ 4 (2.20)

as well as (n−1)! × (n−1)! matrices r~η(ǫk), R~η(ǫk) independent of τ that vanish for k = 2 and

k ∈ 2N−1. This means in particular that G2(τ) does not appear in (2.19).

The two-point instances are

rη2(ǫ0) = s12

(
1

η22
+ 2ζ2 −

1

2
∂2
η2

)

rη2(ǫk) = Rη2(ǫk) = s12η
k−2
2 , k ≥ 4 (2.21)

Rη2(ǫ0) = s12

(
1

η22
−

1

2
∂2
η2

)
− 2πiη̄2∂η2 .

6Functions F (τ ) on the upper half plane with transformations F (ατ+β
γτ+δ

) = (γτ + δ)w(γτ̄ + δ)w̄F (τ ) under

( α β
γ δ ) ∈ SL2(Z) are said to carry holomorphic and antiholomorphic modular weight w and w̄, respectively.
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The notation ǫk reflects the expectation that the r~η(ǫk), R~η(ǫk) are matrix representations of

Tsunogai’s derivation algebra [82] and obey relations such as (see [83,84,17] for similar relations

at higher weight and depth)

[r~η(ǫ10), r~η(ǫ4)]− 3[r~η(ǫ8), r~η(ǫ6)] = 0 . (2.22)

The all-multiplicity formulae for these (n−1)!× (n−1)! representations in [60,61] manifest that

r~η(ǫk) is linear in the sij, i.e. proportional to α′, and their closed-string analogues R~η(ǫk) addi-

tionally involve terms ∼ η̄j∂ηj independent of α′ (with s12...n =
∑n

1≤i<j sij):

R~η(ǫk) =

{
r~η(ǫk) : k ≥ 4

r~η(ǫ0)−2ζ2s12...n−2πi
∑n

j=2 η̄j∂ηj : k = 0
. (2.23)

2.2.4 Basic definitions of eMZVs and MGFs

We shall now review the definitions of the eMZVs and MGFs that occur as the expansion coef-

ficients of the above genus-one integrals. The ηj- and α′-expansion of the open-string integrals

Zτ
~η (γ|ρ) in (2.9) gives rise to A-cycle eMZV [4–6]

ω(n1, n2, . . . , nr|τ) =

∫

0<z1<z2<...<zr<1

dz1 f
(n1)(z1, τ) dz2 f

(n2)(z2, τ) . . . dzr f
(nr)(zr, τ) (2.24)

introduced by Enriquez [3] which are said to carry weight n1 + n2 + . . . + nr and length r.

Endpoint divergences in case of n1 = 1 or nr = 1 are shuffle-regularized as in section 2.2.1 of [4].

The specific eMZVs at a given order of Zτ
~η (γ|ρ) in sij and ηj can be obtained from the differential

equations (2.19) along with the initial values Zτ→i∞
~η (γ|ρ) in [60] or from matrix representations

of the elliptic KZB associator [85,86].

The closed-string integrals Y τ
~η (γ|ρ) in (2.16) in turn introduce multiple sums over the mo-

mentum lattice of a torus [52,61]

Λ = Z+ τZ , Λ′ = Λ \ {0} (2.25)

that are known as MGFs [10, 11]. With the removal of p = 0 from Λ, they can be thought

of as infrared-regulated and discretized versions of Feynman integrals on a torus. The MGFs

associated with Feynman graphs of dihedral topology are defined by7

C
[ a1 a2 ... ar
b1 b2 ... br

]
=

∑

p1,p2,...,pr∈Λ′

δ(p1 + p2 + . . . + pr)

pa11 p̄b11 pa22 p̄b22 . . . parr p̄brr
, (2.26)

and more general topologies are for instance discussed in [11, 87]. The simplest examples of

dihedral MGFs (2.26) have two columns and are associated with one-loop graphs on the world-

sheet

C
[
a 0
b 0

]
=

∑

p∈Λ′

1

pap̄b
. (2.27)

7Note that the definition of C[. . .] in this work follows the conventions of [61, 18, 87] but differs from those

in [11,88,52,54] by factors of Im τ and π.
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As long as the entries a+ b > 2, the lattice sums are absolutely convergent and the MGFs (2.27)

are expressible in terms of non-holomorphic Eisenstein series Ek(τ) and their Cauchy–Riemann

derivatives

Ek(τ) =

(
Im τ

π

)k

C
[
k 0
k 0

]
, ∇mEk(τ) =

(Im τ)k+m

πk

(k+m−1)!

(k−1)!
C
[
k+m 0
k−m 0

]
,

∇
m
Ek(τ) =

(Im τ)k+m

πk

(k+m−1)!

(k−1)!
C
[
k−m 0
k+m 0

]
, (2.28)

where ∇ = 2i(Im τ)2∂τ and ∇ = −2i(Im τ)2∂τ̄ . As will be detailed below, both eMZVs (2.24)

and MGFs such as (2.26) can be represented via iterated integrals of holomorphic Eisenstein

series Gk = C
[
k 0
0 0

]
defined by (2.20). Both eMZVs [17] and MGFs [89, 11, 90, 88, 87] exhibit

a multitude of relations over rational combinations of MZVs, all of which are automatically

exposed in their iterated-Eisenstein-integral representation.8 A computer implementation for

the decomposition of a large number of eMZVs and MGFs into basis elements is available in [92]

and [87], respectively.

3 New types of genus-one integrals

The goal of this paper is to relate the α′-expansions of suitable generating functions of genus-one

open- and closed-string integrals. The Zτ
~η (γ|ρ) and Y τ

~η (γ|ρ) in (2.9) and (2.16) can be anticipated

to not yet furnish the optimal building blocks for this purpose since

(i) The τ -dependence ∼ Gk(τ) and ∼ (τ−τ̄)k−2Gk(τ) of the open- and closed-string differen-

tial equations (2.19) does not match, even in absence of τ̄ .

(ii) The contributions ∼ η̄j∂ηj to the closed-string derivations R~η(ǫ0) in (2.21) and (2.23) do

not have any open-string counterpart in r~η(ǫ0).

Both of these shortcomings will be fixed by the improved open- and closed-string generating

functions Bτ
~η (γ|ρ) and Jτ

~η (γ|ρ) to be introduced in this section.

3.1 Genus-one open-string B-cycle integrals

Instead of parametrizing the cylinder boundary through the A-cycle of a torus as in (2.9), one

can perform a modular S transformation

Bτ
~η (γ|ρ) = Z

−1/τ
~η (γ|ρ) =

∫

B(γ)

( n∏

j=2

dzj

)
ϕτ
τ~η(1, ρ(2, . . . , n))

n∏

1≤i<j

esijGB(zij ,τ) (3.1)

to attain a parametrization through the B-cycle (recalling that z1 = 0 and τ ∈ iR+)

B(γ) =

n⊕

j=1

Bj(γ) (3.2)

Bj(γ) = {zi = τui, −1
2 < uγ(j+1) < uγ(j+2) <. . .< uγ(n) < 0 < uγ(2) < uγ(3) <. . .< uγ(j) <

1
2} ,

8This relies on the linear-independence result of [91] on holomorphic iterated Eisenstein integrals.
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•
σn−1

•
σj+1

•
q−1/2

Figure 3: The parametrization (3.2) of the B-cycle is mapped to the positive real axis in the

σj = e2πizj variables which exhausts all of R+ as τ → i∞ and q = e2πiτ → 0. The line segments

in the z-coordinate and the semicircles in the σ-coordinate marked by || are identified by the

periodic direction of the cylinder, i.e. the B-cycle of the parental torus.

where ui ∈ R, and the B-cycle Green function GB(z, τ) is constructed in two steps: First, we

define GB(z, τ) for z on the line (0, τ) by [76]

GB(z, τ) = GA

(z
τ
,−

1

τ

)
= −

iπz2

τ
− log

(θ1(z, τ)
η(τ)

)
−

iπ

6τ
+ iπ , z ∈ (0, τ) . (3.3)

Then, we extend this to z ∈ (−τ, 0) by imposing GB(z, τ) = GB(−z, τ) for compatibility with

(2.11) under modular S transformations, leading to the combined expression

GB(uτ, τ) = −iπu2τ − log
(θ1(|u|τ, τ)

η(τ)

)
−

iπ

6τ
+ iπ , u ∈ (−1, 1) . (3.4)

Instead of integrating over zi = τui with ui ∈ (0, 1), we have chosen the representative ui ∈

(−1
2 ,

1
2) of the B-cycle in order to facilitate the comparison with genus-zero integration cycles as

τ → i∞. Figure 3 illustrates the integration cycle (3.2) in both the zj and σj = e2πizj variables

(the latter becoming the coordinates on the sphere as τ → i∞), where zj ∈ iR and σj ∈ R+

for purely imaginary choices of τ . Note that non-planar versions of the B-cycle integrals involve

additional punctures at zj ∈
1
2 + iR or negative σj ∈ (−q−1/2,−q1/2).

The modular transformation Ω(z, η,− 1
τ ) = τΩ(τz, τη, τ) of the doubly-periodic Kronecker–

Eisenstein series (2.12) leads to the rescaling ηj → τηj in the subscript of the ρ-dependent

integrand ϕτ
τ~η of (3.1).

3.2 Dual closed-string integrals

The doubly-periodic integrands ϕτ
~η in (2.13) are non-holomorphic

∂z̄jϕ
τ
~η(ρ(1, 2, . . . , n)) =

2πiηj
τ−τ̄

ϕτ
~η(ρ(1, 2, . . . , n)) (3.5)

leading to the terms ∼ η̄j∂ηj in the closed-string derivations R~η(ǫ0) in (2.23). This introduces

a tension between the open- and closed-string differential equations (2.19) such that the ϕτ
~η do
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not qualify as Betti–deRham duals of open-string integration cycles. In order to generalize the

interplay of Parke–Taylor factors (2.4) with single-valued integration [48, 49] to genus one, the

factor of ϕτ
~η(. . .) in the Y τ

~η integrals (2.16) needs to be replaced by an antimeromorphic function

that is still well-defined on the torus, i.e. the complex conjugate of an elliptic function in all of

z1, z2, . . . , zn.

Such elliptic functions of n punctures can be generated by cycles of Kronecker–Eisenstein

series [78]

Ω(z12, ξ, τ)Ω(z23, ξ, τ) . . .Ω(zn1, ξ, τ) =: ξ−n
∞∑

w=0

ξwVw(1, 2, . . . , n|τ) , (3.6)

where Vw has holomorphic modular weight w. Even though the individual Kronecker–Eisenstein

series Ω are not meromorphic in the zj , the Vw are elliptic functions since the non-holomorphic

phase factors in (2.12) cancel from the cyclic product in (3.6). As will be detailed below, these

elliptic functions degenerate to suitable combinations of Parke–Taylor factors when forming the

linear combinations

V (1, 2, . . . , n|τ) =

n−2∑

w=0

Vw(1, 2, . . . , n|τ)

(2πi)w (n−w−1)!
(3.7)

such as

V (1, 2|τ) = 1 , V (1, 2, 3|τ) =
1

2
+

V1(1, 2, 3|τ)

2πi

V (1, 2, 3, 4|τ) =
1

6
+

1

2

V1(1, 2, 3, 4|τ)

2πi
+

V2(1, 2, 3, 4|τ)

(2πi)2
(3.8)

V (1, 2, 3, 4, 5|τ) =
1

24
+

1

6

V1(1, 2, 3, 4, 5|τ)

2πi
+

1

2

V2(1, 2, 3, 4, 5|τ)

(2πi)2
+

V3(1, 2, 3, 4, 5|τ)

(2πi)3
.

To lend credence to this definition of the V -function, let us see how their properties parallel

those of the genus-zero case: The Betti–deRham duality at genus zero relies on the simple-pole

residues

Reszj=zj±1PT(1, 2, . . . , j, . . . , n) = ±PT(1, 2, . . . , j−1, j+1, . . . , n) (3.9)

of the Parke–Taylor factors (2.4). These residues correspond to the situation when two neigh-

boring points of the disk ordering (2.2) at zj = zj±1 come together, which is crucial for sphere

integrals being single-valued disk integrals [45,43].

Similarly, at genus one, the generating function (3.6) of the elliptic Vw functions exposes the

recursive structure of their simple-pole residues

Reszj=zj±1Vw(1, 2, . . . , j, . . . , n) = ±Vw−1(1, 2, . . . , j−1, j+1, . . . , n) (3.10)

and the absence of higher poles in zj−zj±1. Consequently, the pole structure of the elliptic

combinations (3.7)

Reszj=zj±1V (1, 2, . . . , j, . . . , n) = ±
1

2πi
V (1, 2, . . . , j−1, j+1, . . . , n) (3.11)
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mirrors the boundaries of the open-string integration cycles as zj = zj±1, i.e. one recovers

mutually consistent V -functions and cycles at multiplicity n−1 in both cases.9

The absence of Vw with w ≥ n−1 in (3.7) can be understood from

• the vanishing of Vn−1(1, 2, . . . , n|τ) since (3.6) would otherwise be an elliptic function of ξ

with a simple pole at the origin [78]

• the breakdown of uniform transcendentality when integrating Koba–Nielsen integrals in-

volving Vn(1, 2, . . . , n|τ) over the zj [52] (which is in tension with the transcendentality

properties of open-string integrals [60])

• the fact that Vw≥n+1(1, . . . , n|τ) is expressible in terms of GkVw−k(1, . . . , n|τ) [78]

Similar to the closed-string integrals Y τ
~η , we define an (n−1)!× (n−1)! matrix of torus integrals

Jτ
~η (γ|ρ) = (2i)n−1

∫

Tn−1

( n∏

j=2

d2zj

) n∏

1≤i<j

esijGT(zij ,τ)V (1, γ(2, . . . , n)|τ)ϕτ
(τ−τ̄ )~η(1, ρ(2, . . . , n))

(3.12)

indexed by permutations γ, ρ ∈ Sn−1 of (3.7) and (2.13). Note that the cyclic symmetry

Vw(2, . . . , n, 1|τ) = Vw(1, 2, . . . , n|τ) , V (2, . . . , n, 1|τ) = V (1, 2, . . . , n|τ) (3.13)

exposed by the generating function (3.6) has been used to bring the integrand of (3.12) into the

form of V (1, . . . |τ).

3.3 Asymptotics at the cusp

The modular S transformation in (3.1) maps the A-cycle eMZVs (2.24) in the ηj- and α′-

expansion of Zτ
~η to B-cycle eMZVs [3] in the analogous expansion of Bτ

~η . As detailed in [51,93,76],

the asymptotic expansion of B-cycle eMZVs as τ → i∞ is governed by Laurent polynomials in

T = πτ ∈ iR+ whose coefficients are Q-linear combinations of MZVs, for instance

ω(0, 0, 2|− 1
τ ) = −

T 2

180
−

ζ2

2
+

iζ3

T
+

3ζ4
2T 2

+O(e2iT )

ω(0, 0, 1, 0|− 1
τ ) =

iT

120
−

iζ2

4T
−

3ζ3
4T 2

+
3iζ4
4T 3

+O(e2iT ) (3.14)

ω(0, 0, 3, 0|− 1
τ ) =

iT 3

1260
−

3iζ4
4T

−
9ζ5
2T 2

+
15iζ6
2T 3

+O(e2iT ) .

The suppressed terms O(e2iT ) are series in q = e2πiτ = e2iT with Laurent polynomials in T as

their coefficients.

The MGFs (2.26) in the ηj- and α′-expansion of (2.16) admit similar expansions around the

cusp, where the leading term is a Laurent polynomial in y = π Im τ instead of T . The coefficients

in the Laurent polynomials of MGFs were shown to be Q-linear combinations of MZVs10 [15]

9On the closed-string side of the ‘genus-one Betti–deRham duality’ we note that, by double-periodicity of the

V -functions, additional poles with identical residues occur as zj → zj±1+mτ +n (m,n,∈ Z). On the open-string

side in turn, the delimiters of the integration cycles in the B-cycle parametrization of figure 3 are separated by τ .
10See [12] for an earlier proof of the weaker statement that the Laurent polynomials of modular graph functions

are Q-linear combinations of cyclotomic MZVs.
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and are conjectured to be single-valued MZVs [12, 10]. Simple examples of the asymptotics of

MGFs include

E2(τ) =
y2

45
+

ζ3

y
+O(e−2y)

π∇E2(τ)

y2
=

2y

45
−

ζ3

y2
+O(e−2y) (3.15)

E3(τ) =
2y3

945
+

3ζ5
4y2

+O(e−2y) ,

see (2.28) for the lattice-sum representations of the non-holomorphic Eisenstein series.

In a variety of examples, the Laurent polynomials of MGFs and B-cycle eMZVs have been

related by an extension of the single-valued map (2.7) to [51,52,16]

sv T = 2iy ⇔ sv log(q) = log |q|2 . (3.16)

By (3.14) and (3.15), for instance, the Laurent polynomials of ω(0, 0, 2|− 1
τ ) −→ E2(τ) as well

as ω(0, 0, 1, 0|− 1
τ ) −→ −3

8
π∇E2(τ)

y2
and ω(0, 0, 3, 0|− 1

τ ) −→ 3E3(τ) are related by (3.16).

The A-cycle eMZVs in Zτ
~η , by contrast, enjoy a Fourier expansion in q = e2πiτ whose co-

efficients are Q[(2πi)−1] combinations of MZVs [3, 17] and do not feature any analogues of the

Laurent polynomials in the expansion of Bτ
~η . This is yet another indication besides their differ-

ential equations that the B-cycle integrals (3.1) are a more suitable starting point for comparison

with closed-string integrals than their A-cycle counterparts (2.9).

3.4 Single-valued correspondence of the Laurent polynomials

As a particular convenience of the elliptic combinations (3.7) in the integrands of Jτ
~η (γ|ρ), their

degeneration at the cusp gives rise to Parke-Taylor factors in n+2 punctures (σ1 = 1 by z1 = 0)

σj = e2πizj , σ+ = 0 , σ− → ∞ . (3.17)

Since the non-holomorphic exponentials of Ω(z, ξ, τ) = exp(2πiξ Im z
Im τ )F (z, ξ, τ) cancel from the

cyclic products in (3.6), one can determine the asymptotics of V (. . . |τ) as τ → i∞ by using the

degeneration of the holomorphic Kronecker–Eisenstein series

F (zij , ξ, τ) = π cot(πξ) + iπ
σi + σj

σi − σj
+O(q) . (3.18)

The relative factors of the Vw in (3.7) have been engineered to obtain the following cyclic

combinations of Parke–Taylor factors at the cusp,

lim
τ→i∞

V (1, 2, . . . , n|τ)

σ1σ2 . . . σn
= (−1)n−1 lim

σ−→∞
|σ−|

2
[
PT(+, n, n−1, . . . , 2, 1,−) + cyc(1, 2, . . . , n)

]
,

(3.19)

which have featured in the context of one-loop gauge-theory amplitudes in ambitwistor string

theories [94]. The denominators on the left-hand side of (3.19) arise from dzj =
dσj

2πiσj
, and the
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factor of |σ−|
2 on the right-hand side identifies functions on a degenerate torus with SL2-fixed

expressions at genus zero [64]. Given that Parke–Taylor factors are Betti–deRham dual to disk

orderings D(. . .) in (2.2), the τ → i∞ asymptotics of Jτ
~η (γ|ρ) should yield the single-valued map

of suitably chosen disk integrals. In fact, upon rewriting the B-cycle ordering in terms of the

σj variables (3.17), each of the contributions Bj(γ) in (3.2) and figure 3 degenerates to a single

disk ordering

Bj(γ)
∣∣
τ→i∞

= (−1)n−1
D(+, γ(j, j−1, . . . , 3, 2), 1, γ(n, n−1, . . . , j+1),−) , (3.20)

such that the overall B-cycle ordering B(γ) =
⊕n

j=1Bj(γ) at the cusp becomes the Betti–

deRham dual to the cyclic combination of Parke–Taylor factors in (3.19),

B(2, 3, . . . , n)
∣∣
τ→i∞

= (−1)n−1
n⊕

j=1

D(+, j, j−1, . . . , 3, 2, 1, n, n−1, . . . , j+1,−) . (3.21)

Hence, the tree-level result (2.8) provides evidence for our central conjecture

Jτ
~η (γ|ρ)

∣∣
LP

= svBτ
~η (γ|ρ)

∣∣
LP

, (3.22)

where the notation
∣∣
LP

instructs to only keep the Laurent polynomials in τ and Im τ while

discarding any contribution ∼ q, q̄. The conjectural part of (3.22) concerns the non-constant

parts of the Laurent polynomials, i.e. corrections ∼ (log q)±1 to the expansion around the cusp

q = 0, so it is not implied by the Betti–deRham duality of (3.2) and (3.19) which only holds at

the cusp. That is why we support (3.22) by extensive tests at low orders in ηj , α
′ as detailed

below, and by the fact that the asymptotic expansions of the Green functions are related by the

single-valued map with sv log σij = log |σij |
2,

GB(zij , τ)
∣∣
LP

= −
iT

6
−

iζ2

T
+

1

2
(log σi + log σj)− log |σij|+

i(log σi − log σj)
2

4T
(3.23)

GT(zij , τ)
∣∣
LP

=
y

3
+ log |σi|+ log |σj | − 2 log |σij|+

(
log |σi| − log |σj |

)2

2y

= svGB(zij , τ)
∣∣
LP

. (3.24)

Note that the absolute value in (3.23) is due to the argument |u|τ of θ1 in (3.4). For the two-

point instances Bτ
~η and Jτ

~η of the open- and closed-string integrals (3.1) and (3.12), the Laurent

polynomials in the asymptotics at the cusp can be determined [95] by mild generalizations of
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the techniques in [55,16] (also see [56] for an alternative approach to the closed-string case):

Bτ
η (2|2)

∣∣
LP

= exp
(
−
is12ζ2

T
−
is12T

6

)
(3.25)

×

{[
i cot(η2T )+1

]
exp

( is12
4T

∂2
η2

) 1

s12+2η2

[
Γ(1+ s12

2 +η2)Γ(1−s12)

Γ(1− s12
2 +η2)

− eiT (
s12
2 +η2)

]

+
[
i cot(η2T )−1

]
exp

( is12
4T

∂2
η2

) 1

s12−2η2

[
Γ(1+ s12

2 −η2)Γ(1−s12)

Γ(1− s12
2 −η2)

− eiT (
s12
2 −η2)

]

+
1

s12
exp

( is12
4T

∂2
η2

)[Γ(1+ s12
2 −η2)Γ(1−s12)

Γ(1− s12
2 −η2)

−
Γ(1+ s12

2 +η2)Γ(1−s12)

Γ(1− s12
2 +η2)

]}

Jτ
η (2|2)

∣∣
LP

= exp
(s12y

3

)
(3.26)

×

{[
i cot(2iη2y)+1

]
exp

(s12
8y

∂2
η2

) 1

s12+2η2

[
Γ(1+ s12

2 +η2)Γ(1−s12)Γ(1+
s12
2 −η2)

Γ(1− s12
2 +η2)Γ(1+s12)Γ(1−

s12
2 −η2)

− e−y(s12+2η2)

]

+
[
i cot(2iη2y)−1

]
exp

(s12
8y

∂2
η2

) 1

s12−2η2

[
Γ(1+ s12

2 +η2)Γ(1−s12)Γ(1+
s12
2 −η2)

Γ(1− s12
2 +η2)Γ(1+s12)Γ(1−

s12
2 −η2)

− e−y(s12−2η2)

]}

These two-point expressions are easily seen to line up with the all-multiplicity claim (3.22) since

sv

[
Γ(1−a)Γ(1−b)

Γ(1−a−b)

]
=

Γ(1−a)Γ(1−b)Γ(1+a+b)

Γ(1+a)Γ(1+b)Γ(1−a−b)
, (3.27)

and the last line of (3.25) therefore vanishes under sv. Moreover, we have checked the three-point

Laurent polynomials to obey (3.22) to the orders in the sij- and ηj-expansions where MGFs such

as (2.26) of total modular weight 10 occur11. Finally, we have checked (3.22) to hold at four

points to the orders where MGFs of total modular weight 8 occur, at least for contributions

from ϕτ
~η in (2.13) without any singular factors of f (1)(zij , τ).

12 These checks are based on

Enriquez’ methods [3] (also see appendix B of [51]) to determine the Laurent polynomials of

B-cycle eMZVs. The Laurent polynomials for all B-cycle eMZVs with (length+weight) ≤ 16

obtained from a FORM implementation [96] of these methods are available for download [97].

While the two-point Laurent-polynomials generated by (3.25) and (3.26) only involve Rie-

mann zeta values, higher-point examples also introduce irreducible MZVs of depth ≥ 2. The

appearance of ζ3,5 in B-cycle Laurent polynomials is later on exemplified in (4.27) and (5.36).

Moreover, the appearance of ζ3,5,3 in open- and closed-string calculations at three points in

agreement with (3.22) was observed in section 3.3.5 of [51], based on earlier closed-string com-

putations [12].

3.5 Single-valued correspondence of the differential equations

The holomorphic derivatives of the Bτ
~η and Jτ

~η -integrals (3.1) and (3.12) can be easily deduced

from (2.19): In the open-string case, the modular S transformation relating Bτ
~η = Z

−1/τ
~η and

11This amounts to performing the α′- and η-expansion to order 10 in the terminology of section 3.4.2 of [18].
12We have excluded the singular functions f (1)(zij , τ ) =

1
zij

+O(zij) in the integrand from our checks to avoid

the tedious treatment of the resulting kinematic poles in the α′-expansion. For the contributions of V0 and V1 to

the integrand V (1, 2, 3, 4|τ ) in (3.8), we have checked the Laurent polynomials from up to one factor of f (1)(zij , τ )

in the integrand to obey (3.22), see section 3.6 for the disentanglement of different Vw entering V (1, 2, . . . , n|τ ).
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the modular weight (k, 0) of the holomorphic Eisenstein series Gk give rise to

2πi∂τB
τ
~η (γ|ρ) =

∞∑

k=0

(1−k)τk−2Gk(τ)
∑

α∈Sn−1

r~η(ǫk)ρ
αBτ

~η (γ|α) , (3.28)

see [60] for the n-point derivations r~η(ǫk) and (2.21) for their two-point examples.

In the closed-string case, the V (. . . |τ) in (3.12) are not affected by holomorphic derivatives,

and one can import a simplified version of the differential equations in [61] where contributions

∼ η̄j∂ηj are absent,

2πi∂τJ
τ
~η (γ|ρ) =

∞∑

k=0

(1−k)(τ−τ̄)k−2Gk(τ)
∑

α∈Sn−1

sv r~η(ǫk)ρ
αJτ

~η (γ|α) . (3.29)

By the differential equations (2.18) of the Green functions, also the term ∼ ζ2 in r~η(ǫ0) is absent

which we have indicated through the sv-notation,

sv r~η(ǫk) =

{
r~η(ǫk) : k ≥ 4

r~η(ǫ0)− 2ζ2s12...n : k = 0
, (3.30)

where r~η(ǫ2) = 0. The building blocks of the closed-string differential operator in (3.29) are

related to those in the open-string analogue (3.28) through an extension SV of the single-valued

map

SV
[
τk−2Gk(τ)r~η(ǫk)

]
= SV

[
τk−2

]
SV

[
Gk(τ)

]
SV

[
r~η(ǫk)

]

= (τ−τ̄)k−2Gk(τ) sv r~η(ǫk) , (3.31)

which is taken to preserve the properties of sv,

SV ζn1,n2,...,nr = sv ζn1,n2,...,nr , SVT = 2iy (3.32)

and to furthermore preserve Gk(τ) and the ηj-variables, cf. (3.31). In other words, the differential

operator Oτ
~η =

∑∞
k=0(1−k)τk−2Gk(τ)r~η(ǫk) appearing in (3.28) and its closed-string analogue

in (3.29) are related by

2πi∂τB
τ
~η (γ|ρ) =

∑

α∈Sn−1

Oτ
~η (ρ|α)B

τ
~η (γ|α) ↔ 2πi∂τJ

τ
~η (γ|ρ) =

∑

α∈Sn−1

[
SVOτ

~η (ρ|α)
]
Jτ
~η (γ|α) . (3.33)

From the above discussion, both the τ → i∞ asymptotics and the differential operators of the

open- and closed-string integrals Bτ
~η and Jτ

~η are related by the SV map (3.32). Hence, we propose

that the solutions of (3.33) yield an appropriate extension of the SV map

Jτ
~η (γ|ρ) = SVBτ

~η (γ|ρ) . (3.34)

By construction, this SV map commutes with the holomorphic τ -derivative and, under the

assumption (3.22), it is consistent at the level of the Laurent polynomials at the cusp. Compati-

bility of a single-valued map at genus one with τ → i∞ generalizes the fact that the single-valued
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map of multiple polylogarithms commutes with evaluation [46]. Moreover, by the evidence to

be discussed in section 4.3, the SV map is expected to be compatible with the shuffle product.

As we will see in the next section, the α′-expansion of (3.34) induces an elliptic single-valued

map for the eMZVs generated by Bτ
~η which yields the MGFs generated by Jτ

~η .

Let us consider the scope of our definition (3.34). Firstly, not all the holomorphic iterated

Eisenstein integrals appear in the α′-expansion of Bτ
~η . As was discussed in [17, 18] and will

become clearer when we discuss the α′-expansion of the solution of (3.33), relations among

the r~η(ǫk) such as (2.22) lead to dropouts of certain iterated Eisenstein integrals from eMZVs

and Y τ
~η and thereby from Bτ

~η and Jτ
~η . Hence, (3.34) does not comprise the SV-map for the

combinations of iterated Eisenstein integrals affected by these dropouts, starting with double

integrals involving G4 and G10.

By contrast, the SV-map of arbitrary convergent eMZVs can be extracted from (3.34) at

sufficiently high multiplicity: This follows from the fact that, for ω(n1, . . . , nr|τ) in (2.24) with

given entries nj (where n1, nr 6= 1), one can engineer a combination of genus-one open-string

integrals, where the desired eMZV occurs at the zeroth order in sij.
13

Finally, one could wonder whether holomorphic cusp forms lead to ambiguities in the def-

inition of the V (1, . . . , n|τ) in (3.7):14 Starting from n = 14 points, their defining properties

including simple-pole residues, the modularity of their constituents and their behavior (3.19)

at the cusp are unchanged when adding combinations of holomorphic cusp forms and lower-

weight Vw(1, . . . , n|τ). However, adding a cusp form without any zj-dependent coefficient to

V (1, . . . , n|τ) leads to a contradiction with the requirement that the τ -independent η1−n or-

der of Bτ
~η is mapped to the same term ∼ η1−n in the corresponding Jτ

~η integral. Products of

Vw(1, . . . , n|τ) with cusp forms in turn would violate the pole structure (3.11) that reflects the

boundary structure of the dual cycles. Hence, the above requirements do not leave any room to

modify V (1, . . . , n|τ) by holomorphic cusp forms.

3.6 Dual modular weights for cycles

Given that the antielliptic Vw(. . . |τ)-functions (3.6) carry modular weight (0, w), their combi-

nations V (. . . |τ) (3.7) mix different modular weights. Hence, the α′-expansion of the generating

function (3.12) with V (. . . |τ) in the integrand mixes modular forms of different weight, even at

fixed order in ηj. One may wish to isolate the contributions at fixed modular weights and study

Jτ
w,~η(γ|ρ) =

(2i)n−1

(−2πi)w

∫

Tn−1

( n∏

j=2

d2zj

) n∏

1≤i<j

esijGT(zij ,τ)Vw(1, γ(2, . . . , n)|τ)ϕ
τ
(τ−τ̄ )~η(1, ρ(2, . . . , n)) ,

(3.35)

with 0 ≤ w ≤ n−2, where the terms at homogeneity degree m in the ηj are modular forms

of weight (0, 1−n−m+w). One can still identify combinations of integration cycles (3.2) to

13By a similar argument, each MGF can be realized in the s0ij-order of Y τ -integrals at sufficiently high multi-

plicity, see section 2.5 of [61].
14We are grateful to Nils Matthes for valuable discussions on this point.
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write (3.35) at fixed modular weight w and ordering γ as the single-valued version of known

open-string integrals: Each Vw(1, 2, . . . , n|τ) with w ≤ n−2 is expressible via permutation sums

Vw(1, 2, . . . , n|τ) = (2πi)w
∑

γ∈Sn−1

cw,γV (1, γ(2, . . . , n)|τ) (3.36)

with coefficients cw,γ ∈ Q, e.g.

V0(1, . . . , n|τ) = 1 =
∑

γ∈Sn−1

V (1, γ(2, . . . , n)|τ) (3.37)

V1(1, 2, 3|τ) = iπ
[
V (1, 2, 3|τ) − V (1, 3, 2|τ)

]
(3.38)

V1(1, 2, 3, 4|τ) = 2πi
[
V (1, 2, 3, 4|τ) − V (1, 4, 3, 2|τ)

]
(3.39)

V2(1, 2, 3, 4|τ) =
(2πi)2

6

[
2V (1, 2, 3, 4|τ) + 2V (1, 4, 3, 2|τ) − V (1, 2, 4, 3|τ)

− V (1, 3, 4, 2|τ) − V (1, 3, 2, 4|τ) − V (1, 4, 2, 3|τ)
]
. (3.40)

These relations and coefficients cw,γ can be traced back to the symmetries of the Vw-functions

including the cyclicity (3.13), reflection property

Vw(1, 2, . . . , n|τ) = (−1)wVw(n, . . . , 2, 1|τ) (3.41)

and corollaries of the Fay identity [98] which have been discussed in [78, 99]. An independent

method based on the degeneration (3.19) to determine the cw,γ is described in appendix A.

As a result, there are less than (n−1)! independent permutations Vw(1, γ(2, . . . , n)|τ) at fixed

0 ≤ w ≤ n−2 and n ≥ 3. Their counting is governed by the unsigned Stirling number Sn−1,n−w−1

of the first kind (where Sa,b counts the number of permutations of a elements with b disjoint

cycles) as exemplified in table 1. In particular, permutations of Vw=n−2(1, . . . , n|τ) are related

n

w
0 1 2 3 4 5

2 1 0 0 0 0 0

3 1 1 0 0 0 0

4 1 3 2 0 0 0

5 1 6 11 6 0 0

6 1 10 35 50 24 0

7 1 15 85 225 274 120

Table 1: Examples of the unsigned Stirling numbers Sn−1,n−w−1 which count the number of

independent permutations γ ∈ Sn−1 of Vw(1, γ(2, . . . , n)|τ).

by Kleiss–Kuijf relations [100,99]

Vn−2(1, (a2, . . . , aj)�(aj+1, . . . , an)|τ) = 0 , j = 2, 3, . . . , n−1 (3.42)
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such as

V1(1, 2, 3|τ) = −V1(1, 3, 2|τ) , V2(1, 2, 3, 4|τ) + cyc(2, 3, 4) = 0 , (3.43)

consistent with the counting Sn−1,1 = (n−2)! of independent permutations.

Given the decomposition (3.36) of a given Vw function with rational coefficients cw,γ , one

can by (3.34) write each Jτ
w,~η integral (3.35) as a combination of single-valued B-cycle integrals

Jτ
w,~η(2, . . . , n|ρ) = SV

∑

γ∈Sn−1

cw,γB
τ
~η (γ|ρ) . (3.44)

For instance, the equivalent

Jτ
0,η2,η3(2,3|ρ) = SV

[
Bτ

η2,η3(2,3|ρ) +Bτ
η2,η3(3,2|ρ)

]
(3.45)

Jτ
1,η2,η3(2,3|ρ) =

1

2
SV

[
Bτ

η2,η3(2,3|ρ)−Bτ
η2,η3(3,2|ρ)

]

of (3.34) together with (3.37) and (3.38) suggests to assign a formal “dual modular weight” 0

and 1 to the symmetric and antisymmetric three-point cycles, respectively,

B(2, 3) +B(3, 2) ↔ dual modular weight 0 (3.46)

B(2, 3) −B(3, 2) ↔ dual modular weight 1 .

Similarly, combining (3.34) with (3.37), (3.39) and (3.40) leads to the following dual modular

weights (d.m.w.) for four-point cycles

B(2, 3, 4)+B(4, 3, 2)+B(2, 4, 3)+B(3, 4, 2)+B(3, 2, 4)+B(4, 2, 3) ↔ d.m.w. 0

B(2, 3, 4) −B(4, 3, 2) ↔ d.m.w. 1 (3.47)

2B(2, 3, 4)+2B(4, 3, 2)−B(2, 4, 3)−B(3, 4, 2)−B(3, 2, 4)−B(4, 2, 3) ↔ d.m.w. 2 ,

see section 5.5 for a more detailed discussion of the weight-two case. Finally, the all-multiplicity

formula (3.36) translates into
∑

γ∈Sn−1

cw,γB(γ(2, 3, . . . , n)) ↔ dual modular weight w , (3.48)

see appendix A for the rational coefficients cw,γ and table 1 for the counting of independent

n-point cycles with dual modular weight w.

4 Single-valued iterated Eisenstein integrals from α′-expansions

The goal of this section is to provide the explicit form of the single-valued map SV on eMZVs

by reading (3.34) at the level of the α′- and ηj-expansions of Bτ
~η and Jτ

~η . We will represent

eMZVs through iterated Eisenstein integrals [17] in their formulation with integration kernels

τ jGk, k ≥ 4 [101],

E
[
j1 j2 ... jℓ
k1 k2 ... kℓ

; τ
]
= (−1)ℓ

∫

0<q1<q2<...<qℓ<q

dq1
q1

dq2
q2

. . .
dqℓ
qℓ

ℓ∏

r=1

(2πiτr)
jrGkr(τr)

(2πi)kr
. (4.1)
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The entries are taken to obey kr ≥ 4 and 0 ≤ jr ≤ kr−2, and we employ tangential-base-point

regularization for the divergences as qr → 0 [101], which implies that the iterated Eisenstein

integrals E [. . . ; τ ] vanish in the regularized limit τ → i∞.

4.1 Improving the differential equations

We shall now derive the structure of the α′-expansion of Bτ
~η and Jτ

~η by repeating the key steps

of [18] in solving the differential equation (2.19) of Y τ
~η . The first step is to introduce redefined

generating series B̂τ
~η and Ĵτ

~η by

B̂τ
~η = exp

(
−
r~η(ǫ0)

2πiτ

)
Bτ

~η , Ĵτ
~η = exp

(
−

sv r~η(ǫ0)

2πi(τ−τ̄)

)
Jτ
~η . (4.2)

After this redefinition, the k = 0 terms involving G0
τ2

and G0
(τ−τ̄)2

with G0 = −1 are absent

from the analogues of the differential equations (3.28) and (3.29), see (4.4) and (4.5) below.

Throughout this section, we suppress the permutations γ, ρ labeling Bτ
~η (γ|ρ) and Jτ

~η (γ|ρ), and

all matrix representations r~η(ǫk) are understood to act matrix-multiplicatively on the ρ-entry.

Since the r~η(ǫk) are expected (as tested for a wide range of k and n) to inherit the ad-

nilpotency relations of the derivation algebra,

adk−1
r~η(ǫ0)

r~η(ǫk) = 0 , k ≥ 4 (4.3)

the combinations exp(−
r~η(ǫ0)
2πiτ )r~η(ǫk≥4) exp(

r~η(ǫ0)
2πiτ ) in the differential equations of the redefined

integrals (4.2) truncate to a finite number of terms and we obtain

2πi∂τ B̂
τ
~η =

∞∑

k=4

(1−k)

k−2∑

j=0

1

j!

(−1

2πi

)j
τk−2−jGk(τ)r~η

(
adjǫ0(ǫk)

)
B̂τ

~η (4.4)

2πi∂τ Ĵ
τ
~η =

∞∑

k=4

(1−k)

k−2∑

j=0

1

j!

(−1

2πi

)j
(τ−τ̄ )k−2−jGk(τ)r~η

(
adjǫ0(ǫk)

)
Ĵτ
~η . (4.5)

We have used that adr~η(ǫ0)(·) = [r~η(ǫ0), ·] = adsv r~η(ǫ0)(·) (since the term ∼ ζ2 in (3.30) suppressed

by sv is commutative) and employ the shorthands

r~η
(
adjǫ0(ǫk)

)
= adjr~η(ǫ0)

r~η(ǫk) , r~η(ǫk1ǫk2) = r~η(ǫk1)r~η(ǫk2) . (4.6)

4.2 The α′-expansion of Bτ
~η

By the differential equation

2πi∂τE
[
j1 j2 ... jℓ
k1 k2 ... kℓ

; τ
]
= −(2πi)2−kℓ(2πiτ)jℓGkℓ(τ)E

[
j1 j2 ... jℓ−1

k1 k2 ... kℓ−1
; τ
]

(4.7)

of the iterated Eisenstein integrals (4.1), one can solve the differential equation (4.4) of the

generating series through the path-ordered exponential

B̂τ
~η =

∞∑

ℓ=0

∑

k1,k2,...,kℓ
=4,6,8,...

k1−2∑

j1=0

k2−2∑

j2=0

. . .

kℓ−2∑

jℓ=0

( ℓ∏

i=1

(−1)ji(ki−1)

(ki−ji−2)!

)
E
[
j1 j2 ... jℓ
k1 k2 ... kℓ

; τ
]

(4.8)

× r~η
(
adkℓ−jℓ−2

ǫ0 (ǫkℓ) . . . ad
k2−j2−2
ǫ0 (ǫk2)ad

k1−j1−2
ǫ0 (ǫk1)

)
B̂i∞

~η
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for some initial value B̂i∞
~η to be discussed below. By inverting the redefinition (4.2) and moving

the exponential to act directly on the initial value, we obtain the open-string analogue

Bτ
~η =

∞∑

ℓ=0

∑

k1,k2,...,kℓ
=4,6,8,...

k1−2∑

j1=0

k2−2∑

j2=0

. . .

kℓ−2∑

jℓ=0

( ℓ∏

i=1

(−1)ji(ki−1)

(ki−ji−2)!

)
β
[
j1 j2 ... jℓ
k1 k2 ... kℓ

; τ
]

(4.9)

× r~η
(
adkℓ−jℓ−2

ǫ0 (ǫkℓ) . . . ad
k2−j2−2
ǫ0 (ǫk2)ad

k1−j1−2
ǫ0 (ǫk1)

)
exp

(r~η(ǫ0)
2πiτ

)
B̂i∞

~η

of the key result for the α′-expansion of Y τ
~η in (3.11) of [18]. In commuting exp(

r~η(ǫ0)
2πiτ ) past the

ǫkj , the iterated Eisenstein integrals are rearranged into the combinations

β
[
j1
k1
; τ
]
=

k1−j1−2∑

p1=0

(
k1−j1−2

p1

)( i

2T

)p1
E
[
j1+p1
k1

; τ
]

(4.10)

and more generally

β
[
j1 j2 ... jℓ
k1 k2 ... kℓ

; τ
]
=

k1−j1−2∑

p1=0

k2−j2−2∑

p2=0

. . .

kℓ−jℓ−2∑

pℓ=0

(
k1−j1−2

p1

)(
k2−j2−2

p2

)
· · ·

(
kℓ−jℓ−2

pℓ

)

×
( i

2T

)p1+p2+...+pℓ
E
[
j1+p1 j2+p2 ... jℓ+pℓ
k1 k2 ... kℓ

; τ
]
. (4.11)

Note that (4.9) is an alternative15 organization of open-string α′-expansions at genus one as

compared to [60, 59]. Non-planar B-cycle integrals obey the same differential equation (3.28)

as the planar ones and therefore have an α′-expansion of the same form (4.9), only their initial

values B̂i∞
~η need to be adapted to the non-planar integration cycle.

The modified iterated Eisenstein integrals β[. . .] satisfy the differential equations

2πiτ2∂τβ
[
j1 j2 ... jℓ
k1 k2 ... kℓ

; τ
]
=

ℓ∑

i=1

(ki−ji−2)β
[
j1 j2 ... ji−1 ji+1 ji+1 ... jℓ
k1 k2 ... ki−1 ki ki+1 ... kℓ

; τ
]

(4.12)

− δjℓ,kℓ−2τ
kℓGkℓ(τ)β

[
j1 j2 ... jℓ−1

k1 k2 ... kℓ−1
; τ
]
,

which allows us to directly check that (4.9) obeys (3.28). The integrals β[. . .] inherit the property

that they vanish for τ → i∞ from the E [. . .]. Note that the definition (4.11) is equivalent to

integral representations such as

β
[
j1
k1
; τ
]
= −

(2πi)1+j1−k1

τk1−j1−2

τ∫

i∞

dτ1Gk1(τ1)(τ−τ1)
k1−j1−2τ

j1
1 (4.13)

β
[
j1 j2
k1 k2

; τ
]
=

(2πi)2+j1+j2−k1−k2

τk1+k2−j1−j2−4

τ∫

i∞

dτ2Gk2(τ2)(τ−τ2)
k2−j2−2τ

j2
2

τ2∫

i∞

dτ1Gk1(τ1)(τ−τ1)
k1−j1−2τ

j1
1 .

15On top of the modular S transformation relating Zτ
~η and Bτ

~η , the E [. . .] in (4.8) involve integration kernels

τ jGk with 0 ≤ j ≤ k−2 instead of the G0
0 = −1 in [60, 59]. In other words, the relations (4.3) in the derivation

algebra are built into (4.8), whereas the results in the references may require the use of shuffle relations to manifest

the absence of E [. . . j≥k−1
k

. . .].
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The definition (4.11) of the β[. . .] preserves the shuffle relations of the iterated Eisenstein integrals

(4.1), for instance

E
[
j1
k1
; τ
]
E
[
j2
k2
; τ
]
= E

[
j1 j2
k1 k2

; τ
]
+E

[
j2 j1
k2 k1

; τ
]

⇒ β
[
j1
k1
; τ
]
β
[
j2
k2
; τ
]
= β

[
j1 j2
k1 k2

; τ
]
+β

[
j2 j1
k2 k1

; τ
]
.

(4.14)

4.3 The α′-expansion of Jτ
~η

One can extend the above strategy to expand Bτ
~η via (4.4) to the Jτ

~η integrals. The idea is to

solve their differential equation (4.5) order by order in α′ via

2πi∂τE
sv
[
j1 j2 ... jℓ
k1 k2 ... kℓ

; τ
]
= −(2πi)2−kℓ+jℓ(τ−τ̄)jℓGkℓ(τ)E

sv
[
j1 j2 ... jℓ−1

k1 k2 ... kℓ−1
; τ
]
, (4.15)

using the combinations Esv of holomorphic iterated Eisenstein integrals (4.1) and their com-

plex conjugates introduced in [18]. Their depth ℓ=1 instances are completely known from the

reference

Esv
[
j1
k1
; τ
]
=

j1∑

r1=0

(−2πiτ̄ )r1
(
j1

r1

)(
E
[
j1−r1
k1

; τ
]
+ (−1)j1−r1E

[
j1−r1
k1

; τ
])

, (4.16)

and their generalizations to depth ℓ ≥ 2 involve antiholomorphic integration constants α[. . .],

Esv
[
j1 j2
k1 k2

; τ
]
=

j1∑

r1=0

j2∑

r2=0

(−2πiτ̄ )r1+r2

(
j1

r1

)(
j2

r2

)
(4.17)

×
{
E
[
j1−r1 j2−r2
k1 k2

; τ
]
+(−1)j1−r1E

[
j1−r1
k1

; τ
]
E
[
j2−r2
k2

; τ
]

+ (−1)j1+j2−r1−r2E
[
j2−r2 j1−r1
k2 k1

; τ
]}

+ α
[
j1 j2
k1 k2

; τ
]
.

The integration constants α[. . .] are invariant under τ → τ +1 since the Esv[. . .] and the contri-

butions from the E [. . .], E [. . .] to (4.17) are. They are known on a case-by-case basis, for instance

α[ 1 0
4 4 ] = α[ 0 1

4 4 ] = 0 ,

α[ 2 0
4 4 ] =

2ζ3
3

(
E [ 04 ] +

iπτ

360

)
= −α[ 0 2

4 4 ] , (4.18)

α[ 2 1
4 4 ] =

2ζ3
3

(
2πiτE [ 04 ]− E [ 14 ]−

π2τ2

360

)
= −α[ 1 2

4 4 ] ,

and the complete list of α[ j1 j2
k1 k2

] at k1 + k2 ≤ 12 can be found in an ancillary file within the

arXiv submission of this work. The integration constants at arbitrary depth can be determined

from the reality properties of the Y τ
~η integrals [18]. The method in the reference to fix the

α[. . .] hinges on the fact that the coefficients in the ηj- and η̄j-expansion of Y τ
~η are closed under

complex conjugation. For the Jτ
~η -series in turn the antiholomorphic modular weights w̄ of the

integrands V (. . .) in (3.12) are bounded by w̄ ≤ n−2, so the complex conjugates of higher orders

in the ηj expansion are not part of the series. Hence, in the present formulation, the expansion
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of the Y τ
~η in [18] is a necessary input to obtain well-defined Esv. This expansion depends on

the knowledge of the initial values of Y τ
~η which is currently available from sphere integrals to

arbitrary weight only for two points and is under investigation for higher multiplicity [95].

By repeating the steps towards (4.8) and (4.9), we arrive at the structure of the α′-expansion

Jτ
~η =

∞∑

ℓ=0

∑

k1,k2,...,kℓ
=4,6,8,...

k1−2∑

j1=0

k2−2∑

j2=0

. . .

kℓ−2∑

jℓ=0

( ℓ∏

i=1

(−1)ji(ki−1)

(ki−ji−2)!

)
βsv

[
j1 j2 ... jℓ
k1 k2 ... kℓ

; τ
]

(4.19)

× r~η
(
adkℓ−jℓ−2

ǫ0 (ǫkℓ) . . . ad
k2−j2−2
ǫ0 (ǫk2)ad

k1−j1−2
ǫ0 (ǫk1)

)
exp

(
−
sv r~η(ǫ0)

4y

)
Ĵ i∞
~η

with an initial value Ĵ i∞
~η to be discussed below and the combinations analogous to (4.11) [18]

βsv
[
j1 j2 ... jℓ
k1 k2 ... kℓ

; τ
]
=

k1−j1−2∑

p1=0

k2−j2−2∑

p2=0

. . .

kℓ−jℓ−2∑

pℓ=0

(
k1−j1−2

p1

)(
k2−j2−2

p2

)
· · ·

(
kℓ−jℓ−2

pℓ

)

×
( 1

4y

)p1+p2+...+pℓ
Esv

[
j1+p1 j2+p2 ... jℓ+pℓ
k1 k2 ... kℓ

; τ
]
. (4.20)

The expansion (4.19) solves (3.29) since the βsv inherit their differential equation from (4.15),

2πi(τ−τ̄)2∂τβ
sv
[
j1 j2 ... jℓ
k1 k2 ... kℓ

; τ
]
=

ℓ∑

i=1

(ki−ji−2)βsv
[
j1 j2 ... ji−1 ji+1 ji+1 ... jℓ
k1 k2 ... ki−1 ki ki+1 ... kℓ

; τ
]

(4.21)

− δjℓ,kℓ−2(τ−τ̄)kℓGkℓ(τ)β
sv
[
j1 j2 ... jℓ−1

k1 k2 ... kℓ−1
; τ
]
,

see (4.12) for the holomorphic counterpart for ∂τβ[. . .]. Both the Esv[. . .] and the βsv[. . .] are

expected to preserve the shuffle multiplication of their holomorphic counterparts (4.1) and (4.11):

The differential equations (4.15) and (4.20) recursively imply that shuffle relations among Esv[. . .]

and the βsv[. . .] can at most be violated by antiholomorphic functions such as the integration

constants α[. . .] in (4.17).16 All examples of α[ j1 j2
k1 k2

] up to including k1 + k2 = 12 were checked

to preserve the shuffle relations, and their explicit form can also be found in an ancillary file to

the arXiv submission of this work. Note that these checks cover the more intricate cases with

(k1, k2) = (4, 6) and (k1, k2) = (4, 8) where imaginary cusp forms occur among the MGFs [18,87].

The Esv and βsv are expected to occur in Brown’s generating series of single-valued iterated

Eisenstein integrals [101, 13, 14]. The construction of non-holomorphic modular forms in the

references – so-called equivariant iterated Eisenstein integrals – are obtained by augmenting

their single-valued counterparts by combinations of MZVs and objects of lower depth. At depth

one, the equivariant iterated Eisenstein integrals are non-holomorphic Eisenstein series along

16Moreover, any such violation of shuffle relations would need to be a combination of antiholomorphic iterated

Eisenstein integrals (by the differential equation [18, (2.37)] for ∂τ̄Y
τ
~η ) but at the same time line up with the

modular weights in the ηj-expansion of Jτ
~η , Y

τ
~η and the reality properties of the latter. It would be interesting to

find a rigorous argument to rule out the existence of such antiholomorphic functions.
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with their Cauchy–Riemann derivatives [101,13,14]. From their representation [18]

(π∇)mEk =
(
−
1

4

)m (2k−1)!

(k−1)!(k−1−m)!

{
−βsv

[
k−1+m

2k

]
+

2ζ2k−1

(2k−1)(4y)k−1−m

}

Ek =
(2k−1)!

[(k−1)!]2

{
−βsv

[
k−1
2k

]
+

2ζ2k−1

(2k−1)(4y)k−1

}
(4.22)

(π∇)mEk

y2m
=

(−4)m(2k−1)!

(k−1)!(k−1−m)!

{
−βsv

[
k−1−m

2k

]
+

2ζ2k−1

(2k−1)(4y)k−1+m

}
,

the βsv are seen to take the role of the single-valued rather than equivariant iterated Eisenstein

integrals at depth one. At higher depth, the precise relation of the βsv to Brown’s construction

is an open question.

4.4 Initial values

It remains to specify the initial values B̂i∞
~η and Ĵ i∞

~η in the α′-expansions (4.9) and (4.19). The

Laurent-polynomial contributions from the asymptotics (3.23) and (3.24) of the Green functions

are still functions of τ and need to be translated into a series that solely depends on ηj and sij.

Following the construction of a similar initial value for Y τ
~η in section 3.4 of [18], we import the

constant parts ∼ τ0 and ∼ (Im τ)0 of the respective Laurent polynomials

B̂i∞
~η = exp

( ir~η(ǫ0)
2T

)
Bτ

~η

∣∣
LP

∣∣
τ0

(4.23)

Ĵ i∞
~η = exp

(sv r~η(ǫ0)
4y

)
Jτ
~η

∣∣
LP

∣∣
(Im τ)0

. (4.24)

In both cases, the exponentials ensure that the negative powers of T in Bτ
~η

∣∣
LP

and y in Jτ
~η

∣∣
LP

disappear order by order in α′. Hence, (4.23) and (4.24) pick up the lowest powers of T, y

present in exp(
ir~η(ǫ0)
2T )Bτ

~η

∣∣
LP

and exp(
sv r~η(ǫ0)

4y )Jτ
~η

∣∣
LP

. The leading α′- and η2-orders of the two-

point initial values following from the expressions in (3.25) and (3.26) are

B̂i∞
η2 =

1

η2

[
1 +

1

6
s212ζ2 +

1

12
s312ζ3 +

131

720
s412ζ4 + s512

( 17

360
ζ2ζ3 +

43ζ5
720

)
+O(s612)

]

+ η2

[
−2ζ2 − s12ζ3 −

29

12
s212ζ4 − s312

(1
3
ζ2ζ3 +

5ζ5
6

)
− s412

( 1

12
ζ23 +

87ζ6
40

)
+O(s512)

]

+ η32

[
−2ζ4 + s12(2ζ2ζ3 − ζ5) + s212

(ζ23
2

−
33ζ6
8

)
+ s312

(9
4
ζ3ζ4 +

3

2
ζ2ζ5 −

7ζ7
4

)
+O(s412)

]

+ η52

[
−2ζ6 + s12(2ζ4ζ3 + 2ζ2ζ5 − ζ7) + s212

(
−ζ2ζ

2
3 + ζ3ζ5 −

43ζ8
6

)
+O(s312)

]
(4.25)

+ η72
[
−2ζ8 + s12(2ζ3ζ6 + 2ζ4ζ5 + 2ζ2ζ7 − ζ9) +O(s212)

]
+ η92

[
−2ζ10 +O(s12)

]
+O(η112 )
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as well as

Ĵ i∞
η2 =

1

η2

[
1 +

1

6
s312ζ3 +

43

360
s512ζ5 +O(s612)

]

+ η2

[
−2s12ζ3 −

5

3
s312ζ5 −

1

3
s412ζ

2
3 +O(s512)

]

+ η32

[
−2s12ζ5 + 2s212ζ

2
3 −

7

2
s312ζ7 +O(s412)

]
(4.26)

+ η52
[
−2s12ζ7 + 4s212ζ3ζ5 +O(s312)

]

+ η72
[
−2s12ζ9 +O(s212)

]
+ η92O(s12) +O(η112 ) .

Higher orders in s12 and η2 are readily available through the straightforward expansion of expo-

nentials and Γ-functions in (3.25) and (3.26). In particular, these two-point expressions imply

that all the coefficients in the s12- and η2- expansions are combinations of Riemann zeta values

for B̂i∞
η2 and odd Riemann zeta values for Ĵ i∞

η2 .

Starting from n = 3 points, the initial values B̂i∞
~η will also feature irreducible MZVs of higher

depth. Based on Enriquez’ method to generate the Laurent polynomial of B-cycle eMZVs [3]

(also see appendix B of [51]) we have determined the three-point initial values to certain orders,

and the results are included in an ancillary file to the arXiv submission of this article. To the

orders under consideration, we find the following coefficients of ζ3,5

B̂i∞
η2,η3(2, 3|2, 3)

∣∣
ζ3,5

=
1

10
(η23 − 2η3)(2η23 − η3)(η23 + η3)

×
[
2η223s13 − 2η23η3s12 − 4η23η3s13 + 2η23s13 − 2η23η3s23 + η23s12s13 + η3s13s23 +O(s3ij)

]

B̂i∞
η2,η3(2, 3|3, 2)

∣∣
ζ3,5

= −
1

10
(η2 − 2η23)(2η2 − η23)(η2 + η23) (4.27)

×
[
2η22s12 − 4η2η23s12 + 2η223s12 − 2η2η23s13 − 2η2η23s23 − η23s12s13 − η2s12s23 +O(s3ij)

]
,

which by the single-valued maps sv ζ3,5 = −10ζ3ζ5 and sv ζ3ζ5 = 4ζ3ζ5 enter the closed-string

initial values via

Ĵ i∞
η2,η3(2, 3|ρ(2, 3))

∣∣
ζ3ζ5

= −10B̂i∞
η2,η3(2, 3|ρ(2, 3))

∣∣
ζ3,5

+ 4B̂i∞
η2,η3(2, 3|ρ(2, 3))

∣∣
ζ3ζ5

. (4.28)

Similarly, the MZV ζ3,5,3 seen in Laurent polynomials of both B-cycle integrals [51] and modular

graph functions [12] will occur in both B̂i∞
η2,η3 and Ĵ i∞

η2,η3 . The contributions to B̂i∞
η2,η3 involving

MZVs of weight up to and including four can be found in appendix B.

Since the initial values are obtained from the Laurent polynomials and the exponents in (4.23)

and (4.24) are related by the single-valued map, the conjecture (3.22) supported by tree-level

results and extensive genus-one tests is equivalent to

Ĵ i∞
~η (γ|ρ) = sv B̂i∞

~η (γ|ρ) , (4.29)

in agreement with (4.25) and (4.26).

The τ → i∞ asymptotics of n-point A-cycle integrals (2.9) has been expressed in terms

of (n+2)-point disk integrals (2.1) in suitable kinematic limits [60]. Similarly, the Laurent
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polynomials of n-point genus-one integrals Bτ
~η , J

τ
~η are determined by genus-zero integrals at

multiplicity n+2 and below, see (3.25) and (3.26) for the explicit two-point result. As will be

further investigated in [95], the main challenge is to determine the admixture of lower-point

genus-zero integrals that generalize the subtraction of eiT (
s12
2

±η2) and e−y(s12±2η2) from the Γ-

functions in (3.25) and (3.26).

4.5 The single-valued map on iterated Eisenstein integrals

The proposed single-valued map (3.34) can now also be studied at the level of the α′-expansions.

Using (4.29) and (3.30), we find that one obtains Jτ
~η as the single-valued version of Bτ

~η if the

coefficients obey

βsv
[
j1 j2 ... jℓ
k1 k2 ... kℓ

; τ
]
= SV β

[
j1 j2 ... jℓ
k1 k2 ... kℓ

; τ
]
. (4.30)

This follows from the relation (4.29) among the initial values and the form of the r~η operators

in the respective α′-expansions, recalling that r~η(ad
j
ǫ0(ǫk)) = sv r~η(ad

j
ǫ0(ǫk)).

On the one hand, (4.30) fixes the single-valued map of the eMZVs in the expansion of Bτ
~η

that enter through the iterated Eisenstein integrals β[. . .]. On the other hand, (4.30) only applies

to the combinations β[. . .] and βsv[. . .] that occur in the path-ordered exponentials (4.9) and

(4.19). The SV map of individual β
[
j1 ... jℓ
k1 ... kℓ

; τ
]
remains undetermined whenever the relations

in the derivation algebra such as (2.22) lead to dropouts of certain β[. . .] and βsv[. . .] from Bτ
~η

and Jτ
~η (starting with cases at (k1, k2) = (10, 4) at depth ℓ = 2).

Since the factors of i
2T and 1

4y in (4.11) and (4.20) are furthermore related by SV, (4.30) is

equivalent to

Esv
[
j1 j2 ... jℓ
k1 k2 ... kℓ

; τ
]
= SV E

[
j1 j2 ... jℓ
k1 k2 ... kℓ

; τ
]
, (4.31)

again up to cases where the relations in the derivation algebra cause dropouts. For instance,

(4.16) implies that the single-valued version of holomorphic Eisenstein integrals (4.1) at depth

one is given by

SV E
[
j
k
; τ
]
=

j∑

r=0

(−2πiτ̄ )r
(
j

r

)(
E
[
j−r
k

; τ
]
+ (−1)j−rE

[
j−r
k

; τ
])

, (4.32)

where the contributions on the right-hand side can be recognized as

j∑

r=0

(−2πiτ̄ )r
(
j

r

)
E
[
j−r
k

; τ
]
= (2πi)1−k+j

∫ i∞

τ
dτ1 (τ1−τ̄)jGk(τ1) , (4.33)

(−1)j
j∑

r=0

(2πiτ̄ )r
(
j

r

)
E
[
j−r
k

; τ
]
= −(2πi)1−k+j

∫ i∞

τ̄
dτ̄1 (τ̄1−τ̄)jGk(τ1) ,

respectively. Note that (4.30) fixes the SV-map of all the E
[
j
k
; τ
]
at depth one with k ≥ 4 and

0 ≤ j ≤ k−2 since the caveats related to relations in the derivation algebra only affect iterated

Eisenstein integrals of depth ℓ ≥ 2.
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The iterated Eisenstein integrals defined in (4.1) may be reorganized in terms of [17]

E0(k1, k2, . . . , kℓ; τ) = 2πi

∫ i∞

τ
dτℓ

G0
kℓ
(τℓ)

(2πi)kℓ
E0(k1, k2, . . . , kℓ−1; τ) (4.34)

with E0(; τ) = 1. By subtracting the zero mode of the holomorphic Eisenstein series

G0
k(τ) = Gk(τ)− 2ζk for k 6= 0 ,

G0
0(τ) = G0(τ) = −1 , (4.35)

the integrals (4.34) are made to converge if k1 > 0.

At depth one they are related to the holomorphic iterated Eisenstein integrals via [51]

E
[
j
k
; τ
]
= j! E0(0

j , k ; τ) +
Bk(2πiτ)

j+1

k!(j+1)
(4.36)

with Bernoulli numbers Bk. From this, we see that the implicit action of SV on these functions

is given at depth one by

SV E0(0
j , k ; τ) =

1

j!
Esv

[
j
k
; τ
]
−

Bk(−4y)j+1

k!(j+1)!
. (4.37)

By (4.32), (4.36) and the shuffle relation

E0(0
j , k; τ) =

j∑

r=0

(−1)j−r

r!
(2πiτ)rE0(k, 0

j−r; τ) , (4.38)

two equivalent formulations of (4.37) are

SV E0(0
j , k ; τ) = E0(0

j , k ; τ) +

j∑

r=1

E0(0r ; τ)E0(0
j−r, k ; τ) + E0(k, 0j ; τ) (4.39)

SV E0(k, 0
j ; τ) = E0(k, 0

j ; τ) +

j∑

r=1

E0(0j−r, k ; τ)E0(0
r ; τ) + E0(0j , k ; τ) ,

which match the expectation from [102].

5 Examples

We shall now spell out a variety of examples that illustrate both the pairing of cycles with dual

antielliptic integrands V (. . . |τ) and the action of the single-valued map on eMZVs. Both eMZVs

and MGFs occur in the simultaneous expansion of the generating series Bτ
~η , J

τ
~η in sij and ηj.

The coefficients in their ηj-expansion will be referred to as component integrals, and we will use

the shorthand

f
(a)
ij = f (a)(zi−zj , τ) , f

(b)
ij = f (b)(zi−zj, τ) (5.1)
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for the Kronecker–Eisenstein coefficients defined by (2.14) that occur in the integrands. More

precisely, the building blocks (2.13) and (3.6) of the integrands of Bτ
~η , J

τ
~η involve the following

combinations of (5.1) with η23...n = η2+η3+ . . .+ηn,

ϕτ
~η(1, 2, . . . , n) =

∑

a2,...,an≥0

ηa2−1
23...nη

a3−1
3...n . . . ηan−1

n f
(a2)
12 f

(a3)
23 . . . f

(an)
n−1,n

Vw(1, 2, . . . , n|τ) =
∑

a1,a2,...,an≥0
a1+a2+...+an=w

f
(a1)
12 f

(a2)
23 . . . f

(an−1)
n−1,n f

(an)
n,1 . (5.2)

5.1 Two-point α′-expansions

At two points, the general definitions (3.1) and (3.12) only admit a single permutation in Bτ
η2 =

Bτ
η2(2|2) and Jτ

η2 = Jτ
η2(2|2),

Bτ
η2 =

∫ τ/2

−τ/2

dz2
τη2

∞∑

a=0

τaηa2f
(a)
12 es12GB(z12,τ) (5.3)

Jτ
η2 =

∫

T

d2z2
Im τ

1

η2

∞∑

a=0

(τ−τ̄)aηa2f
(a)
12 es12GT(z12,τ) ,

and we introduce the following notation for component integrals

Bτ
(a) = Bτ

η2

∣∣
ηa−1
2

= τa
∫ τ/2

−τ/2

dz2
τ

f
(a)
12 es12GB(z12,τ) (5.4)

Jτ
(a) = Jτ

η2

∣∣
ηa−1
2

= (τ−τ̄)a
∫

T

d2z2
Im τ

f
(a)
12 es12GT(z12,τ) .

Then, combining the initial values (4.25) and (4.26) with the α′-expansions (4.9) and (4.19)

yields expressions like

Bτ
(0) = 1 + s212

(
−3β[ 14 ; τ ] +

ζ2

6
+

iζ3

2T
+

3ζ4
4T 2

)

+ s312

(
−5β[ 26 ; τ ] + 12ζ2β[ 04 ; τ ] +

ζ3

12
+

19iζ4
24T

−
ζ5

4T 2
+

ζ2ζ3

T 2
−

4iζ6
3T 3

)
+O(s412)

Bτ
(2) = −2ζ2 + s12

(
3β[ 24 ; τ ]− ζ3 +

3iζ4
T

)
(5.5)

+ s212

(
10β[ 36 ; τ ]− 18ζ2β[ 14 ; τ ]−

29ζ4
12

−
iζ5

T
+

3iζ2ζ3
T

+
43ζ6
8T 2

)
+O(s312)

Bτ
(4) = −2ζ4 + s12

(
5β[ 46 ; τ ]− 6ζ2β[ 24 ; τ ] + 2ζ2ζ3 − ζ5 −

11iζ6
2T

)
+O(s212)

as well as

Jτ
(0) = 1 + s212

(
−3βsv[ 14 ; τ ] +

ζ3

2y

)
+ s312

(
−5βsv[ 26 ; τ ] +

ζ3

6
+

ζ5

8y2

)
+O(s412)

Jτ
(2) = s12(3β

sv[ 24 ; τ ]− 2ζ3) + s212

(
10βsv[ 36 ; τ ]−

ζ5

y

)
+O(s312) (5.6)

Jτ
(4) = s12(5β

sv[ 46 ; τ ]− 2ζ5) +O(s212)
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upon extracting suitable powers of η2. The action of SV on the ζn, T, β[. . .] as in (3.32) and

(4.30) relates Jτ
(a) = SVBτ

(a) as expected from (3.34). Examples of β[. . .] beyond depth one

occur at the next orders in sij, e.g.

Bτ
(0)

∣∣
s412

= −21β[ 38 ; τ ] + 9β[ 1 1
4 4 ; τ ]− 18β[ 2 0

4 4 ; τ ]−
ζ2

2
β[ 14 ; τ ] + 40ζ2β[ 16 ; τ ]

+ 6ζ3β[ 04 ; τ ]−
3iζ3
2T

β[ 14 ; τ ]−
18iζ4
T

β[ 04 ; τ ]−
9ζ4
4T 2

β[ 14 ; τ ] (5.7)

+
131ζ4
720

+
5iζ5
12T

+
iζ2ζ3

12T
+

23ζ6
32T 2

+
ζ23
8T 2

−
9iζ3ζ4
8T 3

+
iζ2ζ5

T 3
−

3iζ7
8T 3

+
85ζ8
192T 4

as well as

Jτ
(0)

∣∣
s412

= −21βsv[ 38 ; τ ] + 9βsv[ 1 1
4 4 ; τ ]− 18βsv[ 2 0

4 4 ; τ ]

+ 12ζ3β
sv[ 04 ; τ ]−

3ζ3
2y

βsv[ 14 ; τ ] +
5ζ5
12y

−
ζ23
8y2

+
3ζ7
32y3

Jτ
(0)

∣∣
s512

= −135βsv[ 4
10 ; τ ]− 60βsv[ 3 0

6 4 ; τ ] + 15βsv[ 1 2
4 6 ; τ ] + 15βsv[ 2 1

6 4 ; τ ]− 60βsv[ 2 1
4 6 ; τ ] (5.8)

−
1

2
ζ3β

sv[ 14 ; τ ] +
6ζ5
y

βsv[ 04 ; τ ]−
3ζ5
8y2

βsv[ 14 ; τ ] + 40ζ3β
sv[ 16 ; τ ]−

5ζ3
2y

βsv[ 26 ; τ ]

+
43ζ5
360

+
ζ23
12y

+
7ζ7
32y2

−
3ζ3ζ5
16y3

+
15ζ9
128y4

.

5.2 Extracting single-valued eMZVs

The above α′-expansions at two points have been generated in earlier work in terms of eMZVs

[51,59] and MGFs [10,11,61], respectively. The results in the references include

Bτ
(0) = 1+s212

(1
2
ω(0, 0, 2|− 1

τ )+
5ζ2
12

)
+s312

( 1

18
ω(0, 0, 3, 0|− 1

τ )−
4

3
ζ2ω(0, 0, 1, 0|−

1
τ )+

ζ3

12

)
+O(s412)

Jτ
(0) = 1 +

1

2
s212E2(τ) +

1

6
s312

(
E3(τ) + ζ3

)
+O(s412) , (5.9)

where E2 = −6βsv[ 14 ; τ ]+
ζ3
y , and the modular transformation may be evaluated to yield [51,93]

ω(0, 0, 2|− 1
τ ) = −

T 2

180
−

ζ2

6
+

3ζ4
2T 2

+ ω(0, 0, 2|τ) +
8i

T
ζ2ω(0, 1, 0, 0|τ) . (5.10)

For the examples in (5.9), the component version Jτ
(a) = SVBτ

(a) of J
τ
η2 = SVBτ

η2 implies that

SVω(0, 0, 2|− 1
τ ) = E2(τ) (5.11)

and a similar analysis for higher orders in s12 and at a 6= 0 yields for instance

SVω(0, 3|− 1
τ ) = 2π∇E2(τ) , SVω(0, 0, 4|− 1

τ ) = −
4

3
π∇E3(τ) (5.12)

SVω(0, 0, 3, 0|− 1
τ ) = 3E3(τ) , SVω(0, 5|− 1

τ ) = −
4

3
(π∇)2E3(τ) .
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At depth two, relating Bτ
(0)

∣∣
s412

↔ Jτ
(0)

∣∣
s412

(see (5.7) and (5.8)) or Bτ
(2)

∣∣
s312

↔ Jτ
(2)

∣∣
s312

yields

E2,2(τ) = SV
(
−
7

5
ω(0, 0, 0, 0, 4|− 1

τ )− ω(0, 0, 0, 2, 2|− 1
τ ) +

1

2
ω(0, 0, 2|− 1

τ )
2 +

3

20
ω(0, 0, 4|− 1

τ )
)

π∇E2,2(τ) = SV
(
−

1

60
ω(0, 5|− 1

τ ) +
3

5
ω(0, 0, 0, 5|− 1

τ )−
1

2
ω(0, 0, 2, 3|− 1

τ )
)
, (5.13)

where the combinations

E2,2 =

(
Im τ

π

)4(
C[ 2 1 1

2 1 1 ]−
9

10
C[ 4 0

4 0 ]
)

= −18βsv[ 2 0
4 4 ] + 12ζ3β

sv[ 04 ] +
5ζ5
12y

−
ζ23
4y2

(5.14)

π∇E2,2 =
(Im τ)5

π3

(
C[ 3 1 1

1 1 1 ]−
8

5
C[ 5 0

3 0 ]
)

= 9βsv[ 2 1
4 4 ]− 6ζ3β

sv[ 14 ]−
5ζ5
12

+
ζ23
2y

of MGFs (2.26) are engineered to remove G8 from the differential equations [51]. The systematics

of depth-one relations between eMZVs and non-holomorphic Eisenstein series including higher-

weight generalizations of (5.12) is detailed in appendix C.1 and leads to the closed-form results

SV

ℓ−1∑

j=0

Bj

j!
ω(0ℓ−j , 2k+ℓ|− 1

τ ) = (−1)ℓ
(k+ℓ−1)!

(2k+ℓ−1)!
(−4π∇)kEk+ℓ , k≥0 , ℓ≥1 , k+ℓ≥2 (5.15)

SV

ℓ−1∑

j=0

Bj

j!
ω(0ℓ−j , ℓ−2k|− 1

τ ) = (−1)ℓ+k (ℓ−k−1)!

(ℓ−1)!

(π∇)kEℓ−k

(2y)2k
, k≥0 , ℓ−2k≥1 , ℓ−k≥2

for combinations of eMZVs of different length that are weighted by Bernoulli numbers Bj [103].

Similarly, the analogue of (5.13) for the MGF E2,3 = ( Im τ
π )5

(
C[ 3 1 1

3 1 1 ]−
43
35 C[

5 0
5 0 ]

)
and its holo-

morphic derivatives is spelled out in appendix C.2.

Note that the single-valued map of A-cycle eMZVs at argument τ rather than − 1
τ generi-

cally leads to combinations of MGFs of different modular weights. For instance, changing the

argument − 1
τ to τ in (5.11) gives rise to

SVω(0, 0, 2|τ) = −
y2

15
+ E2(τ) +

π∇E2(τ)

y
(5.16)

instead of a single modular invariant E2(τ). This can be seen by expressing all of ω(0, 0, 2|τ),

E2(τ) and ∇E2(τ) in terms of convergent iterated Eisenstein integrals (4.34) and applying their

single-valued map (4.39)17. Alternatively, (5.16) can be deduced by setting τ → − 1
τ in (5.10)

17The representations in terms of convergent iterated Eisenstein integrals needed to verify (5.16) are

ω(0, 0, 2|τ ) = −6E0(4, 0; τ )−
1

3
ζ2

E2(τ ) =
y2

45
+

ζ3

y
− 12Re[E0(4, 0; τ )]−

6

y
Re[E0(4, 0, 0; τ )]

π∇E2(τ ) =
2y3

45
− ζ3 + 24y2E0(4; τ ) + 12yE0(4, 0; τ ) + 6Re[E0(4, 0, 0; τ )]
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and exploiting the result SVω(0, 1, 0, 0|− 1
τ ) =

3π∇E2(τ)
8y2

that will be extracted from a four-point

example in section 5.5. The much cleaner result (5.11) for SVω(0, 0, 2|− 1
τ ) as compared to

SVω(0, 0, 2|τ) is another manifestation of the fact that the differential equations (3.28) of B-

cycle integrals are more closely related to the closed-string counterparts (3.29) than the A-cycle

differential equations in (2.19).

5.3 Symmetrized cycles and graph functions

At n ≥ 3 points, most of the antielliptic functions in (3.8) introduce non-constant f
(a)
ij into the

closed-string integrands, except for the simplest case V0(1, 2, . . . , n|τ) = 1 dual to a permutation

sum over B-cycles, see (3.37),

Jτ
0,~η(∗|ρ) =

∫

Tn−1

( n∏

j=2

d2zj
Im τ

) n∏

1≤i<j

esijGT(zij ,τ)ρ

{ n∏

k=2

∞∑

ak=0

(τ−τ̄)akηak−1
k,k+1...nf

(ak)
k−1,k

}
(5.17)

= SV
∑

γ∈Sn−1

Bτ
~η (γ|ρ) .

As indicated by the ∗-notation, the Jτ
0,~η(∗|ρ) integral (3.35) on the left-hand side is independent

of the ordering ∗ since its integrand V0 is. The symmetrized open-string integrals on the right-

hand side were studied in [51,76,16] as the generating series of holomorphic graph functions,

∑

γ∈Sn−1

Bτ
~η (γ|ρ) =

(∫ τ/2

−τ/2

n∏

j=2

dzj

) n∏

1≤i<j

esijGB(zij ,τ)ρ

{ n∏

k=2

∞∑

ak=0

(τηk,k+1...n)
ak−1f

(ak)
k−1,k

}
, (5.18)

where each puncture is integrated independently over the entire B-cycle. More specifically, the

references considered the components f
(ak)
k−1,k → f

(0)
k−1,k = 1 at the most singular order in the ηj ,

Mopen
n =

∑

γ∈Sn−1

Bτ
~η (γ|ρ)

∣∣
η−1
23...nη

−1
3...n...η

−1
n

=
1

τn−1

( n∏

j=2

∫ τ/2

−τ/2
dzj

) n∏

1≤i<j

esijGB(zij ,τ) (5.19)

= 1 +
1

2

n∑

1≤i<j

s2ij +
1

6

n∑

1≤i<j

s3ij +

n∑

1≤i<j<k

sijsiksjk +O(s4ij) ,B
[ ]
• • B

[ ]
• • B

[ ]
• •
•

where the dependence on the permutation ρ drops out, and the integrands at fixed order in sij

are polynomials in B-cycle Green functions. In passing to the second line, each monomial in

GB(zij , τ) is mapped to a graph Γ that labels the B-cycle graph functions B[Γ], where a factor of

GB(zij , τ) is represented by an edge connecting vertices zi and zj. One-particle reducible graphs

Γ1PR lead to vanishing B[Γ1PR] since
∫ τ/2
−τ/2 dz GB(z, τ) = 0, i.e. higher orders of (5.19) stem from

all combinations of one-particle irreducible graphs with four and more edges in total. Any B[Γ]

is expressible in terms of B-cycle eMZVs [51] since the α′-expansion of each component integral

of the series Bτ
~η (γ|ρ) is.

Similarly, modular graph functions D[Γ] (as opposed to modular graph forms) were defined

[10,11] by n-point torus integrals over monomials in GT(zij , τ), where each torus Green functions

32



is again visualized through an edge between vertices zi and zj . TheD[Γ] associated with dihedral

graphs Γ are proportional to the lattice sums (2.26) with aj = bj , and also more complicated

graph topologies can be straightforwardly translated into lattice sums.

The generating series of n-point modular graph functions resides at the most singular order

of (5.17) w.r.t. ηj where the insertions of f
(a)
ij are absent,

M closed
n = Jτ

0,~η(∗|ρ)
∣∣
η−1
23...nη

−1
3...n...η

−1
n

=

∫

Tn−1

( n∏

j=2

d2zj
Im τ

) n∏

1≤i<j

esijGT(zij ,τ) (5.20)

= 1 +
1

2

n∑

1≤i<j

s2ij +
1

6

n∑

1≤i<j

s3ij +
n∑

1≤i<j<k

sijsiksjk +O(s4ij) ,D
[ ]
• • D

[ ]
• • D

[ ]
• •
•

and we have D[Γ1PR] = 0 by
∫
T
d2z GT(z, τ) = 0. As a consequence of (5.17) at the most singular

order in the ηj, modular graph functions are single-valued B-cycle graph functions,

M closed
n = SVMopen

n ⇔ D[Γ] = SVB[Γ] , (5.21)

which ultimately follows from the Betti–deRham duality between V0 = 1 and the symmetrized

cycles
∑

γ∈Sn−1
B(γ(2, . . . , n)).

The relations in (5.21) have firstly appeared in [51] with a proposal “esv” for an elliptic

single-valued map in the place of SV. The esv-map of [51] has the same action (3.32) on MZVs

and Laurent polynomials in τ as the SV-map in this work. In particular, all pairs of B-cycle

eMZVs and modular graph functions related via esvω(. . . |− 1
τ ) ∼ D[. . .] in the reference are

also related via SVω(. . . |− 1
τ ) ∼ D[. . .] as a consequence of (5.21). For suitable representations

of the q-series of eMZVs via E0 defined by (4.34), the Fourier expansions of all modular graph

functions up to weight six could be reproduced from the replacement E0 → 2Re(E0) prescribed

by esv [51]. However, it was an open problem in the reference to reconcile esv with the shuf-

fle property of iterated Eisenstein integrals. The SV action (4.30) in turn is expected to be

compatible with the shuffle multiplication of the β[. . .] and βsv[. . .] by the discussion in sec-

tion 4.3: Shuffle-compatibility can be verified on a case-by-case basis from the antiholomorphic

integration constants α[. . .] in (4.17) and higher-depth generalizations.

Note that subleading orders in the ηj-expansion of (5.17) generate infinite families of addi-

tional relation between MGFs and single-valued eMZVs beyond (5.21). The comparison of open-

and closed-string integrals with additional insertions of f
(a2)
12 f

(a3)
23 . . . f

(an)
n−1,n identifies MGFs of

various modular weights as single-valued B-cycle eMZVs.

5.4 Three-point cycles and V1(1, 2, 3|τ)

The simplest instance of Jτ
~η (γ|ρ) = SVBτ

~η (γ|ρ) with non-constant antielliptic integrands V (. . . |τ)

occurs at three points. The single-valued map relates an antisymmetric integration cycle on the
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open-string side in (3.45) to the closed-string integral

Jτ
1,η2,η3(2, 3|2, 3) = −

1

2πi

∫

T2

d2z2d
2z3

(Im τ)2

3∏

1≤i<j

esijGT(zij ,τ)

×
∞∑

a,b=0

(τ−τ̄)a+bηa−1
23 ηb−1

3 f
(a)
12 f

(b)
23 (f

(1)
12 +f

(1)
23 +f

(1)
31 ) . (5.22)

Since contributions with even a+b integrate to zero, the simplest component integrals involve

permutations of f
(1)
12 f

(1)
12 or f

(1)
23 f

(1)
12 at the orders of η−1

3 or η−1
23 ,

Jτ
1,η2,η3(2, 3|2, 3)

∣∣
η023η

−1
3

= −
Im τ

π

∫

T2

d2z2d
2z3

(Im τ)2

3∏

1≤i<j

esijGT(zij ,τ)f
(1)
12 (f

(1)
12 +f

(1)
23 +f

(1)
31 )

=
1

s12
+

s2123
2s12

E2 +
s3123
6s12

(E3 + ζ3) +
s13s23

2
(3E3 + ζ3) (5.23)

+
s4123
s12

(
E2,2 +

3

20
E4 +

1

8
E2
2

)
+ s13s23s123

(9
2
E2,2 +

21

20
E4

)
+O(s4ij) ,

which furnish the simplest examples of kinematic poles ∼ s−1
ij in a Jτ

~η -series. The correspond-

ing antisymmetrized B-cycle integral features the same types of kinematic poles in component

integrals involving f
(1)
ij , e.g.18

1

2

[
Bτ

η2,η3(2, 3|2, 3) −Bτ
η2,η3(3, 2|2, 3)

] ∣∣
η023η

−1
3

=
1

τ

∫

− τ
2
<z2<z3<

τ
2

dz2 dz3 f
(1)
12

3∏

1≤i<j

esijGB(zij ,τ)

=
1

s12
+

s2123
s12

(1
2
ω(0, 0, 2|− 1

τ ) +
5ζ2
12

)
+

s3123
s12

( 1

18
ω(0, 0, 3, 0|− 1

τ )−
4

3
ζ2ω(0, 0, 1, 0|−

1
τ ) +

ζ3

12

)

+ s13s23

(1
2
ω(0, 0, 3, 0|− 1

τ ) +
ζ3

4

)
+

s4123
s12

(
−ω(0, 0, 0, 2, 2|− 1

τ )−
5

4
ω(0, 0, 0, 0, 4|− 1

τ ) (5.24)

+
1

8
ω(0, 0, 4|− 1

τ ) +
5

8
ω(0, 0, 2|− 1

τ )
2 +

13

24
ζ2ω(0, 0, 2|−

1
τ )− 2ζ2ω(0, 0, 0, 0, 2|−

1
τ ) +

343ζ4
576

)

− s13s23s123

(9
2
ω(0, 0, 0, 2, 2|− 1

τ ) +
21

4
ω(0, 0, 0, 0, 4|− 1

τ )−
1

2
ω(0, 0, 4|− 1

τ )

−
9

4
ω(0, 0, 2|− 1

τ )
2 +

1

2
ζ2ω(0, 0, 2|−

1
τ )− 3ζ2ω(0, 0, 0, 0, 2|−

1
τ ) +

11ζ4
40

)
+O(s4ij) .

We have used that, by the antisymmetry f
(1)
12 = −f

(1)
21 of the integrand, the contribution from

the ordering − τ
2<z3<z2<

τ
2 is minus that of the ordering − τ

2<z2<z3<
τ
2 . Comparison of (5.24)

with (5.23) confirms the relation (3.45) under the SV-map at the respective orders in sij and ηj.

Up to the restriction of the Koba–Nielsen factor to three instead of five punctures, (5.23) and

(5.24) are the type of integrals over f
(1)
ij f

(1)
pq seen in genus-one five-point amplitudes of type II

superstrings [104,105].

18By slight abuse of notation, we denote the ordering of punctures zi, zj on the imaginary axis by − τ
2
<zi<zj<

τ
2
.

34



5.5 Four-point cycles and V2(1, 2, 3, 4|τ)

The esv map [51] has also been applied to the four-gluon amplitude of the heterotic string [52],

where the torus integral19

Jτ
het =

1

(2πi)2

∫

T3

( 4∏

j=2

d2zj
Im τ

)
V2(1, 2, 3, 4|τ)

4∏

1≤i<j

esijGT(zij ,τ)

= Jτ
2,η2,η3,η4(2, 3, 4|2, 3, 4)

∣∣
η−1
234η

−1
34 η−1

4
(5.25)

was related to the open-string integration cycle dual to (3.38). More specifically, the MGFs

in [52]

Jτ
het

∣∣
k2j=0

= −
3s13π∇E2

4y2
− (s213+2s12s23)

π∇E3

6y2
(5.26)

+ s13(s12s23 − s213)
(π∇E4

5y2
+

3E2∇E2

2y2
+

3∇E2,2

y2

)
+O(s4ij)

were proposed to be the single-valued versions of the eMZVs in the α′-expansion of

Bτ
het =

1

6

[
2Bτ

234+2Bτ
432−Bτ

243−Bτ
342−Bτ

324−Bτ
423

]

Bτ
ijk = Bτ

η2,η3,η4(i, j, k|2, 3, 4)
∣∣
η−1
234η

−1
34 η−1

4
, (5.27)

namely [4]

Bτ
het

∣∣
k2j=0

= −2s13ω(0, 1, 0, 0|−
1
τ )−

2

3
(s213 + 2s12s23)

[
ω(0, 1, 0, 1, 0|− 1

τ ) + ω(0, 1, 1, 0, 0|− 1
τ )
]

+
4

3
s13(s

2
13 − s12s23)

[
ω(0, 0, 1, 0, 0, 2|− 1

τ ) + ω(0, 0, 0, 1, 0, 2|− 1
τ ) (5.28)

− ω(0, 1, 0, 1, 1, 0|− 1
τ )− ζ2ω(0, 1, 0, 0|−

1
τ )
]
+O(s4ij) .

As indicated by
∣∣
k2j=0

, the α′-expansions (5.26) and (5.28) have been obtained in the limit

of four-point on-shell kinematics with two independent Mandelstam invariants instead of six.

However, the relation (3.34) between n-point closed-string and single-valued open-string integrals

is conjectured to be valid for the 1
2n(n−1) independent Mandelstam variables {sij , 1≤i<j≤n}

with sij = sji. At four points, the corollary

Jτ
2,η2,η3,η4(2, 3, 4|ρ) =

1

6
SV

[
2Bτ

η2,η3,η4(2, 3, 4|ρ) + 2Bτ
η2,η3,η4(4, 3, 2|ρ) (5.29)

−Bτ
η2,η3,η4(2, 4, 3|ρ) −Bτ

η2,η3,η4(3, 4, 2|ρ) −Bτ
η2,η3,η4(3, 2, 4|ρ) −Bτ

η2,η3,η4(4, 2, 3|ρ)
]

of the relation (3.40) between V2(1, 2, 3, 4|τ) and permutations of the V (1, 2, 3, 4|τ) functions is

claimed to hold for all of {s12, s13, s23, s14, s24, s34} independent. The coefficient of η−1
234η

−1
34 η

−1
4

in (5.29) with ρ = 2, 3, 4 then implies

Jτ
het = SVBτ

het (5.30)

19The quantity Jτ
het in (5.25) is defined to be (2πi)−2 times the complex conjugate of the integral I

(2,0)
1234 in

(2.44) and (4.35) of [52]. Similarly, Bτ
het in (5.27) is obtained from the integral Z

(2)
1234 in section 5.2 of [52] through

modular S transformation.
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and explains the relations between the α′-expansions (5.26) and (5.28) observed in [52] in the

on-shell limit k2j = 0. In particular, the prescription (4.30) for the single-valued map of the

iterated-Eisenstein-integral representation of Bτ
het produces the complete q, q̄-expansion of the

MGFs in (5.26), whereas certain antiholomorphic contributions could not be reproduced by esv

in [52].

By applying (5.30) at the level of the α′-expansions (5.26) and (5.28), one can infer

π∇E2

y2
=

8

3
SVω(0, 1, 0, 0|− 1

τ )

π∇E3

y2
= 4SV

[
ω(0, 1, 0, 1, 0|− 1

τ ) + ω(0, 1, 1, 0, 0|− 1
τ )
]

(5.31)

π∇E2,2

y2
= SV

[8
5
ω(0, 0, 0, 0, 0, 3|− 1

τ ) +
2

5
ω(0, 0, 0, 3|− 1

τ )

−
11

75
ω(0, 3|− 1

τ )− 8ω(0, 0, 0, 0, 1, 2|− 1
τ ) +

ζ3

3

]
.

Moreover, higher orders in the ηj-expansion of (5.29) yield infinite families of relations between

the α′-expansions of open- and closed-string integrals over additional factors f
(a)
1i f

(b)
ij f

(c)
jk .

5.6 Imaginary cusp forms and double zetas

We shall finally exemplify the appearance of cuspidal MGFs from single-valued open-string inte-

grals whose Laurent polynomial at the order of q0q̄0 vanishes. A systematic study of imaginary

cusp forms among the two-loop MGFs can be found in [54], also see [87] for examples of real

cusp forms. The simplest imaginary cusp forms occur among the lattice sums (2.26) at modular

weights (5, 5) whose basis can be chosen20 to include [18]

B2,3 =

(
Im τ

π

)5

( C[ 0 1 2 2
1 1 0 3 ]− C[ 0 1 2 2

1 1 0 3 ] ) +
(∇E2)∇E3 − (∇E2)∇E3

6(Im τ)2

B′
2,3 = B2,3 +

1

2

(
Im τ

π

)5

( C[ 0 2 3
3 0 2 ]− C[ 0 2 3

3 0 2 ] )−
21

4
E2,3 −

1

2
ζ3E2 . (5.32)

The βsv-representations involve double-integrals over G4G6 [18],

B2,3 = 450βsv[ 2 1
4 6 ]− 450βsv[ 3 0

6 4 ] + 270βsv[ 2 1
6 4 ]− 270βsv[ 1 2

4 6 ]

− 3ζ3β
sv[ 14 ]− 300ζ3β

sv[ 16 ] +
45ζ3β

sv[ 26 ]

y
+

45ζ5β
sv[ 04 ]

y
−

27ζ5β
sv[ 14 ]

4y2
−

13ζ5
120

,

B′
2,3 = 1260βsv[ 2 1

4 6 ]− 840ζ3β
sv[ 16 ] +

7ζ5
240

−
ζ23
2y

−
147ζ7
64y2

+
21ζ3ζ5
8y3

, (5.33)

and the associated integration constants α[. . .] can be found in the reference and in an ancillary

file within the arXiv submission of this article. Both B2,3,B
′
2,3 and their Cauchy–Riemann

20The choice of basis in [18] is tailored to delay the appearance of holomorphic Eisenstein to higher Cauchy-

Riemann derivatives as far as possible. That is why the real MGFs − 21
4
E2,3 − 1

2
ζ3E2 have been added to the

imaginary cusp forms B2,3 +
1
2

(

Im τ
π

)5
( C[ 0 2 3

3 0 2 ]− C[ 0 2 3
3 0 2 ] ) in (5.32).
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derivatives drop out from the two-point J- and Y -integrals. At three points, one can identify

their derivatives as single-valued eMZVs,

π∇B2,3 = SV
[
−1

2ω(0, 0, 2, 2, 2|−
1
τ )− 2ω(0, 0, 0, 1, 5|− 1

τ )−
3
8ω(0, 0, 0, 2, 4|−

1
τ )

+ ζ3
8 ω(0, 3|−

1
τ ) +

17
48ω(0, 3|−

1
τ )

2 + 7
8ω(0, 0, 4|−

1
τ )ω(0, 0, 2|−

1
τ )

− 7
2ω(0, 0, 0, 3|−

1
τ )ω(0, 3|−

1
τ ) +

137
16 ω(0, 0, 0, 0, 6|−

1
τ )−

15
32ω(0, 0, 6|−

1
τ )
]

π∇B′
2,3 = SV

[
−1

2ω(0, 0, 2, 2, 2|−
1
τ )− 11ω(0, 0, 0, 1, 5|− 1

τ ) +
295
8 ω(0, 0, 0, 0, 6|− 1

τ )

− 25
16ω(0, 0, 6|−

1
τ )− 11ω(0, 0, 0, 3|− 1

τ )ω(0, 3|−
1
τ ) +

11
12ω(0, 3|−

1
τ )

2 (5.34)

− 1
4ω(0, 0, 4|−

1
τ )ω(0, 0, 2|−

1
τ )
]

(π∇)2B′
2,3 = SV

[
−189

80 ω(0, 0, 2, 5|−
1
τ ) +

63
160ω(0, 0, 4, 3|−

1
τ ) +

603
40 ω(0, 0, 0, 7|−

1
τ )

− 699
320ω(0, 7|−

1
τ )−

1323
160 ω(0, 3|−

1
τ )ω(0, 0, 4|−

1
τ )
]

(π∇)3B′
2,3 = SV

[
−63

40ω(0, 3, 5|−
1
τ ) +

567
64 ω(0, 0, 8|−

1
τ )−

63
8 ω(0, 3|−

1
τ )ω(0, 5|−

1
τ )
]

by inspecting the contributions of f
(3)
12 f

(3)
23 or f

(4)
12 to Jτ

0,η2,η3 and f
(3)
12 to Jτ

1,η2,η3 . The appearance

of the undifferentiated B2,3 and B′
2,3 is relegated to the J-integrals at four points (or the Y -

integrals at three points [18]), and comparison with the B-cycle integrals yields

B2,3 = SV
[
143
20 ω(0, 0, 0, 0, 0, 5|−

1
τ )−

11
2 ω(0, 0, 0, 0, 1, 4|−

1
τ ) + 2ω(0, 0, 0, 0, 2, 3|− 1

τ )

− 2ω(0, 0, 0, 1, 2, 2|− 1
τ )−

91
40ω(0, 0, 0, 5|−

1
τ )−

449
7200ω(0, 5|−

1
τ )−

5
12ω(0, 3|−

1
τ )ω(0, 0, 2|−

1
τ )

+ 5
2ω(0, 0, 2|−

1
τ )ω(0, 0, 0, 3|−

1
τ ) +

23
12ω(0, 0, 2, 3|−

1
τ )−

15
2 ω(0, 3|−

1
τ )ω(0, 0, 0, 0, 2|−

1
τ )

+ ζ3
4 ω(0, 0, 2|−

1
τ )−

43ζ5
480

]
(5.35)

B′
2,3 = SV

[
463
10 ω(0, 0, 0, 0, 0, 5|−

1
τ )− 22ω(0, 0, 0, 0, 1, 4|− 1

τ ) + 5ω(0, 0, 0, 0, 2, 3|− 1
τ )

− 2ω(0, 0, 0, 1, 2, 2|− 1
τ )−

121
20 ω(0, 0, 0, 5|−

1
τ )−

1069
3600ω(0, 5|−

1
τ )−

1
6ω(0, 3|−

1
τ )ω(0, 0, 2|−

1
τ )

+ ω(0, 0, 2|− 1
τ )ω(0, 0, 0, 3|−

1
τ ) +

25
6 ω(0, 0, 2, 3|−

1
τ )− 24ω(0, 3|− 1

τ )ω(0, 0, 0, 0, 2|−
1
τ )−

11ζ5
96

]
.

The open-string counterparts of B2,3,B
′
2,3 and their Cauchy–Riemann derivatives involve the

simplest combinations of B-cycle eMZVs with an irreducible ζ3,5 in their Laurent polynomials:

The methods of [3] (also see appendix B of [51]) yield the following examples of τ → i∞

degenerations in (5.34) and (5.35),

B2,3

∣∣
LP

= SV
[iT 3ζ2

5040
+

29iT ζ4
630

+
ζ3ζ2

8
−

8153iζ6
2880T

−
9ζ5ζ2
8T 2

−
73ζ3ζ4
16T 2

+
1837iζ8
240T 3

+
3i

10T 3
(2ζ3,5 + 5ζ3ζ5)−

39ζ5ζ4
8T 4

+
45ζ3ζ6
8T 4

+
33iζ10
20T 5

]

= 0 (5.36)

(π∇)3B′
2,3

∣∣
LP

= SV
[ T 8

17280
+

iT 5ζ3

120
+

T 4ζ4

40
−

7T 2ζ6

80
−

8211ζ8
640

+
63ζ3,5
40

+
189iζ5ζ4

8T
+

63iζ3ζ6
4T

+
14553ζ10
160T 2

]

=
2y8

135
−

8y5ζ3
15

−
63ζ3ζ5

4
.
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One can see from the order of T−3 or y−3 that the cuspidal nature of B2,3 hinges on the depth-

two result sv ζ3,5 = −10ζ3ζ5. The non-vanishing Laurent polynomial of (π∇)3B′
2,3 is due to the

real MGFs −21
4 E2,3 −

1
2ζ3E2 in (5.32).

Note that the simplest instances of ζ3,7 and ζ3,5,3 arise in the Laurent polynomials of B-

cycle eMZVs with MGFs (2.26) of weights
∑r

j=1(aj + bj) = 12 and 14 in their SV-image.

The appearance of ζ3,5,3 in modular graph functions and eMZVs can be found in [12] and [51],

respectively. While ζ3,7 drops out from MGFs under the single-valued map, it enters for instance

the T 0-order of the Laurent polynomial of ω(0, 3, 7|− 1
τ ) whose SV-image contributes to the

quantity (π∇)4B′
2,4 in section 9.2 of [87]

ω(0, 3, 7|− 1
τ )

∣∣
LP

= −
T 10

1261260
+

2iT 5ζ5

315
+

2T 4ζ6

63
+

7iT 3ζ7

45
+

7T 2ζ8

6
(5.37)

− ζ3,7 − 14ζ3ζ7 − 6ζ25 +
27ζ10
2

+
84iζ11
T

+
30iζ5ζ6

T
+

84iζ3ζ8
T

+
1353ζ12
2T 2

.

One can eventually find allQ-independent MZVs21 in the Laurent polynomials of B-cycle eMZVs.

This follows from both the degeneration limits of the elliptic KZB associator [3] and from the

fact that any MZV is expressible via Q[2πi]-linear combinations of multiple modular values [107].

Note that a large number of Laurent polynomials of B-cycle eMZVs obtained from a FORM

implementation [96] of the methods of [3, 51] are available for download from [97].

6 Conclusions and outlook

In this work, we have studied generating series of configuration-space integrals that arise in

open- and closed-string amplitudes at genus one. The differential equations and τ → i∞ de-

generations of these generating series served as a framework to propose the explicit form of

an elliptic single-valued map. Our construction is based on a tentative genus-one uplift of

the Betti–deRham duality between integration cycles on a disk boundary and antiholomorphic

Parke–Taylor integrands which drives the relation between closed-string and single-valued open-

string tree amplitudes [40–45]. These considerations lead us to construct closed-string genus-one

integrals over specific antielliptic functions which are thought of as Betti–deRham dual to open-

string integration cycles in view of their singularities at zi→zj and their degeneration at τ→i∞.

Most importantly, the differential equations of the open- and closed-string integrals under

investigation only differ by τ jGk(τ) vs. (τ−τ̄)jGk(τ) in the respective differential operators

with holomorphic Eisenstein series Gk. Accordingly, we generate the elliptic multiple zeta val-

ues and modular graph forms in their α′-expansions via path ordered exponentials with the

same polynomial structures in kinematic invariants and formal expansion variables. The τ -

dependent building blocks are iterated Eisenstein integrals in both cases – holomorphic ones

with kernels τ jGk(τ) for the open-string integrals and their single-valued versions involving

kernels (τ−τ̄)jGk(τ) for closed strings.

Our proposal for an elliptic single-valued map is defined through the relation between the

generating series of open- and closed-string integrals. By their respective α′-expansion, we

21See [106] for a computer implementation of Q-relations among MZVs.
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obtain the single-valued map for all iterated Eisenstein integrals occurring in the open-string

series. This in turn determines the single-valued map of any convergent elliptic multiple zeta

value in terms of modular graph forms.

This construction hinges on the compatibility of the initial values at τ → i∞ under the single-

valued map of multiple zeta values [48, 46]. We have given evidence for their compatibility by

identifying the key building blocks of genus-zero integrals at the cusp – appropriate pairs of disk

orderings and Parke–Taylor integrands. However, the detailed expressions for the asymptotic

expansions beyond two points in terms of genus-zero integrals is left for future work. At present,

the procedure also relies on the reality properties of a generating series Y τ
~η of a more general class

of closed-string integrals. Our method does not yet provide a direct construction of single-valued

iterated Eisenstein integrals solely from open-string data.

6.1 Genus-one integrals versus string amplitudes

The results of this work concern infinite families of configuration-space integrals at genus one,

and their application to genus-one string amplitudes requires the following leftover steps:

For both open and closed strings, it remains to integrate over the modular parameter τ

of the respective surface. In the closed-string case, τ -integrals over modular graph forms are

typically performed on the basis of their Laplace equations [9, 108–112] and Poincaré-series

representations [113–115,54,116–118]. The τ -integration of open-string integrals has for instance

been discussed in [119–122], and a general method applicable to arbitrary depth may be based

on the representation of elliptic multiple zeta values in terms of iterated Eisenstein integrals

(including their “over-integrated” instances with kernels τ jGk at j > k−2 [118]) and properties

of multiple modular values [101]. It would be particularly interesting to relate closed-string and

single-valued open-string integrals at genus one after integration over τ .

For open strings, the Zτ
~η - or Bτ

~η -series are claimed to exhaust all the configuration-space

integrands built from f (k)(zi−zj , τ) that are inequivalent under Fay identities and integration by

parts. Similarly, the Y τ
~η -series built from double copies of the open-string integrands is expected

to contain all torus integrals of this type. Hence, by the arguments of [78, 4, 52], Bτ
~η and Y τ

~η

should22 capture the conformal-field-theory correlators in the integrands of n-point genus-one

amplitudes of massless states (and possibly also of massive states) in bosonic, heterotic and

type-II string theories. In all cases, the component integrals in the ηj-expansions of the Z
τ
~η -, B

τ
~η

or Y τ
~η series need to be dressed with kinematic factors that are determined by the correlators

and carry the polarization dependence of the respective string amplitude.

The integrands of Jτ
~η only involve antielliptic combinations of f (k)(zi−zj , τ) and omit infinite

classes of component integrals of Y τ
~η . For a given genus-one closed-string amplitude, it is there-

fore not a priori clear if its correlator is generated by the integrand of Jτ
~η . Still, the correlators

for the four- and five-point type-II amplitudes can be recovered from the subsectors Jτ
w,~η of the

22It has been shown in [52] that the integrands of massless genus-one amplitudes in bosonic, heterotic and

type-II theories are expressible in terms of products of f (k)(zi−zj , τ ) and their zi-derivatives. The conjectural

part is that arbitrary products of f (k)(zi−zj , τ ) (possibly including derivatives) are expressible in terms of the ϕτ
~η

in (2.13) with their specific chain structure via repeated use of Fay identities and integration by parts [59,60].
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Jτ
~η -series at fixed modular weights: The four-point correlator of [79] resides at the η−3 order of

Jτ
0,η2,η3,η4

, and the five-point correlators of [104, 105] can be assembled from the most singular

η-orders of Jτ
w,η2,η3,η4,η5 at w = 0, 1. Similarly, the four- and five-point amplitudes of gluons and

gravitons in heterotic string theories can in principle be extracted from the same Jτ
w,~η which also

appear in type II, where higher orders in ηj are needed to capture the bosonic sectors. It would

be interesting to see if this pattern persists at higher points in supersymmetric amplitudes, and

whether the Jτ
~η are sufficient to generate bosonic-string amplitudes at low multiplicity.

6.2 Further directions

This work spawns a variety of further directions and open questions of relevance to both physi-

cists and mathematicians:

The single-valued image of elliptic multiple zeta values is proposed to contain combinations

of holomorphic iterated Eisenstein integrals and their complex conjugates denoted by βsv and

constructed from the α′-expansion of closed-string integrals in [18]. It would be important

to work out their detailed relation to Brown’s earlier construction of single-valued iterated

Eisenstein integrals [13,14]. In particular, it remains to relate the MZVs in the antiholomorphic

contributions to βsv (fixed from reality properties of Koba–Nielsen integrals in [18]) to the

combinations of multiple modular values entering Brown’s construction. This will hopefully

bypass the need to use these reality properties as independent input for the construction of βsv

as done so far.

Several aspects of our construction are based on conjectures with strong support from a

variety of non-trivial examples. As pointed out in the relevant passages in earlier parts of this

work, it would be desirable to find mathematically rigorous proofs that

• any Koba–Nielsen integral at genus one involving products and derivatives of Kronecker–

Eisenstein coefficients f (k)(z, τ) can be expanded in the coefficients of the series Zτ
~η and Y τ

~η

• the matrices r~η(ǫk) and R~η(ǫk) in open- and closed-string differential equations (2.19)

preserve the commutation relations of Tsunogai’s derivations ǫk

• the single-valued images βsv of iterated Eisenstein integrals satisfy shuffle relations, i.e.

that the antiholomorphic integration constants α do not introduce any obstructions

• the coefficients of the sij- and ηj- expansion of the initial values Ĵ i∞
~η and Ŷ i∞

~η are single-

valued multiple zeta values

The proposal of the present work concerns single-valued integration [48, 49] in the modular

parameter τ . An alternative approach is to recover modular graph forms from single-valued

functions of torus punctures [10, 15]. In this context, it would be rewarding to find an ex-

plicit realization of single-valued integration in z for elliptic polylogarithms and their complex

conjugates, for instance by building upon the ideas of [15] and the depth-one results in [123].

At genus zero, the identification of sphere integrals as single-valued disk integrals is equivalent

to the Kawai–Lewellen–Tye (KLT) relations between closed-string and squares of open-string
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tree-level amplitudes [124]. Accordingly, one could wonder if the combinations of holomorphic

and antiholomorphic iterated Eisenstein integrals in the βsv or modular graph forms can arise

from products of open-string type generating functions and their complex conjugates. If such a

genus-one echo of KLT relations exists, then one can expect a close relation to the monodromy

relations among open-string integrals [125, 122, 126, 127] and in particular their study in the

light of twisted deRham theory [128]. And it could open up a new perspective on the quest

for loop-level KLT relations to revisit the generating functions of closed-string integrals in the

framework of chiral splitting [129, 130], by performing the α′-expansion at the level of the loop

integrand.

A particularly burning question concerns a higher-genus realization of single-valued inte-

gration and the associated relations between open- and closed-string amplitudes. A promising

first step could be to identify suitable holomorphic open-string analogues of the modular graph

forms [131,132] and modular graph tensors [133] at higher genus. More generally, the simplified

correlators of maximally supersymmetric genus-two amplitudes at four points [134,135] and five

points [136, 137] provide valuable showcases of Koba–Nielsen integrals relevant to open- and

closed-string scattering. Furthermore, the construction of the generating series in this work was

inspired by extended families of genus-one Koba–Nielsen integrals that arise from heterotic or

bosonic strings [52]. Hence, the genus-two correlators of the heterotic string and the combina-

tions of theta functions studied in [138,139] could give important clues on higher-genus versions

of the elliptic functions and generating series in this work.

Acknowledgments

We would like to thank Johannes Broedel, Eric D’Hoker, Daniele Dorigoni, Clément Dupont,
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A Relations among the elliptic V and Vw functions

In this appendix, we spell out a method to determine the rational coefficients cw,γ in the expan-

sion (3.36) of elliptic functions Vw(. . .) of fixed modular weights in terms of the V (. . .) functions

in (3.7). This will be done by exploiting the τ → i∞ degeneration (3.19) of the V (. . .) which
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fixes the cw,γ in the ansatz (3.36) via

lim
τ→i∞

Vw(1, 2, . . . , n|τ)

(2πi)wσ1σ2 . . . σn
=

∑

γ∈Sn−1

cw,γ PT
(1)(1, γ(2, 3, . . . , n)) (A.1)

PT(1)(1, 2, . . . , n) = (−1)n−1 lim
σ−→∞

|σ−|
2
(
PT(+, n, n−1, . . . , 2, 1,−) + cyc(1, 2, . . . , n)

)

=
1

σ12σ23 . . . σn−1,nσn
+ cyc(1, 2, . . . , n) . (A.2)

The combinations PT(1) are known as one-loop Parke–Taylor factors from an ambitwistor-string

context [94], and we have used σ+ = 0 in passing to the last line. In order to determine the

degeneration of the left-hand side of (A.1), we expand the elliptic functions

Vw(1, 2, . . . , n|τ) =
∑

a1,a2,...,an≥0
a1+a2+...+an=w

g
(a1)
12 g

(a2)
23 . . . g

(an−1)
n−1,n g

(an)
n,1

θ′1(0, τ)θ1(zij+η, τ)

θ1(zij , τ)θ1(η, τ)
=

∞∑

a=0

ηa−1g
(a)
ij (A.3)

in terms of the meromorphic Kronecker–Eisenstein coefficients g
(a)
ij instead of the f

(a)
ij in (5.2),

starting with g
(0)
ij = 1 and g

(1)
ij = ∂zi log θ1(zij , τ). Their τ → i∞ limits [3, 4] (also see (3.18))

lim
τ→i∞

g
(a)
jk =





1 : a = 0

iπ
σj+σk

σj−σk
: a = 1

−2ζa : a ∈ 2N

0 : a ∈ 2N+1

(A.4)

ensure that the combination (2πi)−wVw(1, 2, . . . , n|τ) in (A.1) degenerates to a rational function

of the σj, where all factors of iπ cancel. Hence, the only σj dependence of Vw(. . . |τ → i∞)

occurs via limτ→i∞ g
(1)
jk = iπ

σj+σk

σj−σk
.

By applying the degeneration (A.4) to the elliptic function Vw in (A.3), the leftover challenge

in determining the cw,γ in (A.1) is to expand the terms of the form (σ1σ2 . . . σn)
−1

∏r
i=1

σji
+σki

σji
−σki

on the left-hand side in terms of Parke–Taylor factors. For the choices of σji , σki that arise

from the degeneration of Vw≤n−2, these Parke–Taylor decompositions can be performed by the

methods of [140]: As explained in section 3 of the reference, the net effect of the rational factor
σji

+σki
σji

−σki
is to modify the signs of the Parke–Taylor factors on the right-hand side of

1

σ1σ2 . . . σn
= (−1)n−1 lim

σ−→∞
|σ−|

2
∑

ρ∈Sn

PT(+, ρ(1, 2, . . . , n),−) (A.5)

More specifically, with the notation

sgnρjk =

{
+1 : j is on the right of k in ρ(1, 2, . . . , n)

−1 : j is on the left of k in ρ(1, 2, . . . , n)
(A.6)
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the modification of (A.5) by degenerations of g
(1)
jiki

can be written as [140]

lim
τ→i∞

g
(1)
j1k1

g
(1)
j2k2

. . . g
(1)
jrkr

(2πi)rσ1σ2 . . . σn
=

(−1)n−1

2r
lim

σ−→∞
|σ−|

2 (A.7)

×
∑

ρ∈Sn

sgnρj1k1sgn
ρ
j2k2

. . . sgnρjrkrPT(+, ρ(1, 2, . . . , n),−) .

The contributions of (2πi)−2kg
(2k)
jk in turn degenerate to rational constants by (A.4) which mul-

tiply the overall sum over permutations ρ. Hence, (A.7) allows to straightforwardly expand the

left-hand side of (A.1) in terms of Parke–Taylor factors in an n!-element basis of PT(+, . . . ,−).

Matching the Parke–Taylor coefficients with those on the right-hand side determines the cw,γ in

(3.36). It is a special property of the elliptic functions Vw that their degeneration conspires to

combinations of PT(1) in (A.2), i.e. that the (n−1)! independent cw,γ are sufficient to accommo-

date the n! permutations of PT(+, 1, . . . , n,−).

For instance, the decompositions in (3.38) to (3.40) follow from the special cases of (A.7)

lim
τ→i∞

V1(1, 2, 3|τ)

(2πi)σ1σ2σ3
=

1

2
lim

σ−→∞
|σ−|

2
∑

ρ∈S3

PT(+, ρ(1, 2, 3),−)(sgnρ
12 + sgnρ23 + sgnρ31)

lim
τ→i∞

V1(1, 2, 3, 4|τ)

(2πi)σ1σ2σ3σ4
= −

1

2
lim

σ−→∞
|σ−|

2
∑

ρ∈S4

PT(+, ρ(1, 2, 3, 4),−)(sgnρ
12+sgnρ23+sgnρ34+sgnρ41)

lim
τ→i∞

V2(1, 2, 3, 4|τ)

(2πi)2σ1σ2σ3σ4
= − lim

σ−→∞
|σ−|

2
∑

ρ∈S4

PT(+, ρ(1, 2, 3, 4),−)
{ 1

3
+

1

4
(sgnρ12sgn

ρ
34+sgnρ23sgn

ρ
41)

+
1

4
(sgnρ12sgn

ρ
23 + sgnρ23sgn

ρ
34 + sgnρ34sgn

ρ
41 + sgnρ41sgn

ρ
12)

}
(A.8)

once the right-hand sides are matched with the combinations of one-loop Parke–Taylor factors

PT(1) in (A.1) and (A.2).

B The initial value B̂i∞
η2,η3

at three points

This appendix gathers the three-point initial values B̂i∞
η2,η3(2, 3|ρ(2, 3)) for the α

′-expansion (4.9)

of B-cycle integrals up to including weight four. The corresponding orders of Ĵ i∞
η2,η3(2, 3|ρ(2, 3))

relevant to the α′-expansion (4.19) of J-integrals are obtained from the single-valued map

(ζ2, ζ3, ζ4) → (0, 2ζ3, 0). Since even (odd) orders in the ηj-expansion integrate to zero on the

odd (even) integration cycles B(2, 3) ±B(3, 2), we will separate the two types of contributions

in order to infer B̂i∞
η2,η3(2, 3|3, 2) from a relabeling of B̂i∞

η2,η3(2, 3|2, 3).

The expressions in this appendix along with various higher-order terms in the sij- and ηj-

expansions can be found in an ancillary file within the arXiv submission of this article.
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B.1 Even orders in ηj

The terms of even orders in ηj in the three-point initial values are given by

B̂i∞
η2,η3(2, 3|2, 3)

∣∣
even

=
1

η23η3

(1
2
+

ζ2

12
(s212 + s213 + s223) +

ζ3

24
(s312 + s313 + s323)

+ ζ4

[ 131

1440
(s412 + s413 + s423) +

5

144
(s212s

2
13 + s212s

2
23 + s223s

2
13) +

1

18
s12s13s23s123

]
+ . . .

)

+
η23

η3

(
−ζ2 −

ζ3

2
s12 − ζ4

[29s212
24

+
5s213
12

+
s13s23

3
+

5s223
12

]
+ . . .

)

+
η3

η23

(
−ζ2 −

ζ3

2
s23 − ζ4

[29s223
24

+
5s212
12

+
s12s13

3
+

5s213
12

]
+ . . .

)

+
(3ζ2s13

s123
+

ζ3

2
s13 +

15ζ4s13
4s123

(s212 + s12s23 + s223)−
41

24
ζ4(s12 + s23)s13 +

49ζ4s
2
13

24
+ . . .

)

+ η23η3(5ζ4)−
η323
η3

ζ4 −
η33
η23

ζ4 + . . . (B.1)

and

B̂i∞
η2,η3(2, 3|3, 2)

∣∣
even

= B̂i∞
η2,η3(2, 3|2, 3)

∣∣
even

∣∣η2↔η3
s12↔s13

(B.2)

with MZVs of weight ≥ 5 in the ellipsis.

B.2 Odd orders in ηj

The terms of odd orders in ηj in the three-point initial values are given by

B̂i∞
η2,η3(2, 3|2, 3)

∣∣
odd

=
1

η3

( 1

s12
+

ζ2s
2
123

6s12
+ ζ3

[s13s23
4

+
s3123
12s12

]
+ ζ4

[131s4123
720s12

−
s23s123s13

20

]
+ . . .

)

+
1

η23

( 1

s23
+

ζ2s
2
123

6s23
+ ζ3

[s12s13
4

+
s3123
12s23

]
+ ζ4

[131s4123
720s23

−
s12s123s13

20

]
+ . . .

)

+ η3

(
−
2ζ2
s12

−
ζ3s123

s12
+ ζ4

[
−
29s2123
12s12

+
s13

4

]
+ . . .

)

+ η23

(
−
2ζ2
s23

−
ζ3s123

s23
+ ζ4

[
−
29s2123
12s23

+
s13

4

]
+ . . .

)

+
η223
η3

(
−ζ3 + ζ4

[2
3
s123 +

s12

4

]
+ . . .

)
+

η23
η23

(
−ζ3 + ζ4

[2
3
s123 +

s23

4

]
+ . . .

)

+ η323

(
−
2ζ4
s23

+ . . .
)
+ η33

(
−
2ζ4
s12

+ . . .
)
+ . . . (B.3)

and

B̂i∞
η2,η3(2, 3|3, 2)

∣∣
odd

= −B̂i∞
η2,η3(2, 3|2, 3)

∣∣
odd

∣∣η2↔η3
s12↔s13

, (B.4)

again with MZVs of weight ≥ 5 in the ellipsis.
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C Examples of single-valued eMZVs

C.1 Systematics at depth one

The simplest examples (5.11) and (5.12) of single-valued eMZVs extracted from the two-point

integrals (5.4) are special cases of the SVmap (4.30) on holomorphic iterated Eisenstein integrals.

For their depth-one combinations β
[
j
k

]
in (4.10), the SV image βsv

[
j
k

]
yields the following

Cauchy–Riemann derivatives ∇ = 2i(Im τ)2∂τ of non-holomorphic Eisenstein series [18]

βsv
[
k−1
2k

]
= −

[(k−1)!]2

(2k−1)!
Ek +

2ζ2k−1

(2k−1)(4y)k−1

βsv
[
k−1+m

2k

]
= −

(−4)m(k−1)! (k−1−m)! (π∇)mEk

(2k−1)!
+

2ζ2k−1

(2k−1)(4y)k−1−m
(C.1)

βsv
[
k−1−m

2k

]
= −

(k−1)! (k−1−m)! (π∇)mEk

(−4)m(2k−1)!y2m
+

2ζ2k−1

(2k−1)(4y)k−1+m
,

also see (4.22). While the objects on the right-hand side are expressible in terms of the lat-

tice sums C
[
a 0
b 0

]
in (2.27) via (2.28), the β

[
j
k

]
are simple combinations of B-cycle eMZVs

ω(0p, k|− 1
τ ), where 0p stands for a sequence 0, 0, . . . , 0 of p successive zeros. On these grounds,

βsv
[
j
k

]
= SV β

[
j
k

]
translates to simple relations such as

SVω(0, 2k+1|− 1
τ ) = −

(τ−τ̄)2k+1

2πi
C
[
2k+1 0
1 0

]
, k ≥ 1

SVω(0, 0, 2k+2|− 1
τ ) =

(τ−τ̄)2k+2

(2πi)2
C
[
2k+2 0
2 0

]
, k ≥ 0 (C.2)

SV
(
ω(0, 0, 0, 2k+3|− 1

τ )−
1

6
ω(0, 2k+3|− 1

τ )
)
= −

(τ−τ̄)2k+3

(2πi)3
C
[
2k+3 0
3 0

]
, k ≥ −1

SV
(
ω(0, 0, 0, 0, 2k+4|− 1

τ )−
1

6
ω(0, 0, 2k+4|− 1

τ )
)
=

(τ−τ̄)2k+4

(2πi)4
C
[
2k+4 0
4 0

]
, k ≥ −1

as well as

SV
(
ω(0, 0, 0, 0, 0, 2k+5|− 1

τ )−
1

6
ω(0, 0, 0, 2k+5|− 1

τ ) +
7

360
ω(0, 2k+5|− 1

τ )
)

= −
(τ−τ̄)2k+5

(2πi)5
C
[
2k+5 0
5 0

]
, k ≥ −2 . (C.3)

The relative factors of −1
6 and 7

360 among the eMZVs of different lengths are engineered to

streamline the iterated-Eisenstein-integral representation [17] and generalize as follows [103]

SV

ℓ−1∑

j=0

Bj

j!
ω(0ℓ−j , 2k+ℓ|− 1

τ ) = (−1)ℓ
(τ−τ̄)2k+ℓ

(2πi)ℓ
C
[
2k+ℓ 0
ℓ 0

]
, k ≥ 1−

⌈
ℓ

2

⌉
, ℓ ≥ 1 . (C.4)

In obtaining (C.2) and (C.3) from (C.4), we have used SVω(m) = 0 ∀ m ≥ 1 and the following

simplifications of the only eMZV ω(0ℓ−1, 2k+ℓ) whose length and weight adds up to an even
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number [17],

ω(0, 0, 2k+1) =
1

2
ω(0, 2k+1)

ω(0, 0, 0, 2k) =
1

2
ω(0, 0, 2k) −

1

24
ω(2k) (C.5)

ω(0, 0, 0, 0, 2k+1) =
1

2
ω(0, 0, 0, 2k+1)−

1

24
ω(0, 2k+1) .

Based on the dictionary (2.28) between lattice sums C
[
a 0
b 0

]
and non-holomorphic Eisenstein

series, one can reformulate (C.4) as

SV

ℓ−1∑

j=0

Bj

j!
ω(0ℓ−j , 2k+ℓ|− 1

τ ) = (−1)ℓ
(k+ℓ−1)!

(2k+ℓ−1)!
(−4π∇)kEk+ℓ , k ≥ 0 , ℓ ≥ 1 , (C.6)

where k = 0 needs to be excluded if ℓ = 1, for instance

SVω(0, 2k+1|− 1
τ ) = −

k!

(2k)!
(−4π∇)kEk+1 , k ≥ 1 (C.7)

SVω(0, 0, 2k+2|− 1
τ ) =

(k+1)!

(2k+1)!
(−4π∇)kEk+2 , k ≥ 0 .

Moreover, by extending (C.4) to k → −k and applying the complex conjugate of (2.28), we also

obtain antiholomorphic Cauchy–Riemann derivatives as single-valued eMZVs (with ℓ− 2k > 0),

SV
ℓ−1∑

j=0

Bj

j!
ω(0ℓ−j , ℓ−2k|− 1

τ ) = (−1)ℓ
(τ−τ̄)ℓ−2k

(2πi)ℓ
C
[
ℓ−2k 0
ℓ 0

]
(C.8)

= (−1)ℓ+k (ℓ−k−1)!

(ℓ−1)!

(π∇)kEℓ−k

(2y)2k
.

The simplest examples include

SV
(
ω(0, 0, 0, 1|− 1

τ )−
1

6
ω(0, 1|− 1

τ )
)
=

π∇E2

8y2

SV
(
ω(0, 0, 0, 0, 2|− 1

τ )−
1

6
ω(0, 0, 2|− 1

τ )
)
= −

π∇E3

12y2
(C.9)

SV
(
ω(0, 0, 0, 0, 0, 1|− 1

τ )−
1

6
ω(0, 0, 0, 1|− 1

τ ) +
7

360
ω(0, 1|− 1

τ )
)
= −

(π∇)2E3

192y4

SV
(
ω(0, 0, 0, 0, 0, 3|− 1

τ )−
1

6
ω(0, 0, 0, 3|− 1

τ ) +
7

360
ω(0, 3|− 1

τ )
)
=

π∇E4

16y2
,

and the first two lines are equivalent to those in (5.31).

C.2 Examples with real MGFs at depth two

By inspecting the s4ij order of the two-point integrals B
τ
(0), J

τ
(0) and the s3ij order of B

τ
(2), J

τ
(2), we

have obtained the representations (5.13) of E2,2 and π∇E2,2 as single-valued eMZVs. One can
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extract similar representations for E2,3, π∇E2,3 and (π∇)2E2,3 from the s5ij order of Bτ
(0), J

τ
(0),

the s4ij order of Bτ
(2), J

τ
(2) and the s3ij order of Bτ

(4), J
τ
(4), respectively:

E2,3 = SV
(
−
167

35
ω(0, 0, 0, 0, 0, 5|− 1

τ ) + 2ω(0, 0, 0, 0, 1, 4|− 1
τ ) +

97

210
ω(0, 0, 0, 5|− 1

τ )

−
1

3
ω(0, 0, 2, 3|− 1

τ ) + 2ω(0, 0, 0, 0, 2|− 1
τ )ω(0, 3|−

1
τ ) +

7

200
ω(0, 5|− 1

τ )
)

π∇E2,3 = SV
(
−

1

12
ω(0, 3|− 1

τ )
2 +

13

168
ω(0, 0, 6|− 1

τ ) + ω(0, 3|− 1
τ )ω(0, 0, 0, 3|−

1
τ ) (C.10)

−
41

28
ω(0, 0, 0, 0, 6|− 1

τ ) +
1

2
ω(0, 0, 0, 2, 4|− 1

τ )
)

(π∇)2E2,3 = SV
( 25

336
ω(0, 7|− 1

τ ) +
5

8
ω(0, 3|− 1

τ )ω(0, 0, 4|−
1
τ )−

23

28
ω(0, 0, 0, 7|− 1

τ )

+
1

4
ω(0, 0, 2, 5|− 1

τ ) +
1

8
ω(0, 0, 4, 3|− 1

τ )
)

The corresponding lattice-sum representations [51,87] and βsv representations [18] are given by

E2,3 =

(
Im τ

π

)5(
C[ 3 1 1

3 1 1 ]−
43

35
C[ 5 0

5 0 ]
)

= −120βsv[ 2 1
4 6 ]− 120βsv[ 3 0

6 4 ] +
12ζ5
y

βsv[ 04 ] + 80ζ3β
sv[ 16 ]−

ζ5

36
+

7ζ7
16y2

−
ζ3ζ5

2y3

π∇E2,3 =
(Im τ)6

π4

(
3 C[ 1 1 4

1 1 2 ] + 2 C[ 1 2 3
1 0 3 ]−

43

7
C[ 6 0

4 0 ]
)

= 90βsv[ 2 2
4 6 ] + 60βsv[ 3 1

6 4 ] + 30βsv[ 4 0
6 4 ] (C.11)

− 60ζ3β
sv[ 26 ]− 12ζ5β

sv[ 04 ]−
6ζ5
y

βsv[ 14 ]−
7ζ7
8y

+
3ζ3ζ5
2y2

(π∇)2E2,3 =
(Im τ)7

π3

(
4 C[ 0 2 5

1 0 2 ]− 4 C[ 3 0
1 0 ] C[

4 0
2 0 ]−

62

7
C[ 7 0

3 0 ]
)

= −45βsv[ 2 3
4 6 ]− 15βsv[ 3 2

6 4 ]− 30βsv[ 4 1
6 4 ]

+ 30ζ3β
sv[ 36 ] + 12ζ5β

sv[ 14 ] +
3ζ5
2y

βsv[ 24 ] +
7ζ7
8

−
3ζ3ζ5
y

.
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[32] J. Blümlein, A. De Freitas, M. Van Hoeij, E. Imamoglu, P. Marquard, and C. Schneider,

“The ρ parameter at three loops and elliptic integrals,” PoS LL2018 (2018) 017,

arXiv:1807.05287 [hep-ph].

[33] J. Broedel, C. Duhr, F. Dulat, B. Penante, and L. Tancredi, “Elliptic polylogarithms and

Feynman parameter integrals,” JHEP 05 (2019) 120, arXiv:1902.09971 [hep-ph].

[34] C. Bogner, S. Müller-Stach, and S. Weinzierl, “The unequal mass sunrise integral

expressed through iterated integrals on M1,3,” Nucl. Phys. B 954 (2020) 114991,

arXiv:1907.01251 [hep-th].

[35] J. Broedel, C. Duhr, F. Dulat, R. Marzucca, B. Penante, and L. Tancredi, “An analytic

solution for the equal-mass banana graph,” JHEP 09 (2019) 112,

arXiv:1907.03787 [hep-th].

[36] C. Duhr and L. Tancredi, “Algorithms and tools for iterated Eisenstein integrals,”

JHEP 02 (2020) 105, arXiv:1912.00077 [hep-th].

[37] S. Abreu, M. Becchetti, C. Duhr, and R. Marzucca, “Three-loop contributions to the ρ

parameter and iterated integrals of modular forms,” JHEP 02 (2020) 050,

arXiv:1912.02747 [hep-th].

[38] C. Bogner, I. Hönemann, K. Tempest, A. Schweitzer, and S. Weinzierl, “Numerics for

elliptic Feynman integrals,” CERN Yellow Reports: Monographs 3 (2020) 177–184.

[39] M. Walden and S. Weinzierl, “Numerical evaluation of iterated integrals related to

elliptic Feynman integrals,” arXiv:2010.05271 [hep-ph].

[40] O. Schlotterer and S. Stieberger, “Motivic Multiple Zeta Values and Superstring

Amplitudes,” J. Phys. A46 (2013) 475401, arXiv:1205.1516 [hep-th].

[41] S. Stieberger, “Closed superstring amplitudes, single-valued multiple zeta values and the

Deligne associator,” J. Phys. A47 (2014) 155401, arXiv:1310.3259 [hep-th].

[42] S. Stieberger and T. R. Taylor, “Closed String Amplitudes as Single-Valued Open String

Amplitudes,” Nucl. Phys. B881 (2014) 269–287, arXiv:1401.1218 [hep-th].

[43] O. Schlotterer and O. Schnetz, “Closed strings as single-valued open strings: A

genus-zero derivation,” J. Phys. A52 (2019) no. 4, 045401,

arXiv:1808.00713 [hep-th].

[44] P. Vanhove and F. Zerbini, “Closed string amplitudes from single-valued correlation

functions,” arXiv:1812.03018 [hep-th].

50

http://dx.doi.org/10.22323/1.303.0005
http://arxiv.org/abs/1807.06238
http://arxiv.org/abs/1807.06238
http://dx.doi.org/10.22323/1.303.0017
http://arxiv.org/abs/1807.05287
http://arxiv.org/abs/1807.05287
http://dx.doi.org/10.1007/JHEP05(2019)120
http://arxiv.org/abs/1902.09971
http://arxiv.org/abs/1902.09971
http://dx.doi.org/10.1016/j.nuclphysb.2020.114991
http://arxiv.org/abs/1907.01251
http://arxiv.org/abs/1907.01251
http://dx.doi.org/10.1007/JHEP09(2019)112
http://arxiv.org/abs/1907.03787
http://arxiv.org/abs/1907.03787
http://dx.doi.org/10.1007/JHEP02(2020)105
http://arxiv.org/abs/1912.00077
http://arxiv.org/abs/1912.00077
http://dx.doi.org/10.1007/JHEP02(2020)050
http://arxiv.org/abs/1912.02747
http://arxiv.org/abs/1912.02747
http://dx.doi.org/10.23731/CYRM-2020-003.177
http://arxiv.org/abs/2010.05271
http://arxiv.org/abs/2010.05271
http://dx.doi.org/10.1088/1751-8113/46/47/475401
http://arxiv.org/abs/1205.1516
http://arxiv.org/abs/1205.1516
http://dx.doi.org/10.1088/1751-8113/47/15/155401
http://arxiv.org/abs/1310.3259
http://arxiv.org/abs/1310.3259
http://dx.doi.org/10.1016/j.nuclphysb.2014.02.005
http://arxiv.org/abs/1401.1218
http://arxiv.org/abs/1401.1218
http://dx.doi.org/10.1088/1751-8121/aaea14
http://arxiv.org/abs/1808.00713
http://arxiv.org/abs/1808.00713
http://arxiv.org/abs/1812.03018
http://arxiv.org/abs/1812.03018


[45] F. Brown and C. Dupont, “Single-valued integration and superstring amplitudes in genus

zero,” arXiv:1910.01107 [math.NT].

[46] F. Brown, “Single-valued Motivic Periods and Multiple Zeta Values,”

SIGMA 2 (2014) e25, arXiv:1309.5309 [math.NT].

[47] F. Brown, “Notes on motivic periods,” Communications in Number Theory and Physics

11 (2015) no. 3, 557–655, arXiv:1512.06410 [math.NT].

[48] O. Schnetz, “Graphical functions and single-valued multiple polylogarithms,”

Commun. Num. Theor. Phys. 08 (2014) 589–675, arXiv:1302.6445 [math.NT].

[49] F. Brown and C. Dupont, “Single-valued integration and double copy,”

arXiv:1810.07682 [math.NT].

[50] F. Brown, “Polylogarithmes multiples uniformes en une variable,” C. R. Acad. Sci. Paris

Ser. I 338 (2004) 527–532.

[51] J. Broedel, O. Schlotterer, and F. Zerbini, “From elliptic multiple zeta values to modular

graph functions: open and closed strings at one loop,” JHEP 01 (2019) 155,

arXiv:1803.00527 [hep-th].

[52] J. E. Gerken, A. Kleinschmidt, and O. Schlotterer, “Heterotic-string amplitudes at one

loop: modular graph forms and relations to open strings,” JHEP 01 (2019) 052,

arXiv:1811.02548 [hep-th].

[53] E. D’Hoker and W. Duke, “Fourier series of modular graph functions,”

J. Number Theory 192 (2018) 1–36, arXiv:1708.07998 [math.NT].

[54] E. D’Hoker and J. Kaidi, “Modular graph functions and odd cuspidal functions. Fourier
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of Poincaré series,” Commun. Num. Theor. Phys. 13 (2019) 569–617,

arXiv:1903.09250 [hep-th].

[117] E. D’Hoker, “Integral of two-loop modular graph functions,” JHEP 06 (2019) 092,

arXiv:1905.06217 [hep-th].

[118] D. Dorigoni and A. Kleinschmidt, “Resurgent expansion of Lambert series and iterated

Eisenstein integrals,” arXiv:2001.11035 [hep-th].

[119] M. B. Green and J. H. Schwarz, “Supersymmetrical Dual String Theory. 3. Loops and

Renormalization,” Nucl. Phys. B 198 (1982) 441–460.

[120] C. Angelantonj and A. Sagnotti, “Open strings,” Phys. Rept. 371 (2002) 1–150,

arXiv:hep-th/0204089. [Erratum: Phys.Rept. 376, 407 (2003)].

55

http://dx.doi.org/10.1007/JHEP10(2013)188
http://arxiv.org/abs/1307.3534
http://arxiv.org/abs/1307.3534
http://dx.doi.org/10.1016/j.cpc.2009.11.007
http://arxiv.org/abs/0907.2557
http://arxiv.org/abs/0907.2557
http://arxiv.org/abs/2009.09885
http://arxiv.org/abs/2009.09885
http://dx.doi.org/10.1142/S0217751X16501694
http://arxiv.org/abs/1606.02203
http://arxiv.org/abs/1606.02203
http://dx.doi.org/10.1007/JHEP09(2017)155
http://arxiv.org/abs/1706.01889
http://arxiv.org/abs/1706.01889
http://dx.doi.org/10.1007/JHEP11(2017)139
http://arxiv.org/abs/1708.08409
http://arxiv.org/abs/1708.08409
http://dx.doi.org/10.1007/JHEP07(2019)126
http://arxiv.org/abs/1906.02674
http://arxiv.org/abs/1906.02674
http://dx.doi.org/10.1007/JHEP07(2019)149
http://arxiv.org/abs/1906.01652
http://arxiv.org/abs/1906.01652
http://dx.doi.org/10.4310/CNTP.2012.v6.n1.a4
http://arxiv.org/abs/1110.5318
http://arxiv.org/abs/1110.5318
http://dx.doi.org/10.1007/JHEP06(2012)070
http://arxiv.org/abs/1203.0566
http://arxiv.org/abs/1203.0566
http://dx.doi.org/10.1007/JHEP05(2018)194
http://arxiv.org/abs/1803.10250
http://arxiv.org/abs/1803.10250
http://arxiv.org/abs/1903.09250
http://arxiv.org/abs/1903.09250
http://dx.doi.org/10.1007/JHEP06(2019)092
http://arxiv.org/abs/1905.06217
http://arxiv.org/abs/1905.06217
http://arxiv.org/abs/2001.11035
http://arxiv.org/abs/2001.11035
http://dx.doi.org/10.1016/0550-3213(82)90334-0
http://dx.doi.org/10.1016/S0370-1573(02)00273-9
http://arxiv.org/abs/hep-th/0204089
http://arxiv.org/abs/hep-th/0204089


[121] D. Lust and S. Stieberger, “Gauge threshold corrections in intersecting brane world

models,” Fortsch. Phys. 55 (2007) 427–465, arXiv:hep-th/0302221.

[122] S. Hohenegger and S. Stieberger, “Monodromy Relations in Higher-Loop String

Amplitudes,” Nucl. Phys. B925 (2017) 63–134, arXiv:1702.04963 [hep-th].

[123] J. Broedel and A. Kaderli, “Functional relations for elliptic polylogarithms,”

J. Phys. A 53 (2020) no. 24, 245201, arXiv:1906.11857 [hep-th].

[124] H. Kawai, D. C. Lewellen, and S. H. H. Tye, “A Relation Between Tree Amplitudes of

Closed and Open Strings,” Nucl. Phys. B269 (1986) 1–23.

[125] P. Tourkine and P. Vanhove, “Higher-loop amplitude monodromy relations in string and

gauge theory,” Phys. Rev. Lett. 117 (2016) no. 21, 211601,

arXiv:1608.01665 [hep-th].

[126] A. Ochirov, P. Tourkine, and P. Vanhove, “One-loop monodromy relations on single

cuts,” JHEP 10 (2017) 105, arXiv:1707.05775 [hep-th].

[127] E. Casali, S. Mizera, and P. Tourkine, “Loop amplitudes monodromy relations and

color-kinematics duality,” arXiv:2005.05329 [hep-th].

[128] E. Casali, S. Mizera, and P. Tourkine, “Monodromy relations from twisted homology,”

JHEP 12 (2019) 087, arXiv:1910.08514 [hep-th].

[129] E. D’Hoker and D. H. Phong, “The Geometry of String Perturbation Theory,”

Rev. Mod. Phys. 60 (1988) 917.

[130] E. D’Hoker and D. H. Phong, “Conformal Scalar Fields and Chiral Splitting on

Superriemann Surfaces,” Commun. Math. Phys. 125 (1989) 469.

[131] E. D’Hoker, M. B. Green, and B. Pioline, “Higher genus modular graph functions, string

invariants, and their exact asymptotics,”

Commun. Math. Phys. 366 (2019) no. 3, 927–979, arXiv:1712.06135 [hep-th].

[132] E. D’Hoker, M. B. Green, and B. Pioline, “Asymptotics of the D8R4 genus-two string

invariant,” Commun. Num. Theor. Phys. 13 (2019) no. 2, 351–462,

arXiv:1806.02691 [hep-th].

[133] E. D’Hoker and O. Schlotterer, “Identities among higher genus modular graph tensors,”

arXiv:2010.00924 [hep-th].

[134] E. D’Hoker and D. Phong, “Two-loop superstrings VI: Non-renormalization theorems

and the 4-point function,” Nucl. Phys. B 715 (2005) 3–90, arXiv:hep-th/0501197.

[135] N. Berkovits, “Super-Poincare covariant two-loop superstring amplitudes,”

JHEP 01 (2006) 005, arXiv:hep-th/0503197.

56

http://dx.doi.org/10.1002/prop.200310335
http://arxiv.org/abs/hep-th/0302221
http://arxiv.org/abs/hep-th/0302221
http://dx.doi.org/10.1016/j.nuclphysb.2017.09.020
http://arxiv.org/abs/1702.04963
http://arxiv.org/abs/1702.04963
http://dx.doi.org/10.1088/1751-8121/ab81d7
http://arxiv.org/abs/1906.11857
http://arxiv.org/abs/1906.11857
http://dx.doi.org/10.1016/0550-3213(86)90362-7
http://dx.doi.org/10.1103/PhysRevLett.117.211601
http://arxiv.org/abs/1608.01665
http://arxiv.org/abs/1608.01665
http://dx.doi.org/10.1007/JHEP10(2017)105
http://arxiv.org/abs/1707.05775
http://arxiv.org/abs/1707.05775
http://arxiv.org/abs/2005.05329
http://arxiv.org/abs/2005.05329
http://dx.doi.org/10.1007/JHEP12(2019)087
http://arxiv.org/abs/1910.08514
http://arxiv.org/abs/1910.08514
http://dx.doi.org/10.1103/RevModPhys.60.917
http://dx.doi.org/10.1007/BF01218413
http://dx.doi.org/10.1007/s00220-018-3244-3
http://arxiv.org/abs/1712.06135
http://arxiv.org/abs/1712.06135
http://dx.doi.org/10.4310/CNTP.2019.v13.n2.a3
http://arxiv.org/abs/1806.02691
http://arxiv.org/abs/1806.02691
http://arxiv.org/abs/2010.00924
http://arxiv.org/abs/2010.00924
http://dx.doi.org/10.1016/j.nuclphysb.2005.02.043
http://arxiv.org/abs/hep-th/0501197
http://arxiv.org/abs/hep-th/0501197
http://dx.doi.org/10.1088/1126-6708/2006/01/005
http://arxiv.org/abs/hep-th/0503197
http://arxiv.org/abs/hep-th/0503197


[136] E. D’Hoker, C. R. Mafra, B. Pioline, and O. Schlotterer, “Two-loop superstring

five-point amplitudes. Part I. Construction via chiral splitting and pure spinors,”

JHEP 08 (2020) 135, arXiv:2006.05270 [hep-th].

[137] E. D’Hoker, C. R. Mafra, B. Pioline, and O. Schlotterer, “Two-loop superstring five-point

amplitudes II: Low energy expansion and S-duality,” arXiv:2008.08687 [hep-th].

[138] A. G. Tsuchiya, “On the pole structures of the disconnected part of hyper elliptic g loop

M point super string amplitudes,” arXiv:1209.6117 [hep-th].

[139] A. G. Tsuchiya, “On new theta identities of fermion correlation functions on genus g

Riemann surfaces,” arXiv:1710.00206 [hep-th].

[140] S. He, O. Schlotterer, and Y. Zhang, “New BCJ representations for one-loop amplitudes

in gauge theories and gravity,” Nucl. Phys. B930 (2018) 328–383,

arXiv:1706.00640 [hep-th].

57

http://dx.doi.org/10.1007/JHEP08(2020)135
http://arxiv.org/abs/2006.05270
http://arxiv.org/abs/2006.05270
http://arxiv.org/abs/2008.08687
http://arxiv.org/abs/2008.08687
http://arxiv.org/abs/1209.6117
http://arxiv.org/abs/1209.6117
http://arxiv.org/abs/1710.00206
http://arxiv.org/abs/1710.00206
http://dx.doi.org/10.1016/j.nuclphysb.2018.03.003
http://arxiv.org/abs/1706.00640
http://arxiv.org/abs/1706.00640

	1 Introduction
	2 Review of genus-zero and genus-one integrals
	2.1 Genus-zero integrals
	2.2 Genus-one integrals

	3 New types of genus-one integrals
	3.1 Genus-one open-string B-cycle integrals
	3.2 Dual closed-string integrals
	3.3 Asymptotics at the cusp
	3.4 Single-valued correspondence of the Laurent polynomials
	3.5 Single-valued correspondence of the differential equations
	3.6 Dual modular weights for cycles

	4 Single-valued iterated Eisenstein integrals from '-expansions
	4.1 Improving the differential equations
	4.2 The '-expansion of B
	4.3 The '-expansion of J
	4.4 Initial values
	4.5 The single-valued map on iterated Eisenstein integrals

	5 Examples
	5.1 Two-point '-expansions
	5.2 Extracting single-valued eMZVs
	5.3 Symmetrized cycles and graph functions
	5.4 Three-point cycles and V1(1,2,3|)
	5.5 Four-point cycles and V2(1,2,3,4|)
	5.6 Imaginary cusp forms and double zetas

	6 Conclusions and outlook
	6.1 Genus-one integrals versus string amplitudes
	6.2 Further directions

	A Relations among the elliptic V and Vw functions
	B The initial value B"0362Bi2,3 at three points
	B.1 Even orders in j
	B.2 Odd orders in j

	C Examples of single-valued eMZVs
	C.1 Systematics at depth one
	C.2 Examples with real MGFs at depth two


