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Abstract

We propose a new, model-based methodology to address two major problems
in survey sampling: The first problem is known as mode effects, under which
responses of sampled units possibly depend on the mode of response, whether
by internet, telephone, personal interview, etc. The second problem is of
proxy surveys, whereby sampled units respond not only about themselves but
also for other sampled. For example, in many familiar household surveys,
one member of the household provides information for all other members,
possibly with measurement errors. Ignoring the existence of mode effects
and/or possible measurement errors in proxy surveys could result in possible
bias in point estimators and subsequent inference. Our approach accounts
also for nonignorable nonresponse. We illustrate the proposed methodology
by use of simulation experiments and real sample data, with known true
population values.
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1 Preface

I felt very happy and privileged when invited to submit a paper for the
special issue of Sankhya A, celebrating the 100th birth anniversary of Prof.
C. R. Rao. Professor Rao contributed, indirectly, a great deal to my research.
In 1993 I published an article in the International Statistical Review entitled,
“The Role of Sampling Weights when Modeling Survey Data”, Pfeffermann
(1993). While working on this article, I came across a short discussion
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written by the late Professor Steve Fienberg in 1989, stating that “the one
exception in which the use of weights may be appropriate is outcome-based
sampling, where the sampling plan may be informative for the model of in-
terest.” Professor Fienberg referred to an earlier article by Patil and Rao
(1978), which shows how the sampling weights (inverse of the sample in-
clusion probabilities) feature in the distribution of the sample data in such
cases, and how the sample distribution differs from the corresponding pop-
ulation distribution. One of the examples in that article was probability
proportional to size (PPS) sampling. This whole area was new to me at
the time, but I got really interested in it, and since then I published many
articles with colleagues on the relationship between the population distri-
bution, the sample distribution and the non-sample distribution, and how
the latter two distributions can be used for inference about the population
distribution and for imputation of missing data. See Pfeffermann (2017) for
a unified theory with applications to informative sampling and nonignorable
nonresponse, small area estimation, observational studies, web panels and
more. The present article is another extension of this general theory.

Professor Rao contributed more directly to my work in 2016, when invit-
ing me to co-edit with him the 29th Handbook of Statistics on Survey Sam-
ples. This turned out to be a fascinating experience and ended up with a
two-volume handbook, containing 41 chapters spread over 1300 pages.

I am very grateful to Professor Rao for his indirect and direct contribu-
tions to my career, and I wish him many more years of happy and productive
life, with good health.

2 Introduction

In modern sample surveys, sampled units often have the choice of how
to respond, whether by telephone, personal interview, mail, fax, or via the
Internet. Such surveys are nowadays very popular in many countries, called
mixed-mode surveys. See, e.g., De Leeuw (2018) for a recent comprehensive
review. Sometimes, the different modes of response are offered sequentially.
For example, when starting the survey, all the sampled units are encouraged
to respond via the internet. Those who do not respond within a certain
time period are approached by telephone and finally, those who couldn’t
be contacted or refused to respond via the telephone, are approached for a
personal interview.

The term mode-effect encompasses two confounded effects: selection ef-
fect - the effect of differences between characteristics of respondents prefer-
ring to respond with different modes and consequently, possible differences
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in the values of reported study variables of interest, and measurement effect
- the effect of potentially responding differently by the same person, depend-
ing on the mode of response. The motivation behind the use of mixed mode
surveys is to possibly increase the response rates and reduce measurement
effects, by letting each person to reply by his preferred mode. Clearly, some
modes are cheaper and simpler than other, notably, the use of the internet.
The literature contains many examples illustrating that different modes of
data collection can affect the responses. See also Table 4 in Section 8.1 of
the present paper.

If all sampled units respond correctly by their preferred mode, no bias
occurs and the use of a mixed-mode survey benefits from the advantages
listed above. However, in practice, no responses are obtained from some of
the sampled units, with the rates of nonresponse steadily increasing in recent
years all over the world. In this case, the use of mixed-mode surveys may
introduce large bias in sample estimators, if not accounted for properly. The
situation can be even worse in the case of measurement effects. It is often
recommended to reduce the measurement effects by a careful questionnaire
design across the modes, see, e.g., Dillman and Christian (2003) and De
Leeuw et al. (2018), but in the present article we assume a given sample
with given responses. Notably, the two effects are confounded, and several
studies in the literature attempt to disentangle them, see, e.g., de Leeuw
(2005), Hox et al. (2017) and Vannieuwenhuyze et al. (2010, 2014).

In order to reduce the total mode effect, it is common to first determine
whether the survey estimates produced from the different modes are indeed
different and if they are, to infer which mode is the best in the sense of
producing the smallest bias for the variable of interest. The selected mode is
then used as a benchmark for correcting the other modes. Vannieuwenhuyze
et al. (2014) assume the existence of a mode under which no bias occurs and
develop bias corrected estimators by applying the observational study theory
of Rosenbaum and Rubin (1983, 1984). In another approach, mode effects
are conceptualized as a missing-data problem. Here again, one of the models
is assumed to yield correct measurements and is used to impute values for
the other modes. For example, Park et al. (2016) consider the case of two
modes, use one of them as a benchmark and assume a linear relationship
between the observations obtained under the two modes.

The mode comparisons are often based on heuristic arguments. For ex-
ample, for questions on sensitive topics such as drug use and alcohol con-
sumption, it is sometimes assumed that the mode which provides the high-
est prevalence of the illicit behavior produces the smallest bias, since the
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tendency of respondents would be to underreport such behavior, Tourangeau
and Yan (2007). An obvious shortcoming of this approach is the underlying
assumption that there consists a tendency to underreport sensitive questions.
Turner et al. (1998).

An alternative approach to assess mode effects is to compare the esti-
mates obtained from the different modes with known external data, which is
assumed to be more accurate. For example, in an income study in Denmark,
Kormendi (1988) estimated the bias obtained from the use of telephone and
face to face modes by using income data of tax authorities. Biemer (1988,
2001) discusses several limitations of this approach, such as unavailability
of appropriate external data for all variables of interest, or differences in
definition between the survey measurements and the measurements in the
external records.

Proxy surveys by which one member of the household (HH) responds for
all the other members of the HH are in common use in HH surveys all over
the world. The main motivation in this case is to increase the overall sam-
ple size, since information is obtained in principle for all the HH members
(Moore, 1988). It also helps in theory to increase the response since if the
designated sampled person of the HH cannot be reached or he refuses to re-
spond, another member of the HH is contacted instead. On the other hand,
information provided by one member of the HH about another member may
be subject to large measurement error (supplying wrong information), and
many missing items, (“I don’t know”). There seems to be a common per-
ception that proxy-response is less accurate than self-response, Groves et al.
(2004). Kalsbeek and Agans (2007) mention a possible cognitive basis for
the better quality of self-response over proxy response. There are, however
examples where proxy responses turned out to be more accurate, see e.g.,
O’Muircheartaigh (1991) and also Table 8 in Section 9 of the present paper.

Finally, we note that there exists an ethical problem with the use of proxy
surveys, especially in non-mandatory surveys with no obligation to respond.
Have the other members of the HH authorized the responding person to
provide all the (possibly sensitive) information about them?

In this article we propose to deal with proxy surveys by considering
them as a special case of mode effects with the two main modes defined
as “direct response” and “indirect response”, where direct response defines
that the person provides information about himself and indirect response
defines that the response is obtained by another member of the HH. Within
each of the two main modes other modes can be defined, like the mode
of response, known characteristics of the responding unit and nonresponse,
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when no information is obtained from any member of the HH. See Section 9
for an example.

In the following sections we propose and illustrate a new model-based
methodology for dealing with mode effects, which does not require a-priori
knowledge of a mode providing unbiased estimators. We consider the case
of not missing at random (NMAR) nonresponse, by allowing the mode se-
lection probabilities and the probability of nonresponse to depend on the
true variable of interest (unobserved under measurement effects) and other
explanatory variables. These two parts of our model, the model for the true
values and the model for the mode selection account for selection effects,
with NMAR nonresponse. Nonresponse is considered as another mode. As
stated before, ignoring the NMAR nonresponse already induces bias to the
sample estimates even in the absence of measurement effects, i.e., when the
responses are correct. In order to account for measurement effects, we fur-
ther extend our model by modelling the observed responses as a function
of the true target variable, the mode selected and known covariates. Note
again that with the existence of measurement effects, the true values of the
target variable are unknown. To the best of our knowledge, our approach
has not been proposed in the literature. Furthermore, when the covariates
are known for all the population values from a census or another register,
our approach is applicable also for nonprobability samples.

To fit our three-part model we follow the frequency-based approach with
the likelihood maximized by application of an EM algorithm. We discuss
converges properties of the algorithm and develop the asymptotic properties
of the resulting maximum likelihood estimators. Having estimated all the
unknown model parameters, we use the estimated model for predicting the
population target quantities. We illustrate our approach by use of simulated
data and two real samples, for which the true population values of interest
are actually known.

In Section 3, we introduce some notation and define our 3- parts model.
In Section 4 we describe the estimation of the unknown model parameters
and discuss their properties, which are proved in the Appendix at the end of
the article. Section 5 considers the estimation of the population parameters
of interest, distinguishing between the case where the covariates are known
for all the population values of interest and the case where they are known
for only the sampled units. Model evaluation is considered in Section 6. In
Section 7 we illustrate our approach by simulation experiments, followed by
two applications with real data in Sections 8 and 9, with Section 8 focusing

783



D. Pfeffermann and A. Preminger

on mode-effects and Section 9 on a proxy survey. We conclude with a short
summary in Section 10.

3 Models for Selection and Measurement Effects

Consider a finite population U of size N and denote by (Yi,Mi,Xi,Zi)
the true outcome variable Y , the response mode M , the auxiliary variables
(covariates) X explaining the variability of Y and the covariates Z explain-
ing the variability of M , corresponding to unit i belonging to a sample S
of size n, selected from U . In this article we consider the case where Y
is binary, taking the values 0 and 1. Suppose first that no measurement
effects exist such that every respondent reports his true outcome. Denote

by
↔
M the number of available modes, with the last mode defining the sub-

sample of non-respondents for which only the covariates are known. For
convenience, we assume noninformative sampling as defined in Pfeffermann
and Sverchkov (1999), such that Pr(Yi|Xi, i ∈ S) = Pr(Yi|Xi), but the non-
response is allowed to be NMAR in the sense that Pr(Ri = 1|Yi,Xi, i ∈
S) �= Pr(Ri = 1|Xi, i ∈ S), where Ri = 1 if sampled unit i responds and
Ri = 0 otherwise. We further assume that the mode selection depends not
only on the covariates Z, but also on the true outcome Y , in the sense that
Pr(Mi|Yi,Zi) �= Pr(Mi|Zi). Defining Wi = Xi ∪ Zi,

Pr(Yi|Wi,Mi) =
Pr(Mi|Yi,Zi)

Pr(Mi|Wi)
Pr(Yi|Xi) (3.1)

where Pr(Mi|Wi) =
∑1

j=0 Pr(Mi|Yi = j,Zi) Pr(Yi|Xi). Pr(Yi|Xi) is our tar-
get population distribution of Y before sampling. It follows from Eq. 3.1 that
unless Mi is independent of the outcome in the sense that Pr(Mi|Yi,Zi) =
Pr(Mi|Zi), a mode selection effect is present and with the existence of NMAR
nonresponse, the mode effects cannot be ignored in the inference process.

In our empirical study we assume a logistic model for Pr(Yi|Xi), and a
multivariate logistic model for Pr(Mi|Yi,Zi), with 4 possible values for Mi,
including nonresponse.

So far, we assumed no measurement effects. Denote by yi the value
measured for responding unit i, which in the case of measurement effects
may differ from the true outcome Yi. We account for possible measurement
effects by extending the model (3.1) as,

Pr(yi|Wi,Mi) =
1∑

j=0

Pr(yi|Yi = j,Wi,Mi)
Pr(Mi|Yi,Zi)

Pr(Mi|Wi)
Pr(Yi|Xi). (3.2)
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Denoting, Di = I(yi = Yi) where I(·) is the indicator function, and
defining 00 = 1, Eq. 3.2 can be written alternatively as,

Pr(yi=k|Wi,Mi)=
1∑

j=0

Pr(Di=jk(1−j)1−k|Yi=j,Wi,Mi) Pr(Yi=j|Wi,Mi).

(3.3)
Application of Eq. 3.3 requires modelling additionally Pr(Di = 1|Yi =

j,Wi,Mi) and in our empirical study we again assume a logistic model.
Notice that unlike in Eq. 3.1, we now only observe the pair (yi,Mi) and
for the non-respondents, only the mode. The target distribution remains
Pr(Yi|Xi).

4 Model Estimation

4.1. The Case of No Measurement Effects As before, consider first the
case of no measurement effects. Adding parameter notation, Eq. 3.1 takes
the form,

Pr(Yi|Wi,Mi;α0, β0) =
Pr(Mi|Yi,Zi;β0)

Pr(Mi|Wi;α0, β0)
Pr(Yi|Xi;α0), (4.1)

where α0 ∈ A and β0 ∈ B are the true parameter vectors. In what follows we
assume that the triples (Yi,Wi,Mi) are independent, identically distributed
(iid) random variables. Denoting δ0 = (α′

0, β
′
0)

′ ∈ A × B ≡ Δ ⊂ �k, a
compact parameter set, the (full) log likelihood can be written as,

Ln(δ) = n−1
n∑

i=1

�i(δ) = n−1
n∑

i=1

[
I(Mi <

↔
M)logPr(Yi,Mi|Wi; δ)

+I(Mi =
↔
M)logPr(Mi|Wi; δ)

]

= n−1
n∑

i=1

{
I(Mi <

↔
M)log[fi(δ)

Yigi(δ)
1−Yi ]

+I(Mi =
↔
M)log[fi(δ) + gi(δ)]

}
(4.2)

where fi(δ) = Pr(Yi = 1,Mi|Wi; δ) and gi(δ) = Pr(Yi = 0,Mi|Wi; δ).
There exist many optimization algorithms for maximizing the likeli-

hood defined by Eq. 4.2. In our empirical study we applied the Newton-
Raphson algorithm, which we describe briefly for later use. Denote, Sn(δ) =
n−1

∑n
i=1∇δi�i(δ), where ∇δi is the gradient operator with respect to δ and
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let Dn(δ) = n−1
∑n

i=1∇
(2)
δi �i(δ), represent the corresponding k × k Hessian

matrix. Starting with some initial value δ0, the Newton-Raphson recursive
algorithm is,

δj = δj−1 +D−1
n Sn(δ

j−1), j = 1, 2... (4.3)

The iterations continue until ||δj+1 − δj || < ξ for some small positive value
ξ, where || · || is the Euclidean norm. Denote, H1(α) = Pr(Y |X;α), H2(β) =
Pr(M |Y, Z;β ), fM (δ) = Pr(Y = 1,M |W ; δ), gM (δ) = Pr(Y = 0,M |W ; δ)
and Cn(δ) = n−1

∑n
i=1∇δi�i(δ)∇′

δi�i(δ). Let, C0n = Cn(δ0) and D0n =
Dn(δ0).

In what follows we define regularity conditions for the identifiability and
asymptotic properties of the MLE δ̂n. For this, we assume that as the
total sample size n increases, the number of sampled units in each of the
modes, except possibly the nonresponse also increases, in the sense that

nm ≥ qmn ;
∑↔

M
m=1 nm = n, for some fixed constants {qm}.

A1: The elements of W are bounded almost surely (a.s.) and the functions
H1(α) and H2(β) are identifiable and positive uniformly over A and B
a.s. (H1(α) is positive uniformly over A if P[minα∈AH1(α) > 0] = 1).

A2: The covariates in X (or in Z) contain at least one continuous variable
Xν(or Zν) not contained in Z (X). The derivative of H1(α)[H2(β)] with
respect to this covariate exists and is positive uniformly over A(B) a.s.

A3: Assuming the existence of Xν as above, if α �= α∗, then logH1(α) −
logH1(α

∗) = h1(X,α, α∗) satisfies ∂h1(·)/∂Xv �= 0 a.s. Similarly, As-
suming the existence of Zν , if β �= β∗, then logH2(β) − logH2(β

∗) =
h2(Z, β, β

∗) satisfies ∂h2(·)/∂Zv �= 0 a.s. The functions f↔
M
(δ) and

g↔
M
(δ) are linearly independent.

A4: δ0 is an interior vector of Δ, and D0n is positive definite for sufficiently
large n.

The first three conditions are needed to prove the identifiability and strong
consistency of δ̂n, the maximum likelihood estimator (MLE) of δ. A sim-
ilar condition to A2 is used in Follmann and Lambert (1991) for the case
of a mixture of logistic models with constant mixing probabilities, and in
Pfeffermann and Landsman (2011) for modelling non-ignorable assignments
in observational studies. The last condition is needed for showing that δ̂n
is

√
n consistent and asymptotically normal (CAN). Note that for the logit

and probit functions, the conditions A1, A3 and the second part of A4 hold,
if the elements of W are linearly independent.
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In what follows, →a.s.defines convergence almost surely and →D defines
convergence in distribution.

Theorem 1. Under the conditions (A1)-(A3), (i) The likelihood (4.2)
is identifiable and δ̂n →a.s. δ0. If, in addition, (A4) also holds, then (ii)

C
−1/2
n Dn

√
n(δ̂n−δ0) →D N(0, Ik) where Ik is the identity matrix of order k.

4.2. Model with Measurement Effects Next consider the model defined
by Eq. 3.2, which accounts also for measurement effects, in which case the
observed measurement, y, may differ from the true outcome, Y . Denoting
as before Di = I(yi = Yi), we may write,

Pr(yi,Mi|Di,Wi; δ) =

{
Pr(Yi,Mi|Wi; δ0) if Di = 1
Pr(1− Yi,Mi|Wi; δ0) if Di = 0

, (4.4)

where δ0 ∈ A× B = Δ is the true parameter vector.
Notice that the models for Pr(Yi|Xi;α0) and Pr(Mi|Yi,Zi;β0) are un-

changed but we need to model,

pij(γ0) = Pr(Di = 1|Yi = j,Wi,Mi; γ0), Mi �=
↔
M, j = 0, 1, (4.5)

where γ0 ∈ Γ is the true parameter vector.
Denote θ = (δ′, γ′)′ and θ0 ∈ Θ = Δ × Γ ⊂ �s, a compact set where

s = k + dim(γ0) . By Eqs. 4.4 and 4.5, the log-likelihood is now given by,

L̃n(θ) = n−1
∑n

i=1 �̃i(θ) = n−1
∑n

i=1

[
I(Mi <

↔
M)yi{log[pi1(γ)fi(δ)

+(1− pi0(γ))gi(δ)]}+ (1− yi){log[pi0(γ)gi(δ)
+(1− pi1(γ))fi(δ)]}+ I(Mi =

↔
M) log[fi(δ) + gi(δ)]

]
.

(4.6)

For Mi �=
↔
M , denote h3(γ) = (h03(γ), h

1
3(γ) )

′ ; hj3(γ) = Pr(D = 1|Y =
j,W,M ; γ) j = 0, 1 and define C̃n(θ) and D̃n(θ) in a similar manner as for
the model with no measurement effects but with �̃i(θ) replacing �i(δ). Let
C̃0n = C̃n(θ0), D̃0n = D̃n(θ0) and θ̂n the MLE maximizing the likelihood
4.6.

Suppose the following regularity conditions:

B1: Conditions (A1)-(A3) in Section 4.1 hold, the functions fM (δ) and

gM (δ) are linearly independent also forMi �=
↔
M and h3(γ) is identifiable

over Γ.

B2: Condition (A4) holds; γ0 is interior to Γ and D̃0n is positive definite
for sufficiently large n.
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Theorem 2. Under B1, (i) The likelihood (4.6) is identifiable and θ̂n

→a.s. θ0. If, in addition, B2 also holds, then (ii), C̃
−1/2
0n D̃0n

√
n(θ̂n − θ0)

D→
N(0, Is).

4.3. The EM Algorithm To maximize the likelihood (4.6), we apply
the iterative EM algorithm (Dempster et al., 1977) which, as shown below,
is particularly convenient in the present context. The algorithm has been
developed for computing the MLE in cases of incomplete data, which is what
happens in our case in the presence of measurement effects, where the true
outcomes are unknown.

The key idea underlying the EM algorithm is to add latent variables
to the observed data and define a modified likelihood as a function of the
observed data and the values of the latent variables. Denote by θl the param-
eter estimates at the l-th iteration. The algorithm cycles between two states.
In the first state, it calculates the expected value of the latent variables given
the observed data and θl, denoted by Si(θ

l). Next, the latent variables in
the modified likelihood are replaced by their expected values, thus resulting
in a “likelihood” denoted by M(θ, θl), which depends on Si(θ

l) and is much
easier to optimize than the original log likelihood (4.6). This step is called
the estimation- E-step. In the second state, the likelihood M(θ, θl) is maxi-
mized with respect to the unknown parameters, yielding the estimate, θl+1.
This step is called the maximization- M-step.

In order to implement the algorithm in our case, we define Di = I(yi =
Yi) to be the latent variable values. By Eqs. 4.5 and 4.6, the modified ith

log-likelihood is,

˜̃
�i(yi,Mi, Di|Wi; θ) = I(Mi <

↔
M) log[(pi1(γ)fi(δ))

Diyi

((1− pi0(γ))gi(δ))
(1−Di)yi

× (pi0(γ)gi(δ))
Di(1−yi) ((1− pi1(γ))fi(δ))

(1−Di)(1−yi)]

+I(Mi =
↔
M) log(fi(δ) + gi(δ)).

(4.7)

Taking the expectation of Di given (yi,Mi) with θ = θl yields,

Si(θ
l) = Pr(Di|yi,Mi,Wi; θ

l) =
Pr(Di, yi|Mi,Wi; θ

l)

Pr(yi|Mi,Wi; θl)
.

=
[pi1(γ

l)fi(δ
l)]yi [pi0(γ

l)gi(δ
l)](1−yi)

[(pi1(γl)fi(δl)) + ((1−pi0(γl))gi(δl))]
yi [pi0(γl)gi(δl) + (1− pi1(γl))fi(δl)](1−yi)

.

(4.8)

This defines the E-step. For defining the M-step, denote the ith log likelihood

in Eq. 4.2 for the case of no measurement effects as �i(A
(1)
i , A

(2)
i ,Mi,Wi, δ

l) =
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�i(δ
l), where A

(1)
i = Yi and A

(2)
i = 1 − Yi. By Eqs. 4.7 and 4.8 and some

simple calculations,

M(θ, θl) =
n∑

i=1

E
˜̃
�(yi,Mi, Di|Wi, θ)

=
n∑

i=1

{�i[A(1)
i (θl), A

(2)
i (θl),Mi,Wi, δ]+

�
� i (γ; θ

l)} (4.9)

where, denoting Si = Si(θ
l),

�
� i(γ; θ

l) = I(Mi <
↔
M) ln pi1(γ)

yiSi(1− pi0(γ))
yi(1−Si)pi0(γ)

(1−yi)Si

(1− pi1(γ))
(1−yi)(1−Si),

A
(1)
i (θl) = yiSi + (1− yi)(1− Si), A

(2)
i (θl) = yi(1− Si)

+(1− yi)Si.

The “likelihood” Eq. 4.9 is seen to be the sum of two terms, one of
only δ and the other of only γ. Thus, the maximization over θ is obtained
by maximizing each term separately, simplifying the maximization process
substantially.

In our empirical study we set the initial values by drawing many values
from a broad uniform prior distribution around θ0 = (δ̂An , 0), where δ̂An is
the MLE of the model without measurement effects, and use the value that
maximizes the log-likelihood as the starting initial value.

5 Prediction of Finite Population Means

Replacing the unknown model parameters by their MLE permits esti-
mating the true population mean (proportion), Ȳ(P ) =

∑N
j=1 Yj . Denote,

ρ̂i = Pr(Yi = 1|Xi; α̂); τ̂1,im = Pr(Yi = 1,Mi = m|Wi; δ̂), τ̂2,im

= Pr(Mi = m|Wi; δ̂), (5.1)

where δ̂′ = (α̂′, β̂′) denotes the MLE. For the case where the covariates{Xi}
are known for all the population units, we estimate,

ˆ̄Y(Model) = N−1
N∑

i=1

ρ̂i. (5.2)

Remark 1. As long as the model assumed for the population values
holds also for the sample, the use of Eq. 5.2 does not require probability
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sampling. Furthermore, if the sample is deemed to be informative in the
sense that the inclusion in the sample depends on the true outcome variable,
one may extract the population model from the model holding for the sample
data, by use of the relationship between the population and sample models,
as developed in Pfeffermann and Sverchkov (1999). This requires to model
also the probability Pr(i ∈ S|Yi, Xi; η).

When the covariates are known for only the sampled units and the popu-
lation size is unknown, we may use a modification of the Horvitz-Thompson
(HT) estimator, i.e.,

ˆ̄Y(HT,Model) =
n∑

i=1

π−1
i ρ̂i/

n∑

i=1

π−1
i . (5.3)

Assuming that each population unit can be classified by his or her preferred
mode, we can also estimate the population mean for each mode, which as
discussed in the introduction, is often of important interest on its own. For
the case where Wi is known for every j ∈ U , we estimate,

ˆ̄Y(Pm) = N̂−1
m

N∑

i=1

τ̂1,im; N̂m =
N∑

i=1

τ̂2,im. (5.4)

Otherwise,

ˆ̄YPm,HT = N̂−1
m,HT

n∑

i=1

π−1
i τ̂1,im; N̂m,HT =

n∑

i=1

π−1
i τ̂2,im. (5.5)

It is easy to show that under the conditions of Theorem 2, the predictors
defined by Eqs. 5.1–5.4 are

√
n-consistent for the corresponding true popula-

tion means, under an appropriate asymptotic framework for finite population
sampling. See Isaki and Fuller (1982) for such a framework.

Remark 2. The predictors 5.1–5.5 are computed the same way under
both the models with, and without measurement effects.

6 Model Evaluation

6.1. The Hosmer-Lemeshow Test The predictors developed in the pre-
vious sections are model-dependent and as such, the model used for their
construction needs to be tested. Many goodness-of-fit test procedures un-
der the frequentist approach for continuous outcomes have been proposed
in the literature. See, e.g., Pfeffermann and Landsman (2011) and Pfeffer-
mann and Sikov (2011) for review and references. In our empirical study we
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consider the case of binary outcomes generated from logistic models and we
apply the Hosmer Lemeshow (HL, 1980, 2000) goodness-of-fit test, which is
in common use for testing models for binary data.

The test statistic compares within pre-specified groups the number of
observed successes (yi = 1), with the number of expected successes, as pre-
dicted under the estimated model. For this, the data are first ordered ac-
cording to the predicted probability of success under the model evaluated.
Next, the units are grouped based on the ordering into a certain number of
groups of approximately equal size, (G = 10 groups is common), and within
each group the estimated expected number of successes, (the sum of the
predicted probabilities of success), is compared to the observed number of
successes. The test statistic is,

HL =
G∑

g=1

(Og − ng
¯̂pg)

2

ng
¯̂pg(1− ¯̂pg)

∼ χ2
(G−2), (6.1)

where Og is the number of observed successes in group g, ng is the number
of units in the group and ¯̂pg = n−1

g

∑ng

i=1 p̂gi is the mean of the estimated
probabilities of success. Hosmer and Lemeshow (1980) found through em-
pirical studies under a much simpler setup than in our case that the test
statistic (6.1) follows approximately the χ2 distribution with (G−2) degrees
of freedom, under the null hypothesis that the model fits the data.

6.2. Normalized Likelihood Ratio (N-LR) Test for Model Selection A
standard test of the null hypothesis that two models, one nested within the
other, fit the data “equally well”, is the likelihood ratio test. We apply the
test (with certain correction, see below), for testing the null hypothesis that
accounting for measurement effects in the extended model (3.2) does not
improve the goodness-of-fit compared to the model (3.1) with only selection
effects, or more formally, for testing that there are no measurement effects.

Distinguishing the models without and with measurement effects by the
superscripts A and B respectively, the standard test statistic is,

LRn = −2[lAn (δ̂)− lBn (θ̂)], (6.2)

where lAn (δ̂) =
∑n

i=1 �
A
i (δ̂) and lBn (θ̂) =

∑n
i=1 �

B
i (δ̂) are the corresponding

log-likelihoods computed with the MLEs, as obtained under the two models
(Eqs. 4.2 and 4.6). However, unlike in standard problems where the nested
model is obtained from the extended model by nullifying certain parameters,
this is not the case in our application where we restrict to logistic models,
since [1 + exp(−t)]−1 �= 0 for all t in a compact set and hence, the model
A without measurement effects is not nested in the model B with them. To
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deal with this problem, Vuong (1989) proposed a normalized likelihood ratio
test (N-LR) defined as,

LRnor =
LRn

ω̂n
, (6.3)

where ω̂2
n = 4n

[
n−1

∑n
i=1[l

A
i (δ̂)− lBi (θ̂)]

2 − (n−1LRn)
2
]
is an estimator of

the variance of LRn. The author shows that under the assumption that
the true parameter vector is an interior point and some other regularity
conditions, the asymptotic distribution of LRnor is normal. However, when
model A is correct, one would expect that some of the parameters γ which
define the probability of the measurement effects lie on the boundary of the
assumed parameter set. In this case, Vuong’s condition that the true param-
eter vector is an interior point is violated. A similar problem is demonstrated
in Wilson (2015). In the empirical study we approximated the distribution
of the statistic LRnor by parametric bootstrap.

7 Empirical Results Based on Simulations

7.1. Design of Simulation Study In order to assess the performance of
our proposed approach, we designed a simulation study which consists of the
following sages:

1. Generate a population of size N = 105 with values of three covariates,
X1i, X2i, X3i, generated independently from a Beta(2, 5) distribution.

2. Generate a binary outcome Yi from the logistic distribution;

Pr(Yi = 1|X1i;α) = logit−1(α0 + α1X1i), i = 1, ...,N. (7.1)

3. Classify the population units into four modes with probabilities,

Pr(Mi = m|Yi, X2i;βm) = exp(β0m+β1mX2i+β2mYi)

1+
∑3

m=1 exp(β0m+β1mX2i+β2mYi)
, m = 1, 2, 3

Pr(Mi = 4|Yi, X2i;βm) = 1−
∑3

m=1 Pr(Mi = m|Yi, Xi;βm),
(7.2)

where Mi = 4 =
↔
M defines the “mode” of nonresponse. Notice that the

model assumes NMAR nonresponse as the probability not to respond de-
pends directly on the outcome. The parameter values in Eqs. 7.1 and 7.2
were set such that the relative population sizes in the 4 modes are approxi-
mately (10%, 25%, 40%, 25%).

The population in Stages 1-3 has been generated only once, such that
the assessment of the performance of the proposed methodology is “design-
based”, over all possible sample selections from a fixed population. Alternatively,
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one could generate many populations and draw samples from each popula-
tion, but with a population of size N = 105, this would not make much dif-
ference.

4. Draw K = 1000 samples of size n = 5000 by simple random sampling
without replacement from the population obtained in 1-3.

5. Generate measured values for the sampled units from the model,

Pr(Di = 1|Yi,Mi = m,X3i; γm)

= logit−1(γ0m + γ1mX3i + γ2mYi) , m = 1, 2, 3. (7.3)

6. Estimate the model coefficients for each sample by maximizing the like-
lihood function for the respective model (with or without measurement
effects). We used the Newton Raphson algorithm (4.3) for estimating
the coefficients of the model without measurement effects (hereafter
model A), and the EM algorithm described in section (4.3) for the
model with measurement effects (hereafter model B). We used para-
metric bootstrap for estimating the standard errors (S.E.) of the model
coefficients and of the estimators of the true population mean, with 100
bootstrap samples for each parent sample. Estimating the S.E. of the
model coefficients by use of the inverse information matrix turned out
to be unstable, with occasional very extreme and even negative vari-
ance estimators. The computer code for running the simulation study
(and for the applications with real data in Sections 8 and 9) has been
written in MATLAB version 9.5.

7.2. Simulation Results Table 1 contains the mean of the estimated co-
efficients (Mean Est.), along with their empirical S.E., for the models without
(model A) and with (model B) measurement effects. The empirical S.E. are
the standard deviations of the estimates over the 1,000 samples divided by√
1, 000. We also computed the means of the estimated bootstrap S.E. but

they are not shown since they are very close to the empirical S.E. for all the
coefficients, under both the models A and B. We note in this respect that
the measurement effects under Model B are not negligible. We computed
for the first of the 1,000 samples the probabilities of measurement effects;
ai = Pr(Di = 0|Yi,X2iX3i) and found that Min(ai)=0.01, Q1(ai)=0.12,
Mean (ai)= 0.36, Q3(ai)=0.59, Max(ai)=0.99. (Q1 and Q3 are the 1st and
3rd quarters.)

As seen in Table 1, the mean estimates under both models are very
close to the corresponding true coefficients with very small standard errors,
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Table 1: True coefficients, means of estimated coefficients and empirical
standard deviations (S.E.) of estimates
Modes True Coefficients Model A Model B

Mean Est. Emp. S.E. Mean Est. Emp. S.E.

α0 = 1 0.99 0.004 1.01 0.01
α1 = −1 –0.99 0.003 –1.04 0.09

m = 1 β01 = −0.5 –0.53 0.011 –0.53 0.012
β11 = 3 3.00 0.014 2.90 0.026
β21 = −1 –0.99 0.006 –0.97 0.008

m = 2 β02 = 1 1.08 0.009 1.04 0.009
β12 = 3 2.98 0.012 2.89 0.026
β22 = −2 –2.00 0.007 –2.01 0.008

m = 3 β03 = 1 0.98 0.008 1.01 0.008
β13 = 3 3.02 0.013 2.95 0.027
β33 = −3 –3.01 0.008 –3.01 0.009

m = 1 γ01 = 0 – – 0.02 0.026
γ11 = −1 – – –1.01 0.022
γ21 = 0.5 – – 0.55 0.030

m = 2 γ02 = 0.5 – – 0.45 0.015
γ12 = −1 – – –1.01 0.011
γ22 = 1 – – 1.02 0.019

m = 3 γ03 = 0.3 – – 0.29 0.009
γ13 = −1 – – –0.97 0.009
γ23 = 1.5 – – 1.48 0.017

1000 samples

although it should be noted that in most cases the differences are significant
when tested by use of the standard t-statistic. As expected, the empirical
S.E. under Model B are somewhat higher than the corresponding S.E. under
Model A, as results from the existence of measurement effects under Model
B. As mentioned above, the means of the bootstrap S.E. estimators (not
shown) are very close to the corresponding empirical S.E.

To save in space, in what follows we restrict to only the results obtained
under Model B with the measurement effects. Similar (and somewhat better)
results have been obtained under Model A for which the observed values are
the same as the true values, with no errors.

Table 2 shows the results obtained when predicting the population means
and sizes for the various modes, using the predictors defined by Eqs. 5.2–
5.5. The predictor ȳS is the HT estimator when ignoring the mode effects,
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Table 2: Mean predictions of population and sub-population means and
sizes, and empirical S.E. (in parenthesis). Model B
Predictor m = 1 m = 2 m = 3 m = 4

Nm 8262 24017 44933 22788

N̂m 8277 (32) 24053 (55) 44989 (68) 22760 (41)

N̂m,HT 8240 (34) 24040 (53) 44960 (68) 22700 (53)
ȲPm 0.45 0.60 0.66 0.87
ˆ̄YPm 0.44 (0.0035) 0.60 (0.0020) 0.65 (0.0015) 0.87(0.0013)
ˆ̄YPm,HT 0.44 (0.0037) 0.61 (0.0022) 0.65 (0.0015) 0.86 (0.0015)

Ȳ(P )=0.67 ˆ̄Y(Model)=0.67 (0.001) ˆ̄Y(HT,Model)=0.67 (0.001)ȳS=0.62 (0.002)

1000 samples

using all the measurements including for the non-respondents. (Reduces to
the simple sample mean based on all the sample units under simple random
sampling).

Table 2 shows very good performance of the predictors, despite the exis-
tence of nonignorable measurement effects. The HT estimators have slightly
larger S.E. than the model-based predictors, which of course is expected
since the latter predictors use the information about the population covari-
ates, not used by the HT estimator. Notice how well the size and true mean
of the non-respondents (m = 4) are predicted, even with only the HT es-
timator. Finally, the use of the estimator ȳS (simple sample mean in our
case), which ignores the mode effects is seen to be biased, illustrating that
mode effects cannot be ignored when estimating population means. (When
ignoring also the nonresponse and computing the mean of only the observed
measurements, the corresponding estimator is ȳS = 0.52.)

7.3. Model Evaluation
7.3.1. Distribution of Hosmer-Lemeshow Statistic Under Model B. To

illustrate the distribution of the Hosmer-Lemeshow (HL) we drew 1,000 new
samples of size 5,000 without replacement from the same population and
subjected the true outcomes of the responding units to measurement effects
via the model (7.3). Figure 1 shows the smoothed empirical density of the
test statistic for G = 10 nearly equal-size groups over the 1,000 samples.
Recall that the HL statistic is supposed to have a χ2

(8) distribution under
correct model specification (Model B in our case). As can be seen, the
two densities are indeed very close, supporting the conjecture that the true
distribution is indeed χ2

(8).
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Figure 1: Empirical distribution of HL statistic under model B. Nonpara-
metric density estimation. Comparison to χ2

(8) density

In order to study the power of HL statistic, we assume under the null
hypothesis that the model for the mode selection probabilities is as defined
by Eq. 7.2, where in fact we generated the modes using the model,

Pr(Mi = m|Yi, X2i;βm, η) =
exp(β0m+β1mYi+β2mX2i+ηX2

2i)

1+
∑M

j=1 exp(β0m+β1mYi+β2mX2i+ηX2
2i)

,m = 1, 2, 3

Pr(Mi = 4|Yi, X2i;βm, η) = 1−
∑3

m=1 Pr(Mi = m|Yi, X2i;βm, η).
(7.4)

(Compare with 7.2).
Figure 2 shows the empirical rejection rates when using the HL test for

values η in the range η ∈ [0, 0.2], based on 1000 samples of size n = 5, 000
for each value η, generated by use of Eq. 7.4. For η = 0, (correct model
specification), the rejection rate is close to the nominal size of 0.05, as it
should be. As η increases (the assumed model is further away from the
correct model), the rejection rates increase monotonically, reaching powers
≥ 0.8, already for η ≥ 0.15.

7.3.2. Distribution of the N-LR Statistic Under the Correct Model. The
purpose of this section is to illustrate that we can approximate the distri-
bution of LRnor, the N-LR test statistic as defined in Eq. 6.3 by parametric
bootstrap. For this, we generated 1,000 samples of size 5,000 under Model
A (Eqs. 7.1–7.2) with the same true parameters as before, and other 1,000
samples of size 5,000 under model B. The first set of samples allow us to
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Figure 2: Rejection rates with significance level of 0.05, when true mode
selection probabilities are defined by Eq. 7.4. 1000 samples, η ∈ [0, 0.2]

assess the approximation of the distribution under the null hypothesis of no
measurement effects, while the second set allows to assess the distribution
of the test when there exist measurement effects. For this, we followed the
following steps:

1) Estimate the models A and B for each of the 2,000 samples and com-
pute the LRnor test statistic. At the end of this step we have 1,000
observations of the test statistic with data obeying the null hypothesis
of no measurement effects, and 1,000 observations of the test statistic
with data containing measurement effects as under the alternative hy-
pothesis, allowing us to estimate the true distributions under the two
hypotheses by the corresponding empirical distributions.

2) Generate for each of the first 10 samples generated under Model A,
1000 parametric bootstrap samples of size 5,000 under the model A,
using the corresponding estimated coefficients from the parent sample.
Re-estimate the two models for each bootstrap sample and compute
the LRnor statistic. This step generates 10,000 realizations form the
bootstrap distribution of the test statistic when the null hypothesis of
no measurement effects holds.

3) Repeat Step 2 but this time by generating the bootstrap samples from
Model B, as estimated for each of the first 10 parent samples generated
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Figure 3: Empirical and Bootstrap distributions of the normalized LR statis-
tic under Model A

under this model. This step generates 10,000 realizations form the
bootstrap distribution of the test statistic under the alternative hy-
pothesis that measurement effects exist.

Figure 4: Empirical and Bootstrap distributions of the normalized LR statis-
tic under Model B
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Figures 3 and 4 compare the empirical distributions under the two hypothe-
ses with the corresponding bootstrap approximations, showing sufficiently
close fit in both cases. Notice that when the actual observed data conform
with Model A, it is the first bootstrap distribution which will practically be
used for testing the null hypothesis of no measurement effects. When the
observed data conform with Model B, it is the second bootstrap distribution
which will practically be used.

8. Empirical Results for a Real Mixed-Mode Survey

8.1. Example of Measurement Effects As explained in the introduction,
the term measurement effect refers to the case where a sampled unit responds
differently, depending on the mode of response. In the Agriculture Census
of Israel carried out in 2018, 210 farmers (out of about 17,000) happened to
respond both by Telephone and via the internet, after receiving mistakenly a
reminder to respond via the Internet, even though they already responded by
telephone. Table 3 summarizes the results obtained for two of the questions
asked in the census: number (#) of workers in the farm, and total cultivated
area. Out of the 210 farmers, 131 farmers responded the same way on
Question 1 and 139 farmers responded the same way on Question 2. The
notation T>I (T<I) defines the farmers with the higher (lower) responses
on telephone than on the internet.

The figures in the table indicate big differences in the answers of the
farmers that provided different answers by the two modes (about one third of
the farmers responding by the two modes). In this example the measurement
effects cancel out when computing the means, but there is no guarantee
that this always happens, and proper models need to be used to account
successfully for the measurement effects. See next section.

8.2. Accounting for Mode Effects in a Real Mixed-Mode Survey In this
section we illustrate the performance of our proposed approach by using
data collected as part of the annual crime victimization survey in 2017,
administered by the Israel Central Bureau of Statistics (ICBS). The survey
collects information on victimization with respect to a variety of crimes, as
well as socio-demographic information. Similar surveys are carried out by
national statistical offices throughout the world. The sample is drawn by
probability sampling, and the sampled units can respond using either the
internet, or by telephone, implying that we have 3 modes, with the third
mode defined by non-respondents. The total sample size is n = 7035, with
11% responding via the internet (I), 60% by telephone (T) and 29% not
responding (NR).
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Although not a primary variable of interest in this survey, we chose as
the target outcome variable the binary variable Yi, taking the value “1” if
unit i has an academic degree (Bachelor or higher). The aim is to predict
the true population proportion of persons with academic degree. The reason
for this choice is that the ICBS has an extensive register of education, with
population coverage of over than 95%, so that we can assess the performance
of our method by comparing the predictors to the “truth”. The register is
complete for only 2016, but we don’t expect significant differences between
the two years. We confined our analysis to persons aged 20+ and based on
the register, the true proportion is Ȳ(P ) = 0.24. On the other hand, 41.4%
of the internet respondents and 23.5% of the telephone respondents in the
sample have an academic degree, indicating the existence of a mode selection
effect, and possibly also measurement effects.

In what follows we present and discuss the results of our study. We in-
cluded among the covariates (X) the variables gender (gen; male=1), age
(in years), and country of birth (cob; Israel=1, other countries=0). In ac-
cordance with the general methodology outlined in Sections 3–5, and the
models and notation in Section 7, we fitted the following models:

Pr(Yi = 1|Xi;α) = logit−1(α0 + α1agei + α2cobi + α3geni) (8.1)

Pr(M=m|Xi, Yi;β)=
exp(β0m + β1mYi + β2mcobi + β3mgeni)

1 +
∑2

m=1 exp(β0m + β1mYi + β2mCobi + β3mgeni)
,

m = T, I (8.2)

Pr(Mi = NR|Yi, Xi;β1, β2) = 1−
∑

m=I,T

Pr(Mi = m|Yi, Xi;βm),

Pr(Di=1|Yi,Mi=m,Xi; γm)=logit−1(γ0m + γ1mYi + γ2m agei + γ3mgeni),

m = T, I (8.3)

Table 4 shows the estimated coefficients and the parametric bootstrap S.E.
of the models (8.1) and (8.2), as obtained when fitting the models with-
and without accounting for possible measurement effects (M.E.). Table 5
shows the estimated coefficients and S.E. of the model (8.3), which accounts
for measurement effects. We also computed the means of the estimated
coefficients over all the BS samples (not shown), and found that they are
very close to the estimates obtained from the original sample, thus verifying
the asymptotic unbiasedness of our ML estimators.
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Table 5: Estimation of γ coefficients (8.3), when fitting the model which
accounts for possible measurement effects
Model covariates Est. S.E

Di|Yi,Mi = T,Xi; γm
Eq. 8.3

const. 0.2864 0.0016

Y 0.2934 0.0017
age 0.0686 0.0273
gen. 0.2331 0.0013

Di|Yi,Mi = I,Xi; γm
Eq. 8.3

const. 0.2827 0.0016

Y 0.1636 0.0009
age 0.1017 0.0539
gen. 0.1845 0.0010

S.E. are based on 1000 parametric bootstrap samples

As can be seen, most of the coefficients are highly significant in both
tables under the standard t-test. What we find a bit surprising is that the
coefficient of Y (having academic degree) in the models for Mi = T |Xi, Yi;β
and Mi = I|Xi, Yi;β is highly negative in all 4 models in Table 4, suggesting
that with the other covariates held fixed, having an academic degree actually
encourages nonresponse (the third mode). Also, for the model with measure-
ment effects (Table 5), the coefficient of Y is positive and highly significant
(but of much smaller magnitude), suggesting that having an academic de-
gree increases the probability of misreporting. Including more covariates in
the models could possibly resolve these, somehow unexpected outcomes.

Next, we study the performance of the model in predicting the true
population proportion, which as noted in Section 8.1, is basically known for
this application. We computed the following predictors:

1. ˆ̄Y(Model) = N−1
∑N

i=1 ρ̂i; ρ̂i = Pr(Yi = 1|Xi; α̂) (uses the covariate
information for all the population units) (5.2)

2. ˆ̄Y(HT,Model) =
∑n

i=1 π
−1
i ρ̂i/

∑n
i=1 π

−1
i ; πi = Pr(i ∈ S) (5.3)

3. ˆ̄YHT,True = N̂−1
∑n

i=1 π
−1
i Y True

i ; N̂ =
∑n

i=1 π
−1
i (uses the true values

Yi known from the education register).

4. ˆ̄YHT,Adj = N̂−1
Adj

∑n
i=1 π̃

−1
i yi; N̂Adj =

∑n
i=1 π̃

−1
i , the HT estimator

but with the standard base weights {ai = π−1
i } replaced by adjusted

weights to account for the nonresponse.
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5. ˆ̄YHT,imp = N̂−1
∑n

i=1 π
−1
i Ỹi; Ỹi = yi if unit i responds, Ỹi = Yi,imp if

unit i does not respond. The imputation was carried out using the
monotone imputation method of Rubin (1987, p. 172), based on the
observed sample values yi.

The estimators obtained under the two models (with out and with the
accounting for measurement errors), are shown in Table 6.

Computing the Hosmer-Lemeshow (HL) test discussed in Section 6.1
under the two models, and the normalized likelihood ratio (N-LR) test dis-
cussed in Section 6.2, yields (p-values in parentheses): HL(A) = 11.6 (p-value =
0.17), HL(B) = 9.44 (p-value = 0.31), LRnor = 0.21 (p-value = 0.34).

The results of this study show very clearly that our proposed model-based
predictors are much superior to the design-based estimators, which ignore

the mode effects ( ˆ̄YHT,Adj ,
ˆ̄YHT,imp), despite the use of only three covariates

for which the population values are known. (The estimator ˆ̄YHT,True = 0.25,
which uses the correct values of the outcome variable indicates that the
design-based estimator in the case of no measurement effects and nonre-
sponse performs well.) Model B, which accounts for possible measurement
effects seems to perform somewhat better than Model A, which assumes no

measurement effects (note the relative high value of ˆ̄YHT,Model = 0.28 under
Model A), although this is only partly reflected by the values of the two test
statistics, suggesting that for the variable of having an academic degree in
this survey, there are only small measurement effects, not detected by the
two tests considered.

9 Dealing with Proxy Surveys as Mode Effects

As mentioned in the introduction, we propose dealing with the problem
of proxy surveys via the methodology developed in the present article for
dealing with mode effects. We illustrate our proposal using data collected
as part of the Labor Force Survey (LFS), administered by ICBS. The LFS
in Israel is a monthly survey with a 4- in, 8- out, 4- in, rotation pattern.
The LFS is a proxy survey because every sampled person is asked to respond
about himself (direct response), and about all other members of the house-
hold (proxy response). For the present illustration we use the data observed
in all the months of 2018 for the first interview, which is carried out by a
personal interview. To further reduce the overall sample size, we restrict to
the Jewish population aged 20-40, yielding a sample of n=19,820 persons.

We again use the binary variable Yi “having an academic degree”, as our
target variable, thus allowing us to compare predictors of the population
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Table 7: Proportion of persons with academic degree

ȲP (true)
ˆ̄YNoModes

ˆ̄YDirect
ˆ̄YProxy

0.248 0.310 0.431 0.268

Preliminary design-based estimators. LFS, Jewish population age 20-40, ICBS, 2017

proportion of people with academic degree to the true proportion. Table 7
shows a few design-based estimates computed from the data, after modifying
the base sampling weights to account for nonresponse. The estimates shown
are:

ˆ̄YNoModes- Standard HT estimator when ignoring the mode effects, but
with the sampling weights adjusted for non-response,

ˆ̄YDirect- Design-based estimator using only the direct responses (with
adjusted weights),

ˆ̄YProxy- Design-based estimator using only the proxy responses (with ad-
justed weights).

As expected, the design-based estimator ˆ̄YNoModes that ignores the mode
effects performs poorly. The estimator based on only the direct responses

performs even worse but quite surprising, the estimator ˆ̄YProxy, which uses
only the proxy responses performs relatively well. It seems therefore that
when asked about the possession of an academic degree, the proxy responses
are generally more accurate than the responses of interviewees responding
about themselves. The importance of this outcome is in illustrating that it is
not necessarily true that interviewees responding about themselves provide
correct answers, or in a more general mode effects set up, that one can decide
on a mode with correct answers. Recall from the Introduction that several
methods proposed in the literature to deal with mode effects assume the
existence (and knowledge) of a mode which provides unbiased estimators for
the true population mean.

We now illustrate the use of our mode effects methodology to handle
proxy survey problems. We consider 5 different “modes” as follows: proxy
response- male (MP), proxy response- female (FP), direct response- male
(MD), direct response- female (FD), nonresponse (NR). By MP we mean
that the unit for which a proxy response is provided is a male and simi-
larly for the other modes. Out of the total sample size n = 19,820, 16.8%
responses have been obtianed by FD, 15% by MD, 30.1% by FP, 31.8 by
MP and 6.3% did not respond. Denoting by Sm the sample of units re-
sponding by mode m, we estimated the population proportion for each of
the modes using the ratio HT estimator with weights adjusted for nonre-

sponse, ˆ̄Y
(m)
HT,Adj = N̂−1

Adj,m

∑
i∈Sm

π̃−1
i yi; N̂Adj,m =

∑
i∈Sm

π̃−1
i and found:
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ˆ̄Y
(MP )
HT,Adj = 0.19, ˆ̄Y

(FP )
HT,Adj = 0.34, ˆ̄Y

(MD)
HT,Adj = 0.37, ˆ̄Y

(FD)
HT,Adj = 0.48, suggesting

the existence of mode effects. (Similar differences exist when using instead
the true values of Y as known from the register.)

Next we consider our model-based predictors. We use as covariates age
and years of study. (Years of study is known from the register, the gender of
the interviewee is accounted for in the definition of the modes.) To save in
space, we do not present the coefficients of the models (8.1)–(8.3) obtained
in this case.

Table 8 shows again the true value and the different predictors obtained
in this case. The notation is the same as before.

The results in Table 8 show very good performance of the model-based
predictors when fitting Model B, which accounts for possible measurement

effects, with the estimator ˆ̄Y(Model) that uses the population covariates yield-
ing an almost perfect predictor. On the other hand, the predictors obtained
under Model A, which assumes no measurement effects are clearly biased,
indicating the existence of measurement effects in this application. This re-
sult is reinforced by the HL test statistics, rejecting the null hypothesis of
Model A, HL(A) = 26.359 (p − value = 0.001) but not rejecting Model B,
HL(B) = 7.24 (p − value = 0.51). Also, the N-LR test rejects Model A in
favor of Model B, LRnor = 10.31 (p− value = 0.00).

The estimator ˆ̄YHT,True, which uses the true Y -values from the education
register performs very well, validating the sampling design and correspond-

ing estimator, but the estimator ˆ̄YHT,imp which imputes the missing data for
the nonrespondents based on the observed data and thus ignores the mea-

surement effects, and the estimator ˆ̄YHT,Adj , which attempts to correct for
the nonresponse by modification of the sampling weights (but does not ac-
count for the measurement effects) perform poorly, over-estimating the true
proportion by about 23%, the same as the model-based estimators under
Model A. We conclude that in this application, there are large measurement

Table 8: Proportion of persons with academic degree. Model- and design-
based estimators
Measurement
effects included
(?)

ȲP (true)
ˆ̄Y(Model)

ˆ̄YHT,Model
ˆ̄YHT,True

ˆ̄YHT,imp
ˆ̄YHT,Adj

NO (model A) 0.248 0.304 0.306 0.238 0.305 0.305
YES (Model B) 0.252 0.271

LFS, Jewish population age 20-40, ICBS 2017
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effects, captured well under Model B, but not under Model A and the mod-
ified design-based estimators considered.

10 Summary

In this article we propose a new comprehensive model-based approach to
deal with mode-effects, which is applied also to deal with proxy surveys; two
major problems in survey sampling. Our approach addresses both selection-
and measurement effects, underlying the possible mode-effects. Furthermore,
we allow for not missing at random (NMAR) nonresponse, by considering
the nonresponse as another mode. Unlike other approaches proposed in
the literature, we do not assume that one of the modes provides unbiased
predictors. The existence of such a mode is not guaranteed, and even if
it exists, it is not clear how to determine which one it is. The approach
is model-based but we cannot think of a proper design-based approach that
can deal simultaneously with selection- and measurement effects and NMAR
nonresponse, without very strong and generally untestable assumptions. In
this article we restricted to binary outcome variables (fitting logistic models
in the empirical illustrations), but the proposed approach can be extended
to continuous outcomes, with proper modifications.

We propose simple test procedures for testing our model, and in particu-
lar, for testing the existence of measurement effects, which are seen to work
well in the empirical studies, although more powerful tests can, and should
be developed. When applied to proxy surveys, an interesting open ques-
tion is how to define the different modes. In our empirical study we defined
them in an “ad-hoc” manner, but a more founded methodology should be
established. One possible way is to start with as many as possible modes,
estimate the means or other characteristics of interest for each mode, and
then collapse modes based on proper statistical analysis, so as to stabilize
the final results.

The empirical results with the simulated and real data sets are promising
and we encourage other researchers to test the approach with their data. We
mention again that the approach is applicable in principle also to nonprob-
ability samples, which become more and more popular in recent years with
the availability of new “big data” sets.

Open Access. This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons licence, and indicate if changes were made.
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Appendix

Let the variables Y,M,X,Z under Model A (y, Y,M,X,Z under Model
B) be defined on the probability space (Ω,F,P). Condition A1(B1) implies
the following condition:

(*) the sequences{�i(δ)}i∈S , {�̃i(δ)}i∈S and their first and second deriva-
tives are iid and bounded almost surely respectively.

Denote, �(δ) = I(M <
↔
M)log[f(δ)Y g(δ)1−Y ] + I(M =

↔
M)log[f(δ) + g(δ)],

and �0=�(δ0). Also, let �̃(θ)=I(M<
↔
M) (y log[p1(γ)f(δ)+(1−p0(γ))g(δ)]

+(1− y) log[p0(γ)g(δ) + (1− p1(γ))f(δ)]) + I(M =
↔
M) log[f(δ) + g(δ)],

where pj(γ) = Pr(D = 1|Y = j,W,M ; γ), D = I(Y = y) for M �=
↔
M, j =

0, 1.

Proof of Theorem 1. (i) First, we show that the model is identi-
fiable, that is, �(δ) = �(δ∗) almost surely implies δ = δ∗. Let F1 = {ω ∈
Ω|M(ω) �=

↔
M} and F2 = {ω ∈ Ω|M(ω) =

↔
M}. Note that under the condi-

tion A1 both sets are non-null. Let ω ∈ F1, and suppose thatδ �= δ∗ but
�(δ) = �(δ∗). Suppose first that α �= α∗.

H1(α)H2(β) = H1(α
∗)H2(β

∗) ⇒ H1(α)

H1(α∗)
=

H2(β
∗)

H2(β)
. (A.1)

Under Condition A2, there exists a variableXν not included in Z. Let,Hv
1 (α) =

∂H1(α)/∂Xv and denote by X−v the vector of covariates in X excluding Xν .
Taking the partial derivative of Eq. A.1 with respect to Xv yields,

Hv
1 (α)H1(α

∗)−Hv
1 (α

∗)H1(α)

(H1(α∗))2
= 0 ⇒ ∂ log[H1(α)H

−1
1 (α∗)]

∂Xv
= 0. (A.2)

By integrating Eq. A.2 with respect to Xv and using the notation in Eq. A.3,

logH1(α)− logH1(α
∗) = h1(X,α, α∗) = ψ(X−v), (A.3)

where ψ(X−v) is some differentiable function with respect X−v. Taking the
partial derivative of Eq. A.3 with respect toXv implies ∂h1(X)/∂Xv = 0,
which contradicts Condition A2 and hence α = α∗. It remains to show that
β = β∗. Substituting α = α∗ in Eq. A.1, it follows from A1 that β = β∗ and
thus δ = δ∗.

A similar proof applies when considering β �= β∗ and when there exists
a variable Zν in Z not included in X.
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Consider now ω ∈ F2. Using similar arguments to above, we can show
that f↔

M
(δ) and g↔

M
(δ) are each identifiable and by Condition A3, they are

linearly independent. (The functions fM (δ) and gM (δ) are defined in Sec-
tion 4.1). Hence,f↔

M
(δ)+g↔

M
(δ)= f↔

M
(δ∗)+g↔

M
(δ∗) ⇒ δ = δ∗. This completes

the proof of identifiability.
Second, the compactness of the parameter set and the identifiability prop-

erty implies by the information inequality that E�(δ0)−maxδ∈ΔE�(δ) ≥ 0.
Third, by (*) and Theorem A.2.2 in White (1994),

max
δ∈Δ

|Ln(δ)− E�(δ)| → a.s0. (A.4)

Given the results so far and using similar arguments to those used in the
proof of Theorem 3.4 of White (1994), it follows that δ̂n →a.s. δ0, thus
completing the first part of the theorem.

(ii) Note that E(∇δ0�0) = ∇δ0(E�0) = 0. The left hand side equality
follows by Condition (*). The right hand side equality follows from Con-
dition A4. The identifiability of the model shown in part (i) and Theorem
1 of Rothenberg (1971) implies that for sufficiently large n, C0n is positive
definite. The last two results imply by the Lindberg-Levy Central Limit
Theorem,

√
nC

−1/2
0n ∇Ln(δ0) →D N(0, Ik). (A.5)

Further, by (*), Condition A4 and Theorem A.2.2 in White (1994),

max
δ∈Δ

||Dn(δ)− E(Dn(δ))|| → a.s0 . (A.6)

Thus, by the strong consistency of δ̂n shown in the first part,

. ||Dn(δ̂n)−Dn(δ0)|| → a.s0. (A.7)

By Eqs. A.5–A.7, and Theorem of 6.2 in White (1994),

C
−1/2
n Dn

√
n(δ̂n − δ0) →D N(0, Ik). Q.E.D

Proof of Theorem 2. We again start by proving the likelihood iden-
tifiability (4.6). Denote as before, pj = hj3(γ) = Pr(D = 1|Y = j,W,M ; γ)

for Mi �=
↔
M , j = 0, 1 and p = h3(γ) = (h03(γ), h

1
3(γ) )

′ . Using the same steps
as in the proof of theorem 1, it can be shown that under Condition B1, the
probabilities fM (δ) and gM (δ) are both identifiable. Hence, by Condition

B1, for the set F̃2 = {ω ∈ Ω|M(ω) =
↔
M}, �̃(θ) = �̃(θ∗) ⇒ θ = θ∗, similarly
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to the first part of Theorem 1. For ω ∈ F̃1 = {ω ∈ Ω|M(ω) �=
↔
M, y(ω) = 1},

the contribution to the likelihood is given by,

G(δ, p) = p1fM (δ) + (1− p0)gM (δ) (A.8)

(compare with 3.6). Thus, under Condition B1, G(δ, p) is identifiable in the
sense that,

G(δ, p) = G(δ∗, p∗) ⇒ (δ, p) = (δ∗, p∗), (A.9)

and since h3(γ) is identifiable, we have that if p = p∗ ⇒ γ = γ∗ and θ = θ∗.
By repeating the same arguments as above, we establish the identifiabil-

ity of the model also for the set ω ∈ F̃3 = {ω ∈ Ω|M(ω) �=
↔
M, y(ω) = 0}.

The rest of the proof of strong consistency (part i) and asymptotic normality
(part ii) of the MLE, is similar to the proof of Theorem 1.
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