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Abstract—Both the power-dissipation and cost of massive
multiple-input multiple-output (mMIMO) systems may be sub-
stantially reduced by using low-resolution analog-to-digital con-
verters (LADCs) at the receivers. However, both the coarse
quantization of LADCs and the inaccurate instantaneous channel
state information (ICSI) degrade the performance of quantized
mMIMO systems. To overcome these challenges, we propose a
novel stochastic hybrid analog-digital combiner (SHC) scheme
for adapting the hybrid combiner to the long-term statistics
of the channel state information (SCSI). We seek to minimize
the transmit power by jointly optimizing the SHC subject to
average rate constraints. For the sake of solving the resultant
nonconvex stochastic optimization problem, we develop a relaxed
stochastic successive convex approximation (RSSCA) algorithm.
Simulations are carried out to confirm the benefits of our
proposed scheme over the benchmarkers.

I. INTRODUCTION

Massive multiple-input multiple-output (mMIMO) systems

constitute promising techniques for next generation wireless

communication [1]. The number of antennas is scaled up

compared to traditional MIMO systems with the objective of

improving both the energy efficiency (EE) and spectral effi-

ciency (SE) of communications, albeit at the cost of increasing

the power-dissipation of both the signal-processing and RF

hardware. As a remedy, hybrid analog-digital combining aims

for reducing the power by employing fewer radio frequency

(RF) chains linked to a large number of antennas by an

analog combiner [2]. Since the power-dissipation of analog-

to-digital converters (ADCs) increases exponentially with the

number of quantization bits, low-resolution ADCs (LADCs)

are desired [3]. Therefore, the seamless integration of hybrid

combining and LADCs is of paramount importance.

Significant efforts have been made to study the feasibility of

hybrid analog-digital combining aided quantized mMIMO sys-

tems relying on LADCs. Specifically, the authors of [3] devel-

oped hybrid combiners by minimizing the mean-squared error

of received signals in the presence of multiuser interference.

However, their analog combiner design does not satisfy the

constant modulus constraint, hence its implementation is im-

practical. To circumvent this difficulty, the authors of [4] con-

ceived a more practical hybrid combiner relying on a partially-
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connected structure and rigorously derived the achievable rate

considering the correlation of quantization errors. To further

mitigate the effect of quantization errors, a two-stage analog

combiner was developed in [5] for maximizing the mutual

information between the quantized and the transmitted signals.

Nevertheless, the aforementioned studies merely optimize the

hybrid combiner in a separate manner, which inevitably leads

to performance degradation. To mitigate this impediment, the

authors of [6] harnessed fractional programming techniques

for EE maximization by opting for the joint hybrid combiner

design principle.

However, to the best of our knowledge, the studies in the

literature mainly depend on the knowledge of the instanta-

neous channel state information (ICSI). In practice, acquiring

ICSI is quite challenging in mMIMO systems. Owing to the

limited coherence time associated with a high number of

antennas, an excessive number of pilot symbols is necessitated

for accurate channel estimation in the mMIMO regime. A

further problem is the severe nonlinear distortion due to the

coarse quantization by LADCs. Fortunately, the base station

(BS) is capable of acquiring the slowly-varying statistical

channel state information (SCSI) with the aid of its long-term

feedback [7]. Therefore, it is more reasonable to consider a

hybrid combining scheme purely relying on the knowledge of

SCSI. Moreover, the pioneering contribution of [8] intimates

the underlying EE vs SE trade-off. On the other hand, most of

the existing studies such as [6] and [9] only place particular

emphasis on improving the EE of quantized mMIMO systems.

As such, how to design hybrid combining schemes based on

the knowledge of SCSI for quantized mMIMO systems when

the trade-off between the EE and SE is explicitly considered

deserves further study.

To shed more light on these critical issues, we devise a

novel stochastic hybrid combiner (SHC) scheme for quantized

mMIMO systems and assume that only the SCSI is available

at the BS. By invoking beamspace mMIMO techniques which

steer the arriving signals having various angles of arrival to

distinct array elements, we can significantly reduce the number

of RF chains and conceive cost-efficient implementations. Our

interest in this compact paper lies in striking a compelling

throughput vs. power consumption trade-off, namely a SE vs.

EE trade-off. To this end, we seek to minimize the transmit

power by jointly optimizing the SHC scheme subject to

average rate constraints. For efficiently solving this nonconvex

stochastic constrained optimization problem, we propose a

relaxed stochastic successive convex approximation (RSSCA)

algorithm, which intrinsically amalgamates a binary relaxation

technique with a stochastic successive convex approximation

(SSCA) solution. The proposed SHC scheme only adapts the

hybrid combiner to the long-term SCSI and offers compelling

advantages over the existing schemes. Firstly, as a benefit of

the channel hardening phenomenon of mMIMO systems [10],



a fading channel behaves almost deterministically. Hence,

considering the hybrid combiner relying on SCSI is more

practical and efficient, yet without substantial performance

degradation. Secondly, the hybrid combiner is only updated

with the aid of the outdated CSI samples, hence mitigating

the CSI signaling latency. Our simulation results validate that

the proposed scheme outperforms the benchmarkers.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Architecture and Frame Structure
We consider a single-cell multiuser quantized mMIMO

uplink system, where a BS supports K users. Each user is

equipped with a single antenna and the BS is equipped with

M > 1 antennas and S ≪ M RF chains. We focus on

a fully-connected RF combining structure at the BS, where

each RF chain is connected to all receive antennas using

phase shifters [14] and LADCs are employed between the RF

combiner and the digital combiner for converting the analog

signals to discrete-amplitude signals. To enable the reliable

retrieval of data symbols for each user, a low-complexity linear

receive beamformer wk ∈ C
S×1 is also employed at the BS.

Specifically, the received signal vector is combined by a hybrid

combiner using LADCs, as shown in Fig. 1.

Let pk be the transmit power of user k, hk ∈ C
M×1 be

the uplink channel spanning from user k to the BS, sk ∼
CN (0, 1) be the transmitted data of user k, and n ∈ C

M×1

be the additive white Gaussian noise (AWGN) at the BS with

distribution CN (0, σ2IM ). Assuming a narrowband channel,

the signal received at the BS can be expressed as

y =

K
∑

k=1

√
pkhksk + n = HP

1

2 s+ n, (1)

where P = diag(p1, · · · , pk), H = [h1, · · · ,hK ] ∈ C
M×K ,

and s = [s1, · · · , sk]T .

The received signal y is first combined by the RF combiner

U ∈ C
M×S , which is implemented based on a discrete Fourier

transform (DFT) codebook D. Consequently, such a DFT

codebook-based RF combiner can be formulated as U = DC,

where D = [d1, · · · ,dN ] ∈ C
M×N denotes the codebook

of size N and C ∈ C
N×S denotes the selection matrix with

element cij ∈ {0, 1} for selecting codewords. It can be readily

implemented utilizing a static phase shifting network in the

RF domain along with an RF switch. Therefore, the output of

the RF combiner can be expressed as ỹ = UH(HP
1

2 s+ n).
Each of the RF combining output ỹ is connected to a LADC

pair, which separately quantizes the imaginary and real part

of the signal ỹ. Considering that each of the LADC has

q quantization bits, the quantized output under the additive

quantization noise model (AQNM) [6] is expressed as

yq=f(ỹ) = Qγ ỹ+nq = QγU
HHP

1

2 s+QγU
Hn+nq, (2)

where f(·) is the element-wise quantization function, Qγ =
diag(γ, · · · , γ) ∈ C

S×S with quantization gain γ = 1 − ρ,

and ρ is a normalized quantization error. For ρ ≤ 5, the

typical values of ρ are listed in [12], while for ρ ≥ 5,

they can be approximated by ρ = π
√
3

2
2−2q . The additive

quantization noise nq obeys the complex-valued Gaussian

distribution with zero mean so that nq and ỹ are uncorrelated

with each other. For a fixed channel realization H, the covari-

ance matrix of nq is written as Rq = E[nqn
H
q ] = Qγ(I −

Qγ)Diag(UHHPHHU + σ2UHU). Once the received sig-

nals are quantized, the baseband combiner V ∈ C
S×S at the

BS is applied to handle the quantization noise introduced by

the LADCs, additionally mitigating the multiuser interference.

The corresponding output is given by

ȳ=VHyq = VHQγU
HHP

1

2 s+VHQγU
Hn+VHnq. (3)

Finally, the retrieved data symbol of user k after the low-

complexity linear receive beamformer can be expressed as

ŝk=wH
k VHQγU

HHP
1

2 s+wH
k VHQγU

Hn+wH
k VHnq.

(4)

By referring to the system model, the instantaneous rate

of user k can be explicitly expressed as rk(P,C,V,W) =
log(1 + SINRk), where W = [w1, · · · ,wK ] ∈ C

S×K is the

composite receive beamforming vector and SINRk denotes the

received signal-to-interference-plus-noise ratio (SINR) of user

k defined in (5), shown at the bottom of this page. Hence,

the average rate of user k is given by r̄k(P,C,V,W) =
E[rk(P,C,V,W)].

Remark 2.1: In contrast to the conventional hybrid combiner
structure based on the knowledge of ICSI, both the RF
combiner U and the baseband combiner V are only adapted
to the SCSI in our proposed SHC scheme. By exploiting the
channel hardening property of quantized mMIMO systems,
the gain of adapting the power allocation based on the ICSI
remains modest [11]. Hence, we adapt the power allocation
strategy P to the long-term SCSI in consideration of the
signaling overhead.

B. Frame Structure
In the proposed SHC scheme, we divide the time domain

into several super-frames and each super-frame consists of Lf

frames. We further divide each frame into Ls time slots, where

the channel remains constant within each time slot. Thanks to

the advanced compressive sensing based channel estimation

methods, it is possible to achieve efficient uplink training

with the aid of a limited number of RF chains [14]. Under

this setup, we can obtain one (possibly outdated) channel

sample H at each frame. To be more specific, each user

sends dedicated uplink pilots to the BS, and the effective

channel gains are subsequently estimated based on the received

pilot signals. It is noteworthy that the variables P,C,V,W
are only updated once based on a single channel sample in

each frame to achieve a mMIMO array gain at a reduced

implementation cost.
C. Problem Formulation

We are interested in designing a hybrid combiner for

the uplink of quantized mMIMO systems for minimizing

SINRk =
pk

∣

∣wH
k VHQγU

Hhk

∣

∣

2

∑

i6=k pi
∣

∣wH
k VHQγUHhi

∣

∣

2
+ σ2

∥

∥wH
k VHQγUH

∥

∥

2
+wH

k VHRqVwk

(5)
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Fig. 1. An illustration of the SHC scheme in a multi-user mMIMO uplink
system with LADCs.

the system’s power-dissipation subject to the average rate

requirement of each user. In practical implementations power

control is of pivotal importance, especially in the uplink

of quantized mMIMO system. Upon reducing the transmit

power, the battery life of power constrained devices will be

commensurately prolonged. In particular, the DFT-based RF

combiner is adopted in the SHC for striking a performance

vs. hardware cost trade-off, where the choice of codewords

must strictly meet the following two criteria: 1) each RF chain

is associated with a single codeword, 2) each codeword is

assigned to no more than one RF chain. We consider the

average rate as our QoS metric and denote the target rate

requirement of user k by γk > 0. More formally, the problem

can be formulated as

min
P,C,V,W

∑K

k=1
pk (6a)

s.t. r̄k(P,C,V,W) ≥ γk, ∀k, (6b)

pk ≤ Pmax
k , ∀k, (6c)

N
∑

i=1

cij = 1, ∀j, (6d)

S
∑

j=1

cij ≤ 1, ∀i, (6e)

cij ∈ {0, 1}, ∀i, j, (6f)

where (6b) is the average rate requirement and (6c) is the

transmit power constraint of each user. The constraints (6d)

and (6e) guarantee the realization of codewords selection

criteria.

III. STOCHASTIC HYBRID COMBINING SCHEME

There are three major challenges in solving problem (6): i)

the nonconvexity of the constraint functions, mainly due to the

coupling variables in constraint (6b) and the discrete binary

variable cij in (6f); ii) the NP-hard property of the mixed

integer nonlinear programming caused by (6f); and iii) the

stochastic nature of constraint (6b). In the sequel, we develop

an efficient algorithm to address this problem iteratively.

A. Problem Transformation and Surrogate Function

To tackle the difficulty arising from the discrete feasible

region, we replace constraint (6f) that cij be 0 or 1 with the

relaxed constraint that it be in the interval [0,1]. To obtain

an integer solution for the codeword selection indicator, we

rely on the method of [14] to round each ĉij generated by the

proposed algorithm to the nearest integer as follows.

cij =

{

⌊ĉij⌋ = 0, if ĉij − ⌊ĉij⌋ ≤ εj ,

⌈ĉij⌉ = 1, otherwise,
∀i, j, (7)

where 0 ≤ εj ≤ 1 is chosen using a simple bisection method,

so that both the constraints (6d) and (6e) are met.

For convenience, we let p = diag(P), c = vec(C),
v = vec(V), w = vec(W) and define variable x ,

[pT , cT ,vT ,wT ]T ∈ χ, where χ is a convex constraint set

defined in (8) as displayed at the bottom of this page. The key

observation is that χ has a decoupled form: χ = {x : xt ∈
χt, t = 1, . . . , n}, where χt is a convex region in C. Then

constraint (6b) can be rewritten as fk(x) , γk − r̄k(x) ≤ 0.
It is challenging to accurately calculate the expectations in

the constraint function fk(x). To handle such a stochastic

constraint, we first construct the quadratic surrogate function

f̂ l
k(x) of the constraint function fk(x), which efficiently

handles the expectations and facilitates rapidly-converging

algorithm design at a low complexity. f̂ l
k(x) can be recognized

as a convex approximation of fk(x) at each iteration. Each

channel sample corresponds to an iteration. Let xl denote

the variable used during the l-th channel sample. Specifically,

f̂ l
k(x) is formulated as

f̂ l
k(x) = γk − r̂lk + ℜ[(κl

k)
H(x− xl)] + τk‖x− xl‖2, (9)

where τk is a positive constant so that it ensures the strong

convexity of f̂ l
k(x). For given channel samples Hi, r̂lk =

∑l
i rk(x

l;Hi)/l, ∀i = 1, . . . , l, represents the sample average

approximations for r̄k(x
l), and κl

k is an approximation for the

gradient ∇fk(x
l), which is updated recursively as

κl
k = (1− βl)κl−1

k + βlηk(x
l), (10)

with κ−1

k = 0, where βl ∈ (0, 1] is the step-size sequence

and ηk is the gradient of the instantaneous rate rk(x) w.r.t. x.

Then ηk can be written as

ηk(x) = [∇T
prk,∇T

c rk,∇T
v rk,∇T

wrk]
T , (11)

where ∇prk,∇crk,∇vrk,∇wrk are the gradients of rk w.r.t.

p, c,v,w, respectively, based on the matrix calculus and the

chain rule.

B. Proposed RSSCA Algorithm

The proposed RSSCA algorithm iteratively minimizes a

sequence of surrogate functions. Recalling (9) allows us to

express the problem (6) as the following approximated convex

one

min
x∈χ

∑K

k=1
pk s.t. f̂ l

k(x) ≤ 0, ∀k. (12)

χ =

{

x : p ∈ [0, Pmax
k ]K ;

N
∑

i=1

cij = 1;

S
∑

j=1

cij ≤ 1; cij ∈ {0, 1}, ∀i, j

}

(8)



Algorithm 1 Proposed RSSCA Algorithm

Initialization: Lf ; {αl}, {βl}; x0 ∈ χ; κ−1

k = 0, ∀k; l = 0.

Step 1: Obtain a channel sample H
l within frame l.

Update the surrogate function f̂ l
k(x), ∀k using (9).

Step 2: Solve (13) to obtain the optimal solution ξ̂, x̂.
If ξ̂ ≤ 0: Solve (12) to obtain x̄

l. (Problem (12) is feasible)
Else: Let x̄l = x̂. End if
Step 3: Update x

l+1 according to (14).
Step 4: Let l = l + 1. If l 6= Lf , return to Step 1. Otherwise,
terminate the algorithm.
Output: P = diag(xl[1 : K]); C = unvecN,S(x

l[K + 1 : K +
NS]); V = unvecS,S(x

l[K + NS + 1 : K + NS + S2]); W =
unvecS,K(xl[K +NS + S2 + 1 : K +NS + S2 + SK]).

The details of the solution of problem (12) will be postponed to

Section III-C. Note that problem (12) may not have a feasible

optimal solution. If problem (12) turns out to be infeasible,

we have to construct the following feasibility problem.

min
x∈χ,ξ

ξ s.t. f̂ l
k(x) ≤ ξ, ∀k, (13)

which can be efficiently solved by the convex programming

toolbox CVX. The solution of problem (13) can be recognized

as the projection of problem (12) onto the point, which is the

closest to the feasible region of problem (12).

Given the optimal solution x̄l in problem (12) or (13), x is

updated as

xl+1 = (1− αl)xl + αlx̄l, (14)

where αl ∈ (0, 1] is the step-size sequence. Then the above

iteration is carried out until convergence is reached. We

summarize the details of the proposed RSSCA in Algorithm 1,

where unvecn,m(·) represents the operation, which turns the

nm× 1 column vector into a matrix of size n×m.

C. Solutions for Problem (12)

We provide solutions to the quadratic optimization subprob-

lems in (12) by employing the Lagrange dual method. Once

given the Lagrange multipliers, we can obtain a unique closed-

form solution for the Lagrange function minimization problem.

Additionally, the number of dual variables is usually much

lower than that of the primal variables x in the quantized

mMIMO regime. Accordingly, solving the dual problem is

more efficient than directly solving the optimal primal prob-

lem.

For the problem at hand, the first step is to introduce the

nonnegative Lagrange multipliers λ = [λ1, . . . , λK ]T ,µ =
[µ1, . . . , µN ]T ,̺ = [̺1, . . . , ̺K ]T , δ = [δ1, . . . , δS ]

T ,Φ =
[φ1, · · · ,φS ] associated with the constraints of (12). For

clarity, we denote Θ = [λT ,µT ,̺T , δT , vec(Φ)T ]T . Then

we write the Lagrange function of problem (12) in (15) as

displayed at the bottom of this page. Then the dual function

for (15) can be expressed as f l
d(Θ) = min

x
Ll(x,Θ) and the

corresponding dual problem is given by

max
Θ

f l
d(Θ). (16)

Note that f l
d(Θ) can be further decomposed into N indepen-

dent subproblems as min
xt∈χt

a(Θ)|xt|2+ℜ [
∑n

t=1
b(Θ)xt], which

admits the closed-form solution as

x̂t(Θ) = Pχt
[−b∗ (Θ)/2a(Θ)] , (17)

where Pχt
[·] is the projection over the convex set χt. The

optimal Lagrange multipliers Θ⋆ of the dual problem in (16)

can be solved using the standard subgradient-based method

such as the ellipsoid method in [13]. Then the optimal primal

solution of (12) is given by x⋆(Θ⋆).

D. Convergence Analysis of the Proposed RSSCA Algorithm

By averaging all the outputs corresponding to the previous
feasible updates or objective updates, we can obtain the
limiting point x alternatively. Nevertheless, it is tricky to
prove that the limiting point is a stationary point of problem
(6). To overcome these challenges, we first introduce the
following lemma to guarantee the convergence of the recursive

approximation r̂lk and the surrogate function f̂ l
k(x).

Lemma 1: If the step-size sequence {αl} and {βl} satisfy
the following three conditions

1) αl → 0,
∑

l α
l = ∞,

∑

l(α
l)2 < ∞,

2) βl → 0,
∑

l β
l = ∞,

∑

l(β
l)2 < ∞,

3) liml→∞ αl/βl = 0,

we almost surely have

lim
l→∞

|r̂lk(xl)− rk(x
l)| = 0, (18)

lim
l→∞

|f̂ l
k(x

l)− fk(x
l)| = 0, (19)

lim
l→∞

‖∇f̂ l
k(x

l)−∇fk(x
l)‖ = 0. (20)

Moreover, consider a subsequence {xlj}∞j=1 converging to
a limiting point x⋆, and define

f̃k(x) , γk−rk(x
⋆)+ℜ[∇Hfk(x

⋆)(x−x⋆)]+ τk‖x−x⋆‖2.
Then we almost surely have limj→∞ f̂

lj
k (x) = f̃k(x), ∀x ∈ χ.

Lemma 1 can be proven following an approach similar to

that in [15]. Thus, the details are omitted due to the limited

space. According to (18)-(20) in Lemma 1, we may infer that

the objective value and the gradient of the surrogate function

f̂ l
k as well as the recursive approximation r̂lk are unbiased

estimates of fk(x
l) and rlk(x

l), respectively. In the sequel, we

briefly discuss the motivation for some conditions on {αl, βl}.

Firstly, condition 1) and 2) state that both the step-size αl

and βl satisfy the diminishing rule, namely, do not decay

to zero sharply. Without loss of generality, the diminishing

step-size rule has also been proposed in many other stochastic

optimization solutions [15]. Secondly, condition 3) clarifies

Ll(x,Θ) =
K
∑

k=1

pk +
K
∑

k=1

λk f̂
l
k +

N
∑

i=1

µi(
S
∑

j=1

cij − 1) +
K
∑

k=1

̺k(pk − Pmax
k ) +

S
∑

j=1

δj(
N
∑

i=1

cij − 1) +
N
∑

i=1

S
∑

j=1

φij(cij − 1)

=
n
∑

t=1

a(Θ)|xt|
2 + ℜ

[

n
∑

t=1

b(Θ)xt

]

+ c(Θ) (15)



TABLE I
COMPUTATIONAL COMPLEXITY ORDERS FOR DIFFERENT SCHEMES

Schemes Computational complexity order per iteration

SHC scheme O((N3S3 +N2S4 +NS4 + S2K2)log(1/ǫ) + S2K + S(NK +K2))
MM scheme O((4S2K2 + 4SK3)log(1/ǫ) + S2K + SK2)
ZF scheme O((N3S3 +N2S3K +NS3 + S2K2)log(1/ǫ) + S(K2 +NK) +K3)

MRC scheme O((N3S3 +N2S3K +NS3 + S2K2)log(1/ǫ) + S(K2 +MK +NK))

that the diminishing speed of αl is faster than that of βl. With

Lemma 1, we can have the following theorem.
Theorem 3.1: Suppose the above assumptions are satisfied.

For any sequence {xlj}∞j=1 converging to a limiting point x⋆,
problem (6) almost surely converges to stationary point x⋆ if
the Slater condition is satisfied.
E. Computational Complexity

In this subsection, we compare the computational complex-

ity of the proposed RSSCA algorithm to that of the following

baseline schemes.
• Baseline 1-magnitude maximization (MM) scheme:

This is obtained by selecting a set of codewords according

to the maximum SNR criterion [16].

• Baseline 2-zero-forcing (ZF) scheme: This is obtained

by fixing the ZF digital combiner [1].

• Baseline 3-maximum ratio combining (MRC) scheme:

This is obtained by fixing the MRC digital combiner [5].

For simplicity, we assume that M ≫ N ≥ S ≥ K. We first

analyze the computational complexity of the proposed RSSCA

algorithm. Then, the computational complexity order of the

other schemes can be obtained similarly. The complexity of

the proposed RSSCA algorithm is dominated by the calcula-

tion of the gradient ∇fk(x
l) and the quadratic optimization

subproblems in (12) and (13), which is elaborated on below.

Calculating ∇fk(x
l) requires O(K(K+NS+S2+KS)) floating

point operations (FPOs). For the given Lagrange multipliers,

calculating the closed-form primal solution in (17) needs

O(K +NS + S2 +KS) FPOs. Using the ellipsoid method,

the number of iterations required for achieving a given conver-

gence accuracy ǫ for the dual problem f l
d(Θ) = min

x
Ll(x,Θ)

is O((2K + N + S + NS)2log(1/ǫ)) [13]. Hence, the per-

iteration calculation needs O((K + NS + S2 + KS)(2K +
N + S +NS)2log(1/ǫ) +K(K +NS + S2 +KS)) FPOs.

In Table I, we summarize the computational complexity

orders of the different schemes. For the ZF scheme this is

O((N3S3+N2S3K+NS3+S2K2)log(1/ǫ)+S(K2+NK)+
K3) because in addition to the calculation of the gradient and

the quadratic optimization subproblems it requires the calcu-

lation of inversion, when adopting the ZF digital combiner.

Furthermore, the complexity order of the MRC scheme can be

analyzed in a similar way. Although the MM scheme imposes

a slightly lower computational complexity, its performance

is in general much worse than that of our proposed SHC

scheme. Consequently, our proposed SHC scheme strikes a

better performance vs. complexity trade-off.

F. Implementational Considerations

Next, we investigate the pilot overhead and quantify the

advantages over the ICSI-based scheme as follows. Specif-

ically, the overall pilot overheads of the SHC and ICSI-

based schemes are O(KMLc) and O(KMLfLs), respec-

tively, where Lc is the number of frames required by the

proposed algorithm. Hence, the SHC scheme advocated re-

duces the pilot overhead by a factor of Lc

LfLs
. Then, we

compare the robustness of different schemes in terms of the

feasible probability of the average rate constraint (6b) when

M = 64, S = 12, and K = 12. By averaging over 500

independent channel realizations, the feasible probability of

the proposed SHC and the ICSI-based schemes is 90.05%
and 54.53%, respectively. The reason is that the performance

of the ICSI-based scheme is crucially dependent on the CSI

estimated at each time slot, and having ICSI errors caused by

the delay are inevitable in practice due to the limited training

resources. However, the acquisition of CSI in the SHC scheme

is performed at each frame with higher accuracy. The delayed

CSI is generated based on the autoregressive model of [14].

In short, the proposed SCH scheme is more robust to the

CSI signaling delay than the ICSI-based scheme due to the

sophisticated stochastic design and owing to the reduction of

signalling bits.
IV. SIMULATION RESULTS

In this section, we numerically evaluate the performance of

our proposed scheme and glean useful insights. We consider

the scenario of M = 64 receive antennas, S = 12 RF chains,

and N = 16 DFT codewords. The maximum transmit power at

each user is Pmax
k = 10 dBm. We set the same average target

rate for all users, namely γk = 1 bps/Hz. The BS’s coverage

has a radius of 200 m and K = 12 users are randomly

located. Additionally, the channel between user k and the

BS is generated according to the extended Saleh-Valenzuela

geometric model using a half-wavelength ULA [15]. We use

the large-scale pathloss model 30.6 + 36.7log10(dk) [17]

to characterize the average channel gain, where dk is the

individual distance between user k and the BS in meters.

The initial parameters are set as β = 1/(1 + l)2/3 and

α = 5/(5 + l), respectively. Four schemes are included as

benchmarkers: 1) MM scheme; C concentrating on choosing

the beams with maximum magnitude [16]; 2) random scheme,

which is obtained by randomly associating each RF chain with

the specific beam; 3) ZF scheme; 4) MRC scheme.

In Fig. 2, we show the objective function (average transmit

power) and the maximum constraint function (target average

rate) versus the number of iterations for q = 3 quantization

bits, respectively. We can see that the proposed RSSCA

algorithm converges within a few iterations, while all the target

average rates are strictly satisfied with high accuracy.

In Fig. 3 (a), we plot the average transmit power versus

the numbers of users K for q = 4 quantization bits. It can

be seen that the performance of the proposed SHC scheme is



10 20 30 40 50

Number of iterations

10

20

30

40

50

60

70

80

90

100

A
v

er
ag

e 
tr

an
sm

it
 p

o
w

er
 (

m
W

)

(a)

Proposed RSSCA Algorithm

10 20 30 40 50

Number of iterations

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

M
ax

im
u

m
 c

o
n

st
ra

in
t 

(b
p

s/
H

z)

(b)

Proposed RSSCA Algorithm

Fig. 2. Convergence behavior of the proposed RSSCA algorithm with M =
64 antennas, K = 12 users, S = 12 RF chains, N = 16 DFT codewords and
q = 3 quantization bits: (a) average transmit power; (b) maximum constraint.

superior to that of all the other competing schemes. When the

number of users increases, the performance gap between the

proposed SHC scheme and these other schemes is widened,

which also demonstrates the necessity of joint power control

and hybrid combiner design for the quantized mMIMO system.

Thus, it appears that for the quantized mMIMO relying on

limited resources, our proposed scheme is particular appealing

from an optimum resource allocation perspective. Fig. 3 (b)

depicts the average transmit power versus the number of BS

antennas M with 4-bits ADCs. We observe that the proposed

SHC scheme significantly outperforms all the other competing

schemes, as expected. It is interesting to note that the benefit of

increasing the number of BS antennas is more pronounced for

our proposed scheme. The reason is that our proposed scheme

can exploit the difference in channel quality among links

for mitigating the multiuser interference, thereby supporting

more favorable uplink transmission in a cost-effective manner.

Fig. 3 (c) plots the system’s average transmit power versus

the number of quantization bits q. It shows that the average

transmit power is monotonically decreasing as the number of

quantization bits increases. Furthermore, the proposed SHC

scheme outperforms all the other schemes in all quantization

scenarios, especially for more than 3 quantization bits.
V. CONCLUSION

A novel SHC scheme was conceived for the uplink of

quantized mMIMO systems for minimizing the transmit power

consumption under an average rate constraint. We proposed a

RSSCA algorithm to find stationary solutions of the nonconvex

stochastic optimization problem. We demonstrated that the

proposed SHC scheme outperforms the benchmarkers.
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