Climatic influence on the magnitude of COVID-19 outbreak: a stochastic model-based global analysis
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Abstract: 
[bookmark: _GoBack]We investigate This study examines the climatic influence on association between intensity of COVID-19 spread and causing factorstransmission risks in 228 cities globally across three climatic zones. across climatic regions using Boosted Regression Tree algorithm. The results, based on the application of a Boosted Regression Tree algorithm method, show that average temperature and average relative humidity are the major contributors in explaining the differentials significant variations of in COVID-19 transmission in across temperate and subtropical regions,  whereas in the tropical region,  the mean average diurnal temperature range and temperature seasonality are the most significantly determinants in tropical regionspredict the infection outbreak. The number of positive cases showed a decrease sharply above an average temperature of 10oC in the cities of average temperature is the most influential factor affecting the number of COVID-19 cases in France, Turkey, the US, the UK, and Germany, and the cases decrease sharply above 10oC. Among the tropical countries, COVID-19 in Indian cities found to beis most affected by mean diurnal temperature, and those in Brazil fazed by temperature seasonality. The findings are expected have implications on public health interventions, and contribute to add to the ongoing debatesscientific and policy discourse on the complex interplay influence of climatic factors influencing the number ofdetermining the risks of COVID-19 transmission. cases and could help researchers and policymakers to make appropriate decisions for preventing the spread.
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1. Introduction
The global surge of Severe Acute Respiratory Syndrome (SARS) coronavirus disease (COVID-19) pandemic[footnoteRef:1] has been unprecedented in the 21st century. The virus has spread rapidly across international borders (Cai et al. 2020) through global travel from its primary infection epicenter in Wuhan[footnoteRef:2] (China) to new epicenters in Europe (Italy, Spain, France, Germany, the UK) and North America (the US and Canada). Due to the spreading of the disease, tThe economic impact of the disease spread could has potential to worsen food insecurity among marginalized communities in resource poor and low-income for the marginal people as well as less developed countries (Udmale et al. 2020). COVID-19 is highly contagious. The risk of human-to-human transmission is very high and the disease spreads mainly through close human contact and respiratory droplets (WHO 2020; CDCP 2020a). The common symptoms of COVID-19 are High high fever, contagious cough, choking, severe pneumonia, and acute respiratory distress conditions syndrome are the common symptoms (CDCP 2020a). The case fatality rate (CFR) is estimated at 3.4% globally, while it varies by countries and population groups (WHO 2020). The CFR of the current SARS-COV-2 is lower than its predecessor SARS-COV-1[footnoteRef:3], but its reproduction rate is much higher. 	Comment by Padmadas S.: Repetition, see line 53 [1:  On 30 January 2020, the COVID-19 was declared a pandemic of global concern, requiring public health emergency.]  [2:  Originated from the Wuhan wet market in December, 2019.]  [3: ] 

SARS-CoV-1 outbreak in 2003 infected more than 8000 individuals from 29 countries, and 774 died within a period of eight months, whereas, the COVID-19 has currently infected more than four million people across 212 countries with a death toll of close to 280,000 within four months (Ying et al. 2020; Sandoiu 2020; Dong et al. 2020). As on 25 September 2020, the number of COVID-19 cases exceeded 32 million and close to a million succumbed to the infection. The very high infection susceptibility or high reproduction rate4 of this virus makes it particularly dangerous to older people, especially in the absence of a vaccine and appropriate drugs for treatmentwhen the vaccinations and the drugs for treatment are not available (Newton and Bond 2020).
Historical evidence shows that meteorological conditions, e.g., such as temperature and relative humidity can bring induce changes into the human activities that can influence emergence of a new virus and more infections by increasing their reproduction rate of a virus (Cellers and Mellor 1993; Hammer et al. 2000; Thai et al. 2015). For instance, the higher air temperature may lead to an increase in the use of centrally air-conditioning systems, which host and spread the bacillus, causing Legionnaires’ disease (Simmering 2017). Besides, the differential climatic conditions also lead to changes in the incidences of various infectious diseases, such as malaria (Kim et al. 2019), dengue (Liu et al. 2020), influenza (Chong et al. 2020), meningococcal meningitis (Salomon et al. 2020), cryptosporidiosis (Hu et al. 2007), Rift Valley Fever (Mweya et al., 2017) Kyasanur Forest disease (KFD) (Pramanik et al. 2020b) and Lyme disease (Brownstein 2005). 
There is evidence to Many studies suggest that the climatic conditions, e.g., including humidity and temperature and humidity had influence play key roles in spreading infectious diseases including such as SARS-COV-1, 2003 (Chan et al. 2011; Yuan et al. 2006; Chong et al. 2020). The daily Daily incidence Incidence rate Rate (DIR) of SARS-COV-1 was 18 times higher in lower temperature than that in higher temperature zones (Tan et al. 2005). Moreover, high circulation of influenza viral diseases has been found in the winter season in the temperate region of the southern and northern hemispheres (Tamerius et al. 2013; Lemaitre et al. 2019). The relative humidity is also a leading cause of occurrences of the influenza epidemic in the US and Vietnam (Dalziel et al. 2018; Thai et al. 2015). 
Evidence from a few recent studies highlight the influencing role of temperature and humidity associated with COVID-19Few recent studies argued that meteorological factors, e.g., humidity and temperature could drive the pace of ongoing COVID-19 infections (Wang et al. 2020a; Shi et al. 2020; Pramanik et al. 2020a; Oliveiros et al. 2020), and local climatic conditions may drive contribute to COVID-19 growth rate (Ficetola and Rubolini 2020). YetHowever, most of these studies are based on limited climatic variables, restricted to country or regional level data. , the There is little scientific understanding of scientific community lacks evidence regarding the potential associations between climatic factors and COVID-19 cases spread at the global level. Most of the previous studies rely on the evidence from the regional levels of data and limited climatic variables. Luo et al. (2020) examined the relationship between province-level climatic variability and increase of COVID-19 reported cases, and suggested that without extensive public health interventions, increase in temperature and humidity will may not lead to a decline in COVID-19 cases. More importantly, Oliveiros et al. (2020) signify argued predictors’ percentage contribution in the rate of progressions of COVID-19 cases in which that temperature and humidity only contributed to only 18% of variation in the rate of progression of COVID-19 cases, and remaining 82% was attributed related to other factors, such as public health, population, and infrastructure. Therefore, it is essential to determine the role of climatic factors (e.g., relative humidity and average temperature) behind the spread of COVID-19, to strengthen the knowledge base of COVID-19 research.
As the virus spreads rapidly across the globe, the number of international travellers was deemed is the primary predictor of COVID-19 outbreak (Luo et al. 2020) at national, regional, and local/city level. Due to high community transmission efficiencyrisks, the global cases are increasing on a daily basis day-by-day (Ying et al. 2020). However, there is a significant variation in the number of COVID-19 cases in terms of the onset of disease spread and growth rate and timing around. Seoul (South Korea), Tokyo (Japan), and Bangkok (Thailand) appear to have been able to "flattened the curve" by April 2020. At the same time, in several other countries (i.e., India and Brazil) in the tropical region including Brazil and India recorded significant increase in, the number of COVID-19 cases are reported to be increasing significantly. Considering the transmission risks at the community levelabove, ongoing COVID-19 pandemic situations and its increasing growth rate, more systematic research is needed, essential, which accounts taking into consideration offor climatic and bioclimatic predictors. The present study investigates the climatic influence on the scale of COVID-19 outbreak in 228 cities globally across three main climatic zones. In this background, the present study aims to identify the relationship between the efficiency of community transmission (spread) of the number of COVID-19 cases and climatic and bioclimatic factors across severely affected cities distributed across tropics, sub-tropics and temperate climatic zones.
2. Methods:
2.1 Selection of study sites
The present study focuses on cities across the world. The iInternational travelers were the primary causefacilitates of the spread of the COVID-19 and especially to the global cities. The cities and urban centers are more susceptible to disease transmission the spread due to more substantial human mobility, service sector engagement, and tourist tourism activitiesvisitors as compared to the rural areas. Therefore, cities are the primary focus of the present study. In addition, COVID-19 cases vary significantly from one country to another, and the month of the transmission is different globally.

Therefore, to understand the pattern of the efficiency of region-wise community transmission, we We collected the data for the countries where more than five cities were found to be significantly affected by COVID-19 cases with a higher increasing infection rate as of 25 May 2020. We have considered regional considerations as well as larger spillover countries across the Worldworld. In the case of the countries with the largest spillover, including the US, Spain, Italy, France, Germany, the UK, Turkey, Russia, Brazil, and India, the study selected at least ten cities for the analysis from each country. Further, out of ten cities, we have chosen five cities with the highest number of cases, whereas the remaining five cities were selected randomly to reduce the biases in the representation of a particular country. For the rest remaining allof the countries where the reported cases are were medium or less, we have taken considered one to three most affected cities based on the geographical area of the countriesregion. For smaller countries, one city, and for medium or larger countries, we have considered 1-3 cities as for better representationrepresentatives for those countries. 

A total of 230 cities were selected for the present study. To understand the regional differentiation differences of COVID-19 casesoutbreak, the cities were divided into tropical (0-23°26′11.9″ N/S), subtropical (23°26′11.9″ N/S- 40° N/S), and temperate (40° N/S - 60°N/S) zones based on latitudes. In the present study, 72, 63, and 93 cities were located in tropical, subtropical, and temperate regions, respectively (Figure 1). Two cities with polar climate conditions were excluded from the study. The studyWe used Boosted Regression Tree (BRT) method to model across the disease risks by climatic regions and larger spillover countries. In the following sub-section, details on variable selection and measurement, data collection procedure, and model specification are briefly described. 

                 2.2 Descriptions and measurement of predictors
The present study collected and compiled the number of COVID-19 cases data at the city level from the WHO situation reports, health websites of different countries, and some data were also collected cross-reference updates from the national news bulletins, where all cases were regularly updated. Air temperature and absolute humidity are two critical variables that may contribute to higher community transmission (Sajadi et al. 2020). In the context of COVID-19, the survival and transmission rates of viruses are mostly higher in the regions with low humidity and cold temperature (Ficetola and Rubolini 2020). Hence, it was is hypothesized that the higher the relative humidity and temperature, the lower the number of coronaviruses cases. Therefore, for the present analysis, the studywe used temperature and temperature-dependent bioclimatic variables (e.g., average diurnal temperature range, minimum temperature of the coldest month, average temperature of the coldest quarter, and temperature seasonality) and relative humidity as predictors. For each city, we extracted the average monthly temperature and the average relative humidity data from the ECMWF ERA-5 reanalysis for January to April 2020 (Hersbach and Dee 2016). We tabulated The the month with a the maximum number of reported recorded cases was considered to tabulateby temperature and relative humidity predictors data  for the respective countries. The bioclimatic data of all selected countries were extracted from the worldclim historical dataset with a 1 km resolution. To control for over-dispersion, we choose the maximum reported cases based on climate for the month, for example January for China and March for Italy.

             2.3 Modelling approach 
We analyzed the cases using a BRT model across the climatic regions and the countries with a large number of cases. The BRT model was constructed by multiple regression models, and the best iteration of the model was performed by optimizing prediction performance (Yahaya et al. 2018). We used In this studythe module of a stochastic gradient boosting tree has been used in the BRT model, which was proposed by Friedman (2002). The motivation for boosting regression was to improving improve various weak learners by combining two powerful procedures: regression tree and boosting (Elith et al. 2008; Hastie et al. 2011; Hair et al. 1995). More specifically, in BRT model ensemble predictions generated by the feed of base learner predictions into the meta learner (Hastie et al. 2011). By using theA stochastic gradient boosting approach it improves and extends the regression tree (Hastie et al. 2011). Gradient Boosting comes from its connection to the Gradient Descent in numerical optimization to optimize a function (Hastie et al. 2011). The main advantages of using BRT model that it has the advantages of both boosting approach as well asand regression tree such asenabling computational efficiency, high interpretability, and conceptual simplicity, and so on. 

Besides, BRT is an additive stochastic model that integrates regression trees by including an outcome to their predictors by recursive binary splits and combining multiple models to a single model, optimizing the predictive performance (Elith et al. 2008). The model can describe non-linear changes, accommodate missing data, and overcome the problems of outlier data (Breiman et al. 1984). BRT models are found to be robust for a small number of data with missing data (Dedman et al. 2017). BRT model can describe multiple interaction, partial dependency (non-monotonous and non-linear) of predictors, with sufficient flexibility and very high predictive accuracy. As our data is are nonlinear and are inter dependent, therefore keeping in mind of a world level analysis,  with different cities and countries to make the analysis more easy and accurate, we have used BRT to capture the influences of climatic factors on the number of COVID-19 cases. In For this the analysis, we also used considered partial dependence plot to show the marginal effect between the variables and COVID-19 cases. The plot can capture the linear, monotonic or complex relationship between the number of COVID-19 cases and selected variables in the present study. Details of the BRT model are available elsewhere, see Friedman (2001), Hastie et al. (2011), Scikit-learn (2015), Ridgeway (2007) and Persson et al. (2017). The BRT model description is attached included separately in supplementary material (see supplementary section 1).
To run the BRT model, we first evaluated the multicollinearity using Pearson correlation coefficient (r) and r ≥ 0.75 was selected as a cut-off threshold (Figure 2) to remove the less important variables (Pramanik et al. 2020b, 2020c). The variables were cross-validated using the Variance Inflation Factor (VIF). We found that the VIF value is more than ten and insignificant for two variables, average temperature of the coldest month, and average temperature of the coldest quarter (see Table S1), and hence these two variables were dropped from the analysis (Pramanik et al. 2018). COVID-19 cases were selected as outcome variable along with a set of four independent variables or predictors: average temperature, diurnal temperature change, temperature seasonality, and relative humidity.   
                 2.3.1 Model calibration
This method has been simulated 1,000 times to generate statistical inference by using ten times the loss function by cross-validation. In each BRT model, the subsampling procedure requires a parameter called the ‘bag fraction’ which was set at 0.75 (Fang et al. 2013) and at least 1,000 nodes/trees were used (Elith et al. 2008). In addition, a sensitivity analysis was conducted by setting a bag fraction of 0.5. All results presented in the following sections were calculated by averaging the predicted values of 50 bootstrap replicates. All The analyses were conducted using DISMO package version Rv3.4.0. Moreover, the marginal association was assessed for all independent variables across climatic regions and the countries with major COVID-19 cases spillover. The relative contribution of response variables was also assessed, where a larger value indicated higher importance (Friedman 2001).
                    2.3.2 Model validation
In this model,We considered a 70% sample were used for training, and 30% sample distributed for testing. The model results were checked using the area in the Receiver Operating Characteristic (ROC) curve. Area under the ROC Curve (AUC) values differ between 0 and 1. The value of 0.5 suggests that the model results were less than random, and the value of 1.0 implies absolute discrimination (Pramanik et al., 2018; Thuiller et al., 2005). 
3. Results:
3.1 Model validation and bag fraction analysis 
The area under the curve in ROC for the tested data was 0.8675, which confirms a high level of accuracy and forecasting ability of the model (Dedman et al. 2017). A comparison between two bag fractions (0.5 and 0.75) was carried out in BRT models (Table S2). In general, only small variations within 2% were observed in relative contributions (RCs) of variables. The highest difference between RCs in temperature was about 1.87% in Russia (Table S2).
3.2 Descriptive statistics: 
As of 7 July 2020, a total of 11.91 million people were affected, and 0.545 million deaths were reported in the worldwide (WHO 2020b). The virus has affected 210 territories and countries, wherein most of the cases were reported in developed countries. The climatic conditions may be relevant tocontribute to explaining the variation in the number of COVID-19 cases. To better understand the role of climatic predictors, Table 1 shows the median, 10th percentile and 90th percentile of the average temperature, average relative humidity, diurnal temperature change, temperature seasonality in selected countries and regions across the globe. In the temperate zone, median average temperature, average relative humidity, diurnal temperature change, and temperature seasonality were found to be 9°C, 67%, 7°C, and 70%, respectively, whereas and 25°C, 65%, 7°C, and 27%, respectively, in the tropical zone (Table 1). It indicates that there is a significant variation in temperature and temperature seasonality within these climatic regions. The number of COVID-19 cases are negatively associated with average temperature, diurnal temperature change, and relative humidity, and positively associated with temperature seasonality (Figure 2). 	Comment by Padmadas S. [2]: You may update this
         3.3. Relative effects of predictors
Table 2 represents the region and country wise association between climatic parameters and the number of COVID-19 cases. The results show that average temperature (42.90%) and average relative humidity (25.90%) were the major contributors in explaining the differentials of COVID-19 transmission in the temperate zone. At the same time, the mean diurnal range (52.20%) and temperature seasonality (30.80%) were the most significant determinants of this viral community transmission in the tropical zone. In the sub-tropical zone, the role of average temperature (61.7%) and relative humidity (17.5%) were the highest among the selected all predictors. 

The results show that in countries within temperate countrieszones, the average temperature was a major contributor to the number of cases, for example, in France (58.72%), Turkey (58.40%), the US (56.30%), the UK (34.60%), and Germany (35.40%). Similarly, the average relative humidity contributed more in Spain (51.0%), the UK (51.60%), and Italy (32.20%), and favorable relative humidity for the spread was found in the range of 60 to -70% in countries from within the temperate zone. The Russian cases were mostly affected by the temperature seasonality contributing 56.50% to the spread. The mean diurnal temperature range was contributing about 49.20% of the cases in Germany (Table 2). 

The cities located in the tropical zone, like cities formfor example in countries such as India and Brazil, were mostly influenced by the diurnal temperature range. In India, 58.70% of the cases were explained by the mean diurnal temperature, followed by the average temperature (16.3%) and temperature seasonality (10.70%). The maximum number of cases in India was explained in the range of temperature seasonality varying from 22% to 38%. The community transmission in Brazil was mostly influenced by temperature seasonality (38.40%), followed by the mean diurnal range of temperature (27.10%), average temperature (11.70%), and relative humidity (12.80%) (Table 2). 

                3.4 COVID-19 response to the predictors in different climatic regions
The marginal effect was assessed by using partial dependence plot to represent the predicted association between climatic indicators and COVID-19 risks of BRT model, is as illustrated in Figure 3. A non-linear complex association is observed in the temperate and sub-tropical zones with more than 10oC average temperature and average humidity with less than 60%. A monotonic trend is found in the tropical regions for the mean diurnal temperature range ranging between 8- and 12oC, and temperature seasonality with more than 80%. The results show that average temperature was negatively associated with COVID-19 transmission risks, which tend to reduce significantly when the average temperature varied from 5oC to 12oC in the sub-tropical zone and 5oC to 11oC in the temperate zone. With increasing average temperature, community transmission is reduced significantly. A more complex association is found between the response of the number of COVID-19 cases was slightly positive and associated with relative humidity, although it was a less influencing factor in the temperate and sub-tropical zones. The probability of disease transmission increased After after the threshold of about 60% relative humidity in these two regions, the probability of disease transmission increased (Figure 3).
On the contrary, these two meteorological parameters did not have a significant association with the disease transmission in the tropical region. The significant community transmission occurred with the changes in mean diurnal temperature, which was ranged from 4 to 8oC. After this, there was a significant decline in the number of COVID-19 cases in community transmission, which had little variations with average temperature. The temperature seasonality was also a significant variable showing positive association for the community transmission in the tropical countries. 
                  3.5 COVID-19 response to the predictors in different countries:
Figure 4 represents the country-wise association between the climatic predictors and the COVID-19 cases. The results show that a monotonic trends were found with less than 10°C temperature for explaining the COVID-19 cases in France, Turkey, the US, the UK, and Germany. A spurious and more complex association was found between more than 10°C and the COVID-19 cases in these countries. Therefore, maximum cases were found during the temperature range ofvarying from 5 to 10°C, and the infections declined after when the temperature increased beyond 10°C, infected cases were declined. 
Similarly, the average relative humidity was a contributing factor in Spain, the UK, and Italy, and favorable relative humidity for the disease transmission was found to be 60 to 70% in temperate countries. Most iInterestingly, in the case of Turkey, it was found that the cases were increasing after crossing the 73% threshold of relative humidity. The temperature seasonality mostly influenced the number of cases in Russian cases. About 56.3% of the cases in Russia were influenced by temperature seasonality, followed by Italy (46.3%), and the US (20.5%). It concludes that mMore than 70% variation of temperature (temperature seasonality) may cause trigger a significant increase in COVID-19 community transmission. ButHowever, with the 80% of temperature seasonality, there was a declining trend was noted in for the US cases, whereas the number of infections in Russian cases declined after the valuea temperature threshold of reached 110%. This might could be attributed to be because the location, as and extension of Russia is extends more northwards towards extreme seasonality when compared to than the US where extreme seasonality was found. Another important variable, mean diurnal range of temperature contributes more (about 60%) to the community transmission in Germany (Figure 4). 
It was found that the COVID-19 community transmission in the tropical zone was not strongly associated with the temperature. Maximum cases are explained by 30-40% of seasonal variation in temperature, and the cases tend to decline when the seasonal variation in temperature after crosses a 40% thresholdseasonal variation in temperature, the number of cases may decline sharply. The number of infections cases in India were was mostly associated with the diurnal range of temperature (58.7%). %), whereas those The cases in Brazil were mostly influenced by the temperature seasonality (38.4%). In Brazil, the maximum number of cases were was found in the range between 5° to and 8°C of the mean diurnal temperature. In Brazil, the cases were sharply increasingincreased sharply with an increase of in the average temperature. The results also further showed confirmed that the average temperature ranging from 25 to 30 oC was the most influential factor behind the number of cases in these tropical countries zones (Figure 4).
4. Discussion:
Many Research studies have tried attempted to establish the relationship between meteorological parameters and transmission of influenza epidemic (Thai et al. 2015; Chong et al. 2020). Studies conducted more recently In recent times, several efforts have also been made to evaluated the association between climatic predictors and COVID-19 transmission (Wang et al. 2020a; Shi et al. 2020; Oliveiros et al. 2020; Ficetola and Rubolini 2020). Existing These studies have mainly focused on regional perspectives of COVID-19 transmission and its association with climatic conditions. However, a global analysis covering studies at the macro level are limited, in particular, the studies which accounts for different climatic regions has not been systematically undertaken. The present paper addresses this gap by providing An an empirical analysis of to investigate the influence of climatic, bioclimatic factors on COVID-19 community transmission using city-level data across three climatic regions in countries with the most number of COVID-19 cases is expected to improve the understanding of the spread of the disease. The analysis considered climatic and bioclimatic data from 72 cities from the tropical, 63 cities from the sub-tropical and 93 cities from the temperate zones. 
The results ofA country-level analysis showed that in Indonesia,  showed the that only average temperature is linked associated with the COVID-19 transmission, while humidity, maximum or minimum temperatures are not correlated (Tosepu et al. 2020). In this background, the present study used climatic, bioclimatic data for 72 cities from the tropical, 63 cities from the sub-tropical and 93 cities from the temperate zones. The studyOur results found demonstrate evidence that increasing temperature and decreasing average relative humidity were associated with the slowdown the community transmission of COVID-19. At the same time, Wang et al. (2020a) revealed showed that higher average temperature and higher relative humidity considerably decreased the COVID-19 transmission. About 1°C rise in average temperature is related to a reduction of reproduction rate of transmission by 0.0225 in China (Wang et al. 2020a) and a 1% rise in relative humidity lowers the reproduction rate by 0.0158. Another study by Bu et al. (2000) concludes concluded that in China, the average temperature ranges between 13°C and 19°C and average relative humidity ranges between 50% - 80% constituted an appropriate condition for the community transmission of this virus.
The present study foundOur results confirm a significant association between the transmission of COVID-19 transmission risks and temperature in the temperate region, while there was no significant association between these two in the tropical region. A study from China showed that the COVID-19 transmission rate is decreased, with an increase in temperature in the temperate part of China (Shi et al. 2020). Shi et al. (2020) also found the that the cases of COVID-19 were higher within the 10°C temperature, while it isand considerably lower in regions with more than 10°C. It might therefore appear that COVID-19 needs a minimum temperature of 4°C of minimum level of temperature for smooth transmission. Also, in the temperate and subtropical regions, COVID-19 transmission was lower when the temperature remains remained below 10°C. It is likely thatPossibly, in these regions,  the unfavorable temperature in these regions keepts people inside their homes, and maintaining ‘social distancing’ was maintained. Therefore, the temperature might have played a significant role in the dispersion of the virus in the temperate and subtropical regions (Lowen et al. 2007). While the average temperature was not associated with COVID-19 transmission in the tropical region, the temperature seasonality and mean diurnal temperature become important for the disease transmission in the region. Other than these climatic parameters, socio-demographic and health measures play a role, i.e.,for example, an overcrowded population, a significant number of dwelling in slum populationsareas, inadequate hygiene and sanitation, in accelerating the rate to implementing public health measures influencing more to the intensity of COVID-19 spread in the tropical countries, like such as India and Brazil (Rukmini 2020; Kirby 2020). Moreover, the disease control measures fail because of policy has unique problems, including being chronically under-funded and its patchy public health systems (Rukmini 2020).
Since various parameters of temperature were associated differently with tCOVID-19he outbreak varies acrossin different climatic regions such as the temperate and tropical zones, but it may also vary over by regional/ or country levels due to changes in geographicaltopographical and ecological settingschanges. Moreover, this discrepancy might be due to the differences of environmental characteristics among cities and our climate-zone level results are averaged estimates of each location within certain region (Lin et al. 2014). The extent of heterogeneity in disease transmission across climate zones is evident. However, a generalization of this result warrants cautionexists and it should be cautious to generalize their results. Thus, the regional level analysis of heterogeneous climatic associations with the transmission is equally necessary along the with global assessments.	Comment by Padmadas S. [3]: Not clear
Especially the second part (this research or Lin et al?)

The present study found that the role of average relative humidity on COVID-19 transmission was weaker and inconsistent compared to the temperature variable. COVID-19 community transmission in temperate zones seem plausible were generally suitable for growth in the number of cases in the conditions of high relative humidity but not exceedingly wet environments (>90%). Moreover, in the tropical zone, high relative humidity is also linked with the transmission rate of COVID-19 cases, but not strongly associated, as in the temperate zone. The results of the present study are consistent with the previous studies, showing the inconsistent effects of relative humidity on COVID-19 cases in the regional case of China (Shi et al. 2020). The Shi et al study also found a similar relationship for Hemorrhagic fever Fever with renal Renal sSyndrome  (HFRS) in China, which was positively associated with the season of cold days in China (Cao et al. 2020). The relationship between relative humidity and COVID-19 cases can be complicated in a country-level analysis as wet conditions may block the viral replication (Chong et al. 2020; Lowen et al. 2007). Deyle et al., (2016), signified that the effects of relative humidity on influenza disease depends on the temperature. This could explicate our findings that the impact of humidity on COVID-19 transmission could be stronger in the a temperate zone and weaker in the a tropical zone as a procession of seasonal temperature change.
More detailed country-specific findings revealed similar results to those of the regional level, albeit with slight variations. In most of the temperate countries such as France, the USA, Turkey, the UK, and Germany, the cities having an average temperature in the range 5-10°C have experienced a higher level of COVID-19 transmission rate than their counterparts (Figure 4). Besides, other climatic parameters like such as average relative humidity played an important role in some of the countries such as Italy, Spain, the UK, and Russia. In humid region zones with a favourable humidity around 60-70%, if when infected people sneezes and coughs, the released tiny droplets can spread rapidly into the air and surrounding environment, and it travels further into the air. The droplets carrying the virus may stay longer in the atmosphere and infect new cases in the air may not evaporate soon, and more likely to infect a new people (Ong et al. 2020). In summary, we conclude that temperature and humidity are associated with can be used for predicting the COVID-19 transmission in these countries. 
Other strains of coronavirus such as HCoV-HKU1, HCoV-229E, HCoV-OC43, and HCoV-NL63 generally show symptoms like the common cold like symptoms. While The COVID-19 seemed to have a strongthe seasonality effect is confirmed for the months from December to April, although data for other months are not yet available for the making any meaningful conclusionsmparison. The transmission of the virus lessens during the summer season (Gaunt et al. 2010). In the coming months, in general, the temperature will be increasing in the countries from within the northern hemisphere. At the same time, the temperature will be decreasingdecrease in the countries of the southern hemisphere. Hence, we believe the findings from this study would have important implications in formulating strategies to deal with COVID-19-related outbreak in the near future. 

It is worth noting We should consider the limitations of ourin the present research. Firstly, in addition to climatic and bioclimatic factors, many other socioeconomic, demographic and bio-behavioral factors may also influence the intensity of COVID-19 transmission. However, due to lack of data, we could not consider However, these factors including such as population mobility, stringent quarantines, public health measuresinterventions, and the human physiological response of a community to the virus and economic and social determinants on the intensity of COVID-spread were not considered due to limitations of availability and accuracy of data. These variables factors bias may underestimate the marginal association between COVID-19 and climatic factors. Secondly, COVID-19 cases data are gathered from a passive surveillance system could suffer from and underreporting bias was inevitable (Ulrich et al. 2020). For example, the patients with asymptomatic and mild symptomatic may treat themselves at home rather than seeking any test and medical facilities. The underreporting bias may also underestimate the results. Thirdly, the present study mainly focusesfocused mainly on average monthly climatic and bioclimatic conditions considering larger spillover countries and climatic regions using city level data. Therefore, fFuture studies may consider using emphasize on predicting the weekly or daily climatic conditions data to improve the prediction of disease transmission outcomeswith considering lag month and associated transmission risk of COVID-19 across the regions and countries.

5. Conclusions:
The present study used city level climatic, bioclimatic data to identify the relationship between the climatic region-wide and countrywide variations and the number of COVID-19 cases by the marginal effects of predictors. The studyWe concludes that climatic and bioclimatic predictors factors across cities in three climatic zones significantly affect predict the spread of the number of COVID-19 cases. The findings of the present study are expected to improvecontribute to a better the understanding of the relationships between the climatic variables and the number of COVID-19 casestransmission risks. It underlines the importance of meteorology-based early warning systems to facilitate timely response to COVID-19 community transmission. The findings from the present study are expectedalso contribute to add to the ongoing debates on the influence of climatic factors on the intensity of COVID-19 spread, and offer directions for could help researchers and policymakers and decision-makers to make appropriate decisions for preventing the disease transmissionspread.
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