
1 

 

Estimation under Mode Effects and Proxy Surveys, 

Accounting for Non-ignorable Nonresponse  

Danny Pfeffermann1,2,3 and Arie Preminger1 

ABSTACT 

We propose a new, model-based methodology to address two major 

problems in survey sampling: The first problem is known as mode effects, 

under which responses of sampled units possibly depend on the mode of 

response, whether by internet, telephone, personal interview, etc. The second 

problem is of proxy surveys, whereby sampled units respond not only about 

themselves but also for other sampled. For example, in many familiar 

household surveys, one member of the household provides information for all 

other members, possibly with measurement effects. Ignoring the existence of 

mode effects and/or possible measurement effects in proxy surveys could 

result in possible bias in point estimators and subsequent inference. Our 

approach accounts also for nonignorable nonresponse. We illustrate the 

proposed methodology by use of simulation experiments and real sample 

data, with known true population values. 
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0. PREFACE 

I felt very happy and privileged when invited to submit a paper for the special 

issue of Sankhya A, celebrating the 100th birth anniversary of Prof. C. R. Rao. 

Professor Rao contributed, indirectly, a great deal to my research. In 1993 I 

published an article in the International Statistical Review entitled, "The Role 

of Sampling Weights when Modeling Survey Data", (Pfeffermann, 1993). 

While working on this article, I came across a short discussion made by the 

late Professor Steve Fienberg in 1989, stating that "the one exception in 

which the use of weights may be appropriate is outcome-based sampling, 

where the sampling plan may be informative for the model of interest." 

Professor Fienberg referred to an earlier article by Patil and Rao (1978), 

which shows how the sampling weights (inverse of the sample inclusion 

probabilities) feature in the distribution of the sample data in such cases, and 

how the sample distribution differs from the corresponding population 

distribution. One of the examples in that article was probability proportional to 

size (PPS) sampling. This whole area was new to me at the time, but I got 

really attracted to it, and since then I published many articles with colleagues 

on the relationship between the population distribution, the sample distribution 

and the non-sample distribution, and how the latter two distributions can be 

used for inference about the population distribution and for imputation of 

missing data. See Pfeffermann (2017) for a unified theory with applications to 

informative sampling and nonignorable nonresponse, small area estimation, 

observational studies, web panels and more. The present article is another 

extension of this general theory. 

Professor Rao contributed more directly to my work in 2016, when inviting me 

to co-edit with him the 29th Handbook of Statistics on Survey Samples. This 

turned out to be a fascinating experience and ended up with a two-volume 

handbook, containing 41 chapters spread over 1300 pages.   

I am very grateful to Professor Rao for his indirect and direct contributions to 

my career, and I wish him many more years of happy and productive life, with 

good health.  
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1. INTRODUCTION 

In modern sample surveys, sampled units often have the choice of how to 

respond, whether by telephone, personal interview, mail, fax, or via the 

Internet. Such surveys are nowadays very popular in many countries, called 

mixed-mode surveys. See, e.g., de Leeuw (2018) for a recent comprehensive 

review. Sometimes, the different modes of response are offered sequentially. 

For example, when starting the survey, all the sampled units are encouraged 

to respond via the internet. Those who do not respond within a certain time 

period are approached by telephone and finally, those who couldn't be 

contacted or refused to respond via the telephone, are approached for a 

personal interview.  

The term mode-effect encompasses two confounded effects: selection effect - 

the effect of differences between characteristics of respondents preferring to 

respond with different modes and consequently, possible differences in the 

values of reported study variables of interest, and measurement effect - the 

effect of potentially responding differently by the same person, depending on 

the mode of response. The motivation behind the use of mixed mode surveys 

is to possibly increase the response rates and reduce measurement effects, 

by letting each person to reply by his preferred mode. Clearly, some modes 

are cheaper and simpler than other, notably, the use of the internet. The 

literature contains many examples illustrating that different modes of data 

collection can affect the responses. See also Table 4 in Section 7.1 of the 

present paper. 

If all sampled units respond correctly by their preferred mode, no bias occurs 

and the use of a mixed-mode survey benefits from the advantages listed 

above. However, in practice, no responses are obtained from some of the 

sampled units, with the rates of nonresponse steadily increasing in recent 

years all over the world. In this case, the use of mixed-mode surveys may 

introduce large bias in sample estimators, if not accounted for properly. The 

situation is even worse in the case of measurement effects. It is often 

recommended to reduce the measurement effects by a careful questionnaire 

design across the modes, see, e.g., Dillman and Christian (2003) and de 

Leeuw et al.(2018), but in the present article we assume a given sample with 
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given responses. Notably, the two effects are confounded, and several 

studies in the literature attempt to disentangle them, see, e.g., de Leeuw 

(2005), Hox et al. (2017) and Vannieuwenhuyze et al. (2010, 2014).  

In order to reduce the total mode effect, it is common to first determine 

whether the survey estimates produced from the different modes are indeed 

different and if they are, to infer which mode is the best in the sense of 

producing the smallest bias for the variable of interest. The selected mode is 

then used as a benchmark for correcting the other modes. Vannieuwenhuyze, 

et al. (2014) assume the existence of a mode under which no bias occurs and 

develop bias corrected estimators by applying the observational study theory 

of Rosenbaum and Rubin (1983, 1984). In another approach, mode effects 

are conceptualized as a missing-data problem. Here again, one of the models 

is assumed to yield correct measurements and is used to impute values for 

the other modes. For example, Park et al. (2016) consider the case of two 

modes, use one of them as a benchmark and assume a linear relationship 

between the observations obtained under the two modes.   

The mode comparisons are often based on heuristic arguments. For example, 

for questions on sensitive topics such as drug use and alcohol consumption, it 

is sometimes assumed that the mode which provides the highest prevalence 

of the illicit behavior produces the smallest bias, since the tendency of 

respondents would be to underreport such behavior, (Tourangeau and Yan, 

2007). An obvious shortcoming of this approach is the underlying assumption 

that there consists a tendency to underreport sensitive questions. (Turner et 

al. 1998).  

An alternative approach to assess mode effects is to compare the estimates 

obtained from the different modes with known external data, which is 

assumed to be more accurate. For example, in an income study in Denmark, 

Kormendi (1988) estimated the bias obtained from the use of telephone and 

face to face modes by using income data of tax authorities. Biemer (1988, 

2001) discusses several limitations of this approach, such as unavailability of 

appropriate external data for all variables of interest, or differences in 

definition between the survey measurements and the measurements in the 

external records.  
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Proxy surveys by which one member of the household (HH) responds for all 

the other members of the HH are in common use in HH surveys all over the 

world. The main motivation in this case is to increase the overall sample size, 

since information is obtained in principle for all the HH members. (Moore, 

1988). It also helps in theory to increase the response since if the designated 

sampled person of the HH cannot be reached or he refuses to respond, 

another member of the HH is contacted instead. On the other hand, 

information provided by one member of the HH about another member may 

be subject to large measurement error (supplying wrong information), and 

many missing items, ("I don't know"). There seems to be a common 

perception that proxy-response is less accurate than self-response, (Groves 

et al. 2004). Kalsbeek et al. (2007) mention a possible cognitive basis for the 

better quality of self-response over proxy response. There are, however 

examples where proxy responses turned out to be more accurate, see e.g., 

O’Muircheartaigh (1991) and also Table 8 in Section 8 of the present paper. 

Finally, we note that there exists an ethical problem with the use of proxy 

surveys, especially in non-mandatory surveys with no obligation to respond. 

Have the other members of the HH authorized the responding person to 

provide all the (possibly sensitive) information about them?  

In this article we propose to deal with proxy surveys by considering them as a 

special case of mode effect with the two main modes defined as “direct 

response” and “indirect response”, where direct response defines that the 

person provides information about himself and indirect response defines that 

the response is obtained by another member of the HH. Within each of the 

two main modes other modes can be defined, like the mode of response,   

known characteristics of the responding unit, and nonresponse, when no 

information is obtained from any member of the HH. See Section 8 for an 

example.  

In the following sections we propose and illustrate a new model-based 

methodology for dealing with mode effects, which does not require a-priori 

knowledge of a mode providing unbiased estimators. We consider the case of 

not missing at random (NMAR) nonresponse, by allowing the mode selection 

probabilities and the probability of nonresponse to depend on the true variable 
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of interest (unobserved under measurement effects) and other explanatory 

variables. These two parts of our model, the model for the true values and the 

model for the mode selection account for selection effects, with NMAR 

nonresponse. Nonresponse is considered as another mode. As stated before, 

ignoring the NMAR nonresponse already induces bias to the sample 

estimates even in the absence of measurement effects, i.e., when the 

responses are correct. In order to account for measurement effects, we 

further extend our model by modelling the observed responses as a function 

of the true target variable, the mode selected and known covariates. Note 

again that with the existence of measurement effects, the true values of the 

target variable are unknown. To the best of our knowledge, our approach has 

not been proposed in the literature. Furthermore, when the covariates are 

known for all the population values from a census or another register, our 

approach is applicable also for nonprobability samples. 

To fit our three-part model we follow the frequency-based approach with the 

likelihood maximized by application of an EM algorithm. We discuss 

converges properties of the algorithm and develop the asymptotic properties 

of the resulting maximum likelihood estimators. Having estimated all the 

unknown model parameters, we use the estimated model for predicting the 

population target quantities. We illustrate our approach by use of simulated 

data and two real samples, for which the true population values of interest are 

actually known.   

In Section 2, we introduce some notation and define our 3- part model. In 

Section 3 we describe the estimation of the unknown model parameters and 

discuss their properties, which are proved in the Appendix at the end of the 

article. Section 4 considers the estimation of the population parameters of 

interest, distinguishing between the case where the covariates are known for 

all the population values of interest and the case where they are known for 

only the sampled units. Model evaluation is considered in Section 5. In 

Section 6 we illustrate our approach by simulation experiments, followed by 

two applications with real data in Sections 7 and 8, with Section 7 focusing on 

mode-effects and Section 8 on a proxy survey. We conclude with a short 

summary in Section 9. 
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2. MODELS FOR SELECTION AND MEASUREMENT EFFECTS 

Consider a finite population U  of size N  and denote by ( , ,X ,Z )i i i iY M  the 

true outcome variable Y , the response mode M , the auxiliary variables 

(covariates) X  explaining the variability of Y  and the covariates Z  

explaining the variability of M , corresponding to unit i  belonging to a sample 

S  of size n , selected from U . In this article we consider the case where Y  is 

binary, taking the values 0 and 1. Suppose first that no measurement effects 

exist such that every respondent reports his true outcome. Denote by M  the 

number of available modes, with the last mode defining the subsample of non-

respondents for which only the covariates are known. For convenience, we 

assume noninformative sampling as defined in Pfeffermann and Sverchkov 

(1999), such that Pr( | X , ) Pr( | )i i i iY i S Y X  , but the nonresponse is allowed 

to be NMAR in the sense that Pr(R 1| ,X , ) Pr(R 1| X , )i i i i iY i S i S     , 

where R 1i   if sampled unit i  responds and 0iR   otherwise. We further 

assume that the mode selection depends not only on the covariates Z , but 

also on the true outcome Y , in the sense that Pr( | ,Z ) Pr( | Z )i i i i iM Y M . 

Defining X Zi i iW   ,   

                                 
Pr( | ,Z )

Pr( | , ) Pr( | X )
Pr( | )

i i i
i i i i i

i i

M Y
Y W M Y

M W
 ,                   (2.1) 

where 
1

0
Pr( | ) Pr( | ,Z )Pr( | X )i i i i i i ij

M W M Y j Y


  . Pr( | X )i iY  is our target 

population distribution of Y  before sampling. It follows from (2.1) that unless 

iM  is independent of the outcome in the sense that 

Pr( | ,Z ) Pr( | Z )i i i i iM Y M , a mode selection effect is present and with the 

existence of NMAR nonresponse, the mode effects cannot be ignored in the 

inference process.  

In our empirical study we assume a logistic model for Pr( | )i iY X , and a 

multivariate logistic model for Pr( | ,Z )i i iM Y , with 4 possible values for iM , 

including nonresponse. 

So far, we assumed no measurement effects. Denote by iy  the value 

measured for responding unit i , which in the case of measurement effects 
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may differ from the true outcome iY . We account for possible measurement 

effects by extending the model (2.1) as,  

      
1

0

Pr( | ,Z )
Pr( | , ) Pr( | , , ) Pr( | X )

Pr( | )

i i i
i i i i i i i i ij

i i

M Y
y W M y Y j W M Y

M W
  .   (2.2a) 

Denoting, ( )i i iD I y Y   where ( )I   is the indicator function, and defining 

00 1 , Equation (2.2a) can be written alternatively as,  

1 1

0
Pr( | , ) Pr( (1 ) | , , )Pr( | , )k k

i i i i i i i i i ij
y k W M D j j Y j W M Y j W M


      . 

(2.2b) 

Application of (2.2b) requires modelling additionally Pr( 1| , , )i i i iD Y j W M   

and in our empirical study we again assume a logistic model. Notice that 

unlike in (2.1), we now only observe the pair ( , )i iy M  and for the non-

respondents, only the mode. The target distribution remains Pr( | X )i iY . 

3. MODEL ESTIMATION 

3.1 The case of no measurement effects 

As before, consider first the case of no measurement effects. Adding 

parameter notation, Equation (2.1) takes the form, 

            0
0 0 0

0 0

Pr( | ,Z ; )
Pr( | , ; , ) Pr( | X ; )

Pr( | ; , )

i i i
i i i i i

i i

M Y
Y W M Y

M W


  

 
 ,                  (3.1) 

where 0   and 0   are the true parameter vectors. In what follows we 

assume that the vectors ( , , )i i iY W M  are independent, identically distributed 

(iid) random variables. Denoting 
0 0 0( ', ') ' k      , a compact 

parameter set, the (full) log likelihood can be written as, 

             
1 1

1 1
( ) ( ) ( ) Pr( , | ; )

n n

n i i i i ii i
L n n I M M log Y M W   

 
    

                                                                 ( ) Pr( | ; )i i iI M M log M W       

 11

1
( ) [ ( ) ( ) ] ( ) [ ( ) ( )]i i

n Y Y

i i i i i ii
n I M M log f g I M M log f g   


     , (3.2)                  

where ( ) Pr( 1, | ; )i i i if Y M W    and ( ) Pr( 0, | ; )i i i ig Y M W   .  
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There exist many optimization algorithms for maximizing the likelihood defined 

by (3.2). In our empirical study we applied the Newton-Raphson algorithm, 

which we describe briefly for later use. Denote, 
1

1
( ) ( )

n

n i ii
S n  


  , 

where i  is the gradient with respect to   and let 
1 (2)

1
( ) ( )

n

n i ii
D n  


  , 

represent the corresponding k k  Hessian matrix. Starting with some initial 

value 
0 , the Newton-Raphson recursive algorithm is, 

  
1 1 1( ), 1,2...j j j

n nD S j                                  (3.3) 

The iterations continue until 1|| ||j j      for some small positive value  , 

where || ||  is the Euclidean norm. Denote, 1( ) Pr( | ; )H Y X  , 

2 ( ) Pr( | , ; ), ( ) Pr( 1, | ; ), ( ) Pr( 0, | ; )M MH M Y Z f Y M W g Y M W           

and 
1

1
( ) ( ) ( )

n

n i i i ii
C n    


   . Let, 0 0( )n nC C   and 0 0( )n nD D  .  

In what follows we define regularity conditions for the identifiability and 

asymptotic properties of the MLE ˆ
n . For this, we assume that as the total 

sample size n  increases, the number of sampled units in each of the modes, 

except possibly the nonresponse also increases, in the sense that  

1
;

M

m m mm
n q n n n


  , for some fixed constants { }mq .  

 A1: The elements of W  are bounded almost surely (a.s.) and the functions 

1( )H   and 2 ( )H    are identifiable and positive uniformly over   and B  a.s.   

( 1( )H   is positive uniformly over   if 1[min ( ) 0] 1H    ).  

A2: The covariates in X  (or in Z) contain at least one continuous variable X

(or Z ) not contained in Z (X). The derivative of 1( )H  [ 2 ( )H  ] with respect to 

this covariate exists and is positive uniformly over  ( ) a.s. 

A3: Assuming the existence of X  as above, if 
*  , then 

* *

1 1 1log ( ) log ( ) ( , , )H H h X      satisfies 1( ) / 0vh X     a.s. Similarly, 

Assuming the existence of Z , if *  , then 



10 

 

* *

2 2 2log ( ) log ( ) ( , , )H H h Z      satisfies 2 ( ) / 0vh Z     a.s. The 

functions ( )
M

f   and ( )
M

g   are linearly independent.  

A4: 0  is an interior vector of   and 
0nD  is positive definite for sufficiently 

large n .  

The first three conditions are needed to prove the identifiability and strong 

consistency of ˆ
n , the maximum likelihood estimator (MLE) of  . A similar 

condition to A2 is used in Follmann and Lambert (1991) for the case of a 

mixture of logistic models with constant mixing probabilities, and in 

Pfeffermann and Landsman (2011) for modelling non-ignorable assignments 

in observational studies. The last condition is needed for showing that ˆ
n  is 

n  consistent and asymptotically normal (CAN). Note that for the logit and 

probit functions, the conditions A1, A3 and the second part of A4 hold, if the 

elements of W  are linearly independent.  

In what follows, . .a s defines convergence almost surely and D  defines 

convergence in distribution. 

Theorem 1. Under the conditions (A1)-(A3), (i) The likelihood (3.2) is 

identifiable and . . 0
ˆ
n a s  . If, in addition, (A4) also holds, then (ii) 

1/2

0
ˆ( ) (0, )n n n D kC D n N I     where kI  is the identity matrix of order k .  

3.2 Model with measurement effects   

Next consider the model defined by (2.2), which accounts also for 

measurement effects, in which case the observed measurement y , may differ 

from the true outcome, Y . Denoting as before ( )i i iD I y Y  ,  we may write,   

(3.4)                      , 
0

0

Pr( , | ; ) if 1
Pr( , | , ; )

Pr(1 , | ; ) if 0

i i i i

i i i i

i i i i

Y M W D
y M D W

Y M W D







 

 
   

where 0     is the true parameter vector.  

Notice that the models for 0Pr( | X ; )i iY  and 0Pr( | ,Z ; )i i iM Y  are unchanged 

but we need to model, 
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           0 0( ) Pr( 1| , , ; ), , 0,1ij i i i i ip D Y j W M M M j      ,                  (3.5) 

where 0   is the true parameter vector.  

Denote ( , )      and  
0

s   , a compact set where 

0dim( )s k    . By (3.4) and (3.5), the log-likelihood is now given by,   

1 1

1 01 1

0 1

( ) ( ) ( ) {log[ ( ) ( ) (1 ( )) ( )]}

(1 ){log[ ( ) ( ) (1 ( )) ( )]} ( ) log[ ( ) ( )] . (3.6)

n n

n i i i i i i ii i

i i i i i i i i

L n n I M M y p f p g

y p g p f I M M f g

     

     

 

 
    

       

 

  

For 
iM M , denote 0 1

3 3 3( ) ( ( ), ( )) 'h h h   ; 
3 ( ) Pr( 1| , , ; )jh D Y j W M     

0,1j   and define ( )nC   and ( )nD   in a similar manner as for the model 

with no measurement effects but with ( )i   replacing ( )i  . Let 
0 0( )n nC C  , 

0 0( )n nD D   and ˆn  the MLE maximizing the likelihood. 

Suppose the following regularity conditions: 

B1: Conditions (A1)-(A3) in Section 3.1 hold, the functions ( )Mf   and ( )Mg   

are linearly independent also for 
iM M   and 

3 ( )h   is identifiable over  .  

B2: Condition (A4) holds; 0  is interior to   and 
0nD  is positive definite for 

sufficiently large n .  

Theorem 2. Under B1, (i) The likelihood (3.6) is identifiable and . . 0
ˆ
n a s  .  

If, in addition, B2 also holds then (ii), 1/2

0 0 0
ˆ( ) (0, )

D

n n n sC D n N I    .  

3.3 The EM algorithm 

To maximize the likelihood (3.6), we apply the iterative EM algorithm 

(Dempster et al. 1977) which, as shown below, is particularly convenient in 

the present context. The algorithm has been developed for computing the 

MLE in cases of incomplete data, which is what happens in our case in the 

presence of measurement effects, where the true outcomes are unknown.  

The key idea underlying the EM algorithm is to add latent variables to the 

observed data and define a modified likelihood as a function of the observed 

data and the values of the latent variables. Denote by 
l  the parameter 

estimates at the l -th iteration. The algorithm cycles between two states. In the 
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first state, it calculates the expected value of the latent variables, denoted by 

( )l

iS  , given the observed data and 
l . Next, the latent variables in the 

modified likelihood are replaced by their expected values, thus resulting in a 

"likelihood" denoted by ( , )lM   , which depends on ( )l

iS   and is much 

easier to optimize than the original log likelihood (3.6). This step is called the 

estimation- E-step. In the second state, the likelihood ( , )lM    is maximized 

with respect to the unknown parameters, yielding the estimate, 
1l 
. This step 

is called the maximization- M-step.  

In order to implement the algorithm in our case, we define ( )i i iD I y Y   to 

be the latent variable values. By (3.5)-(3.6), the modified ith log-likelihood is, 

   

   

(1 )

1 0

(1 ) (1 )(1 )

0 1

( , , | ; ) ( ) log[ ( ) ( ) (1 ( )) ( )

( ) ( ) (1 ( )) ( ) ] ( ) log( ( ) ( ))

i i i i

i i i i

D y D y

i i i i i i i i i i

D y D y

i i i i i i i

y M D W I M M p f p g

p g p f I M M f g

    

     



  

  

    

   

(3.7) 

Taking the expectation of iD  given ( , )i iy M  with 
l   yields,   

Pr( , | , ; )
( ) Pr( | , , ; )

Pr( | , ; )

l
l l i i i i

i i i i i l

i i i

D y M W
S D y M W

y M W


 


                         

   

(1 )

1 0

(1 )

1 0 0 1

[ ( ) ( )] [ ( ) ( )]
.

( ) ( ) (1 ( )) ( ) [ ( ) ( ) (1 ( )) ( )]

i i

i
i

y yl l l l

i i i i

y
yl l l l l l l l

i i i i i i i i

p f p g

p f p g p g p f

   

       





    
 

                                                                                                                     (3.8) 

This defines the E-step. For defining the M-step, denote the ith log likelihood in 

(3.2) for the case of no measurement effects as 

(1) (2)( , , , , ) ( )l l

i i i i i iA A M W   , where (1)

i iA Y  and (2) 1i iA Y  . By (3.7)-(3.8) 

and some simple calculations,  

            
1

(1) (2)

1

( , ) ( , , | , )

{ [ ( ), ( ), , , ] ( ; )}

nl

i i i ii

n l l l

i i i i i ii

M E y M D W

A A M W

  

    







 




,         (3.9)          

where,  

(1 ) (1 ) (1 )(1 )

1 0 0 1( ; ) ( )ln ( ) (1 ( )) ( ) (1 ( ))i i i i i i i iy S y S y S y Sl

i i i i i iI M M p p p p        
    , 

(1)( ) (1 )(1 )l

i i i i iA y S y S     , (2)( ) (1 ) (1 )l

i i i i iA y S y S     ; ( )l

i iS S  . 
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The "likelihood" (3.9) is seen to be the sum of two terms, one of only   and 

the other of only  . Thus, the maximization over   is obtained by maximizing 

each term separately, simplifying the maximization process substantially. 

In our empirical study we set the initial values by drawing many values from a 

broad uniform prior distribution around 0 ˆ( ,0)A

n  , where ˆA

n  is the MLE of 

the model without measurement effects, and use the value that maximizes the 

log-likelihood as the starting initial value.  

4. PREDICTION OF FINITE POPULATION MEANS 

Replacing the unknown model parameters by their MLE permits estimating 

the true population mean (proportion), 
( ) 1

N

P jj
Y Y


 . Denote, 

1, 2,
ˆ ˆˆ ˆ ˆ ˆPr( 1| x ; ); Pr( 1, | ; ), Pr( | ; )i i i im i i i im i iY Y M m W M m W            , 

(4.1) 

where ˆ ˆˆ( , )      denotes the MLE. For the case where the covariates{ }iX  

are known for all the population units, we estimate,  

                                              
1

( ) 1

ˆ ˆ
N

Model ii
Y N 


  .                                     (4.2) 

Remark 1. As long as the model assumed for the population values holds also 

for the sample, the use of (4.2) does not require probability sampling. 

Furthermore, if the sample is deemed to be informative in the sense that the 

inclusion in the sample depends on the true outcome variable, one may 

extract the population model from the model holding for the sample data, by 

use of the relationship between the population and sample models, as 

developed in  Pfeffermann and Sverchkov (1999). This requires to model also 

the probability Pr( | , ; )i ii S Y X  .  

When the covariates are known for only the sampled units and the population 

size is unknown, we may use a modification of the the Horvitz-Thompson (HT) 

estimator, i.e., 

                                            
1 1

( , ) 1 1

ˆ ˆ /
n n

HT Model i i ii i
Y    

 
  .                     (4.3) 

Assuming that each population unit can be classified by his or her preferred 

mode, we can also estimate the population mean for each mode, which as 
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discussed in the introduction, is often of great interest on its own. For the case 

where iW  is known for every j U ,  we estimate, 

                                  1

( ) 1, 2,1 1

ˆ ˆ ˆˆ ˆ;
N N

Pm m im m imi i
Y N N 

 
   .                         (4.4) 

Otherwise,  

                          1 1 1

, , 1, , 2,1 1

ˆ ˆ ˆˆ ˆ;
n n

Pm HT m HT i im m HT i imi i
Y N N     

 
   .              (4.5)                             

It is easy to show that under the conditions of Theorem 2, the predictors 

defined by (4.1)-(4.4) are n -consistent for the corresponding true population 

means, under an appropriate asymptotic framework for finite population 

sampling. See Isaki, and Fuller (1982) for such a framework.  

Remark 2. The predictors (4.1)-(4.5) are computed the same way under both 

the models with, and without measurement effects. 

5. MODEL EVALUATION 

5.1 The Hosmer-Lemeshow test 

The predictors developed in the previous sections are model-dependent and 

as such, the model used for their construction needs to be tested. Many 

goodness-of-fit test procedures under the frequentist approach for continuous 

outcomes have been proposed in the literature. See, e.g., Pfeffermann and 

Landsman (2011) and Pfeffermann and Sikov (2011) for review and 

references. In our empirical study we consider the case of binary outcomes 

generated from logistic models and we apply the Hosmer Lemeshow (HL, 

1980, 2000) goodness-of-fit test, which is in common use for testing models 

for binary data.  

The test statistic compares within pre-specified groups the number of 

observed successes ( 1iy  ), with the number of expected successes, as 

predicted under the estimated model. For this, the data are first ordered 

according to the predicted probability of success under the model evaluated. 

Next, the units are grouped based on the ordering, into a certain number of 

groups of approximately equal size, ( 10G   groups is common), and within 

each group the estimated expected number of successes, (the sum of the 
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predicted probabilities of success), is compared to the observed number of 

successes. The test statistic is, 

                          

2

2

( 2)1

ˆ( )
~

ˆ ˆ(1 )

G g g g

Gg
g g g

O n p
HL

n p p
 





 ,                                      )5.1( 

where gO  is the number of observed successes in group g , gn  is the 

number of units in the group and 
1

1
ˆ ˆgn

g g gii
p n p


   is the mean of the 

estimated probabilities of success. Hosmer and Lemeshow (1980) found 

through empirical studies under a much simpler setup than in our case that 

the test statistic (5.1) follows approximately the 2  distribution with ( 2)G   

degrees of freedom under the null hypothesis that the model fits the data. 

5.2 Normalized likelihood ratio (N-LR) test for model selection  

A standard test of the null hypothesis that two models, one nested within the 

other, fit the data "equally well", is the likelihood ratio test. We apply the test 

(with certain correction, see below), for testing the null hypothesis that 

accounting for measurement effects in the extended model (2.2) does not 

improve the goodness-of-fit compared to the model (2.1) with only selection 

effects, or more formally, for testing that there are no measurement effects.  

Distinguishing the models without and with measurement effects by the 

superscripts A and B respectively, the standard test statistic is,  

                                             ˆ ˆ2[ ( ) ( )]A B

n n nLR l l    ,                                 (5.2) 

where 
1

ˆ ˆ( ) ( )
nA A

n ii
l  


  and 

1

ˆ ˆ( ) ( )
nB B

n ii
l  


  are the corresponding log-

likelihoods computed with the MLEs, as obtained under the two models. 

(Equations 3.2 and 3.6). However, unlike in standard problems where the 

nested model is obtained from the extended model by nullifying certain 

parameters, this is not the case in our application, where we restrict to logistic 

models, since 
1[1 exp( )] 0t     for all t  in a compact set and hence the 

model A without measurement effects is not nested in the model B with them. 

To deal with this problem, Voung (1989) proposed a normalized likelihood 

ratio test (N-LR) defined as,  
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ˆ

n
nor

n

LR
LR


 ,                                          (5.3)                                   

where 
2 1 2 1 2

1

ˆ ˆˆ 4 [ ( ) ( )] ( )
n A B

n i i ni
n n l l n LR   


   
   is an estimator of the 

variance of nLR . The author shows that under the assumption that the true 

parameter vector is an interior point and some other regularity conditions, the 

asymptotic distribution of norLR  is normal. However, when model A is correct, 

one would expect that some of the parameters   which define the probability 

of the measurement effects lie on the boundary of the assumed parameter 

set. In this case, Vuong's condition that the true parameter vector is an interior 

point is violated. A similar problem is demonstrated in Wilson (2015). In the 

empirical study we approximated the distribution of the statistic norLR by 

parametric bootstrap. 

6. EMPIRICAL RESULTS BASED ON SIMULATIONS 

6.1 Design of simulation study 

In order to assess the performance of our proposed approach, we designed a 

simulation study which consists of the following sages: 

1. Generate a population of size 
510N   with values of three covariates,

1 2 3, ,i i iX X X , generated independently from a (2,5)Beta  distribution.  

2. Generate a binary outcome iY   from the logistic distribution; 

                            1

1 0 1 1Pr( 1| ; ) logit ( ), 1,...,i i iY X X i N      .            

(6.1) 

3. Classify the population units into four modes with probabilities,  

    

0 1 2 2
2 3

0 1 2 21

3

2 1

exp( )
Pr( | , ; ) , 1,2,3

1 exp( )

Pr( 4 | , ; ) 1 Pr( | , ; ),

m m i m i
i i i m

m m i m im

i i i m i i i mm

X Y
M m Y X m

X Y

M Y X M m Y X

  


  

 





 
  

  

   





        (6.2) 

where 4iM M   defines the "mode" of nonresponse. Notice that the model 

assumes NMAR nonresponse as the probability not to respond depends 

directly on the outcome. The parameter values in (6.1)-(6.2) were set such 



17 

 

that the relative population sizes in the 4 modes are approximately (10%, 

25%, 40%, 25%).  

The population in Stages 1-3 has been generated only once, such that the 

assessment of the performance of the proposed methodology is "design-

based", over all possible sample selections from a fixed population. 

Alternatively, one could generate many populations and draw samples from 

each population, but with a population of size 
510N  , this would not make 

much difference. 

4. Draw 1000K   samples of size 5000n   by simple random sampling 

without replacement from the population obtained in 1-3.  

5. Generate measured values for the sampled units from the model,  

 1

3 0 1 3 2Pr( 1| , , ; ) logit ( ) , 1,2,3i i i i m m m i m iD Y M m X X Y m             (6.3)  

6. Estimate the model coefficients for each sample by maximizing the 

likelihood function for the respective model (with or without measurement 

effects). We used the Newton Raphson algorithm (3.3) for estimating the 

coefficients of the model without measurement effects (hereafter model A), 

and the EM algorithm described in section (3.3) for the model with 

measurement effects (hereafter model B). We used parametric bootstrap for 

estimating the standard errors (S.E) of the mean estimators with 100 

bootstrap samples for each parent sample. Estimating the S.E. of the model 

coefficients by use of the inverse information matrix turned out to be unstable, 

with occasional very extreme and even negative variance estimators. The 

computer code for running the simulation study (and for the applications with 

real data in Section 7) has been written in MATLAB version 9.5. 

6.2 Simulation results 

Table 1 contains the mean of the estimated coefficients (Mean Est.), along 

with their empirical S.E., for the models without (model A) and with (model B) 

measurement effects. The empirical S.E. are the standard deviations of the 

estimates over the 1,000 samples divided by 1,000 . We also computed the 

means of the estimated bootstrap S.E. but they are not shown since they are 

very close to the empirical S.E. for all the coefficients, under both the models 
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A and B. We note in this respect that the measurement effects under Model B 

are not negligible. We computed for the first of the 1,000 samples the 

probabilities of measurement effects; 
2 3a Pr( 0 | , )i i i i iD Y X X   and found 

that Min( ia )=0.01, Q1( ia )=0.12, Mean ( ia )= 0.36), Q3( ia )=0.59,              

Max( ia )=0.99. (Q1 and Q3 are the 1st and 3rd quarters.) 

Table 1. True coefficients, means of estimated coefficients and empirical 

standard deviations (S.E.) of estimates. 1000 samples.  

Modes True  

Coefficients 

Model A Model B 

Mean Est. Emp. S.E. Mean Est. Emp. S.E. 

 
0 1   0.99 0.004 1.01 0.01 

1 1    -0.99 0.003 -1.04 0.09 

 

1m   

01 0.5    -0.53 0.011 -0.53 0.012 

11 3   3.00 0.014 2.90 0.026 

21 1    -0.99 0.006 -0.97 0.008 

 

2m   

02 1   1.08 0.009 1.04 0.009 

12 3   2.98 0.012 2.89 0.026 

22 2   -2.00 0.007 -2.01 0.008 

 

3m  

 

03 1  0.98 0.008 1.01 0.008 

13 3  3.02 0.013 2.95 0.027 

33 3   -3.01 0.008 -3.01 0.009 

 

1m   

 

01 0   -- -- 0.02 0.026 

11 1    --- --- -1.01 0.022 

21 0.5   --- --- 0.55 0.030 

 

2m   

02 0.5   --- --- 0.45 0.015 

12 1    --- --- -1.01 0.011 

22 1   --- --- 1.02 0.019 

 
03 0.3   --- --- 0.29 0.009 
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3m   
13 1    --- --- -0.97 0.009 

23 1.5   --- --- 1.48 0.017 

As seen in Table 1, the mean estimates under both models are very close to 

the corresponding true coefficients with very small standard errors, although it 

should be noted that in most cases the differences are significant when tested 

by use of the standard t-statistic. As expected, the empirical S.E. under Model 

B are somewhat higher than the corresponding S.E. under Model A, as results 

from the existence of measurement effects under Model B. As mentioned 

above, the means of the bootstrap S.E. estimators (not shown) are very close 

to the corresponding empirical S.E.  

To save in space, in what follows we restrict to only to the results obtained 

under Model B with the measurement effects. Similar (and somewhat better) 

results have been obtained under Model A for which the observed values are 

the same as the true values with no errors.  

Table 2 shows the results obtained when predicting the population means and 

sizes for the various modes, using the predictors defined by (4.2)-(4.5). The 

predictor Sy  is the HT estimator when ignoring the mode effects, using all the 

measurements including for the non-respondents. (Reduces to the simple 

sample mean based on all the sample units under simple random sampling). 

Table 2. Mean predictions of population and sub-population means and sizes, 

and empirical S.E. (in parenthesis). 1000 samples.  

Predictor 1m   2m   3m   4m   

mN  8262 24017 44933 22788 

ˆ
mN  8277 (32) 24053 (55) 44989 (68) 22760 (41) 

,
ˆ

m HTN  8240 (34) 24040 (53) 44960 (68) 22700 (53) 

PmY  0.45 0.60 0.66 0.87 

ˆ
PmY  0.44 (0.0035) 0.60 (0.0020) 0.65 (0.0015) 0.87(0.0013) 

,

ˆ
Pm HTY  0.44 (0.0037) 0.61 (0.0022) 0.65 (0.0015) 0.86 (0.0015) 
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( )PY   0.67  ( )

ˆ
ModelY =  0.67 (0.001)  

( )

ˆ
HT,ModelY 0.67 (0.001)  0.62Sy   (0.002) 

 

Table 2 shows very good performance of the predictors, despite the existence 

of nonignorable measurement effects. The HT estimators have slightly larger 

S.E. than the model-based predictors, which of course is expected since the 

latter predictors use the information about the population covariates, not used 

by the HT estimator. Notice how well the size and true mean of the non-

respondents ( 4m  ) are predicted, even with only the HT estimator. Finally, 

the use of the estimator Sy  (simple sample mean in our case), which ignores 

the mode effects is seen to be biased, illustrating that mode effects cannot be 

ignored when estimating concurrent population means. (When ignoring also 

the nonresponse and computing the mean of only the observed 

measurements, the corresponding estimator is 0.52Sy  .) 

6.3 Model evaluation 

6.3.1 Distribution of Hosmer-Lemeshow statistic under model B 

To illustrate the distribution of the Hosmer-Lemeshow (HL) we drew 1,000 

new samples of size 5,000 without replacement from the same population and 

subjected the true outcomes of the responding units to measurement effects 

via the model (6.3).  Figure 1 shows the smoothed empirical density of the 

test statistic for 10G   nearly equal-size groups over the 1,000 samples. 

Recall that the HL statistic is supposed to have a 
2

(8)  distribution under 

correct model specification (Model B in our case). As can be seen, the two 

densities are indeed very close, supporting the conjecture that the true 

distribution is indeed 
2

(8) . 



21 

 

Figure 1. Empirical distribution of HL statistic under model B.  Nonparametric 

density estimation. Comparison to 
2 (8)  density.

 

In order to study the power of HL statistic, we assume under the null 

hypothesis that the model for the mode selection probabilities is as defined by 

(6.2), where in fact we generated the modes using the model, 

2

0 1 2 2 2
2 2

0 1 2 2 21

3

2 21

exp( )
Pr( | , ; , ) , 1,2,3

1 exp( )

Pr( 4 | , ; , ) 1 Pr( | , ; , ).

m m i m i i
i i i m M

m m i m i ij

i i i m i i i mm

Y X X
M m Y X m

Y X X

M Y X M m Y X
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 

   

   





  
  

   

   





  (6.4)  

(Compare with 6.2). 

Figure 2 shows the empirical rejection rates when using the HL test for values 

  in the range [0,0.2] , based on 1000 samples of size 5,000n   for each 

value  , generated by use of (6.4). For 0  , (correct model specification), 

the rejection rate is close to the nominal size of 0.05, as it should be. As   

increases (the assumed model is further away from the correct model), the 

rejection rates increase monotonically, reaching powers 0.8 , already for 

0.15  . 
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Figure 2. Rejection rates with significance level of 0.05, when true mode 

selection probabilities are defined by (6.4). 1000 samples, [0,0.2] .  

 

6.3.2 Distribution of the N-LR statistic under the correct model  

The purpose of this section is to illustrate that we can approximate the 

distribution of norLR , the N-LR test statistic as defined in Equation 5.3 by 

parametric bootstrap. For this, we generated 1,000 samples of size 5,000 

under Model A (Equations 6.1-6.2) with the same true parameters as before, 

and other 1,000 samples of size 5,000 under model B. The first set of 

samples allow us to assess the approximation of the distribution under the null 

hypothesis of no measurement effects, while the second set allows to assess 

the distribution of the test when there exist measurement effects. For this, we 

followed the following steps: 

1) Estimate the models A and B for each of the 2,000 samples and compute 

the norLR  test statistic. At the end of this step we have 1,000 observations of 

the test statistic with data obeying the null hypothesis of no measurement 

effects, and 1,000 observations of the test statistic with data containing 

measurement effects as under the alternative hypothesis, allowing us to 

estimate the true distributions under the two hypotheses by the corresponding 

empirical distributions. 

2) Generate for each of the first 10 samples generated under Model A, 1000 

parametric bootstrap samples of size 5,000 under the model A, using the 

corresponding estimated coefficients from the parent sample. Re-estimate the 

two models for each bootstrap sample and compute the norLR  statistic. This 
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step generates 10,000 realizations form the bootstrap distribution of the test 

statistic when the null hypothesis of no measurement effects holds. 

3) Repeat Step 2 but this time by generating the bootstrap samples from 

Model B, as estimated for each of the first 10 parent samples generated under 

this model. This step generates 10,000 realizations form the bootstrap 

distribution of the test statistic under the alternative hypothesis that   

measurement effects exist. 

Figures 3 and 4 compare the empirical distributions under the two hypotheses 

with the corresponding bootstrap approximations, showing sufficiently close fit 

in both cases. Notice that when the actual observed data conform with Model 

A, it is the first bootstrap distribution which will practically be used for testing 

the null hypothesis of no measurement effects. When the observed data 

conform with Model B, it is the second bootstrap distribution which will 

practically be used.  

Figure 3. Empirical and Bootstrap distributions of the normalized LR statistic 

under Model A.  
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Figure 4. Empirical and Bootstrap distributions of the normalized LR statistic 

under Model B. 

 

7. EMPIRICAL RESULTS FOR A REAL MIXED-MODE SURVEY 

7.1 Example of measurement effects 

As explained in the introduction, the term measurement effect refers to the 

case where a sampled unit responds differently, depending on the mode of 

response. In the Agriculture Census of Israel carried out in 2018, 210 farmers 

(out of about 17,000) happened to respond both by Telephone and via the 

internet, after receiving mistakenly a reminder to respond via the Internet, 

even though they already responded by telephone. Table 3 summarizes the 

results obtained for two of the questions asked in the census: number (#) of 

workers in the farm, and total cultivated area. Out of the 210 farmers, 131 

farmers responded the same way on Question 1 and 139 farmers responded 

the same way on Question 2. The notation T>I (T<I) defines the farmers with 

the higher (lower) responses on telephone than on the internet. 

The figures in the table indicate big differences in the answers of the farmers 

that provided different answers by the two modes (about one third of the 

farmers responding by the two modes). In this example the measurement 

effects cancel out when computing the means, but there is no guarantee that 

this always happens, and proper models need to be used to account 

successfully for the measurement effects. See next section. 
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Table 3. Mean responses obtained by farmers responding both by telephone 

              and internet: overall and separately for farmers with T>I and T<I. 

Questions Mean 

Internet 

Mean 

Telephone 

Mean and # for T>I Mean and # for T<I 

 

# of workers 

 

5.9 

 

5.8 

 

T=15.5,  I=  7.0 

39 farmers 

 

T= 7.5,  I=17.0 

40 farmers 

 

Cultivated 

area 

 

108.5 

 

105.9 

 

T= 318.4, I= 192.0 

38 farmers 

 

T=  88.3, I= 144.5 

33 farmers 

 

 

7.2 Accounting for mode effects in a real mixed-mode survey  

In this section we illustrate the performance of our proposed approach by 

using data collected as part of the annual crime victimization survey in 2017, 

administered by the Israel Central Bureau of Statistics (ICBS). The survey 

collects information on victimization with respect to a variety of crimes, as well 

as socio-demographic information. Similar surveys are carried out by national 

statistical offices throughout the world. The sample is drawn by probability 

sampling, and the sampled units can respond using either the internet, or by 

telephone, implying that we have 3 modes, with the third mode defined by 

non-respondents. The total sample size is 7035n  , with 11% responding via 

the internet (I), 60% by telephone (T) and 29% not responding (NR).   

Although not a primary variable of interest in this survey, we chose as the 

target outcome variable the binary variable iY , taking the value "1" if unit i  

has an academic degree (Bachelor or higher). The aim is to predict the true 

population proportion of persons with academic degree. The reason for this 

choice is that the ICBS has an extensive register of education, with population 

coverage of over than 95%, so that we can assess the performance of our 

method by comparing the predictors to the "truth". The register is complete for 

only 2016, but we don't expect significant differences between the two years. 

We confined our analysis to persons aged 20+ and based on the register, the 

true proportion is ( ) 0.24PY  . On the other hand, 41.4% of the internet 
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respondents and 23.5% of the telephone respondents in the sample have an 

academic degree, indicating the existence of a mode selection effect, and 

possibly also measurement effects.  

In what follows we present and discuss the results of our study. We included 

in the covariates ( X ) the variables gender (gen; male=1), age (in years), and 

country of birth (cob; Israel=1, other countries=0). In accordance with the 

general methodology outlined in Sections 2-4, and the models and notation in 

Section 6, we fitted the following models:  

1

0 1 2 3Pr( 1| ; ) logit ( )i i i i iY X age cob gen                                    (7.1) 

 0 1 2 3

2

0 1 2 31

exp( )
Pr( | , ; ) , ,

1 exp( )

m m i m i m i
i i

m m i m i m im

Y cob gen
M m X Y m T I

Y Cob gen

   


   


  
  

   
  

(7.2)   

     1 2 ,
Pr( | , ; , ) 1 Pr( | , ; ),i i i i i i mm I T

M NR Y X M m Y X  


     

1

0 1 2 3Pr( 1| , , ; ) logit ( ), ,i i i i m m m i m i m iD Y M m X Y age gen m T I           

   (7.3)   

Table 4 shows the estimated coefficients and the parametric bootstrap S.E. of 

the models (7.1) and (7.2), as obtained when fitting the models with- and 

without accounting for possible measurement effects (M.E.). Table 5 shows 

the estimated coefficients and S.E. of the model (7.3), which accounts for 

measurement effects. We also computed the means of the estimated 

coefficients over all the BS samples (not shown), and found that they are very 

close to the estimates obtained from the original sample, thus verifying the 

asymptotic unbiasedness of our ML estimators.  

As can be seen, most of the coefficients are highly significant in both tables 

under the standard t-test. What we find a bit surprising is that the coefficient of 

Y  (having academic degree) in the models for | , ;i i iM T X Y   and 

| , ;i i iM I X Y   is highly negative in all 4 models in Table 4, suggesting that 

with the other covariates held fixed, having an academic degree actually 

encourages nonresponse (the third mode). Also, for the model with 

measurement effects (Table 5), the coefficient of Y  is positive and highly 

significant (but of much smaller magnitude), suggesting that having an 
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academic degree increases the probability of misreporting. Including more 

covariates in the models could possibly resolve these, somehow unexpected 

outcomes. 

Table 4. Estimation of   and   coefficients (Eqs. 7.1, 7.2), when fitting the 

model without- and with accounting for possible measurement effects (M.E.).  

S.E. are based on 1000 parametric bootstrap samples.  

Model for covariates Model fitted without M.E. Model fitted with M.E. 

Est. S.E Est. S.E. 

 

| ;i iY X   

Eq. (7.1) 

.const  -1.0302 0.0634 -1.2264 0.077 

age  0.0182 0.0126 -0.054 0.0259 

Cob  -0.0938 0.0665 -0.01904 0.0011 

.gen  0.3150 0.0580 0.2669 0.0015 

 

| , ;i i iM T X Y   

Eq. (7.2) 

.const  2.3671 0.0498 2.3945 0.3701 

Y  -2.1040 0.0428 -1.9865 0.1113 

Cob  0.0669 0.0573 0.0512 0.0456 

.gen  0.0639 0.0566 0.0914 0.0183 

 

| , ;i i iM I X Y   

Eq. (7.2) 

.const  0.9694 0.0599 1.1701 0.1971 

Y  -2.7375 0.0555 -2.8263 0.2244 

Cob  0.3360 0.0857 0.3476 0.0456 

.gen  -0.1798 0.0898 -0.1307 0.0547 

 

Table 5. Estimation of   coefficients (Eq. 7.3), when fitting the model which 

accounts for possible measurement effects. S.E. based on 1000 parametric 

bootstrap samples.  

Model covariates Est. S.E 

 

 

| , , ;i i i i mD Y M T X 

Eq. (7.3) 

.const  0.2864 0.0016 

Y  0.2934 0.0017 

age  0.0686 0.0273 

.gen  0.2331 0.0013 

 

| , , ;i i i i mD Y M I X 

Eq. (7.3) 

.const  0.2827 0.0016 

Y  0.1636 0.0009 

age  0.1017 0.0539 
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.gen  0.1845 0.0010 

Next, we study the performance of the model in predicting the true population 

proportion, which as noted in Section 7.1, is basically known for this 

application. We computed the following predictors:  

A- 
1

( ) 1

ˆ ˆ
N

Model ii
Y N 


  ; ˆ ˆPr( 1| x ; )i i iY    (uses the covariate information 

for all the population units). (Equation (4.2) 

B- 
1 1

( ) 1 1

ˆ ˆ /
n n

HT,Model i i ii i
Y    

 
  ; Pr( )i i S    (Equation 4.3) 

C- 1 1 1

, 1 1

ˆ ˆ ˆ;
n nTrue

HT True i i ii i
Y N Y N   

 
    (uses the true values iY  known from 

the education register). 

D- 
1 1 1

, 1 1

ˆ ˆ ˆ;
n n

HT Adj Adj i i Adj ii i
Y N y N   

 
   , the modified HT estimator but with 

the standard base weights 1{ }i ia    replaced by adjusted weights to account 

for the nonresponse.  

E- 
1 1

, 1

ˆ ˆ n

HT imp i ii
Y N Y 


  ; 

i iY y  if unit i  responds, ,i i impY Y  if unit i  does 

not respond. The imputation was carried out using the monotone imputation 

method of Rubin (1987, p. 172), based on the observed sample values iy . 

Table 6. Predictors of proportion of persons with academic degree. Crime 

victimization survey, ICBS, 2017. 

Measurement  
effects included(?) 

PY (true) 
( )

ˆ
ModelY

 

,

ˆ
HT ModelY

 
,

ˆ
HT TrueY

 

,

ˆ
HT AdjY  

,

ˆ
HT impY  

NO (model A)  
0.24 

0.26 0.28  
0.25 

 
0.36 

 
0.33 

YES (Model B) 0.25 0.23 

 
Computing the Hosmer-Lemeshow (HL) test discussed in Section 5.1 under 

the two models, and the normalized likelihood ratio (N-LR) test discussed in 

Section 5.2, yields (p-values in parentheses): ( ) 11.6 ( 0.17)HL A p - value  ,

( ) 9.44 ( 0.31)HL B p - value  , 0.21 ( 0.34)norLR p - value  .  

The results of this study show very clearly that our proposed model-based 

predictors are much superior to the design-based estimators, which ignore the 

mode effects ( ,

ˆ
HT AdjY ,

,

ˆ
HT impY ), despite the use of only three covariates for which 
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the population values are known. (The estimator ,

ˆ 0.25HT TrueY  , which uses the 

correct values of the outcome variable indicates that the design-based 

estimator in the case of no measurement effects and nonresponse performs 

well.) Model B, which accounts for possible measurement effects seems to 

perform somewhat better than Model A, which assumes no measurement 

effects (note the relative high value of ,

ˆ 0.28HT ModelY   under Model A), 

although this is only partly reflected by the values of the two test statistics, 

suggesting that for the variable of having an academic degree in this survey, 

there are only small measurement effects, not detected by the two tests 

considered. 

   

8.  DEALING WITH PROXY SURVEYS AS MODE EFFECTS 

As mentioned in the introduction, we propose dealing with the problem of 

proxy surveys via the methodology developed in the present article for dealing 

with mode effects. We illustrate our proposal using data collected as part of 

the Labor Force Survey (LFS), administered by ICBS. The LFS in Israel is a 

monthly survey with a 4- in, 8- out, 4- in, rotation pattern. For the present 

illustration we use the data observed in all the months of 2018 for the first 

interview, which is carried out by a personal interview. To further reduce the 

overall sample size, we restrict to the Jewish population aged 20-40, yielding 

a sample of = 19,820n  persons. 

We again use the binary variable iY - "having an academic degree", as our 

target variable, thus allowing us to compare predictors of the population 

proportion of people with academic degree to the true proportion. Table 7 

shows a few design-based estimators computed from the data, after 

modifying the base sampling weights to account for nonresponse. The 

estimators shown are: 

odes

ˆ
NoMY - Standard HT estimator when ignoring the mode effects, but with the 

sampling weights adjusted for non-response,  

ˆ
DirectY - Design-based estimator using only the direct responses (with adjusted 

weights),  
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ProxyŶ - Design-based estimator using only the proxy responses (with adjusted 

weights). 

Table 7. Proportion of persons with academic degree. Preliminary design-

based estimators. LFS, Jewish population age 20-40, ICBS, 2017. 

PY (true) 
Modes

ˆ
NoY  ˆ

DirectY  
ProxyŶ  

0.248 0.310 0.431 0.268 

 

As expected, the design-based estimator 
Modes

ˆ
NoY  that ignores the mode 

effects performs poorly. The estimator based on only the direct responses 

performs even worse but quite surprising, the estimator ProxyŶ , which uses 

only the proxy responses performs relatively well. It seems therefore that 

when asked about the possession of an academic degree, the proxy 

responses are generally more accurate than the responses of interviewees 

responding about themselves. The importance of this outcome is in illustrating 

that it is not necessarily true that interviewees responding about themselves 

provide correct answers, or in a more general mode effects set up, that one 

can decide on a mode with correct answers. Recall from the Introduction that 

several methods proposed in the literature to deal with mode effects assume 

the existence (and knowledge) of a mode which provides unbiased estimators 

for the true population mean.   

We now illustrate the use of our mode effects methodology to handle proxy 

survey problems. We consider 5 different "modes" as follows: proxy response- 

male (MP), proxy response- female (FP), direct response- male (MD), direct 

response- female (FD), nonresponse (NR). By MP we mean that the unit for 

which a proxy response is provided is a male and similarly for the other 

modes. Out of the total sample size 19,820n  , 16.8% responses have been 

obtianed by FD, 15% by MD, 30.1% by FP, 31.8 by MP and 6.3% did not 

respond. Denoting by mS  the sample of units responding by mode m , we 

estimated the population proportion for each of the modes using the ratio HT 

estimator with weights adjusted for nonresponse, 
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( ) 1 1 1

, , ,

ˆ ˆ ˆ;
m m

m

HT Adj Adj m i i Adj m ii S i S
Y N y N   

 
    and found:  ( )

,

ˆ 0.19MP

HT AdjY  , 

( )

,

ˆ 0.34FP

HT AdjY  , (MD)

,

ˆ 0.37HT AdjY  , (FD)

,

ˆ 0.48HT AdjY  , suggesting the existence of mode 

effects. (Similar differences exist when using instead the true values of Y  as 

known from the register.) 

We use as covariates age and years of study. (Years of study is known from 

the register, the gender of the interviewee is accounted for in the definition of 

the modes.) To save in space, we do not present the coefficients of the 

models (7.1)-(7.3) obtained in this case.   

Table 8 shows again the true value and the different predictors obtained in 

this case. The notation is the same as before.   

Table 8. Proportion of persons with academic degree. Model- and design-

based estimators. LFS, Jewish population age 20-40, ICBS 2017. 

Measurement 
effects included(?) 

PY (true) 

 

0.248 

( )

ˆ
ModelY  ,

ˆ
HT ModelY

 
,

ˆ
HT TrueY

 

,

ˆ
HT impY  ,

ˆ
HT AdjY  

NO (model A) 0.304 0.306  
0.238 

 
0.305 

 
0.305 

YES (Model B) 0.252 0.271 

 
The results in Table 8 show very good performance of the model-based  

predictors when fitting Model B, which accounts for possible measurement 

effects, with the estimator ( )

ˆ
ModelY  that uses all the population covariates 

yielding an almost perfect predictor. On the other hand, the estimators 

obtained under Model A, which assumes no measurement effects are clearly 

biased, indicating the existence of measurement effects in this application. 

This result is reinforced by the HL test statistics, rejecting the null hypothesis 

of Model A, ( ) 26.359 ( 0.001)HL A p value    but not rejecting Model B, 

( ) 7.24 ( 0.51)HL B p value   . Also, the N-LR test rejects Model A in favor 

of Model B, 10.31 ( 0.00)norLR p value   . 

The estimator ,

ˆ
HT TrueY , which uses the true Y -values from the education 

register performs very well, validating the sampling design and corresponding 
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estimator, but the estimator ,

ˆ
HT impY  which imputes the missing data for the 

nonrespondents based on the observed data and thus ignores the 

measurement effects, and the estimator ,

ˆ
HT AdjY , which attempts to correct for 

the nonresponse by modification of the sampling weights (but does not 

account for the measurement effects) perform poorly, over-estimating  the 

true proportion by about 23%, the same as the model-based estimators under 

Model A. We conclude that in this application, there are large measurement 

effects, captured well under Model B, but not under Model A and the modified 

design-based estimators considered. 

9. SUMMARY 

In this article we propose a new comprehensive model-based approach to 

deal with mode-effects, which is applied also to deal with proxy surveys; two 

major problems in survey sampling. Our approach addresses both selection- 

and measurement effects, underlying the possible mode-effects. Furthermore, 

we allow for not missing at random (NMAR) nonresponse, by considering the 

nonresponse as another mode. Unlike other approaches proposed in the 

literature, we do not assume that one of the modes provides unbiased 

predictors. The existence of such a mode is not guaranteed, and even if it 

exists, it is not clear how to determine which one it is. The approach is model-

based but we cannot think of a proper design-based approach that can deal 

simultaneously with selection- and measurement effects and NMAR 

nonresponse, without very strong and generally untestable assumptions. In 

this article we restricted to binary outcome variables (fitting logistic models in 

the empirical illustrations), but the proposed approach can be extended to 

continuous outcomes, with proper modifications.   

We propose simple test procedures for testing our model, and in particular, for 

testing the existence of measurement effects, which are seen to work well in 

the empirical studies, although more powerful tests can, and should be 

developed. When applied to proxy surveys, an interesting open question is 

how to define the different modes. In our empirical study we defined them in 

an “ad-hoc” manner, but a more founded methodology should be established. 
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One possible way is to start with as many as possible modes, estimate the 

means or other characteristics of interest for each mode, and then collapse 

modes based on proper statistical analysis, so as  to stabilize the final results.  

The empirical results with the simulated and real data sets are promising and 

we encourage other researchers to test the approach with their data. We 

mention again that the approach is applicable in principle also to 

nonprobability samples, which become more and more popular in recent 

years with the availability of new “big data” sets. 

10. APPENDIX 

Let the variables , , ,Y M X Z  under Model A ( , , , ,y Y M X Z  under Model B) be 

defined on the probability space ( , , )  . Condition A1(B1) implies the 

following condition:  

(*) the sequences{ ( )}i i S 
,{ ( )}i i S 

 and their first and second derivatives 

are iid and bounded almost surely respectively.  

Denote, 
1( ) ( ) [ ( ) ( ) ] ( ) [ ( ) ( )]Y YI M M log f g I M M log f g         , 

and 0 0( ) . Also, let  1 0( ) ( ) log[ ( ) ( ) (1 ( )) ( )]I M M y p f p g         

0 1(1 )log[ ( ) ( ) (1 ( )) ( )] ( ) log[ ( ) ( )]y p g p f I M M f g            , 

where ( ) Pr( 1| , , ; ), ( )jp D Y j W M D I Y y       for , 0,1M M j  .  

Proof of theorem 1. (i) First, we show that the model is identifiable, that is, 

*( ) ( )   almost surely implies 
*  . Let 

1 { | ( ) }F M M     and 

2 { | ( ) }F M M    . Note that under the condition A1 both sets are non-

null. Let 
1F , and suppose that

*   but *( ) ( )  . Suppose first that 

*  . 

 (1)               . 

*
* * 1 2

1 2 1 2 *

1 2

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

H H
H H H H

H H

 
   

 
                        
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Under Condition A2, there exists a variable X  not included in Z . Let,

1 1( ) ( ) /v

vH H X     and denote by vX   the vector of covariates in X   

excluding X . Taking the partial derivative of (1) with respect to,yields vX   

(2   )            
* * 1 *

1 1 1 1 1 1

* 2

1

( ) ( ) ( ) ( ) log[ ( ) ( )]
0 0

( ( ))

v v

v

H H H H H H

H X

     



 
  


 

By integrating (2) with respect to vX  and using the notation in (A3), 

                       * *

1 1 1log ( ) log ( ) ( , , ) ( )vH H h X X        ,                               (3)         

where ( )vX   is some differentiable function with respect vX  . Taking the 

partial derivative of (3) with respect to vX  implies 1( ) / 0vh X X   , which 

contradicts A2 and hence 
*  . It remains to show that 

*  . 

Substituting 
*   in (1), it follows from A1 that 

*   and thus 
*  .  

A similar proof applies when considering 
*   and when there exists a 

variable Z  in Z  not included in X .  

Consider now 2F . Using similar arguments to above, we can show that 

( )
M

f   and ( )
M

g   are each identifiable and by condition A3, they are linearly 

independent. (The functions ( )Mf   and ( )Mg   are defined in Section 3.1). 

Hence, ( ) ( )
M M

f g 
* * *( ) ( )

M M
f g       . This completes the proof 

of identifiability.  

Second, the compactness of the parameter set and the identifiability property 

implies by the information inequality that 0( ) max ( ) 0E E   .  

Third, by (*) and Theorem A.2.2 in White (1994),   

.max | ( ) ( ) | 0n a sL E     .                                           (4) 

Given the results so far and using similar arguments to those used in the 

proof of Theorem 3.4 of White (1994), it follows that . . 0
ˆ
n a s  , thus 

completing the first part of the theorem. 

(ii) Note that 
0 00 0( ) ( ) 0E E    . The left hand side equality follows by 

Condition (*). The right hand side equality follows from Condition A4. The 
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identifiability of the model shown in part (i) and Theorem 1 of Rothenberg 

(1971) implies that for sufficiently large n , 
0nC  is positive definite. The last two 

results imply by the Lindberg-Levy Central Limit Theorem, 

 1/2

0 0( ) (0, )n n D knC L N I   .                                           (5)  

Further, by (*), Condition A4 and Theorem A.2.2 in White (1994),  

                             
.max || ( ) ( ( )) || 0n n a sD E D     .                                (6) 

Thus, by the strong consistency of ˆn  shown in the first part,  

(7 )                                   . 0 .
ˆ|| ( ) ( ) || 0n n n a sD D                                                        

By (5)-(7), and Theorem of 6.2 in White (1994),  

1/2

0
ˆ( ) (0, )n n n D kC D n N I    . Q.E.D 

Proof of Theorem 2. We again start by proving the likelihood identifiability 

(Equation 3.6). Denote as before, 
3 ( ) Pr( 1| , , ; )j

jp h D Y j W M      for 

iM M , 0,1j   and 
0 1

3 3 3( ) ( ( ), ( )) 'p h h h    . Using the same steps as in 

the proof of theorem 1, it can be shown that under Condition B1, the 

probabilities ( )Mf   and ( )Mg   are both identifiable. Hence, by Condition B1, 

for the set 
2 { | ( ) }F M M    , 

* *( ) ( )      , similarly to the 

first part of Theorem 1. For 
1 { | ( ) , ( ) 1}F M M y        , the 

contribution to the likelihood is given by, 

(8                                    )
1 0( , ) ( ) (1 ) ( )M MG p p f p g     

(compare with 3.6). Thus, under Condition B1, ( , )G p  is identifiable in the 

sense that, 

(9          )              , * * * *( , ) ( , ) ( , ) ( , )G p G p p p      

and  since 
3 ( )h   is identifiable, we have that if 

* *p p      and 
*  . 

By repeating the same arguments as above, we establish the identifiability of 

the model also for the set 
3 { | ( ) , ( ) 0}F M M y        . The rest of 

the proof of strong consistency (part i) and asymptotic normality (part ii) of the 

MLE, is similar to the proof of Theorem 1.  
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