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The properties of long, numerically-determined periodic orbits of two low-dimensional chaotic
systems, the Lorenz equations and the Kuramoto-Sivashinsky system in a minimal-domain configu-
ration, are examined. The primary question is to establish whether the sensitivity of period averaged
quantities with respect to parameter perturbations computed over long orbits can be used as a suffi-
ciently good proxy for the response of the chaotic state to finite-amplitude parameter perturbations.
To address this question, an inventory of thousands of orbits at least two-order of magnitude longer
than the shortest admissible cycles is constructed. The expectation of period averages, Floquet
exponents and sensitivities over such set is then obtained. It is shown that all these quantities
converge to a limiting value as the orbit period is increased. However, while period averages and
Floquet exponents appear to converge to analogous quantities computed from chaotic trajectories,
the limiting value of the sensitivity is not necessarily consistent with the response of the chaotic
state, similar to observations made with other shadowing algorithms.

I. INTRODUCTION

Evidence has been offered in recent years [1-4] that
temporally-recurrent invariant solutions of the Navier-
Stokes equations — unstable periodic orbits — may provide
a constitutive skeleton organizing spatiotemporal dynam-
ics of turbulent shear flows in canonical geometries. Mo-
tivated by these advances, we have recently suggested
[5] how unstable periodic orbits may be used to design
control strategies for shear flows, rather than serving as
a tool to rationalise turbulence dynamics. In particu-
lar, in Ref. [5], we have specialized adjoint methods for
time-periodic systems [6-9] to unstable periodic orbits.
We have shown that enforcing periodicity conditions on
the adjoint problem, justified by the peculiar topology
of these trajectories, prevents the growth of exponential
instabilities that would otherwise feature prominently in
the solution of the adjoint equations [10, 11].

Operationally, the approach provides the sensitivity of
period averaged quantities with respect to small pertur-
bations of variables parametrising the equations of mo-
tion. Geometrically, small parameter perturbations can
be pictured as producing smooth, global state-space de-
formations of the unstable periodic orbits supporting and
shaping the attractor, as opposed to causing exponential
divergence. The approach is a special case of shadowing
theory ideas [12-14], recently introduced in the context
of sensitivity analysis of chaotic systems [15-18].

In principle, complete knowledge of the short, funda-
mental cycles should suffice to compute ergodic averages
using cycle averaging formulae [19-21]. Of relevance for
our original motivation is that a formalism that relies on
the sensitivity of such cycles to compute the sensitivity
of ergodic averages was proposed in Refs. [22, 23]. Ob-
taining all short cycles up to a given topological length,
i.e. low-period orbits identified by a short symbol se-
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quence [20, 24], may be practical for low-dimensional sys-
tems (see e.g. Ref. [25]). However, this step has proven
more challenging for turbulent shear flows [2, 26], given
well documented difficulties in locating invariant solu-
tions [27, 28]. This issue is particularly relevant, since
the quality of cycle averaging predictions using incom-
plete hierarchies is as good as the most important orbit
that one fails to locate [29)].

In light of such issues, we explore in this paper a heuris-
tic approach whereby available computational resources
are spent to locate one or a few periodic orbits, with suf-
ficiently long period for them to span a good fraction of
the attractor. The open question is whether sensitivities
of period averaged quantities computed over a long orbit
can be useful approximations for the response of ergodic
averages to parameter perturbations. Like period aver-
ages, sensitivities computed over different periodic orbits
vary from cycle to cycle. However, it is known that period
averaged quantities calculated from long periodic orbits
converges to a defined value when the period increase
[30]. Evidence showing a similar convergence for sensi-
tivities of period averages is currently not available in
the literature and would provide initial support for the
above heuristic. This approach is, admittedly, guided
more by empiricism rather than by a solid theoretical
basis. Hence, the aim of this paper is to make a first
step in exploring its viability. We resort, by necessity,
to low-dimensional systems, where obtaining a sizeable
inventory of long periodic orbits is feasible. We consider
the Lorenz equations at standard parameters [31] and a
small-domain Kuramoto-Sivashinsky system in the anti-
symmetric subspace [32, 33].

One remark is in order. It is true that some long pe-
riodic orbits might not provide good approximations, for
instance orbits close to bifurcation or orbits visiting cer-
tain areas of the attractor where the response is partic-
ularly large. As an illustrative example, in Ref. [5], long
periodic orbits of the Lorenz equations passing close to
the origin were found that have extremal value of the sen-
sitivity. Hence, to develop a quantitative understanding
of the potential impact of such extremal orbits, we locate



thousands of long periodic orbits by converging near re-
currences explored by the chaotic flow and report sensi-
tivity predictions of these periodic orbits in a statistical
manner. The analysis of this ensemble is clearly bound
to suffer of some form of survivor bias. For instance,
Newton-Raphson techniques often fail to converge when
the orbit shadowed by the near recurrence event possesses
multipliers close to the unit circle [34]. Nevertheless, this
bias does not prevent us to complete the original task,
which is to analyse the properties of typical periodic or-
bits that may be found numerically rather than the prop-
erties of all admissible cycles.

The rest of this paper is organized as follows. In sec-
tion II we lay down the general notation. This is followed
by section III, where we recall fundamental elements of
Floquet theory for the linear stability of periodic orbits
[35, 36]. In section IV we recall the sensitivity tech-
nique for unstable periodic orbits originally introduced
in Ref. [5]. With this introductory material, in section
V we establish the connection between Floquet stability
and sensitivity of periodic orbits. This analysis illustrates
more clearly the inevitable effects of bifurcations that pe-
riodic orbits undergo as parameters are varied and sup-
ports the interpretation of numerical results, reported in
section VI.

II. PRELIMINARIES

We consider dissipative dynamical systems of the form

du(t)
= t(u(), ), (1)
governing the evolution of the state vector u(t) € R",
with ¢ being time. We restrict the attention to problems
where the nonlinear vector field f depends only on one
parameter a € R, in regimes for which chaotic solutions
are observed for typical initial conditions. For systems
that depend on multiple parameters, the sensitivity of
time averaged quantities can be analysed over each pa-
rameter independently, or with an adjoint approach. We
denote with f, () € R™*" the stability matrix

£ult) = fu(u(t), o) = Z80:0) 2)

and define the Jacobian matrices M(¢,7) € R"*" t > 7,
satisfying the initial value problem
dM(t, 7
D) _ oo, 7,
with I the identity matrix. The dot product of two vec-
tors is denoted with a' - b, with the script " indicating
transposition of vectors and matrices.

We focus on periodic solutions of (1), satisfying
u(t +T) = u(t) for an unknown period T that is not set
a priori, but depends implicitly on the parameter a. We
shall thus consider the space of smooth periodic functions

Pr={ft):R=R, f(t) = ft+T)}, (4)

M(r,7) =1, (3)

parametrized by T, and extend this space to vector-
valued functions, denoted with P7. We will make use
of the norm || - [|pn induced by the inner product

T
ool =7 [ v wod 6)

0

for any two vector-valued functions v(t) and w(t) in Pp.

III. ELEMENTS OF FLOQUET THEORY

In this section, we briefly recall some elements of Flo-
quet theory [36, 37] and define the direct and adjoint
Floquet eigenfunctions. These functions are used in sec-
tion III as invariant subspaces in which the solution of
the sensitivity problem can be conveniently expanded,
shedding light on the relation between stability and sen-
sitivity of period averages.

For an arbitrary point on a periodic orbit, the eigen-
value decomposition of the monodromy matrix

M(T,0)er(0) = prer(0), k=1,...,n, (6)
produces the Floquet multipliers u; and the associated
right eigenvectors e (0). To simplify the notation and the
analysis of section V, we consider here the special case in
which multipliers are real and positive. In more general
cases, new function spaces in addition to P} are required
(see Ref. [36]). Assuming the multipliers are distinct, the
eigenvectors form collectively a basis of R™. From the
multipliers, the Floquet exponents A\, = log(uy)/T can
be calculated, defining the period averaged growth/decay
of tangent perturbations initially aligned to the invariant
subspaces ey (0).

We introduce the Floquet eigenfunctions wy(t) € Pp,
generated by the eigenvectors ey (0) as

wi(t) = exp (—Axt) M(¢,0)er(0), (7)

and satisfying the differential eigenvalue problem

dwy (¢
Lw(t) = dkt( ) —fa()wi(t) = =Newi(t), (8)
with unit || - |ps norm. Sorting the Floquet expo-

nents in descending order, we denote by x — 1 the
number of positive exponents. It is well known that
wy (t) = £(t)/[|f(t)[|pn is a marginal direction, with ex-
ponent A\, = 0 and multiplier ;+,, = 1. In other words, the
linear differential operator L is singular, with nullspace

Null {£} = span{w, (¢)}. (9)

The other useful element of Floquet theory for our pur-
poses, perhaps considered less extensively in the litera-
ture [38], are the adjoint Floquet eigenfunctions w; (¢).
These are elements of P} defined as

wi (1) = exp(=A(T = £))M(t,T) e (T),  (10)



where the vectors e; (T') are the left eigenvectors of the

monodromy matrix, satisfying
el (1) 'M(0,T) = urey (T)" (11)

for the same multipliers and exponents of the direct prob-
lem. The adjoint eigenfunctions satisfy the adjoint dif-
ferential eigenproblem

S Tt () = ~dewi @), (12

LTwi(t) =

where the operator £ is the adjoint of £ according to the
inner product (5). These two operators share the same
spectrum and the adjoint operator £T is thus singular
with nullspace

Null{£*} = span{w (t)}. (13)

A final remark is that, at any time ¢, the direct or ad-
joint eigenfunctions do not form individually an orthogo-
nal set of vectors but instead satisfy the bi-orthogonality
relation

wi ()" wy(t) = 6,Cr VL, (14)

with dx; the Kronecker symbol and with constants Cj, #
0eR.

IV. SENSITIVITY ANALYSIS

We now briefly recall the tangent approach to compute
the sensitivity of period averaged quantities [5]. Consider
an observable of interest, denoted by a function

J(t) = J(u(t)) : R" — R, (15)

that, for the sake of simplicity, is assumed here not to
depend explicitly on the parameter a. Let also denote
the partial derivative of the observable with respect to
its argument as Jy(t) = Ju(u(t)), mapping R” to R™.
Consider one periodic orbit u(t) € P} and define the
function J(a) : R— R

T
I(0) == /O J(u(t))dt (16)

as the period average of the observable over the periodic
orbit. This is a function of the parameter a since both
u(t) and T depend, implicitly, on it. The goal is to com-
pute the sensitivity of the period average with respect
to «a, the gradient d7/da (also shortened to 7, in the
following sections).

Linearisation of (16) as reported in Ref. [39] shows that
the gradient of the period average is given by the inner
product

dJ /da = [Ju(t), v(®)], (17)

where the perturbation v(t) € P} satisfies the tangent
equation

Lv(t) = £a(t) — TE(2). (18)

The perturbation v(¢) is the first order state-space defor-
mation of the periodic orbit u(t) when « is varied. The
scalar 7 = (dT/da)/T is the (unknown) relative period
gradient, producing an algebraically growing mode along
f(t), allowing v(t) to be time periodic. The introduction
of this term is akin to classical approaches in perturba-
tion/continuation analysis of periodic problems [35, 40],
where time is rescaled by the period. The forcing term
f.(t) € P is the derivative of the right hand side of (1)
with respect to the parameter

Of (u(t), a)

f.(t) = fo(u(t), ) = o . (19)

For a hyperbolic orbit, the differential operator L is

singular with nullspace given by (9) and equation (18) has

a one parameter family of solutions. Physically speaking,

this is a reflection of the translational invariance along a

periodic orbit: if v(t) is a solution, then v(t) + of(¢) is a

solution too, for any o € R, with same gradient d.7/da,
since

[Ju(®), £(8)] =0 (20)

for all possible cost functions when u(t) € P}. Hence, for
(18) to have a solution, the scalar 7 must have the unique
value that shifts the right hand side f,(¢) — 7f(¢) in the
range of the operator L, or, by Fredholm’s Alternative
(cf. [41], Lemma 1.1, pg. 146) makes it orthogonal to the
nullspace of its adjoint £, i.e. by satisfying

[[w;(t), £.(t) — Tf(t)]] =0. (21)
Hence, the scalar 7 could be in principle determined as

0.0
CylIE (@)l
if w(t) was known, with C, from (14). Numerically, it

is more convenient to drop the singularity by adding the
constraint

(22)

[v(®),£®)] = 0, (23)

which fixes the component of v(t) along the nullspace
and leads to the solution of (18) with minimum norm
[36]. In matrix form, the tangent problem reads

[[[-,fﬁ(t)]] fg)} ' [Vm = {fao(t)] (24)

and its solution provides the perturbation v(¢) and the
period gradient 7. Note that the left hand side of (24)
has the same structure of the Newton-Raphson linear
problems arising in the search of periodic solutions [5, 42],
and similar discretization techniques can be employed.




Constraining v(¢) to remain in P} by using an ap-
propriate numerical method [5] is the key to avoid ex-
ponential instabilities intrinsic to the tangent dynamics
around an unstable periodic orbit [10]. The solution v ()
will thus not grow exponentially along the most unstable
subspace wq(t), but will remain bounded, with magni-
tude and structure that depend on the complete stability
spectrum, as we shall see in section V. With a bounded
v(t), the gradient (17) is effectively the slope of the func-
tion J () obtained from continuation.

V. STABILITY AND SENSITIVITY

In this section, we explain the relation between the
linear stability of periodic orbits and the sensitivity of
period averages. We do not make use of the following
results for our numerical calculations in section VI, but
aim to develop tools to facilitate their interpretation.

Fundamentally, the approach consists in projecting
the tangent problem (18) onto the invariant subspaces
formed by the Floquet eigenfunctions. With the same
assumptions on the multipliers as in section III, the so-
lution v(t) is expanded in the Floquet eigenfunctions,

v(t) = Z wi (t)ag(t),

k=1

(25)

with unknown expansion coefficients ay(t) € Pr. The
forcing term in (18) is also similarly expanded

£ (1) = > wi(t)bi(t), (26)
k=1

where the functions by (t) € Pr can be determined by
dotting (26) with the k-th adjoint eigenfunction

wi .
b(t) = —A——mr (t);k fald),

where the bi-orthogonality relation (14) is used.
Substituting the expansion (25) into the tangent equa-
tion (18) and using (8), produces

k=1,... (27)

7n7

n

D

k=1

wi(t) {da(;;t(t)
(28)

Since the Floquet eigenfunctions form a basis of R™ for
all ¢t by assumption, the term in the square brackets in
(28) must be zero. We thus obtain a set of decoupled
linear ODEs with constant coefficients

dak(t)
dt
k = 1...,n, the tangent sensitivity problem expressed
in the basis of the Floquet eigenfunctions. Along the
neutral subspace f(t) the equation reads

day (1) _ wi ()" - fa(t)

= - f t n.
x e Il

= Apa(t) = bi(t) + 7I|£(2)]

PR 5’%)( =0.

= )\kak(t) + bk(t) - THf(t)|

P20k, xs (29)

(30)

4

In order for a,(t) to remain in Pr, the right hand side
must have zero integral over the period by Fredholm’s Al-
ternative, since the equation is self adjoint and a;(t) =1
is a nontrivial solution of the homogeneous adjoint equa-
tion. This constraints fixes the relative period gradient
T to a value that is the same as equation (22).

A particularly insightful expression can be derived for
the expanding and contracting directions. The solution
of the scalar ODEs day(t)/dt = Apag(t) + br(t) can
be expressed with a Green’s function approach (cf. [41],
pg. 148) as

T
an(t) = / e (is)ds ()
0 225

with uy the Floquet multipliers, and the upper bounds

suplax(6)] < sup [bu(O)]/IA] = Bi/IMel, (32)
the key result of this section, can be derived.
This bound suggests several remarks. First, with-

out further details on the coefficients by(t), generic pa-
rameter perturbations induce relatively small state-space
changes along the highly contracting or expanding direc-
tions, while most of the “yield” occurs along the Floquet
invariant subspace associated to Floquet exponents with
small magnitude. This is in stark contrast with classi-
cal sensitivity analysis methods for chaotic trajectories
[10, 43], where only the most unstable covariant Lya-
punov vector [44, 45] dominates asymptotically the so-
lution of the tangent equations [10]. When varying the
system parameter « towards a bifurcation, one (or a pair
of) Floquet exponent crosses the imaginary axis and the
tangent solution displays a large amplitude along the cor-
responding direction, resulting in large gradients of time
averaged quantities.

Second, the bound (32) shows that the amplitude of
the tangent solution along a particular Floquet eigen-
function wg(t) depends directly on the strength of the
projection of the forcing f, () on the associated adjoint
Floquet eigenfunctions, the coefficients b;. Hence, for
spatially extended systems, knowledge of the spatiotem-
poral dynamics of the adjoint Floquet eigenfunctions and
not just the direct ones [46-48], might provide an under-
standing of how physically relevant features of the solu-
tions are influenced by problem parameters [38]. One can
then interpret the adjoint Floquet eigenfunctions as spe-
cial directions where the forcing £, (¢) can be particularly
effective in modifying dynamical behaviour [49], which is
useful, for instance, for control design [9].

Third, and most importantly, the boundedness of the
forcing term f, (¢) and of the Floquet eigenfunctions im-
plies that the coefficients by (t), and thus the expansion
coefficients a(t) and the tangent solution v(t), have, on
average, similar magnitude for long periodic orbits if the
exponents of long periodic orbits converge as T' — co. At
this stage it is convenient to note that the Floquet ex-
ponents are the period averages of the “local exponents”



(50, 51]

wi(t) "y (£) + fu (1) Wi (t)

M) = ROl ’

(33)

uniquely defined functions of state space [52] expressing
the local growth rate of tangent perturbations along the
invariant subspaces (here || - || indicates the Euclidean
norm). By the Central Limit Theorem, the distribu-
tion of the k-th Floquet exponent across distinct orbits
of similar period T', must converge in law to a Dirac delta
function [53] with standard deviation decaying as T/,
assuming that the auto-correlation of time histories of
(33) decays sufficiently quickly [53]. Hence, the bound
(32) indicates that the distribution of the sensitivity of
period averages d7 /da will also converge to a delta func-
tion as T increases. In other words, while some scatter
might be observed for short cycles, long periodic orbits
will asymptotically provide the same sensitivity to pa-
rameter perturbations.

VI. NUMERICAL RESULTS

To answer the question posed in the introduction, we
now turn to numerical experiments and consider periodic
orbits of two well-known chaotic systems. The first is
given by the Lorenz equations [31, 54]

dul/dt = CT(’LLQ—Ul),
dug/dt = puy — ug — ujus, (34)
dU3/dt = UiUug — ﬂU,g,

where standard parameters ¢ = 10, § = 8/3 and p = 28
are used throughout. As in other sensitivity studies on
the Lorenz equations [10, 15, 39, 43, 55, 56], we consider
the sensitivity of the period average of the observable
J(t) = wus(t) with respect to perturbations of p. Nu-
merical integration of chaotic trajectories is performed
using a classical fourth-order Runge-Kutta method with
At = 0.005.

The second system is a finite-dimensional truncation
of a spatially extended system, the Kuramoto-Sivashinky
equation

ou ou  *u 0*u

E—FU%*F@—FV@—O, (35)
defining the evolution of zero-mean, spatially-periodic
fields u = u(x,t) over the domain = € [0,27] with dy-
namics restricted to the invariant subspace of odd solu-
tions [33]. Here, we consider a relatively high diffusivity
constant v = (27/L)?, with L = 39, the same value we
considered in previous work [5]. The spectral expansion

n

u(z,t) = Z tug (t) exp(ikx), (36)

k=—n

with up = —u_g, up = 0, is truncated at n = 28, leading
to a system of ODEs approximating solutions of the orig-
inal partial differential equation. Some of the numerical
results reported in the next sections have been checked
in a statistical sense at finer resolutions, with negligible
quantitative changes. We take the energy density

1 2
Ju(z,t)] = —/ u?(z,t) dz (37)
47 0
as the functional of interest and examine the sensitiv-
ity of its average with respect to the diffusivity v. Nu-
merical integration of chaotic trajectories is performed
using the fourth-order accurate implicit-explicit method

IMEXRKCB4 [57], with time step At = 0.125v.

A. Search of long periodic orbits

We use a global Newton-Raphson search algorithm
developed in previous work [5], based on the original
method of Ref. [42] and classical techniques for nonlin-
ear boundary value problems [58]. Briefly, at iteration k,
this method solves a Newton-Raphson update equation
to adjust a trial solution composed of a state-space loop
u; € Pr, and a period Tj. The loop is not, at least
initially, a solution of the equations, i.e. the residual

ri(t) = dug(t)/dt — f(ui(t), ) € Pp, (38)

is generally different from zero along the loop. The only
significant modification that we have implemented is that
the loop derivative operator d/dt is approximated using
an eight-order accurate finite-difference stencil (instead
of fourth order), enhancing the overall accuracy/cost ra-
tio and allowing longer orbits to be found. The same
high-order discretisation is used for the solution of the
tangent problem (24). Initial guesses are obtained from
near recurrences of the chaotic flow.

In previous work [5], we attempted to locate exhaus-
tively all short periodic orbits and examined their sen-
sitivity as a function of the topological length. In this
work, we adopt a different strategy, motivated by the
objective of examining the properties of typical long pe-
riodic orbits found by Newton-Raphson searches. To this
end, rather than considering the topological length, we
select a number of arbitrary reference periods, denoted
as T', and locate up to five thousand periodic orbits with
actual period falling within +5% of the reference period.
Periodic orbits do have inherent time scales (the period of
the shortest cycle), but for long reference periods we have
observed that the actual period of converged solutions is
uniformly distributed in the +£5% range. Hence, the ref-
erence periods can be selected arbitrarily and are chosen
here such that the maximum reference period Ty,.x is
about two orders of magnitude larger than the period
of the shortest admissible cycle, as indicated in table I.
This range is sufficiently wide to reveal the asymptotic
convergence of properties of long periodic orbits as the
period increases.



Search results are reported in figure 1. For short refer-
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FIG. 1. Number of unique periodic orbits found as a function
of the reference period T', for the Lorenz equations, panel (a),
and KS system, panel (b). The red line is at 5000. For the
KS system, the reference period is scaled by the diffusivity.

ence periods, we locate as many orbits as it is feasible and
the number of periodic orbits found grows exponentially
with the period. The number of periodic orbits found
quickly saturates the set threshold of five thousand or-
bits. We stress the fact that our focus is not to provide
a description of the statistical distribution of the com-
plete set of periodic orbits of high topological lengths,
nor to use such quantities to approximate the measure
using cycle averaging theory. Such calculations would be
biased by the sampling. Rather, we aim to develop an
understanding of what to expect from long orbits that
might be typically found numerically by converging near
recurrence events. Hence, the threshold is chosen so that
statistics over the ensemble are sufficiently robust.

We report in figure 2 the shortest and longest periodic
orbits found for the Lorenz equations, panel (a), and KS
system, panel (b). While the short cycles are topologi-
cally simple, longer orbits wind around the attractor in
a complicated fashion and are thus indistinguishable to
the eye from long chaotic trajectories. We build an in-
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FIG. 2. Projections of the shortest (solid red) and longest
(thin black) periodic orbits found in this study for the Lorenz,
panel (a), and KS equations, panel (b).

ventory of unique solutions by ensuring that all periodic
orbits found have period average (16) differing to at least

TABLE 1. Reference temporal grid spacing for the finite-
difference approximation of the derivative involved in the
search of periodic orbits, period of the shortest admissible
orbit and ratio between the largest reference period and Thin.

reference At Tmin Tmax/Tmin
Lorenz 0.01 1.5586 ~ 645
KS 0.125v 24.9080v ~ 201
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FIG. 3. Convergence of the norm of the residual (38) during
the Newton-Raphson search of long periodic solutions of the
Lorenz equation, panel (a), and KS equations, panel (b), for
one hundred test searches with reference period T = 1000,
and 7" = 5000v, respectively. Only converged searches are re-
ported. The horizontal red line indicates the stopping toler-
ance. Panels (c) and (d): success rate of the search of periodic
orbits estimated from the same test searches, as a function of
the reference period.

eight decimal places. This is few orders of magnitude
larger than the accuracy at which this quantity is de-
termined in the search, with the temporal discretisation
settings reported in table I. Because of the high num-
ber of orbits existing at such high topological lengths,
very few duplicates have been found. For both systems,
we have observed that relatively few Newton-Raphson
iterations are required and that the convergence history
is independent of the period T. However, the success
rate appears to decline slightly for longer periods, ar-
guably as a result of the increasing condition number of
the Newton-Raphson update problem. This is illustrated
in figure 3, where we show the history of the norm of the
residual (38) for about a hundred long period searches
for the Lorenz and KS equations, in panels (a) and (b),
respectively. Panels (c¢) and (d) shows how the success
rate, estimated from these test searches, varies with the
period. We have observed these trends to be independent
of the temporal discretisation and, for the KS equations,



of the spatial resolution. This gives us enough confidence
that these orbits are numerically reliable approximations
of exact solutions of the equations and not an artefact of
the search method.

In the next sections, we examine properties of these
orbits. We first focus on period averages and Floquet ex-
ponents in sections VIB and VI C, respectively. To char-
acterise how properties vary across the ensemble of orbits
at each reference period, we compute the ensemble mean
and standard deviation and denote these quantities by
mean[-] and std[-], respectively. We do not consider these
moments as substitutes of cycle averaging formulae but
we use them to characterise in statistical terms the prop-
erties of typical orbits obtained numerically. Probability
distributions of these quantities are also shown, with the
caveat that they only represent typical orbits, and not
the complete set of admissible periodic orbits. Sensi-
tivity of period averages are then finally considered in
section VID. We also compare averages, exponents and
sensitivities to analogous quantities computed on chaotic
trajectories, to address the original question whether long
periodic orbits can be considered as accurate proxies for
the chaotic state.

B. Statistics of time averages

The statistics of period averages over typical long pe-
riodic orbits are compared to statistics of time averages
of chaotic trajectories of same reference length 7' in fig-
ure 4. Here and in subsequent figures, error bars de-
note plus/minus three times the standard error [59]. The
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tion, panels (c, d), of the time averaged observable as a func-
tion of the reference period T', for chaotic trajectories (filled
diamonds) and periodic orbits (open circles). In Left panels,
Lorenz equations, right panels, KS system.

7

notation J7 emphasizes the dependence of averages on
the reference period. Panels (a) and (b) show the mean
period average of typical periodic orbits, for the Lorenz
and KS systems, compared to the long time average from
chaotic simulations. For chaotic trajectories the time av-
erage does not depend on T, since the average is a linear
operation, and the ensemble mean of short-time aver-
ages coincides with the long-time mean. For periodic
orbits, we observe a small positive/negative distortion
at low periods for the KS/Lorenz equations, in agree-
ment with previous work [30]. This distortion decays
as 1 increases. More importantly, in statistical terms,
the period average of typical long periodic orbits span-
ning increasingly larger fractions of the attractor appears
to converge, with the limitations of the present setup, to
the long-time average of chaotic trajectories. The asymp-
totic difference between predictions from periodic orbits
and chaotic trajectories is small in relative terms (about
0.0126%) and may be attributed to the finite observation

time (7" = 1000) used for periodic orbits.

The standard deviation of the finite-time average over
chaotic trajectories, panels (c) and (d), decays asymp-
totically as 7~/2. This is the trend predicted for an
ensemble of averages by the Central Limit Theorem [53]
if correlations decay sufficiently fast. In fact, both sys-
tems considered here display ‘typical’ chaos (in the ter-
minology of Ref. [60]), with correlations dying out expo-
nentially. Asymptotically, the standard deviation of the
period average decays in the same manner, i.e. longer
periodic orbits provide more accurate descriptions of the
long-time mean. On the other hand, for short periods,
the standard deviation of chaotic trajectories decays at
a faster rate for both systems considered. We argue that
this is an effect of correlations affecting the asymptotic
behaviour. For short periodic orbits, increasing T' does
not necessarily result in a lower variance, in agreement
with previous observations [30, 61]. In addition, the stan-
dard deviation of period averaged quantities over the en-
semble of periodic orbits is lower than that of chaotic tra-
jectories. This is likely a results of the fact that chaotic
trajectories are permitted to visit low-probability regions
of the attractor with extreme values of the function un-
der average, while periodic orbits with short period are
highly constrained and their exploration of the attractor
is less pronounced. Overall, the data in figure 4 suggests
that typical long periodic orbits found in computations
have, in statistical terms, similar properties to those of
chaotic trajectories.

Probability distributions of time averages over periodic
and chaotic trajectories are reported in figure 5 for two
different 7. Data for periodic and chaotic trajectories
is reported in panels (a-b) and (c-d), respectively. Data
for the Lorenz equations and the KS system is reported
in the left and right panels, respectively. Before com-
puting the distributions, samples are normalized such as
to have zero mean and unit variance, and the empirical
distributions are compared to the normal distribution,
indicated in grey in the figure. The distributions are
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FIG. 5. Probability distributions of time averages over peri-
odic trajectories, panels (a) and (b), and chaotic trajectories,
panels (c) and (d), for two different reference time spans 7.
Left panels, Lorenz equations, right panels, KS system.

skewed to positive values for short reference time spans.
For the Lorenz equations this was observed in previous
work [61]. The probability density function in figure 5-
(¢) for T = 1000 is characterised by many small peaks.
These can be attributed to the oscillatory nature of solu-
tions of the Lorenz equations, producing an interaction
between the oscillation period and the averaging time 7.
In fact, the width and spacing of these peaks decreases
with the period T'. Eventually, however, the distributions
of averages over chaotic and periodic trajectories appear
to collapse to the normal distribution, although less pro-
nouncedly for periodic orbits. Similar to the trends of
the standard deviations in figure 4, this is the behaviour
dictated by the Central Limit Theorem [53], for which
the probability distribution of time averaged quantities
can asymptotically be approximated near its peak and
within few standard deviations by a Gaussian probabil-
ity distribution. These results support the observations
reported in Ref. [30], in which the distributions of period
averages converge to delta functions as T — oo

C. Statistics of Floquet exponents

We now compare statistics of Floquet exponents of
typical periodic orbits with finite-time Lyapunov expo-
nents (FTLE) calculated over chaotic trajectories with
same reference period. We calculate the FTLEs using
classical methods [62, 63], involving propagating a set of
vectors in tangent space and occasionally performing a
re-orthogonalization using the Gram-Schmidt procedure
to counter the inevitable alignment to the most unsta-

ble subspace. Computing the spectrum of Floquet ex-
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FIG. 6. The real part of the fifteen leading Floquet exponents
of a long and a short orbit of the KS system. The inset shows
the eight leading exponents. The ninth exponent has a much
lower value, at around -82.

ponents is, however, a notoriously challenging problem
[64, 65], even for orbits of moderate period. The ex-
ponential growth of the entries of the monodromy ma-
trix (6) makes its eigenvalue decomposition inaccurate in
finite-precision arithmetic. In this work, where the focus
is on long periodic solutions, we have used a more ro-
bust algorithm recently discussed in Ref. [65]. With this
algorithm we have been able to compute accurately Flo-
quet exponents for arbitrarily long orbits, corresponding
to multipliers spanning thousands of orders of magni-
tude. Our implementation does not make use of iterative
QR-based eigenvalue algorithms, but works in a matrix-
free fashion and only requires an existing time-stepper
code for the linearised equations. The algorithm and a
small addition to Ref. [65] are presented in appendix A
for completeness.

For the KS system, all periodic orbits found have
only one unstable Floquet eigendirection, and with the
present spatial resolution twenty-six contracting direc-
tions. For illustrative purposes, the leading part of the
Floquet spectrum of one long and one short periodic or-
bit is shown in figure 6. The first eight exponents fall in
the range (—30,5), while the ninth exponent is sharply
more negative and is followed by a long tail of negative
exponents. These correspond to contracting “spurious”
modes [51, 66], with a value that is closely determined
by the linear term of the governing equations. All orbits
in our database have a similar spectrum.

We report in figure 7 data for the two non-trivial expo-
nents of the Lorenz equations, panels (a) to (d) and the
first three non-trivial exponents for the KS system, pan-
els (e) to (1). The evolution of the mean (top five panels)
and standard deviation (bottom five panels) of selected
Floquet exponents (open circles) and FTLEs (filled di-
amonds) is reported as a function of the reference pe-
riod T'. Similar to figure 4, error bars define plus /minus
three times the standard error. These are shown only



S e @ B ® T G (0 ©
= = = T % = x| = =
e ¢ CHAOS +o ™ ; §e° 88 e o ¢ Chaos o M1 ° z z $ Ses S ¢ 8 00 o
~ o 4 — —~— ° —~ —~
o 3 ) ) ) )
£ 8 3 2~ € o % £ o] 4
c o c c N c © c =
© S o © g & g S
Sellltt, 0028 2 2, BT
oou, ? i f 1* ¢ o 8 o o ©
o T T T ! T T T T T T ' T T T T T T o’. T T T
10 100 1000 10 100 1000 100 1000 5000 100 1000 5000 ,c_’ 100 1000 5000
% © 7 1% (d) % M 2 A 0 o1 0}
=T 7 % = o = A =~ e =7 s
|:<.— S > \\ I:g) ¢\Q\\ q:{_ °\\8 l:(m \\ (':? \
—~ \o\ ® — <@ — —~ \o\ — \0\
) A ) ) \ ) )
i 032 i g i 8, i 8 i s
T o < T o ONg 5 _ & S N S N
k72 i I SRR » | N s 7 1 N 5 \o\\ = \\
9 - ~T ! Y 9 N \\0 e —_ ~ T2 \3\ \Q \o
T T T T T T T T T T T T T T T T T T T T T T T v\_ T T T
10 100 1000 10 100 1000 100 1000 5000 100 1000 5000 2 100 1000 5000
T T T T T
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and FTLEs (filled diamonds) as a function of the reference period for the Lorenz equations, panels (a) to (d), and for KS

system, panels (e) to (1).

for Floquet exponents, since statistics of the FTLEs are
computed over a sufficiently large collection of indepen-
dent orbits to make the bars smaller than the symbols
in the figure. As the reference period increases, the av-
erage Floquet exponents of typical orbits generally con-
verge, within the statistical relevance of our ensemble,
to the corresponding infinite-time Lyapunov exponents.
In other words, typical long periodic orbits found using
Newton-Raphson searches have the same stability prop-
erties of long ergodic trajectories. Similar to period aver-
ages in figure 4, a small bias between long periodic orbits
and long chaotic trajectories can be observed, likely due
to the finite reference periods T used in these calcula-
tions. In addition, we also observe a distortion over short
periodic trajectories. The standard deviation of expo-
nents of periodic and chaotic trajectories decays asymp-
totically as 7~/2. For short periods, the standard devi-
ation of FTLEs of the Lorenz equations decreases more
rapidly, as 7~!. This is induced by exponential tails
characterizing the distribution of short-time FTLEs, of-
ten observed for intermittent systems [60]. On the other
hand, the standard deviation of Floquet exponents for
short orbits can be lower than asymptotic trends, for the
same mechanism outlined for period averages in section
VIB.

Probability distributions of the exponents are reported
in figure 8, where we present data for the longest refer-
ence period considered to illustrate the asymptotic be-
haviour. Normal distributions with mean and variance
equal to the sample mean and variance of the numerical
data are reported in grey. Since Floquet exponents and
FTLEs are averages of local quantities (33), their distri-

butions follow the same trend as that of the quantity J7.
Hence, for asymptotically long periods, the distributions
collapse to the same normal behaviour, at least within
plus/minus five standard deviations shown in the figure.

In summary, the distributions of the Floquet exponents

of typical periodic orbits found in our computations lo-
calise around the Lyapunov exponents of the chaotic flow.
Based on the discussion of section V and the bound (32),
this suggests that the distribution of the sensitivity of
period averages of typical long orbits will also localise
around an asymptotic value. This localisation is exam-
ined in the next section.

D. Statistics of sensitivities

The probability distribution of gradients 7, from pe-
riodic orbits of the Lorenz equations is reported in fig-
ure 9-(a), for three reference periods. For short periods,
the probability distributions are not normal, but have
a heavier left tail that decays fast enough for the first
and second central moments to be finite. Extremal pe-
riodic orbits with low sensitivity in the left tails feature
close passes to the unstable equilibrium at the origin [19].
Continuation in p of the extremal orbit found for 7' = 10
(with symbol sequence A'*B in the notation of Ref. [25]),
reported in panel (b), shows that points near the origin
of state space move towards the origin, thus causing a
lower sensitivity of the ug variable. For the longer or-
bits found in our computations from near recurrences,
we observe that the fraction of the period spent in the
neighbourhood of the origin diminishes in relative terms
and approaches that of long chaotic trajectories. As a re-
sult, the left tail of the distributions in figure 9-(a) shows
a progressively faster decay as T increases and the distri-
bution ultimately converges to a Gaussian law (denoted

with a dashed line), localised around jpf ~ 1.017.
Probability distributions of the gradient JVT for typi-
cal periodic orbits of the KS system are reported in panel
(a) of figure 10. Near the peak, the distributions can be
approximated reasonably well by a Gaussian law. How-
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FIG. 10. Panel (a): probability distributions of the gradient
IT for periodic orbits of the KS system. Panel (b): distribu-
tions of the deviation from mean[jf ] for T' = 500. The grey
parabola is a Gaussian fit to the distribution for 7" = 5000v.

ever, much higher/lower sensitivities are observed for a
few orbits, resulting in a significant departure from nor-
mality and heavy tails. To characterize these tails more
precisely, we find fifteen thousand more periodic orbits
for T = 500 and show in panel (b) the probability dis-
tribution of the deviation from the mean of the distribu-
tion in panel (a), for this reference period. The tails are
well described by a power-law distribution of the form
p(z) = ™ with exponent n = 3. This structure is an
inherent feature of the problem and not a numerical arte-
fact depending, for instance, on the resolution.

As illustrated in section V, large sensitivities can be
directly associated to bifurcations. This is illustrated in
figure 11, where we report the continuation analysis of
an orbit at 7' = 500 with large gradient 7, ~ 1572.27.
The average energy density J(v) and its gradient 7, (v)
are reported as a function of the bifurcation parameter v
in panels (a) and (b), respectively. Near the bifurcation
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FIG. 11. Panel (a): period average of an orbit with 7' = 500
with large positive gradient 7, ~ 1572.27, continued over the
parameter v. Panel (b): sensitivity of the period average for
the same orbit. Open circles denote data from the continua-
tion. The red curve is the model (40) fitted to the data. The
smaller inset shows the same quantity on shifted coordinates,
in a bi-logarithmic plot.

point, denoted by v, the period average is well described



by the functional form
J W) =Co+ CivVv —vp + Co(v — 1),

where the square root term is typical in normal forms of
bifurcations for periodic orbits [37]. The gradient is then

_ G
2V — 1

and approaches infinity at v, as 1/4/v. Fitting the data
in panel (b) to the model (40) shows that the constant
(5, the gradient measured sufficiently far away from the
bifurcation point, is about —246.65, in line with the high
probability region of the distributions in figure 10-(a).

The functional form (39) is sufficient to explain the
structure of the tails in figure 10. To this end, assume
that periodic orbits appear in bifurcations at critical val-
ues v, as v is increased, as expressed by (39). Focusing
at a given T, assume also that the number of periodic or-
bits is large, so that J(v) can be thought of as a random
variable, with the coefficients Cy, C, Cy and the bifurca-
tion point v, being random variables with values differ-
ing from orbit to orbit. The gradient 7, (v) is then also
a random variable that can take arbitrarily large values
if v — v, is small. Now, the probability that the gradi-
ent J,(v) is less than some large positive constant  can
be expressed by introducing the cumulative distribution
function Py, (x), defined as

Pg,(x) = prob 7, (v) < x]
=1-prob[J,(v) > 7]
=1—prob [v — v, < (C1/22)?], (41)

V > Uy, (39)

T (V) =~ + Cs (40)

where we have used the definition (40) and neglected
Cs, since x > 1, to develop the algebra in the last
step. The probability in the third line can be equiv-
alently interpreted as the probability that bifurcation
points are closer to the reference value than a distance
(C1/2x)%. Assuming the points v, not to be preferen-
tially distributed on the real line near v, this probability
is then cx~2 for some constant c¢. In other words, the
larger x, the less likely is that a periodic orbit bifurcates
near v. Hence, the cumulative distribution of Py, (z)
must, asymptotically for large x, obey

Ps(z)=1—cz 2 (42)

The probability distribution of the gradient 7, can then
be obtained by differentiating the cumulative distribution
with respect to its argument, leading to the power-law

3

plx) =cx™, xz>1, (43)

the behaviour observed in figure 9. More generally, sam-
pling functions that have poles of the form (v — 14)7,
produces probability distributions with power-law tails
of the form p(x) ~ =™, x > 1, with exponent n =
(v = 1)/, leading to n = 3 for the present case with
v = —1/2 of equation (40).
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FIG. 12. Dependence of the average, panels (a) and (b), and
standard deviation, panels (¢) and (d), of the gradient JPT ,
for the Lorenz equations (left panels), and J,,T for the KS
system (right panel), on the reference period T. For the KS
equations, the median and interquartile range are used, de-
noted as median[-] and iqr[-]. Error bars for the KS system
are estimated using a bootstrapping technique.

We now come to the central result of this paper and
examine the sensitivity of typical periodic orbits as a
function of the reference period. For distributions with
power-law tails of the form p(z) ~ ™, central moments
of order m are undefined for m > n — 1. For the KS
system, with n = 3, while the mean sensitivity across pe-
riodic orbits is defined (although convergence is weak),
the standard deviation is not. Hence, for this system, we
use the median and interquartile range, as measures for
the localisation and variability of gradients, respectively
Results are shown in figure 12. Panels (a) and (b) show
the mean and median gradient for the Lorenz and KS sys-
tems, respectively. Panels (¢) and (d) show the standard
deviation and interquartile range of the gradient. We ob-
serve that, as T — oo the mean/median converges to a
value that is approximately J, = 1.017 and J, = —155,
for the Lorenz and KS systems, respectively. Given the
bound (32), the convergence of sensitivities is consistent
with the convergence of the Floquet exponents of figure
7. However, for short cycles, the sensitivity of periodic
orbits can be, in average terms over the inventory of avail-
able orbits, remarkably different to that of long cycles.
This behaviour is more pronounced for the KS system.
The standard deviation and interquartile range of the
sensitivity follow the same asymptotic behaviour of the
period averages and decay asymptotically as T2 in-
dicating that the corresponding probability distributions
localise around the averages of panels (a) and (b). An
important remark is that sensitivity computations using



periodic orbits do not suffer from shadowing errors dis-
played by shadowing methods applied to chaotic trajec-
tories, e.g. the Least-Squares Shadowing [67] and Pe-
riodic Shadowing algorithms [39]. For such algorithms,
convergence proofs have been offered that suggest that
the standard deviation of sensitivity calculations on hy-
perbolic systems should first decay as 7! as a result
of the approximations of the exact shadowing direction
involved in these algorithms.

Overall, these results show that the sensitivity com-
puted from typical long periodic orbits found in compu-
tations converges to a well defined value as the period
increases. This is not to say that all long orbits can be
considered good proxies, as the tails of figure 10 demon-
strate, but rather that sensitivities computed from longer
orbits found in computation are likely to be closer to the
asymptotic value. This asymptotic value of the sensitiv-
ity is now compared with the response of long-time av-
erages to finite-amplitude parameter perturbations using
long chaotic simulations. Carefully conducted numerical
approximations of the gradient using a finite-difference
formula (see Ref. [39] for details) show that the response
of the average of ug to perturbation of p in the Lorenz
equations is approximately 7, ~ 1.002, well below the
asymptotic value from long periodic orbits. We remark
that this difference is likely not a bias arising from using
periodic orbits. In fact, the same difference has been pre-
viously observed using other shadowing algorithms ap-
plied to chaotic trajectories [39]. Numerical evidence has
been provided [68] suggesting that the Lorenz equations
have a linear response to perturbations of the parameter
p, despite not being hyperbolic (it is a singularly hy-
perbolic system in the terminology of Ref. [69]). For this
system, it has also been speculated [70] that some observ-
ables might vary continuously with parameters and that
the bifurcating orbits have very long period and their ef-
fect of the invariant measure is negligible. How to recon-
cile the existence of a linear response with the difference
we observe between the prediction of shadowing methods
and the actual response of the system is a question that
deserves further analysis.

For the KS system, we show in figure 13 how the long-
time averaged energy density varies with the diffusivity.
The data points are obtained by first computing averages
over tens of thousands of long independent segments of
length T" = 5000v, and then reporting the median value,
which is more robust to outliers arising from initial con-
ditions leading to a non-chaotic state. Using a bootstrap-
ping technique we have also computed the standard error
on the median, which is typically smaller than the sym-
bol size in the figure, and it is thus not shown. We use
this approach, instead of reporting the time average of
one long chaotic computation, as it provides a measure
of the accuracy of long-time average estimate. Panel (b)
and (c) focus near the reference diffusivity v = (2r/39)?
in the area spanned by the vertical lines in panels (a)
and (b), respectively. The dashed line represents the
asymptotic gradient J, from periodic orbits. The sys-
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FIG. 13. Long-time mean of the energy density as a function
of v. Data points denote the median time average across
thousand of simulations from different initial conditions, with
averaging time 7' = 5000v. The dashed line represents the
slope predicted by periodic orbits with reference period T' =
5000v at the reference diffusivity v = (27/39)%. Panels (b)
and (c) focus on the area between the two red vertical lines
in panels (a) and (b), respectively.

tem clearly lacks a linear response, in the sense that the
limit
T+ dv)—T>®(v)

li
11m Su s

Sv—0

(44)

is not defined, as the response of the system is not pro-
portional to the perturbation in the parameter [70-72], at
any scale. As the distributions of sensitivities in figure
10 suggest, some orbits are always infinitesimally close
to bifurcation and small parameter perturbations might
induce abrupt changes in the structure of the attractor,
making chaotic averages non-differentiable. In such con-
ditions, the meaning of gradients obtained from linear
methods, either on periodic or chaotic trajectories, is un-
clear.

VII. CONCLUSIONS

In this paper we set out to address the question
whether typical long periodic orbits found numerically
may be used as accurate proxies for the sensitivity of
the chaotic state to parameter perturbations. Our mo-
tivation to address this question arises from well known
challenges in locating periodic orbits in fluid systems gov-
erned by the Navier-Stokes equations, and the consequen-
tial possibility that predictions of cycle averaging formu-
lae using an incomplete set might be inaccurate. If the
answer to the above question is affirmative, an heuris-



tic strategy would be to spend available computational
resources to locate one or few orbits, of sufficiently long
period. Accurate sensitivity information from these or-
bits may then facilitate control and optimisation tasks.

Here, we have considered long periodic orbits of two
low-dimensional chaotic systems, the Lorenz equations at
standard parameters and a minimal-domain Kuramoto-
Sivashinky system with dynamics restricted to the anti-
symmetric subspace. We have built an inventory of thou-
sands of periodic orbits with period up to two orders of
magnitude larger than the shortest admissible cycle. This
approach was not guided by the idea of obtaining an ex-
haustive hierarchy of cycles and a complete understand-
ing of their properties. Rather, we aimed to examine
in statistical terms the properties of typical long orbits.
This analysis is naturally biased by the search process,
but the bias leans precisely towards the direction required
to answer our original question, i.e. it favours orbits that
can be found in practical computations.

One conclusion from this study is that period aver-
ages of long orbits appear to converge to the long time
average of chaotic trajectories. Floquet exponents, be-
ing the period averages of the local rate of growth of
infinitesimal perturbations, also exhibit the same be-
haviour. Hence, Floquet exponents of long orbits con-
verge to the Lyapunov exponents calculated using stan-
dard methods. These results are interesting, but perhaps
not so important from an operational point of view, since
these quantities can be calculated directly from chaotic
trajectories at a lower cost. The important result is that
the sensitivity of period averages of typical periodic or-
bits also converges to a defined value as the period in-
creases. This result is consistent with the convergence
of the Floquet exponents, based on the relation between
stability and sensitivity of orbit, established in this pa-
per. Interestingly, the probability distribution of sensi-
tivities from typical orbits can display power-law tails of
the form p(z) ~ x~3. This result can be explained by us-
ing a statistical argument and classical normal forms of
bifurcations of periodic orbits. In practice, this suggests
that sensitivity information from orbits found numeri-
cally may occasionally be quite inaccurate.

Some open challenges are now considered. First, as
also observed elsewhere with other shadowing algorithms
[39, 73] the sensitivity of most typical long periodic or-
bits is not necessarily consistent with the response of the
system to finite-amplitude parameter perturbations. In
absence of differentiability, the meaning and value of sen-
sitivities from periodic orbits (or other shadowing algo-
rithms) is unclear and deserves further analysis. The
conjecture is that for high-dimensional systems, where
statistics behave as if a linear response existed [13, 74],
the “thermodynamic limit” of Ruelle [13], may be in-
voked and a better consistency between sensitivities from
shadowing methods and the response of the system might
be observed [39, 73]. However, evidence in support of this
conjecture is currently lacking.

A second challenge is that the applicability of the ideas
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discussed in this paper to fluid systems governed by the
Navier-Stokes remains unclear (see Ref. [2]). One major
issue is that the increase of system dimension inevitably
implies a decrease of good near recurrence events. As
advocated in Ref. [27] more robust search methods are
required. A third potential issue is that the size of
the linear systems arising in the Newton-Raphson search
iterations grows linearly with the period T, regardless
of the numerical method utilized, i.e. either for global
search methods [5, 42] or with multiple-shooting tech-
niques [58, 75]. The condition number of these problems
grows with 7', introducing errors in the Newton-Raphson
corrections that might eventually prevent convergence.
Hence, finding long periodic orbits might, eventually,
prove too challenging.

Appendix A: Floquet exponents of long periodic
orbits

The algorithm used to compute Floquet exponents of
long periodic orbits follows closely the approach origi-
nally introduced in Ref. [65]. For completeness, we de-
scribe in this appendix this algorithm and outline our
novel contribution.

The algorithm exploits two fundamental facts. The
first is that the Jacobian matrices (3) obey the multi-
plicative property

M(t2,t0) = M(t2, t1)M(t1, o), (A1)
for any times to > t; > tg. Hence, the monodromy ma-
trix M(T,0) can be equivalently expressed as the prod-
uct of M short-time Jacobian matrices M; = M(t;,t;-1),
i=1,...,M, as

M(T,0) =MyMjp;—1 ... My, (A2)
for a partitioning of the interval [0,7] into M sub-
intervals specified by times 0 =tqg > t; > ... > ty_1 >
tyr = T. Note that the Jacobian matrices M; obey the
cyclic property Mp;+1 = M.

The second fact is that a well-conditioned eigenvalue
revealing decomposition exists for products of matrices
such as (A2). This is the periodic real Schur decom-
position [76, 77], initially introduced in the context of
Floquet analysis in Ref. [64] for the computation of the
multipliers and more recently extended [51, 65] to com-
pute the eigenfunctions. This decomposition consists in
factorizing the short-time Jacobian matrices using a set
of orthogonal matrices Q;, ¢ = 1,..., M, satisfying the
cyclic property Qo = Qys, as

M; = Q;R.Q/

where the factors R;,7 = 1,...,M — 1 are upper tri-
angular matrices and R, is in real Schur form, a block
upper-triangular matrix with either 1 x 1 and 2 x 2 blocks
on the diagonal, in case the monodromy matrix possesses
pairs of complex conjugate multipliers.

(A3)



Using these two facts, the monodromy matrix can be
expressed in real Schur form as
M(T,0) = QoRys--RoR1 Qg - (A4)
The product Ry;...RoR4 and the monodromy matrix are
unitarily similar and thus share the same spectrum of
eigenvalues. However, because of the structure of the
factors R;, obtaining the spectrum is a straightforward
computation, since the spectrum of a block triangular
matrix is the union of the spectra of the blocks. The
structure of the block upper triangular factor Rj; deter-
mines whether exponents are real or form complex conju-
gate pairs (see Ref. [78], Th. 7.4.1). For a 1 x 1 block at
location (i,7), a real Floquet exponent can be obtained
as

1
T

=

M
Ai =log(p) /T = 7 log | | [R;lii = %ZIOg[Rj]ii
j=1
(A5)
Computing the sum of the logarithms is recommended,
as multiplication can quickly over/underflow before the
logarithm is taken. For a 2 x 2 block, a pair of complex
conjugate exponents can be obtained with a bit more
work by recursively multiplying all 2 x 2 blocks of the
factors R; at location (i,7 + 1), and accumulating the
sum of the logarithms of scaling factors required to set
the largest element in the partial products to have uni-
tary magnitude. Overall, this algorithm only operates on
well-conditioned short-time Jacobian matrices, instead of
forming the monodromy matrix, and it is numerically ro-
bust.

The numerical algorithm required to obtain the factors
R; and Q; in equation (A3) from the short-time jacobian
matrices is based on classical QR-based eigenvalue algo-
rithms [78, 79]. Developing a robust implementation is a
lengthy and delicate task. In this paper, we have adopted
a matrix-free algorithm introduced in Ref. [65], which is
a specialization to periodic orbits of classical methods to
compute Lyapunov exponents [62]. The approach only
requires the action of these matrices on a set of tangent
vectors and is thus computationally more efficient when
only a handful of the leading Floquet exponents is re-
quired. The algorithm is simpler to implement, does not
require advanced linear algebra technique and only re-
quires minor modifications to an existing time-stepper
code for the linearised equations.

The algorithm is iterative and we denote quantities
at iteration k, with a superscript (k). First, a set of
m linearly independent tangent vectors is defined, where
m is the number of desired exponents. For notational
convenience, we arrange them as the columns of matrix
Qf € R™™ where we use a hat to denote a matrix with
reduced dimensions. The period is divided into M sub-
intervals, which need not have the same size. In each sub-
interval, the columns of QF are: 1) propagated forward
in time using a linearised time-stepping solver and 2) re-
orthogonalized in place using a Gram-Schmidt procedure.
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These two steps are formally equivalent to computing

M;QF , =QIR} i=1,...,M, (A6)
which is akin to (A3). Note that forming M; is not neces-
sary, only its action on the columns of Qf_l is required,
making the approach suitable for PDE problems. The
triangular factors R¥ € R™*™ from the orthogonaliza-
tion are stored for later processing. The time between
subsequent re-orthogonalizations depends on the expand-
ing/contracting characteristics of the tangent space and
should be chosen such that the columns of Q¥ remain
numerically linearly independent.

After the last sub-interval, the iterations are restarted
by setting QIS‘H = Q% and after k iterations the mon-
odromy matrix is formally equivalent to

M(T,0) = QEFIRE, .. . RERYQET. (A7)
If the first m Floquet multipliers are all real and dis-
tinct, the columns of QISH converge geometrically to a
basis for the subspace spanned by the leading m Floquet
cigenvectors. Hence, the difference QT — QF| con-
verges to zero in any norm and (A7) is the real Schur
form of the monodromy matrix, as in equation (A4). In
fact, this iteration procedure is a form of subspace iter-
ation [80] (also known as orthogonal iteration [78], and
referred to as simultaneous iteration in Ref. [65]). The
leading m Floquet exponents can then be obtained from
the diagonals of the factors R;, as discussed.

A simple adjustment of this approach can be intro-
duced when some of the multipliers form complex con-
jugate pairs. The iterations still converge, in the sense
that the subspace spanned by QF converges, but only the
columns associated to real exponents converge individu-
ally [65]. The subspace spanned by a pair of columns of

; g“ corresponding by the space spanned by the Floquet
eigenvector associated to complex conjugate multipliers
also converges, but at every iteration the two columns are
rotated by an angle in the subspace they span. Hence,
we introduce a rotation matrix D* such that

o7 = QD (AS8)
For large k, this rotation converges to a matrix that has
the structure of the product of Givens rotation matrices,
each rotating one pair of columns of Qf to the corre-
sponding pair of Qg“. With this modification, the prod-
uct f)kR’fw converges to a block upper triangular matrix
and (A7) with (A8) is formally equivalent to (A4).

To the best of the author’s understanding, a proce-
dure to compute this rotation matrix was not proposed
Ref. [65], which focused instead on using iterative QR-
based algorithms. The new contribution of this appendix
is a simple strategy to obtain it. The rotation D¥ can be
found as the solution of the orthogonal Procrustes prob-
lem [78]

argmin [ Q™" — QD" ||r = UFVFT, (A9)
D
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FIG. 14. The base ten logarithm of the entries of the rotation matrix D, at iterations k = 1,3,10 and 33, panels (a-d).
Convergence of error on the estimate of a few selected Floquet exponents, panel (e).

where || - ||r is the Frobenius norm and where the two
matrices at the right hand side are obtained from the
Singular Value Decomposition

QLT Qi = UrEhVAT, (A10)

In our implementation, we compute the rotation D*
along the iterations and use a simple heuristic to detect
pairs of complex conjugate eigenvectors, or inverse hyper-
bolic directions, when a diagonal entry is close to —1. We
then monitor the maximum absolute difference between
estimates of the Floquet exponents and stop the itera-
tions when such difference is lower than a user-defined
tolerance. Panels (a-d) of figure 14 shows the progressive
convergence of the rotation matrix D, for a calculation
on the shortest periodic orbit of the KS system reported
in figure 2. Iteration k = 1,3,10 and 33 are shown. Ex-

cept for the fifth and sixth column, the columns of QISH

converge to the columns of Q’g and all Floquet multipliers
are real and positive. Panel (e) shows the convergence of
the error on the estimate of a few Floquet exponents.

In practice, we have found this method to be quite
robust for the systems used in this paper, where Flo-
quet exponents are typically well separated. We have
observed that the number of iterations required for con-
vergence decreases with the period, with exponents of
the longest periodic orbits of the KS system requiring
only three/four iterations to converge to machine accu-
racy. This can be attributed to the faster convergence
of the columns of QF to the subspace spanned by the
leading Floquet eigenmodes, as the integration time is
proportionally longer, following the same pattern of con-
vergence of algorithms to compute Lyapunov exponents
from chaotic trajectories [81]. We have therefore made no
attempt at improving the convergence rate and compu-
tational cost by using shift and deflation techniques that
are customarily used in state-of-the-art implementations
of eigenvalue algorithms [78, 79].

[1] D. Viswanath, Recurrent motions within plane Couette
turbulence, Journal of Fluid Mechanics 580, 339 (2007).

[2] G. J. Chandler and R. R. Kerswell, Invariant recur-
rent solutions embedded in a turbulent two-dimensional
Kolmogorov flow, Journal of Fluid Mechanics 722, 554
(2013).

[3] A. P. Willis, K. Y. Short, and P. Cvitanovié¢, Symmetry
reduction in high dimensions, illustrated in a turbulent
pipe, Phys. Rev. E 93, 022204 (2016).

[4] N. B. Budanur, K. Y. Short, M. Farazmand, A. P. Willis,
and P. Cvitanovié, Relative periodic orbits form the back-
bone of turbulent pipe flow, Journal of Fluid Mechanics
833, 274 (2017).

[5] D. Lasagna, Sensitivity analysis of chaotic systems us-
ing unstable periodic orbits, STAM Journal on Applied
Dynamical Systems 17, 547 (2018).

[6] Y. Hwang and H. Choi, Sensitivity of global instability
of spatially developing flow in weakly and fully nonlin-
ear regimes, Physics of Fluids (1994-present) 20, 071703
(2008).

[7] F. Giannetti, S. Camarri, and P. Luchini, Structural sen-
sitivity of the secondary instability in the wake of a circu-
lar cylinder, Journal of Fluid Mechanics 651, 319 (2010).

[8] P. Meliga, E. Boujo, and F. Gallaire, A self-consistent

formulation for the sensitivity analysis of finite-amplitude

vortex shedding in the cylinder wake, Journal of Fluid

Mechanics 800, 327 (2016).

F. Giannetti, S. Camarri, and V. Citro, Sensitivity anal-

ysis and passive control of the secondary instability in

the wake of a cylinder, Journal of Fluid Mechanics 864,

45 (2019).

[10] D. J. Lea, M. R. Allen, and T. W. N. Haine, Sensitivity
analysis of the climate of a chaotic system, Tellus 52A,
523 (2000).

[11] P. Luchini and M. Quadrio, Adjoint DNS of turbulent
channel flow, in American Society of Mechanical Engi-
neers, Fluids Engineering Division (Publication) FED,
Universita di Salerno, Salerno, Italy (ASME, 2002) pp.
1381-1385.

[12] R. Bowen, w-limit sets for axiom A diffeomorphisms,

9



Journal of differential equations 18, 333 (1975).

[13] D. Ruelle, Smooth dynamics and new theoretical ideas
in nonequilibrium statistical mechanics, Journal of Sta-
tistical Physics 95, 393 (1999).

[14] H. E. Nusse and J. A. Yorke, Is every approximate trajec-
tory of some process near an exact trajectory of a nearby
process?, Commun.Math. Phys. 114, 363 (1988).

[15] Q. Wang, Forward and adjoint sensitivity computation
of chaotic dynamical systems, Journal of Computational
Physics 235, 1 (2013).

[16] Q. Wang, R. Hu, and P. Blonigan, Least Squares Shadow-
ing sensitivity analysis of chaotic limit cycle oscillations,
Journal of Computational Physics 267, 210 (2014).

[17] A. Ni and Q. Wang, Sensitivity analysis on chaotic dy-
namical systems by Non-Intrusive Least Squares Shad-
owing (NILSS), Journal of Computational Physics 347,
56 (2017).

[18] K. Shawki and G. Papadakis, A preconditioned Multiple
Shooting Shadowing algorithm for the sensitivity analy-
sis of chaotic systems, Journal of Computational Physics
398 (2019).

[19] B. Eckhardt and G. Ott, Periodic orbit analysis of the
Lorenz attractor, Z. Physik B - Condensed Matter 93,
259 (1994).

[20] P. Cvitanovié, Dynamical Averaging in Terms of
Periodic-Orbits, Physica D 83, 109 (1995).

[21] R. Artuso, E. Aurell, and P. Cvitanovié¢, Recycling of
strange sets: 1. Cycle expansions, Nonlinearity 3, 325
(1999).

[22] E. Kazantsev, Unstable periodic orbits and attractor of
the barotropic ocean model, Nonlinear Processes in Geo-
physics 5, 193 (1998).

[23] E. Kazantsev, Sensitivity of attractor to external influ-
ences: approach by unstable periodic orbits, Chaos 12,
1989 (2001).

[24] C. Dong and Y. Lan, Organization of spatially periodic
solutions of the steady Kuramotoa€ “Sivashinsky equa-
tion, Communications in Nonlinear Science and Numer-
ical Simulation 19, 2140 (2014).

[25] D. Viswanath, Symbolic dynamics and periodic orbits of
the Lorenz attractor, Nonlinearity 16, 1035 (2003).

[26] D. Lucas and R. R. Kerswell, Recurrent flow analysis
in spatiotemporally chaotic 2-dimensional Kolmogorov
flow, Physics of Fluids (1994-present) 27, 045106 (2015).

[27] L. van Veen, A. Vela-Martin, and G. Kawahara, Time-
Periodic Inertial Range Dynamics, Phys. Rev. Letters
123, 134502 (2019).

[28] D. Lucas, Stabilisation of exact coherent structures in
two-dimensional turbulence using time-delayed feedback,
arXiv (2020), 2008.08388v1.

[29] N. B. Budanur, P. Cvitanovié¢, R. L. Davidchack, and
E. Siminos, Reduction of SO(2) Symmetry for Spatially
Extended Dynamical Systems, Phys. Rev. Letters 114,
084102 (2015).

[30] M. A. Zaks and D. S. Goldobin, Comment on “Time-
averaged properties of unstable periodic orbits and
chaotic orbits in ordinary differential equation systems”,
Phys. Rev. E 81, 018201 (2010).

[31] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos.
Sci. 20 (1963).

[32] F. Christiansen, P. Cvitanovié, and V. Putkaradze, Spa-
tiotemporal chaos in terms of unstable recurrent pat-
terns, Nonlinearity 10, 55 (1997).

[33] Y. Lan and P. Cvitanovié¢, Unstable recurrent patterns

16

in Kuramoto-Sivashinsky dynamics, Phys. Rev. E 78,
026208 (2008).

[34] J. Sanchez, M. Net, B. Garcia-Archilla, and C. Simé,
Newton—Krylov continuation of periodic orbits for
Navier—Stokes flows, Journal of Computational Physics
201, 13 (2004).

[35] M. Farkas, Periodic Motions, Applied Mathematical Sci-
ences, Vol. 104 (Springer Science & Business Media, New
York, NY, 1994).

[36] G. Moore, Floquet Theory as a Computational Tool,
SIAM J. Numer. Anal. 42, 2522 (2006).

[37] J. Guckenheimer and P. Holmes, Nonlinear Oscillations,
Dynamical Systems, and Bifurcations of Vector Fields,
Volume 42 of Applied Mathematical Sciences (Spinger-
Verlag).

[38] C. D. Marcotte and R. O. Grigoriev, Adjoint eigenfunc-
tions of temporally recurrent single-spiral solutions in
a simple model of atrial fibrillation, Chaos 26, 093107
(2016).

[39] D. Lasagna, A. Sharma, and J. Meyers, Periodic shad-
owing sensitivity analysis of chaotic systems, Journal of
Computational Physics 391, 119 (2019).

[40] D. Viswanath, The Lindstedt—Poincaré Technique as an
Algorithm for Computing Periodic Orbits, SIAM Rev.
43, 478 (2001).

[41] J. K. Hale, Ordinary Differential Equations, Vol. 21
(Wiley-Interscience, 1969).

[42] Y. Lan and P. Cvitanovié, Variational method for finding
periodic orbits in a general flow, Phys. Rev. E 69, 016217
(2004).

[43] G. L. Eyink, T. W. N. Haine, and D. J. Lea, Ruelle’s
linear response formula, ensemble adjoint schemes and
Lévy flights, Nonlinearity 17, 1867 (2004).

[44] F. Ginelli, P. Poggi, A. Turchi, H. Chaté, R. Livi, and
A. Politi, Characterizing Dynamics with Covariant Lya-
punov Vectors, Phys. Rev. Letters 99, 27 (2007).

[45] C. L. Wolfe and R. M. Samelson, An efficient method for
recovering Lyapunov vectors from singular vectors, Tellus
59, 355 (2007).

[46] M. Xu and M. R. Paul, Spatiotemporal dynamics of the
covariant Lyapunov vectors of chaotic convection, Phys.
Rev. E 97, 032216 (2018).

[47] N. Nikitin, Characteristics of the leading Lyapunov vec-
tor in a turbulent channel flow, Journal of Fluid Mechan-
ics 849, 942 (2018).

[48] M. Inubushi, S. Takehiro, and M. Yamada, Regeneration
cycle and the covariant Lyapunov vectors in a minimal
wall turbulence, Phys. Rev. E 99, 27 (2015).

[49] P. Luchini and A. Bottaro, Adjoint Equations in Stability
Analysis, Annu. Rev. Fluid Mech. 46, 493 (2014).

[50] H. Bosetti and H. A. Posch, What Does Dynamical Sys-
tems Theory Teach Us about Fluids?, Commun. Theor.
Phys. 62, 451 (2014).

[61] X. Ding, H. Chaté, P. Cvitanovi¢, E. Siminos, and K. A.
Takeuchi, Estimating the Dimension of an Inertial Man-
ifold from Unstable Periodic Orbits, Phys. Rev. Letters
117, 024101 (2016).

[62] A. Trevisan and F. Pancotti, Periodic orbits, Lyapunov
vectors, and singular vectors in the Lorenz system, J.
Atmos. Sci. 55, 390 (1998).

[63] E. Ott, Chaos in Dynamical Systems (Cambridge Uni-
versity Press, 2002).

[64] C. Sparrow, The Lorenz Equations, Bifurcations, Chaos,
and Strange Attractors, Vol. 41 (Springer Science & Busi-



ness Media, New York, NY, 2012).

[55] H. Liao, Efficient sensitivity analysis method for chaotic
dynamical systems, Journal of Computational Physics
313, 57 (2016).

[66] J. Craske, Adjoint sensitivity analysis of chaotic systems
using cumulant truncation, Chaos, Solitons & Fractals
119, 1 (2019).

[657] D. Cavaglieri and T. Bewley, Low-storage im-
plicit/explicit Runge-Kutta schemes for the simulation
of stiff high-dimensional ODE systems, Journal of
Computational Physics 286, 172 (2015).

[58] U. M. Ascher, R. M. M. Mattheij, and R. D. Russell,
Numerical solution of boundary value problems for ordi-
nary differential equations, edited by SIAM (Society for
Industrial and Applied Mathematics, 1995).

[59] C. R. Rao, Linear Statistical Inference and its Applica-
tions, 2nd ed. (John Wiley & Sons, New York, 1973).

[60] A. Prasad and R. Ramaswamy, Characteristic distribu-
tions of finite-time Lyapunov exponents, Phys. Rev. E
60, 2761 (1999).

[61] Y. Saiki and M. Yamada, Time-averaged properties of
unstable periodic orbits and chaotic orbits in ordinary
differential equation systems, Phys. Rev. E 79, 015201
(2009).

[62] G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn,
Lyapunov Characteristic Exponents for smooth dynam-
ical systems and for hamiltonian systems; a method for
computing all of them. Part 1: Theory, Meccanica 15, 9
(1980).

[63] 1. Shimada and T. Nagashima, A Numerical Approach
to Ergodic Problem of Dissipative Dynamical Systems,
Progress of theoretical physics 61, 1605 (1979).

[64] K. Lust, Improved numerical Floquet multipliers, Inter-
national Journal of Bifurcation and Chaos in Applied Sci-
ences and Engineering 11, 2389 (2001).

[65] X. Ding and P. Cvitanovié, Periodic Eigendecomposition
and Its Application to Kuramoto-Sivashinsky System,
SIAM Journal on Applied Dynamical Systems 15, 1434
(2016).

[66] H.-L. Yang, K. A. Takeuchi, F. Ginelli, H. Chaté, and
G. Radons, Hyperbolicity and the Effective Dimension
of Spatially Extended Dissipative Systems, Phys. Rev.
Letters 102, 1423 (2009).

[67] Q. Wang, Convergence of the least squares shadowing

17

method for computing derivative of ergodic averages,
SIAM J. Numer. Anal. 52, 156 (2014).

[68] V. Lucarini, Evidence of Dispersion Relations for the
Nonlinear Response of the Lorenz 63 System, Journal
of Statistical Physics 134, 381 (2009).

[69] C. A. Morales, M. J. Pacifico, and E. R. Pujals, Singular
hyperbolic systems, Proc. Amer. Math. Soc. 127, 3393
(1999).

[70] C. H. Reick, Linear response of the Lorenz system, Phys.
Rev. E 66, 570 (2002).

[71] D. J. Farmer, Sensitive dependence on parameters in non-
linear dynamics, Phys. Rev. Letters 55, 351 (1985).

[72] S. V. Ershov, Is a perturbation theory for dynamical
chaos possible?, Physics Letters A 177, 180 (1993).

[73] P. J. Blonigan and Q. Wang, Multiple shooting shadow-
ing for sensitivity analysis of chaotic dynamical systems,
Journal of Computational Physics 354, 447 (2018).

[74] D. J. Albers, J. C. Sprott, and J. P. Crutchfield, Persis-
tent chaos in high dimensions, Phys. Rev. E 74 (2006).

[75] P. Cvitanovié¢, R. L. Davidchack, and E. Siminos, On the
state space geometry of the Kuramoto-Sivashinsky flow
in a periodic domain, STAM Journal on Applied Dynam-
ical Systems 9, 1 (2010).

[76] A. W. Bojanczyk, G. H. Golub, and P. Van Dooren, Peri-
odic Schur decomposition: algorithms and applications,
in Proceedings of SPIE - The International Society for
Optical Engineering (Cornell University, Ithaca, United
States, 1992) pp. 31-42.

[77] J. J. Hench and A. J. Laub, Numerical solution of the
discrete-time periodic Riccati equation, IEEE Trans. Au-
tomat. Contr. 39, 1197 (1994).

[78] G. H. Golub and C. F. Van Loan, Matriz Computations
(JHU Press, 2012).

[79] D. Kressner, Numerical Methods for General and Struc-
tured Figenvalue Problems (Springer Science & Business
Media, 2006).

[80] Y. Saad, Numerical Methods for Large Eigenvalue Prob-
lems, Revised Edition (SIAM, 2011).

[81] I. Goldhirsch, P.-L. Sulem, and S. A. Orszag, Stability
and Lyapunov stability of dynamical systems: A differ-
ential approach and a numerical method, Physica D 27,
311 (1987).



