Joint Transmit Precoding and Reconfigurable Intelligent Surface Phase Adjustment: A Decomposition-Aided Channel Estimation Approach

Zhengyi Zhou, Ning Ge, Member, IEEE, Zhaocheng Wang, Senior Member, IEEE, and Lajos Hanzo, Fellow, IEEE

Abstract—Reconfigurable intelligent surfaces (RISs), consisting of many low-cost elements that reflect the incident waves by an adjustable phase shift, have attracted sudden attention for their potential of reconfiguring the signal propagation environment and enhancing the performance of wireless networks. The passive nature of RISs is indeed beneficial, but the lack of radio frequency (RF) chains at the RIS has made channel estimation extremely challenging. We face this challenge by proposing a joint channel estimation and transmit precoding framework for RIS-aided multiple-input multiple-output (MIMO) systems. Specifically, the effective cascaded channel of the reflected transmitter-RIS-receiver link is decomposed into multiple subchannels, each of which corresponds to a single RIS element. Then our joint RIS-transmitter precoding model is formulated for the individual subchannels of each reflecting element. Finally, we develop a two-stage precoding design for successively determining the required phase shifts of each reflecting element of the RIS and the digital baseband precoder of the transmitter, only relying on the channel state information (CSI) of the subchannels. The performance of the proposed subchannel estimation and joint precoding method is evaluated by extensive simulations. Our numerical results show that the proposed designs provide an attractive solution to RIS-aided MIMO systems.

Index Terms—Reconfigurable intelligent surface, channel estimation, precoding, MIMO, channel decomposition.

I. INTRODUCTION

The last decade has witnessed the tremendous development of wireless communications. The wireless teletraffic has been escalating, and is projected to be as high as 77 exabytes per month by 2022 [1], [2]. Although the spectral efficiency of wireless systems has been substantially improved by various technological advances, including massive multiple-input multiple-output (MIMO), millimeter wave (mmWave) communications, etc, it is desirable to reduce both the required high hardware implementation cost and the energy consumption [3].

Recently, the new concept of reconfigurable intelligent surfaces (RISs) has emerged and has been adopted for wireless communication [4], [5]. RISs, also referred to as intelligent reflecting surfaces (IRSs), rely on man-made planar arrays that consist of numerous low-cost passive elements. More explicitly, based on reconfigurable electromagnetic (EM) material, each of the elements is able to reflect the incident waves by an adjustable phase shift. Conventionally, RISs have been used to implement reconfigurable reflect-array antennas by illuminating the nearby reflecting surface with the aid of active antennas at the transmitter [6]–[8]. However, it has also been proposed to place the RIS somewhere between the transmitter and the receiver, so that a reflected transmitter-RIS-receiver link is established in addition to the direct transmitter-receiver link. In this manner, the signal propagation can be conveniently reconfigured by appropriately modifying the phase shift of the reflecting elements (REs), without requiring any extra power for complex signal processing or retransmission operations. As a benefit, the performance of wireless systems is expected to be considerably enhanced by adaptively “adjusting” the wireless propagation environment [9]–[11].

In order to realize the attractive potential of RISs, the state-of-the-art studies aimed to jointly optimize the baseband digital precoder of the transmitter and the phase shifts of the RIS elements. Most contributions focused on the RIS-aided multi-user multiple-input-single-output scenario [12]–[15]. Specifically, the transmission power consumption was minimized under the users’ individual communication rate constraints [12]. In [13], the weighted sum-rate of the users was maximized with the aid of fractional programming. The authors of [14] considered the practical hardware limitations and optimized the achievable rate using limited discrete phase shifts of the REs. The benefits of the RIS are investigated in multigroup multicast systems by alternately solving a pair of second-order cone programming (SOCP) problems [15]. As for RIS-aided MIMO scenarios, the performance metrics of both channel capacity [16], [17] and symbol error rate [18] are studied for point-to-point MIMO systems, while the associated sum-rate is maximized in multi-cell MIMO systems [19]. It is important to note that all the above-mentioned investigations have assumed perfect knowledge of the channels involved in both the direct and the reflected links. However, channel estimation is a challenging issue for RIS-aided systems. As discussed in [20], most of current research works assume that the nearly-passive RISs are not equipped with sensing...
elements or radio frequency (RF) chains, and therefore, it is impractical to directly estimate the channels of the reflected link, i.e., the incident channel spanning from the transmitter to the RIS, and the reflected channel spanning from the RIS to the receiver. Without accurate channel state information (CSI) of the reflected link, using the existing precoding designs may not be feasible, which thus limits the practical applications of RISs.

At present, most channel estimation related works considered single-antenna receivers in RIS-aided systems [24]–[28]. The basic methodology adopted by these studies is to estimate the equivalent cascaded channel involved in the reflected link, instead of estimating the incident and the reflected channels. However, since the cascaded channels are routinely defined with respect to single receiver antennas, the majority of current research has been focused on multiple-input-single-output (MISO) scenarios, while precoding designs have not yet been considered relying on the cascaded CSI for point-to-point RIS-aided MIMO systems. As for the scenario of MIMO communications, the channels involved in the reflected link are typically estimated based on the methodology of sparse matrix factorization and completion, using techniques such as message passing [29], [30], and compressive sensing [31], which are however only appropriate for sparse channel conditions and impose a potentially high signal processing complexity. Therefore, there is a paucity of solutions for RIS-aided MIMO systems, which thus motivates this contribution.

In this paper, a feasible channel estimation and joint precoding framework is proposed for RIS-aided MIMO communications systems, where both the transmitter and the receiver are equipped with multiple antennas. In lieu of estimating the incident and the reflected channels directly, we decompose the effective channel of the reflected link into multiple subchannels, and solve the channel estimation as well as joint precoding problems for each of the subchannels. In contrast to the cascaded channels that are defined with respect to the receiver antennas, such as in [27], [32], every subchannel corresponds to a specific RIS reflecting element which constitutes a separate transmitter-RIS-receiver reflecting path. Given its distinct physical interpretation as well as mathematical formulation, a series of new precoding methods can be derived based on this subchannel model. Our main contributions are summarized as follows.

- A channel decomposition model is proposed for RIS-aided MIMO communications. The effective channel of the reflected link is decomposed into multiple subchannels, each of which corresponds to a single RIS element.

We show that it is feasible to estimate the subchannels, and exploit their knowledge for joint precoding without performance loss.

- We develop a subchannel estimation mechanism based on multi-round pilot training, where the REs of the RIS configure the phase shifts in each round according to a preset codebook. A sufficient condition is derived for the codebook to minimize the mean square error (MSE) of the subchannel estimator, and then both the Hadamard matrix based and the discrete Fourier transform (DFT) aided codebooks are used for practical implementations.

- We reformulate the joint RIS-transmitter precoding problem based on the above-mentioned channel decomposition model, wherein the digital precoder of the transmitter and the phase shifts of the REs can be designed by purely relying on the CSI of the subchannels. In this way, joint precoding becomes feasible in practical systems.

- A two-stage precoding design is proposed based on only the knowledge of the subchannels. Firstly, the reflecting phase shifts are determined by solving an approximation of the original problem using a fixed-point based method. After that, the baseband precoder of the transmitter is optimized given the phase shifts.

- We evaluate the performance of the proposed channel estimation and joint precoding methods for different simulation settings, including the transmission power constraint, the number of REs, and channel propagation conditions. Our numerical results show that the channel decomposition based framework provides a viable solution for RIS-aided MIMO systems.

Noting that an alternating optimization (AO) method is also developed for RIS-aided point-to-point MIMO systems [17], we employ this design as a benchmark, and show that our proposed precoding scheme has advantages over its AO-based counterpart.

The rest of this paper is organized as follows. In Section II, we introduce the system model, while in Section III, we define the subchannels and propose the subchannel estimation method. In Section IV, our precoding technique is designed purely relying on the CSI of the subchannels. Numerical results are presented in Section V and the paper is concluded in Section VI.

The following notations are adopted throughout this paper. \(\mathbb{C}^n \) denotes the \(n \)-dimensional complex space, and \(\mathbb{C}^{m \times n} \) is the space of \(m \times n \) complex matrices. \(A \) is a matrix and \(a \) is a vector. The transpose, conjugate transpose and inverse operators are denoted by \((\cdot)^T \), \((\cdot)^H \) and \((\cdot)^{-1} \), respectively. \(\text{tr}(\cdot) \) is the trace operator, and \(\text{rank}(\cdot) \) is the rank of a matrix. The operator \(|\cdot| \) denotes the magnitude for complex numbers, the entry-wise magnitude for vectors, and the determinant for matrices. \(\| \cdot \|_1, \| \cdot \|_2 \) and \(\| \cdot \|_F \) denote the 1-norm, 2-norm and Frobenius norm, respectively. \(A|_{m_1:m_2,n_1:n_2} \) is the corresponding subcomponent of \(A \), with row indices spanning from \(m_1 \) to \(m_2 \), and column indices spanning from \(n_1 \) to \(n_2 \). The diagonal matrix with diagonal entries \(\{a_1, \cdots, a_n\} \) is denoted by \(\text{diag}\{a_1, \cdots, a_n\} \), \(I_n \) is the \(n \times n \) identity matrix, \(0_n \) is the \(n \)-dimensional all-zero vector, and \(\Theta \) denotes zero vector or matrix of appropriate dimension. A complex number \(a \in \mathbb{C} \) is represented by \(a = |a|e^{j\angle a} \). We use \(\otimes \) for...
the Kronecker product, vec(·) for the vectorization operation, and $\mathbb{E}\{\cdot\}$ for the expectation operator, respectively.

II. System Model

A. Signal Model

We consider the RIS-aided point-to-point MIMO system, as illustrated in Fig. 1, where the transmitter employs N_t transmit antennas (TAs) to forward N_s data streams to the receiver equipped with N_r receiving antennas (RAs), with $N_s \leq \min\{N_t,N_r\}$. The RIS consists of M REs that can modify the incident signal by an adjustable phase shift, and is coordinated by the transmitter using a wireless or wired control link. The signals from both the direct transmitter-receiver link and the reflected transmitter-RIS-receiver link are superposed at the receiver.

The transmitter applies an $N_t \times N_s$ baseband precoder W for transmitting an $N_s \times 1$ symbol vector s, with $\mathbb{E}\{ss^H\} = \rho I_{N_s}$, where ρ is the total transmission power, and the precoder is normalized such that $\|W\|_F^2 \leq 1$ to enforce the power constraint. The nth element of the RIS reflects the signal from the transmitter with a phase shift of $\omega_n \in [0,2\pi)$ ($1 \leq n \leq M$). Given the narrowband block-fading channel model, the $N_r \times 1$ received signal is obtained as

$$ y = H_0 W s + H_t \text{diag}(\mu) H_t^H W s + z $$

where $\mu = e^{j\omega_n} = [e^{j\omega_1}, \ldots, e^{j\omega_M}]^T$ is the $M \times 1$ phase shift vector, $z \in \mathbb{C}^{N_r}$ is the noise vector following $z \sim \mathcal{CN}(0,N_r,\sigma^2 I_{N_r})$. Furthermore, $H_0 \in \mathbb{C}^{N_r \times N_t}$ is the direct channel from the transmitter to the receiver, $H_t \in \mathbb{C}^{M \times N_t}$ is the incident channel from the transmitter to the RIS, and finally $H_t^H \in \mathbb{C}^{N_t \times M}$ is the reflected channel from the RIS to the receiver. All the channels involved are assumed to be quasi-static, i.e., approximately constant during both estimation and precoding. With the subscripts omitted for simplicity, the channels are expressed as $H = \beta \bar{H}$, where β is the path loss, and \bar{H} is the small-scale Rician fading given by $[12,17,34]^3$

$$ \bar{H} = \sqrt{\frac{K}{1+K}} e^{j\Omega} \bar{H}^{(\text{LOS})} + \sqrt{\frac{1}{1+K}} \bar{H}^{(\text{NLOS})}, $$

where K is the Rician factor, $\bar{H}^{(\text{LOS})}$ is the line-of-sight (LOS) component, $\bar{H}^{(\text{NLOS})}$ is the non-LOS (NLOS) component, and Ω is a random phase shift. The columns of $\bar{H}^{(\text{NLOS})}$ follow the complex symmetric Gaussian distribution with a zero mean and a covariance matrix of R, i.e. $\mathcal{CN}(0,R)^3$ while $\bar{H}^{(\text{LOS})}$ is expressed as $\bar{H}^{(\text{LOS})} = a_r(\phi(\theta),\phi(\phi)) a_t^H(\phi(\theta),\phi(\phi))$, where $\phi(\theta)$ and $\phi(\phi)$ are the azimuth (elevation) angles of arrival and departure (AOA and AOD), and $a_r(\phi,\phi)$ ($a_t(\phi,\phi)$) are the TA (RA) array response vectors. For an $N_H \times N_V$ uniform planar array (UPA), the array response vector $a_{\text{UPA}}(\phi,\phi)$ is expressed as

$$ a_{\text{UPA}}(\phi,\phi) = \frac{1}{\sqrt{N_H N_V}} \left[1, e^{j2\pi D(h \sin \phi \sin \varphi + v \cos \varphi)} \ldots , e^{j2\pi D((N_H-1) \sin \phi \sin \varphi + (N_V-1) \cos \varphi)} \right]^T,$$

where λ is the transmission wavelength, and D is the spacing between adjacent array elements, $0 \leq h \leq (N_H - 1)$, and $0 \leq v \leq (N_V - 1)$.

B. Pilot Training Model

The transmitter sends the pilot signal $X = [x_1^T, x_2^T, \ldots, x_N^T]^T \in \mathbb{C}^{N_t \times \tau}$ to the receiver, where $x_n \in \mathbb{C}^{1 \times \tau}$, $1 \leq n \leq N_t$ is the pilot of length τ, loaded on the nth antenna element. The pilot matrix is normalized such that $\|X\|_F^2 = \tau \rho$. Given the phase shifts adjusted by the REs of the RIS during the transmission of X, the receiver sees an $N_r \times N_t$ effective channel of

$$ H_e(\mu) = H_0 + H_t \text{diag}(\mu) H_t. $$

The $N_r \times \tau$ received signal is then expressed as $Y = H_e(\mu)X + Z$, where $Z \in \mathbb{C}^{N_r \times \tau}$ is the noise matrix whose column vectors follow the same distribution as z in (1). In general, orthogonal pilots are employed, and the length of the pilot signal is designed such that $\tau \geq N_t$. Thus, the effective channel can be estimated using the typical least-square (LS) algorithm:

$$ \tilde{H}_e(\mu) = Y X^H (X X^H)^{-1} = H_e(\mu) + \tilde{Z}, $$

where $\tilde{Z} = Z X (X X^H)^{-1} \in \mathbb{C}^{N_r \times N_t}$ is the effective noise, and $\tilde{H}_e(\mu) \in \mathbb{C}^{N_r \times N_t}$ is the estimate of $H_e(\mu)$. As shown in (4)-(5), the full CSI of H_t and H_r, required by most current precoding methods, cannot be readily acquired using

1. As discussed in [34], the phase shift in the LoS part is uniformly distributed on $[0,2\pi)$, and varies in each channel realization. However, the derivation of our proposed estimation and precoding schemes does not rely on any specific channel model.

2. According to [35], the Rayleigh fading channel is actually spatially correlated for receivers equipped with planar arrays. Given $N_H \times N_V$ uniform planar arrays with inter-element spacing of D, the entries of the covariance matrix is determined by $[R]_{m,n} = \frac{\sin(2\pi D^2 \lambda m n + 2\pi \gamma n) D^2 \lambda}{2 \pi \gamma D^2 \lambda m n}$, where λ is the carrier wavelength, γ is a normalizing factor, and $\mu_{\text{ta}} = [0, i(n), j(n)]^T$ with $i(n) = \text{mod}(n - 1, N_H)$ and $j(n) = \text{mod}(n - 1, N_V)$.

3. The model of (2) is used for numerical simulation. However, the proposed subchannel estimation and precoding methods are not limited to this model and can be applied to general channel models without any extra requirements.
conventional pilot-aided training. The only available knowledge of \(\bar{H}_c(\mu) \) acquired from pilot-aided training will limit the practical applications of the existing precoding designs. In the next section, instead of estimating \(\bar{H}_t \) and \(\bar{H}_r \), we propose to decompose the effective channel into multiple subchannels and estimate the subchannels by repeating the pilot training a number of times and beneficially adjusting the RIS phase shifts.

III. CHANNEL DECOMPOSITION AND SUBCHANNEL ESTIMATION

In this section, we detail the proposed channel-decomposition-based subchannel estimation methods. Firstly, the effective channel of (4) is decomposed into multiple subchannels, each of which corresponds to a single RIS RE. Afterwards, we show that the subchannels can be estimated using multi-round pilot training, by appropriately configuring the reflecting phase shifts in each training round. Moreover, the optimal phase adjustment is designed by minimizing the MSE of the subchannel estimator based on both the Hadamard matrix and the DFT matrix. Finally, we provide a performance analysis of the proposed method.

A. Channel Decomposition Based Subchannel Estimation

Note that the incident and the reflected channels, \(\bar{H}_t \) and \(\bar{H}_r \), cannot be directly estimated due to the lack of RF chains at the RIS. However, the information concerning \(\bar{H}_t \) and \(\bar{H}_r \) can still be inferred from the effective channel \(\bar{H}_c \). Specifically, \(\bar{H}_c \) can be decomposed as follows

\[
\bar{H}_c(\mu) = H_0 + \sum_{m=1}^{M} \mu_m [H_t]_{[1:m]} [H_r]_{(m:)}
\]

\[
= H_0 + \sum_{m=1}^{M} \mu_m H_m,
\]

where \(\mu_m = e^{j\theta_m} \) is the \(m \)th entry of the phase shift vector, \([H_t]_{[1:m]} \) is the \(m \)th column of the reflected channel \(\bar{H}_t \), \([H_r]_{(m:)} \) is the \(m \)th row of the incident channel \(\bar{H}_r \), and \(H_m \triangleq [H_t]_{[1:m]} [H_r]_{(m:)} \in \mathbb{C}^{N_r \times N_t} \) is defined as the \(m \)th subchannel of \(\bar{H}_c \), for \(1 \leq m \leq M \). By defining the augmented phase shift vector as \(\tilde{\mu} = [1, \mu^T]^T \), we can rewrite \(\bar{H}_c(\mu) \) as

\[
\bar{H}_c(\tilde{\mu}) = ([\mu^T \otimes I_{N_r}] [H_0^T, H_1^T, \ldots, H_M^T]^T).
\]

(7)

Noting that different effective channels \(\bar{H}_c(\mu) \) can be derived by varying the phase shift vector \(\tilde{\mu} \), we now show that the \(M + 1 \) subchannels, \(\bar{H}_m \), for \(0 \leq m \leq M \), can be estimated via multiple observations of \(\bar{H}_c(\mu) \) obtained by repeating the LS algorithm of (5) for \(L \) times. (5)

Based on (5) and (7), let \(\tilde{\mu}_l = [1, \mu_l]^T \), \(1 \leq l \leq L \) be the augmented phase shift vector configured by the RIS in the \(l \)th round of training. Then the LS algorithm yields

\[
\bar{H}_{c,l} = \bar{H}_c(\tilde{\mu}_l) + \tilde{Z}_l
\]

\[
= ([\mu_l^T \otimes I_{N_r}] [H_0^T, H_1^T, \ldots, H_M^T]^T) + \tilde{Z}_l,
\]

where \(\bar{H}_{c,l} \in \mathbb{C}^{N_r \times N_t} \) is the observed effective channel, and \(\tilde{Z}_l \in \mathbb{C}^{N_r \times N_t} \) is the effective noise in the \(l \)th training round. By implementing the overall \(L \) rounds of LS training, and defining \(\Sigma \triangleq [\mu_1^L, \ldots, \mu_L^L] \in \mathbb{C}^{(M+1) \times L} \), we have the following observations of \(\bar{H}_{c,l} \) that can be used for estimating the subchannels \(\bar{H}_m \):

\[
\begin{bmatrix}
\hat{H}_{c,1} \\
\vdots \\
\hat{H}_{c,L}
\end{bmatrix} = \left(\Sigma^H \otimes I_{N_r} \right) \cdot
\begin{bmatrix}
H_0 \\
\vdots \\
H_M
\end{bmatrix} + \begin{bmatrix}
\tilde{Z}_1 \\
\vdots \\
\tilde{Z}_L
\end{bmatrix},
\]

(9)

It is seen from (9) that, by beneficially choosing \(\mu_l \) to ensure that \(\Sigma \) has full row rank, i.e., \(\text{rank}(\Sigma \Sigma^H) = M + 1 \), the subchannels can be estimated by the classic LS algorithm, yielding:

\[
\begin{bmatrix}
\hat{H}_0 \\
\vdots \\
\hat{H}_M
\end{bmatrix} = \left(\left(\Sigma \Sigma^H \right)^{-1} \Sigma \right) \cdot I_{N_r} \cdot
\begin{bmatrix}
\hat{H}_{c,1} \\
\vdots \\
\hat{H}_{c,L}
\end{bmatrix}
\]

\[
= \begin{bmatrix}
H_0 \\
\vdots \\
H_M
\end{bmatrix} + \begin{bmatrix}
\hat{Z}_0 \\
\hat{Z}_1 \\
\vdots \\
\hat{Z}_L
\end{bmatrix},
\]

where \(\hat{H}_m \) is the estimate of \(H_m \), \(0 \leq m \leq M \), and

\[
\begin{bmatrix}
\tilde{Z}_0 \\
\vdots \\
\tilde{Z}_L
\end{bmatrix} = \left(\left(\Sigma \Sigma^H \right)^{-1} \Sigma \right) \cdot I_{N_r} \cdot
\begin{bmatrix}
\tilde{Z}_{c,1}^T \\
\vdots \\
\tilde{Z}_{c,L}^T
\end{bmatrix}
\]

\[
= \begin{bmatrix}
(\Sigma \Sigma^H)^{-1} \Sigma \otimes I_{N_r} \mathbb{E}
\end{bmatrix} = \mathbb{E}
\]

\[
= \mathbb{E}
\]

(10)

Thus, the MSE of the subchannel estimator can be minimized by appropriately designing \(\Sigma \).

The pilot pattern of the proposed subchannel estimation method is presented in Fig. 2, where the \(N_r \times \tau \) pilot matrix in the \(l \)th training round is denoted by \(X_l = [x_l^T(1), \ldots, x_l^T(L)] \) for \(1 \leq l \leq L \), and \(x_l^T(1) \in \mathbb{C}^{N_r \times 1} \) is the \(n \)th pilot vector, \(1 \leq n \leq \tau \). It is seen that the training overhead is given by \(\tau L \). Although the RIS phase shift vector \(\mu_l \) can be specifically designed for minimizing both the MSE of the subchannel estimator and the computational complexity of the LS algorithm, the training overhead cannot be reduced by simply changing the RIS phase shifts. The innovative method discussed in [25] can be applied to alleviate the overhead by grouping the RIS elements and adopting a common phase shift in each group, which is detailed in Section III-C for

7 Although it is somewhat surprising, the rank-deficient nature of the subchannels does not affect the estimation process. It is observed from (10) that the estimation method is feasible only if \(\Sigma \) has full row rank.

8 The training overhead of \(\tau L \) is the same as that of the tensor based techniques proposed in [36], and it is also equal to that of the method developed in [27], whereby the cascaded channels of every receiver antenna are separately estimated.
the subchannel model. However, further reducing the training overhead is left for our future research.

B. Optimal Phase Shift Design for MSE Minimization

Based on (12), given that \(\hat{Z}_l, 1 \leq l \leq L \) is i.i.d., the MSE of the LS estimator can hence be reformulated as

\[
\text{MSE}(\hat{H}_s) = \mathbb{E} \| (\Sigma \Sigma^H)^{-1} \Sigma \|^2_F.
\]

Observing that \(\mathbb{E}(\| \hat{Z}_1 \|^2_F) \) is decoupled from \(\Sigma \), we have

\[
\| (\Sigma \Sigma^H)^{-1} \Sigma \|^2_F = \text{tr}(\Sigma \Sigma^H)^{-1} = \frac{1}{\sigma_m^2(\Sigma)} \sum_{m=1}^{M+1} \sigma_m^2(\Sigma),
\]

where \(\sigma_m(\Sigma) \) is the mth largest singular value of \(\Sigma \). The problem of MSE minimization can thus be formulated as follows

\[
\text{(P1)}: \quad \Sigma_{\text{opt}} = \arg \min_{\Sigma \in \mathcal{C}(M+1) \times L} \frac{1}{\sigma_m^2(\Sigma)} \sum_{m=1}^{M+1} \sigma_m^2(\Sigma) \quad \text{s.t.} \quad |\Sigma|_{(i,i)} = 1_L, \quad |\Sigma|_{i,j} = 1, \quad \forall i, j, \quad \text{rank}(\Sigma \Sigma^H) = M + 1.
\]

Prior to solving (P1), we present a sufficient condition for its feasibility as follows.

Proposition 1: Problem (P1) is feasible for any \(L \geq M + 1 \).

Proof: Let us denote the feasible domain of (P1) as \(\mathcal{F}_{(P1)} \) for convenience, and set \(\Sigma_0 \in \mathcal{C}(M+1) \times L \) as follows

\[
|\Sigma_0|_{(i,i)} = \begin{cases}
1, & \text{if } i \leq j, \\
-1, & \text{if } i > j.
\end{cases}
\]

The proof is completed by verifying that \(\Sigma_0 \) satisfies the constraints of (16)-(18).

The feasibility of (P1) verifies that the method given in (10) is indeed applicable to the estimation of the subchannels. Denoting the feasible domain of (P1) as \(\mathcal{F}_{(P1)} \), we now present a sufficient condition for finding the optimal solution to (P1) as follows.

Proposition 2: The optimal value of (P1) is \((M + 1)/L \). Moreover, given any \((M + 1) \times L \) matrix \(\mathbf{A} \in \mathcal{F}_{(P1)} \), \(\mathbf{A} \) is an optimal solution to (P1) if and only if \(\mathbf{A} \mathbf{A}^H = L \mathbf{I}_{M+1} \).

Proof: Note that

\[
\sum_{m=1}^{M+1} \sigma_m^2(\Sigma) = \text{tr}((\Sigma \Sigma^H)^{-1}) = L(M + 1).
\]

By exploiting the Cauchy-Schwarz inequality, we have

\[
\sum_{m=1}^{M+1} \frac{1}{\sigma_m^2(\Sigma)} \geq \frac{(M + 1)^2}{\sum_{m=1}^{M+1} \sigma_m^2(\Sigma)} = \frac{M + 1}{L},
\]

where the equality holds if all the singular values are equal, i.e., \(\sigma_m(\Sigma) = \sqrt{L}, 1 \leq m \leq M + 1 \). In this case, the optimal value of (P1) is obtained as \((M + 1)/L \).

1) **Sufficiency:** For any \((M + 1) \times L \) matrix \(\mathbf{A} \in \mathcal{F}_{(P1)} \), if \(\mathbf{A} \mathbf{A}^H = L \mathbf{I}_{M+1} \), we have \(\sigma_m(\mathbf{A}) = \sqrt{L}, 1 \leq m \leq M + 1 \), which results in the equality in (21).

2) **Necessity:** For any \(\mathbf{A} \in \mathcal{F}_{(P1)} \), if \(\sigma_m(\mathbf{A}) = \sqrt{L}, 1 \leq m \leq M + 1 \), namely that all the eigenvalues of \(\mathbf{A} \mathbf{A}^H \) are equal to \(L \), upon invoking the classic eigenvalue decomposition, we have \(\mathbf{A} \mathbf{A}^H = Q \mathbf{L} \mathbf{I}_{M+1} Q^H = L \mathbf{I}_{M+1} \), where \(Q \) is unitary such that \(QQ^H = I_{M+1} \).

Based on Proposition 2, Problem (P1) can be solved by searching for a scaled \(L \)-dimensional unitary matrix that satisfies the constraints of (16) and (17). This also indicates that the optimal solution of (P1) is not unique. For convenience, we provide two optimal designs by introducing the following two corollaries.

Corollary 1: Denote the \(L \)-dimensional DFT matrix as \(\mathbf{F}_L \), i.e., \([\mathbf{F}_L]_{m,n} = e^{-j2\pi m(n-\frac{1}{2})/(L-1)} \). Let \(\mathbf{A} \in \mathcal{C}^{(M+1) \times L} \) host the first and \(M \) other distinct rows of \(\mathbf{F}_L \). Then \(\mathbf{A} \) constitutes an optimal solution to (P1).

Proof: The proof is completed by verifying that \(\mathbf{A} \in \mathcal{F}_{(P1)} \) and \(\mathbf{A} \mathbf{A}^H = L \mathbf{I}_{M+1} \).

Before presenting the second corollary, we introduce the Hadamard matrix. Without loss of generality, let \(L = 2^B \), where \(B > 0 \) is an integer. Then the \(2^B \)-dimensional Hadamard matrix, \(\mathbf{G}_{2^B} \), can be constructed by

\[
\mathbf{G}_{2^B} = \begin{bmatrix}
G_{2^B-1} & G_{2^B-1} \\
G_{2^B-1} & -G_{2^B-1}
\end{bmatrix}, \quad G_2 = \begin{bmatrix}
1 & 1 \\
1 & -1
\end{bmatrix}.
\]

It can be verified that \(\mathbf{G}_{2^B} \mathbf{G}_{2^B}^H = 2^B \mathbf{I}_{2^B} \).

Corollary 2: Let us denote the \(L \)-dimensional Hadamard matrix in (22) as \(\mathbf{G}_{L} \), and let \(\mathbf{A} \in \mathcal{C}^{(M+1) \times L} \) host the first and \(M \) other distinct rows of \(\mathbf{G}_{L} \). Then \(\mathbf{A} \) constitutes an optimal solution to (P1).

Proof: The proof is completed by verifying that \(\mathbf{A} \in \mathcal{F}_{(P1)} \) and \(\mathbf{A} \mathbf{A}^H = L \mathbf{I}_{M+1} \).

In practical systems, the optimized phase adjustments provided by the RIS for subchannel estimation can be specified in advance as codebooks at the transceiver. Note that different choices of feasible codebooks do not change the training overhead, but the optimal codebooks given by Corollaries 1
and 2 can be used to minimize the MSE of the estimator, and also to simplify the classic LS algorithm formulated in (10), by letting \((AA^H)^{-1}A = \frac{1}{L}A \). The main procedures of the proposed subchannel estimation method are summarized in Algorithm 1.

It is worth noting that the Hadamard codebook given in Corollary 2 requires only two discrete phase shifts, namely \{0, \pi\}, which is appealing for practical applications. Furthermore, based on the channel decomposition model of (7), the subchannel estimation methods are not limited to the typical LS algorithm. Indeed, many practical algorithms, such as the minimum mean square error (MMSE) \[27\], or any other new solutions, can also be applied. Instead of estimating the subchannels using the effective channels of (8) observed in each training round, one can also consider to jointly process all the received pilots \(Y_l \), \(1 \leq l \leq L \), to acquire the CSI of the subchannels, where \(Y_l \subset \mathbb{C}^{N_c \times 1} \) is the signal received in the \(l \)th round of training. Since the same phase shifts are imposed on the incident signal across the whole transmission bandwidth, the proposed method can be readily extended to the case of frequency-selective fading channels by processing the subchannels of different subcarriers independently.

C. Performance Analysis

1) General performance of the subchannel estimator: Given an optimal codebook \(A \in \mathcal{F}(p) \) that satisfies \(AA^H = L I_{M+1} \), the \((M+1)N_c \times N_c \) subchannel estimator is formulated as

\[
\hat{H}_s^{\text{opt}} = \frac{1}{L} (A \otimes I_{N_c}) [\hat{H}_{c,1}^T, \ldots, \hat{H}_{c,L}^T]^T
\]

and the MSE is given by \(\text{MSE}(\hat{H}_s^{\text{opt}}) = \frac{M+1}{L} \mathbb{E}(\| \tilde{Z}_1 \|_F^2) \), where \(\tilde{Z}_1 \) is the effective noise of (5).

Before summarizing the general performance of the subchannel estimator in Proposition 3, we first present a lemma as follows.

Lemma 1: The \((M+1)N_c \times N_c \) dimensional covariance matrix that attains the Cramer-Rao lower bound (CRLB) of the subchannel estimator derived from (9) is given by

\[
\Theta_{\text{CRLB}} = \sigma^2 (X^X)^{-1} \otimes (AA^H)^{-1} \otimes I_{N_c}.
\]

Proof: See Appendix A for the proof.

Proposition 3: The subchannel estimator in (23) is unbiased, consistent, and efficient.

Proof: The unbiased nature is validated by \(\mathbb{E}(\tilde{Z}) = \mathbb{E}(\tilde{Z}_1^T) = \ldots = \mathbb{E}(\tilde{Z}_L^T) = 0 \). Additionally, the power of the effective noise is bounded by

\[
\mathbb{E}(\| \tilde{Z}_1 \|_F^2) = \sum_{n=1}^{N_c} \frac{\sigma^2_n}{\lambda_n(X)} \leq \frac{\sigma^2 N_c N_l}{\lambda_{N_c}(X)},
\]

where \(\sigma_n(X) \) and \(\lambda_n(X) \) are the \(n \)th largest singular value and eigenvalue of the pilot matrix \(X \), respectively. Therefore, the consistency is proved by

\[
\lim_{L \to \infty} \text{MSE}(\hat{H}_s^{\text{opt}}) \leq \lim_{L \to \infty} \frac{(M+1)\sigma^2 N_c N_l}{\lambda_{N_c}(X)} = 0.
\]

Moreover, based on Lemma 1, we have

\[
\text{MSE}(\hat{H}_s^{\text{opt}}) = \frac{M+1}{L} \sum_{n=1}^{N_c} \frac{\sigma^2 N_l}{\sigma^2_n(X)} = \text{tr} (\Theta_{\text{CRLB}}),
\]

which thus verifies the efficiency.

2) Complexity analysis: The computational complexity is mainly contributed by the \(L \) rounds of pilot training in (5) and the subchannel estimation in (10). It is easy to verify that the complexity of a single round of pilot training is on the order of \(\mathcal{O}(\tau N_c^2) \). As for subchannel estimation, relying on an optimal codebook \(A \), the complexity is dominated by the computation of \(\frac{1}{L} (A \otimes I_{N_c}) [\hat{H}_{c,1}^T, \ldots, \hat{H}_{c,L}^T]^T \). The matrix multiplication can be considered as an augmented version of \(\frac{1}{L} A h \) with \(h \) denoting an \(L \times 1 \) vector. Thus, the complexity of subchannel estimation is \(N_c N_l \) times that of computing \(\frac{1}{L} A h \), which is given by \(\mathcal{O}(N_c N_l L M) \). Therefore, the total complexity is \(\mathcal{O}(N_c L(N_l M + \tau N_l)) \).

Naturally, numerous techniques may be applied to reduce the computational complexity of subchannel estimation. Without loss of generality, let \(L = M = 2^B \). Then for the DFT codebook, i.e., \(A = F_{M+1} \), the complexity of computing \(\frac{1}{L} F_{M+1} h \) is reduced to \(\mathcal{O}(M \log M) \) by the fast Fourier transform (FFT) operations. As for the case of using the Hadamard codebook in (22), let us denote the complexity of computing \(\frac{1}{L} G_{2^B} h \) by \(T(B) \). Then the update formula of \(T(B) \) is given by

\[
T(B) = 2T(B-1) + 2^B.
\]

Thus, we have \(T(B) = \mathcal{O}(2B^2) = \mathcal{O}(M \log M) \). The total complexity is then reduced to \(\mathcal{O}(N_c L(N_l \log M + \tau N_l)) \).

The proposed subchannel estimation algorithm can be further simplified by collecting several subchannels into groups with a group-specific common phase shift. Let us denote the index set of the \(g \)th subchannel group as \(S_g \), \(1 \leq g \leq N_g \), and assume that the subchannels are divided into \(N_g \) \((N_g \leq M+1)\) groups by letting \(\cup_{g=1}^{N_g} S_g = \{0, \ldots, M\} \) and \(S_g \cap S_g' = \emptyset \) for \(\forall g \neq g' \). Then the phase shift vector \(\mu_g \) is shared among all the subchannels in the \(g \)th group. Based on this, the decomposed effective channel in (6) is reformulated as

\[
H_c(\mu) = \sum_{g=1}^{N_g} \tilde{\mu}_g H_{g}^{\sup},
\]

where \(H_{g}^{\sup} = \sum_{m \in S_g} H_m \) is the \(g \)th superposed channel. In this manner, the size of the codebook \(A \) is reduced from \((M+1) \times L \) to \(N_g \times L \), which has a lower complexity of \(\mathcal{O}(N_g N_l (N_l \log N_g + \tau N_l)) \) if we have \(L = N_g \) for simplicity.\(^9\) Observe that for a smaller value of \(N_g \), the estimation algorithm becomes less complex. Given \(N_g = 1 \), the computational complexity can even be reduced to \(\mathcal{O}(\tau N_c^2) \).

\(^9\)By grouping the subchannels, the minimum value of \(L \) is reduced to the number of the groups \(N_g \), instead of \(M + 1 \). Hence, the complexity of the estimation process can be much reduced.
However, the CSI resolution also becomes lower when only relying on the knowledge of the superposed channels. Hence, the value of N_s should be carefully chosen to strike an appealing CSI precision versus complexity trade-off. Finally, the estimation of subchannels can be further simplified using low-complexity pilot training methods.

In this section, we have shown that the CSI of the subchannels can be acquired. Since the existing RIS-aided precoding designs tend to rely on the idealized assumption of perfect CSI, we design a new precoder purely relying on the knowledge of the subchannels in the next section. The feasibility of the precoding design of Section IV is guaranteed by the subchannel estimation method of Section III.

IV. PROPOSED PRECODING DESIGN RELYING ON THE CSI OF SUBCHANNELS

In this section, we deal with the precoding problem purely relying on the knowledge of the subchannels H_m, rather than on the full CSI of H_t and H_r.\(^\text{10}\) To circumvent the challenge of finding the closed-form optimal design of the phase shift vector and the digital precoder, we conceive a near-optimal two-stage precoding scheme. Firstly, the phase shift vector is determined using a fixed-point based method, based on which the digital precoder may then be derived by solving a convex optimization problem. Then, considering that the performance gap between the proposed design and the optimal precoding solution is analytically intractable, we investigate a simple scenario and show that the proposed design is capable of attaining the optimal performance for the propagation conditions considered, where the RIS can act as though both the transmission power and the number of TAs were increased by exploiting the reflected link.

A. Precoding Framework with CSI of Subchannels

With the channel decomposition model of (7), the received signal of (1) is reformulated as

$$y = [H_0, \ldots, H_M](\mu \otimes W)s + z. \quad (30)$$

The effective mutual information (MI) achieved by Gaussian signaling can be adopted as the optimization objective of our precoding design [38]–[41], which is expressed as

$$I(\mu, W) = \log_2 \left| I_{N_r} + \frac{\rho^2}{\sigma^2} H_{eq}(\mu \otimes W)(\mu \otimes W)^H H_{eq}^H \right|. \quad (31)$$

where $H_{eq} = [H_0, \ldots, H_M]$. Upon using the MI metric, no common phase rotation applied to the entries of μ changes the objective, and the joint precoding design may then be formulated as the following constrained optimization problem\(^\text{11}\)

$$\text{(P2)}: \quad (\mu^{\text{opt}}, W^{\text{opt}}) = \arg \max_{\mu, W} I(\mu, W) \quad (32)$$

subject to

$$|\mu|_1 = 1, \forall m, \quad (33)$$

$$\|W\|^2_F \leq 1. \quad (34)$$

Note that Problem (P2) is difficult to solve both owing to the non-convex constraint of (33) and due to the Kronecker product structure of $\mu \otimes W$. Fortunately, it is seen that for a fixed μ, the design of W that maximizes the MI becomes a convex problem. Thus, it is efficient to solve (P2) by conceiving a suboptimal two-stage scheme that successively determines μ and W.

In the first stage, in order to find a near-optimal design of μ, we develop a lower bound of $I(\mu, W)$, and obtain μ by maximizing this lower bound. The bound can be derived based on the following proposition.

Proposition 4: Define $F_P \triangleq \{P \in \mathbb{C}^{(M+1)N_s \times N_s} : \|P\|^2_F \leq M+1\}$, and $\hat{I}(P) = \log_2 \left| I_{N_s} + \frac{\rho^2}{\sigma^2} H_{eq} P P^H H_{eq}^H \right|$. Let $P^{\text{opt}} = \arg \max_{P \in F_P} \hat{I}(P)$. Then for any feasible (μ, W), the gap between the objective of (P2) and $\hat{I}(P^{\text{opt}})$ is bounded by

$$|I(\mu, W) - \hat{I}(P^{\text{opt}})| \leq C\|\mu \otimes W - P^{\text{opt}}\|_F, \quad (35)$$

where $C \in \mathbb{R}$ is a non-negative constant.

Proof: See Appendix B for the proof.\(\blacksquare\)

Observe that F_P is a convex set, and thus P^{opt} that maximizes $\hat{I}(P)$ is analytically attainable [41]. Specifically, let the singular value decomposition (SVD) of H_{eq} be $H_{eq} = USV^H$, where S is a rank(H_{eq}) × rank(H_{eq}) diagonal matrix of singular values arranged in descending order, while $U \in \mathbb{C}^{N_s \times \text{rank}(H_{eq})}$, $U^H U = I_{\text{rank}(H_{eq})}$, and $V \in \mathbb{C}^{(M+1)N_s \times \text{rank}(H_{eq})}$, $V^H V = I_{\text{rank}(H_{eq})}$. Without loss of generality, we assume $N_s \leq \text{rank}(H_{eq})$. Then P^{opt} is derived from the first N_s columns of V, i.e., $P^{\text{opt}} = \sqrt{(M+1)/N_s} [V(1:N_s)]$.

It is worth noting that $\hat{I}(P^{\text{opt}})$ serves as an upper bound for the optimal value of (P2), i.e., $\hat{I}(P^{\text{opt}}) \geq I(\mu^{\text{opt}}, W^{\text{opt}})$.\(^\text{12}\)

However, in most cases, this bound is not approachable, because P^{opt} cannot be decomposed into a Kronecker product of a vector with unit-magnitude entries and an F-norm-constrained complex matrix. Therefore, we derive a lower bound of the MI to assist with the suboptimal design of μ.

Based on Proposition 4, a lower bound of $I(\mu, W)$ can be formulated as follows

$$I(\mu, W) \geq \hat{I}(P^{\text{opt}}) - C\|\mu \otimes W - P^{\text{opt}}\|_F \geq I(\mu^{\text{opt}}, W^{\text{opt}}) - C\|\mu \otimes W - P^{\text{opt}}\|_F. \quad (36)$$

\(^\text{11}\)For fast changing channels associated with limited coherence intervals, pilot-based channel estimation will become impractical. More explicitly, every time the Doppler frequency is doubled, the pilot overhead used for sampling and estimating the channel has to be doubled as well. In this scenario, it is worth considering to maximize the ergodic MI, $\mathbb{E}(I(\mu, W))$, instead of the instantaneous MI, $I(\mu, W)$, so that only the statistical properties of the channels are required..

\(^\text{12}\)This is due to the fact that $(\mu^{\text{opt}} \otimes W^{\text{opt}}) \in \mathbb{C}^{(M+1)N_s \times N_s}$ and $\|\mu^{\text{opt}} \otimes W^{\text{opt}}\|^2_F \leq M+1$.

\(^\text{10}\)Again, the existing precoders rely on the full CSI of H_t and H_r, and hence cannot be directly applied when only the knowledge of the subchannels is available.
This implies that $I(\bar{\mu}, W)$ can be approximately maximized by maximizing its lower bound I_{LB}, or equivalently minimizing $\|\bar{\mu} \otimes W - P_{\text{opt}}\|_F$, and thus the phase shift vector of the two-stage scheme $\hat{\mu}^{(ts)}$ can be derived by solving the following problem\(^{13}\)

$$
(P3): \quad (\hat{\mu}^{(ts)}, \sim) = \arg \min_{\mu, W} \|\bar{\mu} \otimes W - P_{\text{opt}}\|_F^2 \\
\text{s.t. } (33)-(34).
$$

Based on $\hat{\mu}^{(ts)}$ that solves (P3), the digital precoder $W^{(ts)}$ is determined by maximizing $I(\hat{\mu}^{(ts)}, W)$, which yields the following optimization problem

$$
(P4): \quad W^{(ts)} = \arg \max_W I(\hat{\mu}^{(ts)}, W) \\
\text{s.t. } \|W\|_F \leq 1.
$$

The joint precoding solution derived from the two-stage scheme is then given by $(\hat{\mu}^{(ts)}, W^{(ts)})$.

B. Two-stage Precoding Designs

1) **Fixed-point based method for solving (P3):** Due to the non-convex constraints of (P3), it is unrealistic to search for the closed-form optimal solution. Hence, in order to solve (P3) efficiently, a fixed-point based method is developed to determine the phase shift vector $\hat{\mu}^{(ts)}$.

For convenience, let us introduce $P_{\text{opt}} = [P_0^T, \ldots, P_M^T]^T$, where $P_m \in \mathbb{C}^{N_t \times N_s}, 1 \leq m \leq M + 1$, is the corresponding submatrix of P_{opt}. Then we have

$$
\|\bar{\mu} \otimes W - P_{\text{opt}}\|_F^2 = \sum_{m=1}^{M+1} \|W - \bar{\mu}_m P_m\|_F^2 = (M + 1) \|W - \bar{\mu}_m P_m\|_F^2 = \sum_{m=1}^{M+1} \|P_m\|_F^2 - \sum_{m=1}^{M+1} \|\bar{\mu}_m P_m\|_F^2 \\
\geq \sum_{m=1}^{M+1} \|P_m\|_F^2 - \sum_{m=1}^{M+1} \|\bar{\mu}_m P_m\|_F^2 = (M + 1) \|W - \bar{\mu}_m P_m\|_F^2
$$

where $\bar{\mu}_m = [\bar{\mu}]_m$ is the mth entry of the phase shift vector, and the equality holds if $W = \sum_{m=1}^{M+1} \bar{\mu}_m^* P_m$. It is noted that

$$
\left(\sum_{m=1}^{M+1} \bar{\mu}_m^* P_m\right) \leq (M + 1) \|\bar{\mu}\|_1 = 1,
$$

and thus this design of the digital precoder is feasible.

Hence, minimizing the objective of (P3) is then equivalent to maximizing $\sum_{m=1}^{M+1} \|\bar{\mu}_m P_m\|_F^2$. Furthermore, we have

$$
\sum_{m=1}^{M+1} \|\bar{\mu}_m P_m\|_F^2 = \text{tr}\left(\sum_{m=1}^{M+1} \bar{\mu}_m^* P_m\right) \text{tr}\left(\sum_{m=1}^{M+1} \bar{\mu}_m P_m\right) = \bar{\mu}^H Q \bar{\mu},
$$

where Q is an $(M + 1) \times (M + 1)$ Hermitian matrix with entries of $[Q_{m,n}] = q_{mn} = \text{tr}(P_n^H P_m)$. Thus, (P3) can be reformulated as

$$
(P5): \quad \hat{\mu}^{(ts)} = \arg \max_{\mu} \bar{\mu}^H Q \bar{\mu} \\
\text{s.t. } \left[\|\bar{\mu}\|_1 = 1, \forall m\right].
$$

Following from some general algebraic manipulations, the Karush-Kuhn-Tucker (KKT) condition of (P5) can be derived as

$$
(Q - \text{diag}(\bar{\nu})) \bar{\mu} = 0,
$$

where $\bar{\nu} \in \mathbb{R}^{(M+1) \times 1}$ is the Lagrangian multiplier. Given the great challenge of providing a closed-form solution, we develop a fixed-point based method to solve (P5) iteratively. By rearranging (42), given $\bar{\mu}^{(p)}$ with p denoting the iteration number, $\bar{\nu}^{(p+1)}$ and $\hat{\mu}^{(p+1)}$ can be updated as follows

$$
\bar{\mu}^{(p+1)} = \frac{1}{\ell} (Q \bar{\mu}^{(p)}), \quad \bar{\nu}^{(p+1)} = \|Q \bar{\mu}^{(p+1)}\|_1.
$$

The residual in the pth round of iterations is computed by $\delta (p) = \|Q \bar{\mu}^{(p+1)}\|_1 - \|Q \bar{\mu}^{(p)}\|_1$. By appropriately choosing the residual threshold ϵ, and the maximum number of iteration p_{max}, the stopping criterion can be developed based on $\delta (p) < \epsilon$ or $p > p_{\text{max}}$. The solution to (P5) is then obtained by our fixed-point iterative algorithm.

2) **SVD based method for solving (P4):** Given $\hat{\mu}^{(ts)}$ as the solution to (P5), the objective of (P4) is reformulated as

$$
I(\hat{\mu}^{(ts)}, W) = \log_2 I_{N_t} + \frac{1}{\sqrt{\alpha}} \text{tr} \left(\hat{H}_{\text{eq}} W W^H \hat{H}_{\text{eq}}^H\right),
$$

where $\hat{H}_{\text{eq}} = H_0(\hat{\mu}^{(ts)} \otimes I_{N_s})$. Thus, (P4) becomes a convex optimization problem, and can be solved using the same method adopted for P_{opt}. Specifically, let the eigenvalue decomposition of $H_0^H \hat{H}_{\text{eq}}$ be $H_0^H \hat{H}_{\text{eq}} = V \Lambda V^H$, where $\Lambda \in \mathbb{C}^{N_t \times N_t}$ is a diagonal matrix of eigenvalues arranged in descending order, and $V \in \mathbb{C}^{N_t \times N_t}$ is a unitary matrix of the corresponding eigenvectors. Then W is derived from the first N_s columns of V as follows

$$
W^{(ts)} = \sqrt{1/N_s} [V]_{(:,1:N_s)}.
$$

In summary, the joint precoding problem is solved by determining the phase shift vector $\bar{\mu}$ using the fixed-point based iterations, and then formulating the digital precoder W according to (44). The details of the proposed precoding method are presented in Algorithm 2.

C. Performance of the Fixed-Point Based Method

The convergence and optimality are confirmed by the following proposition.

Proposition 5: Given $\{\bar{\mu}^{(p)}\}$ as the output sequence of the phase shift vectors derived from Algorithm 2, then the sequence $\{\bar{\mu}^{(p)}\}$ is convergent, and has a limit that satisfies the KKT condition of (42).

Proof: Note that the sequence $\{\|Q \bar{\mu}^{(p)}\|_1\}$ is convergent. Specifically, the sequence is bounded by $\|Q \bar{\mu}^{(p)}\|_1 \leq \sum_m \sum_n |q_{mn}|$. In addition, we have

$$
\|Q \bar{\mu}^{(p)}\|_1 = \frac{1}{\ell} (Q \bar{\mu}^{(p)})^H Q \bar{\mu}^{(p)} = (Q \bar{\mu}^{(p+1)})^H \bar{\mu}^{(p+1)} \leq \|Q \bar{\mu}^{(p+1)}\|_1,
$$

where the inequality follows from $\|\bar{\mu}\|_1 = 1$, and $Q = Q^H$. Thus, the convergence of $\{\bar{\mu}^{(p)}\}$ is guaranteed by the
Algorithm 2 Two-stage joint precoding with CSI of subchannels.

1: **Input** coefficient matrix \(Q \), residual threshold \(\epsilon \), and maximum number of iteration \(p_{\text{max}} \).
2: Initialize the phase shift vector \(\vec{\mu}^{(0)} = 1 \), the residual \(\delta^{(0)} = 2\epsilon \), and the iteration number \(p = 0 \).
3: **repeat**
 4: Update the phase shift vector by \(\vec{\mu}^{(p+1)} = \exp(\vec{\epsilon}Q\vec{\mu}^{(p)}) \).
 5: Compute the residual by \(\delta^{(p)} = \|\|Q\vec{\mu}^{(p+1)}\|_1 - \|Q\vec{\mu}^{(p)}\|_1\| \).
 6: Update \(p = p + 1 \).
7: **until** \(\delta^{(p)} < \epsilon \) or \(p > p_{\text{max}} \).
8: Compute the digital precoder \(W \) based on (44).
9: **return** \((\vec{\mu}, W) \).

monotone convergence theorem [42]. By defining the residual as \(\delta^{(p)} = \|Q\vec{\mu}^{(p+1)}\|_1 - \|Q\vec{\mu}^{(p)}\|_1 \), the stopping criterion given by \(\delta^{(p)} < \epsilon \) is valid.

Let \(\nu \) be the limit of \(\{\vec{\mu}^{(p)}\} \), i.e., \(\lim_{p \to \infty} \vec{\mu}^{(p)} = \nu \). Based on (43), we have \(\nu^\infty = e^Q\nu^\infty \), which can be rewritten as

\[
Q\nu^\infty = \text{diag}(Q\nu^\infty)e^Q\nu^\infty = \text{diag}((Q\nu^\infty)\nu^\infty). (46)
\]

Thus, the KKT condition (42) is satisfied by the fixed-point based method.

D. Optimality of the Proposed Design in a Simple Scenario

In this subsection, we show that the proposed two-stage design is capable of attaining the optimal precoding performance in a simple scenario, where the direct link between the transmitter and the receiver is blocked, and both the incident and the reflected channels are LOS-dominated. This implies that we have \(H_0 \approx 0 \), \(K_1 \to \infty \), and \(K_2 \to \infty \), with \(K_1 \) and \(K_2 \) being the Rician factors of \(H_1 \) and \(H_2 \), respectively. Moreover, it is also illustrated that, under the channel conditions considered, the optimal precoding scheme purely relies on the AOAs and AODs of \(H_1 \) and \(H_2 \), which has the potential of eliminating the channel estimation overhead with the aid of angular information.

It is noted that the design of \((\vec{\mu}, W) \) given by Algorithm 2, in general, is only a near-optimal solution to (P2), which has a performance loss bounded by (36). However, we show that in this specific case, the proposed precoding design is actually capable of reaching the upper bound given by \(1\tilde{\nu} \), thereby achieving the optimal performance. Moreover, we reveal that under this scenario, the reflected link provides a reflection gain that is proportional to the square of the number of REs.

For convenience, we denote \(H_1 = \sqrt{\beta_r}ad^\text{H} \), and \(H_t = \sqrt{\beta_t}cd^\text{H} \), where \(\beta_r \) and \(\beta_t \) are the path loss coefficients, and \(a, b, c, \) and \(d \) are the corresponding array response vectors given by (3), with the AOAs and AODs omitted for simplicity. The \(m \)th subchannel is expressed as \(H_m = \sqrt{\beta_t}t_mad^\text{H} \), with \(t_m = |b|^\text{H}_m|e|^\text{H}_m \), for \(1 \leq m \leq M \), and \(H_\text{eq} \) is rewritten as

\[
H_\text{eq} = \beta_t t^\text{T} \otimes ad^\text{H}, \quad (47)
\]

where \(t = [t_{1, ...}, t_M]^\text{T} \) is an \(M \times 1 \) vector.

Before showing the optimality of the proposed precoding design in Proposition 6, we present a lemma as follows

Lemma 2: The optimal solution to the joint precoding problem (P2) is given by

\[
(\mu^{\text{opt}}, w^{\text{opt}}) = (t^*, \frac{1}{\sqrt{N_t}}d), \quad (48)
\]

and the optimal value of (P2) matches its upper bound provided by \(p^{\text{opt}} \), i.e.,

\[
\tilde{\nu}(\mu^{\text{opt}}, w^{\text{opt}}) = \tilde{\nu}(p^{\text{opt}}). \quad (49)
\]

Proof: Firstly, we derive \(p^{\text{opt}} \) from the eigenvectors of \(H_\text{eq}^\text{H}H_\text{eq} \). Denoting the eigenvalue and the corresponding eigenvector of \(H_\text{eq}^\text{H}H_\text{eq} \) by \(\gamma \) and \(f \), respectively, we have \(H_\text{eq}^\text{H}H_\text{eq}f = \gamma f \), which can be rearranged to

\[
(t^*f^*) \otimes (dd^*)f = \gamma \frac{\beta_r}{\beta_t}a^\text{T}a^\text{H}f. \quad (50)
\]

For convenience, let \(f = [\tilde{f}^*_t, \ldots, \tilde{f}^*_M]^\text{T} \), where \(\tilde{f}_m \), \(1 \leq m \leq M \), is an \(N_t \times 1 \) vector. Due to the Kronecker product structure of \((tt^*) \otimes (dd^*) \), Equation (50) holds only if \(\tilde{f}_m \) is linearly dependent on \(d \), i.e., \(\tilde{f}_m = l_m d \). Thus, (50) can be further transformed to

\[
t^*t^*l = \frac{\gamma}{\beta_r \beta_t (a^\text{T}a)(d^\text{T}d)} l, \quad (51)
\]

where \(l = [l_1, \ldots, l_M]^\text{T} \). Without loss of generality, this equation is solved by \(l = t^* \). Observe that Equation (51) has a rank-one solution space, and thus \(P^{\text{opt}} \) is reduced to an \(M \times 1 \) vector:

\[
(\mu^{\text{opt}}, w^{\text{opt}}) = \frac{1}{\sqrt{N_t}}f = t^* \otimes \frac{d}{\sqrt{N_t}}, \quad (52)
\]

where \(\frac{1}{\sqrt{N_t}} \) is a normalization factor such that \(||p^{\text{opt}}||_2 = M \).

It is observed from (52) that \(p^{\text{opt}} \) is decomposed into the Kronecker product of the vectors \(t^* \) and \(\frac{d}{\sqrt{N_t}} \). Moreover, \(||l_m|| = ||b|^\text{H}_m|e|^\text{H}_m \) = 1, \(\frac{1}{\sqrt{N_t}} ||d^\text{H} ||_2 = 1 \), and hence the optimal solution to the joint precoding problem is obtained by \((\mu^{\text{opt}}, w^{\text{opt}}) = (t^*, \frac{1}{\sqrt{N_t}}d) \). In this case, the upper bound of (P2) is matched, i.e., \(\tilde{\nu}(\mu^{\text{opt}}, w^{\text{opt}}) = \tilde{\nu}(p^{\text{opt}}) \).

Proposition 6: Let \((\mu^{\text{AL2}}, w^{\text{AL2}}) \) be the output of Algorithm 2. Then the proposed precoding method given in Algorithm 2 is capable of finding the optimal solution to (P2), i.e.,

\[
(\mu^{\text{AL2}}, w^{\text{AL2}}) = (\mu^{\text{opt}}, w^{\text{opt}}). \quad (53)
\]

Proof: The entries of the coefficient matrix \(Q \) in (P5) are given by \(q_{mn} = \frac{1}{\sqrt{N_t}}t_{m\ast}^*t_{n\ast}d^\text{H} = t_{m\ast}^*t_n \). Then the KKT condition (42) can be rewritten as

\[
t^*t^*\mu = \text{diag}(\nu^\text{H})\mu. \quad (54)
\]
Since $u = t^*$ is the unique solution to (54), it follows from invoking Proposition 5 that $\mu^{\text{AL1}} = t^*$. Then we have $H_{\text{eq}}(\mu^{\text{AL2}} \otimes I_{N_t}) = \sqrt{\rho/N_t} t^* a d^H$, based on which the digital precoder is given by $w^{\text{AL2}} = 1/\sqrt{N_t} d$. Thus, we have $(\mu^{\text{AL2}}, w^{\text{AL2}}) = (\mu^{\text{opt}}, w^{\text{opt}})$.

Based on the results of Lemma 2 and Proposition 6, the maximized MI of the RIS-aided system is achieved by the optimal design $(\mu^{\text{opt}}, w^{\text{opt}})$, which is formulated as

$$I(\mu^{\text{opt}}, w^{\text{opt}}) = \log_2 \left[\frac{1 + \sqrt{\rho^2 N_t M^2}}{\sigma^2} \right] = \log_2 \left(1 + \frac{\rho^2}{\sigma^2} N_t M^2 \right).$$

It is observed from (55) that the reflected link of RIS-aided systems exploits an extra reflection gain M^2 in addition to the conventional antenna array gains of $N_t N_t$. The reflection gain is proportional to the square of the number of REs, because each of the RIS RE serves as a mirror that produces a reflection of the transmitted signal. Given the optimal design $(\mu^{\text{opt}}, w^{\text{opt}})$, the signals represented by all of these reflections are aligned and superposed at the receiver. Consequently, it appears as if there were M replica of the transmitter acting in union by increasing both the number of the TAs and the transmission power by a factor of M.

Additionally, observe that the optimal design is determined only by the array response vectors, i.e., $(\mu^{\text{opt}}, w^{\text{opt}}) = (\mu^{\text{opt}}, w^{\text{opt}})$. Therefore, the joint precoding problem can be solved by only relying on the knowledge of the AOA and AOD between the transmitter and the RIS, as well as those between the RIS and the receiver, which considerably reduces the complexity.

It should be noted that the channel conditions characterized in (47) are not perfectly satisfied in general cases. On this occasion, the upper bound $I(\mu^{\text{opt}}, w^{\text{opt}})$ is not attainable with any joint precoding design due to the degree-of-freedom reduction imposed by the Kronecker product structure of the phase shift vector and the digital precoder. Hence, the reflection gain of M^2 may not be fully exploited. Moreover, even if the reflection gain is fully exploited, the actual signal power of the reflected link at the receiver may still be lower than that of the direct link. This is because the reflected link generally experiences a much more substantial path loss, i.e., $\beta_t \beta_t < \beta_0$ [43]. The actual performance of the RIS-aided MIMO system will be evaluated for various channel realizations in the next section.

V. NUMERICAL RESULTS

In this section, the performance of the proposed subchannel estimation method and the joint precoding scheme is investigated. We consider a RIS-aided MIMO system, where the transmitter is equipped with an $\sqrt{N_t} \times \sqrt{N_t}$ antenna array located at (x_t, y_t), and the RIS having M REs is placed at $(x_{\text{RIS}}, y_{\text{RIS}})$. The signals transmitted from both the direct and the reflected links are received by the receiver at (x_r, y_r), using an $\sqrt{N_r} \times \sqrt{N_r}$ antenna array. The antenna spacing of $D = \lambda/2$ is adopted for all the UPAs. The noise power spectral density is -174 dBm/Hz, and the bandwidth is 200 kHz, which yields $\sigma^2 = -121$ dBm. The path loss for all channels is modeled as $\beta = \beta_{\text{ref}} (d/d_{\text{ref}})^{-\alpha}$, where $\beta_{\text{ref}} = -30$ dB is the path loss at the reference distance of $d_{\text{ref}} = 1$ m, and α is the path loss exponent. The path loss for the direct channel, the incident channel and the reflected channel is denoted by β_0, β_t and β_t, respectively, with the corresponding exponents being $\alpha_0 = 3.5$, $\alpha_t = 2.2$ and $\alpha_t = 2.8$ [17]. The path loss is calculated for $(x_s, y_s) = (0, 0)$, $(x_{\text{RIS}}, y_{\text{RIS}}) = (100, 10)$, and $(x_{\text{RIS}}, y_{\text{RIS}}) = (10, 10)$. The Rician fading model in (2) is used to generate the involved channels. Let K_0, K_t, and K_r be the Rician factors of the direct, incident and reflected channels, respectively. The rich scattering propagation condition is characterized by $K = 0$, while $K \to \infty$ indicates that the channel is LOS-dominated. All the results are averaged over 1000 channel realizations.

A. Subchannel Estimation

The performance of Algorithm 1 is evaluated by calculating the MSE for each different number L of pilot training rounds and for each value ρ of the transmission power. By setting $\tau = N_t$, $\mathbf{X} = \sqrt{\rho} N_t F_{\text{XX}}$, $M = 7 \times 9$, $N_t = N_r = 4$, $K_0 = K_t = K_r = 10$ dB, we compare the MSE obtained using the proposed subchannel estimation method under various implementations of the codebook A, to its counterpart achieved by different benchmark schemes as follows:

- The DFT codebook specified in Corollary 1, labeled as “DFT codebook”.
- The Hadamard codebook of Corollary 2, labeled as “Proposed Hadamard codebook”.
- The trivial design using $A = \Sigma_0$ according to (19), labeled as “Trivial codebook”.
- The random design using $A_{m,n} = \delta(x_m, y_n)$ for $\forall m,n$, where $\xi_{m,n} \sim \text{CN}(0,1)$, labeled as “Random codebook”.
- The CRLB is calculated based on Θ_{CRLB} in Lemma 1, labeled as “CRLB”.
- The least squared Khatri-Rao factorization (LSKRF) scheme proposed in [36] that estimates the full CSI of H_t and H_r, labeled as “LSKRF scheme [36]”.
- The cascaded channel estimation scheme proposed in [32] that adopts a DFT based LS training, labeled as “Cascaded CSI acquisition [32]”.

By setting $\rho = 0$ dBm, the MSE performance of various codebooks is compared in Fig. 3(a), for different values of L. The initial value of L in Fig. 3(a) is set to $L = M + 1 = 64$, for satisfying the constraint of (18) that ensures the feasibility of the subchannel estimation method. It is observed that all the codebooks considered achieve a low MSE that is below -80 dB, which validates the accuracy of the proposed multi-round training scheme used for subchannel estimation. Additionally, the DFT/Hadamard codebooks outperform the other codebooks, and attain the CRLB curve. This observation

14 By adopting a random codebook, the RIS configures its phase adjustment randomly in each round of pilot training. This does not affect the feasibility of the subchannel estimation method, but will result in a different MSE performance.
15 As discussed in [36], the minimum overhead of the tensor-based LSKRF scheme is $M N_t$ to estimate H_t and H_r, and thus it is also required $L \geq M + 1$ for estimating H_t, H_r, and H_0. The corresponding MSE is defined as $\text{MSE}(H_t, H_r, H_0) = E[\|H_t - H_t\|^2 + \|H_r - H_r\|^2 + \|H_0 - H_0\|^2]$, where H_t, H_r, and H_0 are the estimates of H_t, H_r, and H_0, respectively.
verifies the results given by Corollaries 1 and 2, where the DFT/Hadamard codebooks are proved to be optimal.

Given \(L = 64 \), the MSE performance of different codebooks is illustrated in Fig. 3(b), versus the transmission power \(\rho \). It is noted that both the DFT and the Hadamard codebooks improve the MSE performance of the subchannel estimator by about 15 dB, compared to the trivial codebook. Furthermore, the random codebook shows the worst MSE performance, when using the minimum codebook length of \(L = 64 \), which confirms the necessity of specifically designing the codebook for the RIS phase shifts configured during the multi-round training stage.

It is worth noting in Fig. 3(a) that the MSE of the LSKRF benchmark decreases slowly upon increasing \(L \). This is because the MSE of the LSKRF scheme is contributed by not one, but two procedures: (i) an LS estimation for the Khatri-Rao product of \(\mathbf{H}_t \) and \(\mathbf{H}_r \); (ii) a rank-1 approximation for obtaining each row/column of \(\mathbf{H}_t \setminus \mathbf{H}_r \). Although the MSE imposed by (i) can be further reduced given a larger \(L \), the dominant part (ii) cannot be eliminated by simply increasing \(L \), and thus limits the overall performance. This also explains the observation from Fig. 3(b) that the proposed subchannel estimation method using DFT/Hadamard codebooks achieves better MSE performance than the LSKRF based benchmark, since the MSE of the proposed scheme is purely decided by the LS estimates of the subchannels. Additionally, the benchmark of cascaded CSI acquisition [32] shows a similar performance to the proposed scheme using DFT/Hadamard codebooks, because it also adopts a DFT based LS training.

(B) Joint Precoding Performance

The performance of the proposed two-stage joint precoding method is evaluated for different numbers of RIS elements \(M \), various transmission powers \(\rho \), and diverse channel conditions specified by the Rician factors. The proposed scheme detailed in Algorithm 2 is compared to the following three benchmark precoding schemes:

- AO scheme [17]: the AO scheme derived in [17] is adopted, and the full CSI of the incident channel \(\mathbf{H}_t \) and the reflected channel \(\mathbf{H}_r \) is required.
- Random phase design: the phase shifts are randomly generated, and the digital precoder is determined by solving (P5) based on the random phase shifts.
- W/O RISs: the conventional MIMO system without RISs is considered, where the digital precoder is given by the solution to (P5) with \([\bar{\mu}]_{t(2:M+1)} = 0 \).

Accounting for the overhead of channel estimation, the MI loss factor is given as \((1 - \frac{c_t N_p}{\kappa_c})\), where \(\kappa_c \) is the length of the channel coherence interval, \(\kappa_c \) is the duration of a single pilot symbol, and \(N_p \) is the overall number of pilot symbols required. We use the parameter values \((\kappa_c, \kappa_r) = (0.025 \text{ s}, 10 \mu s)\). For the proposed precoding method and the AO benchmark, \(N_p = (M + 1) N_t \) is adopted, while for the random phase design and the W/O RISs benchmark, \(N_p = N_t \) is assumed.16 If without explicit explanation, the loss factor is applied to all the numerical results in this section, namely that \((1 - \frac{\kappa_t N_p}{\kappa_c}) I(\bar{\mu}, W) \) is used as our performance metric.

1) MI versus the number of REs: The MI achieved by the proposed two-stage joint precoding scheme is compared to that of various benchmarks for different numbers of REs and diverse channel conditions, as shown in Fig. 4, where \(N_t = N_r = 4 \), the transmission power is \(\rho = 20 \text{ dBm} \), and the number of REs is set to \(M = 10m \times 10 \) for \(m = 0, \ldots, 10 \).

Observe that the MI of all the schemes increases upon decreasing the Rician factors of the channels involved, thanks to the rich scattering propagation that is appropriate for increasing the benefits of MIMO systems [45]. By comparing the performance of the random phase design and the conventional MIMO system without RISs, it is seen from Fig. 4(c) that, under the LOS-dominant propagation conditions, even the randomly generated phase design is capable of gleaning some reflection gain (the MI increased by about 20%). However, in the case of rich scattering channels with \(K = 0 \), as demonstrated in Fig. 4(a), the RIS has almost no benefits if the phase shifts are randomly adjusted. This is because the effective channel of the reflected link becomes negligible compared to the direct channel, as a result of the law of large numbers

\[
\frac{1}{M} \sum_{m=1}^{M} \mu_{m}[\mathbf{H}_t(:,m)]\mathbf{H}_r(m,:) \approx \mathbb{E}\{\mu_{m}[\mathbf{H}_t(:,m)]\mathbf{H}_r(m,:)]\}
\]

(56)

16The AO benchmark of [17] requires the full CSI of \(\mathbf{H}_0, \mathbf{H}_r \), and \(\mathbf{H}_t \), which can be acquired using the tensor based technique discussed in [36], with a minimum overhead of \((M + 1)N_t\) pilots. As for the benchmark of random phase design, the number of required pilots is only \(N_t \), because the CSI of \(\mathbf{H}_t, \mathbf{H}_r \) is not needed to determine the RIS phase adjustments.
The expectation term of (56) is zero since μ_m is zero, H_t, and H_r are independent, and the entries of H_t and H_r follow a zero-mean complex symmetric Gaussian distribution.

It is also noted that the MI of both the proposed scheme and the AO-based benchmark firstly increases and then decreases with M, under most channel conditions (except that the MI of the AO scheme keeps on decreasing in Fig. 4(a)). This is because when M begins increasing, the resulted reflection gain provided by the RIS is exploited. However, the overhead of channel estimation becomes significant and thus limits the performance, when M exceeds a certain value. As discussed in the context of (56), the performance gain achieved by the proposed scheme and by the AO scheme remains quite limited and decreases very quickly as M increases under rich scattering conditions, which is due to the fact that the channel gain of the reflected link is negligible, given a large value of M, and yet the training overhead keeps on growing. Moreover, observe from Figs. 4(a) and 4(b) that the proposed two-stage precoding scheme outperforms the AO scheme in terms of increasing the MI.

2) MI versus the transmission power constraint: We set $N_t = N_r = 4$, $M = 3 \times 10$, and compare the MI of the proposed precoding scheme to those of the aforementioned benchmarks under different transmission power constraints and channel conditions, as illustrated in Fig. 5.

Observe in Fig. 5 that the MI obtained by all the schemes decreases upon increasing the Rician factors K. By contrast, increased reflection gain has been achieved in the presence of less scattering. Specifically, the proposed scheme outperforms the conventional MIMO system by about 0.5 dB in rich scattering environments, but its gain can be increased to more than 10 dB under the LOS-dominated channel conditions having $K \to \infty$. Additionally, the MI of all the compared schemes almost linearly increases with transmission power ρ measured in dBm. This observation verifies the conclusion of $I \propto \log_\rho$ for point-to-point MIMO systems in the case of a high signal-to-noise ratio (SNR) at the receiver, due to the relatively modest path loss between the transmitter and the receiver in our simulation setting.

As illustrated in Figs. 5(a) and 5(b), the performance gain of the RIS-aided systems is very limited under rich scattering channels, especially after taking into account the realistic pilot overhead of channel estimation. Furthermore, the proposed two-stage scheme shows a slight advantage over the AO-based benchmark in maximizing the MI. These observations coincide with the results shown in Figs. 4(a) and 4(b), as seen from the zoomed-in windows of Fig. 5.

3) MI evaluation with subchannel grouping: By grouping the subchannels and using group-specific phase shifts, the complexity of both subchannel estimation and of the joint precoding is substantially reduced. For convenience, we set $N_t = N_r = 4$, and $M = 16 \times 16$. The index sets for the subchannel groups are determined by $S_0 = \emptyset$ and $S_g = \{(g-1)M/2^R+1, \ldots, gM/2^R\}$, for $1 \leq g \leq N_g - 1$, where R is a positive integer, and $R \leq \log_2 M$. Explicitly, the direct channel H_0 is assigned to Group 0, and the other M subchannels are uniformly divided into 2^R groups. The total number of the groups is then given by $N_g = 2^R + 1$.

We set $R \in \{0, 1, 2, \ldots, \log_2 M\}$, and compare the MI obtained by the proposed two-stage precoding scheme under various Rician factors in Fig. 6. It is observed that the MI of the proposed scheme firstly increases with R within a certain range, and this indicates that the group-specific phase shift design imposes considerable performance loss due to the phase ambiguity experienced. Quantitatively, for LOS-dominated channels associated with $K \to \infty$, the grouping pattern of $2^R = 1$, where all REs use an identical phase shift for the incident signal, results in about 30% performance degradation compared to the optimal grouping pattern of

\[\text{It is observed in Fig. 5(c) that the performance gain shown by the RIS-aided systems over the conventional MIMO systems increases upon increasing the power constraint. This is due to the fact that with $K \to \infty$, the direct channel spanning from the transmitter to the receiver becomes rank deficient [46]. Hence, the RIS-aided systems leveraging both the direct and reflected links achieves a higher multiplexing gain than the conventional systems using only the direct link.} \]
Mutual information (bits/s/Hz)

Fig. 6. MI versus number of RE groups 2^R, for various subchannel grouping patterns, where Algorithm 2 is adopted for precoding design, $\rho = 20$ dBm, $N_t = N_r = 4$, and $M = 16 \times 16$.

4) Effects of channel estimation errors: The MI achieved by the proposed two-stage precoding method is shown in Fig. 7, relying on the estimated subchannel CSI (obtained from Algorithm 1) instead of the perfect CSI, under different transmission power constraints ρ.\(^\text{18}\) The performance loss is calculated by $(I_0 - \hat{I}_0)/I_0$ with I_0 and \hat{I}_0 denoting the MI obtained using perfect CSI and estimated CSI, respectively. It is seen that the performance loss decreases with the transmission power ρ, and it declines more rapidly given a larger L, i.e., more training rounds. This is because the estimated CSI becomes more accurate given more transmission power and pilot symbols. More specifically, the performance loss finally decreases to zero, as shown in Figs. 7(a) and 7(b). By contrast, the loss still remains in Fig. 7(c), where all the involved channels are LOS-dominant. This is due to the fact that even negligible noise changes the rank-deficient nature of the LOS-dominant channels, and thus affects the design of the precoding matrix W obtained with the aid of SVD in (44). In this case, as discussed in [13], robust precoding designs can be considered by investigating the expectation over the distribution of the channel estimation error.

VI. CONCLUSIONS

A channel decomposition model has been proposed for CSI acquisition and joint precoding problems in RIS-aided MIMO systems. By decomposing the effective channel of the reflected link into multiple subchannels, we have developed a multi-round pilot training mechanism to obtain the CSI required for precoding. The joint precoding problem has been reformulated with respect to the subchannels, based on which a two-stage precoding scheme has been developed to successively design the reflecting phase shifts and the baseband digital precoder, only relying on the CSI knowledge of the subchannels. Our numerical results have demonstrated that the proposed channel decomposition based model provides an attractive solution for RIS-aided MIMO communications. For future works, joint transmit precoding and RIS phase adjustment under frequency-selective fading channels, as well as low-overhead methods for subchannel estimation are worth further investigation.

APPENDIX A

PROOF OF LEMMA 1

Proof: For convenience, let $C = A_H^H \otimes I_{N_t}$, $D = X H (X X^H)^{-1}$, $E = [H_{t,1}^T, \ldots, H_{t,L}^T]^T$, and $J =$\(^\text{18}\)

\[^{18}\]In order to present the effects of estimation errors under different numbers L of the training rounds, the pilot overhead is not included in Fig. 7.
Mutual information (bits/s/Hz)

Performance loss (%)

Transmission power constraint \(\rho \), relying on estimated CSI of the subchannels, where the performance loss is shown by percentage, \(N_t = N_r = 4 \), and \(M = 7 \times 7 \).

\[
[Z_1^T, \ldots, Z_L^T]^T. \text{Then (9) can be rewritten as}
\]

\[
\text{vec}(E) = (I_{N_t} \otimes C)\text{vec}(H_s) + (D^T \otimes I_{L,N_t})\text{vec}(J),
\]

where \(J \sim \mathcal{C}\mathcal{N}(0, \sigma^2 I_{L,N_t}) \). Based on the Gauss–Markov theorem [47], the CRLB covariance matrix derived from (57) is given by

\[
\Theta_{\text{CRLB}} = \sigma^2 \begin{bmatrix} (I_{N_t} \otimes C)^H(D^T D^*) \otimes I_{L,N_t} \end{bmatrix}^{-1} (I_{N_t} \otimes C)^{-1}.
\]

(58)

By exploiting the properties of Kronecker product operations, (58) can be further rearranged as

\[
\Theta_{\text{CRLB}} = \sigma^2 \begin{bmatrix} (D^H D)^* \otimes (C^H C) \end{bmatrix}^{-1}
\]

\[
= \sigma^2 \begin{bmatrix} (X^* X^T)^{-1} \otimes (AA^H)^{-1} \otimes I_{N_t} \end{bmatrix},
\]

(59)

which completes the proof.

APPENDIX B

PROOF OF PROPOSITION 4

Proof: For convenience, denote \(E = \rho/\sigma^2 H_{eq}(\mu \otimes W)(\otimes W)^H H_{eq}^H, C = \mu \otimes W, D = P^{opt}, B =

\[
\rho/\sigma^2 H_{eq} P^{opt}(H_{eq} P^{opt})^H \] and \(R = N_r \). Then for any feasible \((\hat{\mu}, W)\), the difference between the objective of (P2) and its upper bound \(I(\hat{\mu}, W) - \hat{I}(P^{opt}) \) is given by

\[
\left| I(\hat{\mu}, W) - \hat{I}(P^{opt}) \right| = \left| \sum_{r=1}^{R} \log(1 + \lambda_r(E)) - \sum_{r=1}^{R} \log(1 + \lambda_r(B)) \right|
\]

\[
\leq \sum_{r=1}^{R} \left| \log(1 + \lambda_r(E)) - \log(1 + \lambda_r(B)) \right|
\]

\[
(\rho \sigma^2 r^2 H_{eq}^2 \sigma^2 \, \text{such that}) \quad \begin{align*}
|I(\mu, W)| &= |\sum_{r=1}^{R} \log(1 + \lambda_r(E)) - \sum_{r=1}^{R} \log(1 + \lambda_r(B))| \\
&\leq \sum_{r=1}^{R} |\log(1 + \lambda_r(E)) - \log(1 + \lambda_r(B))| \\
&\leq \sum_{r=1}^{R} \left| \lambda_r(E) - \lambda_r(B) \right| \\
&\leq \sqrt{R} \| E - B \|_F \\
&\leq \frac{\rho \sqrt{R}}{\sigma^2} \| H_{eq} \|_F \| C C^H - DD^H \|_F \\
\end{align*}
\]

(60)

where (a) is a result of the property of logarithmic function, (b) follows from invoking the Cauchy–Schwarz inequality, and (c) is obtained by applying Theorem III.4.4 in [48]. Note that the result given by (d) in (60) can be further bounded by

\[
\| C C^H - DD^H \|_F \\
= \| (C + D)(C - D)^H + CD^H - DC^H \|_F \\
\leq \| (C + D)(C - D)^H \|_F + \| CD^H - DC^H \|_F \\
\leq (M + 1) \| C - D \|_F \\
\leq 2(M + 1) \| C - D \|_F
\]

(61)

where the first term is bounded by \(\| (C + D)(C - D)^H \|_F \leq 2(M + 1) \| C - D \|_F \) due to \(\| C \|_F = \| D \|_F = (M + 1) \), while the second term is bounded by

\[
\| CD^H - DC^H \|_F \\
= \| (C^H - C)(C - D)^H \|_F \\
\leq 2\| C(C - D)^H \|_F \\
\leq 2(M + 1) \| C - D \|_F
\]

(62)

Based on (60)-(62), letting \(C = \frac{\rho \sqrt{R}}{\sigma^2} \| H_{eq} \|_F \), we have

\[
\left| I(\mu, W) - \hat{I}(P^{opt}) \right| \leq C \| \mu \otimes W - P^{opt} \|_F.
\]

(63)

REFERENCES

