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Abstract1

We conducted a three-year campaign of atmospheric pollutant measure-2

ments exploiting portable instrumentation deployed on a mobile cabin of a3

public transport system. Size selected particulate matter (PM) and nitrogen4

monoxide (NO) were measured at high temporal and spatial resolution. The5

dataset was complemented with measurements of vehicular traffic counts and6

a comprehensive set of meteorological covariates. Pollutants showed a dis-7

tinctive spatiotemporal structure in the urban environment. Spatiotemporal8

autocorrelations were analyzed by a hierarchical spatiotemporal statistical9

model. Specifically, particles smaller than 1.1 µm exhibited a robust tempo-10

ral autocorrelation with those at the previous hour and tended to accumulate11

steadily during the week with a maximum on Fridays. The smallest particles12

(mean diameter 340 nm) showed a spatial correlation distance of ≈ 600 m.13

The spatial correlation distance reduces to ≈ 60 m for particle diameters14

larger than 1.1 µm, which also showed peaks at the stations correlated with15

the transport system itself. NO showed a temporal correlation comparable16
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to that of particles of 5.0 µm of diameter and a correlating distance of 15517

m. The spatial structure of NO correlated with that of the smallest sized18

particles. A generalized additive mixed model was employed to disentangle19

the effects of traffic and other covariates on PM concentrations. A reduc-20

tion of 50% of the vehicles produces a reduction of the fine particles of -13%21

and of the coarse particle number of -7.5%. The atmospheric stability was22

responsible for the most significant effect on fine particle concentration.23
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1. Introduction27

Exposure to airborne particulate matter (PM) has been associated with28

increases in mortality and hospitalizations due to respiratory and cardiovas-29

cular disease (Brunekreef and Holgate, 2002; Hoek et al., 2002; Jerrett et al.,30

2013). A modest increment of PM2.5 (PM whose aerodynamic diameter, DP ,31

is less than 2.5µm), even within concentration ranges well below the present32

European annual mean limit, has been associated with a significant increase33

of the relative risk for adverse health outcomes. Also, the health effects were34

correlated with the vehicular traffic intensity and with the distance of nearest35

busy roads to the people residence (Raaschou-Nielsen et al., 2013).36

Urban air pollution shows high variability in space and time which poses37

significant challenges for accurate exposure assessment and health studies.38

Indeed, personal exposure is not a static phenomenon but depend both on39

the spatiotemporal dynamics of air pollution concentrations and individuals’40

activities (Dias and Tchepel, 2018). Even if clear national guidelines are41

available to establish how the location of air-quality stations are determined,42

(Martín et al., 2015) the spatial representativeness of a station does not43

appear to have a well-established procedure for its assessment . The task is44

remarkably challenging in the urban environment where chemical reactions45

and dilution effects can change the spatial extent of impacts from traffic-46

related air pollutants (Zhou et al., 2007; Pasquier and André, 2017).47

A possible approach to characterise the spatiotemporal structure of urban48

pollutants is to exploit a dense grid of fixed monitoring stations and land use49

regression models (see for example Liu et al. (2016)). The spatial domain50

2



investigated in these approaches is at the urban or more often regional scale51

and the temporal resolution in the timescale of the day (Kuerban et al.,52

2020).53

An alternative approach is the use of mobile platforms. The first tenta-54

tive, to our knowledge, dates back at least to 1973 when Ott and Eliassen55

(1973) found that moving a monitoring platform by 200-300 ft (≈ 60-90 m)56

could change measured CO concentrations by a factor of two. In recent years,57

the use of mobile platforms for urban pollution studies has become a very ac-58

tive area of research. Measurements exploited the use of cars, bus, tram, un-59

derground and even bicycles (Westerdahl et al., 2005; Padró-Martínez et al.,60

2012; van Poppel et al., 2013; Castellini et al., 2014; Hagemann et al., 2014;61

Pattinson at al. , 2014; Patton et al., 2014; Farrell et al., 2016; Riley et al.,62

2016; Gozzi et al., 2016; Yu et al., 2016; Li et al., 2018; Rizza et al., 2017;63

Mitchell et al., 2018). Many significant issues were pointed out in these re-64

search works and in particular the importance of the data representativeness65

(den Bossche et al., 2015) due to the high temporal variability of pollutant66

concentrations, especially those generated by vehicular traffic. Moreover,67

technical aspects related to the mobile sampling itself were also addressed68

(Castellini et al., 2014; Hagemann et al., 2014). In synthesis, the previous69

works on mobile measurements stressed the need for large datasets and re-70

peated measurements (van Poppel et al., 2013; Peters et al., 2014) and of71

suitable statistical approaches for data processing (Brantley et al., 2014).72

The present project tries to address some of these issues. In particular,73

the main novelties and strengths of our approach are (i) the duration of74

the final dataset, based on three years of nearly continuous measurements,75

(ii) the high temporal and spatial resolutions (tens of seconds equivalent to76

approx. 50 meters) and (iii) the robustness of the statistical approaches used77

to interpret the experimental data.78

The measurement campaign has been realised by deploying light and79

portable instrumentations on a cabin of the public transport systemMinimetro80

(MM), operated in the city of Perugia, Italy. MM is an elevated cable train,81

3 km-long that crosses a large portion of the urban area of Perugia. It,82

thus, provides a picture of the spatial and temporal variability of pollutant83

concentrations for this cross-section of the city. Furthermore, traffic counts84

were recorded every 5 minutes by sensors put below ground at two main road85

crossings located below the MM path. The dataset was complemented with86

measurements carried at two fully equipped air quality station, placed at the87

side of the MM path.88
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The present paper focuses on the spatiotemporal correlation parameters89

obtained for a relatively stable pollutant, the particulate matter (PM), char-90

acterised as a function of the particle size. In addition we present also the case91

of nitrogen monoxide, NO, a fast reacting species and discuss its spatiotem-92

poral structure in comparison with that of PM. Both pollutants have been93

characterised continuously, for the entire duration of the project. During94

the years, we conducted also various short intensive campaigns employing95

a suite of many portable instrumentations (Castellini et al., 2014; Moroni96

et al., 2014) which have been not included in the present paper.97

Two distinct statistical approaches were applied to the experimental re-98

sults. Namely, a Hierarchical Spatiotemporal Model (HST) was employed99

to obtain robust information on the spatial and temporal variability of PM.100

Furthermore, a Generalized Additive Mixed (GAM) model was used to inves-101

tigate the influence on PM of covariates such as vehicular traffic, rain, wind,102

relative humidity and the stability of the planetary boundary layer (PBL).103

2. Material and Methods104

2.1. Sampling location and Minimetro transport system105

Perugia is a medium-sized city, with a population of approximately 170000106

people distributed over an area of about 450 km2. Its historic center is located107

on the top of a hill at 450 m a.s.l. while the largest part of its territory is on108

the southerly flat area (≈ 270 m a.s.l.), at the confluence of two large valleys109

in Umbria, central Italy (figure SM1 of supplementary material). The railway110

station along with many highly congested roads connecting the center to the111

suburbs are located at the foot of the hill.112

The Minimetro (MM) is an autonomous transport system with unat-113

tended train operation opened in 2008. The system consists of 20–25 rubber-114

tired cabins pulled by a cable, a steel rope, driven by an electric engine at115

the upper end of the rail, where the cars are rotated to travel in the opposite116

direction. The rail reaches a maximum elevation gradient of ≈ 12%. There117

are seven stations along the path. When the cabins approach a station, they118

detach from the rope and travel independently over a system of vertical-axle119

rubber wheels. Each cabin can accommodate a maximum of 50 passengers120

and the system at full load can transport 3000 person per hour. The average121

number of passengers per year is ≈ 3.3 × 106. The cabins travel at a variable122

speeds between 15 and 25 km h−1, depending on the hour of the day. Since123

the path is three km, the average car frequency is about 2.5 minutes for the124
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14 hours of opening (from 7 am to 9 pm). Half of the pathway is elevated125

at approximately seven meters above the urban street level. The rest of the126

pathway includes a first short tunnel 222 m long, after one-third of the length127

of the path, and a second tunnel 770 m long containing the end terminal sta-128

tion. An overview of the MM path is reported in the Supplementary Material129

(figure SM1 and SM2).130

2.2. Instrumentation set up on the mobile platform131

Thanks to the peculiarity of its design (a relatively constant and low132

speed, low emissions and the sufficient distance from the road pavement) the133

Minimetro system is an excellent candidate to serve as a mobile platform for134

monitoring airborne pollutants without being affected by resuspension phe-135

nomena or close direct emission sources. During the 2012-2015 period within136

the framework of the PMetro project (Castellini et al., 2014) we equipped137

one of the cabins of MM with an Optical Particle Counter (OPC, Fai Instru-138

ments) and basic meteorological sensors (temperature and relative humidity).139

The OPC was specifically miniaturised for the present experiments starting140

from the bench version commercialised by FAI. In its development phase the141

OPC was intercompared with the GRIMM 1.107 and the TSI 3330 optical142

counters and demonstrated to have comparable performances in terms of143

sensitivity and response time Castellini et al. (2014). The OPC was set to144

record every six seconds the particles size distributions in the range 0.28−10145

µ m using 22 size bins. Eight of these channels were calibrated by latex146

spheres. The counter was equipped with a PM10 size-selective inlet, placed147

on the roof of the cabin, a dilution system, and control of relative humid-148

ity in order to avoid multiple counting during peak pollution hours. The149

typical dilution ratio used was 1:3. All the technical details are reported150

in Castellini et al. (2014). For a slightly shorter period we installed also a151

nitrogen monoxide, NO, detector (2B Technology). The NO detector mea-152

sured concentrations every ten seconds. The cabin motion was controlled153

with a wireless remote system able to provide in real-time the cabin position154

along the path. A numerical string identifying the position of the cabin was155

continuously registered in the data-logger of the OPC. Maintenance and cal-156

ibration of instruments have been carried out regularly, every few months of157

operation. During the years we also conducted various intensive campaigns158

employing a suite of other portable instrumentations (Castellini et al., 2014;159

Moroni et al., 2014).160
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2.3. Complementary measurements at fixed stations161

The mobile measurements were complemented by fixed monitoring sites162

placed along the MM path. The first site is the urban background moni-163

toring station of Perugia (AQ1, see figure SM2). AQ1 is located along the164

MM path, approximately 700 m from the starting terminal, ST1. This site165

is equipped with standard instrumentations for meteorological parameters166

and for gaseous (NOx, O3) and aerosol pollutants (PM10, PM2.5) and was167

integrated with an atmospheric stability monitor (FAI Instruments) (Perrino168

et al., 2011). This monitor determines the atmospheric concentration of the169

short-lived decay products of radon, on hourly sampled PM10 filters. The170

emanation rate can be assumed to be constant in the urban spatial scale171

therefore the signal gives information about the dilution properties of the172

lower boundary layer, the stability of the Planetary Boundary Layer (PBL)173

and its effects on pollutant concentration. A second air quality station (AQ2),174

a site exposed mainly to vehicular traffic, is located near the Perugia central175

railway station. Finally, a bench OPC (FAI Instruments), identical to the one176

installed on the cabin, was placed outside ST1, 3 meters above the ground,177

for the full duration of the campaign. In the first year of the campaign this178

fixed OPC was exploited to test possible particle loss at the inlet of the mo-179

bile OPC, due to the cabin motion. Results of the comparison (Castellini180

et al., 2014) indicated a nearly isokinetic regime at the mobile inlet, with a181

minimal effect of the cabin motion on the particle number measurement. The182

performances of the OPC’s have also been checked by comparison with the183

gravimetric PM10 and PM2.5 measurements at AQ1 (supplementary material,184

figure SM3) and against a third bench OPC in the laboratory.185

To establish the relationship between the local traffic and the measured186

concentrations, the total number of vehicles were recorded every 300 s by187

an automated set of sensors installed below the road surface, at two main188

crossroads sites (TRF1 and TRF2), closely located below the elevated MM189

path.190

2.4. Statistical calculations191

The PMetro project started shortly after the MM line became operational192

in September 2012 and ended in May 2015. Due to the high time resolution193

measurements, it collected a large amount of data. The mobile OPC data194

totaled ≈ 6.1 × 106 counts for each bin, distributed in 671 MS Excel XLS195

files (≈ 2.5 GiB). After a preliminary description of the whole dataset by196

standard statistical tools, discussed in Sec. 3.1, we extracted a single, typical197
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year for a more detailed statistical analysis. To this aim, we considered data198

from March 2014 to February 2015 for a total of 238 available days. The199

typical year has a minimum number of missing data and the best-balanced200

representation of all the four seasons during the time of the campaign. A201

discretisation both in time and space was adopted. Specifically, OPC data202

were spatially aggregated by dividing the Minimetro path into 44 spatial sec-203

tors of approximately 50 m lengths. As far as the temporal aggregation is204

concerned, data were aggregated by the hour for a total of 14 observations205

per day. We finally obtained a spatiotemporal grid, composed by 238 (days)206

× 14 (hours) × 44 (spatial sectors) = 146, 608 points. In each spatiotempo-207

ral point, data consisted of PM number concentration divided into 22 bins208

according to the particle size and NO concentration.209

For the spatial and temporal correlation analyses, we used the HST model210

proposed by Sahu et al. (Sahu et al., 2007), in particular its simplified211

version contained in the R package spTimer (Bakar and Sahu, 2015). This212

model, along with some variations, has been widely applied in the literature213

to investigate the spatiotemporal features of environmental data (Sahu et al.,214

2009; Berrocal et al., 2012; Crimp et al., 2015; Del Sarto et al., 2016a,b; Lu215

et al., 2018).216

As regards the analyses related to the covariate effects on the concen-217

tration of airborne particles, we employed a GAM model (Lin and Zhang,218

1999; Ruppert et al., 2003), available in the R package mgcv (Wood, 2017);219

model fitting was evaluated by using the Bayesian Information Criterion220

(BIC)(Schwarz, 1978). The BIC is suitable in situations where there is a221

large sample size with respect to the number of parameters, which is the222

case in our application.223

Given that repeated observations were available within each day, we used224

a random intercept for the day (Del Sarto et al., 2019). Since we have a225

clustered structure of the data given by repeated measurements on the same226

day, we introduce in the model specification cluster-specific (day-specific)227

random effects that allow us to model sources of unobserved heterogeneity228

in the data among days which are not captured by the available covariates.229

GAM models have been broadly applied to environmental studies, when230

the classical assumptions of linear regression models (i.e., observation in-231

dependence and linear covariate effects) did not hold (Clifford et al., 2011;232

Kloog et al., 2015; von Brömssen et al., 2018; Zhang et al., 2018; Virgilio233

et al., 2018). In this regard, in order to exploit all the available data sources234

(OPC, meteorological and traffic counts), data were spatially restricted to235
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those spatial sectors where the Minimetro elevated path intersected the two236

road crossings (TRF1 and TRF2) for which vehicular traffic counts were also237

available. Moreover, in order to retain more information on vehicular traffic,238

data were temporally aggregated by half-hour (rather than by hour). Finally,239

as regards the meteorological conditions, since they were collected every hour240

by the fixed monitoring stations, observations at the half-hour were obtained241

as the average between two consecutive hourly observations.242

3. Results and discussion243

3.1. Particulate matter phenomenology in the Perugia urban environment244

The mean meteorological and air quality parameters measured at AQ1245

and AQ2 stations for the entire measurement period (2012-2015) and for246

the typical-year analysis are reported in Table 1. AQ1 is placed near the247

MM station ST2 (see figure SM2), after the access road to the MM parking248

lot. AQ2 is located at the MM station ST4, in a more traffic congested249

sector of the city. The PM10 and PM2.5 concentrations measured at AQ1250

and AQ2, once averaged for the full period, were similar. On the other side,251

AQ2 recorded higher values for NO, NO2/NOx ratios and consistently lower252

values of O3, a typical behaviour of a vehicular traffic site. The parameters253

for the typical year were consistent with the 3 years averaged values. The254

traffic counts at two crossroads sites (TRF1 and TRF2) were recorded for255

the full period of measurements. The average number of vehicles per day256

at TRF1 and TRF2 was of the order of 22000 and 40000, respectively (see257

supplementary material, figures SM4, SM5).258

The mobile platform allowed to record a highly space-resolved (≈ 50259

m) cross-section of the pollutants’ concentrations, roughly every 25 min-260

utes. The average volume distribution of particulate matter recorded by the261

OPC installed in the mobile platform averaged for the entire 3-year period262

is plotted in figure 1 as a function of the geometric mean diameter DP . The263

figure shows the typical structure of an aerosol volume distribution with a264

broad minimum around 0.8 µm, separating fine and coarse fractions of the265

atmospheric aerosol. Moreover, a broad maximum located at around 4 µm,266

individuates the coarse fraction. Two finer features can be noticed in the267

volume distribution respectively at 0.54 and 2.75 µm. A test bench in the268

lab with a reference OPC suggested the first maxima at 0.54 µm is an artifact269

related to the instrument design of the optical particle counter. On the other270

side, the maximum at 2.75 µm was proven to be a peculiar fingerprint of the271
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MM transport system, related to the brake system of the MM cabins, to be272

discussed below.273

Some differences in the volume distribution emerged when seasonally av-274

eraged data are considered (open symbols in figure 1). Fine particles prevail275

in the wintertime while the coarse fraction in the summertime, especially for276

DP > 4 µm. When considering measurements taken with the fixed OPC,277

located at the beginning of the MM path (ST1), this seasonal trend was not278

present (see supplementary material, figure SM5), which is not surprising279

considering that ST1 is located in the main parking lot of the MM transport280

system. Therefore, the mobile measurements were able to pinpoint a sea-281

sonal effect on the aerosol volume distribution which was evident only when282

a large section of the city was monitored.283

The particle volume distribution was not homogeneous in the city, even284

when averaged for 3 years. The minimum concentration for each size bin285

were recorded inside the tunnels for all the classes. To better visualise how286

the concentrations change along the MM path, the 22 size bins were summed287

into two fractions: fine particles, with DP < 1.1 µm, and coarse particles,288

with DP ≥ 1.1 µm. The timeline of fine and coarse particle concentra-289

tions for the three years campaign is shown in figure 2. Concentrations are290

plotted as weakly averages. The trend of fine particles shows the typical291

high-winter and low-summer alternation. By contrast, the coarse particles292

are more uniform during the years, apart for weeks of a much higher con-293

centration, above the 90th percentile of the dataset, indicated with a dashed294

line in figure. For almost all the cases, the sharp increases of coarse particles295

coincided with periods of intense Saharian dust intrusions, as registered at296

the regional background site of Monte Martano (Moroni et al., 2015; Federici297

et al., 2018) and confirmed by back-trajectories calculations of air masses298

provenance (Petroselli et al., 2018). Interestingly during the dusty days, the299

mobile measurements showed a patchy distribution of PM all along the tran-300

sect, with peaks coinciding with intersection with the heavy traffic roads.301

This fact suggests the resuspension of Saharan dust from roads by vehic-302

ular traffic as affecting urban air quality for days during/after the events.303

Some examples of dusty and non-dusty days are reported in supplementary304

material (figure SM7).305

The fine and coarse particles and the NO concentrations are reported306

in figure 3 as a function of the linear distance from the starting terminal307

station. and the associated standard deviations are very small Neither the308

two PM fraction nor NO concentrations are constant as a function of the309
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distance and both show a distinctive structure in the urban environment.310

The data are averaged over the entire measurement period and the relative311

standard errors associated with the mean values are smaller than 1 %. The312

fine particles concentration exhibits a broad oscillating behaviour with max-313

ima corresponding to crosses of the MM path with the main roads of the314

city and an overall decrease trend in the last part of the MM path, probably315

connected to the variation of the elevation and the presence of the terminal316

tunnel. NO shows a minimum concentration in the urban park and a broad317

maximum in the main traffic area, followed by a decreasing trend in the last318

part of the MM path, similar to that of fine PM. By contrast, the coarse319

fraction presents distinct maxima in correspondence with to the Minimetro320

stations, even inside the tunnel. Tunnels are used only by the MM cabins321

and appear very effective in reducing fine particle and NO concentrations,322

particularly the last and longer one. Analogous plots for the separate bins323

(supplementary material, figure SM8) indicate that the structure of the fine324

fraction is common to the first six size bins. Then, gradually, the oscillations325

smooth down and starting from DP ≥ 1.6 µm the maxima of coarse particles326

at the stations prevail. The results can be rationalised as the predominance327

of different sources within each size bin. In particular, the cabins of MM328

when arriving at the stations are a source of coarse particles. Here, the fric-329

tion of the horizontal rubber-tired wheels used to stop and accelerate the330

cabins has been proven to produce a considerable amount of metal-bearing331

and halogen-bearing particulate matter. We made such identification by in-332

dividual particle characterisation carried out using the Scanning Electron333

Microscope (SEM) Energy Dispersive X-ray Spectroscopy, which revealed334

fine metal particles stuck on larger rubber particle (Moroni et al., 2014).335

This source is necessarily composed of fresh particles mixed by resuspended336

ones, particularly inside the longer tunnel where they tend to accumulate.337

Therefore, SEM results allowed to identify the particles responsible for the338

maximum observed in the size distribution at 2.75 µm (see above and fig-339

ure 1) which are also responsible for the maxima of coarse particle numbers340

observed at the stations (figure 3). Exposure to airborne particulate mat-341

ter in subway systems is of great concern (see (Martins et al., 2016) and342

references therein) and depends on ventilation conditions, length of tunnels,343

wheels and rail-track materials and breaking mechanisms among other factors344

(Moreno et al., 2015; Martins et al., 2015). The nature of pollutants inside345

a tunnel can be very variable and undoubtedly different from the outdoor.346

As discussed above, this is the case of the present MM transport systems,347
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which besides being, in general, a clean transport system, generates a specific348

aerosol produced by the braking system and erosion of the tires.349

3.2. Spatiotemporal correlations of particulate matter350

In order to draw a quantitative description of the spatial and temporal351

correlations of pollutants and to evaluate the relative significance of the pa-352

rameters influencing their concentrations, we applied two different statistical353

approaches.354

The first step of the statistical analysis considered an HST model, in355

which each one of the 22 bins was considered as a separate response variable.356

As a consequence, 22 different spatiotemporal models were estimated. Fur-357

thermore, no covariates were considered at this phase of the analysis. This358

approach allowed us to determine both the temporal and spatial correlation359

as a function of the size bin. The results are shown in figure 4.360

In particular, the temporal autocorrelation parameter (denoted by ρ)361

represents the correlation of an observation collected at a particular hour of a362

specific day to that at the previous hour of the same day, and is plotted in the363

upper panel of figure 4. Fine particles exhibit a strong temporal correlation364

with those at the previous hour (ρ values close to 1). The correlation is365

quickly lost as the particle dimension increases. The results are in good366

agreement with those discussed in the previous section (see figure 3) and in367

particular with the accumulation of coarse particles in a distance range of ±368

50 m at the stations.369

The spatial correlation parameter, on the other hand, provides infor-370

mation on the (maximum) spatial distance at which measures of particles371

remain correlated. The lower panel of figure 4 illustrates the spatial correla-372

tion distance, expressed in meters, as a function of the particle diameter, DP .373

Strikingly, the smallest particles showed a spatial correlation that persists up374

to ≈ 600 m. The correlation drops down swiftly for larger diameters reaching375

a constant value of 60 m above ≈ 1.1 µm. This spatial correlation length376

is very similar to the amplitude of local maxima presented by the coarse377

fraction represented in figure 3. These results can be interpreted in terms of378

a size-dependent deposition dynamics that confers to the coarse particle a379

sharper spatial distribution near the sources. Even if approximated estimates380

of spatial extent of impact of urban pollutants are available in the literature381

(Zhou et al., 2007; Pasquier and André, 2017) this is the first time that size382

resolved information are obtained for PM.383
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A further element in this interpretation is represented by the correspond-384

ing temporal and spatial correlation for nitrogen monoxide. ρNO resulted385

to be 0.263, comparable to the particles of DP = 5.0 µm, and its corre-386

lating distance 155 m. The two parameters suggest a short lifetime of the387

gaseous species combined to certain mobility, which has to be related to the388

NO reactivity. The NO concentration has been correlated to that of the size389

selected PM considering the data averaged along the MM path. Correlation390

coefficients, plotted in the lower panel of figure 5, are higher for the smallest391

particle sizes with values that drop below zero for the coarser particles. For392

the smaller size fraction (DP = 0.34 µm), the correlation coefficient was rela-393

tively constant along the MM path, as shown in the upper panel of the same394

figure. These results are consistent with those reported by Padró-Martínez395

et al. (2012) obtained with a mobile platform equipped with fast-response396

instruments for monitoring gas- and particle-phase pollutants. These authors397

found a better correlation of NO with ultrafine particles than with PM2.5 and398

even less with PM10.399

3.3. Effect of environmental and meteorological covariates400

To quantify the role played by the different meteorological and environ-401

mental variables and according to our previous results (Ranalli et al., 2016),402

we grouped the 22 bins into four different size fractions (0.28 ≤ DP < 0.60403

µm, 0.60 ≤ DP < 1.10 µm, 1.10 ≤ DP < 3.00 µm, DP > 3.00 µm). Parti-404

cles with diameters larger than 5.5 µm were not considered for this analysis405

because their distribution was heavily zero-inflated and the assumption of406

normality for the response variable would be violated even after transforma-407

tion.408

We added several covariates to the above spatiotemporal models, such as:409

• temperature and relative humidity (both measured along the path),410

radon concentration and atmospheric pressure (measured by a fixed411

monitoring station), precipitation and wind speed.412

• characteristics of the spatial bin (presence of tunnels, urban parks, car413

parking, Minimetro stations)414

• day of the week, hour of the day, major public events, days of Saharan415

dust intrusions.416

The complete results of the model, including the estimated coefficients, are417

reported in supplementary material Table SM1.418
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An interesting effect obtained with this analysis is the dependence of419

pollutants concentration on the day of the week. Results, obtained for the420

smallest size fraction (0.28 − 0.60 µm), for the coarse particles (DP ≥ 1.1421

µm), and NO are reported in Table 2. As we can see, the model estimates422

are all significantly different from 0 and suggest an accumulation of fine423

particles and NO during the week, with a maximum on Friday and with a424

decline during the weekends. The weekends decline was observed for NO425

and particle concentration also by other experiments with a mobile platform426

Padró-Martínez et al. (2012). This result confirms the accumulation effect427

during the weekdays and also indicates the underlying action of traffic as428

one of the driving factors of the observed phenomenon. Indeed, the city429

of Perugia, is characterized by a rather periodic behavior of the vehicular430

traffic (see supplementary material, figures SM4 and SM5), distinguished by431

relatively constant values from Monday to Friday, a decrease of about 10 %432

on Saturdays and a more substantial reduction of ∼ 30 % on Sundays.433

In Table 2 we reported the effects related to the presence of tunnels, ur-434

ban park and stations, as well as those related to temperature and relative435

humidity. The tunnel has a negative effect on NO and fine particles concen-436

trations, acting as a shield from these outdoor pollutants. The overall effect437

of the tunnel on coarse particles is negligible, due to a compensation between438

the shield effect and the indoor coarse particle source, discusse above. The439

urban park has a depressing effect on NO concentration (see also Figure 3440

and Table 1).441

The statistical spatio-temporal model allowed us to understand many442

interesting urban pollution dynamics. For example, the case of the two major443

public events in Perugia, the Eurochocolate and Umbria Jazz international444

festivals, both lasting two full weeks with thousands of foreigner visitors in445

the city, was explicitly considered in the model. As a result (see Table SM1 of446

Supplementary Material for details) the particle number concentration was447

lower than other periods of the year; this pattern was the same for all the448

four-dimensional classes and probably related to the strict management of449

vehicular traffic. Indeed, during the events the access to the city center was450

forbidden for private cars. Most of the vehicles were confined in parking lots451

at the borders of the city and visitors transported in the city center by public452

transport means.453

As expected, we observed higher particle number concentrations in all the454

four classes during the Saharan dust advections. This effect is particularly455

high for larger particles since coarser particles mainly compose Saharan dust.456
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Indeed, the contribution of long-range transported aerosol on the particulate457

matter can vary substantially due to the source area but also to the synoptic458

and mesoscale meteorology, and the local wind conditions. Estimating long-459

range contribution to the particulate is essential to plan effective measures460

aiming to reduce population exposure to such pollutants.461

In the second step of the analysis, we examined the effect of various462

factors on the concentration of airborne particles and to identify their con-463

tribution. Vehicular traffic data were restricted to those sectors where the464

traffic information was available. Several GAM models were fitted to the465

dataset, each time using a different size bin as response variable (for a total466

of 16 models) and taking into account the following covariates: temperature467

(spline), wind speed, relative humidity, atmospheric pressure, total solar ra-468

diation (log-transformed), radon concentration (log), rainfall and vehicular469

traffic (log).470

Determining the effect of vehicular traffic on the particle concentration471

required an intensive model selection step. In essence, given the 300 s tempo-472

ral resolution of the traffic dataset, it was first of all necessary to find out the473

covariate that best represented the vehicular traffic, taking into account also474

the cumulative sum of vehicles (log-transformed) passed earlier to the current475

time point. In particular, for each diameter bin (i.e., for each response vari-476

able), several models were estimated, each one with a different traffic-related477

covariate (other things being unchanged). This variable was obtained by cu-478

mulating the vehicles passed H hours before the current time point, where479

H ranged from 0.5 (previous half-hour) to 24 (previous day). The model480

fitting was evaluated using the BIC, and the model with the lowest BIC was481

retained. As a consequence, this procedure allowed for the selection of the482

best traffic-related covariate for each fraction. Results are reported in figure483

6, showing, for each size bin, the regression coefficient estimates along with484

the 95% confidence intervals. Each confidence bar was color-coded according485

to the best traffic-related covariate expressed in terms of the number of pre-486

vious hours for cumulating the vehicles. It turned out there was not a unique487

value for H along with the bins, but it varied from 2 to 5 hours. At the same488

time, the effect of traffic on the particle number plotted on the y-axis, varied489

from 0.15 to slightly above 0.25. The latter parameter represents the percent490

variation of the particle numbers for a corresponding increase of 1% in the491

number of vehicles.492

Specifically, particles with a size smaller than 0.7 µm showed a similar493

effect of traffic on the number concentration with a coefficient estimates of494
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around 0.26. This means that a decrease of 10% of the number of vehicles495

would lead to a reduction of around 2.6% of fine particle number. The best496

traffic-related covariate resulted in being the cumulative sum of vehicles in497

the previous 4 hours, except for the smallest size class (first bin) having 5498

hours. The four or five cumulation hours needed to better trace the vehicular499

effect on smaller particles seemed to indicate the mobility of the particles as500

the critical factor explaining the large oscillation of fine fraction along the501

path, rather than the heterogeneity of the sources distribution within the502

city area.503

On the other side there was a clear reduction of both the traffic effect on504

the particle number and the value of H, as DP increase. The transition from505

high to low correlation occurred in the size range were the observed aerosol506

size distribution showed the transition between fine and coarse particles.507

The trend levelled for DP > 1.6 µm. Particles larger than 1.6 µm exhibited508

a constant response to traffic with a coefficient estimates of around 0.16.509

This means that a decrease of 10% of the number of vehicles would lead to a510

reduction of around 1.6% of coarse particle number. The constant correlation511

of heavier particles might also reflect the traffic resuspension activity.512

The role of some meteorological covariates on PM concentration is shown513

in figure 7. In particular, the effect 1% variation of radon concentration is514

considered together with the effect of a variation of one unit of RH, wind515

speed, and rain. The radon concentration is a proxy of the atmospheric516

stability and has a maximum effect on the smaller particles. Specifically, a517

10% increase in the radon concentration was associated with a 6% increase518

in the fine particle concentration. The effect rapidly decreased and leveled519

off for particles with diameters larger than 1.1 µm. Atmospheric stability520

is still affecting the concentration of the coarse particles but only to half of521

the fine particles. Rain, as expected, has a depletion effect both on fine and522

coarse particles, while RH stimulates an apparent increase of the number of523

fine particles, due probably to the growth of smaller ultrafine aerosols, even524

if this effect was relatively small. Finally, an increase in wind speed resulted525

in a decrease of fine particles, while its effect is not statistically significant526

for particles with a diameter larger than 1.1 µm.527

4. Conclusions528

Spatiotemporal correlations of urban particulate matter have been inves-529

tigated with a mobile observation platform, operated continuously for three530
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years in the city of Perugia. High-resolution measurements (10 sec. corre-531

sponding to 50 m) produced a huge dataset interpreted with a hierarchical532

spatiotemporal and generalized additive mixed models. We found that fine533

aerosol particles exhibit a robust temporal correlation with those at the pre-534

vious hour, are generated by 4 hours cumulated vehicular traffic, are spatially535

correlated for ≈ 600 m and tended to accumulate steadily during the week536

with a maximum on Fridays. The size dependence of the spatiotemporal537

correlation has been characterised in the in the 0.28-10 µm range. Nitrogen538

monoxide, NO, showed a spatial and temporal resolution that matched that539

of larger aerosol particles. A reduction of 50 % of the vehicles produces a540

reduction, -13 % of the fine particles and -7.5 % of the coarse particle num-541

ber.The role of meteorological covariates was assessed by a GAM model and542

atmospheric stability was responsible for the most significant effect on fine543

particle concentration. An increased use of public transportation in the con-544

text of the major popular events in the city effectively lowered particulate545

matter concentration. Saharan dust advections produced an evident effect546

on particle size distribution due to resuspension of coarse particles in all the547

urban transect; the effect was attributed to traffic and lasted one week for548

the significant intrusion events. The results of present work could provide549

relevant information for urban pollution control.550
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Table 1: Main air quality parameters registerd at AQ1 and AQ2 stations for the full period
(2012-2015) and for the typical year (March 2013-February 2015). Standard deviations in
parenthesys.

AQ1 AQ2
2012-2015 typical year 2012-2015 typical year

T (◦C) 14.0 (7.6) 13.8 (7.7)
wind speed (m/s) 0.80 (0.6) 0.70 (0.6) 0.9 (0.6) 0.9 (0.6)
RH (%) 75.2 (12) 76.3 (13)
PM10 (µg m−3) 23.3 (11) 21.6 (10) 21.0 (12) 20.2 (12)
PM2.5 (µg m−3) 15.9 (8) 14.5 (8) 14.3 (9) 13.7 (9)
NO (ppbv) 14.6 (20) 15.4 (20) 18.2 (22) 18.1 (23)
NO2/NOx 0.48 0.45 0.53 0.54
O3 (ppbv) 22.5 (11) 19.9 (10) 18.5 (11) 18.3 (11)
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Table 2: Parameter posterior means and 95% credible intervals (95% CI) for nitric monox-
ide (NO), Fine and Coarse particle concentrations. Reference day is Sunday.

NO Fine Coarse
parameter mean (95% CI) mean (95% CI) mean (95% CI)
Intercept 1.421 (1.350;1.490) 1.551 (1.495;1.610) 0.682 (0.641;0.722)
Mon 0.170 (0.142;0.198) -0.006 (-0.021;0.010) -0.042 (-0.055;-0.029)
Tue 0.192 (0.166;0.220) -0.073 (-0.089;-0.057) -0.030 (-0.043;-0.017)
Wed 0.136 (0.110;0.163) -0.092 (-0.107;-0.076) -0.070 (-0.083;-0.057)
Thu 0.112 (0.084;0.139) -0.038 (-0.054;-0.022) -0.094 (-0.108;-0.080)
Fri 0.294 (0.267;0.322) 0.066 (0.050;0.082) 0.034 (0.021;0.047)
Sat 0.059 (0.033;0.087) -0.032 (-0.048;-0.017) -0.060 (-0.073;-0.047)
Tunnel -0.083 (-0.103;-0.064) -0.006 (-0.012;0.001) -0.001 (-0.010;0.008)
Urban Park -0.043 (-0.067;-0.019) -0.004 (-0.012;0.004) -0.002 (-0.014;0.009)
Station -0.027 (-0.042;-0.013) 0.007 (0.004;0.010) 0.013 (0.006;0.019)
Temp (degC) -0.030 (-0.032;-0.028) -0.010 (-0.011;-0.009) 0.005 (0.004;0.006)
RH (%,×10) -0.0047 (-0.0079;-0.0015) 0.0048 (0.003;0.006) -0.0014 (-0.0029;0.0002)
ρ 0.260 (0.252;0.268) 0.872 (0.868;0.877) 0.886 (0.881;0.890)
distance (m) 143 –;– 475 –;– 165 –;–

765
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Figure 1: Mean PM volume distribution recorded in Perugia (2012-2015). The distribution
is averaged over the entire MM path. Seasonal distribution are also reported for winter
(open squares) and summer (open triangles). Relative standard errors are of the order of
1%.
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Figure 2: Weekly PM number concentration trends (2012-2015). Particles are grouped
into fine (upper panel, blue curve, 0.28 ≤ DP < 1.1 µm) and coarse (lower panel, red
curve 1.1 ≤ DP < 10. µm) fractions. Asterisks indicate weeks of intense Saharan dust
intrusion (see text). The dashed line corresponds to the dataset 90th percentile.

27



      road traffic area

ST2 ST3 ST4 ST5 ST6

TRF1 TRF2AQ1 AQ2

urban  
park

tunnel

NO

coarse

fine

Figure 3: PM number and NO concentration trends along the MM path, as a function
of the linear distance from the ST1 station. Particles are grouped into fine and coarse
fractions (see Fig. 2). The indicative position of different area of the city are shown in the
lower panel. The location of stations is individuated by the vertical dashed lines (terminal
stations ST1 and ST7 are not shown). The location of the traffic monitoring stations
TRF1 and TRF2 and air quality stations AQ1 and AQ2 is also shown. Relative standard
errors are of the order of 1%.
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Figure 4: Temporal autocorrelation parameter ρ (upper panel) and spatial correlation
distance (lower panel), as a function of the particle diameter DP . Triangles are results
obtained for days of Saharan dust intrusion. Squares are results for the terminal tunnel.
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Figure 5: Upper panel: variation along the MM path of the linear correlation coefficient
between NO and PM concentrations, for the smallest PM size bin (DP=0.34 µm). Lower
panel: linear correlation coefficient between NO and PM concentrations as a function of
the particle size DP , averaged along the entire MM path. 95 % confidence intervals are
also reported in gray.
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Figure 6: Estimated regression coefficient with 95% confidence for traffic-related covariate
on PM number concentration, as a function of the particle diameter, DP . Colors and
symbols were used to identify the best traffic covariate for each bin (in terms of number
of previous hours H).
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Figure 7: Estimated regression coefficient with 95% confidence for meteorological covari-
ates on PM number concentration, as a function of the particle diameter, DP .
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