Impact of phonon nonlocality on nanogap and nanolayer polar resonators
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Polar dielectric nanoresonators can support hybrid photon-phonon modes termed surface phonon

polaritons with lengthscales below the diffraction limit.

In the deep sub-wavelength regime the

optical response of these systems was shown to diverge from that predicted through a standard
dielectric description. Recently we developed an analytical, dielectric approach and applied it to
spheres and planar heterostructures, reproducing anomalous features observed in experiment and
microscopic calculations. In this Letter we develop tools to describe the nonlocal response of polar
nanoresonators of arbitrary symmetry, and use them to investigate systems with nanogaps and
nanolayers of practical technological relevance. We demonstrate that the available field enhancement
is strongly reduced, as the electromagnetic energy leaks away from the hotspots, while phononic

resonances are shifted by resonator effects.

Nanophotonics is concerned with concentration and
control of light on deep-subwavelength scales. This is
possible by exploiting kinetic motion of charged particles,
allowing the diffraction limit to be beaten many times
over!. This is the basis for polar nanophotonics, where
photons are hybridised with the optic phonons of a crys-
tal lattice in modes termed surface phonon polaritons?.
These modes are highly tuneable®'? and have broad ap-
plications in nonlinear optics'!'2 and the fabrication of
nanophotonic circuitry315,

A key benefit of localised surface phonon resonances is
their strong morphological dependance. In geometries
containing sharp corners or small gaps this results in
a dramatic increase in local energy density which can
be used for sensing applications'®. When confinement
length approaches the atomic length scale the finite wave-
length of the longitudinal optic (LO) and transverse op-
tic (TO) phonons become important. Propagative LO
modes affect screening charges induced at the particle
boundary. This is not accounted for in local theories of
dielectric response, which assume screening charges are
exactly localised at the scatterer boundary. The nonlocal
regime has been studied in plasmonic systems, where ex-
citation of strongly evanescent bulk plasma waves smear
charge, limiting maximal field enhancement and blue
shifting modal frequencies'”18.

The nonlocal regime is difficult to access, requiring fab-
rication of nanoscale resonators or gaps'®. It is how-
ever expected to be of particular interest for phonon po-
laritons in the field of crystal hybrids, which are con-
structed from many alternating nanoscale layers of dif-
ferent polar dielectric materials. In these systems re-
cent studies have shown strong divergence from the lo-
cal optical response?®. As nonlocality implies a trans-
fer of energy from the electromagnetic field to elastic
deformation of the lattice, understanding the nonlocal
physics is also necessary to assess the suitability of these
systems for field-enhancement-based applications such
as surface-enhanced infrared absorption spectroscopy, or
single-molecule strong coupling?!?2. Nonlocal effects can
be modelled using a first-principles method such as den-
sity functional theory,?*?* which however scales badly to
realistic devices. To provide more agile approaches we

recently developed an analytical continuum theory, de-
scribing polar nonlocality in terms of macroscopic fields.
The validity of this model was confirmed by compari-
son to recent experiments for structures with features
below 2nm in size?%2%. Such analytical approaches are
tractable in systems with strong symmetry but cannot
be easily generalised.

In this Letter we develop numerical tools to describe
the nonlocal response of polar nanosystems with arbi-
trary geometry and use them to investigate the nonlocal
phenomenology of technologically relevant nano-objects.
This is achieved through integration of our nonlocal re-
sponse theory with COMSOL Multiphysics, a commer-
cial finite element solver, the model is distributed for the
use of the community?®. The only inputs parameters
required by the model, beyond those required for a lo-
cal dielectric description, are the low-wavevector LO and
TO phonon velocities which can be parameterised utilis-
ing the bulk phonon dispersions, readily available in the
literature for most materials. The numerical approach is
validated by comparison to our previous analytical nonlo-
cal scattering spectra for 3C-SiC spheres?®. The model is
then applied to the study of spherical dimers, investigat-
ing the effect of nonlocality on field confinement. Finally
we study the nonlocal response of macroscopic resonators
containing nanoscale layers, showing the effect of nonlo-
cality in nanostructured crystal hybrid resonators.

Our polar crystal is treated in the continuum limit as
an isotropic lattice with a single phonon branch char-
acterised by zone-centre LO (TO) phonon frequencies
wy, (wr) in a quadratic dispersion approximation anal-

ogous to that used in nonlocal plasmonics'”. Phonons
couple to driving electric field E as
[w%—w(w—&—iv)]X—i—V-?—%E:O, (1)

in which X is the relative ionic displacement, v is the
damping rate and p and p are effective mass and charge
densities. The matrix 7 describes the phonon dispersion,
acting as an effective stress tensor?” given for an isotropic
lattice by

=63 (VX 4+ (VX)") + (82 - 283) V- XL, (2)



where fr (fL) are phenomenological velocities describing
TO (LO) phonon dispersion and I the identity tensor.
The model is completed by the constitutive relation

P=uX+e¢(eco —1)E, (3)

where €4, is the high-frequency permittivity and the ma-
terial polarisation is P.

In a previous publication?® we solved Eq. 1 and Maxwell’s
equations analytically in simple systems of high symme-
try: a sphere in vacuum and a suspended nanolayer. Here
we employ a numerical method which permits easy non-
uniform meshing as oscillations induced by Eq. 1 occur
on the nanometer scale, while the wavelength of mid-
infrared photons is typically 4 orders of magnitude larger.
Non-uniform meshing is simple using commercial finite
element (FEM) solvers. To use Eq. 1 in a FEM calcu-
lation it must be translated into weak form. The strong
statement is that the left-hand side of Eq. 1 is zero ev-
erywhere. The corresponding weak statement is that it,
integrated over the computational domain and multiplied
by a family of test functions ®, is zero. Integrating by
parts over the computational domain yields

d3+
/\rL%—ww+W)
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+aX P+ ¢ (epra (w) —eoo)E-@] =0, (4
where we simplified using the local dielectric function
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In coupling Eq. 4 with Maxwell’s equations we introduce
the macroscopic fields, X and 7. This means the Maxwell
boundary conditions are insufficient to determine mode
amplitudes in each layer and additional boundary con-
ditions (ABC) are required. We provided an exhaustive
discussion of the appropriate ABC to be used in polar
dielectrics in Ref.2?, to which the interested reader is in-
vited to refer. For completeness in the following we pro-
vide a brief overview of this important problem. Con-
sidering energy transport across a material interface®?,
it is possible to derive the ABC to be satisfied at the
interface between two nonlocal media: the continuity of
the normal and in-plane ionic displacement X and of the
normal and shear components of the effective stress 7-n.
At interfaces between local and nonlocal layers the ap-
propriate combination of boundary conditions is actively
debated?*3!. It is necessary to apply two conditions,
leaving the remaining components discontinuous. We fix
the normal component of the displacement, analogously
to the plasmonic case!"'832 and the normal component
of the stress tensor, which provides the correct result in
the case of vanishing Sr.

To verify our model we study a system whose nonlo-
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FIG. 1. a) Extinction efficiencies for spheres with r =
4,3,2nm. Numerical data is shown by solid lines. Analyt-

ical data is shown by black dashed lines. The local result is
also shown for 7 = 3nm. Inset shows nonlocal electric field for
r = 4nm. b) Comparison of numerical extinction efficiencies
using different ABC for r» = 4nm.

cal response is analytically calculable. We demonstrated
that nonlocal extinction spectra of nanoscopic 3C-SiC
spheres are well described by a quasistatic model in which
the TO dispersion is neglected and only the boundary
condition on the normal displacement is enforced?®:32.
This is a reasonable approximation near the Frohlich
resonance where the TO phonon is strongly evanescent.
Considering the case 8, = 15.39 x 10°cm s~133 we calcu-
late nonlocal extinction efficiencies.

Results are shown in Fig. la for radius r = 2,3,4nm.
In the local case small spheres exhibit a single resonance
at the Frohlich frequency, wr =~ 933cm ™!, illustrated for
r = 3nm by the red curve. In the nonlocal case addi-
tional peaks appear in the extinction spectrum. These
correspond to quantized LO phonon modes. Eventually
the Frohlich resonance red shifts as a result of an in-
crease in the effective nonlocal dielectric function. Note
that in Fig. la analytical (numerical) results are illus-



trated by solid (dashed) lines, overlap is exact on this
scale demonstrating the accuracy of our implementation.
The inset shows the nonlocal electric field magnitude for
the 4nm sphere, the short wavelength LO phonon oscil-
lation is clearly visible.

Eqg. 1 is a continuum approximation, treating the phonon
dispersion phenomenologically through effective stress
tensor Eq. 2. Phonon dispersions are assumed quadratic,
meaning LO and TO dispersion relations have solutions
at all frequencies. In reality the granular structure of the
lattice prevents this, resulting in a decrease in group ve-
locity to zero at the Brillouin zone edge®*. In 3C-SiC TO
dispersion is weak, meaning that using finite St should
not alter the extinction cross-section. We verify this in
Fig. 1b for a » = 4nm and St = 9.15 x 10° cm s~ 133,
demonstrating that the ABC we chose overlaps with the
Br ~ 0 cms™! limit explored in the prior section. In
the same panel we also plot results using different ABC,
showing how also fixing the shear stress provides essen-
tially the same results, while using the in-plane displace-
ment would lead to an unphysical redshift.

We have applied our numerical model to systems with
analytical solutions, demonstrating its reliability. In the
remainder of this Letter we apply it to nanophotonic sys-
tems relevant for technologically relevant surface phonon
polaritonics®33, where lack of symmetry prevents ana-
lytical solutions. Firstly we study the effect of nonlo-
cality on field hotspots, predicted in plasmonic systems
to result in strong charge smearing and a corresponding
decrease in the maximal field®®. We consider a spher-
ical dimer, consisting of two 3C-SiC spheres of radius
r = bnm, separated by a gap of width d. For large gaps
the system modes are those of the isolated spheres stud-
ied in Fig. 1. For small d these hybridise into bond-
ing and antibonding resonances®’, as shown in the local
scattering spectra for d = 2nm in Fig. 2a at 918cm™!
and 935cm ™~ respectively. In the nonlocal spectra (solid
line) these modes are supplemented by the LO modes
supported by the dimer, as in Fig. 1a.

The antibonding mode is of most interest as opposing
charges enclosing the gap result in strong capacitative
field enhancement. This is demonstrated in the local
case by the dashed line in Fig. 2a, which shows field
enhancement at gap centre. On resonance in the local
case this peaks at around 125. In the nonlocal case the
enhancement diminishes to around 40. This can be un-
derstood from the field intensity plots inset in Fig. 2b.
In the local case field is strongly localised in the gap,
and is efficiently screened from the sphere interior. In
the nonlocal case screening is less efficient and induced
screening charges smear into the spheres, diminishing ca-
pacitative charging of the dimer. Gap-dependance is
demonstrated in Fig. 2b, where we plot peak field en-
hancement for the antibonding mode. In the local case
field enhancement diverges as d — 0, while in the non-
local case this is offset by increased energy transfer to
propagative LO modes in the nanosphere. Note that, as
clear from the inset in Fig. 2b, longitudinal modes emit-
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FIG. 2. a) Local (red) and nonlocal (blue) extinction efficien-
cies (solid) and field enhancements (dashed) at gap centre for
a dimer of radius » = 5nm and gap d = 2nm. b) Compar-
ison of local (red squares) and nonlocal (blue circles) peak
field enhancements for a dimer with r = 5nm as a function
of gap width. Inset shows the electric field magnitude of the
antibonding mode for d = Inm.

ted in the nonlocal case form standing waves inside the
nanospheres. The field can thus in principle be enhanced
at its antinodes inside the dielectric. Although applica-
tions are normally predicated on enhancement exterior
to the polar resonator?"?2, we prefer to point out this
feature as it stands in stark contrast to what happens
in plasmonic systems, where the longitudinal modes are
instead evanescent.

We have discussed nonlocality in systems of nanoscopic
dimensions or with nanoscale air gaps. Fabrication of po-
lar resonators on this scale is challenging, however mak-
ing macroscopic heterostructures containing nanolayers
is a well established process. It was recently sug-
gested that in bulk polar superlattices, termed crystal
hybrids??, a nonlocal description of the optical response
is necessary?®. Describing a system containing many po-
lar layers is beyond the scope of this work, however we
demonstrate the effect of nonlocality in larger resonators
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FIG. 3. a) Electric field intensity at the nanopillar bound-
ary for local and nonlocal models, normalised to the maxi-
mal value in each case. b) Comparison of local (dashed) and
nonlocal (solid) extinction efficiencies for a 3C-SiC nanopil-
lar on substrate with h = 250nm, 2r = 500nm containing an
AIN film of thickness 0.5 and Inm. c¢) Comparison of local
(dashed) and nonlocal (solid) extinction efficiencies for a 3CC-
SiC nanopillar on substrate with h = 250nm, 2r = 500nm
containing one and two thin AIN films of thickness 0.5nm

containing a few nanoscopic polar layers.

We apply our model to a typical polar resonator, a 3C-
SiC nanopillar of height h = 250nm and radius r =
500nm on same material substrate®3>. Considering a
single AIN layer in the pillar centre as in Fig. 3a, with
Br = 1 x 10°cm s71, B, = 5.1 x 10%cm s~ 125, Dashed
lines in Fig. 3b show the local extinction efficiency for

film thicknesses d = 0.5, Inm. The spectrum shows three
features. The first, closely resonant with the zone-centre
LO phonon in the AIN (w, ~ 887cm ™!, marked by the
vertical line) is the Berreman mode of the AIN film?, in-
dependent of the pillar dimensions. Other peaks are pho-
tonic modes resulting from hybridisation of the monopo-
lar mode of the nanopillar® with the epsilon-near-zero
response of the AIN?. In the Inm case these are more
strongly split around wy, as increased film thickness leads
to enhanced pillar-film coupling. In the nonlocal case
(solid lines in Fig. 3b) the Berreman mode red shifts and
weakens as a result of the quantisation of LO phonon
resonances in the film, and it is only visible as a shoul-
der around 882cm™! for the Inm film. In the local case
all LO phonon modes sit at exactly wry,, yielding a single
resonance with large oscillator strength. In the nonlocal
case phonons of differing out-of-plane wavevectors have
different frequencies, smaller than wy,, thus splitting the
Berreman resonance into a set of discrete peaks each of
which has diminished oscillator strength. Additionally
photonic modes are red shifted, this is particularly true
for the low frequency mode. The red shift is more pro-
nounced for the 0.5nm film. This is because, as demon-
strated in Ref.?® for freestanding films, thin AIN films
support quantised Fabry-Pérot LO phonon modes which
red shift as d — 0, resulting in a red shift of the hy-
bridised resonances.

To demonstrate how these results of can be extrapolated
to crystal hybrids comprising multiple crystal layers, we
consider the effect of adding a second 0.5nm AIN film,
separated from the first by a 0.5nm 3C-SiC spacer layer,
results are shown in Fig. 3c. In the local (dashed lines)
cases the additional layers results in an increased split-
ting of the photonic modes around wy, as a result of in-
creased coupling between the AIN epsilon-near-zero mode
and the pillar resonance. In the nonlocal case the same
effect is observable around the red-shifted fundamental
Fabry-Pérot LO phonon resonance. Also shown in Fig. 3a
are the electric field magnitude in the nanopillar for a
Inm AIN film. In the local case the field is localised
at the pillar edge”. In the nonlocal case propagative LO
modes cause electromagnetic energy to leach into the pil-
lar, smearing field hotspots.

We developed a numerical method to study the non-
local response of nanoscopic polar resonators, and ap-
plied it to geometries of practical relevance for current
nanophotonic investigations. We demonstrated that non-
local effects can lead to a strong reduction in the achiev-
able field enhancement in structures with nanoscopic fea-
tures, allowing the electromagnetic energy to propagate
in the bulk in the form of LO phonons.

We also studied the mnonlocal phenomenology of
cylindrical nanoresonators, which would manifest
in the reflectance of arrays comprised of such
nanoresonators®3®. Sub-nanometer phonon oscillations
could also be visualised explicitly with electron energy-
loss spectroscopy®®3°. These nonlocal effects will be of
practical relevance for a number of current nanophoton-



ics investigations, including the attempt to reach single-
molecule vibrational strong coupling or few-electrons

strong coupling
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